
Constructive Alignment for Introductory
Programming

Andrew Cain

A thesis presented for the degree of Doctor of Philosophy

2013

Abstract

This thesis discusses the application of constructive alignment with portfolio assess-
ment to the teaching of introductory programming. The goal of the work aimed to cre-
ate a positive, student-centred, teaching and learning environment that encouraged,
and rewarded, students to focus on deep approaches to learning.

Learning to program has been found to be very challenging. Work in this thesis in-
vestigated ways to improve student learning outcomes in introductory programming
units taught at the university level. It discusses improvements in the teaching and
learning environment that resulted from applying the principles of constructive align-
ment, including the application of constructive learning theories, aligned curriculum,
and open assessment practices.

The thesis presents a systematic literature review of existing applications of construc-
tive alignment, and argues for the need to explore approaches that aim to capture the
integrated nature of the original work. It argues that this can only be achieved through
adjustments to delivery and assessment practices, and proposes a set of guiding prin-
ciples that can be used to create the desired learning environment.

A model of constructive alignment is presented, which encompasses the proposed
principles and provides processes and guidelines for its implementation. The practi-
cality of the resulting approach is demonstrated through the description of two pro-
gramming unit exemplars.

Within this context, a concept-based, procedures-first, approach to introductory pro-
gramming is also proposed, along with a range of supporting tools and resources.
This approach provides students with a solid understanding of programming con-
cepts, and experiences with a range of programming languages and paradigms, by
the end of their first year of university study.

Analysis of the exemplar units, and the resulting student learning outcomes, demon-
strates the positive potential for learning environments created using the proposed
approach. The resulting learning environment supports a wide range of student ca-
pabilities, rewards students for deeply engaging with unit material, and encourages
them to use their imagination and creativity. Using this approach, teaching staff are
consistently astounded by the quality of work students are able to achieve.

While the exemplars applied the model to introductory programming, the discussion
illustrates how the model can be applied to a wider range of subject areas.

iii

Dedicated to all my students

v

Acknowledgements

In many ways, this work started when I was still very young and over the years the
ideas that now come together have been shaped by a number of influential people,
each of whom I would like to acknowledge for their formative role in this work.

I was fortunate to learn programming sitting at the kitchen table with my father. He in-
troduced me to computing, and taught me the importance of programming concepts.
Without these understandings, I would not be in the position I am today. Similarly, I
would like to thank my mother for her efforts to support the scouting movement that
the whole family eventually became engaged with. This helped reinforce the posi-
tive attitude of always doing your best, an attitude I now live by and have embedded
within the approach presented in this thesis.

My current employer, Swinburne University of Technology, also need a special thanks
for allowing me to try these radically different approaches to teaching introductory
programming, but more so for introducing me to colleagues who would enable this
to succeed. To Dr. Rajesh Vasa and Dr. Clinton Woodward, with whom I have shared
an office at various stages, I would like to say thank you for the many discussions
on teaching, and for working with me to apply these concepts to your teaching, and
promote it to wider audiences. I am also indebted to the tutors who have helped
me with the delivery of the programming units, I feel very lucky to have worked
with such great teams over the years. To Shannon Pace for all his hard work helping
prepare the various research papers we have worked on together, and to Allan Jones,
Rohan Liston, and Joost Funke Kupper for the work on teh Doubtfire tool.

I would like to acknowledge with particular gratitude the assistance of my supervi-
sors, Prof. John Grundy, and Dr. Clinton Woodward. Your support and feedback have
been critical in the formation of this thesis, and I hope to continue working with you
on this into the future.

Finally, I would like to thank my wife Alison for her loving support during the long
period it has taken me to conduct the research and write up this thesis.

Andrew Cain, 2013

vii

Declaration

I declare that this thesis contains no material that has been accepted for the award
of any other degree or diploma and to the best of my knowledge contains no material
previously published or written by another person except where due reference is made
in the text of this thesis.

Andrew Cain, 2013

ix

Publications Arising from this Thesis

The work described in this thesis has been published as described in the following list:

1. Cain & Woodward (2012), Toward constructive alignment with portfolio assess-
ment for introductory programming, in Proceedings of the first IEEE International
Conference on Teaching, Assessment and Learning for Engineering, IEEE, pp. 345–350.

2. Cain (2013a), Developing assessment criteria for portfolio assessed introductory
programming, in Proceedings of the 2nd IEEE International Conference on Teaching,
Assessment and Learning for Engineering, IEEE, pp. 55-60.

3. Cain & Woodward (2013), Examining student reflections from a constructively
aligned introductory programming unit, in Proceedings of the 15th Australasian
Computer Education Conference, Vol. 136, pp. 127–136.

4. Cain et al. (2013), Examining student progress in portfolio assessed introductory
programming, in Proceedings of the 2nd IEEE International Conference on Teaching,
Assessment and Learning for Engineering, IEEE, pp. 67-72.

5. Woodward et al. (2013), Helping students track learning progress using burn
down charts, in Proceedings of the 2nd IEEE International Conference on Teaching,
Assessment and Learning for Engineering, IEEE, pp. 104-109.

xi

Contents

1 Introduction 1
1.1 Research Goals . 4
1.2 Research Approach . 5
1.3 Key Contributions . 5
1.4 Thesis Structure . 6

2 Approaches to Constructive Alignment 9
2.1 Constructive Alignment . 9

2.1.1 Approaches to Learning . 10
2.1.2 Constructivism . 13
2.1.3 Aligned Curriculum . 17
2.1.4 The Model of Constructive Alignment 18
2.1.5 Biggs’ Example Implementation 21

2.2 Reported Applications of Constructive Alignment 22
2.2.1 Review Method . 22
2.2.2 Results . 28
2.2.3 Discussion . 43

2.3 Constructive Alignment in Introductory Programming 48
2.3.1 Challenges in Introductory Programming 48
2.3.2 Research Perspectives on Introductory Programming 51
2.3.3 Applying Constructive Alignment to Introductory Programming 52

2.4 Summary . 54

3 Guiding Principles 55
3.1 Principles to Guide HOW We Should Teach 56

3.1.1 Recognise Students Construct Knowledge in Response to Activity 57
3.1.2 Align Activities and Assessment to Intended Learning Outcomes 59
3.1.3 Assess Learning Outcomes, Not Learning Pace or Product Out-

comes . 59
3.1.4 Focus on Important Aspects, while Providing Access to Neces-

sary Details . 66
3.1.5 Communicate High Expectations 68

xiii

CONTENTS

3.1.6 Actively Support Diverse Student Efforts 68

3.1.7 Trust and Empower Students to Control their Own Learning . . . 69

3.1.8 Embed Reflective Practice In All Aspects 72

3.1.9 Be Agile and Willing to Change . 74

3.1.10 Summary . 77

3.2 Principles to guide what we should teach 78

3.2.1 Set the Strategy, and Structure Learning, Around a Program-
ming Paradigm . 79

3.2.2 Focus on Programming Concepts 80

3.2.3 Use Programming Languages as they were Designed to be Used 81

3.2.4 Summary . 85

3.3 Summary of Guiding Principles . 85

4 A Model for Constructive Alignment of Introductory Programming 86
4.1 Overall Strategy . 86

4.1.1 Assessment Approach . 87

4.1.2 Portfolio Assessment . 89

4.1.3 Delivery Approach . 93

4.1.4 Summary . 102

4.2 Constructively Alignment with Portfolio Assessment 103

4.2.1 Model Overview . 103

4.2.2 Defining Intended Learning Outcomes 105

4.2.3 Constructing Assessment Criteria 109

4.2.4 Develop Teaching and Learning Activities and Resources 112

4.2.5 Iteratively Deliver Unit and Provide Feedback 114

4.2.6 Construction, Submission, and Assessment of Portfolios 118

4.2.7 Addressing Plagiarism . 121

4.3 Summary . 124

5 Applying Constructive Alignment and Portfolio Assessment for Introduc-
tory Programming 125
5.1 Paradigm Choice . 126

5.2 Introductory Programming . 130

5.2.1 Aims for Introductory Programming 130

5.2.2 Defining Intended Learning Outcomes 130

5.2.3 Constructing Assessment Criteria 139

5.2.4 Developing Teaching and Learning Activities 142

5.2.5 Delivering the Unit . 150

5.2.6 Assessing Student Portfolios . 152

5.2.7 Introductory Programming in Summary 155

xiv

CONTENTS

5.3 Object Oriented Programming . 156

5.3.1 Aims for Object Oriented Programming 156

5.3.2 Defining Intended Learning Outcomes 156

5.3.3 Constructing Assessment Criteria 158

5.3.4 Developing Teaching and Learning Activities, and Delivering
the Unit . 159

5.3.5 Assessing Student Portfolios . 165

5.3.6 Comparison with the Introductory Programming Unit 166

5.4 Summary . 167

6 Supporting the Curriculum with Tools and Technologies 168
6.1 Visualising Task Progress to Support Formative Feedback 169

6.1.1 Requirements . 169

6.1.2 Doubtfire Solution . 172

6.1.3 Use and Evaluation of Doubtfire 181

6.1.4 Summary . 182

6.2 A Game Library to Support Procedures First 183

6.2.1 Requirements . 184

6.2.2 SwinGame Solution . 185

6.2.3 Use and Evaluation of SwinGame 186

6.2.4 Summary . 200

6.3 Programming Text to Support Concept-Based Approach 201

6.3.1 Requirements . 202

6.3.2 Arcana Solution . 203

6.3.3 Use and Evaluation of the Programming Arcana 211

6.3.4 Summary . 212

6.4 Video Podcasts to Support the Programming Text 212

6.4.1 Requirements . 212

6.4.2 Video Podcasts Solution . 213

6.4.3 Use and Evaluation of Video Podcasts 214

6.4.4 Summary . 215

6.5 Chapter Summary . 215

7 Evaluation of the Teaching and Learning Context 216
7.1 Research Design . 217

7.1.1 Action Research . 217

7.1.2 Thematic Analysis of Reflections 221

7.1.3 Addressing Ethical Concerns . 222

7.2 Lessons Learnt through Action Research 224

7.2.1 The Units . 224

xv

CONTENTS

7.2.2 Prior to Portfolio Assessment . 227
7.2.3 Early Iterations . 229
7.2.4 As the Model Stabilised . 237
7.2.5 Latest Iterations . 245
7.2.6 Current Iteration . 249
7.2.7 Summary . 250

7.3 Issues Identified in Student Reflections . 252
7.3.1 Method . 252
7.3.2 Results . 255
7.3.3 Discussion . 260
7.3.4 Summary . 267

7.4 Evaluating Progress using Burn Down Charts 268
7.4.1 Method . 268
7.4.2 Results . 271
7.4.3 Discussion . 277
7.4.4 Summary . 280

8 Discussion 281
8.1 Principles in Review . 282

8.1.1 Constructive Learning Theories (P1) 282
8.1.2 Aligned Curriculum (P2) . 283
8.1.3 Assessing Learning Outcomes (P3) 285
8.1.4 Supporting Principles (P4 to P12) 288
8.1.5 Principles Related to “What” We Teach (P10, P11, and P12) . . . 290

8.2 General Applicability of Approach . 291
8.2.1 Applicability of Constructive Alignment in General 291
8.2.2 Applicability of Approach to Other Units 292
8.2.3 Applicability to Team Work and Project Units 294
8.2.4 Applicability to Large Class Sizes 294
8.2.5 Applicability of Overall Strategy 295
8.2.6 Applicability of Activities within the Model 297

8.3 Approach in Relation to Prior Work . 297
8.3.1 In Relation to Work on Constructive Alignment 297
8.3.2 In Relation to Work on Introductory Programming 300

8.4 Challenges for Wider Adoption . 302
8.4.1 Adopting Constructive Learning Theories 302
8.4.2 Removing Mark-based Assessment 303
8.4.3 Holistic Assessment over Piece-by-Piece Assessment 304
8.4.4 Perceived Workload Issues . 304
8.4.5 Availability of Experienced Teaching Staff 305

xvi

CONTENTS

8.4.6 Combined Issues . 305
8.5 Transitioning to Portfolio Assessment . 306
8.6 Discussion Summary . 308

9 Conclusion and Future Work 309
9.1 Future Work . 311

A1 Constructive Alignment Literature Survey Data 335
A1.1 Paper Overview Details . 336
A1.2 Evaluation Data . 338
A1.3 Teaching and Learning Activities . 340
A1.4 Assessment and Alignment . 342

