

I

Thin-client user interface design for the
Pounamu meta-CASE tool

Shuping Cao

2005

II

Abstract

Traditional thick-client diagramming tools have common problems such as installation and setup

overhead, complex and difficult to learn user interfaces, and a heavy infrastructure to support multi-user

collaborative work. These are some of the reasons why tools of this calibre fail to meet expectations.

Thin-client design tools are immune to the problems mentioned above. They provide a number of

advantages over traditional thick-client tools, including a simple and easy to learn user interface,

inherent support for collaborative work, and server-side integration with legacy systems or facilities.

However, building thin-client diagramming tools is a challenging task. Instead of constructing a complete

new tool and architecture for thin-client diagram editors, we propose an extension (namely,

Pounamu/Thin) to a thick-client meta-CASE tool we have been developing which allows any specified

diagram editor to be realized as a thin-client tool. A combination of a web services interface to the thick-

client tool, a set of server-side components, diagram format converters and a conventional web browser

are used to provide these thin-client diagramming applications.

In this thesis, we provide the motivation for our research on Pounamu/Thin. Related diagramming tool

research is reviewed, which defines the basis for our work. Object-oriented analysis and design are

carefully performed, which is the prerequisite for a good quality of the system. We also discuss issues

related to implementing Pounamu/Thin and demonstrate examples of use of the prototype tool. Finally,

we describe evaluations of the effectiveness of our approach and identify potential enhancements to our

work.

III

Acknowledgements

First and Foremost I would like to express gratitude to my two supervisors, John Grundy and John

Hosking, for their encouragement, support, and guidance. Throughout my work period, they provided

me with great ideas, sound advice, and good teaching. Without their help my work would have been

much the poorer.

I would like to thank all my student colleagues who helped and advised me during my work on this

project.

Thanks also to those people who attended my evaluation survey. The time and energy they spent to

provide their well-considered feedback is much appreciated.

Finally, special thanks to my husband, Jun Zhuang, who always cares and loves me for all these years. I

am grateful for his encouragement during many difficult times.

IV

Table of Contents

Chapter 1: Introduction .. 1
1.1 Motivation ... 1

1.2 Our Approach ... 2

1.3 Thesis Overview ... 4

Chapter 2: Background Knowledge and Related Research ... 5

2.1 CASE and MetaCASE tools ... 5

2.1.1 General Information .. 5

2.1.2 The Pounamu Meta-CASE Tool ... 6

2.2 Web-based Software Engineering Tools .. 8

2.2.1 Taking software engineering tools to the Web .. 8

2.2.2 Research Examples .. 9

2.3 Progress on Web-based Diagramming Tools .. 12

2.4 Overview of Pounamu-based Thin-client Diagramming Tool ... 15

2.5 Summary .. 16

Chapter 3: System Requirements ... 17

3.1 Key Requirements .. 17

3.2 Functional requirements Specification ... 18

3.3 Use Cases .. 19

3.4 Conceptual Objects Modeling in UML Class Diagrams ... 35

3.4.1 Remote Interface Plug-in Class Diagram .. 36

3.4.2 Web Front-end Class Diagram ... 39

3.5 Non-functional requirement specifications ... 40

3.6 Summary .. 41

Chapter 4: System Design ... 42
4.1 The Overall System Diagram ... 42

4.2 System Architecture ... 43

4.2.1 System Deployment Diagram ... 44

4.2.2 Architecture Design of the Web Tier ... 45

4.3 Object-Oriented Design .. 46

4.3.1 Services Objects ... 46

4.3.2 OOD of the Remote Interface Plug-in Component ... 48

4.3.3 OOD of the Web Tier .. 50

4.3.3.1 OOD for the web tier of the GIF-based thin-client user interface ... 50

4.3.3.2 OOD for the web tier of the SVG-based thin-client user interface 55

4.3.4 Data & Message passing among OOD objects .. 60

4.3.4.1 Sequence Diagram for “Adding a remote interface plug-in” ... 60

V

4.3.4.2 Event flows for “Registering a User” .. 60

4.3.4.4 Event flows for “Initiating an Editing Action” ... 64

4.3.4.5 Event flows for “Confirming an Editing Action on the Working PounamuView Diagram” 64

4.3.4.6 Event Flows for “Identifying an Editing Target Shape/Connector” 66

4.3.4.7 Event Flows for “Locating a Valid Shape Handle” ... 67

4.3.4.8 Event flows for “Setting Element Properties” ... 68

4.4 Summary .. 69

Chapter 5: Implementation of the GIF-based Prototype ... 70

5.1 Aided Tools and Technologies ... 70

5.1.1 Tomcat Servlet/JSP Engine .. 70

5.1.2 RMI and CORBA ... 70

5.1.3 Servlets and JSPs ... 71

5.1.4. XML .. 72

5.1.5 Web Graphics Format ... 73

5.2 Communication between the Web tier and the Pounamu Server .. 73

5.3 Keeping and Tracking Session State Information .. 74

5.4 Displaying a GIF-version of PounamuView Diagram on a Web browser 76

5.5 Interpreting and Execution of Editing Actions .. 80

5.6 Concurrent Editing Issues .. 85

5.7 Screen Dumps of System Running .. 86

5.7.1 Example of Loading a PounamuView Diagram .. 86

5.7.2 Example of Removing an Entity Shape .. 88

5.7.3 Example of Removing an Association Connector ... 89

5.7.4 Example of Adding an Entity Shape ... 90

5.7.5 Example of Adding an Association Connector .. 92

5.7.6 Example of Property Setting ... 95

5.7.7 Example of Resizing an Entity Shape ... 97

5.7.8 Example of Moving an Entity Shape ... 99

5.8 Implementation Experiences .. 101

5.9 Summary .. 102

Chapter 6: Implementation of the SVG-based Prototype ... 103

6.1 Technologies to Use .. 103

6.1.1 SVG .. 103

6.1.2 SVG in practice ... 104

6.1.3 SVG Implementations ... 107

6.2 SVG-Specific Implementation Details .. 108

6.2.1 Displaying an SVG-version of a PounamuView Diagram on a Browser 108

6.2.2 Capturing and Interpreting SVG Events .. 112

6.2.3 Implementation of Multiple Editing .. 114

VI

6.3 Screen Dumps of the SVG-based thin-client user interface ... 117

6.3.1 Example of Removing an Entity Shape .. 119

6.3.2 Example of Removing an Association Connector ... 122

6.3.3 Example of Adding an Entity Shape ... 123

6.3.4 Example of Adding an Association Connector .. 125

6.3.5 Property Setting Example ... 127

6.3.6 Example of Moving an Entity Shape ... 129

6.3.7 Example of Resizing an Entity Shape ... 131

6.4 Implementation Experiences .. 133

6.5 Summary .. 135

Chapter 7: Evaluation ... 136

7.1 Cognitive Dimensions Evaluation ... 136

7.2 User Survey ... 139

7.2.1 Survey Procedure ... 140

7.2.2 Survey Results .. 141

7.2.3 Suggestions on Improvement ... 144

7.3 General Comments .. 145

7.4 Summary .. 146

Chapter 8 Conclusions and Future Work ... 147

8.1 Conclusions .. 147

8.2 Future Work ... 149

Reference: ... 152

Appendix A: Tool_UML Notations .. 156

Appendix B: Questionnaire ... 160

Pre-test Questionnaire ... 160

Post-test Questionnaire .. 160

Appendix C: Evaluation Task List ... 163

VII

List of Figures

Figure 1-1 The main interface of the thick client Pounamu tool (a) .. 3

vs. its thin-client counterpart (b) ... 3

Figure 2-1 CASE Tool versus MetaCASE Tool (Adapted from [23]) .. 6

Figure 2-2 the Pounamu Meta-tool Designer Tool ... 7

Figure 2-3 A Pounamu-specified UML design tool in use .. 8

Figure 2-4 HTML form for entering the details of an Essential Use Case in Ukase (from [21]) 10

Figure 2-5 The main screen of Seek (adapted from [12]) ... 12

Figure 2-6 NutCASE: the main user interface for displaying a class diagram .. 13

Figure 2-7 Example applications built with Cliki framework (adapted from [5]) .. 14

Figure 2-8 Using Pounamu Meta-CASE tool with thin-client diagramming .. 15

Figure 3-1 System Use Cases Diagram ... 20

Figure 3-2 Examples of Loading a Model Project ... 21

Figure 3-3 Examples of Creating a New Model Project .. 22

Figure 3-4 Examples of Loading a PounamuView Diagram ... 23

Figure 3-5 Examples of Creating a New PounamuView Diagram .. 24

Figure 3-6 Examples of Adding Entity Shape to a PounamuView Diagram ... 26

Figure 3-7 Examples of Add an Association Connector to a PounamuView Diagram 28

Figure 3-8 Examples of Model Element Property Setting ... 29

Figure 3-9 Examples of Removing Element from the PounamuView Diagram .. 31

Figure 3-10 Examples of Moving an Entity Shape in a PounamuView Diagram 32

Figure 3-11 Examples of Moving an Association Connector in a PounamuView Diagram 33

Figure 3-12 Examples of Resizing an Entity Shape in a PounamuView Diagram 34

Figure 3-13 OOA objects in the original Pounamu Meta-CASE tool .. 37

Figure 3-14 Conceptual Model Objects & Inter-relationships for a Remote Interface Plug-in 38

Figure 3-15 Conceptual Model Objects & Inter-relationships for a web front-end 40

Figure 4-1 System Diagram .. 42

Figure 4-2 The System Architecture in a UML Deployment Diagram ... 44

Figure 4-3 Three Ways to Design JSP-based WebApp [36] .. 45

Figure 4-4 Request Controller Architecture (JSP Model 2 Architecture [38]) .. 46

Figure 4-5 System Service Objects .. 47

Figure 4-6 UML OOD Diagram of the Remote Interface Plug-in Component .. 49

Figure 4-7 UML OOD Class Diagram of the Web tier .. 54

Figure 4-8(a) Scenario of Multiple Editing on a PounamuView Diagram ... 56

Figure 4-8(b) Scenario of Single Editing on a PounamuView Diagram .. 56

Figure 4-9 (a) the GIFversion ApplicationSession OOD Object .. 59

Figure 4-9 (b) the SVG version pplicationSession OOD Object .. 59

Figure 4-10(a) the GIF version ActionData OOD Object and one Subclass Example 59

VIII

Figure 4-10(b) the SVG version ActionData OOD Object and one Subclass Example 60

Figure 4-11 Sequence Diagram for Adding the Remote Editing Interface Plug-in 60

Figure 4-12 Collaboration Diagram for Registering a User .. 61

Figure 4-13(a) Collaboration Diagram for Loading a Working Model Project ... 62

Figure 4-13(b) Collaboration Diagram for Loading and Displaying a Working PounamuView 63

Figure 4-14 Collaboration Diagram for Initiating an Editing Action ... 64

Figure 4-15 Collaboration Diagram for Confirming an Editing Action ... 65

Figure 4-16 Collaboration Diagram for identifying a Target for an Editing Action 66
Figure 4-17 Collaboration Diagram for Specifying a Valid Shape Handle .. 67

Figure 4-18 Collaboration Diagram for Setting New Properties for the Target Element 68

Figure 5-1 Dialogues Communicated in Moving Entity Editing Action .. 81

Figure 5-2 Screen Dumps of Loading and Specifying a PounamuView Diagram 88

Figure 5-3 Screen Dumps of Removing an Entity Shape ... 89

Figure 5-4 Screen Dumps of Removing an Association Connector ... 90

Figure 5-5 Screen Dumps of Adding an Entity Shape .. 92

Figure 5-6 Screen Dumps of Adding an Association Connector .. 94

Figure 5-7 Screen Dumps of Property Setting Example ... 96

Figure 5-8 Screen Dumps of Resizing an Entity Shape ... 98

Figure 5-9 Screen Dumps of Moving an Entity Shape ... 100

Figure 6-1(a) SVG code for a 2D circle Figure 6-1(b) the Rendered result 104

Figure 6-2 An Arrow Defined in SVG group Element ... 105

Figure 6-3(a) SVG Code Examples Using the Arrow Defined in Figure 6-2 ... 105

Figure 6-3(b) the rendered result from SVG code shown in (a) ... 105

Figure 6-4 SVG event handler examples ... 106

Figure 6-5 the Tree Structure of a typical PounamuView Diagram .. 108

Figure 6-6(a) A PounamuView diagram example ... 110

Figure 6-6(b) SVG transformation of the PounamuView Diagram shown in 6-6(a) 111

Figure 6-7 the execution logic of the getShapeID operation .. 113

Figure 6-8 Intermediate result of buffering three edits on a PounamuView Diagram 118

Figure 6-9 Examples of Committing (a) and Modifying (b)(c) Three Buffered Edits 119

Figure 6-10 SVG version “Remove Entity Shape” Running Examples ... 121

Figure 6-11 SVG version “Remove Association Connector” Running Examples 122

Figure 6-12 the Updated Diagram Showing Previous Removing Edits Executed 123

Figure 6-13 SVG Version “Add Entity Shape” Running Examples ... 125

Figure 6-14 SVG Version “Add Association Connector” Running Examples ... 126

Figure 6-15 SVG Version “Set Properties” Running Examples .. 128

Figure 6-16 SVG version “Move Entity Shape” Running Examples ... 130

Figure 6-17 SVG version “Resize Entity Shape” Running Examples ... 132

Figure 6-18(a) A PounamuIcon Example ... 134

IX

Figure 6-18(b) A Pounamu XML file for an icon in (a) .. 134

Figure 7-1 System Easy-to-Use Test Results, ... 141

Figure 7-2 System Efficiency Test Results ... 142

Figure 7-3 System Response Time Test Results, .. 142

X

List of Tables

Table 3-1 “Load PounamuProject” Use Case Description .. 20

Table 3-2 “New PounamuProject” Use Case Description .. 21

Table 3-3 “Load PounamuView” Use Case Description ... 22

Table 3-4 “New PounamuView” Use Case Description .. 24

Table 3-5 “Refresh PounamuView Diagram” Use Case Description .. 25

Table 3-6 “Add Entity Shape” Use Case Description ... 26

Table 3-7 “Add Association Connector” Use Case Description .. 27

Table 3-8 “Set Model Element Properties” Use Case Description ... 30

Table 3-9 “Remove Model Element” Use Case Description ... 31

Table 3-10 “Move Entity Shape” Use Case Description ... 32

Table 3-11 “Move Association Connector” Use Case Description ... 33

Table 3-12 “Resizing Entity Shape” Use Case Description .. 34

Table 4-1 System Service Objects Description .. 47

Table 4-2 Available Handler Classes & Invoking Requests ... 51

Table 4-3 Required RequestHandlers & Invoking Requests .. 57

Table 4-4 Descriptions of events shown in Figure 4-12 ... 61

Table 4-5 Descriptions of events shown in Figure 4-13(a) ... 62

Table 4-6 Descriptions of events shown in Figure 4-13 (b) .. 63

Table 4-7 Descriptions of events shown in Figure 4-14 ... 64

Table 4-8 Descriptions of events shown in Figure 4-15 ... 65

Table 4-9 Descriptions of events shown in Figure 4-16 ... 66

Table 4-10 Descriptions of events shown in Figure 4-17 ... 67

Table 4-11 Descriptions of events shown in Figure 4-18 ... 68

Table 7-1 Examples of Survey Questions .. 141

Table A-1 Class Diagram (19 elements) .. 156

Table A-2 Use Case Diagram (12 elements) .. 157

Table A-3 Sequence Diagram (9 Elements) ... 158

Table A-4 Collaboration Diagram (7 Elements) .. 159

1

Chapter 1: Introduction

This chapter presents the rationale for this project and briefly describes the approaches taken to fulfill its

goals. An overview of the structure of this thesis is also given in the last section.

1.1 Motivation
Most traditional diagramming tools, such as CASE tools, CAD tools and user interface design tools, use

a thick-client, desktop interface and architecture. As they can leverage sophisticated thick-client

interaction techniques and typically manage information on local PCs in a distributed fashion [5, 7,11],

these tools generally work very well in terms of providing highly responsive diagram editing and viewing

facilities. However, there are some disadvantages that keep these thick-client, standalone tools from

becoming successful. First, they often provide complex and difficult to learn user interfaces. Second,

they need heavyweight architectures to support collaborative editing. Most importantly, they have to be

installed and periodically updated on every user’s PC.

With the rise of the web and scripting languages, many researchers have tried to address the

disadvantages of thick-client diagramming tools by developing web alternatives. However, due to the

poor visual interaction supported by web browsers, most earlier work in this area resorted to

augmentation technologies such as Java Applets or similar thick-client browser plug-ins [7]. Web-based

diagramming tools built in this way are, in essence, indistinguishable from traditional thick-client tools.

Some recent efforts [6,12,14] prove that it is possible to build web-based diagramming tools without the

help of JavaApplets or complex browser plug-ins. In these lightweight tools, users view diagrams as the

contents of a “web page” along with buttons, links etc for modifying the diagram, moving to other

diagrams and so on. Diagrams may be constructed with combinations of automatic and manual layout,

resizing, highlighting and so on. Technologies to render the diagrams might include GIF images, SVG

renderings, VRML visualizations and so on. Key potential advantages of this approach are a consistent

look and feel across all web-based diagramming tools, use of web page design techniques to aid

interaction and learning, no need to install and update copies of tools on PCs, and use of conventional

web architectures to support collaborative work by multiple users.

We have been developing a new thick-client meta-CASE tool (called Pounamu) which provides very

flexible diagram and meta-model specification techniques and a thick-client editing approach. Instead of

building a complete new tool and architecture for thin-client diagram editors, we chose to build an

extension to this meta-CASE tool which supports a thin-client diagramming infrastructure. One copy of

Chapter 1: Introduction

2

the meta-tool is used as an application server, holding shared diagrams and model data. A set of web

server components interact with this server via a web service-based interface. These web server

components provide diagram format translation, editing, view management and other facilities to users.

Web browsers deployed on each user’s PC render the diagrams and capture user input for property

editing, diagram editing, view management and so on.

1.2 Our Approach

We aimed at designing and developing a thin-client diagramming tool. The research approach that we

took to achieve this goal is described below.

First, we performed a comprehensive literature review on this research field. In this review, we

investigated the features and characteristics of a variety of web-based software engineering tools, and

especially the approaches taken to develop web-based diagramming tools. Based on this investigation

we formed our own ideas for providing a web component extension (called Pounamu/Thin) to the original

Pounamu Meta-CASE tool. Many useful ideas and insights come from the existing approaches to

support web-based diagramming facility.

After the literature review we defined more accurately the goals of our work, and identified system

requirements for the thin-client visual tool. The essential requirements are:

Support for thin-clients: This system can be deployed on any client machine running a suitable web

browser, so that users can access the modeling environment of Pounamu meta-CASE tool without the

need to download/install software. Additionally, this allows developers to upgrade the server-resident

systems more easily. Compared with the original Java Swing-based Pounamu tool, our system should

provide an easy-to-use and easy-to-learn user interface, so that novice users can pick up the Pounamu

tool fairly easily.

Consistency: In addition to supporting all the core functionalities enabled in the original Pounamu tool,

our thin-client extension should adopt a design approach consistent to other web-based applications,

i.e., using HTTP POST/GET page display metaphor for diagram viewing and interaction.

Friendly and intuitive user interfaces: The obstacle to implementing web-based visual tools is that web

browser support for visual interaction is very poor. This means that a simple operation such as moving

diagram components often involves multiple interactions to complete. In order to equip our system with

comparatively friendly, intuitive user interfaces, special care should be given to avoid unnecessary user

interactions.

Integration: Our Pounamu/Thin extension should be easily plugged into and off the original Pounamu

tool given a user’s choice to use either the thick-client or the thin-client user interface for their

diagramming tasks. This should be achievable with the help of component-based solutions.

Chapter 1: Introduction

3

With the above key requirements in mind, we created a theoretical basis for our tool. This consists of a

sound software architecture, a number of design objects and methods to perform the core functionalities,

as well as graphical user interfaces via which users can interact with our system. A general idea of how

different our thin-client visual tool is from its corresponding thick-client version can be obtained from

Figure 1-1.

Figure 1-1 The main interface of the thick client Pounamu tool (a)

 vs. its thin-client counterpart (b)

The next step was to build prototype systems from the theoretical basis formed previously. Several

components were implemented during this process including:

♦ Remote editing component plug-in

 (a)

 (b)

Chapter 1: Introduction

4

♦ SVG-version web component

♦ GIF-version web component

The final stage of our work was to carry out the evaluation of our prototype tools to investigate system

usability issues. The tasks performed in this evaluation were:

♦ Describe goals of the evaluation

♦ Determine the features of the prototypes that we were interested to test

♦ Compare these features along a variety of cognitive dimensions

♦ Prepare survey tasks to test these features

♦ Recruit subjects to participate in the survey

♦ Analyze the results

1.3 Thesis Overview

This thesis is organized as follows:

Chapter 1: Introduction

Chapter 2: Background and Related Research--covers the background technology and examines some

related work in this topic area.

Chapter 3: System Requirements--focuses on developing system functional requirements and non-

functional constraints.

Chapter 4: System Design--constructs the underlying software architecture and presents a more detailed

design for the main system components.

Chapter 5: Implementation of the GIF Prototype--describes implementation of our GIF version thin-client

diagramming tool and the techniques we used in doing so. Discusses some of the basic implementation

issues we had to consider in the development of this prototype.

Chapter 6: Implementation of the SVG Prototype--describes implementation of our SVG version thin-

client diagramming tool and the techniques used to assist this implementation.

Chapter 7: Evaluation--evaluates our GIF and SVG prototypes. Discusses the strengths and

weaknesses of our tools compared against the original Pounamu thick-client tool, as well as other thick-

client and thin-client diagramming tools. Presents the results of applying cognitive dimensions framework

to our prototypes.

Chapter 8: Conclusion and Future Work--Presents the conclusions and summarizes the avenues of

future work indicated by this work.

5

Chapter 2: Background Knowledge and Related Research

The chapter presents some background knowledge and past work related to our research. The whole

chapter has been organized as 4 sections. The first section describes what CASE and Meta-Case tools

are, and the discussion is focused on our Pounamu Meta-CASE tool. In the second section, we examine

the reasons why increasing numbers of researchers want to bring their software engineering tools to the

web and explore work done in this area. Section 3 describes more recent efforts in developing web-

based thin-client diagramming tools and comments on the strengths and weaknesses of approaches

taken by these tools. The final section presents an overview of our approach employed to develop the

Pounamu-based thin-client diagramming extension.

2.1 CASE and MetaCASE tools

2.1.1 General Information

Computer Aided software engineering (CASE) tools are software applications that support a variety of

software engineering activities, including analysis, design-level modelling, implementation, maintenance,

process modeling, management, testing and documentation etc. Examples of representative CASE tools

include Rational Rose™ [16], Simply Objects™ [25], Argo/UML [17], MOOSE [24], and the JComposer

CASE tool [9]. Originally designed to provide a variety of disparate analysis and design methods and

notations, most CASE tools are now attempting to adopt standardized modeling methods due to the

emergence and popularity of UML. However, despite all these efforts, CASE tools are generally not as

successful as was expected. A major limitation is that these traditional tools only allow the use of a

certain, fixed method for all problems which may or may not belong to the same domain. As a result,

users may find the models difficult to understand because they are unfamiliar with the method, or they

may feel it difficult to map the concepts and semantics used in the models to their application domain

[23]. To address this limitation, Meta-CASE technologies have been developed.

Meta-CASE tools provide a means by which users are enabled to build their own customized CASE

tools in a very low cost effective way. In order to do this, Meta-CASE tools contains an extra metamodel

level compared with a typical two-level architecture used in the traditional CASE tools (illustrated in

Figure 2-1). Thus, instead of hard-coding a method, as in a fixed CASE tool, Meta-CASE tools store all

the method related information into a metamodel. The metamodel in turn can be modified to support the

Meta-CASE tool’s tailorability. Examples of Meta-CASE tools that have been developed in recent years

include MetaEDIT+ [11], KOGGE [4], JViews [9], MetaMOOSE [5], Synthesizer Generator [26], and Dora

[27]. In general, they all support facilities such as defining tool data structures and views on the data

Chapter 2: Background Knowledge and Related Research

6

structure, providing input/output specification techniques, and generating some or all of the code to

implement the specified tool [22].

Figure 2-1 CASE Tool versus MetaCASE Tool (Adapted from [23])

2.1.2 The Pounamu Meta-CASE Tool

Pounamu is a metaCASE tool developed at the University of Auckland. Compared with other Meta-

CASE tools named previously, Pounamu has three distinct features. First, the separation between meta-

model definer and meta-model elements’ view definer provides the basis for Pounamu’s multi-view and

multi-view type support. Secondly, the introduction of event handlers greatly improves the ability to

specify behavioural aspects of Pounamu’s visual languages. For example, with this facility users can

define any piece of java code which they wish to be executed dynamically, and may also enforce

constraints in modeling. Thirdly, the adoption of a universal file standard (XML) enables Pounamu to be

easily integrated with some other third-party software tools. As the objective of this project is to design

and implement the thin-client user interface for Pounamu, a detailed description of the internal structure

of Pounamu, as well as examples of this tool in use, is presented below.

Pounamu is a Java Swing-based software engineering tool. It can be used to model software

engineering projects, as well as build user-customized tools. Pounamu consists of five major sub tools,

which are icon creator, meta-model definer, view type definer, event handler creator, and modeler. While

the first four are used to specify a tool, the last one is used in the software modelling process with the

defined tool. Figure 2-2 shows some of tool design facilities from Pounamu in use. These include a

shape designer (1), event handler definer (2), meta-model designer (3) and view designer (4).

Chapter 2: Background Knowledge and Related Research

7

Figure 2-2 the Pounamu Meta-tool Designer Tool

The functionalities of these components, with references to the above picture, are summarized as below:

1. Shape designer: can be used to design the appearance of shapes and connectors

2. Meta-model designer: can be used to define meta-model elements

3. View designer: can be used to map meta-model elements to their corresponding visual

representation

4. Event Handlers: can be used to specify handlers to perform tasks.

Seeing that all the actual modeling work is done in the modeller, it is one more important sub-tool in the

Pounamu environment. In this modeller tool, we create instances of the element type defined in a meta-

model designer tool. These instances are visually represented as certain shapes or connectors following

mapping operations defined in the view type definer tool. Additionally, event handlers are executed to

perform certain tasks when the events specified in the handler creator take place. To wrap up our

discussion, we present a screen shot (Figure 2-3) which shows an example diagramming tool, a Unified

Modelling Language (UML) CASE tool, generated by Pounamu being used in the modeller.

Chapter 2: Background Knowledge and Related Research

8

Figure 2-3 A Pounamu-specified UML design tool in use

2.2 Web-based Software Engineering Tools

2.2.1 Taking software engineering tools to the Web

Like other diagramming tools, such as CASE tools, CAD tools and user interface design tools, the

traditional thick-client program approach has been used to design and develop our Pounamu metaCASE

tool. For example, in Figure 2-3, you can see thick-client user interface widgets, including elements

management tree (1), pop-up or pull-down (2) menus, drawing canvas (3), property editor (4), status

window (5), and directly-manipulable shapes (6) and tabbed-pane (7). It is only with these widgets that

users are able to make direct interaction with a variety of tools and diagrams in Pounamu. There is no

doubt that diagramming tools in this thick-client category provide key advantages such as highly

responsive interaction when directly manipulating diagrams and the ability for tool developers to make

use of all the graphics facilities available on the host PC. But we also notice that these traditional

diagramming tools suffer from some of the common problems of thick-client applications. For example,

they often provide complex and difficult-to-learn interfaces; they have to be installed and periodically

updated on all host computers, and they require quite heavy-weight infrastructure to support multi-user

collaborative work, especially synchronous diagram editing. These problems have motivated

researchers to pursue web-based applications.

With the rise of the web and scripting languages, web-based user interfaces have become more

pervasive in recent years. Many applications that traditionally used thick-client interfaces have often

developed thin-client versions. Examples of these applications include enterprise management systems,

(1)

(2)

(3)
(4)

(5)

(7)

(6)

Chapter 2: Background Knowledge and Related Research

9

accounting packages, document management and email tools. Key design features of these web-based

applications are a focus on simple, easy-to-use and consistent user interface design, seamless support

for collaborative work via the client-server approach inherent to web applications, and server side

integration with legacy systems and their facilities. We decided to experiment with thin-client

diagramming support for Pounamu-based diagramming applications to try and leverage these

advantages in our tools. Our aim was to provide an optional extension to Pounamu that allows users to

choose to access generated diagramming tools via a web-based, thin-client infrastructure instead of its

conventional thick-client approach. Before detailing our approach to achieve this aim, it is necessary to

investigate past research in developing web-based software engineering tools.

2.2.2 Research Examples

Since the web’s appearance in the early '90s, various web-based software engineering tools have been

developed to exploit the advantages of web-based information delivery. Some examples include MILOS

[15,16], a web-based process management tool, BSCW [1], a shared workspace system, Rosetta [7],

which supports web-based collaboration on software design, Web-CASRE [13], which provides software

reliability management support, Ukase [20], a web-based use case management tool, CHIME [3], which

provides a hypermedia environment for software engineering, and WikiWikiWeb [20], an editable

hypertext system. In order to assist in understanding how these web-based tools are designed, we

present below a brief description of some example applications.

MILOS

MILOS is a web-based process management tool. By integrating workflow technologies and project

management over the Internet, it provides dynamic collaboration of software development team

members at different locations. MILOS’s architecture takes a three-tier approach, and the graphical user

interfaces on the client tier is used for planning and enactment. When the system is running, this

graphical user interfaces needs to be dynamically loaded via a web server and executed as applets

within a web browser or as standalone applications.

BSCW

BSCW is a shared workspace system. It is meant to provide a means of supporting collaborative work

for widely dispersed work groups, especially those involved in large research and development projects.

The system consists of a server which maintains a number of workspaces. Each workspace is

accessible via standard web browsers. Currently, the shared objects contained in a workspace can only

be documents, links (to normal web pages and other workspaces), folders, groups and members.

Rosetta

Rosetta supports collaborative software design by using a novel WWW architecture. In order to provide

the easy creation, editing and viewing of design documents using web browsers, Rosetta design

Chapter 2: Background Knowledge and Related Research

10

documents are written in HTML with design diagrams embedded through a JavaScript tag. While HTML

design documents can be constructed using any HTML editor, the embedded UML diagrams have to be

created with a special tool called Rosetta Editor. Since this editor is implemented as a Java Applet, it can

only be invoked from web browsers supporting the Java Plug-in.

Web-CASRE

Web-CASRE [13] is a tool that provides software reliability management support, and it was extended

from the original standalone CASRE tool. To make the original tool available in the web, its graphical

user interface and problems solver that mingled together has to be separated, i.e., the GUI runs on the

client side, while the computationally intensive solver remains on the server. In Web-CASRE, Tcl/Tk

code used to implement the GUI has been embedded into a web page via an HTML tag. When this

HTML page is visited the web browser will automatically load and install the Tcl/Tl plug-in required to run

the client side user interface.

Ukase

Ukase is a light-weight web-based application built to manage essential use cases [21]. Originally

designed to make the recording of use case models easier, Ukase provides mechanisms such as

entering the details of essential use cases and displaying the results. Since its first appearance, Ukase

has developed considerably. The latest version makes use of new web technologies such as JSP and

JavaBeans etc., with the information stored in a MySQL database [28]. Figure 2-4 shows an input HTML

form laid out the way that a Use Case would appear in the report. Developers will typically use a different

view. Once the development is finished, the resulting use case model is available as a report.

Figure 2-4 HTML form for entering the details of an Essential Use Case in Ukase (from [21])

Chapter 2: Background Knowledge and Related Research

11

CHIME

CHIME was built upon the efforts from both the User Interface and Hypermedia research communities to

create a hypermedia like software development environment for managing information from all phases of

the software lifecycle [3]. In the CHIME model, all sorts of project artifacts, including source code, design

documentation, and email archives, still reside in their original locations, while CHIME provides data

organization and hypertext linking capabilities for maintaining metadata such as the location and access

information for the data. In doing so, CHIME generates a multi-user style virtual world in which users are

allowed to freely gather information or communicate with others. In general, CHIME has a great potential

in building applications for geographically and temporally dispersed users to perform their collaboration

more efficiently.

After investigating the above web-based software engineering tools, we found most of them lack

provision for any kind of graphical diagram construction and editing. Often their web-based interfaces

are used for visualizing diagrams, such as UML diagrams derived from formal specifications as in TCOZ

[20]. Those tools that do support a web-based diagramming facility always use Java Applets or similar

thick-client browser plug-ins (e.g. Rosetta). This makes us assume that developing thin-client

diagramming tools might be a challenging and difficult task. This assumption is reinforced by another

discovery, that is, despite the fact that most CASE and Meta-CASE tools (e.g. Rational Rose and Meta-

EDIT etc.) include a specification of the intended diagramming tool that might be interpreted to provide a

thin-client version of the tool, none do so.

So what makes the development of thin-client diagramming tools a difficult task? Some possible

problems are: the limited support provided by the web for interaction with diagrams; very rudimentary

user interface toolkit (e.g. HTML form fields) available for use, and the “ pull-only” data transfer

methodology used in HTTP/HTML. Many attempts have been made to address these restrictions,

including sending entire applications over HTTP (e.g. Java Applets), and designing browser “plug-ins”

that interpret users’ interaction according to its own language semantics (e.g. Flash, VRML and

Shockwave). However, all these attempts to overcome the limitations give rise to some new problems.

For example, with Java Applets, there are issues such as download speed and web browser’s

compatibility with Java binary. Java Applets also raise security concerns because executable code has

to be transported to the client via HTTP. Most importantly, the use of Java applets is often cited as

against the thin-client principle of running most application logic on the server. Another problem that

browser “plug-ins” suffer is that they are not widely available or supported by some old browsers.

Fortunately, some recent experiments prove that Java Applets and Browser “plug-ins” are not necessary

to build thin-client diagramming tools. Further evaluation results show that thin-client diagramming tools

created without using these augmentation technologies are reasonably easy to use although they offer

less interactivity. The next section is focused on the discussion of these recent efforts.

Chapter 2: Background Knowledge and Related Research

12

2.3 Progress on Web-based Diagramming Tools

Some recent research work on building web-based diagramming tools have been attempting to avoid

using Java Applets and any browser “plug-in”, so that tools can be used on any computer as long as

there is a standard web browser running. Examples of the newly developed thin-client diagramming

tools following the above design principle include Seek [12], a UML sequence diagramming tool,

NutCASE [14], a UML class diagramming tool, and Cliki [5], a thin-client meta-diagramming framework.

In order to illustrate the basic ideas on how these tools get their work done, we prepare a short

discussion for each of them below.