A2 Chapters from the Programming Arcana 344

A3 Ethics Approval for Research Protocol 348

xvii

List of Figures

2.1 Illustration of the continuum from constructivism to objectivism, and
the concepts present at levels of epistemology, education, and assessment. 14

2.2 Constructive alignment model presented by Houghton (2004) 19

2.3 The five levels of the SOLO taxonomy, used to help define intended
learning outcomes and assessment criteria, adapted from Biggs & Tang
(2007). 20

2.4 Systematic Literature Review processes carried out in this work, based
on steps of Kitchenham (2007). 23

2.5 Filter process applied to papers . 26

2.6 Pie chart showing the proportion of initial 335 papers in each status
based on the stage excluded by the filters 30

2.7 Pie chart showing the distribution of papers by field 31

2.8 Bar chart showing the level, and year, of the units reported. 32

2.9 Bar chart showing the number of papers published by year, including
earlier versions of work included in the analysis, and the partial count
of the papers published in 2012. 34

2.10 Method used to explain the alignment of the curriculum 38

2.11 When using a traditional assignment and exam assessment strategy,
particular attention is needed to ensure Staff intentions carry through
to student actions. 46

2.12 Intended learning outcomes from Thota & Whitfield (2010). 53

3.1 Key interactions between proposed principles for educators 57

3.2 An altered version of Figure 2.11 with students and staff now actively
involved in aligning work to the unit’s intended learning outcomes . . . 60

3.3 Formative feedback enables an ongoing learning process, with feedback
providing details on how work can be completed rather than being an
end in itself. 63

3.4 A hypothetical scenario, showing summative grading measuring pace
of learning. 64

3.5 An alternative to Figure 3.4, showing formative feedback supporting
learning during delivery with summative grading at the end. 65

xix

LIST OF FIGURES

3.6 Given a fixed teaching “volume”, a unit can cover either a breadth of
topics or fewer topics in depth. 67

3.7 Students reflect on their learning during the teaching period, and on the
outcomes they have achieved after the teaching period. 73

3.8 Staff relect on delivery during the teaching period, and on the outcomes
students achieved after the teaching period. 74

3.9 Relationship between a) overall strategy, b) resources and c) activities
used to manage change effectively. 75

3.10 When the focus is on the language, changing it changes a large portion
of what has been covered and the change is seen as disruptive. When
the focus is on the concepts, changing the language is now seen as sup-
porting the focus on the underlying concepts. 83

4.1 With portfolio assessment the student is responsible for, at least, the
selection of evidence in the assessment process. 90

4.2 The four kinds of portfolio based upon purpose and use from Smith &
Tillema (2001). 91

4.3 Portfolio assessment helps enable the view of teaching staff as acting as
a “guide by the side”, rather than a “sage of the stage” 92

4.4 An example of lecture material developed for one of the units using the
storyboard template, provided by Atkinson (2007) and available from
http://beyondbulletpoints.com, that outlines the stages in a Beyond
Bullet Points presentation. 95

4.5 Sample slides from the lecture created from the template shown in Fig-
ure 4.4. Act 1 and 3 use minimalist sentences, with visual representa-
tions of programming concepts being used to communicate the impor-
tant concepts. 98

4.6 An updated version of Figure 3.9 showing the selected assessment ap-
proach, and the interactive teaching and learning activities. 102

4.7 An overview of teacher and students roles (columns), and iterative de-
livery, in the constructive alignment model developed for the introduc-
tory programming units. 104

4.8 Factors that influence the defining of a unit’s intended learning out-
comes, and the construction of assessment criteria. These activities are
undertaken by teaching staff prior to the start of the teaching period,
see (a) from Figure 4.7. 108

4.9 Development of teaching and learning activities and resources uses de-
tails from the unit outline to create/select appropriate resources and
activities to ensure students engage appropriate activities during the
teaching period. 112

xx

http://beyondbulletpoints.com

LIST OF FIGURES

4.10 Iterative nature of the unit delivery process 115

4.11 Iterative process students undertake to get work signed off. 117

4.12 Processes of constructing, submitting, and assessment portfolios. 120

4.13 Illustration shown to students to highlight the process of constructing
their portfolio during the teaching period 120

4.14 Tests cover aspects already presented in the tests, helping verify stu-
dents completed the work themselves. 122

5.1 An updated version of Figure 3.9 showing the programming paradigms
that will form the approach for selecting content 128

5.2 Factors that influenced the definition of the intended learning outcomes
for introductory programming. Highlighting specific factors from the
previous more general factors presented in Figure 4.8. 131

5.3 Assessment criteria from the Unit Outline of the introductory program-
ming unit . 140

5.4 Example images of student work, including screenshots of games and
a photograph of hardware components. 140

5.5 An overview of the assessment process used to explain the criteria to
students. 154

5.6 An example UML class diagram from the Monopoly case study in the
object oriented programming unit. 163

6.1 An example burn down chart showing progress against weekly tasks . . 173

6.2 Overview of progress by unit from the Convenor Dashboard showing
indicators of student progress . 175

6.3 Convenor view showing distribution of student status by task, bars can
be stacked as shown or grouped by task status. 176

6.4 Tutor view of class group, and adjustment of task status. Student names
and id numbers have been obscured. 176

6.5 Student dashboard in Doubtfire showing personal progress for each en-
rolled unit using the tool . 177

6.6 The “Tasks” list enables students to view and change task status 178

6.7 UML state chart showing task states and transitions, and Tutor or Stu-
dent roles associated with performing these transitions. 178

6.8 UML state chart showing the detailed states within the Progressing state 179

6.9 Overview of main software components in Doubtfire’s implementation . 180

6.10 Overview of the components in the SwinGame library, their connec-
tions and organisation. 185

xxi

LIST OF FIGURES

6.11 The Pascal code for the House Drawing laboratory exercise from the in-
troductory programming unit. In this program students explored con-
cepts related to procedures and sequence. 187

6.12 The core exercise in Week 1 of the introductory programming unit had
students complete a program that told a joke. This included code to
draw images, play sound effects and draw text. 188

6.13 The programs created in Week 1 of the introductory programming unit . 189

6.14 The final code from the lecture example developed with students in the
Week 3 lecture of the introductory programming unit. The program
shows a light bulb image that can be turned on and off with the mouse
and space bar, and moved around the screen using arrow keys. 191

6.15 Games developed with students across a number of weeks in introduc-
tory programming . 192

6.16 The SwinGame website provides a means of distributing SwinGame
and its documentation . 193

6.17 SwinGame core logic is implemented in a number of modules that are
accessible via language specific wrappers 194

6.18 SwinGame’s language specific wrappers, library interface and program-
mer documentation are all generated from its source code. The transla-
tor reads the source code, and outputs the SwinGame library, and lan-
guage specific wrappers for a range of programming languages. 194

6.19 Example of markup language used to annotate SwinGame core logic to
enable generation of language specific wrappers 195

6.20 Attributes in the core logic code define the generation of a module level
wrapper, and the creation of classes for object oriented access to SwinGame
resources. 197

6.21 SwinGame supported unit delivery, the Programming Arcana, and the
video podcasts. 198

6.22 Front cover of the Programming Arcana, which used a magic theme to
engage students as they worked towards becoming wizards with the
computer. 202

6.23 Example concept pages from Chapter 5 of the Programming Arcana,
showing the use of visual concept maps to help explain concepts. 206

6.24 Example pages related to applying the concepts from the Programming
Arcana . 207

6.25 Example pages from the Programming Arcana showing C and Pascal
syntax and examples . 208

6.26 Example of the visualisation of the notional machine used in the Pro-
gramming Arcana . 210

xxii

LIST OF FIGURES

6.27 Examples pages from the Programming Arcana illustrating how the
concepts worked to instruct the notional machine 210

7.1 A visual representation of Mills (Mills 2010) Dialectic Action Research
Spiral . 217

7.2 Various documents used in the data collection for this research 218

7.3 Interactions between Action Research Activities and Teaching and Learn-
ing Activities, and their input into various documents. 220

7.4 Overview of the protocol used to avoid perceptions of coercion across
all units involved in this research . 222

7.5 Progression pathways through the introductory programming units . . 226

7.6 Result distributions from Iterations 1 and 2, note in particular the shift
in the number of High Distinctions. 231

7.7 Overview assessment criteria provided to students in the unit outline
of Introductory Programming (A) in Iteration 6. 240

7.8 Example assessment criteria related to a single intended learning outcome240

7.9 Main contents page from the template provided in Iteration 5 241

7.10 Result distributions for Introductory Programming (A) from Iterations
1, 3, 5, 6 and 8. 242

7.11 Result distributions for Object Oriented Programming (A) from Itera-
tions 2, 4, 7 and 9. 243

7.12 Result distributions for combined units in iterations 8 and 9 248

7.13 Distribution of grades for the full unit, for those students who agreed
to participate in the research, and for those who commented on issues. . 254

7.14 Number of students mentioning learning issues and programming is-
sues. See Table 7.8. 255

7.15 Number of students mentioning issues related to learning. See Table 7.9. 258

7.16 Number of students mentioning issues related to programming. See
Table 7.9. 259

7.17 Overview of assessment criteria provided to students in the unit outline 269

7.18 An example burn down chart from the online tool Doubtfire, showing
progress against weekly tasks for Introductory Programming (B) in It-
eration 9. 270

7.19 Distribution of grades for the full unit, for those students who agreed to
participate in the research, and those who included the burndown chart. 271

7.20 Distribution of portfolios according to chart class. Note that 40% of
students did not have all weekly tasks signed off. 273

7.21 Illustrations of the two Class C subclasses, subclass 1 with a consistent
gap and subclass 2 with a jagged sawtooth pattern. 274

xxiii

LIST OF FIGURES

7.22 Illustrations of the two Class D subclasses, with the “golf club” shaped
subclass 1. 274

7.23 Illustrations of the three Class F subclasses, with three large steps for
subclass 1, plateau in subclass 2, and larger “golf club” shape in sub-
class 3. 275

7.24 Illustrations of the different graph end points for Class N charts 276
7.25 Percentage tasks signed off for students with Class N charts. 276
7.26 Distribution of grades for each of the identified chart classes 277

8.1 Thoughts that guide teaching staff at either end of the constructivism-
objectivism continuum. Chapter 3 advocates a pragmatic approach to
constructivism, somewhere on the constructivist side of the continuum. 284

8.2 Illustration of time allocation to assessment tasks, with rectangle areas
representing effort expended by students preparing submissions, and
arrows representing effort for staff to provide feedback. 286

8.3 An alternative view of the principles outlined in Chapter 3, showing
Principles 4 to 9 providing support for the central principles of con-
structive learning theories, alignment of curriculum, and assessment of
learning outcomes. 288

xxiv

List of Tables

2.1 Approaches to Learning identified by Marton & Säljö (1976b,a, 2005) . . 10

2.2 Focus “aspects” for database search using PICOC 24

2.3 Data sources and the number of articles located for the search term
“Constructive Alignment” . 28

2.4 Counts of papers excluded by the indicated filters 30

2.5 The number of papers, from the 38 papers included in the analysis, in
each field of study . 31

2.6 Numbers of papers reporting on units at undergraduate and postgrad-
uate levels, and the indicated year level for undergraduate units. 31

2.7 Method of unit delivery . 32

2.8 Count of papers by geographic location where the unit was delivered. . 32

2.9 Year of publication for the papers analysed. Note that the count for
2012 is partial as the search was conducted on the 18th of July 2012.
Numbers in parenthesis indicate the number of papers removed in the
filtering process as a duplicate of later papers included. 34

2.10 Class types used by units that included face to face delivery 34

2.11 Method of incorporating constructive learning theories into the teach-
ing and learning activities . 35

2.12 Forms of assessment reported by the papers analysed 36

2.13 How alignment of teaching and learning activities, and assessment, was
achieved as reported in the papers analysed. 38

2.14 Example of alignment matrix from Terrell et al. (2011) 38

2.15 Number of papers using a single, multiple, and no evaluation source. . . 39

2.16 Evaluation sources used in the papers analysed 40

2.17 Positive results and issues related to the teaching and learning environ-
ment created . 41

2.18 Papers that reported different kinds of positive results, and percentage
compared to total number of papers reporting some positive results. . . 42

2.19 Papers that reported different kinds of issues, with percentage com-
pared to total number of papers reporting at least one issue. 42

xxv

LIST OF TABLES

3.1 Comparison of “Theory X” and “Theory Y” attitudes in education, adapted
from Markwell (2004) . 71

4.1 Selected list of verb related to the levels of the SOLO Taxonomy suitable
for defining intended learning outcomes, adapted from Biggs & Tang
(2007). 108

5.1 Illustration of the programming concepts related to procedural and ob-
ject oriented programming . 127

5.2 Alignment matrix showing staff-planned alignment of weekly topics to
the introductory programming unit’s intended learning outcomes. Stu-
dent descriptions of the topic alignment differed based on their individ-
ual learning. 144

5.3 Comparison of programming languages for the introductory program-
ming unit. 149

5.4 Alignment matrix showing staff-planned alignment of case studies to
the object oriented programming unit’s intended learning outcomes. As
with the introductory programming unit, student descriptions of the
case study alignment differed based on their individual learning. 161

6.1 Available features for each user group in Doubtfire 174

6.2 The main language translation attributes, their format and purpose. . . . 196

6.3 Video podcast series details . 213

7.1 Units in each iteration. 224

7.2 Principles related to the introductory programming units prior to con-
verting to constructive alignment with portfolio assessment. The X in-
dicates a principle in the form presented in Chapter 3, ∼ indicates par-
tially present but neither in planned focus nor in final form. 227

7.3 Principles related to the introductory programming unit in Iteration 1.
Focus is indicated by ? , Xindicates the principles is in the form pre-
sented in Chapter 3,∼ indicates partially present but neither in planned
focus nor in final form. 229

7.4 Unit Results Across Iterations 1 to 9 . 231

7.5 Principles related to Iteration 2. Focus indicated by ? , present indicated
by X, partially present indicated by ∼ . 233

7.6 Principles related to Iterations 3 to 6. This uses the same symbols as in
Table 7.3 and Table 7.5: focus ? , present X, partially present ∼ 237

7.7 Principles related to Iterations 7 to 9: focus ? , present X, partially
present ∼ . 246

7.8 Portfolios submitted, issue comments and grade distribution. 256

xxvi

LIST OF TABLES

7.9 Issue count results for grade and theme. Values of interest are indicated
using bold format. 256

7.10 Grade distribution of portfolios submitted 270
7.11 Illustrations of the seven chart classifications identified in this work.

The thinner blue line represents the Target Completion line, the thicker
orange line the Actual Completion. 272

7.12 Chart classification numbers, and grade distribution. 273

A1.1 Summary details of papers analysed in systematic literature review on
constructive alignment. 337

A1.2 Evaluation details from papers analysed in the systematic literature re-
view of applications of constructive alignment. 338

A1.3 Paper summary details from the systematic literature review on appli-
cations of Constructive Alignment. 340

A1.4 Paper summary details from the systematic literature review on appli-
cations of Constructive Alignment. 342

xxvii

1
Introduction

The work in this thesis aimed to improve student learning outcomes in introductory
programming units through the application of constructive alignment with portfo-
lio assessment. Through changes to the assessment approach, and delivery strategy
the work has demonstrated the creation of a positive, student-centred, teaching and
learning environment that encouraged, and rewarded, students for adopting deep ap-
proaches to learning. The foundations of this environment are captured in twelve
guiding principles, which are embodied in the approach that was developed over nine
iterations of a practical action research project. Results and analysis from this project
are presented and discussed in this thesis.

Programming is a critical skill in Computer Science and Software Engineering. As a
consequence students in these fields are taught programming from the start of their
degree programmes at many Universities. Although programming has been taught
for a number of decades, learning programming remains challenging (Jenkins 2002,
Lahtinen et al. 2005, Lister et al. 2004, McCracken et al. 2001, Ragonis & Ben-Ari 2007,
Renumol et al. 2010, Robins et al. 2003, Rountree et al. 2002, Wiedenbeck 2005), with
a general consensus that many students find programming hard. These challenges,
along with the current lack of success in this critical area, have been recognised by
McGettrick et al. (2005) as one of their seven grand challenges in computing education.
Despite persistent efforts over many years, we are still a long way from having specific
guidance on how best to approach teaching introductory programming.

Research into teaching introductory programming is an active part of the comput-
ing education research field. In their survey of literature on introductory program-
ming, Pears et al. (2007) identified four main categories: curricula, pedagogy, language
choice, and tool support. Work on curricula has examined how introductory program-

1

CHAPTER 1. INTRODUCTION

ming fits into the wider university computing curricula, including recommendations
for computing curricula by major professional computing societies (ACM/IEEE-CS
Joint Task Force 2012). Computing education research on pedagogy has examined the
teaching and learning of introductory programming and included topics such as ap-
proaches to adapt learning theory for computer science (Ben-Ari 2001), various views
of the central concepts of programming (Denning 1989, Dijkstra 1989, Hoare 1969,
Palumbo 1990, Robins et al. 2003), to work on appropriate cognitive structures (Eck-
erdal et al. 2005, Green & Petre 1996, Green 2000, Soloway 1986). Language and, by
association, paradigm choice has also been widely studied, with various papers on
which programming language to use in teaching introductory programming (Anik &
Baykoç 2011, Böszörményi 1998, Bishop & Freeman 2006, Brilliant & Wiseman 1996,
Howell 2003, Kelleher & Pausch 2005, Koffman 1988b, Maloney et al. 2010, Mannila
et al. 2006, Mannila & De Raadt 2006, Mody 1991, Pendergast 2006, Roberts 1993) to
debates on which programming paradigm should be used early in the curricula (As-
trachan et al. 2005, Bennedsen & Caspersen 2004, Cooper et al. 2003, Ehlert & Schulte
2009, Howe et al. 2004, Lister et al. 2006, Pattis 1993, Reges 2006). Also, research re-
garding tool support has examined the use of software tools specifically designed to
support the needs of novice programmers, including work on automated assessment
(Ala-Mutka 2007, Douce et al. 2005), visualisation (Naps et al. 2002), and programming
environments (Gross & Powers 2005, Kelleher & Pausch 2005, Kölling et al. 2003).

Advancements from general education literature have also provided additional advice
on underlying theories and practices. This includes works on the scholarship of teach-
ing and learning (Boyer 1990), approaches to teaching (Martin et al. 2000), approaches
to learning (Marton & Säljö 1976b, Entwistle 1991, Trigwell & Prosser 1991, Trigwell
et al. 1999, Marton & Säljö 2005), and analysis of the learner’s experience (Marton
& Booth 1997). While seen as beneficial, many of these general education theories
need further research, and a greater inclusion in the computing education research
discourse in order to determine their effectiveness in relation to teaching introductory
programming.

In their study of students’ experiences learning to program, Bruce et al. (2003) cate-
gorised the way students engage with learning to program into five categories, rang-
ing from approaches focusing on “getting through the unit,” to those aimed at discover-
ing what it means to be a programmer. Each of these categories can be broadly classi-
fied as either a surface or deep approach to learning (Marton & Säljö 1976b, Ramsden
1992) to program. When engaging surface approaches, students attempt to address
the outcomes with as little effort as possible. This leads to situations in which students
are primarily motivated by fear of failing, and experience learning as a struggle, with
the topic appearing tedious, hard and boring – adjectives that are too often associated

2

with learning to program (McGettrick et al. 2005). Alternatively, when engaging deep
approaches to learning students seek meaning in what they do, and relate their learn-
ing to the bigger picture. To succeed at learning to program, students need to engage
deep approaches to learning, as surface approaches alone are unlikely to be sufficient
(Bruce et al. 2003). Pedagogy that encourage students to adopt deep approaches to
learning should, therefore, help address some of the issues related to this challenging
topic.

Biggs’ model of constructive alignment (Biggs 1996, Biggs & Tang 2007), based upon
constructive learning theory (constructivism) and aligned curriculum, aims to en-
hance student learning outcomes by focusing on what the student does. Constructive
alignment aims to encourage students to use deep, rather than surface, approaches to
learning. The focus on the central role of the learner in building meaning is derived
from constructivist learning theories (Piaget 1950, Phillips 1995, Steffe & Gale 1995,
Jonassen 1991b, Vrasidas 2000), whilst the alignment of assessment, teaching, and
learning activities, has its foundation in instructional design literature (Tyler 1969, Co-
hen 1987, Ramsden 1992). Biggs’ model is student focused, with clear and intentional
alignment of assessment, teaching and learning activities, and unit objectives.

The principles of constructive alignment were discovered through the use of portfo-
lio assessment (Biggs 1996). In a unit on psychology, students had been presented
with a set of intended learning outcomes, and asked to construct a body of work that
demonstrated they had met the stated outcomes by the end of the unit. This work
was then collected together and submitted as a portfolio for assessment. The resulting
environment encouraged and rewarded students for focusing on developing deep un-
derstanding of concepts related to the stated outcomes. This original work provided
a clear vision, with strong compelling arguments for incorporating student-centred
approaches to unit delivery and assessment.

While there is extensive literature on constructive alignment in the general education
literature, the reported work has generally focused on adapting unit delivery without
changing assessment approaches. Given the central role of assessment in defining
curriculum (Ramsden 1992), from the students perspective, these approaches have
not been able to report the same degree of success as reported by Biggs (1996).

Constructive alignment has received little attention in computing eduction research
related to teaching introductory programming. The work of Thota & Whitfield (2010)
and Gaspar & Langevin (2012) have discussed the principles of constructive align-
ment in relation to teaching introductory programming. Gaspar & Langevin (2012)
used constructive alignment to suggest a range of potential changes, while Thota &

3

CHAPTER 1. INTRODUCTION

Whitfield (2010) provided a deeper discussion on adjusting delivery methods. While
these approaches indicate some potential, neither appeared able to recreate all aspects
of the positive student-centred learning environment reported in the original work on
constructive alignment.

Given this context, research that aims to recreate the positive student-centred learning
environment, as reported by Biggs (1996), could help inform both computing educa-
tion, and the wider education research literature. It is the view supported by the work
in this thesis that a supportive student-centred learning environment that encourages
students to adopt deep approaches to learning helps address some of the challenges
associated with teaching introductory programming. At the same time, recreating the
student-centred learning environment reported by Biggs (1996) has helped to identify
additional principles not currently promoted in associated with constructive align-
ment.

1.1 Research Goals

The primary focus of this research was to improve student learning outcomes in in-
troductory programming units through the application of constructive alignment, as
originally proposed by Biggs (1996). The goal was to create a supportive, student-
centred, learning environment in which students are encouraged and rewarded for
engaging in deep approaches to learning, and to identify principles and guidelines
that can be used by others looking to create similar environments.

Biggs’ original work on constructive alignment, and the use of portfolio assessment,
had been limited to small class sizes. It is our observation that introductory program-
ming units typically involve large class sizes, with potentially hundreds of students.
To enable this approach to unit delivery and assessment to be used in these introduc-
tory programming classes it was necessary for this work to determine processes that
enabled the approach to scale to these larger class sizes. By improving the scalability of
the general approach described by Biggs, the work in this thesis broadens the possible
applications for units using constructive alignment with portfolio assessment.

The work in this thesis also examined the environment resulting from the application
of the proposed approach. The resulting environment differed from traditional units
in higher education, in both its method of delivery and assessment. As a result, one
aim of this work was to gain a better understanding of how students learn in this new
environment.

4

1.2. RESEARCH APPROACH

Analysing student learning outcomes also provided an opportunity to develop tools
and resources to support the approach, and to examine the use of these tools within
the delivery of introductory programming units. These resources helped support the
identified principles and approach, which in turn aided student learning.

1.2 Research Approach

As the goals of this research work focused on improving student learning outcomes, it
indicated the need for a practical and applied research method. As a result, this study
used a Practical Action Research (Creswell 2008) design based on Mills’ (Mills 2010)
dialectic action research spiral. The model, and identification of its underlying princi-
ples, developed over a number of iterations, with each iteration involving a number
of steps. The approach involved reflective practice, with each iteration providing in-
sights that feed into subsequent iterations.

The Practical Action Research method used involves iteratively performing the fol-
lowing steps: (1) identify an area of focus, (2) collect data, (3) analyse and interpret
the data, and (4) develop an action plan. In practice each iteration aligned to a teach-
ing period and collected data from students undertaking units using the proposed
approach. At the conclusion of each teaching period data was analysed and an ac-
tion plan developed for subsequent iterations. The focus of each iteration varied as
different aspects of the model required attention.

The final model, as presented in this thesis, is the result of nine iterations of the Prac-
tical Action Research method. Each iteration helped refine the approach, with the
model stabilising after significant change in early iterations.

1.3 Key Contributions

The contributions of this thesis relate to the dual fields in computing education re-
search: education, and computer science and software engineering. This thesis makes
the following contributions to the field of education:

• A systematic literature review of applications of constructive alignment.
• A set of guiding principles for the development and delivery of units that aim

recreate the “web of consistency” evident in the early work on constructive
alignment.