Seek

Seek is a sequence diagramming tool developed to maximize the accessibility and use by team

members during the early part of the design process [12]. Seek takes a web-based but applet-free

approach so that diagrams can be created, edited, or deleted via an ordinary browser. Figure 2-5 shows

Seek’s main user interface consisting of a sequence diagram being edited, tool facilities for editing and

manipulation of the diagram, and image tiles that form the diagram. In Seek, image tilling is an important

concept since it supports a simple, but effective means of diagram manipulation. As shown in Figure 2-5,

a sequence diagram is represented as a two-dimensional grid of image tiles. Each tile is filled with one of

a set of images that match particular UML states or actions. This set of images is displayed as palette on

the left of the tool interface. The sequence diagram can be constructed by repeatedly clicking the

appropriate palette image, and then clicking in the grid where that image should appear. If laid out in the

correct configuration, this collection of small images can show a nice UML sequence diagram.

Figure 2-5 The main screen of Seek, showing a sequence diagram facilities for editing and
manipulation of the diagram (adapted from [12])

Chapter 2: Background Knowledge and Related Research

13

NutCASE

NutCASE offers an environment in which UML class diagrams can be manipulated via the web, and

types of manipulation provided include creation, deletion, editing and searching of classes [14]. As with

the Seek tool, NutCASE uses some server-side technologies such as JSP and JavaBeans to accomplish

most computations, and web browsers need only to display HTML pages with the dynamically generated

GIFs embedded. An unusual aspect of NutCASE implementation is that all class diagram interactions

use client-side image maps. The GIF image generation and image map are thus the keys for NutCASE

to support web-based diagramming. Figure 2-6 shows an example of NutCASE in use. It can be seen

that NutCASE provides most of core functionalities required to edit a class diagram, including adding a

class, editing properties of a class, deleting a class and finding a class. However, no moving or resizing

a class has been provided. So, in NutCASE, the layout of a diagram cannot be adjusted as users desire.

Figure 2-6 NutCASE: the main user interface for displaying a class diagram (Adapted from [14])

Cliki

Cliki is a framework used to design web-based visual applications [5]. It uses HTML image form fields to

display images dynamically generated by the server. Since an image field is an input type for HTML

forms, it can capture the coordinates of a mouse click and send this information to the server. The server

responds according to the application logic, including highlighting the clicked icon or moving the clicked

icon to a new position. Although the idea adopted in Cliki is very simple, its way of implementing thin-

client diagramming tools has proved successful. For example, Cliki developers have created several

experimental applications with this framework, including a diagram editor (Figure 2-7(a)), Sokoban game

(b), and UML class diagram editor (c).

Chapter 2: Background Knowledge and Related Research

14

Figure 2-7 Example applications built with Cliki framework (adapted from [5])
(a) A diagram Editor Application (b) Sokoban game (c) UML class diagram Editor

From the above discussions, we can see that all three thin-client diagramming tools support reasonable

visual interaction without resorting to the assistance of Java Applets and browser plug-ins. This in turn

allows them to work on any modern web browser. Compared with the previously mentioned thick-client

diagramming tools, these tools contain less complex functionality, thus making them easy-to-learn and

use. Potential applications of these tools include teaching and learning software practices in a university.

However, despite the benefits, one disadvantage common to all these tools is that each uses a

customized approach to realize the limited diagramming functionality. For example, with NutCASE,

users are only allowed to draw very simple UML class diagrams because the server side application

logic is programmed to do so; with Seek, users can only create and edit sequence diagrams expressed

in UML notations because the left side image palette tool contains only visual representations of possible

action states. Compared with NutCASE and Seek, Cliki, as a thin-client meta-diagramming tool, seems

more advanced in diagrams that can be drawn and edited, and this has already been backed up by

some practical examples (shown in Figure 2-7(a)-(c)) completed by the tool developers themselves.

However, users who design visual applications with Cliki have to be very careful, as otherwise the

resulting application would be too bothersome because large numbers of interactive clicks are required

 (b)

 (c)

 (a)

Chapter 2: Background Knowledge and Related Research

15

to perform any trivial operation. Additionally, Click has contained comprehensive functionalities and a

complex user interface for novice users to pick up in a short time. In all, we feel the approaches taken to

implement these thin-client diagramming tools are too customized, so that the resulting tools provide

limited adaptability and integration support. From this point of view, we doubt the efforts and costs

involved in developing these tools have really paid off.

2.4 Overview of Pounamu-based Thin-client Diagramming Tool

Our Pounamu meta-CASE tool was developed to provide a flexible, interactive diagramming tool

specification. It was assumed that all generated diagramming tools would provide a thick-client user

interface to tool users. In order to experiment with providing thin-client diagramming interfaces from

these tool specifications, we proposed to develop an optional thin-client diagramming extension to

Pounamu. The viability of this proposal is backed up by the fact that Pounamu is built using a

component-based architecture [9], and software tools developed with this architecture are generally

easier to enhance, extend and integrate with other tools. Figure 2-8 illustrates how this thin-client

diagramming extension (we call Pounamu/thin) is fitted into Pounamu and used by software engineering

practitioners who prefer the thin-client way of doing things.

Figure 2-8 Using Pounamu Meta-CASE tool with thin-client diagramming

Initially a tool designer specifies a diagramming tool using the thick-client tools design facilities of our

original Pounamu meta-CASE tool (1). This tool design process includes several steps. First, the

designer has to define Meta-Model elements using the Meta-Model definer. Second, visual

representation of these meta-model elements has to be created with shape and connector creators.

Remote
API

Shape Designer

Text…

Meta-Model Designer

2 Save tool definitions
(XML files).

4. Users connect to web
components and manipulate
diagrams via browser

5. Users may modify tool
specifications (via thick
client tool designer)

Web Server(s)

Pounamu/Thin
Diagramming
components

Pounamu
Client

Web Browsers

Optional
SVG-Plug in

Web Server(s) Pounamu
tool Pounamu/Thin SOAP

3. Deploy Pounamu Environment and
Pounamu/Thin Web components

1. Design new tool, shapes,
connectors, meta-model,
views, event handlers, etc.

Tool specs

Pounamu Host
Pounamu
tool

Tool specs

Chapter 2: Background Knowledge and Related Research

16

Then in the view-type definer, meta-model elements and their corresponding icons are matched against

each other, and in the handler creator, event handlers are defined to perform certain tasks in response

to some model and visual events. Finally, these tool specifications are saved to an XML-based tool

repository (2) for use by the Pounamu tool interpreter (i.e., Pounamu modeller), which originally provided

only thick-client diagramming facilities.

Upon a user’s request to edit a diagram via the thin-client user interface, we deploy the Pounamu/Thin

web component into the original Pounamu environment (3). In the meantime, tool specifications are

loaded from XML-based storage and interpreted by Pounamu to provide the specified diagramming tool

(3). Our Pounamu/Thin web components interact with Pounamu via a web services-based remote API.

Pounamu/Thin web components allow users to create, view and edit a graphical diagram in a similar

way as has been done in original thick-client diagramming environment. There are at least two ways

(GIF and SVG) that a Pounamu diagram can be rendered and displayed on a web browser. With a GIF-

based rendering technique, our thin-client diagramming facility can be used via any conventional web

browser as long as a web connection exists (4). But, if the alternative rendering technique is preferred, a

SVG plug-in has to be installed on a host browser.

The last thing that we want to mention is the tool design facility of the Pounamu system. As Pounamu is

a meta-CASE tool, the tool specifications such as diagram element appearance, meta-model entities

and attributes, view definitions and event handlers can be changed while the tool is in use (5). Currently,

this can only be done via the original thick-client tool designer.

2.5 Summary

Most traditional thick-client diagramming tools (e.g. Rational Rose™, MetaEdit+) have common

problems such as: complex user interface, installation and setup overhead, a heavy infrastructure

required for group collaboration and a multitude of functionality of which some are rarely used. From this

point of view, allowing some users to choose to access these diagramming tools via a web-based, thin-

client infrastructure seems reasonable and meaningful. However, our investigation shows most of these

thick-client diagramming tools haven’t developed this capability. Those tools that do support thin-client

diagramming facility typically resort to the augmentation with Java Applet and browser “plug-ins”, and

therefore restrict the use of tools only to web browsers supporting such technologies. Although some

recent attempts to get the rid of such a restriction are successful, diagramming tools built in these

attempts are generally perceived too specific to provide appropriate tailorability or integration support. In

this thesis, we propose a thin-client diagramming extension to our original Pounamu MetaCASE tool.

Our aim is to allow users of Pounamu an alternative way of performing modeling task via web browsers,

so that Pounamu can leverage the main advantages provided by web-based applications.

17

Chapter 3: System Requirements

This chapter describes the requirements for our Pounamu/Thin system. First, a discussion of key

requirements of this thin-client diagramming tool is presented. We then focus on capturing system

functional requirements and specifications. Next functional constraints captured previously are

documented and described in Use Cases. Following that we present the basic set of objects the system

needs at a conceptual level. Finally, system non-functional constraints are discussed.

3.1 Key Requirements

The overall task of this thesis project is to develop a Pounamu-based thin-client diagramming system, so

that all the essential functionality that the original Pounamu tool has can be accessed via a web-based

thin-client user interface. Such an expansion would bring the following advantages to our existing

Pounamu tool:

Zero client administration cost: With web-based thin-client user interface, Pounamu can run on any

computer as long as it has a web browser installed. This means any installation and maintenance cost of

special software on client machines is avoided, and we will have a platform-independent and ease-of-

maintenance software tool.

Group collaboration: Since our tool will use the web as a communication medium, it will gain all

potential benefits that the web has brought. These include widely supporting group collaboration and

allowing portable access from a variety of platforms, etc. With group collaboration any team member is

able to contribute to the software project modeling process. With portability the Pounamu tool might not

only be accessed via a web browser on a PC but also via cellular phones or personal digital assistants

[14].

Before analyzing the detailed requirements that the proposed thin-client diagramming system should

meet, the following main features have been captured from the system level:

Plug-in componentware: This thin-client user interface should be added as a plug-in software

component to Pounamu. Such component-based solutions would offer great potential for reusing

components that support tool integration, collaborative work, end-user interaction and configuration of

applications [9].

Send HTTP get and Post commands to browse and edit a Pounamu diagram: By sending HTTP

GET commands users can ask for a particular PounamuView diagram of a model project to be displayed

on a web browser. Once users enter the editing state by clicking a button, they are able to edit this

diagram by interacting with it via a web browser. The user’s editing events will be sent as HTTP POST

commands, and actual update will be done in the Pounamu server.

Chapter 3: System Requirements

18

Use RMI, CORBA or SOAP as the communication protocol: RMI and CORBA are two commonly

used protocols for distributed applications [29]. With them, programs in different hosts can communicate

with each other. Like CORBA, SOAP also allows programs in different languages and on disparate hosts

to communicate with each other.

Choose XML as the format of communicate messages: For most distributed applications, XML

(eXtensible Markup Language) is the ideal transport mechanism since data or commands in this format

can be shared between the disparate server and client. In our case, the web server knows nothing about

the command objects types that can be executed in Pounamu server; however, it can always compose

user requests into XML messages and send them across network. Subsequently, Pounamu, as an XML-

based tool, can parse this received XML into its recognizable command object. Besides the above

benefits, sending message in XML format also means transmitting Java Strings instead of objects

through the connection, which is much faster and easier. Furthermore, the use of XML makes a step on

the way towards using SOAP (Simple Object Access Protocol [30]) for remote procedure calls. Since

SOAP is a standard message protocol to communicate with web services, making our system SOAP

compatible means that we can easily expand it to make use of web services.

3.2 Functional requirements Specification

Functional requirements describe what the system should do, i.e. the services and operations provided

for the users and for other systems.

By consulting developers of the existing Pounamu tool, we came up with a list of essential functionality

that should be available via the thin-client user interface:

1. The Pounamu tool can be accessed via the WWW.

Currently, the Pounamu tool is a Java-Swing based thick-client Meta-CASE tool, and users have to

install a complete version of the tool on their own computer for modeling work. By making this tool

assessable via the WWW, the only requirement for a user’s machine is that there is a web browser

running.

2. The system should allow authorized users to browse model projects stored in the file system
of the Pounamu server.

Project modeling is a process of representing concrete or “real-world” problems in a graphical form by

using appropriate modeling languages. Results of the modeling process are model projects. In the thin-

client multi-user environment, model projects are stored in XML files of the central server, and privileged

users are allowed to view these files via web browser.

3. The system should allow users to select a Pounamu view diagram in a model project.

Most times a model project for a real world problem contains more than one Pounamu view diagram

(e.g., modeling work on a Video Store system may have class diagrams, sequence diagrams,

collaboration diagrams etc.), and users should be able to select their interested Pounamu view diagrams.

Chapter 3: System Requirements

19

4. The requested Pounamu view diagram should be mirrored and displayed on a web browser.

Upon a user’s request, the graphical representation of the specified Pounamu view should appear on the

user’s web browser to be scrutinized.

5. The selected view diagram is editable via a web browser.
Users should be able to edit the Pounamu view diagram by interacting with its mirrored copy on the web

browser, i.e., point and click on the displayed image.

6. The system should permit users to add/remove an entity or association type object.

Entity and association are the two fundamental building blocks of a Pounamu view diagram. To

adequately edit a view diagram, the first thing is to make sure that we can add/remove these building

blocks freely.

7. The system should permit users to move/resize an entity or association object contained in a

Pounamu view diagram.
Besides add/remove operation, we also want users to be able to move/resize building elements of a

Pounamu view diagram. Thus interaction procedures have to be defined for moving/resizing

functionalities.

8. The system should permit users to update properties of an existing entity and association

type object.

Property setting should be included to make editing actions complete.

9. The system should provide users with rich interactions so that all above editing actions can
be done gracefully.

Although it is possible to fulfill the above editing tasks by submitting HTML form parameters, we would

rather users be able to interact with the mirrored Pounamu view diagram. However, due to HTML’s

limitation in graphical interaction, special design should be taken so that users’ experience with our

system can be as pleasurable as possible.

10. The system should provide a way to handle the above editing actions and respond to them by

displaying an updated Pouanmu view diagram.

3.3 Use Cases

Use cases describe the main interactions of actors with a system. Actors represent the roles that can be

played by users of the system. The interaction between actors and the system include input from actors

and the system’s behavior that convert input to output. Use case diagrams leave details of use cases to

use case descriptions that typically include the name of use cases, actors and a sequence of steps that

describe event flows of the use case. In this section, all the system functional behaviors captured in the

previous section are documented in the use case diagram (shown below), and following it are

descriptions of each use case scenario.

Chapter 3: System Requirements

20

Figure 3-1 System Use Cases Diagram

Use Case “Load PounamuProject”

As mentioned in the previous section, a Pounamu view diagram always belongs to a certain model

project. So before viewing and modifying a diagram, we must specify/load the corresponding project.

Figure 3-2 shows examples of loading a Pounamu model project. First, the user clicks the “load

ModelProject” button on the menu bar (a). Then the user specifies which project is loaded in (b). Last,

the system indicates whether the specified project is loaded successfully. Table 3-1 provides a use case

description.

Table 3-1 “Load PounamuProject” Use Case Description

Use Case Name: Load PounamuProject
Description: Used by software tool users to load a working Pounamu model project via a

web browser.

Event Flows: 1. Repeat whenever users click the “Load ModelProject” button on the left
menu bar.

2. The system provides names of all the model projects stored in the
Pounamu server.

3. The user can choose any Pounamu model project as his working project
(here working means a user can continue to load PounamuView diagrams
contained in this project).

4. The system displays a message showing whether this project loading is
successful or not. Upon successful loading, the user’s selection is
recorded into his session object.

Load PounamuView

Refresh PounamuView

Edit the Selected PounamuView

Add Entity
Add Association

Delete ModelElement

Change ModelElement
Property

Resize Entity

Move Entity

Move Association

New PounamuProject

Load PounamuProject

New PounamuView

Chapter 3: System Requirements

21

Figure 3-2 Examples of Loading a Model Project

Use Case “New PounamuProject”

In addition to allowing users to load an existing Pounamu model project, the system should also support

functionality for creating a new project. An example showing how to perform this creation task is

illustrated in Figure 3-3. First, a user needs to click the “New PounamuProject” button displayed on the

menu bar (a). Then he has to name this to-be-created model project in (b). Finally, the system gives

messages about the result of this new operation. A more detailed use case description can be found in

Table 3-2.

Table 3-2 “New PounamuProject” Use Case Description

Use Case Name: New PounamuProject
Description: Used by tool users to create a new Pounamu model project via a web browser.

Event Flows: 1. Repeat whenever a user clicks the “New ModelProject” button on the left

menu bar.
2. The system allows the user to select the underlying tool and enter a name for

this new project.
3. If the project with the given name has not already existed, the system will

create a new project entry in the Pounamu server. Otherwise, the system
would give messages “project creation failed, please give a new name”.

Chapter 3: System Requirements

22

4. The system set this newly created project as the user’s working project, this
means the user can go on to create a Pounamu view diagram for it.

Figure 3-3 Examples of Creating a New Model Project

Use Case “Load PounamuView”
After a model project is specified and before an editing action can be initiated, the user must specify a

Pounamu view diagram contained in the project. As an example, Figure 3-4(a) illustrates a user deciding

to load a test diagram VT_Try2_Test, and the result of the user’s action is shown in (b). A more detailed

use case description can be found in Table 3-3.

Table 3-3 “Load PounamuView” Use Case Description

Use Case Name Load PounamuView
Description: Used by tool users to load a working PounamuView via a web browser.

Event Flows: 1. Repeat whenever users click the “Load PounamuView” button on the left

menu bar.
2. The system provides names of all the PounamuViews contained in the

current working model project.

Chapter 3: System Requirements

23

3. A user can select a PounamuView as his working view (here working
means the user can browse or edit this view).

4. The system records the user’s selection into session state. A mirrored
image of the specified PounamuView diagram is displayed in the web
browser.

Figure 3-4 Examples of Loading a PounamuView Diagram

Use Case “New PounamuView”

For the same reason that users should be allowed to create a new project, our Pounamu/Thin needs to

provide functionally for creating a new view diagram for some project, too. Figure 3-5 shows an example

of creating a PounamuView diagram. First, the user has to choose a project to which the new view

belongs by clicking the “Load ModelProject” button (a). Then the target view relevant information (e.g.

the name and view type) needs to be entered in (b). Last, the system will tell the user whether the target

has been successfully created or not (c). Table 3-4 lists a more detailed use case description.

Chapter 3: System Requirements

24

Figure 3-5 Examples of Creating a New PounamuView Diagram

Table 3-4 “New PounamuView” Use Case Description

Use Case Name Create a PounamuView Diagram
Description: Used by tool users to create a new PounamuView diagram via a web

browser.
Event Flows: 1. Repeat whenever users click the “New PounamuView” button on the left

menu bar.
2. The system allows the user to enter a name and view type for this target

view object.
3. The system validates whether the view with given information has

already existed in the current working project. If not, a new entry will be
set up in the Pounamu server. Otherwise, the system will give messages
“the view creation failed because the corresponding item has already
existed”.

4. The system set this newly created view (still blank) as the user’s working
view. This means the user can go on to add components to it.

Use Case “Refresh PounamuView Diagram”

One advantage of the thin-client based diagramming tool is to allow multiple users to collaboratively work

on one diagram simultaneously, and refresh functionality is quite useful in such collaborative editing

scenarios. For example, Michael has loaded a PounamuView diagram into his browser and is doing

some checking. At the same time, user Jessica is editing the same diagram via her browser at a different

Chapter 3: System Requirements

25

location. Michael may or may not have recognized that Jessica is working concurrently on the same

view, but he can always ask for the latest version of the diagram to be displayed by clicking the “Refresh

PounamuView” button. You can refer to Table 3-5 for the detailed use case description.

Table 3-5 “Refresh PounamuView Diagram” Use Case Description

Use Case Name: Refresh PounamuView Diagram
Description: Used by tool users to refresh an updated PounamuView diagram via a web

browser.
Event Flows: 1. Repeat whenever the user click “Refresh PounamuView” button on the

main menu bar
1.1 The system inquiry whether the session state information such as the

current working PounamuProject and PounamuView is null. If yes, go
to 2.

1.2 Upon non-null information, the mirror image of the working
PounamuView diagram is regenerated and displayed in the web
browser.

2. No PounamuView loaded error, go to “Load PounamuView” use case.

Use Case “Add Entity Element to PounamuView”

Since a Pounamu view diagram is composed of two fundamental building elements (entity shape and

association connector), being able to add these visual elements via a web browser is the most basic

editing operation. Figure 3-6 shows steps involved to add an entity element to a diagram. In (a), the user

enters the type and name for this new element, in (b) the user needs to click a canvas position to place

this new entity shape. The result of the addition action is shown in (c). Table 3-6 gives the use case

description in detail.

Chapter 3: System Requirements

26

Figure 3-6 Examples of Adding Entity Shape to a PounamuView Diagram

Table 3-6 “Add Entity Shape” Use Case Description

Use Case Name: Add Entity Element

Description: Used by tool users to add an entity type Pounamu model element to the working
PounamuView via a web browser.

Event Flows: 1. Repeat whenever user clicks the “Add Entity” button on the main menu bar.
1.1 The system inquires whether the session state information such as the

working project and PounamuView is null. If yes, go to 2.

Chapter 3: System Requirements

27

1.2 A page with information such as the name of the working view, available
entity types in this view and selectable adding methods is displayed.
The user chooses a certain entity type and preferable adding method,
and clicks the “Add” button.

1.3 If the user has chosen “adding a new one” method, go to 1.5, else if the
user has selected “adding one from other views”, go to 1.4.

1.4 All the existing model elements with the chosen entity type are listed.
The user selects what he wants, and then submits the selection.

1.5 The working PounamuView diagram is displayed. The user clicks
somewhere in this diagram to place the new element.

1.6 A page for confirming this “Add Entity” editing action is displayed. The
successful execution of “Add Entity” results in the updated
PounamuView diagram being redisplayed. Otherwise, go to 3.

2. “No PounamuView loaded” error, please go to “Load PounamuView” use
case.

3. Report message “Execution of Add Entity action failed”.

Use Case “Add Association Element to PounamuView”

Similar to the above “Add Entity” Use Case, there are several steps involved in adding association

connector to a view diagram. These were demonstrated in Figure 3-7. In (a), some important parameters

such as element name and type need be entered. In (b), the user has to specify which two shape

handles (highlighted as red small rectangles around the shapes) are to be associated with. The result is

shown in Figure(c). Additionally, the use case description can be seen in Table 3-7.

Table 3-7 “Add Association Connector” Use Case Description

Use Case Name: Add Association Element
Description: Used by tool users to add an association type Pounamu model element to the

working PounamuView via a web browser.

Event Flows: 1. Repeat whenever user clicks the “Add Association” button on the main menu
bar.
1.1 The system decides whether the session state information such as

current working PounamuProject and PounamuView is null. If yes, go to
2.

1.2 A page containing information such as the name of the working view,
available association types in this view and adding methods is
displayed. The user chooses a certain association type and his
preferable adding method, and clicks “Add”.

1.3 If the user has selected “adding a new one”, go to 1.5, else if the user
has selected “adding one from other views”, go to 1.4.

1.4 All the existing model elements with the chosen association type are
listed. The user selects what he wants, and then submits it.

1.5 The working PounamuView diagram is displayed, in which the handles
of all the shapes are highlighted by small red rectangles.

1.6 The user tells the system which two shapes need to be connected with
by picking a handle from them. Two handles will be arranged as the first
or the second handle of the new association element, respectively. If the
user miss-clicked a shape handle, go to 3. Else if two handles are from
one shape go to 4.

1.7 A page for confirming this “Add Association” action displays. The
successful execution of “Add Association” results in the updated
PounamuView diagram being redisplayed. Otherwise, go to 5. Upon

Chapter 3: System Requirements

28

choosing “Cancel Add”, the system reports “previous Add Association
action not committed”.

2. “No PounamuView loaded” error, please go to “Load PounamuView” use
case.

3. Error message “You didn’t click a valid shape handle”, go to 1.6.
4. Error message “You need to click two handles from different shapes”, go to

1.6
5. Report message “Execution of Add Association action failed”.

Figure 3-7 Examples of Add an Association Connector to a PounamuView Diagram

Chapter 3: System Requirements

29

Use Case “Set Model Element Properties”

Project modeling is a process in which new instances of model elements are created and added. Most

times these instances are differentiated from each other by having disparate property values. From this

point of view, being able to change a model element’s property is another crucial editing action that

needs to be supported. Figure 3-8 illustrates property setting examples. Comparing the original diagram

(a) with its updated counterpart (c), you can see the highlighted icon in two diagrams has different model

data (text strings) and background color. The use case description can be found in Table 3-8.

Figure 3-8 Examples of Model Element Property Setting

Chapter 3: System Requirements

30

Table 3-8 “Set Model Element Properties” Use Case Description

Use Case Name: Change Model Element Properties
Description: Used by tool users to change the properties of an existing model element via a

web browser.

Event Flows: 1. Repeat whenever user clicks the “Set Property” button on the main menu
bar.
1.1 The system inquires whether the session state information such as

the current working project and working view is null. If yes, go to 2.
1.2 The working PounamuView diagram is displayed on the web browser.

The user clicks a model element whose properties need to be
changed. If the user miss-clicked a model element, go to 3.

1.3 The selected element is highlighted in the displayed diagram.
Information such as element name, type, names and values of
element properties etc. are also displayed.

1.4 The user types in new values for all the properties he/she wants to
change, and then clicks “submit” button.

1.5 A page for confirming this “Change Property” action is displayed. By
selecting “Submit Change” button, property setting is executed. By
selecting “Cancel Change” button, property setting action is dropped.

1.6 Upon choosing “Submit Change”, the successful execution of
“Change Property” results in the updated PounamuView diagram
being redisplayed. Otherwise, go to 4. Upon choosing “Cancel
Change”, go to 5.

2. No PounamuView loaded error, please go to “Load PounamuView” use

case.
3. Error message “You didn’t click a model element”, go to 1.2.
4. Report message “Execution of Change Property action failed”.
5. Report message “Previous property setting action is not committed”.

Use Case “Remove Model Element”

An example of removing a Pounamu model element is illustrated in Figure 3-9. First, the user clicks the

target that needs to be removed from the diagram, and the clicked shape/connector is highlighted with

surrounding red handles (a). After confirmation of this removal action, the result diagram looks like (b).

Table 3-9 shows a detailed description for this use case.

Chapter 3: System Requirements

31

Figure 3-9 Examples of Removing Element from the PounamuView Diagram

Table 3-9 “Remove Model Element” Use Case Description

Use Case Name: Remove Model Element
Description: Used by software tool users via WWW browser to remove an existing

model element from the working PounamuView.

Event Flows: 2. Repeat whenever user click “Remove Element” button on the main
menu bar.
1.1 The system inquires whether the current session state information

such as the working PounamuProject and PounamuView is null. If
yes, go to 2.

1.2 The mirrored image of the working PounamuView diagram is
displayed. The user can click a model element which needs to be
deleted from the diagram. If the user miss-clicked a model
element, go to 3.

1.3 A page for confirming this “Remove Element” action displays. By
selecting “Submit Change” button, “Remove Element” is
executed. By selecting “Cancel Change” button, this editing action
is dropped.

1.4 Upon choosing “Submit Change”, successful execution of
“Remove Element” results in the updated PounamuView diagram
being redisplayed. Otherwise, go to 4. Upon choosing “Cancel
Change”, go to 5.

3. “No PounamuView loaded” error, please go to “Load PounamuView”
use case.

4. Error message “You didn’t click a model element”, go to 1.2.
5. Report message “Execution of Remove Element action failed”.
6. Report message “Previous Remove Element action is not committed”.

Chapter 3: System Requirements

32

Use Case “Move Entity Shape”

In order to have an optimized layout, positions of modeling elements (entity shape and association

connector) in a PounamuView diagram may need to be adjusted. Figure 3-10 illustrates an example of

moving an entity shape. In (a), you can see the target has been highlighted with surrounding red

handles. Messages shown at the top of the page remind the user to click an ideal position for this target.

The result of this action looks like (b). Table 3-10 gives a detailed description for this use case.

Table 3-10 “Move Entity Shape” Use Case Description

Use Case Name: Move Entity Shape
Description: Used by tool users to move an existing model element in the working

PounamuView diagram to a new position via a web browser.

Event Flows: 1. Repeat whenever user clicks the “Move Entity” button on the main menu bar.
1.1. The system decides whether the current session state information such

as working PounamuProject and PounamuView is null. If yes, go to 2.
1.2. The working PounamuView diagram is displayed. The user can click a

model element that needs to be moved in the diagram. If the user miss-
clicked a model element, go to 3.

1.3. The user specifies a new position for the model element by clicking
somewhere in the PounamuView diagram.

1.4. A page for confirming this “Move Entity” action is displayed. The
successful execution of “Move Entity” results in the updated
PounamuView diagram being redisplayed. Otherwise, go to 4. Upon
choosing “Cancel Change”, the system reports “previous move entity
action is not committed”.

2. No PounamuView loaded error, please go to “Load PounamuView” use
case.

3. Report error message “You didn’t click a model element”, go to 1.2.
4. Report message “Execution of Move Entity action failed”.

Figure 3-10 Examples of Moving an Entity Shape in a PounamuView Diagram

Chapter 3: System Requirements

33

Use Case “Move Association Connector”

For the same reasons for moving an entity shape, positions of association connectors also need to be

adjusted to make the whole diagram look better. Generally speaking, an association connector is moved

by relocating its start and end shape handles. Figure 3-11 illustrates an example of how to do this. A

detailed use case description is shown in Table 3-11.

Figure 3-11 Examples of Moving an Association Connector in a PounamuView Diagram

Table 3-11 “Move Association Connector” Use Case Description

Use Case Name: Move Association Connector
Description: Used by tool users to move an association object in the working diagram via a

web browser.
Event Flows: 1. Repeat whenever the user clicks the “Move Association” button on the main

menu bar.
1.1 The system inquiries whether the current session state information

such as working PounamuProject and PounamuView is null. If yes, go
to 2.

1.2 The working PounamuView diagram is displayed. The user can click
any association element which needs to be moved in the diagram. If
the user miss-clicked an association element, go to 3.

1.3 The selected association is highlighted. The user then needs to choose
which one of two handles will be moved. If no handle has been
selected, go to 4.

1.4 Upon successful selection of a handle, one of two entity shapes that
are connected by this association element is highlighted. The one got
highlighted is the parent of the chosen handle.

1.5 The user clicks another handle of the highlighted shape so that the
association element is relocated there. If no handle has been selected,
go to 5.

1.6 A page for confirming this “Move an association element” action is
displayed. By selecting “Submit Change” button, system relocates the
association to a different shape handle. By selecting “Cancel Change”
button, this editing action is dropped and system goes to 6.

1.7 The successful execution of “Move an association element” results in
the updated PounamuView diagram being redisplayed. Otherwise, go
to 7.

Chapter 3: System Requirements

34

2. “No PounamuView loaded” error, please go to “Load PounamuView” use
case.

3. Error message: “You didn’t click a model element”, go to 1.2.
4. Error message: “You didn’t select a valid association handle to move”, go to

1.3.
5. Error message: “ A valid shape handle is not selected for relocating the

association”, go to 1.5.
6. Report message “Previous “Move Association” action is not committed”.
7. Report message “Execution of Move Association action failed”.

Use Case “Resize Entity Shape”

Similar to the previous moving shape action, shape resizing also aims to make a diagram look better.

Figure 3-12 describes examples of resizing an entity shape. The selected shape icon has been

highlighted in (a). Messages shown at the tope of the page tell the user to click a reference point for the

resizing. After that, another click in a diagram offers the destination for the previous reference point.

Finally the system proportionally resizes the whole entity shape based on information provided and

displays the resultant diagram (b). A more detailed description for this “Resize Entity” use case is listed

in table 3-12.

Figure 3-12 Examples of Resizing an Entity Shape in a PounamuView Diagram

Table 3-12 “Resizing Entity Shape” Use Case Description

Use Case Name: Resize Entity Shape
Description: Used by tool users to resize an existing entity shape in the working

PounamuView diagram via a web browser.
Event Flows: 1. Repeat whenever user clicks the “Resize Entity Shape” button on the

main menu bar.
1.1 The system decides whether the current session state information

Chapter 3: System Requirements

35

such as the working PounamuProject and PounamuView is null. If
yes, go to 2.

1.2 The working PounamuView diagram is displayed. The user can
click an entity shape which he wants to resize. If the user miss-
clicked a shape element, go to 3.

1.3 The selected entity shape is highlighted. The user picks a handle
from this shape as a reference point for the resizing action. If no
handle has been selected, go to 4.

1.4 The user specifies a final position for the previous designated
reference point by clicking somewhere in PounamuView diagram.
Both of the initial and final positions of a reference handle are
recorded.

1.5 A page for confirming this “ Resizing Entity Shape” action is
displayed. By selecting “Submit Change” button, system executes
resizing action based on the relative distance between two
recorded positions. By selecting “Cancel Change” button, this
editing action is dropped and system goes to 5.

1.6 Successful execution of “Resize Entity Shape” results in the
updated PounamuView diagram being redisplayed. Otherwise, go
to 6.

2. “No PounamuView loaded” error, please go to “Load PounamuView”
use case.

3. Error message “You didn’t click a model element”, go to 1.2.
4. Error message “ You didn’t select a valid handle as resizing reference

point”, go to 1.3.
5. Report message “Previous “Resize Entity” action is not committed”.
6. Report message “Execution of Resizing Entity action failed”.

3.4 Conceptual Objects Modeling in UML Class Diagrams

In this section, we will use UML class diagrams to develop functional requirements specified in the above

use cases. The class diagrams describe the types of the objects and the static relationships that exist

among them [31], and they will represent the concepts of the system without concerning any other

details such as user interface, middleware, and data manager. To develop these diagrams, first we need

to identify the basic sets of objects which encapsulate the main data and functions of the system.

Second, we have to determine the relationships among these objects. In summary, according to

Bruegge [33], the transforming activities from system use cases to OOA class diagrams are described as

the following:

♦ Identifying entity objects

♦ Identifying boundary objects

♦ Identifying control objects

♦ Mapping use cases to objects

♦ Identifying associations among objects

♦ Identifying object attributes

Chapter 3: System Requirements

36

Considering the overall objective of this project is to design the thin-client user interface for the exiting

Pounamu tool, we think it would be much easier and clearer to describe the task of developing OOA

class diagrams with two sub-parts: a remote interface plug-in class diagram and a web front-end class

diagram, so here this explanation approach is pursued.

3.4.1 Remote Interface Plug-in Class Diagram

Before discussing our remote interface plug-in class diagram, it would be helpful to have a brief

introduction to some essential OOA objects already in the Pounamu Meta-CASE tool. These objects are

generalized below:

♦ Pounamu: Pounamu tool working environment

This object represents the Pounamu visual programming tool itself. It’s an entry point for the Pounamu

application.