5

CHAPTER 1. INTRODUCTION

• An approach to constructive alignment developed from the guiding principles
with strong links to constructivism in both teaching and learning activities, and
assessment.

• An online task tracking tool to help students track their progress on tasks de-
signed to provide students with feedback.

• Evaluation of the resulting teaching and learning context, and tools, from an
educational perspective.

This thesis makes the following contributions to computer science and software engi-
neering:

• An introductory programming curriculum designed using the principles of con-
structive alignment.

• An approach to teaching introductory programming, that embodies the identi-
fied principles, with guidelines for implementing this approach.

• Example implementations of the approach presented, demonstrating its appli-
cation to teaching a number of introductory programming units.

• A concept-based approach to introductory programming, together with sup-
porting resources including a concept-based text, a game development frame-
work, and a range of video podcasts.

As a whole, these contributions support Biggs (1996) model of constructive alignment,
and demonstrate a learning context that is aptly captured in the following quote (Biggs
& Tang 2007) (p54):

All components in the system address the same agenda and support each
other. The students are ‘entrapped’ in this web of consistency, optimiz-
ing the likelihood that they will engage the appropriate learning activities
. . . but leaving them free to construct their knowledge their way.

1.4 Thesis Structure

This thesis first considers existing applications of constructive alignment, and then
goes on to develop a model of constructive alignment using portfolio assessment. Fol-
lowing this a curriculum for introductory programming is proposed, evaluated, and
discussed in detail.

Chapter 2 - Approaches to Constructive Alignment provides an extensive literature

6

1.4. THESIS STRUCTURE

review of applications of constructive alignment. The main finding of this work indi-
cates that applications of constructive alignment reported in the research literature
tend to focus on staff aligning activities and assessment to intended learning out-
comes. Constructive learning theories, when addressed, related to the design of teach-
ing and learning activities, but not to assessment approach.

Chapter 3 - Guiding Principles outlines twelve principles that underlie this work;
nine relate to how the teaching and learning environment should operate, and the
remaining three relate to what is to be taught. These principles guided decision making
throughout this research, and underlie the approach and example units presented.

Chapter 4 - A Model for Constructive Alignment of Introductory Programming
presents an approach to constructive alignment with strong links to constructivism in
both teaching and learning activities, and assessment. While the approach presented
was developed for the teaching of introductory programming, general methods for its
adoption are discussed. This work helps address the gap identified in the literature
review.

Chapter 5 - Applying Constructive Alignment and Portfolio Assessment for Intro-
ductory Programming proposes an introductory programming curriculum designed
using the principles of constructive alignment, with strong emphasis on both con-
structivism and aligned curriculum. This curriculum revives the “procedures-first”
approach to introductory programming, and moves the focus from syntax to underly-
ing concepts and abstractions. Through the use of graphical programming grammars,
the curriculum incrementally introduces students to programming concepts and then
associated syntax. This approach is based on constructive learning theories and aims
to help students build viable models of the underlying machine and programming
abstractions.

Chapter 6 - Supporting the Curriculum with Tools and Technologies describes a
range of resources used to support the approach in teaching introductory program-
ming: an online task tracking tool, game development framework, programming text,
and video podcast series. The task tracking tool provided students with details of
their progress as they worked throughout the delivery of the unit. The game develop-
ment framework presented was designed primarily as a teaching tool to support the
procedures-first concept-based approach to teaching introductory programming used
in the example units. This is further supported by a programming textbook, and a
series of video podcasts.

Chapter 7 - Evaluation of the Teaching and Learning Context describes the iterations

7

CHAPTER 1. INTRODUCTION

of the action research method, and provides an evaluation of the teaching and learning
context created through the implementation of the approach presented. This work
examines the resulting learning environment from an education as well as a computer
science and software engineering perspective. This chapter also presents the results of
thematic analysis of students portfolios, with one analysis examining issues students
raised and the other reporting on progress students made throughout the teaching
period.

Chapter 8 - Discussion elaborates on the implications of the findings, and how these
can apply to wider contexts. It also discusses the importance of each of the guid-
ing principles, and the aspects of the approach in crafting a supportive teaching and
learning environment. The overall outcomes experienced are discussed along with
challenges for wider adoption.

Chapter 9 - Conclusion and Future Work provides a summary of the thesis, and ar-
gues that the findings presented can aid in the design and delivery of teaching and
learning in higher education. This chapter closes with a discussion of potential future
work aimed at extending the approach and curriculum presented.

The Appendix contains data gathered as part of the background literature review in
Chapter A1, an illustrative list of the concepts presented in the programming text in
Chapter A2, and documentation indicating Ethics approval has been granted for this
work in Chapter A3.

8

2
Approaches to Constructive Alignment

This chapter reviews the existing literature related to constructive alignment, its the-
oretical foundations, applications in higher education, and relationship to published
work in computing education research. The chapter aims to provide a general back-
ground on existing approaches to constructive alignment. Additional background
literature is discussed in the following chapters in relation to the specific work pre-
sented.

Section 2.1 provides background on constructive alignment, and relevant associated
work on constructivism and aligned curriculum. This is followed in Section 2.2 with
a systematic literature review of applications of constructive alignment reported in
peer reviewed research publications, which outlines how others have approached the
application of constructive alignment and their findings. Section 2.3 then follows with
a discussion of the challenges of teaching introductory programming, associated work
from the computing education literature, and specifically looks at how constructive
alignment has been applied for introductory programming. The chapter closes with
Section 2.4 by briefly commenting on the opportunities for research that are addressed
in the remainder of this thesis.

2.1 Constructive Alignment

Constructive alignment, as proposed by Biggs (1996), is an amalgamation of construc-
tive learning theory and aligned instruction design. It aims to elicit deep learning
approaches from all students. Biggs’ model is student focused, with clear and inten-
tional alignment of assessment, teaching and learning activities, and unit objectives.
The central role of the learner in building meaning is derived from constructivist learn-

9

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

ing theories, whilst the alignment of assessment, teaching, and learning activities, has
its foundation in instructional design literature.

This section briefly describes these underlying principles and related literature, each
of which is later expanded upon in Chapter 3. Section 2.1.1 describes the work on
approaches to learning, and discusses how the learning environment can influence
students’ approaches to learning. The central focus on constructive learning theories
is then discussed in Section 2.1.2, with a discussion of aligned curriculum following
in Section 2.1.3. The section concludes with an overview of the model of constructive
alignment, Section 2.1.4, and then a brief discussion of the example implementation of
these principles that was presented by Biggs (1996).

2.1.1 Approaches to Learning

The studies by Marton & Säljö (1976b,a, 2005) on student approaches to learning ex-
amined the processes and strategies students applied to learning. The work identified
two different levels of processing, described as surface and deep approaches to learning,
summarised in Table 2.1. When a student adopts a deep approach to learning, they
study with the aim of understanding the material. They engage meaningfully with the
task at hand, and use high cognitive levels in order to integrate the new knowledge
into their current understanding. In contrast, when students use surface approaches to
learning they engage lower cognitive levels, and aim only to be able to reproduce the
material in test or exam conditions. When reading, for example, surface approaches
can be characterised as focusing on the text itself, while deep approaches look for the
meaning behind the text. Later work also added a third approach to learning termed
a strategic approach by Ramsden & Entwistle (1983), or achieving by Biggs (1987), iden-
tified students who switch between deep and surface learning approaches in order to
maximise their grade.

Table 2.1: Approaches to Learning identified by Marton & Säljö (1976b,a, 2005)

Deep Surface
- Engage meaningfully - Engage without meaning
- High cognitive level - Low cognitive level
- Aim to integrate knowledge into self - Aim to reproduce for assessment
- Long term understanding - Short term memorisation

Marton and Säljö’s work examined the different strategies students had used when
adopting surface and deep approaches to learning, and attempted to provide activ-
ities designed to engage surface learners in similar activities to those adopting deep
approaches (Marton & Säljö 2005). For example, one strategy had the student answer

10

2.1. CONSTRUCTIVE ALIGNMENT

questions similar to those spontaneously asked by students who had engaged in deep
approaches to learning. This strategy resulted in students adapting their surface learn-
ing approaches rather than in any change in the way they approached their student.
Students continued to “skim the surface” of the text, but in such a way as to be able to
simply mention content from various sections in a very superficial way.

An alternative strategy resulted in more positive results, as reported by (Marton &
Säljö 1976a). In this experiment, students were asked to read three chapters from a
text with the aim of answering questions after reading that required either a) pre-
cise factual information, or b) broader understanding in terms of major lines of rea-
soning. Students who expected to answer factual questions tended to adopt surface
approaches to learning. The group who expected broader questions had a mix of
different approaches, with some adopting deep approaches, but not all. The major
influencing factor had been the students interpretation of what was expected of them,
with only half of the group interpreting the expectations as intended.

A range of subsequent studies have associated deep approaches to learning with higher
quality learning outcomes (van Rossum & Schenk 1984, Prosser & Millar 1989, Trig-
well & Prosser 1991, Ramsden 1992, Marton & Säljö 2005, de Raadt et al. 2005). The
work reported by de Raadt et al. (2005) related to the teaching of introductory pro-
gramming, and used Biggs et al. (2001) two-factor study process questionnaire (R-
SPQ-2F) to evaluate the affect of study approach on results for one hundred and sev-
enty seven students across eleven tertiary education institutions across Australia and
New Zealand. The work found that approach to learning had the strongest correlation
to success as compared to other cognitive and demographic measures.

A student’s perception of their learning environment has been found to influence the
approach they take in their study. A range of investigations into students’ percep-
tions of their learning environment, and its impact on the approach to learning, were
reported by Ramsden (1992). Shallow approaches were adopted by students who per-
ceived assessment as requiring memorisation and recall, and by those who perceived
workload to be high. Perceptions of high quality teaching, freedom in choosing some
aspects of what is to be learned, and clarity of goals and standards required were all
related to deep approaches (Trigwell & Prosser 1991, Ramsden 1992, Trigwell et al.
1999). These findings provide additional support for the original work of (Marton &
Säljö 1976a), that found that students adapt their learning approach based on what
they perceive is expected of them.

Trigwell et al. (1999) suggested that, given the observed relations between perceived
environment and approach to learning, improvements in learning outcomes may be

11

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

achieved by creating an environment that encourages and supports deep approaches.
Their work reported a number of important factors in creating this environment, in-
cluding; teaching staff providing useful feedback, making objectives clear, motivating
students and providing flexibility for students to determine what and how they learn.

In their study of students’ experiences learning to program, Bruce et al. (2003) cate-
gorised the way students engage with learning to program into five categories, listed
below. Each of these categories can be broadly classified as either a surface or deep
approach to learning to program. When engaging surface approaches, students at-
tempted to address the outcomes with as little effort as possible. This leads to situa-
tions in which students are primarily motivated by fear of failing, and experience the
learning as a struggle, with the topic appearing tedious, hard and boring, adjectives
that are too often associated with learning to program (McGettrick et al. 2005). On
the other hand, when engaging deep approaches to learning students seek meaning
in what they do, and relate their learning to the “bigger picture.”

Surface Approaches where student attention is on the parts and not the whole:

Following - “getting through” the unit becomes the students primary goal, and
their focus is on completing assessment tasks without aiming to develop
any level of understanding.

Coding - rote memorisation of programming language syntax.

Deep Approaches attention is on programming as a whole:

Understanding and integrating concepts - students focus is on understanding
programming concepts, and integrating these ideas to help with the devel-
opment of programs.

Problem solving - programming is seen by the students as a means of solving
problems, and their focus is on learning different ways to structure code to
create solutions.

Participation/enculturation - students aim to become programmers and to en-
gage with the software development community and its culture.

To succeed at learning to program, students need to engage deep approaches to learn-
ing, as surface approaches alone are unlikely to be sufficient (Bruce et al. 2003). Ped-
agogy that allows us to encourage students to adopt deep approaches to learning
should, therefore, help address some of the issues related to this challenging topic.

12

2.1. CONSTRUCTIVE ALIGNMENT

2.1.2 Constructivism

Constructivism is a theory to explain the development of knowledge that focuses on
the active role of the learner in constructing their own understanding. Dating back
to Piaget (1950) constructivism exists in several forms: cognitive, individual, post-
modern, radical and social constructivism (Phillips 1995, Steffe & Gale 1995). Each of
these forms of constructivism has various implications for teaching and learning. Two
review papers that discuss these implication are Jonassen (1991b) and Vrasidas (2000).
These reviews outline the differences between constructivist and objectivist thinking
in terms of education.

Approach to education is greatly influenced by educator’s theory of teaching and
learning, with constructivist and objectivist theories often being seen at two extreme
ends of a continuum. Objectivism is characterised by the presence of external mean-
ing, or knowledge, and education is therefore a task for the learner to come to know
that which is real (Jonassen 1991b, Vrasidas 2000). Effective education can be realised
through standardisation, and productivity improved through the mechanisms of man-
agement, as in business and industry (Tyler 1969, Vrasidas 2000). In contrast, construc-
tivism is characterised by knowledge being internal to the learner, a human construc-
tion that is an interpretation of the external world (Jonassen 1991b, Vrasidas 2000).
Constructive teaching theories relate to guiding learners, helping them to adopt vi-
able models with the aim of enabling them to think and act like experts. This suggests
that effective education can be realised by creating an environment that gives students
control over their learning (Vrasidas 2000).

The differences between constructivist and objectivist thinking are illustrated in Fig-
ure 2.1. The illustration presents the characteristics of the two ends of the continuum,
from constructivism on the left to objectivism on the right, related to epistemology,
education, and assessment.

Epistemology : This section illustrates differences in how the two philosophical paradigms
view knowledge

• Constructivism is shown with knowledge being a human construction that
is informed by observation of, and constrained by, external reality.

• Objectivism is depicted with human knowledge being a reflection of the
external reality, the true source of knowledge.

Education : Shows differences between the two philosophical paradigms in terms of
what makes effective education

• Constructivism centres around guiding the learner’s active construction of
knowledge, with the objective of helping the learning think and act like an

13

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

ObjectivismConstructivism

Knowledge / Meaning

Knowledge

Constrains

Reflection of
"Reality"

Interpretation

Accept Variation

Social and Interactive Learning

Knowledge is Transfered

Standardisation

Learning as Production

Student Work

Compare

Volume of
Student's Knowledge

Knowledge is Constructed

Compare

Structure of
Expert's Knowledge

Ep
ist

em
ol

og
y

Ed
uc

at
io

n
As

se
ss

m
en

t

~ Qualitative ~ Quantitative

Outcome = Think and Act
like an Expert

Outcome = Know Reality

External
Knowledge

sum / total
 = 50%

Structure of
Student's Knowledge

}{Multistructural
Some misconceptions

= barely adequate

Figure 2.1: Illustration of the continuum from constructivism to objectivism, and the
concepts present at levels of epistemology, education, and assessment.

14

2.1. CONSTRUCTIVE ALIGNMENT

expert.
• Objectivism aims to effectively transfer knowledge to the learner, with the

goal of them knowing reality.

Assessment : The final section of the illustration shows the different views on how to
assess student understanding.

• When guided by constructivism, assessment involves qualitatively evalu-
ating the structure of the student’s knowledge in relation to the structure of
an expert’s knowledge.

• Adopting objectivism, assessment involves quantitatively evaluating the
amount of external knowledge the student has managed to correctly retain.

When education is guided by objectivism, instruction becomes the task of efficiently
transferring knowledge to the learner. Material and tests can be standardised, using
processes from business and industry to gain “productivity-like” improvements and
to ensure the largest number of students are provided with access to the knowledge
(Tyler 1969, Vrasidas 2000). Learning is seen as a matter of getting students to correctly
conceptualise and categorise things, including the relationships between them (Lakoff
1987). It follows, therefore, that assessment is a matter of measuring the students
behaviour against expectations. A focus on factual details is central to this extreme of
the continuum.

With constructivism, education is seen as creating a learning environment in which
students will be exposed to situations that will enable their individual construction
of knowledge (Jonassen 1991b, Vrasidas 2000). Given that the student is constructing
their own knowledge, context is important and prior experience shapes what a student
learns (Jonassen 1991a). The goal is therefore to guide students in the construction of
their knowledge, and to try to help them construct viable and meaningful conceptual
structures (Jonassen 1991b, Vrasidas 2000). Assessment, in constructivist thinking, is
divergent as each student will bring their own “reality” and learning objectives there-
fore become less important and possibly irrelevant (Jonassen 1992).

In relation to studies on effective teaching, constructivist learning theories – with their
student-centred focus – appear to map well to features of productive learning envi-
ronments. Martin et al. (2000) reported a study of twenty six university teaching staff,
considering how they intended to present a topic to their students and how they sub-
sequently delivered the topic. Their results indicated that where staff conceived of
the topic as “knowledge as given”, they adopted teacher-focused information trans-
mission forms of delivery consistent with objectivist theories. Given the findings dis-
cussed in Section 2.1.1, these strategies may result in students perceiving memorisa-
tion and recall as being what is required, and therefore adopt surface approaches to

15

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

learning. Where the university staff viewed the object of study as related to concep-
tual change, a student-focused approach was taken, which is more consistent with
constructivist thinking. When such approaches were adopted, learning tended to fo-
cus on higher cognitive level activities, with a broader focus on the discipline, practice
or life-long-learning and encourage students to engage in deep approaches to learn-
ing.

Early work on applying constructive learning theories to teaching computer science
(Ben-Ari 1998, 2001) reported additional challenges in the application of construc-
tivism due to the nature of computing. Beginner student in computer science have
no effective model of a computer to start with, instead beginning their study with a lim-
ited model akin to a “giant brain.” These inadequate models, and possible associated
misconceptions, are likely to be exposed through interactions with the computer and
possible “psychological grief” resulting as students work toward viable model. To
address these issues, Ben-Ari (1998, 2001) suggested the explicit teaching of a model
of the computer, as originally proposed by DuBoulay (1986).

Van Gorp & Grissom (2001) provided a range of constructivist techniques suitable
for teaching introductory programming, with the view of the constructivist classroom
as a problem-solving environment. The work recommended students be provided
authentic, though simplified, problems to help intrinsically motivate students, and
that meaningful activities be designed to enable students in the construction of their
own knowledge. Suggested activities included:

• Code walkthroughs where students walk through existing code to predict com-
puter behaviour.

• Code writing where students produce small programs, small programs or pseu-
docode may be provided as scaffolding for more complex tasks.

• Location and correction of issues, both logical and syntactic, in the form of code
debugging activities.

• Greater interactivity was recommended for lectures, with students then being
given time to reconstruct lecture notes as a summarising activity.

Thramboulidis (2003a,b,c) described a shift from teaching a second programming unit
on object oriented programming from a traditional “textbook” style approach, to a
design-first approach based upon constructivist learning theories. The course pre-
sented by Thramboulidis involved students modelling familiar real-world situations
using object oriented programming principles and class and sequence diagrams. This
utilised students understanding of “objects” in the real world in the production of
object oriented simulations suitable for implementation in computer programs. Fol-

16

2.1. CONSTRUCTIVE ALIGNMENT

lowing these activities, students went on to design and implement an object oriented
calculator, making use of the concepts they had learnt from the earlier tasks. Results
reported in this work indicated that the more active engagement of the students had
resulted in positive improvements in both the pass rate and programs the students
created.

Constructivism has also been applied to teaching computer graphics, with mixed re-
sults. Taxén (2004) reported on a case study where they had applied constructive
learning theories to teaching 3D graphics. The strategy applied in this work related
to discovery learning (Duffy & Cunningham 1996) where teaching staff refrain from
making explicit instruction, and instead provided a series of activities to help student
discover the relevant knowledge themselves. The discussion and conclusions of Taxén
(2004) indicated that students had felt the learning environment was too challenging,
and they did not have sufficient background knowledge. Taxen’s reflections indicated
the use of an exam had contributed to a disconnect between the teaching approach
and the assessment approach; the exam, in effect, encouraged students to adopt sur-
face approaches that had been actively discouraged in the learning.

Wulf (2005) reported a constructivist-based pedagogy for teaching introductory pro-
gramming and information technology that was considered to have created a more
accessible environment for a wider range of students. This work recommended the
active learning tasks outlined by Van Gorp & Grissom (2001), and expanded upon this
with a studio-based approach to teaching introductory programming with collabora-
tive group-based instruction to create a more student-centred learning environment
for computer science units.

These various works on constructivism in computer science education indicate that
the application of constructivist learning theories should be beneficial for teaching in-
troductory programming. By focusing on the active role of the student in constructing
their own knowledge it should be possible to create a unit in which students develop
an appropriate model of the computer, gain an understanding of important program-
ming concepts, and acquire associated programming skills.

2.1.3 Aligned Curriculum

Tyler (1969) defined curriculum alignment as occurring when material learnt in earlier
years is built upon and supported in subsequent classes. Tyler’s aligned model con-
sisted of four major steps (1) identifying objectives, (2) choosing appropriate learning
experiences, (3) organising these experiences so as to maximise learning, and (4) eval-

17

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

uating the resulting learning. These four steps were always aligned, with objectives
matching experiences and assessment tasks. The work of (Ramsden 1992) indicates
that this alignment can be achieved as long as assessment matches objectives; from
the students perspective the curriculum is always defined by the assessment.

Benefits of aligned curriculum can be related to the work on approaches to learning.
One of the identified requirements for positive learning environments, discussed in
Section 2.1.1, was the clear communication of expectation to students. In an aligned
curriculum the teaching and learning activities match the assessment tasks, and help
provide the clarity of intention required to encourage students to engage in deep ap-
proaches to learning.

The impact of aligning teaching and learning activities and assessment tasks was high-
lighted by Cohen (1987). In discussing instructional alignment Cohen (1987) reported
students achieved significantly better results when the teaching was aligned to the
assessment than with non-aligned instruction. This is in line with expectations if an
aligned curriculum is likely to help engage students appropriately with learning tasks.

2.1.4 The Model of Constructive Alignment

Constructive alignment brings together aspects of constructive learning theories to-
gether with aligned curriculum, with the overall aim of encouraging students to adopt
deep approaches to learning.

In his original paper on constructive alignment Biggs (1996) adopted constructivism as
a framework to help guide decision making in all facets of teaching and learning. Con-
structivism was chosen due to its central focus on the students construction of their
own knowledge, and the student-centred learning environments that result from ac-
cepting this epistemology. Biggs (1996), clarified again in Biggs & Tang (2007), makes
it clear that the emphasis is on student activity being central to knowledge construc-
tion, and that education should focus more on conceptual change than on acquisition of
information. This pragmatic view places Biggs work somewhere on the constructivist
side of the constructivism-objectivism continuum, but not necessarily at its extreme.

Aligned curriculum forms the second pillar of constructive alignment. Biggs (1996)
proposed the alignment of teaching and learning activities and assessment tasks to a
unit’s intended learning outcomes. Intended learning outcomes capture unit1 goals in
terms of cognitive activities students will be able to perform by the end of the unit.

1A unit in this context refers to a unit of study, also called a subject or course in other institutions.

18

2.1. CONSTRUCTIVE ALIGNMENT

Biggs’ work claimed that this use of aligned curriculum – with constructivist learning
theories – results in a student-centred learning environment and a clear focus and
consistent message.

Houghton (2004) described an overall model of constructive alignment, illustrated in
Figure 2.2, as consisting of the following blocks:

• Intended learning outcomes clearly define required learning in terms of “perfor-
mances of understanding.”

• Performance objectives emerge from the desired outcomes, and can be ranked to
become the assessment criteria.

• Teaching and learning activities are designed to place students in situations likely
to elicit the required learning.

• Students provide evidence of their learning, that are assessed against the criteria to
determine grade outcomes.

Figure 2.2: Constructive alignment model presented by Houghton (2004)

Intended learning outcomes are central to constructive alignment, and therefore their
construction must ensure suitable cognitive levels are required in order to encourage
deep approaches to learning. Biggs (1996) proposed the use of the SOLO taxonomy

19

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

(Biggs & Collis 1982) for this purpose. SOLO stands for Structure of the Observed Learn-
ing Outcome and defines five levels of outcomes: pre-structural, uni-structural, multi-
structural, relational and extended abstract. These levels are illustrated in Figure 2.3
and described in the following list. Each of the five levels of outcomes can be associ-
ated with a list of verbs likely to elicit that level of cognitive activity, and these verbs
can then be used in defining a unit’s intended learning outcomes.

Prestructural indicates no understanding of the topic; essentially, the student has
missed the point.

Unistructural indicates understanding of one relevant aspect of the topic; the student
starts addressing the topic but does little more than get on track.

Multistructural indicates understanding several relevant aspects, but each is under-
stood in isolation. The student can provide a suitable list of facts, but does not
structure their response to address the topic as a whole. To adopt cliché, the
student “sees the trees but not the forest.”