♦ PounamuProject: Representation of Pounamu working instance, it can be a defined tool or

modeling project

This object holds information such as the project name, type, as well as a list of PounamuViews that the

project contains. The main methods it includes are Add/Remove projects from Pounamu, as well as

find/restore projects etc. It also has set/get attributes (project name, type etc.) functions.

♦ PounamuModelElement: Data repository of modeling

This object holds information such as the model element name, the name of the view which this element

is in, the matching icon, and a list of model properties. In addition to property setting/getting functions,

this object also contains methods such as Set/Get the related visual icon, Add/Remove itself from a

PounamuView diagram, and Move/Resize its underlying icon etc.

♦ PounamuView: The graphical representation of modeling work

A PounamuView object holds information such as view name, view type, and a list of

PounamuModelElements that make up this diagram. The key functions include New/Remove/Sore/Load

this view diagram, as well as set/get view’s properties (name, type etc.).

♦ PounamuIcon: The visual representation of PounamuModelElement

This object holds information such as the icon name, the icon type, the related model element name and

a list of visual properties (including shape type, background color, line type, font etc.). The key methods

include set/get the related visual properties, as well as save/register the icon etc.

♦ PounamuCommand: Being used to “run” updates on Pounamu model/view state

This object holds information such as the name and type, and it also contains an instance variable of the

PounamuView type. A key method this object has is to execute updates on the Pounamu model/view

state. Additionally, it includes functions used to undo and redo updates that have already been made.

To better understand the functional role of these classes, a UML tool specified with the Pounamu Meta-

CASE tool has been used as an example in our explanation below. Actually this customized UML tool is

Chapter 3: System Requirements

37

a tool-type PounamuProject. When the user defines UML class diagrams or sequence diagrams with this

tool, he has created a model-type PounamuProject. These class diagrams or sequence diagrams are so-

called PounamuViews. Shapes or connectors which are basic components of these diagrams are

PounamuModelElements.

The OOA class diagram depicting inter-relationships among classes explained above is illustrated in

Figure 3-13.

 Figure 3-13 OOA objects in the original Pounamu Meta-CASE tool

Pounamu
…..
….. PounamuProject

Vector views
Pounamu pounamu
String projectName
String project type
SelectProject()
CreateNewProject()
LoadProject()
StroeProject()
Set/getName()
Set/getType()
getRegisteredProjectViews()
…

PounamuView
PounamuProject project
String viewName
String viewType
createNewView()
deleteView()
modifyViewDiagram()
saveView()
restoreView()
get/setName()
get/setType()
setSelectedIcon()
getSelectedIcon()
…..

PounamuIcon
PounamuModelElement object
String name
Vector visualProperties
……
getRelatedObject()
setRelatedObject()
moveIcon()
resizeIcon()
setVisualProperties()
……

1

1..*

0..*

0..*

1..1

PounamuModelElement
String elementName
String elementType
Vector modelProperties
CreateElement()
RemoveElement()
SetModelProperties()
Load/StoreElement()
Get/setName()
Get/setType()
Get/setIcon()
…..

uses

1..1 PounamuCommand
String commandName
String commandType
PounamuView view
executeCommand()
undoCommand()
redoCommand()
…..

1..1

0..*

0..*

0..*

Chapter 3: System Requirements

38

Having understood basic knowledge of some essential OOA classes in the existing Pounamu, we can

embark on the journey of developing OOA objects for a remote editing plug-in component. Since the

main task of this component is to receive remote editing messages from a web front-end and then

respond to them by executing these editing commands, undoubtedly classes representing remote

command objects are needed. Additionally, the role of receiving and analyzing the remote editing

messages is taken by another important conceptual model object, RemotePounamuEditor. A more

detailed description of these objects is given below, and a UML class diagram showing their inter-

relationship is illustrated in Figure 3-14.

RemotePounamuEditor:

This object represents the pluggable remote editing environment in which PounamuView diagrams can

be manipulated remotely via a web browser. It holds a reference to the original Pounamu object. A list of

functions it provides are: opening a model project, getting information of all PouanmuViews in a model

project, generating a mirrored image of a PounamuView diagram (in a format that is displayable on a

web browser), receiving and analysing remote editing command messages etc.

RemoteCommand:

This object contains all attributes for a remote editing command, including the command name, the

command type, the view name (the working PounamuView which this command is actioned on) etc. It

provides functions for executing the command on the corresponding PounamuView diagram.

Figure 3-14 Conceptual Model Objects & Inter-relationships for a Remote Interface Plug-in

RemotePounamuEditor
Pounamu pounamu
PounamuProject project
PounamuView view
PounmuModelElement modelElement
openProject()
getProjectInfo()
getProjectViews()
generateImageForPounamuView()
getShapeID()
getModelElementProperties()
receiveCommandMsg()
decodeCommandMsg()

Pounamu
RemotePounamuEditor remoteEditor
PounamuProject project
PounamuView viewDiagram
PounamuModelElement element
PounamuIcon shapeIcon

1

Uses

RemotePounamuCommand
String commandName
String commandType
PounamuView viewName
execute()
undo()
redo()

Existing Pounamu

1

Chapter 3: System Requirements

39

3.4.2 Web Front-end Class Diagram

In this section, we have identified three conceptual model objects. A detailed description about these

classes is presented below, and it will be followed by a UML class diagram (Figure 3-15) depicting inter-

relationships among them.

EditingActionData: An object representing an editing action on the mirrored image of the working

PounamuView diagram.

The attributes this object contains are the action name, the name and type of the target

entity/association (PounamuModelElement), property names and values of the target object. The main

function it provides is to construct a remote editing command object which can be transmitted across the

network. Additionally, it contains functions to lay/remove edit sketches to/from the original diagram.

ApplicationSession: An object used to maintain the application session state.

This object holds information such as the name of the working PounamuView diagram, the name of the

working PounamuModelProject and the current EditngActionData. Functions it provides include loading

the working project and view, as well as setting the user-specific data properties.

PounamuImage:

This object holds information about a PounamuView diagram. These include the name of PounamuView,

the name of PounamuModelProject to which this view belongs, and the image data (including content,

size, type). It mainly provides the following functions: displaying the working PounamuView diagram on a

web browser, locating a mouse click on the image, obtaining ID and properties of a target

shape/connector under the mouse. Other useful functions include: adding/removing a model element

to/from the diagram, moving or resizing an existing model element.

Chapter 3: System Requirements

40

 Figure 3-15 Conceptual Model Objects & Inter-relationships for a web front-end

3.5 Non-functional requirement specifications

Non-functional requirements refer to those requirements that are not directly concerned with specific

functions performed by the system [32]. They define constraints on the system as a whole rather than

individual functional requirements, and examples of these constraints include system reliability, response

time, data representations used in the system interface etc. In our system, non-functional requirements

are summarized as the following:

♦ User Interface and Human Factors: The Pounamu/Thin system has a web-based UI, and this

allows multiple users to access the Pounamu tool via a web browser without the need to download

or install any special software. Simply speaking, this means a user should be able to create, edit and

delete PounamuView diagrams displayed in a web browser. In addition to supporting all the core

functionalities enabled in the original tool, an extra requirement for this web-based UI is that it should

provide as conventional approach to design of web based UIs as possible, i.e., using the POST/GET

ApplicationSession
String currentModelProjectName
String currentViewName
ActionData currentActionData
loadModelProject()
loadPounamuView()
manipulateSavedImage()
registerAsClient()
setAsCurrentPounamuProject()
setAsCurrentPounamuView()
setAsCurrentViewType()
setAsCurrentActionData()

EditingActionData
String actionName;
String modelElementName;
String modelElementType;
String[] modelElementPropertyNameList;
String[] modelElementPropertyTypeList;
String[] modelElementPropertyValueList;
buildCommandMsg ();
setAppSession();
addNewActionData();
removeActionData();
modifyActionData();
set/getModelElementName();
set/getModelElementType();
set/getModelElementType();
setModelElementPropertyValueList();

PounamuImage
String modelProjectName;
String pounamuViewName;
int width,height
itn imageType
(String/byte[]) imageDataContent
displayPounamuDiagram()
locateMouseClickPosition()
getShapeID()
getElementProperties()
updatePounamuDiagram()
addEntityModelElement()
addAssocModelElement()
moveEntityModelElement ()
moveAssociationHandles()
resizeEntityInDiagram()
removeModelElement()
editModelElementProperties()
setBufferData()
setImageWidth()
setImageHeight()

0..1

0..*

 Used

1..1

1..1

Chapter 3: System Requirements

41

page display metaphor. Moreover, this interface should be user-friendly and satisfy all functional

requirements.

♦ Performance & System Response: Our system should allow dozens of people to collaboratively

edit a PounamuView diagram simultaneously (this feature is important as the initial stage of software

development process often involves group collaboration to come up with a satisfied system design.).

The system should have a good response to the user’s editing commands, i.e., the updated

PounamuView diagram need be redisplayed at typical LAN connection speed.

♦ Hardware considerations: The Web server and the Pounamu server host machines should be

high-end machine with large memory, fast CPU, large & fast hard disk etc. These server machines

are networked by a high-speed LAN. Ordinary users can have a moderate-sized desktop PC, and

they can access the system via a wide or local area network.

♦ Documentation: Whenever needed, users can always refer to the detailed on-line help and tutorial

about how to use the system. This would be especially useful for novices.

♦ Error handling and Extreme conditions: Any incorrect use of the system is reported with user-

friendly error messages. In our system, most of the functionalities have been designed to have a

series of associated interactions with the system. A mistake in any single interaction should be

handled gracefully, otherwise the whole series of interactions would be wasted. For any invalid

interaction, meaningful error messages are recommended.

♦ System Integration: The thin-client user interface should be integrated into the existing Pounamu

using a remote object API and component technology. This arrangement ensures our remote user

interface can be easily plugged in/out without influencing other system functionality. More

importantly, this component-based integration makes system enhancement and extension easier

tasks.

3.6 Summary

System requirements provide the descriptions of this system’s functional behaviors and non-functional

constraints. A high degree of accuracy and completeness in the requirement analysis is essential for any

successful system. In this chapter, 12 use cases have been generalized to describe the main

interactions of actors with this thin-client Pounamu tool. A set of high-level conceptual model objects is

identified, and static relationships among these objects are illustrated in UML OOA class diagrams. In

summary, this chapter prepares us for the next system design task.

42

Chapter 4: System Design

Based on the system requirements and object-oriented analysis developed in the previous chapter, we

can move to the system design stage of software life cycle. The tasks involved in this stage can be

described as follows:

♦ First, according to non-functional specification and functional specification of the system, we need

to build a suitable software architecture model for the system.

♦ Secondly, the logical objects and their processes retrieved at the OOA stage will be further split into

objects based on software components, which come closer to the system implementation phase in

the software development.

♦ Thirdly, the functionality and dynamic interaction between system components also needs further

expansion.

Before stepping into any of the above tasks, we will give an overall picture of the system, its main parts

and how subparts can fit together to solve the problem. This is the first attempt we make to put the whole

system into perspective.

4.1 The Overall System Diagram

Figure 4-1 shows an overall system diagram that roughly describes how to integrate a thin-client user

interface component (Pounamu/Thin) with the existing Pounamu Meta-CASE tool.

Figure 4-1 System Diagram

The above diagram tells that users can ask for a modeling artifact (stored in the form of a PounamuView

diagram) to be displayed in their web browser in a similar manner to request a web page (1).

Pounamu Server

(3) GenerateImage()

(8) Other Remote
 Command Objects
 GetShapeProperties()
 GetShapeID()
 DeleteShape()
 EditShape()
 NewShape()
 ….

Remote Interface
Plug-in Web Server

XML Over
RMI/CORBA

Web Browser

Select

Del

New

Move

Resize

Servlets
&JSP

(1) GET

(6) HTTP Post

PounamuView
Diagram

A mirrored image of
PounamuView diagram

(2)
(7)

(4)

 mirrored
image

(5)

Chapter 4: System Design

43

Servlets/JSP in charge of this HTTP Get command would communicate with the Remote Pounamu

Server through the RMI/CORBA protocol (2). Then the mirrored image of the requested PounamuView

diagram is dynamically generated by the Pounamu server (3) and sent back to the web browser for

display (4)(5). Users can also edit the mirrored image by entering an editable state, and their editing

events will be sent to the Web Server as HTTP POST commands (6). The Servlet/JSP recomposes this

POST command into a remote command object and sends it back to the Pounamu Server (7). Finally,

the remote command object is executed in the Pounamu Server and the view diagram stored there is

updated (8). It’s worth noting that we don’t prescribe the format of a mirrored PounamuView image in this

diagram. It can be any image format that is displayable in a web browser, including GIF, PNG, JPEG,

and SVG. In this project, we are especially interested in two of them, GIF and SVG, and the reasons can

be generalized as follows:

a) Compared with other image formats, GIF is the most popular and versatile format for distributing

color images on the web. Moreover, it is the only graphic file format that is universally supported by

all graphical browsers, regardless of version.

b) SVG, as a newly emerged web image format, uses an XML based specification to define web

images [34]. This means it can offer all the advantages of XML, including interoperability, easy

manipulation etc. Most importantly, SVG supports dynamic and interactive graphics far more

sophisticated than bitmapped images. One downside is that SVG requires a plug-in to be

downloaded and installed for the client PC web browsers. However, many newer browsers have

this installed by default.

4.2 System Architecture

Software architecture forms the backbone for building successful software systems. It establishes

communication among the system’s stakeholders. In addition to conform to our OOA specification and

non-functional constraints, designing a suitable “software architecture” also should take into account the

following factors [35]:

♦ Allocation of processes to machines and programs

♦ Communication between processes or programs

♦ Synchronization of processing and data update

♦ Data storage & retrieval

♦ Processing performance

When designing a software architecture for our system, we mainly focus on the following

considerations:

♦ Client/Server or non Client/Server architecture: if Client/Server, then 2-tier, 3-tier or n-tier

♦ Network situation between machines: LAN (Local Area Network) or WAN (Wide Area Network)

♦ Multi–user access: thread-safe protection

♦ System performance

Chapter 4: System Design

44

♦ Ease of implementation, maintenance, and use

♦ High fault tolerance

4.2.1 System Deployment Diagram

The UML deployment diagram (shown in Figure 4-2) illustrates the system architecture based on a web-

based N-tier architecture model. The first tier is a web browser, which acts as thin-client user interface.

The second tier (i.e. web server tier) runs Servlets/JSPs to handle requests from users and provides the

presentation logic. Since this tier is the most important part of our system, it is necessary to describe its

interior architecture specifically, and this is done in the succeeding section. The third tier ⎯ Pounamu

tool server ⎯ provides all the business functions and logic for this system. RMI/CORBA is middleware

that connects the web tier and Pounamu tool server. The fourth tier is the file system that provides back-

end persistent storage.

Figure 4-2 The System Architecture in a UML Deployment Diagram

User PCs
 WWW Browser

View/Edit Pounamu
modeling diagram

Pounamu Tool Server

Existing
Pounamu

Remote Pounamu
Editing Interface

RMI
Registry

HTTP Web Server Host

HTTP Server

PounamuWebApp
Servlets/JSPs

Files

LAN: RMI/CORBA

HTTP: WAN

 File
I/O

Register

Lookup

Chapter 4: System Design

45

4.2.2 Architecture Design of the Web Tier

Design of JSPs contained in the Web Server is often complicated by the need for JSPs to both perform

requests handling, and present responses. These tasks are quite distinct for many pages, and request

processing may be complicated. Generally, there are several ways (shown in Figure 4-3) to design JSP-

based web applications [36]. The most basic is where we put all code: presentation mark-up, processing

logic and data management, into the JSP script itself. This is a bad way to do things for many reasons,

especially as it becomes unwieldy for all but the most trivial examples [36]. The second approach has

HTML and Java processing /data management code in the JSP, with JavaBeans to hold data (b). This is

slightly better, although putting processing logic and data management code into the JSP itself is a bad

practice. It makes the JSP and associated code hard to reuse and ties the presentation and processing

logic to a particular data management strategy, which may change during development [36]. A generally

accepted approach, also the best one, is to have the JSP solely responsible for HTML mark-up and Java

code to access bean content, with a Bean (or Servlet) responsible for handling screen processing logic,

typically making use of other classes(c) [36]. However, even this best approach is not suitable for our

purpose because our system has the following features:

(1) A central entry point is needed to manage application-wide resources (e.g. a reference to the

remote Pounamu server object) or session state before responses can be generated;

(2) The fact that most requests come from a user’s interaction with a mirrored image rather than an

HTML form makes mapping request properties onto a bean difficult;

(3) The system is to a large extend process-intensive rather than presentation-intensive;

Encountering the above features is a clear indication that our web-tier needs a different architecture

design.

Figure 4-3 Three Ways to Design JSP-based WebApp [36]

Fortunately, there is an elegant solution, often called the “JSP Model 2 Architecture” or “Request

Controller Architecture” [37,38]. This is a variant of MVC for web applications, and a sketch of this

architecture is shown in Figure 4-4. From it, we can see this so-called “Request Controller Architecture”

is a hybrid approach for serving dynamic content, since it combines the use of both Java Servlets and

JSP. It takes advantages of the predominant strengths of both technologies, using JSP to generate the

presentation layer and Servlets to perform process-intensive tasks. Here Servlets act as the controller

(c). HTML
 Beans

(a). HTML+
Java code

(b). HTML+
Java code

Beans

Chapter 4: System Design

46

and are in charge of the request processing and the creation and populating of worker beans used by

JSPs, as well as deciding which JSP page to forward the request to. JSP is just responsible for retrieving

information from worker beans that may have been previously populated by the Servlet and simply

presenting it. Using this approach typically results in the cleanest separation of presentation from the

business logic.

Figure 4-4 Request Controller Architecture (JSP Model 2 Architecture [38])

4.3 Object-Oriented Design

Having OOA objects and system architecture, we now move onto a more detailed OO design. This

normally involves several steps:

♦ According to the architecture, we refine OOA classes into OOD objects by splitting up OOA objects

into appropriate OOD classes;

♦ Introduce service classes, which are interfaces to the operating system including user interface

libraries, middleware and data communication, data management (files, database, cache).

♦ Implement the management of inter-class data relationships represented in the OOA.

In the following sections, we will follow these steps to develop an OOD for our system.

4.3.1 Services Objects

Service objects often refer to specific APIs, which are used to access operating system support features

such as user interface frameworks, communications and data management [36]. As our system is built

on the top of an N-tier web-based architecture, the service classes determined in these tiers are

illustrated in Figure 4-5, which is followed by a detailed description of these service objects in Table 4-1.

W
eb B

 brow
ser

(Controller)
Servlet

(View)
JSP

System
Processing

Web Server Application Server
(Business Logic)

(Model)
Worker Bean

(7)

(1)
Request (2)

(3)

(4)

(5) (8)

(6)

(9)
Response

Chapter 4: System Design

47

Figure 4-5 System Service Objects

Table 4-1 System Service Objects Description

♦ HTML browser service object: In the first tier of an N-Tier system, a web browser sends requests

to a web server, obtains response from the web server and provides a user interface where users

can interact with the system via HTML forms, text and images.

♦ Web Server service object: In the second tier of an N-Tier system, Servlets/JSPs receive

requests from users, process these requests and prepare responses for display on the user’s web

browser.

♦ ServletContext service object: This object allows Servlets to store and retrieve the global

resources sited on the Servlet engine of web server. For example, a reference to the remote

server (stored on the Servlet engine environment during the initialization stage of a web

application) can always be accessed through the ServletContext for a later remote procedure call.

♦ HTTPSession service object: This object can be used to transform the stateless HTTP protocol

into an integrated seamless thread of activity. Actually, the HTTPSession object has been given

the capability of associating data that is related to each user’s session to it. The data can be

profile information, user preferences, the current selections, etc.

♦ Middleware service object: Middleware provides a communication channel between the second

tier and the third tier. The methods contained in this service object allow a client to locate and

connect the remote server object, and transfer data to and from the server.

♦ XMLParser service object: In the system, information transferred between the second tier and

third tier is in the form of an XML String. So, an XMLParser object is needed to parse the XML

string back to the predefined java objects.

♦ ImageEncoder service object: This object helps to encode the generated image into the

requested image format.

♦ Back-end storage service object: This object provides a dedicated service such as processing file

I/O requests, management of file consistency and security, etc.

Web Browser

sendRequest()
receiveResponse()

Web Server

processRequest()
returnResponse()
forwardRequest()
 Middleware

connect()
disconnect()
locate()
receiveData()
sendData()

File

openFile()
writeFile()
readFile()
closeFile()

XMLParser

ParseDocument()
tranverseDocument()
serializeDocumentToStream()

ImageEncoder

encode()

ServletContext

setAttribute()
getAttribute()
getInitialParameter()

HttpSession

setAttribute()
getAttribute()
getSessionId()

Chapter 4: System Design

48

4.3.2 OOD of the Remote Interface Plug-in Component

Figure 4-6 illustrates a UML OOD diagram of the remote editing interface plug-in. Compared with the

OOA class diagram (shown in Figure 3-14), we can see several main changes:

♦ An interface RMIServerInterface and class RMIServer which implements this interface have been

added as a wrapper of the original class RemotePounamuEditor. This addition is based on our

decision to use RMI as the communication protocol between the web server and the remote

Pounamu server. The arrangement of having an RMIServer as a wrapper rather than putting all the

remote function definitions into it directly means our code can be easily adapted to another

communication protocol (e.g. CORBA) in the future.

♦ Two classes named PounamuGIFGenerator and PounamuSVGGenerator are also added. As their

names suggest, PounamuGIFGenerator implements the functionality of generating a GIF version of

mirrored image for a given PounamuView diagram, while PounamuSVGGenerator is used to obtain

the SVG image document of a given view diagram. Both of them use other helper classes to

achieve their goals.

♦ Owing to the decision to encode all the remote editing commands in XML and transfer this XML

message over RMI, an OOD object RemoteCommandDeserializer is added to decode the XML

message back into a RemotePounamuCommand object. Furthermore, RemotePounamuCommand

and RemoteCommandDeserializer are extended to have an interface each. The reason behind this

extension is that more than one type of remote command object exists in this system. By letting

them have a common interface, we are actually writing more reusable and maintainable code. For

example, if a new command object has to be added to the system at a later time, this can be done

more gracefully without modifying the existing code.

♦ Based on eight basic editing commands that can be executed on a PounamuView diagram, we

have designed their remote counterparts. Likewise, there should be eight specific classes

implementing RemoteCommandDeserializer, with one for each possible remote command in the

Pounamu tool. Names of remote Pounamu commands and their corresponding deserializer classes

are below:

RemoteAddAssociation ⎯ RAADeserializer

RemoteAddEntity ⎯ RAEDeserializer

RemoteChangeProperty ⎯ RCPDeserializer

RemoteMoveConnector ⎯ RMCDeserializer

RemoteMoveShape ⎯ RMSDeserializer

RemoteRemoveEntity ⎯RREDeserializer

RemoteRemoveAssociation ⎯RRADeserializer

RemoteResizeShape⎯ RresSDeserializer

Chapter 4: System Design

49

Note: due to the limitation of page size, only one of the 8 remote command classes, as well as the

corresponding deserializer class, is shown in Figure 4-6.

Figure 4-6 UML OOD Diagram of the Remote Interface Plug-in Component

<<Interface>>
RMIServerInterface

generateGifImage()
getShapeID()
getElementProperties()
receiveCommandMsg()
register()
getNotifierServant()
getProjectInfo()
getProjectViews()
openProject()
…

RMIClient
boolean dirtyFlag
String currentViewName
getDirtyFlag()
setDirtyFlag()
setCurrentViewName()

uses

<<Interface>>
RemotePounamuCommand

boolean execute()

RCPDeserializer

extractCommandFromXML()

1

1

RMIRemoteServer
RemotePounamuEditor
remoteEditor
RMIClient clientCallBack
bindObject()
notifyAllClients()

RemotePounamuEditor
Pounamu pounamu
PounamuManager manger
RMIRemoteServer RMIServer
getProjectsInfo()
getProjectViews()
openProject()
getShapeID()
getElementProperties()
receiveCommandMsg()
buildCommandObject()
decideValidShapeHandle()
selectHandleParenet()
findProjectElements()

Existing Pounamu

RemoteChangeProperty
ModellerPanel panel
PounamuModelElement object
PounamuManagerPanel manager
PounamuView view
PounamuModelProject project
PunamuToolProject tool
boolean execute()

PounamuAssociationProperty

PounamuEntityProperty

1

1 1

0..*

1

1

1

1

0..*

0..* 0..*

<<Interface>>
Notifier

Notify()

<<Interface>>
RemoteCommandDeserializer

extractCommandFromXML()

Pounamu
RemotePounamuEditor
remoteEditor
…

PounamuGIFGenerator
PounamuView view
PounamuProject project
String viewType
generateGifForView()
convertToGIF()
saveAsGIFByteArray()
… PounamuSVGGenerator

PounamuView view
PounamuProject project
String viewType
createSVGForView()
CreateSVGElementForPouna
muPanel()
……..

uses

uses

Chapter 4: System Design

50

4.3.3 OOD of the Web Tier

Until now, most design decisions that we have made are universal to both GIF- and SVG-based thin-

client Pounamu user interfaces. However, considering that inherent image data representations and

mouse clicks capturing/handling are so distinct between GIF and SVG, design decisions need to be

made for the web tiers of the two versions, respectively. As a result, an individual subsection is specially

written for each of these versions.

4.3.3.1 OOD for the web tier of the GIF-based thin-client user interface

Here three objects (ActionData, ApplicationSession and PounamuImage) identified at the OOA stage

need be further split according their respective roles in the Request Controller Architecture. In addition, a

ControllerServlet class is added to manage the application-scope resource such as a reference to the

remote Pounamu RMIServer, as well as handle all incoming requests.

Controller Servlet

Design of the controller Servlet is a challenging task. As we already know, the instances of incoming

requests from the system actor (here users) include: loading the working PounamuView, displaying the

working PounamuView diagram, locating XY value of a user’s click on the image, as well as various

editing requests on the working PounamuView etc. Handling all these in the controller Servlet would end

up with a procedural class, and, more likely un-maintainable chains of if/else statements. A better

approach would be to design a set of request handler classes to handle each user request, and the

controller’s main responsibility is just to decide which request handler class is needed to handle a certain

request and then delegate request processing to it. In this way, future enhancements of our system

become very easy since new requests can be handled by adding the corresponding request handlers.

Additionally, such design also ensures easier maintenance and code reuse. In our system, request

handler dispatching is completed with the cooperation of ControllerServlet and RequestController

classes. While ControllerServlet is an entry point for all user requests, RequestController uses Java

reflection to instantiate request handlers as required. Moreover, for system efficiency, already

instantiated request handlers are kept in a hash data structure so that they can be used to handle future

requests of the same type. This arrangement ensures that use of reflection does not degrade the

system’s performance significantly.

Request Handlers

Unlike the Controller Servlet, implementation of the RequestHandler should be application specific.

Normally, a typical request handler needs to carry out the following tasks:

(1) Analyze the incoming request parameters

(2) Update the application status out of necessity

(3) Collect necessary data and make it available to JSP views for display

Chapter 4: System Design

51

(4) Select a JSP view to which the controller will dispatch its response

In our implementation, to avoid being limited to handling requests currently envisaged, we have

designed a RequestHandler interface. Thus, whenever needed, additional subclass can always be

added without significant effect. Currently, there are 17 specific handler subclasses (shown in Table 4-2)

to deal with all possible user requests:

Table 4-2 Available Handler Classes & Invoking Requests

Request handler Class Name User’s Request Response

DisplayProjectsInfomation Show the names of all the
available model project

Query and return all the
available project names

LoadModelProject Load a working Pounamu Model
Project

Set the selected model project
as a working one

SelectPounamuView
Load a working PounamuView
from the current working model
project

Names of PounamuView and
PounamuProject selected by
user are stored into the
Session object

GenerateGifImage Display the selected Pounamu
view diagram in web browser

Gif image of the matching
PounamuView is generated
and displayed

GetShapeID Click a shape in the Gif image
and ask for its ID

ShapeID at clicking position is
determined and returned

GetElementXML Ask for the detailed information
about a shape

Shape’s XML document is
returned and parsed

AddAssociation
Initiate the editing action “Add
an association type model
element to the working view “

System enter the
corresponding editing status
by initializing and setting up
the matching action data in
Session object

AddEntity
Initiate the editing action “Add
an entity type model element to
the working view”

Similar to above

EditProperty
Initiate the editing action “Edit
property values of the selected
model element”

Similar to above

MoveEntity
Initiate the editing action “Move
an entity type element to a new
location”

Similar to above

MoveAssociation Initiate the editing action “Move
an associate type element” Similar to above

RemoveModelElement Initiate the editing action “Delete
a model element from the view” Similar to above

ResizeEntity Initiate the editing action “Resize
entity element” Similar to above

LocateFirstMouseClickLocation

Locate a reference position for
ResizeEntity editing action

The entity’s resizing reference
position is returned

Locate the current position for a
Will-be-moved shape.

The current position of a Will-
be-moved shape is returned

Locate one of the association’
handles for MoveAssociation
editing action

One handle of an association
element has been selected for
moving.

Chapter 4: System Design

52

Select an location where to put
a will-be-added entity

The location for a will-be-
added entity is determined.

Locate the first shape handle for
a will-be-added association

The first handle of a will-be-
added association is located

LocateSecondMouseClickLocation

Locate a destination for a
ResizeEntity editing action

The final location for the
previously selected reference
point is decided.

Locate a new position for the
will-be-moved shape.

A new location for the
selected shape is returned.

Locate an idea place for the
handle of will-be-moved
association

A new position for the
previously located association
handle is decided.

Locate the second shape handle
for a will-be-added association

The second handle of a will-
be-added association is
located

SubmiteChange
Submit any editing action made
on the working PounamuView
diagram.

An editing action is
committed.

CanelChange
Cancel any editing action made
on the working PounamuView
diagram

An editing action is canceled.

Data Models
Data model objects provide a way of communicating between RequestHandlers and JSP views. With

regard to our system, the ApplicationSession object, which holds information about the user’s session

(names of the working project and PounamuView, the current EditingActionData etc.), is an example of a

data model object. Actually, ApplicationSession is a session bean. This bean will be declared in every

JSP view since it exposes model data used by JSP views. However, in order to maintain session state

related information, this bean will be instantiated in only one place ⎯ the RequestController class.

Another data model object to which we need to pay attention is the OOA class EditngActionData. As

mentioned earlier, this object is mainly responsible for building the user’s editing actions into XML-

messages of remote Pounamu commands. Since there is more than one type of editing action in our

system, in the OOD phase, an interface ActionData and 8 specific subclasses implementing this

interface replace the previous OOA class. These subclasses are listed as the following:

AddAssociationActionData ⎯ Representing the “Add association element to the working view” editing

action

AddEntityActionData ⎯ Representing the “Add an entity element to the working view” editing action

ChangePropertyActionData ⎯ Representing the “Change property values of the existing model element”

editing action

MoveShapeActionData ⎯ Representing the “Move an existing shape to a new location” editing action

MoveAssociationActionData ⎯ Representing the “Move an association element” editing action

RemoveActionData ⎯ Representing the “Delete an existing model element” editing action

ResizeShapeActionData ⎯ Representing the “Resize an existing shape” editing action

Chapter 4: System Design

53

To show what an ActionData class looks like, ChangePropertyActionData is given below as an example:

Finally, a UML OOD class diagram of the web-tier is presented in Figure 4-7. Due to the limitation of

page size, only 2 of the 18 RequestHandler classes and 2 of the 7 ActionData classes are shown in this

diagram.

ChangePropertyActionData
String actionName;
String compName;
String compType;
String currentProjectName;
ApplicationSession appSession;
String[] modelPropertyNames;
String[] modelPropertyTypes;
Object[] modelPropertyValues;
setAppSession()
setCurrentProjectName()
setCurrentPounamuViewName()
setModelPropertyNameList ()
setModelPropertyValueList()
getModelPropertyValueList()
getModelPropertyNameList()

<<Interface>>
ActionData

buildCommandXML()
setAppSession()
setName()
getCompName()
setCompType()
getCompType()
setCurrentProjectName()
setCurrentViewName()

Chapter 4: System Design

54

Figure 4-7 UML OOD Class Diagram of the Web tier

Other
RequestHandlers…

0..1

0..1

1 1

AddEntity
ServletContext context;
HttpServletRequest request
HttpServletResponse resp;
handleRequest();

DisplayViewDiagram
ServletContext context;
HttpServletRequest request
HttpServletResponse resp;
handleRequest();

RequestController
String SESSION_BEAN_NAME;
HashMap handlerHash;
findApplicationBean();
getNextPage()
getHandlerInstance()
decideSessionBeanIsAvailable()

<<Interface>>
RequestHandler

handleRequest();

<<Interface>>
Notifier

void notify()

RMIClient

setCurrentViewName()
getDirtyFlag()
setDirtyFlag

 ApplicationSession

String currentModelProjectName
String currentViewName
ActionData currentActionData
loadModelProject()
loadPounamuView()
getCurrentActionData()
setCurrentActionData()
getCurrentPounamuViewName()
setCurrentPounamuViewName()
getCurrentModelProjectName()
setCurrentModelProjectName()

HttpSession

setAttribute();
getAttribute()

0..1

1 0..*
ControllerServlet
ServletConfig appconfig;
void init();

ServletContext

setAttribute();
getAttribute()

<<Interface>>
HttpServlet

DoGet()
DoPost()

AddEntityActionData

ChangePropertyActionData

<<Interface>>
ActionData

buildCommandXML();
setAppSession();
getModelElementName();
setModelElementName();
getModelElementType();
setModelElementType();

Other
ActionData…

0..1

0..1
0..1

1
1

1

1

1 1
1

Chapter 4: System Design

55

4.3.3.2 OOD for the web tier of the SVG-based thin-client user interface

After careful design consideration, in this subsection, we arrive at similar OOD objects as those obtained

in the previous GIF version thin-client Pounamu tool. However, following further investigation, significant

changes have been made on some methods contained in this SVG version of the OOD classes. Since

most changes are made to enable multiple editing on a PounamuView diagram via a web browser, a

brief introduction to what multiple editing is and how SVG helps to make multiple editing possible is

presented before the main task of design changes discussion.

Multiple Editing Concept

Figure 4-8 shows scenarios of multiple editing (a) and single editing (b). In multiple editing, a series of

editing actions merely involves the web browser and the web server, and editing actions buffered at the

web server are executed on the Pounamu server in batch form, while for single editing, every editing

action involves all three sides (the web browser, the web server and the Pounamu server) and each

editing action is executed immediately on the Pounamu server instead of buffering. The aim is for

multiple editing to significantly improve system performance by reducing communication latency. Also, in

multiple editing, a set of edits by each user can be done without knowledge of another set of user-

buffered edits. “Transactions” of edits per user is achievable in this editing mode.