Relational understanding indicates that the topic is seen as a whole, with the various
aspects integrated into a relevant structure. The student can respond appropri-
ately to questions, demonstrating an integrated understanding of the topic.

Extended Abstract goes beyond the present, generalising the structure into new do-
mains or in new ways. The student should be able to demonstrate a “break-
through” response providing new insights on the topic.

Le
ar

ni
ng

 O
ut

co
m

e

Prestructural Unistructural Multistructural Relational Extended
Abstract

Figure 2.3: The five levels of the SOLO taxonomy, used to help define intended learn-
ing outcomes and assessment criteria, adapted from Biggs & Tang (2007).

Constructive alignment aims to encourage students to engage in deep approaches to
learning by clearly stating unit intended learning outcomes, aligning teaching and
learning activities and assessment tasks with these outcomes, in a student-centred en-
vironment. In this way, constructive alignment helps communicate to students the

20

2.1. CONSTRUCTIVE ALIGNMENT

required approach to learning, with a consistent message throughout delivery and as-
sessment. The resulting student-centred environment weaves a “web of consistency,”
optimising the likelihood of students engaging appropriately with learning activities
(Biggs 1999).

2.1.5 Biggs’ Example Implementation

Interestingly, the principles of constructive alignment were not conceived and then
implemented, but rather discovered through reflection. Biggs & Tang (2007) (p.51) de-
scribes the discovery of these principles through the application of a portfolio for as-
sessment of a third year psychology unit in the Bachelor of Education, the compelling
example used in Biggs (1996) and further elaborated upon in Biggs & Tang (1997).

Biggs & Tang (1997) described a portfolio as a body of work selected by the student
to demonstrate that they had met the unit’s intended learning outcomes. A portfolio
consisted of a number of items, or pieces of work, as well as an overall statement indi-
cating why the items had been included, and how they demonstrated that the student
had met the unit’s intended learning outcomes. Portfolios are discussed in further
detail in Section 4.1.2.

Biggs’ example of constructive alignment clearly demonstrated the application of both
constructive learning theories, and aligned curriculum. By using a portfolio, the unit
revolved around the intended learning outcomes, with students needing to submit
a body of work that demonstrated how they had met outcomes in order to pass the
unit. The portfolio was assessed holistically, with different grade outcomes relating
to how well the learning outcomes had been addressed. Teaching and learning activi-
ties revolved around the preparation of portfolio pieces, including a range of student
centred activities and guided instruction where appropriate.

Biggs (1996) indicated that the results from the first implementation of the example ap-
plication of constructive alignment had “stunning” results; portfolios included a range
of rich and exciting evidence of learning, a large number of students received high
grades, and student feedback was the best the unit had received. Biggs attributed this
success to the design of the unit. Intended learning outcomes had defined required
performance levels, teaching and learning activities had elicited them, and assessment
had confirmed them. The assessment, activities, and outcomes had been in alignment,
all working together to help the students construct the required knowledge. These
aspects then formed the formal pillars of the constructive alignment model proposed
by Biggs.

21

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

2.2 Reported Applications of Constructive Alignment

In this section we outline a literature review that examines some applications of con-
structive alignment in Higher Education. This review aims to identify how construc-
tive alignment can be applied to introductory programming, and any gaps in the cur-
rent research literature.

2.2.1 Review Method

Petticrew & Roberts (2008) defined a systematic literature review as a process of sys-
tematically analysing all available studies in order to answer specific research ques-
tions. The systematic nature of reviews carried out in this manner ensure that the
review is thorough and fair, providing an opportunity to synthesise existing work in a
scientific manner. The review presented here followed the systematic literature review
process of Kitchenham (2007), and aimed to identify, to the best of our knowledge, all
available studies on how Constructive Alignment has been applied in Higher Educa-
tion.

Figure 2.4 shows the three phases in the systematic literature review carried out in this
work. The first phase identified appropriate search and filter criteria used in locating
associated literature. In Phase 2, the search criteria was used to identify potentially
relevant articles from the indicated sources. The articles identified were then filtered,
using the filter criteria, to identify the relevant articles to pass on to Phase 3, where
relevant data was collected from the articles, and the results analysed.

Phase 1: Search and Filter Criteria

This review focused on the application of constructive alignment, and the effective-
ness of the teaching and learning environment created. Petticrew & Roberts (2008)
suggested that the formulation of research questions for a systematic review should
consider five aspects: Population, Intervention, Comparison, Outcome and Context
(PICOC). Addressing these five aspects enabled the creation of effective search and
filter criteria.

Table 2.2 lists the five PICOC aspects related to this review. The Population consists
of the specific target group that the study examines. In this study the population
included students and academics in the context of Higher Education. This work aimed

22

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

Select Sources
and Define

Search Criteria

Filter
Search Results

Collect
Data

Analyse
Results

Determine
Review

Questions

Perform
Search

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

Sources, Search and Filter criteria

Filter and Data Collection
performed concurrently

Questions

Articles

Articles

Data

Figure 2.4: Systematic Literature Review processes carried out in this work, based on
steps of Kitchenham (2007).

to review interventions where academics had applied the principles of constructive
alignment, and any comparisons they had with existing approaches to teaching and
learning. It aimed to investigate the range of approaches to delivery, and kinds of
assessment used. In terms of outcomes, we were interested in examining any positive
or negative impacts these changes had on either staff or students.

This systematic literature review aimed to answer the following questions:

1. What evidence is there of studies on the application of constructive alignment to
teaching and learning in higher education?

2. How has the effectiveness of constructive alignment been measured in these
studies, and how effective has constructive alignment been in the higher edu-
cation setting?

3. What teaching and learning activities were used in conjuncture with construc-
tive alignment?

4. What forms of assessment have been used with constructive alignment?
5. In what ways have applications of constructive alignment addressed the two

main elements of constructive alignment: constructivism and aligned curricu-
lum?

Petticrew & Roberts (2008) described the need for the search criteria to result in high

23

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

Table 2.2: Focus “aspects” for database search using PICOC

Aspect Value
Population Students and Academics in Higher Education
Intervention Applications of Constructive Alignment in the design

of teaching and learning activities and assessment.
Comparison Existing approaches
Outcomes Positive and negative impacts on student learning, as

well as impacts on teaching staff.
Context Application of Constructive Alignment to the design

and delivery of teaching and learning material in a
Higher Education setting.

number of relevant articles, while excluding irrelevant ones. This is referred to as the
search criteria sensitivity and specificity. A search with high sensitivity returns a high
number of relevant articles, with high specificity a low proportion of irrelevant arti-
cles. While an ideal search criteria would be both highly sensitive and highly specific,
in practice there generally tends to be a trade-off between the two.

Kitchenham (2007) provides a number of recommendations on how to define appro-
priate search criteria, including the use of Boolean AND and OR conditions as well
as searching for synonyms. Using this approach results in a search with higher speci-
ficity, and can result in a low number of articles being identified, see Salleh et al. (2011)
for example. Therefore, for this work it was decided to start with a highly sensitive
search criteria, and search for articles that match the term “Constructive Alignment.”
If this resulted in a unacceptably large number of results then more specific criteria
could have been added.

Given the highly sensitive search criteria, a high number of irrelevant articles was
anticipated. To address this, Phase 1 also defined a number of filter conditions. The
aim of these conditions was to clearly define why papers would be excluded from the
analysis in Phase 3. The following lists the criteria used.

• The full text of the paper must be available to the researchers, and must be pub-
lished in English.

• The paper must appear in a peer reviewed conference, journal or workshop.
• Constructive Alignment must be discussed either as the main focus, or an im-

portant aspect, of the paper.
• Results must relate to the use of Constructive Alignment in a teaching and learn-

ing context.

24

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

Phase 2: Identification of Relevant Literature

In Phase 2, the search and filter criteria from Phase 1 were used to carry out the search
on the selected online databases. The resulting articles were collected in an academic
reference management system that allowed articles to be categorised using a status
and a number of tags. Categories were created to indicate why a paper had been
excluded, and to mark each paper’s progress through the data collection.

Database searches were performed within the reference management system, which
provided facilities to automate the collection of the citation data and the associated full
text. Where the full text was not available from the database, a general search was per-
formed using a number of search engines in order to ensure the full text was included
for as many articles as possible. This import process also identified any references that
were already included in the system, thereby avoiding the creation of duplicates in the
resulting library.

The use of the categorisation tools in the academic reference management system
allowed the Filter stage of Phase 2 and the Data Collection stage of Phase 3 to run
concurrently. Once imported, each article was placed in a To Be Categorised status,
thereby providing a backlog of the articles that were to be examined. Each of these
articles was then examined using the filter criteria, and moved to a separate status as
the filter process progressed. The stages of this process are shown in Figure 2.5.

In the first stage of the filter process the availability of full text, the language it was
written in, and its refereed status was checked. If these were not met the paper was
allocated to the Ignore status, and did not proceed to the next stage of the filter.

At the next stage a full text search was conducted on each paper. This search looked
for the presence of any text related to constructivism or alignment through the search
strings “construct” and “align.” The associated text was then read, and the paper
was allocated to Done (no mention of Constructive Alignment) when there was no
presence of either words, to Done (insufficient details on Constructive Alignment)
when it was mentioned briefly with no details or in depth discussion, and to To Be
Read in all other cases.

Stage 3 involved reading the abstracts, and all sections related to Constructive Align-
ment from the papers in the To Be Read status. A new status was allocated to each
paper: Done (not a Teaching and Learning Context) if they were a discussion of ed-
ucation theory rather than a study of a teaching and learning context, Done (not an
application of Constructive Alignment) if they mentioned Constructive Alignment

25

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

Filter 1:
Check refereed,
and full text in

English

Ignore

Filter 2:
Check related
to educationNot available,

Not peer referred
Not in English,

Not related to Education

Title / Abstract / Citation Data

Filter 3:
Search for

"[Cc]onstruct"

Filter 4:
Search for
"[Aa]lign"

No mention of
Constructive Alignment

Full Text Search

To Be
Categorised

Status

Check for
Constructive
Alignment

Done
(no mention

of CA)

Done
(insufficient
details on

CA)

Mentioned but no details on
Constructive Alignment

Filter 5:
Study of

Teaching and
Learning

Filter 6:
Did apply

Constructive
Alignment

Read Abstract / Skim Text

No mention of
Constructive Alignment

Done
(not T&L
Context)

Done
(not use of

CA)

Mentioned but no details on
Constructive Alignment

Get Data

Flow / Sequence

To Be Read

Filter 7:
Related to Unit

Delivery

Read Full Text

Only applied to unit
module or topic

Done
(Module)

Done
(Degree)

Applied to Degree
Programme Design

Done

Filter

Figure 2.5: Filter process applied to papers

26

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

but had not adopted it for the reported work, and Get Data in all other cases.

The final stage involved reading the full text of the papers that had been marked with
the Get Data status, and classifying them based on what Constructive Alignment had
been applied to. Data was collected from all of the papers at this stage, but only those
related to the delivery of a unit were forwarded to the analysis phase.

Phase 3: Data Collection and Analysis

Data collection was performed by reading the indicated papers and looking for the de-
tails in the following list. Findings were recorded in a spreadsheet for further analysis,
with relevant quotes from the text stored alongside the summarised information.

• Level of Unit: Undergraduate or Postgraduate, and year level.
• The Intended Learning Outcomes and associated levels from the SOLO taxon-

omy.
• Teaching and Learning activities used.
• Approach to assessment.
• Reported effects of constructive alignment.

In keeping with the holistic nature of the assessment approaches suggested in (Biggs
& Tang 1997), the quality measure for each paper was generated by response to the
following question using a five point Likert scale (Likert 1932): 5 being strongly agree,
4 agree, 3 neutral, 2 disagree, and 1 strongly disagree.

“The paper clearly communicates how constructive alignment was applied
to the unit, and the results obtained. ”

Once all of the data had been collected the details were summarised in a spreadsheet,
and analysed to answer the review questions.

27

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

2.2.2 Results

The search involved the use of seventeen online databases, all of which were searched
for the term “Constructive Alignment.” Table 2.3 lists the number of results from each
of the selected databases. Google Scholar (http://scholar.google.com) and Cite-
Seer (http://citeseerx.ist.psu.edu) resulted in an overly large number of articles
for the selected search term. In both cases the results appears to have a large number
of irrelevant matches, and so the search terms were made more specific. The search in
Google Scholar was updated to search for articles that included “Constructive Align-
ment” in the title, while CiteSeer was limited to searching abstracts for the associated
text.