Although multiple editing is has preference over the other, two prerequisites have to be met to make

multiple editing on a PounamuView diagram possible. First, the web server must contain an information

repository so that editing action related data (such as ID, location of shapes or connector etc.) is

retrievable, otherwise, the remote Pounamu server has to be inquired for this information. Second,

sketches representing each cached editing have to be overlaid on the original diagram so that users

clearly know what editings have been made to the diagram. In order to draw these sketches, the original

diagram should allow a certain degree of manipulation on the web server. Simply because of this second

requirement (just imagining how difficult it would be to manipulate a GIF image’s binary data), multiple

editing functionally has been ruled out of the GIF-version of the thin-client Pounamu user interface. In

contrast, SVG’s adoption of plain text description instead of binary data allows arbitrary manipulation of

image data, and therefore multiple editing is implementable. A detailed explanation on why and how to

enable multiple editing in the SVG version thin-client tool ensues in a later paragraph.

Remove shape

Buffered
Actions

List

Add shape

Move shape

buffer

buffer

buffer

Execute
buffered
actions

Web Browser

Web Server

Pounamu Server

Mirrored PounamuView
diagram

PounamuView diagram

Shape information
repository

Chapter 4: System Design

56

Figure 4-8(a) Scenario of Multiple Editing on a PounamuView Diagram

Figure 4-8(b) Scenario of Single Editing on a PounamuView Diagram

SVG-based Multiple Editing

Scalable Vector Graphics (SVG) [39] is a newly emerged web based graphics. It uses the XML grammar

to describe two-dimensional graphic objects such as lines, texts, and polygons, so each individual

graphics object can be manipulated in a similar way that XMI elements, attributes and properties are

manipulated through the DOM API and XMLParser. Generally speaking, there are two main reasons why

it is possible to enable multiple editing in this SVG-based thin-client diagramming tool:

(1) SVG images generated for PounamuView diagrams can package and deliver all the information

(including ID, location, and properties of shapes and connectors) needed for multiple editing in our

familiar XML format. By comparison, the remote Pounamu server needs to be referred to repeatedly

for such information in our GIF version thin-client tool.

(2) Since we can manipulate an SVG image as we do a normal XML document, sketches of any editing

action such as moving an entity or adding an entity can be easily added and removed from the

original image. By comparison, drawing additional editing sketches on a GIF binary content may be

possible, but extremely difficult.

Another important feature that makes people interested in using SVG web graphics is its interactivity.

This interactivity is supported by assigning a rich set of event handlers to individual graphics objects in

an SVG document through the DOM (Document Object Model) interface. In our system,

locateShapeHandle LocateCanvasLocation, and getShapeID are examples of special purpose event

handlers, and a description of these handlers is given below:

GetShapeID: Identify the shape or connector that was clicked;

LocateCanvasLocation: Obtain X,Y values of the canvas point that was clicked;

locateShapeHandle: Locate and return a unique shape handle ID (Note: Shape handles are special

features that Pounamu diagrams have, which are useful for adding connectors and other editing actions)

 Add shape

 Remove shape

Execute adding
shape

Execute
moving shape

Web Server Pounamu Server
Web Browser

PounamuView diagram Mirrored PounamuView
diagram

Shape information
repository

Chapter 4: System Design

57

Design Changes

As a result of splitting three OOA level objects (ActionData, ApplicationSession and PounamuImage)

according to their respective roles in the Request Controller Architecture, we come up with similar OOD

objects to those obtained in the previous GIF version of a thin-client Pounamu tool. These can be

generalized as follows:

♦ ControllerServlet: An OOD object used to manage application-scope resources, as well as handle

all incoming requests

♦ RequestHandler interface and its application specific subclasses: OOD objects used to analyze

request parameters, update application status equally, and select proper JSP views to forward

response.

♦ Data model classes (ApplicationSession, ActionData and its 8 specific subclasses): the

ApplicationSession object assists the communication between RequestHandlers and JSP views (i.e.,

ApplicationSession will be populated by RequestHandlers and used by JSP views). Each of the 8

ActionData subclasses represents one type of editing action.

In the following paragraphs, more detailed descriptions of these objects are provided focusing on the

differences to their GIF version counterparts.

(1) ControllerServlet

This object is the same as its GIF version counterpart.

(2) Application Specific RequestHandlers

Compared with the previous GIF version thin-client tool, a different mechanism is used here to capture

and handle mouse click events, so RequestHandler subclasses are required to change correspondingly.

RequestHandlers needed for this SVG version tool are summarized in Table 4-3.

Table 4-3 Required RequestHandlers & Invoking Requests

Request handler Class
Name

User’s Request Response

LoadModelProject Load a working PounamuModelProject Set the selected model project
as a working one

SelectPounamuView Choose and load a working
PounamuView from the current
working model project

Names of PounamuView and
PounamuProject selected by
user are stored into the
Session object

GenerateSVGImage Display the selected PounamuView
diagram in SVG format on web
browser

SVG image of the requested
diagram is generated and
displayed

AddAssociation Initiate the editing action “Add an
association type model element to the
working view “

System enters the
corresponding editing status
by initializing and setting up
the matching action data in
Session object

AddEntity Initiate the editing action “Add an entity
type model element to the working
view”

Similar to above

Chapter 4: System Design

58

SetProperties Initiate the editing action “Set property
for the selected model element”

Similar to above

MoveEntity Initiate the editing action “Move an
entity type element to a new location”

Similar to above

MoveAssociation Initiate the editing action “Move an
associate type element”

Similar to above

RemoveModelElement Initiate the editing action “Delete a
model element from the view”

Similar to above

ResizeEntity Initiate the editing action “Resize entity
element”

Similar to above

GetShapeID Click a shape in the SVG image to
request its ID value (needed for almost
all editing actions)

ID of the clicked shape is
obtained. System responds
differently to different editing
actions.

locateShapeHandle Click and locate a preferred shape
handle (needed for add association,
resize entity actions)

Shape handle ID is obtained.
For each of possible editing
actions matching responses
are sent out accordingly.

locateMouseClickOnCanvas Click and locate a preferred position on
the displayed SVG image canvas
(needed for add, move and resize
entity actions)

Mouse click’s coordinates XY
are obtained. How these XY
are stored will depend what
type of editing action it is.

GetElementProperties Request visual and model properties
about a shape

Shape’s XML document is
returned and parsed

BufferChange

Buffer a just-completed editing action Current editing action is
added to a buffered action list.

CancelChange Cancel a just-completed editing action Current editing action is not
buffered for later execution.

ModifyBufferedChanges Review a buffered editing list and
delete unwanted editings.

A buffered editing action list is
updated.

SubmitBufferedChanges

Submit the buffered editing action list
for execution.

Editing actions are committed
on the remote server and the
updated view diagram is
displayed.

(3) Data Model Classes

Figure 4-9 shows the ApplicationSession object developed for the GIF-version (a) and the SVG-version

(b) of thin-client Pounamu user interfaces. Differences are highlighted in bold font. For example, in (a),

the cached GIF-format of a PounamuView diagram is stored as a byte array, in contrast, the cached

SVG-format of a PounamuView diagram is stored as a XML String object. Another difference is that the

manipulateSVGImageDoc() method has been added to the SVG-version ApplicationSession object to

manipulate the cached SVG image through standard APIs (XMLParser and DOM interface). There is a

working scenario to show why this manipulation functionality is necessary. Assuming the user has

selected a shape to reset its properties, or simply to remove it. The displayed view diagram needs to be

able to reflect the user’s selection. If no SVG manipulation is allowed on the web server, the remote

Pounamu server has to be revisited to generate a diagram with the selected shape highlighted.

Chapter 4: System Design

59

ApplicationSession
String currentModelProjectName
String currentViewName
ActionData currentActionData
Byte[] imageData
setCurrentActionData()
setCurrentModelProjectName()
setCurrentViewName
……
setCurrentPounamuViewName()

ApplicationSession
String currentModelProjectName
String currentViewName
ActionData currentActionData
String svgImageDoc
setCurrentActionData()
setCurrentModelProjectName()
setCurrentViewName
…..
setCurrentPounamuViewName()
manipulateSVGImageDoc()

Having explained how the two versions of ApplicationSession object are different, we now take a look at

other pairs of objects (ActionData and its subclasses). Figure 4-10 shows the GIF-version (a) and the

SVG-version (b) ActionData and one of its subclass. Comparing (a) with (b), you can notice two new

methods (drawSkectch() and removeSketch()) highlighted in bold font have been added to the SVG-

version ActionData. DrawSketch() is called to add extra sketches to the original diagram to visually

represent a specific editing action, while removeSketch() is called to remove any editing-related sketches

from the diagram if a buffered editing is canceled. As stated earlier, drawing edit sketches onto a view

diagram is especially useful for multiple editing, so users can clearly see what editing actions have been

made and buffered. Of course, any buffered editing actions can be reviewed and deleted if the user

chooses to do so.

 Figure 4-9 (a) the GIF version Figure 4-9 (b) the SVG version
 ApplicationSession OOD Object ApplicationSession OOD Object

Figure 4-10(a) the GIF version ActionData OOD Object and one Subclass Example

ChangePropertyActionData
String compName;
String compType;
String currentProjectName;
ApplicationSession appSession;
String[] modelPropertyNames;
String[] modelPropertyTypes;
Object[] modelPropertyValues;
setAppSession()
setCurrentPounamuViewName()
setModelPropertyNameList ()
setModelPropertyValueList()
….

<<Interface>>
ActionData

buildCommandXML()
setAppSession()
setName()
setCompType()
setCurrentProjectName()
setCurrentViewName()
….

ChangePropertyActionData
String compName;
String compType;
String currentProjectName;
ApplicationSession appSession;
String[] modelPropertyNames;
String[] modelPropertyTypes;
Object[] modelPropertyValues;
setAppSession()
setCurrentPounamuViewName()
setModelPropertyNameList ()
setModelPropertyValueList()
….

<<Interface>>
ActionData

buildCommandXML()
setAppSession()
setName()
setCompType()
setCurrentProjectName()
setCurrentViewName()
drawSketch()
removeSketch()
…

Chapter 4: System Design

60

Figure 4-10(b) the SVG version ActionData OOD Object and one Subclass Example

4.3.4 Data & Message passing among OOD objects

While the above sections describe static objects and relationships among these objects, this section will

focus on documenting dynamic system behavior through some typical scenarios in our system, i.e.

♦ Adding a remote interface plug-in to the existing Pounamu tool;

♦ Registering a user;

♦ Loading a PounamuView diagram;

♦ Initiating an editing action;

♦ Confirming editing action on the working PounamuView diagram;

♦ Identifying a shape/connector that the current editing acts upon;

♦ Locating a specific shape handle;

♦ Setting properties of a model element;

The above scenarios will be described through collaboration diagrams or sequence diagrams illustrated

below.

4.3.4.1 Sequence Diagram for “Adding a remote interface plug-in”

Shown below is a sequence diagram capturing the basic interactions involved when adding a remote

editing interface plug-in to the Pounamu software tool.

Figure 4-11 Sequence Diagram for Adding the Remote Editing Interface Plug-in

4.3.4.2 Event flows for “Registering a User”

Administrator

Register

Add remote
 plug-in

Enable remote
thin-client user
interface

Pounamu
Menubar RemotePounamuEditor RMI

Registry

Chapter 4: System Design

61

Only the authorized users can access and edit PounamuView diagrams in a named model project, so

any user has to login to the system first. The following collaboration diagram (Figure 4-12) depicts a

typical user login process, and Table 4-4 gives a detailed description for each step annotated in the

diagram.

Figure 4-12 Collaboration Diagram for Registering a User

Table 4-4 Descriptions of events shown in Figure 4-12

Step Description
1 Invoked when a participant asks for accessing to Pounamu tool via web browser.
2 Invoked by step 1: Retrieve the RequestController object from HTTPSession. This object is in

charge of instantiating or looking up an appropriate handler object to deal with the user’s login
requests.

3 Invoked by step 2: Create an application session object for this specific participant.
4 Invoked by step 2: A special-purpose request handler object is created if not existed, or

retrieved if already there.
5 Invoked by step 4: The verifyUser() method of the Pounamu server is called so that the user’s

identification is checked against the user information file stored there.

6

(a) Invoked by step 4: Upon a valid user, his/her user ID is stored into the application session
object.

(b) Otherwise, response is forwarded to the login error page.
7 Invoked by step 6(a): For a valid user, an RMICallBackClient object is instantiated and exported

in the RMI registry.
8 Invoked by step 7: This newly instantiated RMIClient also registers itself with the Pounamu

server for the callback service when a certain Pounamuview diagram is updated.
9 Invoked by step 8: The Pounamu server will append this RMIClient at the end of its callback list.
10 Invoked by step 4: Forward the system response to the loadPounamuView.jsp page.

4.3.4.3 Event flows for “Loading a Working PounamuView Diagram”

RequestController
1: login()

User

ControllerServlet

2: create RequestController
and store into HttpSession

3: create ApplicationSession object
and store into HttpSession

6(a): Record UserID

RMIClient

ApplicationSession

RemotePounamuEditor

9: AddCallBackClient

JSPView:
LoginError.jsp

JSPView:
LoadPounamuView.jsp

 valid user, to 6(a)
 Invalid user to 6(b)

10: Forward Response

6(b): forward response

 7: Export RMICallbackClient

5: Confirm valid user

8: Register Client

Login
RequestHandler

4: create or lookup
RequestHandler

Chapter 4: System Design

62

The fact that a PounamuView diagram belongs to a Pounamu model project means that to load a

working PounamuView diagram, a model project has to be loaded first. So two collaboration diagrams

are drawn here to describe the scenario of “Loading a Working PounamuView diagram”. Figure 4-13 (a)

describes event flows when selecting and loading a Pounamu model project, and Figure 4-13(b)

describes event flows when setting and displaying a working PounamuView diagram. In addition, Table

4-5 and Table 4-6 explain each individual step of these two diagrams.

Figure 4-13(a) Collaboration Diagram for Loading a Working Model Project

Table 4-5 Descriptions of events shown in Figure 4-13(a)

Step Description
1 Invoked when a user initiates loading a model project from Pounamu server
2 Invoked by step 1: Retrieve the RequestController object from HTTPSession. This object is

in charge of instantiating or looking up an appropriate handler object to deal with the user’s
loading requests.

3 Invoked by step 2: A special-purpose request handler object is created if not existed, or
retrieved if already there.

4 Invoked by step 3: Retrieve the user’s application session object from HTTPSession.
5 Invoked by step 3: Obtain all available model projects stored in the Pounamu server by

calling the getProjectNames() method.
6 Invoked by step 5: It’s the getProjectsNames() method of RemotePounamuEditor that is

actually executed to return names of all existing model projects.
7 Invoked by step 3: Store names of all the model projects existed on the Pounamu server.
8 Invoked by step 3: Forward the response to loadPounamuProject JSP page.
9 Invoked by selecting a specific model project.
10 Invoked by step9: Retrieve the RequestController object from HTTPSession. This object is in

charge of instantiating or looking up an appropriate handler object to deal with the project
selection request.

11 Invoked by step 10: A special-purpose request handler object is created if not existed, or

RequestController
1: loadPounamuProjects

User

ControllerServlet
2: Retrieve RequestController from
HttpSession

4:
 g

et
 A

pp
lic

at
io

nS
es

si
on

LoadProjectsHandler

3: Create or lookup
RequestHandler

ApplicationSession

RemotePounamuEditor

JSPView:
LoadPounamuProject.jsp

8: Forward Response

5. Get names of
available model
projects

7:
 S

et
E

xi
st

ed
P

ro
je

ct
N

am
es

6. getProjectsNames

SelectProjectHandler

12: setSelected-
ProjectName

9: Select Model Project

10: Retrieve
 RequestController

11: create or lookup
RequestHandler

JSPView:
ProjectLoaded.jsp

13: ForwardResponse

Chapter 4: System Design

63

retrieved if already there.
12 Invoked by step 11: Store the user’s choice of model project into the application session

object.
13 Invoked by step 12: Forward the system response to the projectLoaded.jsp page.

Figure 4-13(b) Collaboration Diagram for Loading and Displaying a Working PounamuView

Table 4-6 Descriptions of events shown in Figure 4-13 (b)

Step Description
1 Invoked when a user initiates loading a PounamuView contained in the previously specified

Pounamu model project
2 Invoked by step 1: Retrieve the RequestController object from HTTPSession. This object is in

charge of instantiating or looking up an appropriate handler object to deal with the user’s loading
requests.

3 Invoked by step 2: A special-purpose request handler object is created if not existed, or
retrieved if already there.

4 Invoked by step 3: Retrieve the selected model project from the user’s application session
5 Invoked by step 3: Make a remote procedure call to obtain names of all the PounamuView

diagrams contained in the selected project
6 Invoked by step 5: It is the getProjectViews() method of the RemotePounamuEditor object that is

responsible for returning view names.
7 Invoked by step 3: Store the returned names into the application session for later presentation.
8 Invoked by step 3: Forward response to the SelectPounamuView.jsp page for exposing

selectable Pounamu view diagrams
9 Invoked by step 3: Select a PounamuView diagram from a list of choices exposed via the

SelectPounamuView.jsp view.
10 Invoked by step 9: Store the user’s choice into the session state.
11 Invoked by step 9: Embed the selected PounamuView diagram in a JSP page for displaying

JSPView:
ProjectLoaded.jsp

RequestController ControllerServlet

2: Retrieve RequestController from
HttpSession

4: getSelectedProjectName
SelectPounamuView

RequestHandler

3: create or lookup RequestHandler

ApplicationSession

RemotePounamuEditor JSPView:
SelectPounamuView.jsp

 Remote Call

8:
 F

or
w

ar
d

R
es

po
ns

e

5.get names of all views on
the selected project

9: select P
ounam

uV
iew

10: setSelectedPounamuView

JSPView:
viewLoaded.jsp

1: Select Pounamu View

11: Forward Response

6: getProjectViews

7: setProjectViewNames

Chapter 4: System Design

64

4.3.4.4 Event flows for “Initiating an Editing Action”

This is a common scenario for all the possible editing actions a user would take. The companying

collaboration diagram (shown in Figure 4-14) describes events occurring whenever a user initiates an

editing action by clicking the corresponding button on the main menu bar. A detailed description for each

step involved in this diagram can be seen in Table 4-7.

Figure 4-14 Collaboration Diagram for Initiating an Editing Action

Table 4-7 Descriptions of events shown in Figure 4-14

Step Description
1 Invoked when the user clicks an editing menu item (on the left menu bar) to start any

possible editing action.
2 Invoked by step 1: Retrieve the RequestController object from the service object

HTTPSession, and this object is in charge of instantiating or looking up an appropriate
handler object to deal with the user’s editing request made via a web browser.

3 Invoked by step 2: A special-purpose RequestHandler object is created if not existed, or
retrieved if already there.

4 Invoked by step 3: Retrieve the user’s application session object from HTTPSession, and this
object is used to store editing related information, such as the command type, the name and
properties of the target element etc.

5 Invoked by step 3: A new editing action data of a certain type is created.
6 Invoked by step 3: Set the newly created editing action data as the current action data and

store it for later reference.
7 Invoked by step 3: Select a proper JSP page to forward the execution response.

4.3.4.5 Event flows for “Confirming an Editing Action on the Working PounamuView

Diagram”

RequestController
1: click any edit action
(Add, delete etc.)

User

ControllerServlet

2: Retrieve RequestController from
HttpSession

4: Retrieve ApplicationSession
from HttpSession EditingAction

RequestHandler

3: create or lookup matching
RequestHandler

ApplicationSession

ActionData
JSPView:

7: Forward Response to the
corresponding JSP page 5. create matching

ActionData(Add, Delete etc.)

6: setCurrentActionData

Chapter 4: System Design

65

Similar to the above “Initiating an Editing Action”, this is also a common scenario relating to all editing

actions. Figure 4-15 shows the collaboration diagram for such a scenario, illustrating events that take

place when a user finally decides to submit the current editing action in his/her session. Table 4-8

provides a detailed description of every step depicted in this event flow diagram.

Figure 4-15 Collaboration Diagram for Confirming an Editing Action

Table 4-8 Descriptions of events shown in Figure 4-15

Step Description
1 Invoked when the user decides to submit current editing action data stored in his/her

application session object.
2 Invoked by step 1: Retrieve the RequestController object from the service object

HTTPSession. This RequestController is in charge of instantiating or looking up
appropriate handler object to deal with the user’s requests sent via web browser.

3 Invoked by step 2: A special-purpose request handler object is created if not existed, or
retrieved if already there.

4 Invoked by step 3: Recover the current action data stored in the user’s application session
5 Invoked by step 3: The BuildCommadXML() method of the current editing action data is

called to return XML string representation of an editing command.
6 Invoked by step 3: The ReceiveCommandMsg() method of the Pounamu server is called

to receive XML format of an editing command from the thin-client user.
7 Invoked by step 3: XML representation of a remote editing command is analyzed by the

Pounamu server
8 Invoked by step 7: XML representation of a remote editing command is interpreted and

decoded by the RemoteCommandDeserializer object.
9 Invoked by step 8: The Pounamu-recognizable remote editing command object is created

from the previous decoding process
10 Invoked by step 9: The user’s editing command finally gets executed.

RequestController
ControllerServlet

2: Retrieve RequestController
from HttpSession

SubmitChange
RequestHandler

3: create or lookup RequestHandler

ApplicationSession

RemotePounamuEditor
 Remote Call

JSPViews:

JSP View:
ResultDiagram.jsp

1: Post any editing command

12: Forward Response

Current ActionData

6: receiveCommandMsg

7: analyzeCommandMsg

5. BuildCommandXML

4: getCurrentActionData

RemoteCommandDeserializer RemotePounamuCommand

9: create matching
remoteCommand

10: execute()

11: set current
ActionData to null

8: get matching command
deserializer

Chapter 4: System Design

66

4.3.4.6 Event Flows for “Identifying an Editing Target Shape/Connector”

Almost all editing actions are executed on a shape or connector, so after initiating a specific editing

action, we have to decide which shape/connector is the working object. Figure 4-16 depicts event flows

for the target identification process in a collaboration diagram, with a detailed description for each

procedure within this process available in Table 4-9.

Figure 4-16 Collaboration Diagram for identifying a Target for an Editing Action

Table 4-9 Descriptions of events shown in Figure 4-16

Step Description
1 Invoke by clicking an existing shape/connector in the pounamuview diagram displayed in a

web browser.
2 Invoked by step 1: Retrieve the RequestController object from the service object

HTTPSession. This RequestController is responsible for instantiating or looking up appropriate
handler object to deal with the user’s request sent via a web browser.

3 Invoked by step 2: A special-purpose request handler object is created if not existed, or
retrieved if already there. Additionally, X,Y values are parsed from the user’s clicking action.

4 Invoked by step 3: Recover the current Pounamuview name from the application session.
5 Invoked by step 3: Retrieve the action data currently active from the application session.
6 Invoked by step 3: The getShapeID() function of the Pounamu Server is called, and X,Y

values saved previously are passed as parameters.
7 Invoked by step 3: A target shape or connector is highlighted with red rectangle handles.
8 Invoked by step 3: The name, type information of the identified shape or connector is stored

into the current action data.
9 Invoked by step 3: A proper JSP view is selected to receive the system response to this

shape identification request.

RequestController ControllerServlet

2: Retrieve RequestController from
HttpSession

4: getWorkingPounamuView

3: create or lookup RequestHandler

ApplicationSession

Remote Call

WebBrowser:
A JSP view

WebBrowser:
A JSP view

1: Click Shape

9: Forward Response

5: getCurrentActionData

Current ActionData

6: getShapeID

7. SelectShape

8.store the selected
element name, type info
into current ActionData

GetShapeID
RequestHandler

RemotePounamuEditor

Chapter 4: System Design

67

4.3.4.7 Event Flows for “Locating a Valid Shape Handle”
For some editing actions such as “Add Association” and “Resize Entity shape”, a user should be able to

locate a specific shape handle on the PounamuView diagram. To assist in understanding event flows in

this locating operation, a collaboration diagram is shown in Figure 4-17. Additionally, Table 4-10 offers a

description for each tangible step that has been marked in the figure.

Figure 4-17 Collaboration Diagram for Specifying a Valid Shape Handle

Table 4-10 Descriptions of events shown in Figure 4-17

Step Description
1 Invoked when the user clicks the image-mapped PounamuView diagram embedded in a certain

JSP page
2 Invoked by step 1: Retrieve the RequestController object from HTTPSession. This object is in

charge of instantiating or looking up appropriate handler object to handle the user’s request sent
via a web browser.

3 Invoked by step 2: A special-purpose request handler object is created if not existed, or retrieved
if already there. Additionally, X,Y values are parsed from the user’s clicking action.

4 Invoked by step 3: Recover the current Pounamuview name from the application session.
5 Invoked by step 3: Retrieve the action data which is currently active from the application session.
6 Invoked by step 3: The decideValidShapeHandle() method of the Pounamu server is called with

X,Y values obtained previously passed as parameters.

7

(a) Invoked by step 3: Upon a valid shape handle, the clicking point is saved into the currently
active editing data.

(b) Otherwise, forward the response to an error page with message “not a valid shape handle”
8 Invoked by step 3: A proper JSP view is selected to receive the system response to this locating

shape handle request.

RequestController ControllerServlet

2: Retrieve RequestController from
HttpSession

4: getWorkingPounamuView

3: create or lookup RequestHandler

ApplicationSession

Remote Call

Web Browser:
A JSP page

Web Browser:
A JSP view

1: Capture Mouse Click

5: getCurrentActionData

Current ActionData

6: is validShapeHandle
7(a).store the clicked point into
current ActionData

RemotePounamuEditor

Web Browser:
Error page

7(a) valid shape handle
7(b) invalid shape handle

7(b). Forward Response

8: Forward Response

LocateMouseClickPoint
RequestHandler

Chapter 4: System Design

68

4.3.4.8 Event flows for “Setting Element Properties”
Like all the other editing actions, several phases are involved in the property setting editing action:

a) Initiating a property changing action

b) Identifying a shape/connector for the action

c) Displaying old properties (including name, type, values) of the target object and entering new

properties values

d) Confirming and submitting this action

To fully describe this setting properties action scenario, separate collaboration diagrams need to be

drawn for each phase. However, as phase a), b) and d) are common scenarios to all the possible editing

actions and have already been described, here only Phase c) is considered. The collaboration diagram

depicting event flows for this phase is shown in Figure 4-18, with descriptions of these events provided in

Table 4-11.

Figure 4-18 Collaboration Diagram for Setting New Properties for the Target Element

Table 4-11 Descriptions of events shown in Figure 4-18

Step Description
1 Invoked by clicking a shape within the image-mapped PounamuView diagram displayed on a

web browser
2 Invoked by step 1: Retrieve the RequestController object from HTTPSession. This

RequestController ControllerServlet

2: Retrieve RequestController from
HttpSession

4:
 g

et
C

ur
re

nV
ie

w

3: create or lookup
RequestHandler

ApplicationSession

JSPView:
EditElementProperty.jsp

JSPView:
EditPropertiesFrames.jsp

1: Click Shape

9: Forward Response

5:
 g

et
C

ur
re

nt
A

ct
io

nD
at

a

Current ActionData

6: getShapeXML

8.parse and set old
properties values

RemotePounamuEditor

GetElementXML
RequestHandler

11: Retrieve
RequestController

13
: g

et
C

ur
re

nt
A

ct
io

nD
at

a

12: create or lookup
RequestHandler

ChangeProperty
RequestHandler

14: set and store
new properties
values

10: Input properties values

JSPView:
PropertySetConfirm

15: forward
response

7: get Shape info

Chapter 4: System Design

69

RequestController is responsible for instantiating or looking up an appropriate handler object to
deal with the user’s request sent via HTTP GET/POST.

3 Invoked by step 2: A special-purpose request handler object is created if not existed, or
retrieved if already there. Additionally, X,Y values are parsed from the user’s clicking action.

4 Invoked by step 3: Recover the current Pounamuview name from the application session.
5 Invoked by step 3: Retrieve the current editing action from the application session object.
6 Invoked by step 3: The getShapeXML() method of the Pounamu Server is called with X,Y

valued obtained previously passed as parameters.
7 Invoked by step 3: Property values of the target element are packaged and sent back.
8 Invoked by step 3: Obtain the element name, type and properties values from the received XML

string, and populate these values into the current editing action data.
9 Invoked by step 3: Select a proper JSP view to expose property values of the target element

through the ApplicationSession bean.
10 Invoked by step 9: New property values are inputted via the JSP page displayed in step 9.
11 Invoked by step 10: Retrieve the RequestController object from HTTPSession. This

RequestController is responsible for instantiating or looking up an appropriate handler object to
handle the user’s request sent via a web browser.

12 Invoked by step 11: A special-purpose request handler object is created if not existed, or
retrieved if already there. Additionally, newly entered property values are parsed.

13 Invoked by step 12: Retrieve the current editing action from the application session object.
14 Invoked by step 12: Store the newly entered property values into the current editing data
15 Invoked by step 12: Forward response to the PropertySettingConfirmation.jsp page.

4.4 Summary
In this chapter, the design issues involved in the development of our Pounamu/Thin system have been

discussed, and our discussion is mainly focused on three parts. First, we constructed and documented a

web-based N-tier software architecture to form the backbone of the system. Then for each tier we

proposed a set of OOD-level packages and classes to fulfill the required functionality. Lastly, we

presented system dynamic behaviour via collaboration and sequence diagrams. In summary, the design

presented in this chapter is a bridge between system analysis activities describing what a system should

be and should do, and implementation activities that describe the language and platform-dependant

manner in which the system is built.

Chapter 4: System Design

70

70

Chapter 5: Implementation of the GIF-based Prototype

In this chapter, we describe implementation of the GIF-version prototype of the system based on the

design described in the previous chapter. Included are explanations of how the different parts were

implemented, code samples and screen dumps of the system running. Before discussing implementation

details, computing technologies and tools relevant to the system implementation are summarized first.

Then, the communication between the web tier and the remote Pounamu server, which is realized in

RMI technology, is introduced. Following we describe the techniques used to dynamically display a

PounamuView diagram on a web browser as a GIF image. In the section following that, we discuss our

approach for interpreting and executing a user’s editing action on the selected PounamuView. Finally,

screen dumps and usage of this GIF version thin-client Pounamu tool are presented.

5.1 Aided Tools and Technologies

In this section, a brief introduction is given to tools and technologies involved in building the system, as

well as what we do with them.

5.1.1 Tomcat Servlet/JSP Engine
Tomcat is a Servlet container used by a Web server to load and execute Java Servlets. It is the official

reference implementation for the Java Servlet and JavaServer Pages (JSP) technologies [40]. Both Java

Servlets and JSP pages are essential components of the Java 2 Platform, Enterprise Edition (J2EE).

Tomcat is an open source Servlet/JSP container that is part of Jakarta project [40]. It is free for most

users. Although Tomcat can be used effectively with either Apache Web Server or a commercial web

server in a production environment, in this project we use Tomcat’s built-in web server for our

development work. Compared with those commercial web servers such as Apache, Tomcat is less

robust, but is sufficient for the purpose of prototyping our system. Additionally, Tomcat setup is

comparatively easy and simple. The Tomcat version used here is Tomcat 4.1.24.

5.1.2 RMI and CORBA
RMI [42] and CORBA [43] are two of most commonly used distributed objects solutions, and are

developed by SUN and OMG respectively. Both technologies have their strengths and weaknesses.

RMI allows Java developers to invoke object methods located on remote Java Virtual Machines. Unlike

many remote procedure calls that require parameters to be primitive data types or structures composed

of primitive types, in RMI, the entire java object can be passed as a parameter [44]. This exciting feature

means that new code can be sent across a network and dynamically loaded by foreign virtual machines

Chapter 5: Implementation of the GIF-based Prototype

71

[44]. As a result, developers have a greater freedom when designing distributed systems. Additionally,

RMI, as a pure Java technology, can take full advantage of Java features such as object model, security,

and garbage collections. In general, RMI has great potential to cover the range “from remote processing

and load sharing of CPU’s to transport mechanisms for higher-level tasks”[44].

Although an advantage in some cases, working only with pure Java environments can also be a

disadvantage for the RMI technology, because this signifies RMI’s lack of ability to deal with legacy

systems written in C/C++, Fortran, Cobol, and other programming languages [44]. In contrast, CORBA,

as a language- and platform-neutral technology, offers greater portability than RMI. Unlike RMI, CORBA

is not tied to a particular language and can be integrated with legacy systems written in different

languages as long as those languages have corresponding CORBA implementations [44]. From this

point of view, CORBA is particularly important in large organizations, where many systems (probably

legacy systems) must interact with each other. However, one of issues with CORBA is that being

language neutral, some powerful features are lost [29]. One obvious example is that instead of being

able to pass back and forth the actual objects as parameters, CORBA only allows primitive data types,

and structures to be sent across network. Another major limitation with CORBA is that users must learn

to use an interface definition language (IDL) for describing services.

From the above examination of two technologies, we can see both RMI and CORBA possess strengths

and weaknesses, so users have to decide which technology is the most appropriate for their

applications. With respect to our prototype system, RMI has been chosen as the communication protocol

between the Web Server and the remote Pounamu Server. The fact that the existing Pounamu is written

purely in Java is the main reason for this choice. Other tangible reasons include the ease use of RMI for

experienced Java developers, and low cost. However, In the future, the system still needs to be

extended to use CORBA, which is widely supported by vendors and therefore more mature than RMI.

5.1.3 Servlets and JSPs
Servlets are platform-independent, pure Java server-side modules that fit seamlessly into a Web server

framework. They can be used to extend the capabilities of the Web Server with minimal overhead,

maintenance, and support. Unlike other scripting languages, Servlets involve no platform-specific

consideration or modifications, they are Java application components that are downloaded, on demand,

to the part of the system that needs them [41]. Today, Servlets have become a popular choice for

building interactive Web applications. Third-party Servlet containers are available for Tomcat, Apache

Web Server, Microsoft IIS, and others [41].

Servlets are particularly useful when there is a lot of real programming and computing in your web

application. For example, Servlets are normally used to store information between requests, track HTTP

sessions, handle HTTP status codes, use cookies, access databases, generate dynamic GIF images, as

well as perform many other computing intensive tasks [47]. However, outputting HTML with Servlets can

Chapter 5: Implementation of the GIF-based Prototype

72

be boring because every trivial HTML tags and text need to be printed out with code [47]. That’s where

JavaServer Page (JSP) comes to help. JSP is in fact an extension of the Servlet technology that allows

you to mix standard and static HTML tags with dynamically generated HTML. By separating much of the

presentation from the dynamic content, you can still write HTML in the normal way, and then insert

simple java code into JSP in the form of JSP expressions, scriptlets, and declarations to generate

dynamic content [47]. For even more complex applications, you can wrap up Java code inside beans or

define your own JSP tags.	

JSP with Beans and custom tags, although extremely powerful and flexible, are not suitable for

applications in which request parameters are difficult to represent as HTML fields, as is the case with our

system. For these sorts of applications, a proper solution would be the use of both JSP and Servlets,

that is, a Servlet is responsible for handling the initial request, partially process the data, set up beans,

then forward the results to one of JSP views, depending on the circumstance. When used together in

this way, JSP and Servlets can complement each other to achieve the system’s ultimate goals such as

ease of use, enhanced performance, separation of logic from display, extensibility into the enterprise,

and ease of maintenance [46].

5.1.4. XML
Extensible Markup Language (XML) is a markup language for the description of documents that contains

structured information. Unlike HTML in which both the tag semantics and tag set have been

standardized, XML defines neither semantics nor a tag set. XML is really a meta-language for describing

markup languages and provides a facility to define tags and the structural relationships between them

[45].

Derived from another markup language, namely SGML (Standard Generalized Markup Language [48]),

XML was initially designed to address the challenges of large-scale electronic publishing. Today, XML is

playing an increasingly important role in the exchange of a wide variety of data on the Web and

elsewhere [48]. Generally speaking, XML has developed into the new standard for data exchange,

publishing, and developing intelligent web agents, etc. [49].

Compared with other data exchange methods, XML provides the following advantages [50]. First, due to

its platform- and system-independent feature, data in XML format is readable and usable on any

computer. Additionally, by being customizable, XML implementers can define their own tag sets to

describe document content, and any XML-aware software will be able to work with these customizable

tags. When dealing with XML, different clients can ask to have the same document displayed in

customized ways with the help of associated style sheets [50]. A final advantage is that XML has

adopted the Unicode standard, which allows documents to be coded in any language [50].

Chapter 5: Implementation of the GIF-based Prototype

73

All of the above advantages add weight to the decision to select XML as the message exchange format

between the web component and the Pounamu Server, though, there are other good reasons for doing

so. The fact that Pounamu is an XML-based Meta-CASE tool is certainly one such reason. Additionally,

the possibility of further expanding our work into web services that consume XML-like SOAP messages

also contributes to our decision.

5.1.5 Web Graphics Format
To enable users’ access to the Pounamu tool via a web browser, the first question that we need to

answer is what web graphics format a PounamuView diagram should be displayed in. In order to get a

satisfying solution, two most commonly used web graphics formats, GIF and JPEG, are investigated.

The GIF graphic format was developed by CompuServe to optimize the transmission of image data over

networks [52]. To keep file sizes small, the designers limited the number of colors in a GIF image to 256,

and this restricts its ability to handle the almost infinite color range found in most photographs [51]. In

comparison, JPEG supports full-color (24-bit, "true color") images and therefore is often chosen for

photographs, as well as complex "photographic" illustrations [51].

Despite GIF’s limitation mentioned above, it’s still favored by web developers for most page design

elements. The reasons for this preference are generalized as follows:

♦ GIF is still the most widely supported graphics format on the Web. And almost all Web browsers

support it.

♦ JPEG doesn’t work well for graphic-based imagery (such as line drawing, illustrations and cartoons

etc.) because its lossiness is clearly noticeable (and annoying) in a diagram of this sort. In

comparison, GIFs of diagrammatic images look better.

♦ Due to its specific compression format, GIFs can be interlaced. Interlaced GIFs appear first with

poor resolution and then improve in resolution until the entire image has arrived, allowing the viewer

to get a quick idea of what the picture will look like while waiting for the rest [51]. In comparison,

JPEGs can only arrive linearly, from the top row to the bottom row [51].

The above discussion shows GIF is much more suitable for diagram representation, so in our project,

GIF is selected as the web graphics format.

5.2 Communication between the Web tier and the Pounamu Server

As mentioned before, because of its simplicity and our pure Java environment, RMI has been chosen as

the communication protocol between the Web-tier and the Pounamu Server. Thus from the system

structure’s point of view, the Web-tier not only acts as the web server to be responsible for processing a

user’s requests and responding correspondingly, it also takes the role of an RMI client to make remote

procedure calls. To be able to do this, an object reference to the RMI Pounamu Server should be

Chapter 5: Implementation of the GIF-based Prototype

74

available in our web-tier. When deciding where to lookup and store this RMI server reference, we have

to consider the following factors:

♦ Our web-tier adopts the request-controller architecture;

♦ The RMI server object reference is an application-scope resource as it should be available for all

JSPs/Servlets within the web application, and shared by all user sessions;

The first factor says a controller Servlet exists as an entry point for any user request in the web

application. Actually, every Servlet contains an init() method which has two features:

♦ It is called only once in the Servlet’s lifecycle;

♦ It has access to the web application’s ServletContext object (an object which holds application-

scope objects).

So it is easy to derive that the init() method of the controller Servlet would be an appropriate place to

open and lookup any shared resource, such as an RMI remote server reference, JDBC connection, and

application-level property files. The following code shows the remote object’s lookup and store:

public class ControllerServlet extends HttpServlet {

 /**
 * Lookup shared remote RMI server in this init() method
 */
 public void init(ServletConfig config) throws ServletException {
 ServletContext context=config.getServletContext();
 RMIServerInterface remotePounamu=null;

 //lookup and store remote RMI Server
 try {
 remotePounamu=(RMIServerInterface)Naming.lookup("RMIPounamuServer");
 context.setAttribute("RMIRemoteServer", remotePounamu);
 }catch (Exception e) {
 e.printStackTrace();
 }
 }
 /* Rest of ControllerServlet code*/

 }

Whenever this server object reference is needed (i.e. remote RMI called are made), it can be retrieved

from the ServletContext by calling:
RMIServerInterface obj = (RMIServerInterface) context.getAttribute(“RMIPounamuServer");

5.3 Keeping and Tracking Session State Information

As with a typical e-commerce web application which needs a session object to keep the state of a user’s

shopping cart, our application also has to keep track of session state information. This is due to the

following application-specific requirements:

Chapter 5: Implementation of the GIF-based Prototype

75

(1) Most times, users continue editing a certain PounamuView diagram for a while. To avoid loading

the same working view diagram for each individual editing action, names of working view and

project and other useful data need to be kept in the session object for a period.

(2) Almost all the editing scenarios (“Remove Shape”, “Change Element Property” etc.) need a

series of associated requests or interactions with the web server. This means each interaction

has to be stored for the final execution of the editing action.

Typically, there are three well-used solutions for maintaining sessions over the web, namely HTTP

Cookies, URL Rewriting and Hidden form fields [53]. Although all of the above are excellent alternatives

for session tracking, they have their drawbacks. For the first and second approaches, a common

problem is that the server-side program has to do much straightforward but tedious processing, while for

the third, the main disadvantage is that a HTML form with an entry looking like <INPUT TYPE =

"HIDDEN" NAME="session" VALUE="..."> is always needed.

Fortunately, Servlets provide a better technical solution, i.e., using the HttpSession API for session

tracking [53]. Compared with the previous approaches, using HttpSession in Servlets is very

straightforward, and a list of tasks involved is as follows:

a) Looking up the session object associated with the user’s request,

b) Creating a new session object if it doesn’t exist,

c) Looking up information associated with a session,

d) Storing information about a session,

e) Abandoning completed sessions.

For the reasons mentioned above, in this system, we depend on the HttpSession object for session

tracking, and the detailed implementation can be generalized as the following:

• Define a data model class (“ApplicationSession”) that represents the state of a user session;

• Look up the HttpSession object associated with a request by calling: HttpSession session =

request.getSession(true);

• Associate the data model class with a session using session.setAttribute() method;

• Access session state through session.getAttribute() method.

The purpose of defining the ApplicationSession class is to avoid the messy and unnecessary operation

of setting individual state attributes into a session. The code sample below shows the state attributes

contained in this class:

public class ApplicationSession implements Serializable, HttpSessionBindingListener {
 /**
 * Individual session state data stored in this class
 */
 private String workingTool=null;
 private String workingProjectName=null;
 private String workingPounamuViewName=null;

Chapter 5: Implementation of the GIF-based Prototype

76

 private String currentViewType=null;
 private Notifier sessionClientCallback=null; //RMI client call back for events notification
 private ActionData currentActionData=null; //current editing action data
 private byte[] imageByteArray=null; //current in-memory image cache
 ServletContext context=null; //variable used to retrieve remote RMI Server reference object

 /*Other data attributes and class methods*/
}

Here, two special attributes, namely sessionClientCallback and currentActionData, are worth special

notice. The first one is a Notifier type instance object, and its role is to register itself to the RMI Pounamu

server and receive events notification from the server. Sometimes this sort of notification mechanism

would make web applications more powerful and efficient because clients can immediately know when

and by whom the shared information or data has been changed. An example of using this

sessionClientCallback for events notification is explained in next section “Displaying a PounamuView

Diagram on a Web browser”. The second attribute currentActionData has an interface type ActionData.

It can refer to instance of one of the 7 subclasses such as AddEntityActionData, EditPropertyActionData,

etc. Whenever users initiate an editing action by clicking the corresponding menu item, the action data of

a certain type will be instantiated and assigned to currentActionData. Details of how to use this object

are further discussed in the “Interpreting and Execution of Editing Actions” section.

5.4 Displaying a GIF-version of PounamuView Diagram on a Web browser

Upon a user’s request to load a working PounamuView or refresh an updated one, the GIF-format image

of the requested PounamuView diagram needs to be displayed on the web browser. At first sight, it is a

simple dialogue between the browser and the web server. However, quite a lot processing happens

underneath, which can be explained as answers to the following questions:

• Where would we want this GIF image to be generated? (The Pounamu Server or the Web server)

• If the generation takes place on the Pounamu server, how to send this binary data across RMI?

• How can we dynamically display the newly generated GIF image on the web browser?

The discussion below revolves around these questions.

To provide a good solution to the first question, three factors need to be considered:

• All the data required to generate the GIF version of a PounamuView diagram are stored on the

Pounamu Server.

• A PounamuView diagram drawn with Java AWT and Swing components already exists on the

Pounamu Server.

• Several useful classes in the Java API can be used to draw Swing components into an image

buffer.

Chapter 5: Implementation of the GIF-based Prototype

77

All of above factors indicate generating GIF images on the Pounamu server would be a better choice.

With the help of the Java utility classes contained in packages such as javax.imageio.*, java.awt.*, and

java.awt.image.*, the work for redrawing a canvas which contains a PounamuView diagram into a

BufferedImage is not a difficult task.

Our answer to the first question brings the second one to the front. As stated in Java RMI reference [54],

only classes that implement “Java.io.Serializable” can be sent across RMI. Unfortunately, BufferedImage

is not one of them. So to send the generated buffered image across RMI, a helper class ImageFile with

“Java.io.Serializable” as one of its parent classes has been defined, and the main attributes and

methods of this class are shown below:

public class ImageFile implements java.io.Serializable{

/**
* The main attributes
*/
 private int[] m_data=new int[]{0};
 private int width;
 private int height;
 private int imageType=BufferedImage.TYPE_INT_RGB;
 private String sampleModelType="";
 private int[] bandOffsets=new int[]{0};
 private int[] bitmasks=new int[]{0};
 private int scanline=0;
 private int pixelStride=0;

 /**
 *Setter and getter methods for above attributes
 */
}

When the web tier receives an ImageFile instance object through RMI, it can recompose this object into a Java

BufferedImage with another helper class BufferImageBuilder shown as the following:

public class BufferImageBuilder {
 ImageFile image=null;

 /*Constructor*/
 public BufferImageBuilder(ImageFile image) {
 this.image=image;
 }
 /**
 * Method to reconstruct BufferedImage from an ImageFile object
 */
 public BufferedImage constructBufferedImage()throws IOException{
 /*function body omitted here*/
 }
}

Having obtained satisfactory answers to the first two questions, we now move to the third one, “how to

display the generated GIF image on the fly”. It is also a key question that needs to be addressed given

the following application-specific features:

• Different users may access different PounamuView diagrams at the same time;

Chapter 5: Implementation of the GIF-based Prototype

78

• Even a single user may frequently change the working PounamuView diagram.

Based on the resources in [55,56,57], the process of generating and outputting dynamic binary content

from a Java Servlet is fairly simple. Generally speaking, there are two ways to do so (here we assume

Java Servlet has already obtained a newly generated BufferedImage):

1. Write the BufferedImage to a file on disk and provide a link to it.

You do this by writing the BufferedImage to a temporary image file in the web server directory tree. Of

course, in order to turn this BufferedImage into an image file or a bytestream, you may use Acme Labs'

GIFEncoder class (for GIF) or the Java 2 JPEGCodec class (for JPEG). The image file can be

downloaded to the web browser by embedding the HTML tag “” in the

requested JSP file.

2. Output the image directly from the Servlet.
This is done by setting the content-type header to image/gif (for GIFs), or image/jpeg (for JPEGs). Then,

you open the HttpResponse output stream as a raw stream, not as a PrintStream, and send the bytes

directly down this stream using the write() method. This image outputting Servlet is referenced by

embedding something like “” in the JSP file.

The pros and cons of the above two methods are summarized as follows:

Method 1:
Pro: Images can be cached by the browser, and successive requests don't need to execute the Servlet

again, thus reducing the server load.

Con: As image files will never be deleted from your disk, a script is needed to periodically clean out the

image directory.

Method 2:

Pro: Compared with the first method, displaying the same binary content takes less time.

Con: Not caching image files means that every request needs to generate and output the image again.

By analyzing the above pros and cons, it can be seen that the first method is more suitable for those

circumstances in which images may change less frequently, while the second method would be better

for situations in which there is a high variation rate in the displayed images. Our application fit into the

second category. However, our application still needs some caching capabilities not provided by the

second method. The reason can be seen from the following GIF image generation and displaying

process:

• Whenever a user make requests for JSP pages which embed the Servlet to output a GIF image of

a PounamuView diagram, part of each request will be transferred to and handled by the

GenerateGif request handler;

• Since the BufferedImage of the working PounamuView is generated on the Pounamu server, the

GenerateGif request handler has to make a remote call to ask for generation and return of the

corresponding BufferedImage;

Chapter 5: Implementation of the GIF-based Prototype

79

• This returned BufferedImage is encoded by the appropriate GIFEncoder and outputted directly by

the Servlet.

Assuming no caching is allowed on the web server, any request of the working PounamuView diagram

always needs to go through the above three steps even if the diagram has undergone no change since

the previous visit and display. Obviously, the servers’ (the Pounamu Server and Web Server) working

loads are unnecessarily increased. To avoid over-loading servers, we have designed our own cache (in-

memory data array variable “imageByteArray” in ApplicationSession) where the last requested diagram

can be kept. A dirty flag bit that indicates whether this diagram needs changes or not is set whenever

any user has made edits on it. The notification that this diagram has been changed since the user’s last

visit can be implemented with the RMI client Callback mechanism mentioned earlier.

The only important method in the GenerateGif request handler class is shown as the following:

public class GenerateGif extends RequestHandler {

 /**
 *A method used to handle requests for displaying GIF image of a PounamuView diagram
 *on the web browser
 */
 public void handleRequest(ServletContext context, HttpServletRequest req,
 HttpServletResponse resp) throws ApplicationException {
 ApplicationSession appSession = RequestController.FindApplicationBean(req, this);
 resp.setContentType("image/gif"); //set response content type
 try{
 ServletOutputStream out =resp.getOutputStream();
 ByteArrayOutputStream out1=new ByteArrayOutputStream();

 //pulling to see if the PounamuView diagram is updated
 if (!appSession.getViewUpdated()){
 //get the image byte array from the memory cache and send it to the browser
 byte[] gif=appSession.getImageByteArray();
 out.write(gif,0,gif.length);
 }
 else{ //should call the remote function to generate the updated image
 RMIServerInterface obj = (RMIServerInterface) context.getAttribute("RMIRemoteServer");
 ImageFile image = obj.generateImage(appSession.getCurrentProject(),
 appSession.getCurrentViewType() appSession.getCurrentPounamuView(),
 appSession.getOpened(), null);
 if (image != null) {
 BufferImageBuilder imageBuilder = new BufferImageBuilder(image);
 BufferedImage bi = imageBuilder.constructBufferedImage();

 // Encode the off screen image into a GIF and send it to the client
 GifEncoder encoder = new GifEncoder(bi, out);
 encoder.encode();
 GifEncoder encoder1 = new GifEncoder(bi, out1);
 encoder1.encode();
 //put out1 to a cache array
 appSession.setImageByteArray(out1.toByteArray());
 //send out to browser
 out.flush();
 out.close();
 }
 }
 }catch(RemoteException e){

Chapter 5: Implementation of the GIF-based Prototype

80

 throw new ApplicationException(e.toString());
 }catch(IOException e){
 throw new ApplicationException(e.toString());
 }
 }
}

5.5 Interpreting and Execution of Editing Actions

The purpose of this project is to design a thin-client user interface for our existing Pounamu tool so that it

can be run on a web browser with no special software plug-ins installed. As we already know, the web

browser itself provides very limited user interaction facilities through HTML form elements, and the small

degree of interaction it permits is far below the requirement for diagram editing scenarios, where users at

least should be equipped with some means of interacting with the PounamuView diagram displayed on a

browser. The solution that we propose to allow such interactions is to embed an assumed image map

within HTML. Here we use words “assumed image map” to differentiate from real image maps. Before

discussing how to use an assumed image map in our application, it is necessary to briefly introduce

image maps first. Several steps involved in using server-side image maps are as follows [58]:

• First, define an ASCII-text image map file (with file extension .map).

Below is an example of a image map file where each line contains a rectangular link and the X, Y

coordinates that define the upper left corner and lower right corner of the link area:

default http://www.projectcool.com

rect http://www.devx.com/projectcool/sightings 141,114 372,143

rect http://www.devx.com/projectcool/coolest 141,154 372,183

rect http://www.devx.com/projectcool/developer 141,194 372,223

rect http://www.devx.com/projectcool/focus 141,234 372,263

• Second, Store this file in a known place of web server.

• Last, build an HTML page and incorporate this map by embedding special HTML tags into it.

An example of using an image map in an HTML file is shown below:

where <A> element’s HREF identifies the name of image map file and a Servlet program used to decode

the image map, identifies the image which the links are mapped onto. In addition,

element must contain the attribute ISMAP so the browser can decode the image appropriately.

Instead of mapping X, Y coordinates of a GIF image to special links, an assumed image map in this

application is only used to capture X, Y coordinates of a mouse click. So no image map file needs to be

Chapter 5: Implementation of the GIF-based Prototype

81

created and referred in the anchor reference tag. Actually, in the implementation, we have used HTML

tags that look like:

< A href= “/controllerservlet?action=locateMousePosition”>

Then, whenever a user clicks somewhere in the image, the locateMousePosition request handler class

helps to obtain X, Y values of the point being clicked.

Knowing how to interact with the system, now we will use an example to illustrate what actually happens

when a user initiates an edit command. Figure 5-1 shows a sequence of actions involved in the “moving

an entity shape” editing scenario, and this is followed by a brief description for each action.

Figure 5-1 Dialogues Communicated in Moving Entity Editing Action

a. A user clicks “Move Entity” button to enter editable state;

b. The corresponding JSP view with the editable PounamuView diagram appears;

c. In this JSP page, the user can click a model entity shape that needs to be moved;

d. The web server accept the clicked point and extract the corresponding X,Y values;

e. The X, Y values of the click point are sent back to the Pounamu server through a remote RMI call,

and it’s there that the shape ID is determined and returned;

f. The working view diagram is re-displayed with the selected shape highlighted;

g. Then the user needs to specify a new location for the selected model element;

h. Again, the web server has to extract the X,Y values of the clicked new position;

i. Any information related with this move action (including element ID, old location and new location)

will be sent to the Pounamu Server, and there this “move entity” edit command is executed;

User

a. Click “Move Entity Shape”
button to initiate HTTP GET
command

Web Browser Pounamu Server Web Server

b. Process the request and
output an appropriate JSP view

c. Click the intended
target shape d. Accept X,Y values of the

clicked point e. Decide the shape ID under
the clicked point

f. Display the new page with
the clicked shape highlighted g. Specify a new position for

the target shape
h. Extract X,Y values of this
new position i. Send all the editing related

information and execute action

j. Display the updated diagram

Chapter 5: Implementation of the GIF-based Prototype

82

j. The updated PounamuView diagram is redisplayed on the web browser;

By analyzing the above steps, we see that a class is required to collect all the information needed to

perform this “move entity shape” command, including the name of PounamuProject, the name of

PounamuView, modelElementID, modelElementType, old location and new location of this shape, etc.

Since most of these information is entered by interacting with the displayed GIF image, the traditional

JavaBean method is not suitable for this task. For this reason, we have designed an interface (namely

ActionData), together with 7 specific classes that implement this interface. Each subclass acts as

information container for one type of edit command. In addition, the fact that action-specific information

is collected through a series of consecutive interactions means the current ActionData should be a

Session-scope object. So as mentioned in section 5.3, a reference to the current ActionData is contained

in the ApplicationSession class.

Step(i) of the above “moving a entity shape” process also reveals another implementation detail, i.e., edit

command-related information that has been collected is sent to the Pounamu server and executed there.

To do this, a very important method, buildCommandXML(), is provided in interface ActionData. Each of

the 7 subclasses has its own implementation of this method, depending on the data collected and

required to execute the corresponding edit command. As an example, buildCommandXML() of class

MoveShapeActionData is listed as below:

public class MoveShapeActionData implements ActionData {

 /**
 *Data attributes that will be set and used for XML command string
 */
 static final String commandName="MoveShape";
 String currentProject=null;
 String currentView=null;
 String currentViewType=null;
 String modelCompName=null;
 String compType=null;
 Point oldLocation=null;
 Point newLocation=null;

 /**
 *Build XML editing action string from data attributes set during the previous interactions
 */
 public String BuildCommandXML(){
 String commandXML=null;
 StringBuffer buf = new StringBuffer (400000);
 String space = " ";
 buf.append("<?xml version=\"1.0\" standalone=\"yes\"?>");
 buf.append("<command>\n");
 buf.append(space+"<commandname>");
 buf.append(commandName);
 buf.append("</commandname>\n");
 buf.append(space+"<modelProjectName>");
 buf.append(this.currentProject);
 buf.append("</modelProjectName>\n");
 buf.append(space+"<viewTypeName>");
 buf.append(this.currentViewType);
 buf.append("</viewTypeName>\n");

Chapter 5: Implementation of the GIF-based Prototype

83

 buf.append(space+"<viewName>");
 buf.append(this.currentView);
 buf.append ("</viewName>\n");
 buf.append(space+"<modelelement>\n");
 buf.append (space+space+"<name>");
 buf.append(this.modelCompName);
 buf.append("</name>\n");
 buf.append (space+space+"<type>");
 buf.append(this.compType);
 buf.append("</type>\n");
 buf.append(space+space+"<newlocation>\n");
 buf.append(space+space+space+"<XPos>");
 buf.append(this.newLocation.x);
 buf.append("</XPos>\n");
 buf.append(space+space+space+"<YPos>");
 buf.append(this.newLocation.y);
 buf.append("</YPos>\n");
 buf.append(space+space+"</newlocation>\n");
 buf.append(space+"</modelelement>\n");
 buf.append("</command>\n");
 commandXML=buf.toString();
 return commandXML;
 }

 /*Rest of code*/
}

There were several reasons behind the decision to build XML-message like edit commands rather than

making direct remote editing procedure calls. For example, the fact that XML is platform and language

independent was of importance. Another obvious reason would be data type and quantity that can be

carried in XML is very flexible, and it even can contain binary data. In addition, using XML eases the

subsequent implementation of other remote message passing technologies, for example Simple Object

Access Protocol (SOAP) [30], which is an XML based technology.

Now we review what the Pounamu application server does after receiving an XML-format edit command

from the web tier. In the design phase introduced in Chapter 4, interface RemotePounamuCommand

and its 8 subclasses have been designed to commit specific edit commands on the working

PounamuView diagram. For example, the execution of execute() method of RemoteAddEntityCommand

class adds a new entity model element to the PounamuView diagram. So, one way to get XML like edit

command messages from the web tier executed is to convert them into the corresponding

RemotePounamuCommand objects first.

An interface, RemotePounamuCommandDeserializer, is used as API for the implementation of parsing

XML-format editing commands into the corresponding remote Pounamu command objects. This

interface contains one method named extractCommandFromXML(), which takes the received XML string

and returns a RemotePounamuCommand type object. The code below shows this interface:

public interface RemoteCommandDeserializer {
 public RemotePounamuCommand extractCommandFromXML(Node commandXML);
}

Chapter 5: Implementation of the GIF-based Prototype

84

There are 8 specific command deserializer classes that implement this RemotePounamuCommand-

Deserializer interface, one for each possible remote command object in Pounamu. All these deserializer

classes have their own implementation of the extractCommandFromXML() method. Below is an example

of a deserializer class, namely the RMSDeserialier (the deserializer class for the RemoteMoveShape

command), and its implementation of extractCommandFromXML() method:

public class RMSDeserializer implements RemoteCommandDeserializer{
 public RemotePounamuCommand extractCommandFromXML(Node root){
 RemoteMoveShape remoteMSCommand=null;
 NodeList nl=null; Node n=null;
 nl=((Element)root).getElementsByTagName("modelProjectName");
 n=nl.item(0);
 String projectName=n.getFirstChild().getNodeValue();
 nl=((Element)root).getElementsByTagName("viewTypeName");
 n=nl.item(0);
 String viewType=n.getFirstChild().getNodeValue();
 nl=((Element)root).getElementsByTagName("viewName");
 n=nl.item(0);
 String viewName=n.getFirstChild().getNodeValue();
 nl=((Element)root).getElementsByTagName("modelelement");
 n=nl.item(0);
 NodeList nnll=((Element)n).getElementsByTagName("name");
 Node k=nnll.item(0);
 String modelElementName=k.getFirstChild().getNodeValue();
 nnll=((Element)n).getElementsByTagName("type");
 k=nnll.item(0);
 String modelElementType=k.getFirstChild().getNodeValue();
 nnll=((Element)n).getElementsByTagName("newlocation");
 k=nnll.item(0);
 NodeList nnnl=((Element)k).getElementsByTagName("XPos");
 Node p=nnnl.item(0);
 int xPos=Integer.parseInt(p.getFirstChild().getNodeValue().trim());
 nnnl=((Element)k).getElementsByTagName("YPos");
 p=nnnl.item(0);
 int yPos=Integer.parseInt(p.getFirstChild().getNodeValue().trim());
 PounamuModelElement pme=null;
 PounamuModelProject modelProject = (PounamuModelProject) manager.getOpenedModels().get(projectName);
 Hashtable openModelViews = (Hashtable) modelProject.getOpenedModelViews();
 Hashtable hash = (Hashtable) openModelViews.get(viewType);
 PounamuView view = (PounamuView) hash.get(viewName);
 ModellerPanel mp = (ModellerPanel) view.getDisplayPanel();
 PounamuPanel relocatePanel=null;
 int oldX=0;int oldY=0;
 Vector shapes=mp.getShapes();
 for(int i=0;i<shapes.size();i++){
 PounamuPanel panel=(PounamuPanel)shapes.get(i);
 PounamuShape shape=panel.getPounamuShape();
 If(shape.getName().equals(modelElementName)){
 relocatePanel=panel;
 break;
 }
 }
 if(relocatePanel!=null){
 oldX=relocatePanel.getBounds().x;
 oldY=relocatePanel.getBounds().y;
 remoteMSCommand=new RemoteMoveShape(mp, relocatePanel, oldX, oldY, xPos, yPos);
 }
 return remoteMSCommand;
 }
 /*Rest of code*/
}

Chapter 5: Implementation of the GIF-based Prototype

85

5.6 Concurrent Editing Issues

Almost all software designers in industry know that the early phase of system development often

requires collaboration and review of designs by a group of members and by other stakeholders. This

review often takes place in different locations, and sometimes informally [12]. Past experience tells us

that a “heavy-weight” infrastructure is required to enable collaboration support in standalone software

engineering tools. However, even with such an infrastructure, collaboration is still restricted to those

people who have special software installed on their machines. In comparison, another cheaper and less-

effort way to implement a collaboration mechanism is to make use of the web medium. Our

Pounamu/Thin tool is in this second class. Below we will address implementation details that allow

multiple users to concurrently edit the same PounamuView diagram.

The first thing that we should point out is that a multithreaded ControllerServlet has been used in the

web tier. In order to make it thread-safe, we have avoided using instance and static variables in this

Servlet. Actually, the only instance variable that was defined in ControllerServlet is an object of

RMIServerInterface type. But, as this object variable is defined inside the Servlet’s init() (which is

executed only once) and never changed by any client request, the code referring this variable needs no

protection.

We now move to the remote Pounamu server tier. This is where edit commands from the web tier are

actually executed, and therefore the source code in this tier needs to be carefully designed to be thread-

safe. As mentioned in the previous “Interpreting and Execution of Editing Actions” section, when all

the information required to perform a edit command has been collected in the web tier, the

receiveCommandMsg method of RMIPounamuServer is called to decode and execute the remote

editing command. So an easy approach of enforcing thread-safe code is to synchronize this method, and

the code sample showing how to do this is displayed below:

public class RMIPounamuServer extends UnicastRemoteObject implements RMIServerInterface{

 public synchronized boolean receiveCommandMsg(String viewName,String commandXML){
 boolean commandExecuted=remoteOperator.receiveCommandMsg(commandXML);
 if(commandExecuted)
 notifyAllClients(viewName);
 return commandExecuted;
 }
 /*Rest of code*/
}

Chapter 5: Implementation of the GIF-based Prototype

86

5.7 Screen Dumps of System Running

In this section, screen dumps are used to depict all the main functionalities that this prototype provides,

including Adding Entity shape, Adding Association connector, Moving shape, Setting properties,

Resizing shape and Removing Shape/Connector etc. For each of the editing operations, an example is

given to show the basic user interfaces of the system, as well as users’ interaction with it. Here, one

thing that need be clarified is that all of our editing scenarios are carried out on the OOA class diagram

(stored in the Pounamu server with name VT_Class_diagram_VideoOOA) modelled for a Video Store

system (an example application designed for teaching software engineering practices). In addition, you

can refer to Appendix A to obtain a detailed description of the UML tool specified for the modelling work.

5.7.1 Example of Loading a PounamuView Diagram

When a user uses a web browser to access the Pounamu tool, a welcome page appears. On this page

(shown in Figure 5-2(a)), the user can click the left menu bar to specify and load a PounamuView

diagram. However, before doing that, the user must specify in (b) which modelling project this view

diagram belongs to. Then in (c) the PounamuView diagram VT_Class_diagram_VideoOOA is chosen to

be loaded into the web browser, and the result of this loading operation is shown in (d).

Chapter 5: Implementation of the GIF-based Prototype

87

Chapter 5: Implementation of the GIF-based Prototype

88

Figure 5-2 Screen Dumps of Loading and Specifying a PounamuView Diagram

5.7.2 Example of Removing an Entity Shape

To demonstrate how the removing action works, we decide to delete the “Staff” class object from the

diagram shown in Figure 5-3(a). First, when the user clicks the “Remove Element” button on the menu

bar, a web page (b) appears to suggest that the user can choose a Pounamu model element for

removal. After making the selection, the target object is highlighted by surrounding red rectangles. In

addition, a message related to this removal editing is displayed on the top of the web page (c). Next, the

user needs to confirm the operation before submitting the action. Finally, a result page that looks like (d)

is provided.

Chapter 5: Implementation of the GIF-based Prototype

89

Figure 5-3 Screen Dumps of Removing an Entity Shape

5.7.3 Example of Removing an Association Connector
Since the steps to perform this “Remove Association Connector” are similar to the previous one, the

detailed description is not pursued. However, we do give figures (shown in 5-4(a)-(c)) to demonstrate

this type of editing action.

Chapter 5: Implementation of the GIF-based Prototype

90

Figure 5-4 Screen Dumps of Removing an Association Connector

5.7.4 Example of Adding an Entity Shape

Here we add back the entity shape that has been deleted in 5.7.2. To do that, the “Add Entity” menu item

has to be clicked first, and a page as shown in Figure 5-5(a) appears to allow the user to specify entity

parameters (type, name etc.). After entering proper values for those parameters, a page (b) comes up

Chapter 5: Implementation of the GIF-based Prototype

91

suggesting what to do next. A message displayed on the top of this page requests specification of a

location for this new entity object by clicking a preferred position in the diagram. The result of clicking is

shown in (c). Finally, the updated diagram is presented in (d).

Chapter 5: Implementation of the GIF-based Prototype

92

Figure 5-5 Screen Dumps of Adding an Entity Shape

5.7.5 Example of Adding an Association Connector

In this subsection, we introduce how to add an association connector between two entity shapes, and

the whole process is presented in Figure 5-6. First, the “Add Association” button is clicked to initiate this

type of editing action. A page (a), seen before, appears so that the connector’s parameters (name, type

etc.) can be entered. After specifying appropriate parameters for this object, a view diagram (b) is shown

with all shapes being highlighted by red handles. The next thing is to decide which two shapes are to be

connected. This is done by specifying the start handle from the first shape (c), and the end handle from

the second shape (d). Finally, you can see the result of this operation in (e).

Chapter 5: Implementation of the GIF-based Prototype

93

Chapter 5: Implementation of the GIF-based Prototype

94

Figure 5-6 Screen Dumps of Adding an Association Connector

Chapter 5: Implementation of the GIF-based Prototype

95

5.7.6 Example of Property Setting

After adding back the previous entity shape or association object, the next thing is to set their model and

visual properties. While model properties correspond to data contained within an entity or association

object, visual properties influence its visual representation. The whole process for this property setting

action is illustrated in Figure 5-7. First, this action is initiated by clicking the “Set Properties” menu item,

and a page (a) appears waiting for the user’s choice of the target object. Similar to those editings that

have been described, the selection is made through clicking the correct shape/connector in the

displayed diagram. After that, the selected target is annotated by red rectangle handles in the left frame

(c) of the web page (b), while its properties (name, type and value) are listed in the right frame (d) of the

web page (b). By entering new values into the property list and submitting them, you can obtain a new

version of diagram with the target’s properties values updated. Figure 5-7(e) shows the result of the

property setting editing action.

Chapter 5: Implementation of the GIF-based Prototype

96

Figure 5-7 Screen Dumps of Property Setting Example

Chapter 5: Implementation of the GIF-based Prototype

97

5.7.7 Example of Resizing an Entity Shape

From Figure 5-7(e), you can see part of the property values have been blocked by the boundary of the

entity shape, so the resizing shape action comes in and is used to adjust a shape to its appropriate size.