Table 2.3: Data sources and the number of articles located for the search term “Con-
structive Alignment”

Source URL Count
A+ Education http://search.informit.com.au/search 44
Academic Search Complete http://ebscohost.com/academic/academic-search-complete 32
ACM Digital Library http://dl.acm.org 21
CiteSeer2 http://citeseerx.ist.psu.edu 20
EdResearch Online http://opac.acer.edu.au:8080/edresearch 6
Educational Research Abstracts http://www.tandfonline.com 26
Education Research Complete http://ebscohost.com/academic/education-research-complete 48
eJournals http://ejournals.ebsco.com 42
ERIC http://www.eric.ed.gov 31
Google Scholar3 http://scholar.google.com 104
IEEE Xplore http://ieeexplore.ieee.org 16
Libra http://academic.research.microsoft.com 87
PsycINFO http://ebscohost.com/academic/psycinfo 16
Scopus http://www.scopus.com/ 79
Springer Link http://link.springer.com 125
VOCED http://www.voced.edu.au 28
Web of Knowledge http://wokinfo.com 52

Total Unique 335

A total of 335 unique articles were identified, and were filtered using the process in-
dicated in Section 2.2.1, resulting in 38 papers being included in the final analysis, the
full details of which can be found in Appendix A1. Table 2.4 and Figure 2.6 show
the number of papers excluded by each filter. Filtering for lack of full text and peer
reviewed status was relatively straightforward, as was identifying papers that did not
mention constructive alignment, or were unrelated to a teaching and learning context.
Similarly, papers related to the use of constructive alignment of a module or degree
programme were also easy to identify. Filtering for depth of discussion on Construc-
tive Alignment was the one filter that required the most attention. In many of these

2Within CiteSeer the search was performed on article abstracts containing the text “Constructive
Alignment.”

3The search in Google scholar returned more than three thousand results, this was then limited to
articles that included “Constructive Alignment” in their title.

28

http://scholar.google.com
http://citeseerx.ist.psu.edu
http://search.informit.com.au/search
http://ebscohost.com/academic/academic-search-complete
http://dl.acm.org
http://citeseerx.ist.psu.edu
http://opac.acer.edu.au:8080/edresearch
http://www.tandfonline.com
http://ebscohost.com/academic/education-research-complete
http://ejournals.ebsco.com
http://www.eric.ed.gov
http://scholar.google.com
http://ieeexplore.ieee.org
http://academic.research.microsoft.com
http://ebscohost.com/academic/psycinfo
http://www.scopus.com/
http://link.springer.com
http://www.voced.edu.au
http://wokinfo.com

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

cases the filter was easily able to exclude papers which lacked any real discussion of
constructive alignment beyond stating it should be used, and to include papers which
discussed the topic in depth. However a small number of papers had some discussion
of constructive alignment but did not necessarily provide any depth. In these cases,
the papers were initially included for analysis, and if during the data collection there
was insufficient discussion to enable the data extraction then the paper was excluded
and attributed to this filter.

Overview of Papers Collected

Table 2.5 and Figure 2.7 show the number of papers by field of study. This list uses
the Fields of Study defined by Trewin (2000), and each of the units described was
allocated to one of the associated fields. A total of sixteen (42%) of the papers were
associated with the fields of Information Technology or Management and Commerce,
with each field being associated with the units from eight papers. No papers were
associated with Creative Arts, Food, Hospitality, and Personal Services, or Mixed Field
Programmes.

In terms of level of education, the analysed papers included units at both undergrad-
uate and postgraduate levels. Table 2.6 and Figure 2.8 show the number of papers
reporting units at the undergraduate and postgraduate levels. Where reported, the
data collected includes the year level for undergraduate units. Two of the reported
studies involved combined undergraduate and postgraduate units, and a further two
units did not include any indication of the associated unit’s level.

Units in the analysed papers were primarily delivered face to face (82%), with three
being delivered online (8%), and four units having a combination of online and face-
to-face delivery. These results are included in Table 2.7.

Table 2.8 shows the geographic location of unit delivery in the reported work. The
location of the authors university was used in the cases where the geographic location
was not explicitly mentioned in the paper’s text. It is interesting to note that although
papers were collected from international sources, 47% of the papers analysed related
to units delivered in Australiasia, with 39% from Australian universities and 8% from
universities in New Zealand.

The increasing popularity of constructive alignment, at least in terms of papers report-
ing its application, can be seen by examining publication years. Figure 2.9 provides
a visual representation of this data, also shown in Table 2.9, and indicates an increas-

29

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

Table 2.4: Counts of papers excluded by the indicated filters

Exclusion Reason Count
Starting total 335
No access to full text, or not peer reviewed 77
No Mention of Constructive Alignment 33
No depth of discussion on Constructive Alignment 96
Not a study of a Teaching & Learning Context 43
Not an application of Constructive Alignment 23
Earlier versions of papers, removed as a duplicate 10
Applied Constructive Alignment to Module within Unit 8
Applied Constructive Alignment to Degree Programme Design 7
Final “included” papers 38

11%11%

F

 4

ilte
r S

tag
e

F

 1

ilter Stage

F

 2

ilter Stage

F

 3

ilter
Stage

No access to full test,
or not peer reviewed

No mention of
ConstructiveAlignment

No depth of discussion on
ConstructiveAlignment

Not a study of a Teaching
 and Learning context

Not an application of
Constructive Alignment

Earlier version of a paper
already included

Application to Module only

Application to Degree Programme

Application to Unit
included in analysis

Proportions of papers at each filter stage

Figure 2.6: Pie chart showing the proportion of initial 335 papers in each status based
on the stage excluded by the filters

30

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

Table 2.5: The number of papers, from the 38 papers included in the analysis, in each
field of study

Field Count
Information Technology 8
Management and Commerce 8
Society and Culture 6
Health 4
Agriculture, Environmental and Related Studies 3
Education 3
Engineering and Related Technologies 3
Natural and Physical Sciences 2
Architecture and Building 1
Creative Arts 0
Food, Hospitality and Personal Services 0
Mixed Field Programmes 0

3%5%

8%

8%

8%

11%

16%

21%

21%

Information Technology

Management and Commerce

Society and Culture

Health

Agriculture, Environmental
and Related Studies

Education

Engineering and Related Technologies

Natural and Physical Sciences
Architecture and Building

Papers by Field of Study

Figure 2.7: Pie chart showing the distribution of papers by field

Table 2.6: Numbers of papers reporting on units at undergraduate and postgraduate
levels, and the indicated year level for undergraduate units.

Level and Year Count
Undergraduate (Total) 33
- First Year 7
- Second Year 5
- Third or Later Years 12
- Year level not stated 9
Postgraduate 5
Level not stated 2

31

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

0

10

20

30

40

Undergraduate Postgraduate
0

10

20

30

40

Undergraduate
0

10

20

30

40

Level Not Stated

Figure 2.8: Bar chart showing the level, and year, of the units reported.

Table 2.7: Method of unit delivery

Delivery Count
Face to Face 31
Face to Face & Online 4
Online 3

Table 2.8: Count of papers by geographic location where the unit was delivered.

Geographic Location Count
Australia 15
United Kingdom 7
Europe 5
New Zealand 3
Hong Kong 3
China 2
United States of America 1
Canada 1
South Africa 1

32

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

ing number of papers published from 2005. It should be noted that the search was
performed on the 18th of July 2012, and therefore figures for 2012 only capture papers
indexed by the source databases prior to this time. The data in Figure 2.9 and Table 2.9
also includes the counts of work that was excluded as duplicate studies, where the one
study had been presented in a number of papers.

Teaching and Learning Activities

In the papers that included face-to-face delivery, the data collection examined the
types of classes used. The results of this are included in Table 2.10, which lists the
number, and percentage, of the papers that reported using lectures, various kinds of
tutorials, and other teaching and learning activities. Table 2.10 also records the num-
ber of papers in which there was no clear communication of the teaching and learning
activities were used.

Lectures and tutorials remain the primary form of class used in the papers studied,
with 74% of the papers reporting either or both of these class types. Four papers
included the use of Other class types, the details of which appear in the following list.
It is interesting to note that five papers (15%) did not provide details on the teaching
and learning activities used.

• Szili & Sobels (2011) reported using a four day field camp to visit the scene of a
serious environmental crisis, as part of a unit related to environmental manage-
ment.

• Donnison & Edwards (2011) included twenty hours of community service as
part of a unit in the first year of an degree in Education.

• Eight weeks of clinical practice Tang et al. (1999), as part of a nursing degree.
• Shoufan & Huss (2010) included an excursion of a fabrication plant as part of an

electronics and digital systems design unit.

When collecting data on the class types used, additional information was sought as to
how constructive learning theories had been incorporated into the teaching and learn-
ing activities. Three different strategies were identified: applying concepts through
the use of problem-based learning or the examination of case studies, making the
classes more interactive, and group work and discussions.

Problem-based learning, projects, and case studies, all provide a means for educators
to create a setting in which students can develop knowledge through application of
associated principles. The constructivist nature of these activities has been reported

33

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

Table 2.9: Year of publication for the papers analysed. Note that the count for 2012 is
partial as the search was conducted on the 18th of July 2012. Numbers in parenthesis
indicate the number of papers removed in the filtering process as a duplicate of later
papers included.

Year Count Year Count
1999 1 2006 2
2000 1 2007 3 (3)
2001 0 2008 4 (1)
2002 1 2009 6
2003 1 2010 5 (2)
2004 1 2011 4 (2)
2005 3 2012 6

0

1

2

3

4

5

6

7

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 2.9: Bar chart showing the number of papers published by year, including
earlier versions of work included in the analysis, and the partial count of the papers
published in 2012.

Table 2.10: Class types used by units that included face to face delivery

Class Type Count Percent
Lecture 26 76%
Tutorial, Class, Workshop or Session 25 74%
Other 4 12%
Not reported 5 15%

34

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

Table 2.11: Method of incorporating constructive learning theories into the teaching
and learning activities

Method Count Percent
Applying Principles: Problem Based Learning, Projects or Case Studies 18 53%
Moving beyond “knowledge transfer”: Interactive Lectures and Classes 11 32%
Social Constructivism: Group Work and Discussions 9 26%
Not reported 12 35%

by a range of authors. See for example, Hendry et al. (1999), Savery & Duffy (1995)
and Schmidt et al. (2009). In the articles analysed in this research, examples of this ap-
proach include the use of Problem-based Learning by Warren (2005) in teaching soft-
ware design. Programming projects played an important part of the work reported by
Brabrand (2008), as these provided an opportunity for students to apply their under-
standing of concurrency in a practical sense.

Davey & Bond (2002) reported that in their unit on pharmacokinetics, lectures were
changed to examine case studies that guided student decision making in relation to
drug therapy and to explore scientific rationale.

Interactive lectures and classes indicate a shift away from the objectivist ideas of knowl-
edge transfer, and toward constructivist ideals. Shepherd (2005) provides one exam-
ple of this where lectures shifted to “lectures as workshops”, with case studies being
discussed and the lecturer solving problems from first principles.

Palincsar (1998) indicated that from a social constructivist perspective, higher-order
thinking can be enhanced through the use of social interaction, such as can be achieved
through classroom discussion. A number of papers indicated a shift to group work
and classroom discussions as a means of engaging with these constructivist theories.
One example of this shift is reported by Israel et al. (2007), who reported using tutorials
as a means of guiding group research projects in their advanced undergraduate unit
on psychology.

Table 2.11 shows the number of papers that reported the use different methods for
incorporating constructive learning theories in the teaching and learning activities.
Again, it is interesting to note that twelve papers (35%) did not discuss the use of any
method for addressing constructivism in their teaching and learning activities, which
makes it difficult to understand how these papers adopted constructive learning the-
ories, a key component of constructive alignment.

The remaining four online units used the following teaching and learning activities.

• Hoddinott (2000) students were provided with reading, optional reading, and a

35

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

range of online resources.
• Raeburn et al. (2009) included work-based learning, and the use of online reflec-

tive journals.
• Terrell et al. (2011) provided online tutorials.
• Brown et al. (2006) used online “Thought Conferences” where questions were

designed to promote interaction through involving case studies and problem-
based inquiry.

Approach to Student Assessment

Reported approach to student assessment included a range of activities, as shown in
Table 2.12. Each of the different assessment approaches is detailed in the following
list.