To initiate this action, the user needs to click the “Resize Entity” menu item, and then a web page as

shown in Figure 5-8(a) appears to remind the user to click the target shape. As before, the selection is

highlighted with red handles (b). The next task is to click a red rectangle handle of the target so that it

can serve as the resizing reference point (c). After that, the user needs to click somewhere in the

diagram that the reference point is expected to reach as the result of the resizing (d). The system

calculates the resizing proportion based on the values provided and acts accordingly. Finally, the

updated diagram is as shown in Figure (e).

Chapter 5: Implementation of the GIF-based Prototype

98

Figure 5-8 Screen Dumps of Resizing an Entity Shape

Chapter 5: Implementation of the GIF-based Prototype

99

5.7.8 Example of Moving an Entity Shape

There are times when the user wants to change the layout of a PounamuView diagram, so the moving

action is another indispensable editing action. Steps involved in the moving shape action are shown in

Figure 5-9. First, similar to all the other editings, this action is initiated by clicking the corresponding

menu item, and the page shown in (a) comes up. Following is a click on the target shape, causing the

target to be highlighted in the usual way (b). Next, the user needs to click somewhere in the diagram to

set the preferred position for the target object(c). After committing this editing by clicking the

“SumbitChange” button, you obtain the result as in (d).

Chapter 5: Implementation of the GIF-based Prototype

100

Figure 5-9 Screen Dumps of Moving an Entity Shape

Chapter 5: Implementation of the GIF-based Prototype

101

5.8 Implementation Experiences

Implementation experiences accumulated in the development of this GIF-version thin-client Pounamu

user interface are summarized below:

Good Experience in Using Pounamu API

We have experienced the rich API provided by Pounamu for its further extension. For example, our

remote editing component is completely built on the existing Pounamu API and can be arbitrarily

plugged in or out without influencing other functionalities. However, since Pounamu is still undergoing

constant improvement in functionality and the overall structure, we cannot ensure that APIs used here

aren’t changed. In summary, our experience in using the Pounamu API for the design of additional

components is very good.

On-the-fly Gif Image Generation using Package Java.awt.image.*
I had expected that generating GIF images for Java AWT or Swing components would be a tough task

until the useful java class “java.awt.image.BufferedImage” was discovered. With this class, it’s easy to

write any AWT or Swing components into a buffered image, and then encode the buffered image into the

required formats (e.g. GIF or JPEG). Another thing worth mentioning is that the GIF encoder class from

ACME LABS [59] has been used in this application since there are no similar API classes provided by

SUN Java.

Using XML As Message Exchange Format
As said many times, XML has been chosen as the message exchange format between the remote

Pounamu server and the Web server. Here we won’t repeat XML’s advantages over other similar

technologies, however, we do feel it is necessary to mention XML’s capability to transfer binary data as

part of itself. With this feature, the generated GIF image can be encoded in an XML document to be sent

across RMI, so that the necessity of writing a serializable java object for the image is avoided. The

base64-encoding scheme [60], specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions), is

commonly used to encode and embed binary data in an XML document.

Limited Html Resources to Represent Complex Element Properties

In this prototyping system, there is no client-side scripting (such as Jscript, JavaScript) used. The

purpose is to see how far this diagramming tool can go as a strict thin-client computing environment. The

result shows that it’s only possible to implement a simplified version of the original Pounamu tool. One

obvious problem is that HTML is very limited in its ability to vividly represent some of model element’s

visual properties. For example, visual properties such as colour or line width can only be represented

with HTML form combo-boxes. So, to improve the system usability, small quantities of client-side scripts

should be tolerable.

Chapter 5: Implementation of the GIF-based Prototype

102

RMI Security Issues

As mentioned before, RMI is chosen for its ease of use and being able to send java objects across the

network. However, my personal experience shows that RMI’s ease of use is true only under the

condition that you have worked around its security manager mechanism. If not, nasty error messages

such as “Access Denied” occur. You may ask why this security mechanism is needed. Actually, RMI’s

security mechanism is designed to secure interprocess communication over a network. With this

mechanism, you can restrict the actions performed by remotely loaded classes. Otherwise, you may

inadvertently allow unsecure code to access private system resources. The suggested solution to work

out this security barrier is to include a policy file in the application. This policy file is accessed by the RMI

Manager to determine which activities are acceptable.

5.9 Summary

In this chapter, we have discussed implementation details involved in building the GIF version of thin-

client Pounamu user interface. The discussion focused on three areas. First we briefly introduced tools

and technologies that have been used to assist in implementation, including Tomcat, XML, RMI/CORBA,

and JSP/Servlets. Following that, we described how the critical parts of the prototype system are

implemented, and code samples have been used to make the description clear. Finally, examples of the

system running were presented to demonstrate how users interact with it.

In the next chapter, we will present how the SVG version thin-client Pounamu tool is implemented. You

will notice that some implementation details are omitted because of the close similarity to the GIF

counterpart.

103

Chapter 6: Implementation of the SVG-based Prototype

The purpose of this chapter is to discuss design and implementation concerns in building the SVG

version of the thin-client Pounamu user interface. The structure of this chapter is similar to the previous

one, and consists of an explanation of the required technologies and tools, description of how the

different parts are implemented with code samples, as well as presentation of the system running with

screen dumps. Since part of the implementation of the previous GIF version was reused here, for the

sake of conciseness, only those SVG-specific technologies and implementation details are discussed.

6.1 Technologies to Use

In this section, the discussion focuses on what SVG is, and its advantages and disadvantages compared

with other web graphics formats. Additionally, we give a brief introduction to the available SVG viewer

plug-ins.

6.1.1 SVG

Scalable Vector graphics (SVG) is a language for describing two-dimensional graphics in XML [61]. SVG

was recommended and created by the World Wide Web Consortium (W3C), who also created HTML

and XML, among other important standards and vocabularies. More than twenty organizations, including

Sun Microsystems, Adobe, Apple, IBM, and Kodak, have been involved in defining SVG [61]. Its

emergence is changing the role of graphics on the Web.

Today, GIF and JPEG, as two most commonly used graphics on the web, are pixel-based. These

graphics formats contain information about each and every pixel in the image. Although pixel-based

systems have their own strength, such as the ability to faithfully recreate photographic images [64], they

also have several weaknesses. First, zooming and scaling a pixel-based image often results in jagged

edges because values for pixels that don’t exist in the original image have to be interpolated [64].

Second, a pixel-based image file is normally big since a colour value is needed for each and every pixel

in the image. Another weakness is that the binary nature of pixel-based image formats make it difficult

(although not impossible) to create “on the fly” images based on database information [64].

SVG, on the other hand, overcomes the above limitations. The fact that SVG files are text files with XML

syntax tells that they can be easily manipulated through standard APIs (e.g. DOM) and transformed

through XML Stylesheet Language Transformation (XSLT). Integration of SVG into the existing DOM

enables the developer to fully access SVG elements by the usual Java/JavaScript interfaces [63]. Given

that SVG is a vector-based standard, SVG graphics keep the same high quality no matter what display

Chapter 6: Implementation of the SVG-based Prototype

104

devices (including PDA, laptops or TVs) are used [63]. Compared with pixel-based images such as

JPEG and GIF, SVG files are much smaller and more compressible, which is very helpful to optimize the

browser’s performance, and therefore often results in faster download speed [63]. In addition to the

above features, SVG has other advantages over the pixel-based formats, which are generalized as

follows [62]:

Compact and Flexible file format. An SVG file, being a text-only collection of XML commands, is

editable in any simple text editor and can be easily generated from server-side tools such as CGI and

JSP/Servlet.

Same high resolution at any zoom or resize. This is an important feature for any vector-based image,

including SVG, VRML, flash etc.

Compatibility and integration: SVG, as a web graphics standard specified by W3 organization, can be

easily integrated with other web technologies such as HTML, Java Scripts, CGI and JSP etc. Therefore,

great flexibility is allowed in design and implementation of the web-based applications.

Dynamic interactivity: By using a supplemental scripting language to access the SVG DOM (which

provides complete access to an individual SVG graphical object), users can enjoy rich interaction with

web graphics. Generally speaking, such a degree of interactivity is difficult to achieve with any pixel-

based image format.

High-quality printing: SVG images are printed with the same colors as are displayed on a screen and

at full printer resolution.

6.1.2 SVG in practice

Having discussed some of the features of SVG, we now review some SVG examples. Figure 6-1(a)

shows the SVG code defined for a simple 2D circle, and the rendered result is in Figure 6-1(b). The

attributes cx and cy give the centre of this circle while r and style specify its radius and visual

appearance respectively.

 Figure 6-1(a) SVG code for a 2D circle Figure 6-1(b) the Rendered result

Another example that is used to demonstrate some advanced SVG graphic elements is shown in Figure

6-2. In this example, an arrow has been defined by grouping a line and a closed path (SVG low-level

element) together into a high-level g element. Then by defining this arrow group as a symbol, it can be

<circle
 cx= “100”
 cy= “250”
 r= “50”
 style= “fill:green; stroke:red; stroke-width:4;”>
</circle>

Chapter 6: Implementation of the SVG-based Prototype

105

used as a whole to describe a more complex diagram. In addition, any kind of transformation such as

translation, stretch or rotation can be applied to this arrow element when it is used. An example of using

this custom-defined group element is shown in Figure 6-3(a) and Figure 6-3(b).

Figure 6-2 An Arrow Defined in SVG group Element

Figure 6-3(a) SVG Code Examples Using the Arrow Defined in Figure 6-2

Figure 6-3(b) the rendered result from SVG code shown in (a)

Since most editing actions required in the thin-client Pounamu tool are realized through interacting with

diagrams, the last example is given to highlight SVG’s interactivity. Before doing that, we will look at how

<symbol id="Arrow" preserveAspectRatio="none" viewBox="0 0 80 20">
 <g style="fill:blue; stroke:blue">
 <line x1="0" x2="70" y1="10" y2="10"/>
 <path d="M70 5 L70 15 L80 10 z"/>
 </g>
</symbol>

<use height="20" width="80" x="50" y="0" xlink:href="#Arrow"/>
<use height="20" width="80" x="50" y="0" xlink:href="#Arrow"
 transform="rotate(150 70 50)" />
<use height="20" width="80" x="50" y="0" xlink:href="#Arrow"
 transform="translate(0,20)" />

<g style="fill:blue; stroke:blue">
 <line x1="0" x2="70" y1="10" y2="10"/>
 <path d="M70 5 L70 15 L80 10 z"/>
</g>

Chapter 6: Implementation of the SVG-based Prototype

106

interaction is possible with SVG. First, SVG specifies that event handlers such as onclick, onmouseover

can be associated with individual SVG elements. Second, as stated earlier, script elements written in a

scripting language are allowed to be included into SVG documents, and these scripts can manipulate all

aspects of SVG by interacting with the SVG DOM. When registering these scripts as event handlers

through assignment, such as “onclick=scriptfunction”, script functions will be executed when

corresponding events are triggered. For example, the code sample below shows the script function

circle_click(evt) has been registered with the onclick event of a circle, so with each mouse click the

radius of the circle is toggled between 100 and 200. Figure 6-4(a) and (b) present a running instance.

<!-- ECMAScript to change the radius with each click -->
 <script type="text/ecmascript"> <![CDATA[
 function circle_click(evt) {
 var circle = evt.target;
 var currentRadius = circle.getAttribute("r");
 if (currentRadius == 100)
 circle.setAttribute("r", currentRadius*2);
 else
 circle.setAttribute("r", currentRadius*0.5);
 }]]> </script>

 <!-- Outline the drawing area with a blue line -->
 <rect x="1" y="1" width="598" height="498" fill="none" stroke="blue"/>

 <!-- Act on each click event -->
 <circle onclick="circle_click(evt)" cx="300" cy="225" r="100" fill="red"/>

 <text x="300" y="480" font-family="Verdana" font-size="35" text-anchor="middle">
 Click on circle to change its size
 </text>

Figure 6-4 SVG event handler examples

Although the SVG specification doesn’t clearly indicate what scripting languages are supported in SVG,

ECMAScript [65] seems to be the de-facto standard. Actually several ECMAScript compatible scripting

languages (e.g. JavaScript, Jscript and ActionScript) are often seen binding with SVG.

 (a) Circle with radius 100 (b) Circle with radius 200

Chapter 6: Implementation of the SVG-based Prototype

107

6.1.3 SVG Implementations

Despite all of the advantages mentioned before, one big disadvantage that holds SVG back from

becoming a standard web graphic is that it has not been directly supported by most web browsers.

Viewing SVG graphics on a web page often requires a browser plug-in or other special software to be

installed. Currently, there are numerous SVG implementations, including Adobe SVG plug-in [66], a pure

java-based standalone SVG viewer [67], a KDE plug-in [68], the first native web-browser implementation

in Mozilla [69] and Corel SVG renderer [70]. Here, only the first two of them, commonly used to view

SVG images, are given a brief introduction.

Today, the most mature and widely-deployed SVG implementation is Adobe SVG Viewer plug-in [71].

For this reason, this SVG plug-in is employed in our project. Currently in version 3.0, Adobe SVG viewer

is available for a wide range of platforms, including Macintosh, Microsoft Windows, Solaris and Linux

operating systems. However, there are still some SVG elements, attributes, properties, and the DOM

interfaces that have been proposed in the SVG Recommendation not implemented in this viewer (see

[73] for details). For this reason, Adobe continues to innovate its SVG Viewer to comply with more of the

SVG standard and enhance performance. It’s said that version6.0 will support most of the SVG

specification, as well as advanced SVG DOM features [72].

A nice feature that Adobe SVG Viewer has is the inclusion of a JavaScript engine. Using this embedded

scripting engine offers a few significant advantages. The main one is that its compliant implementation of

the ECMA specification guarantees all the scripting code runs the same whether it is viewed on IE or

Netscape, and whether on a Mac or a Windows machine [74]. Another nice feature is that server-

connection facilities provided by Adobe SVG Viewer enable developers to open sockets to load from

external data sources or store modified data [74]. The relevant methods for this server connection are

getURL() and postURL(), both defined in the DOM Window object. An in-depth description of these

methods is given when they are involved in implementation details.

The other main SVG implementation is Batik, the Java-based and open source XML project from

Apache. There are two versions (1.1 and 1.5) of Batik that are downloadable from the Apache web site

[67]. While Batik1.1 only supports static features of the SVG 1.0 specification, Batik1.5 (released in

2003) is focused on supporting SVG scripting fully. Actually Batik is more than a viewer, it really is a

toolkit that provides an SVG to raster converter, server-side generation through DOM and APIs, a font

converter, and a pretty printer [75]. Because of these features, as well as its java-based nature, Batik is

suitable to be used in a Java-based web application. For example, Batik is obtainable on any Java

platform and has been integrated most noticeably in Apache FOP [76] and ILOG Views [77].

Chapter 6: Implementation of the SVG-based Prototype

108

6.2 SVG-Specific Implementation Details

In this section, some important issues relating to implementing this SVG-based thin-client Pounamu UI

are examined. The discussion is mainly focused on three areas: how to dynamically display an SVG-

version of the requested PounamuView diagram on a web browser, how to design and translate SVG

events into the diagram editing commands, and how to implement multiple editing.

6.2.1 Displaying an SVG-version of a PounamuView Diagram on a Browser

First and foremost an SVG image of the requested PounamuView diagram has to be generated. As SVG

conforms to the XML grammar, an SVG image can be written in the same way as the construction of

normal XML documents. The difference is that most elements contained in the former come from one

special namespace, SVG.

In our system, a special helper class PounamuViewSVGTemplateGenerator was coded for generating

SVG images for a specified PounamuView diagram. Considering the tree structure of a typical

PounamuView diagram (shown in Figure 6-5), this helper class contains seven

createSVGElementFor***() methods with each designed for a special primitive Pounamu visual

component (e.g. PounamuConnector, PounamuPanel, PounamuMultipleLinesInput, PounamuHandle,

PounamuLabel, PounamuButton, PounamuSingleLineInput). In doing so, a universal generation solution

has been found to construct an SVG image for any PounamuView diagram.

Figure 6-5 the Tree Structure of a typical PounamuView Diagram

Figure 6-6 illustrates an example of a PounamuView diagram (a) and the corresponding SVG image (b)

obtained as the result of our program. Additionally, indications are given to show the mappings between

a Pounamu icon and SVG elements. Here one thing worth special attention is that SVG elements for

describing a Pounamu icon (shape/connector) have been grouped together as a g element with a certain

ID. This arrangement suits our purpose of identifying all the SVG elements used to represent a certain

PounamuView Diagram

PounamuShape PounamuConnector

PounamuPanel

PounamuOne-
LineInput

PounamuMulti-
LinesInput PounamuLabel PounamuHandle PounamuButton

Chapter 6: Implementation of the SVG-based Prototype

109

Pounamu icon as a whole. Moreover, by assigning event attributes such as “onclick” and “onload” to this

g element (highlighted in green), mouse or keyboards events will be intercepted on a per Pounamu

shape/connector basis. To complete this discussion, we presented below the skeleton code of
PounamuViewSVGTemplateGenerator class.

public class PounamuViewSVGTemplateGenerator {

 /*PounamuViewSVGTemplateGenerator constructor*/
 public PounamuViewSVGTemplateGenerator(PounamuView view) {
 }

 /*Here generate SVG document string for the specified PounamuView diagram*/
 public String CreateSVGTemplateForView() {
 //When needed other primitive createSVGElementFor**** are called here
 }

 /*Create corresponding SVG element for PounamuConnector*/
 protected void CreateSVGElementForPounamuConnector(PounamuConnector conn, Element group){
 //write SVG element for a PounamuConnector and append it to group Element
 }

 /*Create corresponding SVG element for PounamuPanel*/
 protected void CreateSVGElementForPounamuPanel(PounamuPanel panel, boolean Outmost, Element
 group,String clipPath){
 //write SVG element for a PounamuPanel and append it to group Element
 }

/*Create corresponding SVG element for PounamuHandle*/
 protected void CreateSVGElementForPounamuHandle(int[] gemoValues, String handleID, String role,
 Element group){
 //write SVG element for a PounamuHandle and append it to group Element
 }

/*Create corresponding SVG element for PounamuMultiLinesInput*/
 protected void CreateSVGElementForPounamuMultiLines(PounamuMultiLinesInput comp, int xOffset,
 int yOffset,Element group){
 //write SVG element for a PounamuMultiLinesInput and append it to group Element
 }

/*Create corresponding SVG element for PounamuOneLineInput*/
 protected void CreateSVGElementForPounamuOneLine(PounamuOneLineInput comp, int xOffset, int
 yOffset, Element group){
 //write SVG element for a PounamuOneLineInput and append it to group Element
 }

/*Create corresponding SVG element for PounamuLabel*/
 protected void CreateSVGElementForPounamuLabel(PounamuLabel label, int xOffset, int yOffset,
 Element group){
 //write SVG element for a PounamuLabel and append it to group Element
 }

/*Create corresponding SVG element for PounamuButton*/
 protected void CreateSVGElementForPounamuLabel(PounamuButton button, int xOffset, int yOffset,
 Element group){
 //write SVG element for a PounamuButton and append it to group Element
 }
} //end of class

Chapter 6: Implementation of the SVG-based Prototype

110

Figure 6-6(a) A PounamuView diagram
example

<rect x="0" y="0" width="800" height="800" style="fill: none; stroke:#000000; stroke-
 width:1.0 " id="VT_TryVisualPro_1" pointer-events="none"
 onclick="locateCanvasPosition(evt)"/>

<clipPath id="ET_Try1_A_Clip"><polygon points="83,3 163,67 83,132 3,67"/>
</clipPath>
<clipPath id="ET_Try_B_Clip"><polygon points="31,3 117,3 146,74 117,146 31,146 3,74"/>
</clipPath>

<g id="ET_Try1_A" transform="translate(40,227)" modelType="ET_Try1"
 icontype="Rhomb" panelWidth="167" panelHeight="136" pointer-events="none"
 onclick="getShapeID(evt)" style="clip-path:url(#ET_Try1_A_Clip)">
<polygon style="fill: none; stroke:#000000; stroke-width:1.0; " points="83,3 163,67 83,132 3,67"
 basePanel="true"/>
<text x="71" y="50" style="font-family:sansserif; font-size:11; fill:#000000;">name</text>
</g>

<rect x="296" y="283" width="6" height="6" style="fill:none; stroke:white; stroke-width:0"
 id="Handle0_ET_Try1_A" handle="true" role="general" cursor="default"
 onclick="locateShapeHandle(evt)" pointer-events="none"/>
…………………….other shape handles are skipped here

<g id="ET_Try_B" transform="translate(159,28)" modelType="ET_Try"
 icontype="Hexagon" panelWidth="150" panelHeight="150" pointer-events="none"
 onclick="getShapeID(evt)" style="clip-path:url(#ET_Try_B_Clip)">
<polygon style="fill: none; stroke:#000000; stroke-width:1.0; " points="31,3 117,3 146,74 117,146 31,146
3,74" basePanel="true"/>
<text x="63" y="39" style="font-family:sansserif; font-size:11; fill:#000000;">name</text>
</g>

<rect x="303" y="100" width="6" height="6" style="fill:none; stroke:white; stroke-width:0"
 id="Handle0_ET_Try_B" handle="true" role="general" cursor="default"
 onclick="locateShapeHandle(evt)" pointer-events="none"/>
…………………….other shape handles are skipped here

View diagram
 Canvas Shapes’ clipPath

definition
Shape A SVG
Representation
Shape B SVG
Representation

Chapter 6: Implementation of the SVG-based Prototype

111

<g id=“AT_TryConnector_C” transform="translate(236,126)" modelType="AT_TryConnector"
 startHandleID="Handle0_ET_Try1_A" endHandleID="Handle3_ET_Try_B"
 pointer-events="none" onclick="getShapeID(evt)">
<line x1="50" y1="177" x2="86" y2="56" style="fill:#ffffff; stroke:#000000; stroke-width:2.0;"
 body="true"/>
<polygon style="fill: none; stroke:#000000; stroke-width:2.0;" points="80,54 93,58 89,50"/>
<text x="65" y="167" style="font-family:sansserif; font-size:11; fill:#000000;"> </text>
<text x="69" y="103" style="font-family:sansserif; font-size:11; fill:#000000;"> </text>
<text x="74" y="40" style="font-family:sansserif; font-size:11; fill:#000000;"> </text>
</g>

Figure 6-6(b) SVG transformation of the PounamuView Diagram shown in 6-6(a)

Being able to construct an SVG image of a PounamuView diagram is only the first step towards

dynamically displaying it on a web browser. The other tasks involve sending the generated SVG back to

the web server and embedding it in a web page. Due to SVG’s XML nature, transferring it via an RMI

connection is an easy job. Again, as has been done in the GIF version tool, the web server caches the

received SVG image in the client’s session object for later use. It forwards the SVG code to the browser

through the Servlet’s OutputStream or PrintWriter object. Below are code samples for outputting the

server-side SVG to a web browser:

/*This request handler is dispatched by ControllerServlet for SVG image output*/
public class GenerateSVG extends RequestHandler{
 public GenerateSVG() {
 /*Constructor*/
 }

 /*handleRequest method*/
 public void handleRequest(ServletContext context, HttpServletRequest req,
 HttpServletResponse resp) throws ApplicationException{
 String svgImage=null;
 ApplicationSession appSession = RequestController.FindApplicationBean(req, this);

 //send servlet response header infomation
 resp.setHeader("Cache-Control","no-cache, no-store, must-revalidate");
 resp.setHeader("Cache-Control","post-check=0, pre-check=0");
 String agent = req.getHeader("User-Agent").toLowerCase();
 resp.setContentType("image/svg+xml");

 try{
 //Get a PrintWriter object from Servlet response
 PrintWriter out=resp.getWriter();

 //Call remote Server function to create SVG image for the specified view
 RMIServerInterface obj = (RMIServerInterface)context.getAttribute("RMIRemoteServer");
 String svgImage = obj.generateSVGTemplate(appSession.getCurrentProject(),
 appSession.getCurrentViewType(), appSession.getCurrentPounamuView());

 //When svgImage is not null, send it to web browser via Servlet’s PrintWriter object
 if (svgImage!= null) {
 out.write(svgImage);
 out.flush();
 out.close();
 }
 else

Connector C SVG
 Representation

Chapter 6: Implementation of the SVG-based Prototype

112

 throw new ApplicationException("The PounamuView you asked can’t be created");
 }catch(RemoteException e){
 throw new ApplicationException(e.toString());
 }catch(IOException e){
 throw new ApplicationException(e.toString());
 }
 }
 }

Finally, we need to embed a reference to the above output Servlet in a JSP view where an SVG image

should appear, and this is done with the following scriptlets and HTML tags:

<% String svgSrc="/PounamuSVGApp/controllerservlet?action=GenerateSVG; %>
<embed name= “SVGObject” width="800" height="800" src=<%=svgSrc%>
 type="image/svg+xml">
</embed>

6.2.2 Capturing and Interpreting SVG Events

Another difficulty that needs to be addressed in implementing this SVG version of the Pounamu/Thin tool

is how to translate SVG events (e.g. mouseover, mouseclick, and some keyboard events) into system

recognizable editing commands.

As stated in Chapter 4, three SVG event handlers, including getShapeID, locateCanvasLocation and

locateShapeHandle, are enough to implement all system functionalities. Also, from the SVG image

construction example shown in Figure 6-6 (b), you will have a general idea of what events these

handlers are registered with. Here, a summary is drawn as below:

• GetShapeID: Being associated with click events on a PounamuIcon’s (may be shape or connector).

• LocateCanvasLocation: Being associated with click events on a PounamuView canvas, where the

canvas is represented with an SVG rect element having a certain ID value.

• LocateShapeHandle: Being associated with click events on a shape handle, where shape handles

are red small rectangles used to highlight the shape’s selected state.

We certainly can write client-side scripting for the above event handlers so that they are executed at

runtime without the web server’s interference. However, for the sake of our thin-client computing

scenario (where most computing is done on the server side) that we are trying to achieve in this project,

the client shouldn’t be burdened too much. Fortunately, both Adobe and batik SVG implementations

provide server-connection facilities so that SVG events captured on the client-side can be propagated to

the web server. In the following paragraphs, we use Adobe’s getURL() as an example to demonstrate

how this can be done.

getURL() is a function that makes a request for data to a given URL location. It is very useful for

generating dynamic SVGs that need updates of data based on user interaction/input while calculations

Chapter 6: Implementation of the SVG-based Prototype

113

may be too complex to be handled with the client-side scripting. It’s syntax, according to Peter Sorotokin

from Adobe, is as follows [78]:

getURL(URL, callback)
URL: source to request data from; for security reasons, must be on the same server as
SVG document
callback: a function which processes reply status and the returned data contents from URL

When getURL() is used for the purpose of event propagation, event-related information can be

appended to the URL in the form of request parameter name-value pairs. For example, in our

getShapeID() event handler, the ID and type of the shape which has been clicked are appended to the

requested URL so that they can be sent back to the web server. After receiving the event information,

the application logic on the web server decides the next JSP page to be displayed and sends the name

of the page back. Then, Callback scripts on the client side retrieve the page name and sequentially

connect it. To make the above explanation much clearer, a sequence diagram (shown in Figure 6-7) is

used to describe objects involved in this getShapeID operation and messages exchanged between

these objects. Following that is a code sample for getShapeID().

Figure 6-7 the execution logic of the getShapeID operation

Here is a code sample for getShapeID() function:

function getShapeID(evt){
 //get event target object
 var target=evt.getTarget();
 while (target && !target.getAttribute('id'))
 target = target.getParentNode();

 //retrieve events related information from SVG DOM
 var shapeIDName=target.getAttribute("id");

User

1. Click a Pounamu Shape or
Connector

Web Browser Web Server

4. The URL of the next page is sent back

3. Connect to a designated URL (with the
retrieved information appended) via the SVG
built-in getURL()

2. ID and X,Y values of the
clicked icon is retrieved

5. Connect the returned new URL in the
Callback function of getURL()

Chapter 6: Implementation of the SVG-based Prototype

114

 var modelType=target.getAttribute("elementType");

 //append events related information to URL with name-value pairs
 var src="/PounamuSVGApp/controllerservlet?action=getShapeID&shapeID="
 +shapeIDName+"& elementType ="+modelType;

 //connect to server with the obtained URL
 getURL(src,getShapeIDCallback);
}

//**getShapeID callback function**//
function getShapeIDCallback(data){
 //retrieves the next JSP page the application should go from the received data content
 if(data.content){
 var ref="/PounamuSVGApp"+data.content;
 window.location.href =ref;
 }
}

Having understood the approach of propagating SVG events to the web server, we now explain how

these events are related to the application-specific diagram editing commands. It is reasonable to

imagine that an editing command (such as move entity, add entity, add association, resize entity etc.) is

composed of a series of SVG events. For example, to move an entity shape in a PounamuView diagram,

a shape click event is initiated first so that the target shape is identified and highlighted through the

execution of the getShapeID handler; and then by triggering a canvas click event, the preferred new

location for the target is specified as a result of executing the locateCanvasPostion handler. For other

editing scenarios, there are similar sequences, although each editing command can be decomposed into

a different series of SVG events.

6.2.3 Implementation of Multiple Editing

Detailed knowledge of what multiple editing is and why it is wanted can be obtained from Section 4.3.3.2.

There you can also find reasons why multiple editing can be done with the SVG version of

Pounamu/Thin, but not with the GIF version. To summarize, multiple editing is an alternative editing

mode where users can issue and buffer multiple edit commands on their own copy of SVG diagram, and

the list of buffered edits is sent to and committed on the Pounamu server later. This edit buffering facility

brings two main advantages to our thin-client diagramming tool. First, system performance is improved

because the number of communication trips involved to complete certain tasks is reduced. Second, a set

of edits by each user can be made transactionally, i.e., without knowledge of another set of user-buttered

edits. Although useful, multiple editing can only be implemented in this SVG version prototype (not the

GIF one). The key reason is that the web component-stored SVG XML data is manipulable while GIF

binary data is not.

We now briefly discuss how multiple editing is implemented, with discussion focusing on five steps

involved in performing a multiple editing task on a PounamuView diagram.

Chapter 6: Implementation of the SVG-based Prototype

115

Step 1: An SVG image of the target PounamuView diagram should be generated and cached on the

web server. Additionally, this SVG image needs to be displayed on a web browser for viewing and

interaction. Detailed information about how to generate and display an SVG-based diagram can be seen

in Section 6.1.

Step 2: In multiple editing, edit actions (such as Add/Move/Resize Shapes, Set Properties, etc.) are

initiated against the cached SVG diagram. Thus, a facility for manipulating the cached SVG needs to be

provided. The ManipulateSVGDoc() method of the ApplicationSession class serves such a purpose. In

this method, a series of SVG events (e.g. GetShapeID, locateCanvasPostion, and locateShapeHandle)

required for the currently activated edit action is set up accordingly. Below is a code sample for this

function:

public class ApplicationSession implements Serializable, HttpSessionBindingListener {

 /*
 *A method used to parse the cached SVG image String and manipulate the parsed
 *SVG DOM tree
 */
 public void manipulateSVGDoc(){
 try{
 //Parse the cached SVG image String into a DOM tree
 ByteArrayInputStream instream = new ByteArrayInputStream(svgDocString.getBytes());
 ByteArrayOutputStream outstream=new ByteArrayOutputStream();
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder docBuilder = factory.newDocumentBuilder();
 Document doc = docBuilder.parse(instream); doc.normalize();
 //set up the selected Pounamu shape/connector
 setSelectedPounamuIcon(doc);
 //set up the required SVG event
 setEventHandler(doc);
 //Serialize SVG DOM tree back to the cached string to be sent via the output Servlet
 XMLSerializer serializer = new XMLSerializer(outstream, new OutputFormat(doc,"UTF-8",false));
 serializer.serialize(doc); setSVGDoc(outstream.toString());
 this.SVGCachedManipulation=false;
 }catch (SAXException sxe) {
 x.printStackTrace();
 }catch (ParserConfigurationException pce) {
 pce.printStackTrace();
 }catch(IOException ioe){
 ioe.printStackTrace();
 }catch (FactoryConfigurationError e) {
 System.out.println("Could not locate a factory class");
 }
 }

 /*A method used to set the selected Pounamu Icon in the cached SVG image*/
 protected void setSelectedPounamuIcon(Document doc){
 //function body omitted
 }

 /*A method used to set the current SVG event in the cached SVG image*/
 protected void setEventHandler(Document doc){
 //function body omitted
 }
 /*Rest of the object methods*/
}

Chapter 6: Implementation of the SVG-based Prototype

116

Step 3: The edit-action related information is collected and stored into an ActionData object of a specific

sub type. In order to show what edit action has been made on the cached SVG, drawSketch() of this

ActionData object is called to overlay edit sketches on the cached diagram. A code sample for

drawSketch() of the “add shape” ActionData is displayed as an example:

public class AddEntityActionData implements ActionData {

 /*
 *A method used to overlay sketches representing this edit ActionData onto the cached *SVG image
 */
 public void drawSketch (Document rootDoc){
 //draw a dotted-outline rectangle to represent the will-be-added entity shape
 int rectWidth=160; int rectHeight=240;
 SVGShapesWriter writer=new SVGShapesWriter(rootDoc,appObject);
 Element newgroup=writer.drawGroup(null,shapeX,shapeY,writer.getRoot());
 String style="fill:none; stroke:darkgreen; stroke-width:2;stroke-dasharray:5,1";
 Element rect=writer.drawRect(0,0,rectWidth,rectHeight,style,newgroup);
 Font stringFont=new Font("Arial",Font.PLAIN,11);
 writer.setFont(stringFont);
 FontMetrics fm=writer.getFontMetrics();
 String shapeLabel=this.modelCompName+" created";
 int h = fm.getHeight(); int w = fm.stringWidth(shapeLabel);
 int stringX=rectWidth/2-w/2; int stringY=rectHeight/2;
 writer.drawString(shapeLabel,stringX,stringY,newgroup);
 sketchElement=(Element)((Node)newgroup.cloneNode(true));
 }
 /*Rest of the code*/
}

Step 4: The ActionData set up in Step 3 is inserted into the buffered action list contained in the user’s

session object.

Step 5: After all the preferred edits are made and buffered by repeating Step2~Step4, users can choose

to submit, modify or clear this list of buffered edits. Upon submitting, all the buffered edits are sent to the

Pounamu server and committed there. Upon modifying, sketches for those unwanted edits are removed

by calling the removeSketch() function of the corresponding edit ActionData. To show what the

removeSketch() function looks like, a code sample for removeSketch() of the “add shape” ActionData is

presented below:

public class AddEntityActionData implements ActionData {

 /*
 *A method used to remove sketches representing this edit ActionData object from the *cached SVG
 *image due to cancellation
 */
 public void removeSketch (Document rootDoc){
 SVGShapesWriter writer=new SVGShapesWriter(rootDoc,this.appObject);
 StringBuffer sketchStringBuffer=new StringBuffer(10000);
 writer.printElememtStringRepresentation(sketchStringBuffer,sketchElement);
 String sketchString=sketchStringBuffer.toString();
 NodeList nl=rootDoc.getElementsByTagName("g");
 int j=0;
 while(nl.item(j)!=null){
 Node n=nl.item(j);
 if(n.getNodeType()==Node.ELEMENT_NODE){
 StringBuffer tempStringBuffer=new StringBuffer(10000);
 writer.printElememtStringRepresentation(tempStringBuffer,(Element)n);

Chapter 6: Implementation of the SVG-based Prototype

117

 String tempString=tempStringBuffer.toString();
 if(tempString.equals(sketchString)){
 rootDoc.getDocumentElement().removeChild(n);
 break;
 }
 }
 j++;
 }
 }
 /*Rest of the code*/
}

6.3 Screen Dumps of the SVG-based thin-client user interface

The overall purpose of this section is to reveal the basic user interfaces of this SVG version thin-client

tool, as well as the user’s interaction with it. Also, as we have done for the previous GIF version

prototyping system, screen dumps of the system running are employed to describe how the main editing

functionalities can be performed via this SVG version thin-client user interface. For comparison, the

same example, an OOA class diagram modelled for the Video Store system, is chosen as the test bed

for these editing operations. The detailed editing scenarios are presented in the following subsections,

with one for each specific editing action. However, before describing the individual behaviour of editing

operations, it is necessary to restate the inherent difference between the two versions of thin-client

Pounamu user interface (GIF and SVG). While only single editing is allowed in the former, multiple

editing concept is available in the latter. Below we use a simple example to demonstrate how users can

use this multiple editing facility.

Multiple Editing Example

Again, we emphasize that this example is specifically designed to demonstrate how to perform multiple

editing via the SVG version thin-client user interface. Multiple editing can be switched off by clicking the

left menu button if you prefer to do things in the other way (i.e. single editing). Figure 6-8(a) shows a test

diagram which is composed of shapes A, B and connector C. Three editing tasks need to be executed

on this diagram, including Resizing A, Moving B and Adding D (another entity shape). Since in the

multiple editing mode, any edit that users make is buffered first, you only see sketches drawn for each

edit displayed in three following figures such as 6-8(b), (c), (d). Now you can make a choice between

committing and modifying these buffered edits. When choosing the former, you are provided with an

updated diagram as shown in Figure 6-9(a) with all three edits committed. Otherwise, if you choose the

latter, a web page (shown in 6-9(b)) with two frames appears. The left frame of this page displays a list

of buffered edits, while the right frame displays the view diagram with edit sketches overlaid. You can

make deletions to unwanted edits via the left frame, and the modification is reflected in the right frame.

For example, Figure 6-9(c) describes the system’s response to the deletion of the “Adding D” edit made

before.

Chapter 6: Implementation of the SVG-based Prototype

118

Figure 6-8 Intermediate result of buffering three edits on a PounamuView Diagram

Chapter 6: Implementation of the SVG-based Prototype

119

Figure 6-9 Examples of Committing (a) and Modifying (b)(c) Three Buffered Edits

6.3.1 Example of Removing an Entity Shape
To demonstrate the functionalities supported in the SVG version thin-client diagramming tool, we first

remove an entity shape and an association connector from the original video store OOA class diagram

(shown in Figure 5-2(d)), and then add them back later. So in this and the following subsection, we

describe the two removal actions first.

Chapter 6: Implementation of the SVG-based Prototype

120

Figure 6-10 demonstrates how to remove an entity shape from a PounamuView diagram. First, the user

needs to click the “Remove Element” left button (a). A page (b) appears prompting the user to select the

intended shape for removal (b), and the target is highlighted with red dash-dotted contour sketches

shown in (c). The next action that needs to be taken is either “Buffer Change” or “Cancel Change”. With

buffering, the removing editing is saved for later execution (d), while with cancelling, the diagram is

recovered to its original appearance (e).

Chapter 6: Implementation of the SVG-based Prototype

121

Figure 6-10 SVG version “Remove Entity Shape” Running Examples

Chapter 6: Implementation of the SVG-based Prototype

122

6.3.2 Example of Removing an Association Connector
This editing operation is similar to the previous one. The only exception is that an association connector

is selected for removal, rather than an entity shape. Figure 6-11 shows procedures involved in deleting

an association connector from the diagram, where (a), (b), (c) represent the results of pressing “Remove

Element” menu button, clicking the target connector and buffering this connector removing action,

respectively.

Figure 6-11 SVG version “Remove Association Connector” Running Examples

Chapter 6: Implementation of the SVG-based Prototype

123

6.3.3 Example of Adding an Entity Shape

After the previous removal editings are committed, the OOA diagram now looks like Figure 6-12. In this

subsection and the one following this, we demonstrate how to add back the deleted shape and

connector. Figure 6-13 illustrates the steps involved in “adding an entity shape” action. In order to initiate

this action, the user needs to click the “Add Entity” menu item. A new page (a) appears which prompts

the user to enter shape parameters (name, type). After that, the system requires the user to specify a

position for the new shape with a click on the diagram canvas (b). In response to this click, rectangle

sketches appear at the designated position (c). When the user confirms to commit this action, the editing

result is provided in (d).

Figure 6-12 the Updated Diagram Showing Previous Removing Edits Executed

Chapter 6: Implementation of the SVG-based Prototype

124

Chapter 6: Implementation of the SVG-based Prototype

125

 Figure 6-13 SVG Version “Add Entity Shape” Running Examples

6.3.4 Example of Adding an Association Connector
This editing action commences by clicking the “Add Association” button on the left menu bar. Similar to

the above adding entity shape, a web page shown in Figure 6-14(a) appears for the user to input action

parameters such as the connector name, type etc. Next, the system requires the user to specify the start

and end handles for this connector (b). This can be completed by clicking the appropriate shape handles

(represented in the form of red rectangles surrounding an entity shape). As a result, a dotted line

connecting those two handles is drawn on the diagram to represent a simplified connector (c). Finally, as

with other types of editing actions, the user can either buffer or cancel this editing depending on the

situation. The result of committing this editing is shown in (d).

Chapter 6: Implementation of the SVG-based Prototype

126

Figure 6-14 SVG Version “Add Association Connector” Running Examples

Chapter 6: Implementation of the SVG-based Prototype

127

6.3.5 Property Setting Example
This version’s property editing is very similar to the GIF version. For this reason, a detailed description of

this operation is skipped, and only Figures 6-15(a)~(f) are given to show execution procedures. In (a),

the user needs to select the target object. The user’s selection is highlighted by red rectangle handles in

the left frame (c) of the web page (b), while the target’s properties (name, type and value) are listed in

the right frame (d). The user can enter new property values in (d). However, unlike in the GIF version of

the Pounamu/Thin tool where property setting is performed immediately after new values have been set,

property setting in this SVG prototype can be buffered until the user decide to submit all edits stored in

the session. Due to this fact, in Figure 6-15(e) only blue dash-dotted contour sketches can be seen

overlaid on the original shape to show that its properties are anticipated to change. The final execution

result of this buffered property setting is shown in Figure 6-15(f).

Chapter 6: Implementation of the SVG-based Prototype

128

Figure 6-15 SVG Version “Set Properties” Running Examples

Chapter 6: Implementation of the SVG-based Prototype

129

6.3.6 Example of Moving an Entity Shape

The whole process of the moving shape action is shown as in Figure 6-16. This is initiated by clicking the

“Move Shape” left menu item. After that, the user needs to click the intended target shape on the page

(a), and the user’s selection is highlighted in its usual way (b). Then, the system reminds you to specify a

new location for the to-be-moved shape. In response to the resulting canvas click event, a green dash-

dotted rectangle representing a simplified moving result is drawn on the diagram (c). Again, the user is

faced with the choice of buffering or cancelling this editing action. Committing this buffered moving action

brings in a page looking like (d).

Chapter 6: Implementation of the SVG-based Prototype

130

Figure 6-16 SVG version “Move Entity Shape” Running Examples

Chapter 6: Implementation of the SVG-based Prototype

131

6.3.7 Example of Resizing an Entity Shape

The last editing action we need to mention is shape resizing. Its execution procedures are illustrated in

Figure 6-17. This action also starts with clicking the corresponding left menu item. Then, a web page

with a hint message “please click the shape that needs to be resized” appears (a). After that, the user

clicks the target shape on the diagram, and this results in a new page with the selection highlighted (b).

Next, the user needs to specify a reference point by clicking a red handle(c). Following is another click

on the diagram, and this second clicked point is regarded as the reference point’s destination after

resizing. After completing the above steps, the system calculates the resizing proportion according to the

position values provided and displays a page (d) with new sketches representing the simplified resizing

action. Finally, the user can submit this editing and obtain the result as shown in (e).

Chapter 6: Implementation of the SVG-based Prototype

132

Figure 6-17 SVG version “Resize Entity Shape” Running Examples

Chapter 6: Implementation of the SVG-based Prototype

133

6.4 Implementation Experiences

Before commencing this project, we had little idea of what SVG was and how it works. All that we knew

was that SVG is an XML based web graphics format and very rich in interactivity and animation. After

this project, we have mixed feelings about this newly emerged graphics format. On one side, we are very

impressed with its interactivity features, especially when comparing with our previous working

experience with GIF. On the other hand, we think SVG still needs quite a lot of improvement. For space

reason, we cannot cover all the strengths and weaknesses that have been found, and only those

practices that are closely involved in building this SVG version thin-client Pounamu tool are addressed.

Implement an optional buffering facility

A distinct feature that our SVG thin-client tool has is to allow a sequence of edits to be buffered on a

user’s own cached diagram before being sent to the Pounamu application server and actioned on the

shared diagram. We believe this optional buffering facility is helpful to improve system performance and

efficiency. The reason why such a facility is implementable in the SVG version tool owes to the fact that

the web component-stored SVG XML data is manipulable. By comparison, this wasn’t possible to do with

the GIF-based version as it uses the Pounamu application server to generate diagram images. An

additional difference between SVG- and GIF-based thin-client tools is the appearance of diagrams on

the web browser. The SVG diagram, rendered by the browser plug-in, appears more polished and

detailed than the other one.

Construct an SVG image in Java rather than using XSLT
XSLT (Extensible Stylesheet languages Transformations) is a declarative scripting language, which is

designed for transforming the structure of an XML document. It can be used to read all kinds of XML

input and to create all kinds of XML and non-XML output.

In our system, the initial idea of constructing the SVG version of a PounamuView diagram via XSLT

transformation came from two facts:

• Pounamu is an XML-based CASE tool;

• SVG is XML in its nature;

However, after some investigation, we found the above idea is not as easy to implement as we thought it

to be. The key issue is that a PounamuIcon (shape/connector) can be very complex and contain several

layers of sub shapes. For example, Figure 6-18(a) shows an example of PounamuIcon that contains

three layers of sub shapes. The first layer is PounamuPanel 1A. The second layer is composed of a

PounamuPanel 2B, a PounamuMultipleLinesInput 2C and PounamuOneLineInput 2D. The third layer

contains another PounamuOneLineInput 3E within the second layer’s PounamuPanel 2B. When writing

an SVG element for such an icon, we have to know the arrangement of all the sub shapes appropriately

(because of SVG’s vector format), including their X and Y position values. In a Pounamu XML file, such

Chapter 6: Implementation of the SVG-based Prototype

134

information is only given indirectly through Java Layout Manager Constraints (Figure 6-18(b)). This

means some programming is needed to extract these X,Y values. But XSLT, which is not a fully

programming language, is very limited to perform this sort of task. That is why we decided to write a

special java class to generate an SVG image of the specified PounamuView diagram.	

	

	

	

	

	

	

	

	

	

	

	

	

 Figure 6-18(a) A PounamuIcon Example	

	

	

	

	

	

	

	

Figure 6-18(b) A Pounamu XML file for an icon in (a),
Font colors are matched with colors of subshapes	

	

	

	

	

	

Problems with Different SVG implementations
SVG, being a newly emerged technology, is still in the development stage, and this status has been

reinforced by the fact that different SVG viewers have implemented only part of the complete SVG

specification. In our system, Adobe SVG Viewer6.0 has been used since it is the most comprehensive

implementation so far. However, SVG Viewer6.0 is still in its experimental stage and subject to changes,

and there will be some time before it can be improved to a full release version.

<?xml version="1.0"?>
<!DOCTYPE pounamushape SYSTEM "icon.dtd">
<pounamushape>
 <source>S_DD</source>
 <type>pounamu.visualcomp.PounamuPanel</type>
 ….
 <property>
 <propertyname>layoutManager</propertyname>
 <propertytype>LayoutParameters</propertytype>
 <propertyflag>visual</propertyflag>
 <propertypath>this</propertypath>
 <propertyvalue>
 <layouttype>VerticalFlowLayout</layouttype>
 <vgap>5</vgap>
 </propertyvalue>
 </property>

 <subshape>
 <type>pounamu.visualcomp.PounamuPanel</type>
 ….
 <property>
 <propertyname>layoutManager</propertyname>
 <propertytype>LayoutParameters</propertytype>
 <propertyflag>visual</propertyflag>
 <propertypath>this_comp0</propertypath>
 <propertyvalue>
 <layouttype>FlowLayout</layouttype>
 <vgap>5</vgap>
 <hgap>5</hgap>
 <alignment>1</alignment>
 </propertyvalue>
 </property>
 <subshape>
 <type>
 pounamu.visualcomp.PounamuOneLineInput
 </type>
 …..
 </subshape>
 </subshape>

 <subshape>
 <type>pounamu.visualcomp.PounamuOneLineInput
 </type>
 ….
 </subshape>

 <subshape>
 <type>pounamu.visualcomp.PounamuMultiLinesInput
 </type>
 ….
 </subshape>
</pounamushape>

2C

2B

2D

1A

 3E

Chapter 6: Implementation of the SVG-based Prototype

135

Another noticeable SVG implementation-specific feature involved in this project is the server-connection

facility. You may remember the function getURL() was applied to realize the communication between the

client and the server. In fact, this method is not part of any standard and limited to Adobes SVG and

Batik SVG viewers which have implemented it as an extension. Future work includes research on SVG

implementation-independent server connection facilities, so that our application can run in any standard

environment implementing SVG.

6.5 Summary

This chapter describes implementation details of our SVG version of a thin-client Pounamu tool,

including how to construct on-the-fly SVG images for the specified PounamuView diagram and how to

capture/interpret SVG events as application dependent editing commands, etc. In addition, as SVG is a

new web graphics format which some people may not be familiar with, we also gave a brief introduction

of what SVG is and its current implementation status. Finally, we presented some running examples to

show user interaction with this prototyping system.

136

Chapter 7: Evaluation

In addition to reviewing and comparing our prototyping work against other thin-client diagramming tools,

we have carried out two evaluations of our prototype Pounamu/Thin thin-client diagramming system.

This chapter presents the evaluation results. These identify strengths and weaknesses of our approach,

as well as other areas that need further improvement. Firstly, we describe a cognitive dimensions [80]

evaluation of the thick-client Pounamu-implemented UML diagramming tool, the GIF-version thin-client

UML tool, and the SVG-version thin-client tool with edit buffering. This compares their relative

characteristics along a variety of usability dimensions. Then, we summarize the findings of a small

evaluation survey where several users performed a series of tasks and gave impressions about their

experiences using these three versions of UML diagramming tools. Finally, we give our own reflective

analysis of this thin-client diagramming prototype system, with an aim to point out a number of ways to

improve its usability.

7.1 Cognitive Dimensions Evaluation

The cognitive dimensions (CDs) framework was developed to provide a broad-brushed approach to

evaluate notations and interactive systems, rather than the detailed evaluations offered by many usability

evaluation techniques. The overall purpose of this framework is to provide a clear basis for discussion

and evaluation by pointing out the cognitive artifacts of the system being designed. In order to achieve

this aim, CDs provides a vocabulary for analyzing the interactions between the structure of information,

environments in which the information is managed, and the type of actions that users want to perform.

The vocabulary recommended by CDs is a set of “dimensions” that can be used to describe different,

sometimes competing, characteristics of visual languages and tools. These dimensions are neither

design guidelines nor a cognitive model of the user, instead they are discussion tools meant to

emphasize areas which are of concern to designers when building their notations and systems. The CDs

framework currently suggests six general categories of user activities, and 13 dimensions. In the

following paragraphs, a brief review is given to those cognitive dimensions that are of our interest. We

will discuss where and how our systems fit in these dimensions, and some important findings are

described as below.

Viscosity: Resistance to Change

Viscosity is a measure of the amount of work needed to achieve a local change, i.e., how much work is

involved to implement a small logic or structural change in a local model or structure. For visual tools,

high viscosity generally can reduce the effectiveness and result in frustration.

Chapter 7 Evaluation

137

We feel that the GIF-version thin-client UML tool is more “viscous” than its thick-client counter parts.

This is especially true with moving and resizing functionalities. As has been demonstrated previously,

multiple interactions are required to perform these sorts of actions via our thin-client prototype. This

characteristic is usually cited as a negative feature of thin-client diagramming approaches. In

comparison, only a simple mouse-controlled drag-and-drop like operation is needed to perform similar

moving and resizing tasks in the original thick-client Pounamu modeller.

Hidden Dependencies:

A hidden dependency occurs when two entities are dependant on each other but the in-between

relationship is not fully visible to a user. With hidden dependencies it is very difficult for a user to

understand the whole information structure. Therefore, changes to the information may either seldom be

made because of the user’s uncertainties or cause some serious, unpredictable problems as the result of

modification.

In our Pounamu UML diagramming tools, multiple views of UML model elements are available in both

thick-client and thin-client versions, and dependencies between visual elements and model elements are

implemented via shape and connector names. However, the way of viewing these dependencies is very

different in these two versions of tools. Pop-up menus on thick-client shapes allow access to the relevant

information, including other views in which they have appeared, while thin-client tools requires users to

look up similar information via buttons and non-contextual option lists. Thus, it is apparent that

underlying dependencies are more easily detectable in the thick-client diagramming tool than in thin-

client versions.

Consistency:

Consistency simply signifies how consistently the tool/language represents concepts and allows the user

to perform certain tasks. Consistent notations or information structure tends to minimize user knowledge

required to use a system by letting users generalize from existing experience of the system or other

systems. Generally consistency can be assessed by asking questions like: when the user knows parts of

the system, how much of the rest can be successfully guessed?

We feel that all three UML tools discussed are consistent in that they use the same visual representation

and editing operations, so that the user requires little extra effort to study the thin-client version if he/she

is already familiar with the thick-client one, and vice versa. Actually, you can only notice the following two

significant differences between these tools:

♦ The GIF- and SVG-based thin-clients diagramming tools employed a button-based, page organized

approach to manage editing and viewing operations. Although this approach normally takes up more

screen space, it provides users with a simpler, less complex interface than the large thick-client tool

pop-up and pull-down menus.

Chapter 7 Evaluation

138

♦ Since SVG and thick-client diagrams are rendered with scalar graphics rather than binary data, they

look more refined and print better than GIF ones.

Closeness of mapping:

Closeness of mapping indicates how closely the system's concepts for objects and actions match the

user's intuitions. The motivation of this dimension is to minimize the extra knowledge required to use the

system, so simplifying all task action mappings.

In our case, GIF- and SVG-version thin-client diagramming tools take a web page-based approach to

view and interact with diagrams. Each user interaction (a mouse click) usually causes a POST to the

web server and then the displayed diagram is replaced with the latest version. In comparison, the same

diagramming viewing and interaction functionality are achieved in a more natural way in the thick-client

tool, i.e., the drag-and-drop and pop-up menu/selection-based approach is taken. Again, with support for

collaboration, the thin-client tools always require additional user-directed refresh of pages to show

other’s work, whereas the thick-client Pounamu UML tool automatically displays one diagrammer’s work

on collaborators’ screens with push-based view update and redisplay. Following this line of thought, our

opinion is that the thin-client’s page-based approach supports less direct manipulation activity and

provides a less natural diagramming collaboration environment, but it fits a user’s mental model of web-

page post and display.

Hard mental operations:

Hard mental operations are processes that require high demand on Cognitive Resources and are very

difficult to complete. Generally speaking, hard operations can cause user fatigue and mistakes. There

are two defining features of constructs and objects that generate “hard mental operations.” First, ask

yourself whether the process gets incomprehensible when two or three of these constructs are combined

together. Second, ask whether there is another way that makes the work easier to accomplish.

We attempted to reduce the need for hard mental operations in the design of our thin-client tools and we

feel this goal has been partially fulfilled. Actually, the learning curve of the thin-client tools is less in many

respects to the thick-client tool, as it presents interaction options in more explicit ways, such as always-

visible buttons and frame-based property editing. However, some editing actions such as moving and

resizing require non-intuitive sequences of operations. In comparison, the thick-client counterpart

realized the above named editing actions via the spontaneous drag-and-drop technique.

Visibility and Juxtaposability:

The visibility dimension simply represents whether required information is easily accessible or whether it

can readily be made available. The visibility dimension is different from hidden dependencies. While

hidden dependencies concern whether the relationships between two entities are apparent, visibility

measures the amount of work involved in making a certain item available. Juxtaposability is an important

Chapter 7 Evaluation

139

part of visibility, and it describes the ability to view two pieces of an information structure at any particular

time for comparison tasks. This is helpful to reduce the user’s memory load, and thus avoid possible

errors.

In the thick-client UML modeller, multiple views are allowed to be displayed side-by-side or accessed via

both a tree and tabbed panes structure, and visual and model properties of model elements are simply

available for change via the right-side property panel. The work currently underway to provide a

zoomable Pounamu user interface will make our thick-client tool even more attractive. In comparison,

although it is possible to display different views in the thin-client tools, a more complex structure has to

be used, i.e., multiple web browsers, each showing a specific view, need to be opened and positioned on

the host PC desktop. A simplified list of views can be provided for the user to select from. A potential

restriction to this multi-web browsers approach is the size of a monitor. So, some work needs to be done

to address the visibility problem of thin-client tools. Possible solutions include providing a scalable

diagram and applying a standard focus+context approach.

Progressive Evaluation:

Progressive evaluation means that users are able to test and evaluate their problem-solving progress at

frequent intervals and obtain feedback on how well the work has been done so far. Experiments show

that the usability of a system that provides progressive evaluation is significantly improved and users’

anxiety is also reduced when using this sort of system.

Looking at the Pounamu-based thick-client UML tool and the two other thin-client diagramming UML

tools involved in this evaluation study, we feel that the SVG-based thin-client tool with buffered editing

supports a higher level of progressive evaluation. Actually, in the SVG-based diagram-editing

environment, users can buffer a series of editings on their own copy of the diagram. Before sending

these editings to the server and letting them actioned on the shared copy of diagram, users are allowed

to observe these buffered editings and modify those unwanted ones. In the long run, this buffered editing

mechanism is quite useful to improve the system performance because the number of wasted editings,

as well as the involved undo and redo, is reduced. By comparison, the GIF version thin-client tool does

not allow users to see in advance what the diagram would look like as the result of a series of editings.

When performing collaborative work, the thick client tool seems better in the aspect of progressive

evaluation. The reason that we say so is that the push-based view update and redisplay approach taken

in the thick-client Pounamu UML modeller allows other’s work to be shown immediately and

automatically while the thin-client tools require user-directed refresh of pages to do the same thing.

7.2 User Survey

To assist us in evaluating our work, we carried out a user survey where participants were asked to

complete a list of tasks and answer a number of close- and open-ended questions.

Chapter 7 Evaluation

140

7.2.1 Survey Procedure

Nine persons were invited to participate in the usability survey. Each participant was required to fill out a

pre-test questionnaire (see Appendix B), which includes questions like: Is he/she a software engineering

practitioner? Has he/she used CASE or Meta-CASE tools before? Does he/she have experience of using

our Pounamu tool? By analyzing answers to these questions, we found all participants had used CASE

or Meta-CASE tools to some extent in their previous projects. Six of them had working experience with

Pounamu.

The survey was done in the computer science department offices at the University of Auckland. The

Tomcat server to which our GIF- and SVG-based thin-client web components had been deployed was on

the same host as the Pounamu application server. The PCs that the participants used to perform the

tests were connected via a LAN.

We designed two tasks for participants to perform (see Appendix C). These tasks covered both of our

thin-client prototypes and their facilities. In task 1, evaluators were required to model the same class

diagram using the thick-client Pounamu-implemented UML diagramming tool, the GIF-based thin-client

UML tool and the SVG-based thin-client tool with edit buffering turned off. Task 2 was simply designed to

test whether the buffering facility enabled in the SVG-based thin-client tool is beneficial to users of

diagramming tools. The general purpose of these tasks was to compare users’ experience with using

three alternative tools and obtain a range of feedback on the thin-client Pounamu UML diagramming

tools that we have developed.

Participants were given a brief tutorial before they were immersed into doing the specified tasks. The

contents of the tutorial covered: a brief description of the Pounamu meta-CASE tool, and the Pounamu-

based GIF and the SVG version thin-client tools; instructions of how to use the above three tools;

demonstration of use of the three tools; explanation of the main goal of this evaluation and a description

of tasks.

After finishing the tasks, the participants were asked to fill out a post-evaluation questionnaire (see

Appendix B) that contained a set of open and closed questions. Closed questions were mainly designed

to test prototype characteristics such as ease of learning, ease of use, system efficiency and response

time, while open questions were really a loose guide and aimed at getting participants thinking the issues

we are interested in. For your reference, some examples of closed and open questions have been listed

in Table 7-1.

Chapter 7 Evaluation

141

Table 7-1 Examples of Survey Questions
Question Category: Question Examples:

Closed Questions: a) Is it easy to use our GIF- or SVG-based Pounamu/Thin tool for editing a

diagram?
b) When performing editing tasks via our thin-client prototypes, how do you

feel system response time?
c) Do you agree that our GIF- or SVG-based Pounamu/Thin prototype

contains all the facilities you need to effectively perform tasks?

Open Questions: a) How easy to use our Pounamu-based thin-client diagramming tools vs.
its thick-client counterpart? Do our thin-client tools provide all the core
functionalities required to perform tasks?

b) Which one of two thin-client diagramming tools do you prefer to use?
c) How do you feel edits buffering facility supported in the SVG version

thin-client tool?

7.2.2 Survey Results

Due to the relatively small number of users surveyed (9 persons), we can’t draw any statistical

conclusions from the tests. However, some useful information can still be obtained from the tests. For

example, Figure 7-1~Figure 7-3 illustrate user responses to most closed questions of the post-evaluation

questionnaire. After analyzing these figures, we found both of our thin-client prototypes are reasonably

easy to use as they provide low-complexity user interface and functionality. Users generally feel that they

can perform the tasks effectively with the facilities currently supported in these prototypes. In addition,

system response time of both tools was found to be acceptable.

Figure 7-1 System Easy-to-Use Test Results,
(a) and (b) are for GIF and SVG-based thin-client user interface prototypes, respectively

0.0% 0.0%

33.3%
44.4%

22.2%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5

1-very difficult,2-difficult,3-neutral,
4-reasonably easy,5-very easy)

pe
rc

en
ta

ge
 o

f p
ar

tic
ip

an
ts

0.0% 0.0% 0.0%

77.8%

22.2%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5

1-very difficult,2-difficult,3-neutral,
4-reasonably easy,5-very easy)

pe
rc

en
ta

ge
 o

f p
ar

tic
ip

an
ts

 (a) (b)

Chapter 7 Evaluation

142

Figure 7-2 System Efficiency Test Results
(a) and (b) are for GIF and SVG-based thin-client user interface prototypes, respectively

Figure 7-3 System Response Time Test Results,
(a) and (b) are for GIF and SVG-based thin-client user interface prototypes, respectively

In addition to the above positive responses to each individual prototype, we also obtained some

comparative results from participants’ replies to other questions of the post-evaluation questionnaire.

Here, we present some important observations below.

Most users perceived that our thin-client tools provided the same functionalities as the thick-client

version but used a combination of page-based and frame-based web browser metaphors rather than

overlaid windows as in the thick-client tool. In addition, they felt user interaction supported in the thin-

client tools was acceptable, with creating and modifying diagram components completed very easily.

However, they also admit as they are used to using pop-up menu and drag-and-drop techniques to

interact with diagrams, they need a little time to adapt our thin-client way of diagramming because it is a

0.0% 0.0% 0.0%

33.3%

66.7%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5
1-very slow,2-slow,3-neutral,
4-reasonably fast, 5-very fast)

pe
rc

en
ta

ge
 o

f p
ar

tic
ip

an
ts

0.0% 0.0% 0.0%

33.3%

66.7%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5
1-very slow,2-slow,3-neutral,
4-reasonably fast, 5-very fast)

pe
rc

en
ta

ge
 o

f p
ar

tic
ip

an
ts

 (a) (b)

0.0% 0.0%
11.1%

77.8%

11.1%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5
1-Strongly disagree, 2-disagree, 3-neutral,

4-agree, 5-Strongly agree)

pe
rc

en
ta

ge
 o

f p
ar

tic
ip

an
ts

0.0% 0.0% 0.0%

33.3%

66.7%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5
1-very slow,2-slow,3-neutral,
4-reasonably fast, 5-very fast)

pe
rc

en
ta

ge
 o

f p
ar

tic
ip

an
ts

 (a) (b)

Chapter 7 Evaluation

143

little less natural to perform some special actions (e.g. resizing and moving) via a multiple of clickings.

Despite this deficiency, most participants still think the learning curve for inexperienced users of the

Pounamu tool was found to be less for users of the GIF-based thin-client tool.

Although both SVG-based and GIF-based diagrams are easily readable through a web browser,

feedback shows that users preferred building and rendering the diagram on the SVG tool rather than the

GIF one. There are several reasons for this preference. First, users generally felt that individual diagram

components in SVG diagrams are easier to be pinpointed for selection than the equivalent in GIF

diagrams. This is especially true for those Pounamu connectors with thin width. GIF versions of such

components always appear with “jaggies” that cause them difficult to be located. From our observation,

users tend to get frustrated when they missed highlighting the right connector even after the second try.

The second reason is that an SVG rendered diagram looks more polished than the GIF one because of

its vector-based graphics nature. However, the most influential reason is that most users think tooltips

and dotted outlines provide useful signs to help them to understand the progress made toward

accomplishing a certain editing task. For example, they commented “being able to see the editing result

before committing make them feel that a built-in, though limited, ‘undo’ functionality exists in the SVG

version thin-client diagramming tool”.

The edits buffering facility in the SVG version thin-client tool received mixed support. Some users like

this facility and feel it is useful when performing a collection of related editings. For example, in order to

get a better layout of a class diagram, a set of moving operations can be performed with buffered editing

on, and then you can observe and readjust the relative positions of shapes before submitting these

operations. However, despite this positive opinion, users pointed out that there is some confusion when

practicing multiple editings. For example, suppose there are two editings (moving followed by resizing) to

be performed on an entity shape in the SVG thin-client tool with the buffered facility turned on. After

moving, the dotted outlines are overlaid on the original diagram showing the intended new position of the

shape. We found users are confused with which one (the dotted outlines or the original shape) should be

clicked for the following resizing action, Although after our explanation, users can make the right choice,

we still feel that a better solution has to be sought to get rid of this confusion.

To summarize, both our thick- and thin-client UML diagramming tools provide suitable support to

diagramming. User preferences lean to using one or the other more than any other consideration. Most

users in our evaluation of the same Pounamu UML diagramming tool felt that they would be happy to

use any of the three approaches, the Java Swing-based thick-client tool, the GIF-based thin-client

version or the SVG-based version. Novice Pounamu users suggested that the learning curve for the thin-

client tools was less than the thick-client one and that it was an advantage that they needed no

installation and configuration to use. The buffering of edits in the SVG version received mixed reaction.

This may be a case of further experience with it being needed and it can be turned off if not wanted.

Response time of the thin-client tools was found to be acceptable despite their both using full diagram

Chapter 7 Evaluation

144

and page refresh after every editing operation. Client-side scripting of some operations e.g. highlighting

diagram elements in the SVG plug-in, was suggested to improve some aspects of response-time by one

user. Currently changing a tool specification can only be done with the thick-client tool designer, which is

seen as a disadvantage by some users if thin-client editing of the resultant tool was desired.

7.2.3 Suggestions on Improvement

Besides the good and bad experiences summarized as above, we also received various useful

suggestions on how to improve the usability of our SVG-based and GIF-based thin-client diagramming

tools. Here only those important ones have been picked and listed in the following paragraphs. The main

aim is to give some indication for avenues of future work with our approach.

The main stream of suggestions for improving system usability involved reducing the number of user

interactions in performing certain tasks such as resizing and interaction. We doubt that there will be

major breakthroughs on this aspect with regard to our GIF-based thin-client tool. However, there does

exist a way to work around this problem in the SVG version tool, i.e., implementing the drag-and-drop

like moving and resizing operations. The approach that can be taken is to write and register client-side

ECMAScripts as handlers to mouse events specified in the SVG standard.

Although it is unavoidable to have multiple interactions in performing moving/resizing actions in the GIF-

version thin-client tool, at least some redundant clicks could be eliminated. For example, users suggest

the last confirmation step currently in the GIF-version tool could be removed, and undo/redo facilities

instead should be provided to roll back and repeat the last operation. From our perspective, this

suggestion is quite reasonable as users can’t preview the result of their editing in the displayed diagram,

and text messages displayed on the top of web page reveal only trivial editing information. Most users

feel that these messages appear meaningless in the context of our visual programming tool. Moreover,

as diagrams become large in size, they don’t want to be bothered to scroll up to check messages

displayed on the top. So in their real work, they tend to ignore these hint messages once they get used

to performing tasks with our tools.

One of our experienced software tool users also suggested that designing a chain of relevant editings is

helpful to achieve better usability. For example, in the common practice, creating a new entity is always

followed by setting its properties, and this is then followed by the resizing operation, so an effective way

of doing work could be to drop into the property sheet editor page after an adding operation, then into

the resizing page after that.

Besides the suggestions mentioned above, users also wrote down a variety of comments aiming to

assist us in improving the user interfaces of both thin-client diagramming tools. Examples include:

Chapter 7 Evaluation

145

♦ A larger canvas area in the web page to display a view diagram. As a diagram with visual

components can easily become large in size, the area of the web page left to display the diagram

should be a little bit bigger than its current size.

♦ Pop-up window option for property setting page. As can be seen from Chapter 5, frame-based

pages are used to set up properties of shapes and connectors. While the left frame displays the

diagram with the highlighted shape, the right frame can be used enter new values. The problem with

this user interface is as the two frames can become larger, users always need to readjust both

frames’ size to either observe the highlighted component or enter new property values. A better

alternative is to display an HTML form-based property setting page in a separate window.

♦ Rearrangement and resizing left side menu buttons. Since there are quite a number of menu

buttons, they currently can’t fit inside one screen. Suggestions are to make them smaller or

rearrange them for a better layout. A possible solution would be to use a dynamic pull-down menu.

7.3 General Comments

Reflecting back upon our work we have reason to be happy with our Pounamu-based thin-client

diagramming tools. In general, we feel the approach we have taken has great potential and offers

several unique benefits over other thick- and thin-client software engineering tools.

From users’ feedback we feel some features that our thin-client tools provided (including ease of learning

and use) are the major benefits. Compared with the thick-client counterpart, most users think our SVG-

and GIF-based thin-client tools support all the essential functionality through less sophisticated web-

based user interfaces. There is no doubt that positive responses like these are the best reward to us.

However, critical opinions are important as well because they give us insight into potential future work. In

fact, back in the design stage, we realized there might be arguments over our tools because we had to

make some design compromises. For example, currently changing a tool specification can only be done

with the swing-based thick-client tool designer. This has been seen as a disadvantage for some users if

thin-client editing of the resultant tool was desired, but for other users who prefer simple lightweight tools

this is definitely an advantage.

Until now, the major issue raised by the survey is multiple interactions are required to perform editing

operations such as moving and resizing. As mentioned earlier, there is not too much that can be done to

change such practices in the GIF version thin-client tool because of the limitation on its binary data

format. However, in the SVG-based tool, realizing resizing/moving as drag-and-drop like operations is

not a difficult task due to SVG images’ interactivity characteristics. The only issue that bothers us is how

fast the diagram can be repainted when the mouse is moved. As we already know, shapes or connectors

in the Pounamu Meta-CASE tool can be very complex and there are many computations going on

behind the scenes. So we can’t help wondering whether client-side JavaScripts can handle this amount

Chapter 7 Evaluation

146

of computation-intensive code. To clarify this, we have prototyped an implementation of the drag-and-

drop like resizing/moving as an optional editing mode in the SVG thin-client tool. According to users’

personal preferences and available resources, they can now choose one among three alternative editing

modes, including a standard mode (where both buffering and script are turned off), multiple editing, and

script driven. Compared with the other two, script-driven editing requires a little more client-side

computing capability, but rich interactions similar to those that have been experienced in the thick-client

diagramming tool can be achieved.

A bonus benefit with our thin-client diagramming tools is that group collaboration at different locations

can be carried out fairly easily. Team members can edit a shared copy of diagram as long as their

computers have a web browser (for SVG, a extra plug-in). Although thread-safe coding principles have

always been adhered to in our development process, we aren’t 100% sure that our prototype is a bug-

free system in the group collaboration environment. This is especially true with our SVG version thin-

client tool with buffering facility on, as a local copy of buffered editings has to be successfully merged

with other people’s work. The result could be that some of the editings are executed as expected, while

others just end up failing to pass server-side validation. In order to ensure the quality of our system, a

large number of testing scenarios have to be explored and performed.

Last we want to mention the usability issues derived from the prototype nature of our tools. As we have

concentrated on realizing the useful functionality that our tools should provide, this category of issues

has not received its due attention. However, we are confident that some of them can be easily fixed and

our tools could evolve into sophisticated versions had we the time to implement them.

7.4 Summary

In this chapter, we carried out two evaluations of our thin-client Pounamu diagramming tools. In the first

evaluation, we analyzed usability issues by applying cognitive dimensions framework to our prototypes.

The second evaluation is a user survey via a questionnaire of experiences using our GIF- and SVG-

based thin-client diagramming tools and their thick-client counterpart. Through analysis of these

evaluations, we identified the strengths and weaknesses of our prototype system while with a view to

potential future work.

147

Chapter 8 Conclusions and Future Work

This is the concluding chapter of the thesis. It summarizes the work done in this project and outlines

possible future work.

8.1 Conclusions

In this project, we studied some related work on web-based software engineering tools, especially on

web-based diagramming tools. The advantages and disadvantages of these existing tools have been

investigated. Based on this investigation, we presented the proposal of providing a thin-client extension

to our original Pounamu Meta-CASE tool. Then, we have gone through activities involved in the system

development life cycle, including system requirements determination, object-oriented analysis and

design, prototype implementation and testing. Finally, we carried out a cognitive dimensions evaluation

and a user survey to explore existing usability issues. Our achievements are:

Identified system requirements: Our system should provide an HTML-based thin-client user interface

(UI) to provide end users with an alternative way of accessing the Pounamu Meta-CASE tool. A key

requirement for this thin-client UI is to allow users to directly interact with diagrams embedded in a web

page. Since a Pounamu diagram is often composed of two elemental graphical components such as

entity shape and association connector, all the core editing commands actioned on these components

should be available via HTML buttons or links etc. These commands include Add/Association, Remove

Entity/Association, Move Entity/Association, Set Entity/Association Properties, and Resize Entity etc. In

general, our system should comply with the conventional approach for design of web based UIs, i.e.,

using the POST/GET page display metaphor to view or edit diagrams.

Designed system: As our objective is to provide a thin-client diagramming extension to the original

Pounamu Meta-CASE tool, it is natural to use the web-based N-tier software architecture as the

backbone of our system. The clients of our system are HTML pages downloadable from web browsers.

Diagrams can be rendered in many commonly used web image formats such as GIF, SVG, VRML and

so on. The web components, running on the web server and accessed by web browsers, are responsible

for dealing with user interactions with diagrams. Their main functionalities include collecting editing

command-related information and sending it to the Pounamu server for execution. A remote interface

component was designed and plugged into the Pounamu application server to support remote

diagramming functionalities. It is mainly used to receive editing messages from the web components and

then convert them into Pounamu recognizable command objects.

Implemented system prototypes: We implemented two prototypes, namely GIF- and SVG-based

Pounamu/Thin tools. For both prototypes, we used Java Servlets, JSP and JavaBeans to implement the

Chapter 8 Conclusions and Future Work

148

web components, RMI to implement the remote interface plug-in. The fact that a PounamuView diagram

is saved in XML format and editing command objects executed on a view can be easily converted to and

from an XML format supports our decision to package user interactions with diagrams into XML-based

command messages. These are sent across RMI to the Pounamu application server and committed on

the shared diagram. To generate PounamuView diagrams as GIF and SVG images and display them on

Web browsers, we have provided GIF and SVG renderers. But, these two are quite different. The former

simply requests that the Pounamu server returns a GIF image of a view each time a view is changed,

and then it embeds the GIF image inside a web page along with editing command buttons, property

sheet labels and text fields. The SVG renderer instead requests an XML-encoded version of the view

from the Pounamu server. It then traverses the XML and generates an SVG encoding of the Pounamu

shape and connector objects in the view XML, along with HTML for view and property editing as per the

GIF-based renderer. We implemented the SVG translator in Java rather than using XSLT as its

performance is much faster and requires less complex algorithms. The SVG is rendered by the browser

plug-in, resulting in more polished, detailed diagram appearance than the GIF-based version. Another

difference between the two prototypes is that the optional edit bufferring facility is enabled in the SVG

version tool. This facility uses the web component-stored SVG XML data, meaning buffered edits do not

need to be sent to the Pounamu application server and are hidden from other users until committed. This

wasn’t possible to do with the GIF-based version as it relies on the Pounamu server to generate diagram

images.

Carried out system evaluation: We have performed two evaluations of our Pounamu/Thin

diagramming prototypes, in addition to reviewing and comparing our prototyping work against other thin-

client diagramming tools. In the first evaluation, Green and Petre’s cognitive dimensions framework [81]

has been applied to assess the relative characteristics of the thick-client Pounamu-implemented UML

diagramming tool, the GIF-version Pounamu/Thin UML tool, and the SVG-version Pounamu/Thin UML

tool. In the second evaluation, users were interviewed via a questionnaire of their experiences of using

the above three tools. Evaluation results show that both the thick-client and thin-client UML diagramming

tools provide appropriate support for diagramming and most participants felt they would be happy to use

any of these tools. Although most users felt that it is a little less natural to use thin-client tools, as some

special actions require a multiple of clicks (e.g. resizing and moving), they still suggested the learning

curve for the thin-client tools is less than the thick-client one. Some features seen as advantages of

SVG-and GIF-version thin-client tools include: they need no installation and configuration to use; and

group collaboration at different locations can be carried out fairly easily. Inability to modify a tool

specification is a significant disadvantage seen by some users who desire thin-client editing of the

resultant tool. Currently changing a tool specification can only be done with the thick-client tool designer.

The optional edit buffering facility enabled in the SVG version received a mix of positive and negative

reactions. Response time of both thin-client tools was found to be reasonably fast despite them using full

diagram and page refresh after each editing operation. Client-side scripting of some operations e.g.

Chapter 8 Conclusions and Future Work

149

highlighting/moving/resizing diagram elements in the SVG version, was suggested to be effective for

improving system usability.

Reflecting back upon the prototypes that have been completed, we feel that they offer some benefits

over the existing diagramming tools. When compared with those thick-client ones, our tools provide

advantages such as no installation, less complex and easy-to-use user interface, and supporting

collaborative work in itself. Then compared with existing thin-client diagramming tools, our tools are

better on the following respects:

♦ First, the GIF-based version can be used on any modern browser because it needs no

augmentation technologies such as JAVA Applet or browser plug-ins. Actually, it did not even

contain any client-side JavaScript which may not run appropriately on some cross-platform

browsers. Although the SVG-based version requires a SVG Viewer plug-in, many newer browsers

have this installed since SVG is a standard recommended by W3 organization. More importantly,

upsides brought by this SVG version tool seem far greater than the above downside. For example,

with its rich interactivity users are able to perform most editing commands in the same way as they

are used to with thick-client tools, including moving and resizing shapes/connectors in a diagram via

drag and drop-like operations. With its optional buffer facility, the efficiency and performance of our

thin-client diagramming tool gains significant improvement.

♦ Second, unlike those thin-client tools developed specifically for editing a specific type of diagram

(e.g. UML class diagrams or sequence diagrams), our tools can be used to edit a versatile range of

diagrams as long as notations and semantics for drawing diagrams has been specified and stored in

the server-side XML files.

8.2 Future Work

Our thin-client visual diagramming tool is still a prototype. Only after considerable refinement can it

become mature and sophisticated. Here we wish to highlight a number of possible extensions aiming at

improving the functionality and usability of our prototype system.

Based on the evaluation results, we would like to make the following additions and changes to our

system:

(1) Removing the editing confirmation step currently coded in the GIF Pounamu/Thin tool. By doing so,

we can reduce the number of interactions involved in performing any diagram editing task. This in

turn would improve the efficiency of our tool.

(2) Adding undo and redo functionalities to our GIF Pounamu/Thin. These additional functionalities

allows users to roll back or repeat the last editing actioned on a diagram, so that users can enjoy

more flexibility in using this diagramming tool.

Chapter 8 Conclusions and Future Work

150

(3) Chaining the related editing activities. In both of our SVG- and GIF-based Pounamu/Thin tools, an

editing action is always initiated by clicking the left menu button. This is a little less natural for

those users who are familiar with the thick-client way of doing things, in which pop-up

menu/selection-based approach is taken to view and interact with diagrams. One way to ease this

inconvenience is to reduce the number of button clicks required to perform certain tasks with our

Pounamu/Thin. This can be accomplished by exploring and serializing some related editing

scenarios. For example, users of the Pounamu tool tend to add a shape first, then set its

properties, finally resize it. In our thin-client tool, we can simulate a similar editing sequence by

dropping into the property sheet page after adding an entity, then bringing in the resizing action

after property setting. By doing this, we save some button clicks that users need to make in editing

a diagram.

(4) Rebuilding a movable menu bar. Currently, our GIF- and SVG-based thin-client diagramming tools

contain a static menu bar on the left of every page. As a diagram can easily become large, users

have to be bothered with scrolling down and up to find a right button. For this reason, we suggest

to build a dynamically movable menu bar that can always be located in the current view port.

(5) Client-side scripting of some operations (e.g. moving/resizing diagram elements via drag-and-drop)

currently implemented in our SVG version tool only considers Pounamu shapes with less complex

appearance. For those shapes that are constructed with more complex java layouts and

subshapes, resizing algorithms to be implemented in ECMAScript have to be carefully researched.

(6) Although thread-safe operations have been ensured in our prototype systems, quite a strict locking

policy has been adopted in our implementation. For example, we enforce a sequence execution of

all the remote editing commands from multiple users no matter whether the objects that these

commands are applied to refer to the same or different diagrams. Future work include research on

more moderate concurrency mechanisms.

In the current system, we used RMI to implement the remote editing interface to be plugged into the

Pounamu application server. Although RMI is simple to use, it may not work very well for distributed

applications running on different computers with different operating systems, programming languages

and networks. For example, in our evaluation, one participant received an “RMI connection error” when

trying to access our tool on his Macintosh computer. So, to support better accessibility and portability,

our remote interface needs to be extended and implemented using other platform-independent,

language neutral technologies such as CORBA or SOAP. Actually, it is very easy to adopt SOAP in our

system because an XML-based message transmission approach has already been taken to build our

system.

Another extension we have considered is to enable Scripting in our thin-client diagramming tool.

Currently, the GIF version tool doesn’t contain any type of client-side scripts. This design decision came

from two initial considerations. First, we want to make full of use of server-side resources. Second, we

are interested to see how far this thin-client diagramming tool can go without the use of technologies

Chapter 8 Conclusions and Future Work

151

such as JavaScript, browser plug-ins, Java Applet. Although the resultant tool has been rated reasonably

easy to use, we still feel that a small amount of client-side scripts will be of great help to improve system

performance and usability. For example, with these scripts, we can easily convey some complex visual

properties which currently can’t be represented with the limited web user interface resources. The

number of round trips to the web server will also be reduced as some trivial computations could be

handled by the scripts. In general, the combination use of client-side scripts and dynamical HTML will

offer a more flexible and rich web-based user interface for users to view and edit diagrams.

As far as other improvements are concerned, the multi-user collaboration functionality supported

inherently by our Pounamu/Thin tools should be refined. Currently users in a typical thin-client

collaboration scenario have to purposely refresh the pages to show other’s work, and this seems a little

unusual compared with the push-based view update and redisplay approach taken by the thick-client

tools. A solution to this deficiency would be the use of an HTML auto-refresh facility, i.e., automatically

refreshing web pages every a few minutes to show what others have done. In addition, some proper use

of highlighting would make diagramming users aware of elements that currently are worked on by others,

and therefore some contradictory editing scenarios can be avoided. Potential future work include

research on highlighting techniques commonly used in Groupware and find out ways to adapt them in

our tools.

152

Reference:

1. Bentley, R., Horstmann, T., Sikkel, K., and Trevor, J. Supporting collaborative information sharing

with the World-Wide Web: The BSCW Shared Workspace system. In Proceedings of the 4th

International WWW Conference, Boston, MA, December 1995.

2. Chalk P, Webworlds-Web-based modeling environments for learning software engineering,

Computer Science Education, vol.10, no.1, 2000, pp.39-56.

3. Dossick, S.E. and Kaiser, G.E. Distributed Software Development with CHIME, In Proceedings of

the 1999 ICSE Workshop on Software Engineering over the Internet,

http://sern.cpsc.ucalgary.ca/~maurer/ICSE99WS/ ICSE99WS.html.

4. Ebert, J., Siittenbach, R., Uhe, I.: Meta-CASE in practice: A case for KOGGE. In Olive, A., Pastor,

J.A., eds.: Proceedings 9th International Conference on Advanced Information Systems Engineering

(CAiSE'97). LNCS 1250, Barcelona, Spain, Springer-Verlag (1997) 203-216.

5. Ferguson, R.I., Parrington, N.F., Dunne, P. Hardy, C., Archibald, J.M. and Thompson, J.B.

MetaMOOSE - an Object-Oriented Framework for the construction of CASE tools, Information and

Software Technology, vol. 42, no. 2, January 2000.

6. Gordon, D., Biddle, R., Noble, J. and Tempero, E. A technology for lightweight web-based visual

applications, In Proceedings of the 2003 IEEE Conference on Human-Centric Computing, Auckland,

New Zealand, 28-31 October 2003, IEEE CS Press.

7. Graham T.C.N., Stewart, H.D., Kopaee, A.R., Ryman, A.G., Rasouli, R. A World-Wide-Web

architecture for collaborative software design, In Proceedings of the Ninth International Workshop on

Software Technology and Engineering Practice (STEP '99), IEEE CS Press, 1999, pp.22-29.

8. Green, T.R. Cognitive dimensions of notations, People and Computers V, Sutcliffe, A. and

Macaulay, L. Eds, Cambridge University Press, 1989.

9. Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Constructing component-based software

engineering environments: issues and experiences. Information and Software Technology 42, 2,

January 2000, pp. 117-128.

10. Iivari, J., Why are CASE tools not used?, CACM, vol. 39, no. 10, 1996.

11. Kelly, S., Lyytinen, K., and Rossi, M., Meta Edit+: A Fully configurable Multi-User and Multi-Tool

CASE Environment, In Proceedings of CAiSE'96, Lecture Notes in Computer Science 1080,

Springer-Verlag, Heraklion, Crete, Greece, May 1996, pp. 1-21.

12. Khaled, R., McKay, D., Biddle, R. Noble, J. and Tempero, E., A lightweight web-based case tool for

sequence diagrams, In Proceedings of SIGCHI-NZ Symposium On Computer-Human Interaction,

Hamilton, New Zealand, 2002.

13. Lyu, M. and Schoenwaelder, J. Web-CASRE: A Web-Based Tool for Software Reliability

Measurement, Proceedings of International Symposium on Software Reliability Engineering,

Paderborn, Germany, November, 1998, IEEE CS Press.

Reference

153

14. Mackay, D., Biddle, R. and Noble, J. A lightweight web based case tool for UML class diagrams, In

Proceedings of the 4th Australasian User Interface Conference, Adelaide, South Australia, 2003,

Conferences in Research and Practice in Information Technology, Vol 18, Australian Computer

Society.

15. Maurer, F. and Holz, H. Integrating Process Support and Knowledge Management for Virtual

Software Development Teams, Annals of Software Engineering, vol. 14, no. 1-4, 2002, pp. 145-168.

16. Maurer, F., Dellen, B., Bendeck, F, Goldmann, S., Holz, H., Kötting, B., Schaaf, M. Merging project

planning and web-enabled dynamic workflow for software development, IEEE Internet Computing:

Special Issue on Internet-Based Workflow, May/June 2000.

17. Quatrani, T. and Booch, G. Visual Modelling with Rationa Rose™ 2000 and UML, Addison-Wesley.

18. Robbins, J., Hilbert, D.M. and Redmiles, D.F. Extending design environments to software

architecture design, Automated Software Engineering 5 (July 1998), 261-390.

19. Stoeckle, H., Grundy, J.C. and Hosking, J.G. Approaches to Supporting Software Visual Notation

Exchange, In Proceedings of the 2003 IEEE Conference on Human-Centric Computing, Auckland,

New Zealand, October 2003, IEEE CS Press.

20. Sun, J., Dong, J.S., Liu, J. and Wang, H., An XML/XSL Approach to Visualize and Animate TCOZ. In

Proceedings of the 8th Asia-Pacific Software Engineering Conference, Macau SAR, China,

December 2001, IEEE Press, pp. 453-460.

21. Biddle, R., Noble, J. and Tempero, E. Lightweight Web-based Tools for Usage-Centered and Object-

Oriented Design, Technical report, Victoria University of Wellington, New Zealand, 2002.

22. Grundy, J.C. and Hosking, J.G. Software Tools, Wiley Encyclopaedia of Software Engineering, 2nd

Edition, Wiley InterScience, December 2001. PDF

23. “ABC TO METACASE TECHNOLOGY”, available from MetaCase Consulting, Jyväskylä, Finland,

http://www.metacase.com/papers/ABC_to_metaCASE.pdf

24. Furguson, R.I., Parrington, N.F., Dunne, P., Archibald, J.M. and Thompson, J.B. MetaMOOSE – an

Object-oriented, Framework for the Construction of CASE Tools, Proceedings of CoSET’99, Los

Angeles, 17-18 May 1999, University of South Australia, pp. 19-32.

25. Simply ObjectsTM, available from http://www.adaptive-arts.com/prod_downloads.htm

26. Reps, T. and Teitelbaum, T., Language Processing in Program Editors, Computer, 20 (11), 1987,

pp. 29-40.

27. Ratcliffe, M., Wang, C., Gautier, R.J., and Whittle, B.R. Dora - a structure oriented environment

generator, IEE Software Engineering Journal, 7 (3), 1992, pp. 184-190.

28. Ewan Tempero, James Noble, Robert Biddle, “Delegation Diagrams: Visual Support for the

Development of Object-Oriented Designs”, Technical Report, University of Wellington, March 2003.

29. Stephen Asbury, Scott R. Weiner. Developing Java Enterprise Applications, 2th Edition, New York: J.

Wiley, c2001

30. “Simple Object Access Protocol (SOAP) V1.2”, A technical recommendation standard of the W3C,

2003, available from http://www.w3.org/TR/SOAP/

31. Fowler, M., Scott, K. UML Distilled. Addison-Wesley, 1996.

Reference

154

32. Sommerville, I. Software Engineering, 5th Edition, Addison-Wesley, 1996.

33. Bruegge, B., Dutoit, Allen H. Object-Oriented Software Engineering: Conquering Complex and

Changing Systems, Upper Saddle River, NJ: Prentice Hall, 2000.

34. Duignan, M., Biddle, R., & Tempero, E. (2003), Evaluating Scalable Vector Graphics for use in

Software Visualization, in proceedings of The Australasian Symposium on Information Visualization,

Adelaide, 2003. Conferences in Research and Practice in Information Technology, Vol 24. Tim

Pattison and Bruce Thomas, Eds.

35. Terry Quatrani, “Designing the system architecture”, Chapter 11 in Visual Modeling with Rational

Rose and UML.

36. On-line Tutorials from the Computer Science department of UOA, New Zealand, available on

http://www.cs.auckland.ac.nz/compsci335s2t/archive/2002/tutorials/part1/

37. Hanna, Phil., JSP: the complete reference, Osborne/McGraw-Hill, 2001.

38. Govind Seshadri, “Understanding JavaServer Pages Model 2 architecture: Exploring the MVC

design pattern”, available from http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-

jspmvc.html

39. Scalable Vector Graphics (SVG) v1.2, A technical recommendation standard of the W3C, Nov. 2003.

40. Jakarta Tomcat, available from http://Jakarta.apache.org/tomcat

41. Sun JavaServer Pages, available from http://java.sun.com/products/jsp/

42. Sun Java Remote Method Invocation (RMI), available from

 http://java.sun.com/products/jdk/rmi/

43. CORBA website, OMG, “Corba Basics”, available from

http://www.omg.org/gettingstarted/corbafaq.htm

44. David Reilly, “Java RMI & CORBA: A comparison of two competing technologies”, Nov. 1998,

available from http://www.javacoffeebreak.com/articles/rmi_corba/

45. Norman Walsh, “What is XML?”, Oct. 1998, available from

http://www.xml.com/pub/a/98/10/guide1.html#AEN58

46. J2EE JavaServer Pages Overview, http://java.sun.com/products/jsp/overview.html

47. Marty Hall, Core SERVLETS and JAVASERVER PAGESTM , Sun Microsystems Press and Prentice

Hall, May 2000, available from http://pdf.coreservlets.com/

48. World Wide Web (W3C), “Overview of SGML Resources”, http://www.w3.org/XML/

49. “XML introduction”, available from

http://www.softwareag.com/thexmlacademy/denmark/XML_intro.htm

50. T. Houihane, O. Eshahawi, “The Advantages & Disadvantages of XML”, Dec. 1999,

 http://ntrg.cs.tcd.ie/mepeirce/Dce/99/xml/2_Merits_Demerits_&_how_it_works.htm
51. John Wurtzel, “GIF vs. JPEG”, July 1997, available from

 http://hotwired.lycos.com/webmonkey/geektalk/97/30/index3a.html?tw=design

52. “The GIF Image Format”, available from

http://users.abac.com/dmfair/webcontest/Weisberg/FileFormatsPages/gif.html

53. Marty Hall, Session Tracking, 1999, available from

Reference

155

 http://www.apl.jhu.edu/~hall/java/Servlet-Tutorial/Servlet-Tutorial-Session-Tracking.html

54. RMI specification, Sun Microsystems Inc., available from

http://java.sun.com/j2se/1.4.1/docs/guide/rmi/spec/rmiTOC.html

55. John Zukowski, “Delivering Dynamic Images from JavaServer Pages (JSP) Technology”, August 21,

2001, http://java.sun.com/developer/JDCTechTips/2001/tt0821.html#tip2

56. “Servlet How To - How to use the JASHist plotting widget in a Java Servlet”, July 26 2000,

http://www-sldnt.slac.stanford.edu/jas/Documentation/howto/servlet/default.shtml

57. Matti Kotsalainen, “How to I create dynamic GIFs for my JSP?”, http://wwwmath.uni-

muenster.de/math/inst/num/Vorlesungen/akt_web/Literatur/JSP%20FAQ.htm

58. “Client/Server-side image maps”, available from

http://curry.edschool.virginia.edu/go/WebTools/Imagemap/CSIM_SSIM.html

59. The ACME laboratories homepage, http://www.acme.com

60. “Appendix: Base 64 Encoding”, http://www.freesoft.org/CIE/RFC/2065/56.htm

61. Vincent Hardy, “Scalable Vector Graphics (SVG): An Executive Summary”,

http://wwws.sun.com/software/xml/developers/svg/

62. “SVG overview”, http://www.usbyte.com/SVG/svg_overview.htm

63. Chengyuan Peng, “SCALABLE VECTOR GRAPHICS (SVG)”, 2000, available from

http://mia.ece.uic.edu/~papers/WWW/MultimediaStandards/svg.pdf

64. IBM, “What is SVG -Vector vs. rasterized graphics”, available from

https://www6.software.ibm.com/developerworks/education/x-svg/x-svg-2-1.html

65. “ECMAScript Language Specification”, http://www.el-mundo.es/internet/ecmascript.html

66. Adobe Systems. SVG zone. http://www.adobe.com/svg/basics/intro.htm

67. The Apache Software Foundation, Batik svg toolkit, http://xml.apache.org/batik

68. KDE. KSVG. http://svg.kde.org/, 2002

69. Mozilla organization. Mozilla svg project. http://www.mozilla.org/projects/svg

70. Corel, Corel smart graphics, http://www.corel.com/smartgraphics

71. Adobe Systems, Adobe SVG Viewer 3.0, http://www.adobe.com/svg/viewer/install/main.html

72. Adobe Systems , Adobe SVG Viewer 6.0, http://www.adobe.com/svg/viewer/install/beta.html

73. “Current Support for SVG Adobe SVG Viewer 3.0”,

http://www.adobe.com/svg/indepth/pdfs/CurrentSupport.pdf

74. Antoine Quint, SVG Tips and Tricks: Adobe's SVG Viewer, July 03, 2002,

http://www.xml.com/pub/a/2002/07/03/adobesvg.html

75. Antoine Quint, “SVG: Where Are We Now?”, Nov. 21 2001

 http://www.xml.com/lpt/a/2001/11/21/svgtools.html

76. Formatting Objects Processor(FOP), available from http://xml.apache.org/fop/

77. ILOG JViews Component Suite, available from http://www.ilog.com/products/jviews/

78. Get URL syntax page, http://www.protocol7.com/svg-wiki/ow.asp?GetUrl

79. T.R.G. Green, M. Petre, “Usability analysis of visual programming environments: a ‘cognitive

dimensions’ framework”, Journal of Visual Languages and Computing 1996(7), pg 131-174, 1996.

Appendix A: Tool_UML Notations

156

Appendix A: Tool_UML Notations

Tool_UML is a UML tool specified using the Pounamu Meta-CASE tool (by Karen Liu in her 780 project).

This is a simplified tool since only a subset of UML notations are defined for drawing use case diagrams,

class diagrams, sequence diagrams, and collaboration diagrams. Detailed information about these

notations, including meta-Model types and visual representations, are presented in the following tables.

Table A-1 Class Diagram (19 elements)
UML Notation Meta-Model Element Type Visual representation
Aggregation AT_Aggregation

Association AT_Association

Composition AT_Composition

Dependency AT_Dependency

Generalization AT_Generalization

Link AT_Link

Class ET_Class

Constraint ET_Constraint

Enumeration ET_Enumeration

Implementation ET_Implementation_class

Interface ET_Interface

Metaclass ET_Metaclass

Appendix A: Tool_UML Notations

157

Note ET_Note

Signal ET_Signal

Subsystem ET_Subsystem

Template class ET_Template_class

Type ET_Type

Package ET_Uml_package

Utility ET_Utility

Table A-2 Use Case Diagram (12 elements)
UML Notation Meta-Model Element Type Visual representation
Use_case_communication AT_Communication

Extend AT_Extend

Gneralization AT_Generalization

Include AT_Include

Or_Constraint AT_Or_constraint

Actor ET_Actor

Appendix A: Tool_UML Notations

158

Interface ET_Interface

Note ET_Note

Package ET_Uml_package

Use Case ET_Use_Case

Table A-3 Sequence Diagram (9 Elements)
UML Notation Meta-Model Element Type Visual representation

Constraint
AT_Constraint

Seq_return AT_Msg_return

Seq_msg_call
AT_Msgcall

Seq_msg_call_async
AT_Msgcall_async

Or_Constraint AT_Or_constraint

Activiation ET_Activation

Note ET_Note

Object ET_Object

Lifeline ET_Object_lifeline

 Exported location and size for user
adjustment.

Appendix A: Tool_UML Notations

159

Table A-4 Collaboration Diagram (7 Elements)
UML Notation Meta-Model Element Type Visual representation

Constraint AT_Constraint

Or_Constraint
AT_Or_Constraint

Association AT_UML_Collaboration_association_role

Constraint ET_Constraint

Multi-object ET_Multiobject

Note ET_Note

Object ET_Object

Appendix B: Questionnaire

160

Appendix B: Questionnaire

We would appreciate it if you can take the time to answer the following questions. The purpose of this

questionnaire is to help us to gain feedback about using our GIF- and SVG-based thin-client Pounamu

tool as compared against its thick-client version. These questions are designed to focus on the areas we

are interested in, however, any comments you have when you do evaluations are welcome.

All the information you provide is confidential. Your name is not stored with this questionnaire, and the

information you provide will not be used for any other purpose.

Pre-test Questionnaire

1. Personal information

Gender � Male � Female

Education Bachelor ٱٱ High School ٱٱ PhD ٱٱ Master ٱٱ

Major � Computer Science � Engineering

 � Business & Economics � Other ________________

 Job Title___

2. Do you have any experience with any software engineering CASE or Meta-CASE tool? If yes,

please specify what kinds of tools and their strengths & weaknesses?

 No �

 Yes � __

3. Do you have any experience of using Pounamu meta-CASE tool? If yes, specify how do you

feel about it?

 No �

 Yes � __

Post-test Questionnaire

1. From your perception, how easy to use the GIF-based Pounamu/thin tool vs. its thick-

client version?

Appendix B: Questionnaire

161

2. Are GIF- and SVG-version of PounamuView diagrams readable in a web browser?

3. In general, is it easy to use the GIF version of the Pounamu/thin tool to edit a Pounamu

view diagram?

 Very easy Very difficult

 ٱٱ 7 ٱٱ 6 ٱٱ 5 ٱٱ 4 ٱٱ 3 ٱٱ 2 ٱٱ 1

4. For each of the following main editing functionalities, please specify the features that you

feel easy/hard to use in the GIF version of the thin-client tool?

Add association-type
connector:

Easy to use:

Difficult to use:

Move entity-type shape:

Easy to use:

Difficult to use:

Move association-type
connector:

Easy to use:

Difficult to use:

Delete entity-type shape:

Easy to use:

Difficult to use:

Delete association-type
connector:

Easy to use:

Difficult to use:

Resize entity-type shape:

Easy to use:

Difficult to use:

Set entity or association
properties:

Easy to use:

Difficult to use:

5. In general, is it easy to use the SVG version of the Pounamu/thin tool to edit a Pounamu

view diagram?

 Very easy Very difficult

 ٱٱ 7 ٱٱ 6 ٱٱ 5 ٱٱ 4 ٱٱ 3 ٱٱ 2 ٱٱ 1

Appendix B: Questionnaire

162

6. How do you feel edit buffering functionality provided in the SVG version of the

Pounamu/thin tool? Is it useful or just confuses you?

7. From your perceptions, which one of two versions of the thin-client user interfaces is

more usable? Please state some reasons why you say so?

 GIF version ٱٱ SVG version ٱٱ

Reasons:

8. How do you feel the system response time when performing your edit tasks via the two

versions of thin-client user interfaces, are they fast enough?

GIF version:

SVG version:

9. Write down your suggestions on how to improve our GIF- and SVG- based Pounamu thin-

client user interfaces.

GIF version:

SVG version:

163

Appendix C: Evaluation Task List

The tasks are designed to see how different people would feel about using the thick client user interface

of Pounamu and its thin-client counterparts. For this purpose, the following tasks need be done multiple

times, and the details are stated as below:

(1) Task1 is done three times, that is, do this task via Pounamu/thick and the GIF- and SVG-based

Pounamu/Thin, respectively. In addition, please switch buffering facility off when you perform it via

the SVG Pounamu/Thin.

(2) Task2 is done via the SVG version of the thin-client tool with buffering facility switched on.

Task1:

In this task, you are asked to model and document OOA class diagram of the Video Store system. To

make your life easier, a modeling project named Model_VideoRental that takes Tool_UML as its

underlying tool has been set up for you in Pounamu, and a view with type VT_Class_diagram and name

VT_Class_diagram_ConceptualModel has also been created for you. Of course, currently this

PounamuView is just a blank canvas, what you need do is to add model elements to this view so that the

final version of this PounamuView looks similar to the following diagram.

<<Interface>>
Person

ID:int
Name: String
age: int
password: String

Video
ID:int
Name: String
Category: String
Cost: real
NumNights: int
Rating: String
NumCopies:integer
findVideo()
findByName()
setNumCopies()

Staff
Position: String
Salary: real

AddStaff()
UpdataStaff()
FindStaff(int id)

Customer
Address: String
Phone:string
findCustomer()
addCustomer()
updateCustomer()
deletecustomer()
findVideo()

Rental
Date: String
Returned: Boolean
addRental()
findRental()
rentVideo()
returnVideo()

uses
rents

rents

0..*
1..1

Appendix C: Evaluation Task List

164

Task2:

In this task, you are asked to evaluate multiple-editing functionality enabled in the SVG-based

Pounamu/thin tool. Thus you need to switch edit buffering facility on by clicking the left menu item before

performing any edit command on the PounamuView diagram specified previously.