• Examination: Indicates the use of a final exam in the work.
• Assignments: Indicates the use of classwork assignments, projects, essays, and

other work conducted by students individually during the teaching period.
• Group Projects and Assignments: Indicates the use of group marks in the stu-

dent grades, and included group assignments, presentations and projects.
• Reflective Journals: Indicates the use of journals to reflect on the learning pro-

cess.
• Tests during delivery: Indicates the use of tests commonly referred to as “mid-

term” tests or quizzes.
• Portfolios: Indicates the use of a range of assessment approaches, discussed

below, involving the collection of a number of pieces of work that are submitted
as a group.

• Participation: Indicates that a part of the students grade was awarded for par-
ticipation in teaching and learning activities.

Table 2.12: Forms of assessment reported by the papers analysed

Form of Assessment Used Count Percent
No assessment specified 5 13%
Assessment Specified 33
- Examination 23 70%
- Assignments 22 67%
- Group Projects and Assignments 14 42%
- Reflective Journals 8 24%
- Tests during delivery 4 12%
- Portfolios 4 12%
- Participation 2 6%

Four papers indicated the use of portfolios in the student assessment but, unlike other
forms of assessment, the exact nature of the portfolios differed between the various

36

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

papers. It is interesting to note that the alignment between the portfolio and the unit’s
intended learning outcomes was not clearly presented in any of these four papers.

• Tang et al. (1999) reported the use of a portfolio consisting of a learning diary,
case study of a patient from clinical practice, and a piece of the students own
choosing. This formed a part of the overall assessment along with an exam.

• Raeburn et al. (2009) indicated the use of two portfolios, each of which included
a resumé, a number of blog entries, and a written report of experience in work
based learning. In this context a portfolio is simply a means of collecting together
separate tasks.

• Portfolios reported by Scott & Fortune (2009) required students to complete
twelve tasks over the course of the year, and combine these for submission as
their portfolio. The assessment of the portfolio looked for “positive contribu-
tions”, but little detail was provided as to how this assessment was performed.

• So called “ePortfolios” were used in conjuncture with other assignments in the
work reported by Donnison & Edwards (2011). The ePortfolios included a mul-
timedia digital story on the communities the students were involved with, and
to document the student’s community service experience.

Aligning Curriculum and Assessment

All of the papers included some detail on curriculum alignment. In most cases the
papers presented generic details of the importance of achieving alignment between
teaching and learning activities and assessment tasks, with few actually providing
any details on how this alignment was performed or specified. As indicated in Ta-
ble 2.13, 61% of the papers analysed provided little, or no, explicit details on how the
alignment was achieved. In many of these papers the teaching and learning activities
were discussed in some detail, but the specifics of how these were intended to develop
the student’s understanding of the intended learning outcomes was not discussed.

Where an explanation of the alignment, the teaching and learning activities and as-
sessment tasks were often presented in a matrix, or graphic, that showed the intended
learning outcomes and the associated teaching and learning activities and assessment
tasks. Table 2.14 shows an example of how one of the intended learning outcomes was
presented in Terrell et al. (2011). Other papers included textual descriptions of how the
alignment was performed. For example Brabrand (2008) provided an in-depth discus-
sion of how they planned the alignment for their unit on concurrency. The numbers of
papers that explained alignment using a matrix, other graphical means, or textually is
shown in Table 2.13 and graphically in Figure 2.10.

37

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

Table 2.13: How alignment of teaching and learning activities, and assessment, was
achieved as reported in the papers analysed.

Aspect related to Alignment Count Percent
Alignment performed entirely by staff 35 92%

Little, or no, explicit details about how alignment was performed 23 61%
Explained alignment using matrix, graphic 9 24%
Explained using examples or textual explanations 6 16%

16%

24%
61%

Figure 2.10: Method used to explain the alignment of the curriculum

Table 2.14: Example of alignment matrix from Terrell et al. (2011)

Outcome Activities Assessment Criteria
.
Using communication and
team working skills to
promote productive and
cohesive relations among
employees.

Read and comment on each other’s
blogs.

Communication,
Execution and
ReflectionUse Twitter to explore its use as a

communication medium.
Share resources using social book-
marking tools. . .

.

38

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

Thirty-five of the thirty-eight papers indicated that alignment was performed by staff.
The remaining three papers included the use of portfolios where students were re-
quired to include evidence that aligned to the unit’s intended learning outcomes. The
relevant details from these three papers are described in the following list.

• Hoddinott (2000) described a unit on Biology where students were required to
align their portfolio submissions with the intended learning outcomes and as-
sessment criteria. Unfortunately insufficient details were provided to enable
deeper understanding of how this was subsequently assessed.

• Portfolios were also used in the unit described by Scott & Fortune (2009), al-
though no explicit details were provided about how alignment was achieved.

• Tang et al. (1999) provided a third example of portfolio assessment, but in this
case the portfolio’s objectives were not directly linked to unit intended learning
outcomes.

Reported Methods of Evaluation

The papers analysed indicated the use of one, or more, of a number of different data
sources as a basis for their evaluation of the teaching and learning environment cre-
ated. Table 2.15 lists the number of papers that included a single and multiple evalu-
ation sources, and the number that did not include any evaluation.

Table 2.15: Number of papers using a single, multiple, and no evaluation source.

Number of Sources Count
Single Evaluation Source 12
Multiple Evaluation Sources 22
No Evaluation 4

Evaluations sources identified in the papers analysed are listed in Table 2.16, with each
of the sources being described in the following list.

• Student Feedback typically included feedback received as part of official unit
evaluation questionnaires, but also included comments related to assessment
tasks, and other informal sources of student feedback.

• Results indicated the use of unit grades, or results from individual assessment
tasks.

• Student Work included document analysis of student assessment work, includ-
ing assignments, examinations and portfolios.

• Interviews and Focus Groups additional feedback was received in response to
focus groups or interviews in eight of the papers analysed.

39

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

• Reflections on Teaching staff reflections on teaching were included as a data
source in four of the analysed papers.

• Use of Online Tools usage data from online learning management systems was
used as a proxy for student engagement.

Reported Effects of Constructive Alignment

Table 2.17 lists the number of papers that indicated some positive results, or issues, in
relation to the unit delivered. Of the thirty eight papers analysed, four did not include
any evaluation of the delivery of the unit as noted in the previous section. Of the
thirty four papers that included some results, 97% indicated positive aspects and 21%
indicated issues.

In relation to positive results, there were three common themes: positive learning out-
comes, student satisfaction and student engagement. The number of papers reporting
each of these is shown in Table 2.18. Papers that reported other positive results are
also included, and outlined in the following list.

• Hill (2009) reported benefits related to the ongoing refinement of the intended
learning outcomes, and learning environment in general. The work also indi-
cated that staff found the formative feedback was easier to deliver and stimu-
lated wider discussion in class.

• Morton (2008) identified positive aspects related to improvements in written
communication and understanding of the rigour required in laboratory work.

• Improvements in student confidence was reported by Scott & Fortune (2009),
along with their analysis of portfolios showing students had very deep and
meaningful learning experiences.

• Schaefer & Panchal (2009) reported that the use of real-world problems, as com-
pared to textbook learning, had helped better prepare students for careers in
mechanical engineering.

• Vanfretti & Milano (2012) indicated the use of free and open source software had

Table 2.16: Evaluation sources used in the papers analysed

Source Kind Count
Student Feedback 26
Results 13
Student Work 10
Interviews of Focus Groups 8
Reflection on Teaching 4
Use of Online Tools 3

40

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

helped to engage students in deep approaches to learning.
• Vogel et al. (2007) indicated some positive effects for students using construc-

tively aligned learning support over those who had chosen not to use these op-
tions.

Positive learning outcomes were reported in the form of higher pass rates, higher per-
centage of students passing on the first attempt, or as demonstrations of high quality
student learning outcomes. Szili & Sobels (2011), for example, indicated that student
learning journals had exceeded staff expectations, with student work showing capac-
ity to evaluate information, learning to reason and construct arguments, engagement
with and learning from the wider world, and other positive learning outcomes. Other
examples include the work of Warren (2005), where students who sat the exam demon-
strated the ability to apply material covered to solve new problems.

High student satisfaction was also reported in a number of papers, and typically re-
fer to some form of unit evaluation survey. Shepherd (2005), for example, indicated
that students regarded their learning experience in the associated unit as uniquely,
or unusually, satisfying. Their work also indicated that students did not enjoy rote
memorisation but often feel it is required or the only possible approach in some units.
Similarly, Scott & Fortune (2009) reported very high satisfaction rates, with overall
feedback being very positive. Students identified the interactive lecture approach and
online resources as hugely beneficial.

Student engagement was also reported as a positive result in a number of papers.
Davey & Bond (2002) reported a significant shift with students being more interested
in their learning experiences and how the unit encouraged these. The work noted
that students’ comments shifted away from concerns of assessment requirements, to
interest in what they were learning. Survey results indicated student interest in the
subject matter, enjoyment of learning, and challenge and motivation to learn were
significantly different after the reported initiative. Another good example of student
engagement was reported by Szili & Sobels (2011), whose work showed students had
a strong motivation for active participation in study and learning. Szili and Sobels
cited their most important insight as the way that constructive alignment had worked

Table 2.17: Positive results and issues related to the teaching and learning environ-
ment created

Results Count Percent
No Evaluation 4 11% of papers analysed
Results related to delivery 34 89% of papers analysed
- Some Positive Results 33 97% of papers with results
- Some Issues 7 21% of papers with results

41

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

seamlessly to deliver students who were motivated to pursue lifelong learning and
engagement with their communities.

Table 2.18: Papers that reported different kinds of positive results, and percentage
compared to total number of papers reporting some positive results.

Positive Result Related To Count Percent
Learning outcomes (grades, or otherwise) 19 58%
Student satisfaction 17 52%
Student engagement 9 27%
Other positive aspects 6 18%

Problems arising from the application of constructive alignment were reported by only
a few papers, with seven papers reporting issues related to the teaching and learning
environment created. One common issue was additional staff and student workload
as a result of the initiatives, as shown in Table 2.19. Staff workload related to the devel-
opment of new material, and the provision of feedback. Student workload issues were
reported via the student satisfaction surveys. The remaining two issues, classified as
other in the table, are detailed in the following list.

• Norton (2004) indicated that the less capable students may have found the problem-
based learning approach used too complex and challenging.

• Tang et al. (1999) reported students not enjoying the portfolio process, and not
seeing it as contributing to their learning in the unit. This was attributed to either
lack of clear instruction and support throughout the process, or to students prior
expectations of assessment.

Table 2.19: Papers that reported different kinds of issues, with percentage compared
to total number of papers reporting at least one issue.

Negative Result, or Issues, Related To Count Percent
Staff Workload 2 29%
Student Workload 5 71%
Other 2 29%

42

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

2.2.3 Discussion

Papers Identified

The use of a highly selective search criteria identified a wide range of papers, that were
subsequently filtered to identify the papers analysed in this work. While every care
was taken in filtering these papers, it is possible that a small number of papers were
inappropriately excluded. To help mitigate this risk, the papers excluded at each stage
were examined at least twice before filtering proceeded to the next stage. At the end
of the process we have reasonable confidence in the papers included in this analysis.

It is concerning to note the number of papers that were excluded as a result of in-
sufficient discussion on constructive alignment. Many of these papers included some
details of constructive alignment in the introduction and background, and again in
the conclusions, but provided no detailed discussion in the body of the work. For
example, Penaluna et al. (2009) indicated opportunities for constructive alignment in
the implications of their research on assessment strategies for entrepreneurship edu-
cation, but provided no details on either constructivism or alignment in the remainder
of the paper.

One possible explanation for this in the wider field is the growing expectation that
work in education should include the principles of constructive alignment. This mes-
sage is, for example, clearly communicated in the work of Haigh (2013) on successfully
writing for the Journal of Geography in Higher Education. Given the large number of
papers in this category it would be interesting to examine them in more detail to see
how they do relate to constructive alignment.

The papers identified in this work provided a reasonable sample across a number of
fields of study, but is predominantly related to undergraduate education. A greater
balance between undergraduate and postgraduate had been expected, so it would be
interesting to find out why constructive alignment has not been discussed more in
relation to postgraduate education.

Examining the geographic location of the work resulted in a couple of interesting ob-
servations. Firstly the high number of papers from Australiasia, and the relatively
small number from Northern America. The high number of papers from Australiasia
may be a result of the choice of databases, with three of the databases containing work
predominantly from Australia and New Zealand. However, the largest number of pa-
pers were located from databases with broad focus from international contributions,

43

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

so this may indicate a greater focus on education research in this region, and a wide
adoption of the principles of constructive alignment. The reverse could therefore also
be posed in relation to the relatively small number of papers from Northern America.
This could indicate that constructive alignment has not gained popularity in that re-
gion, or that relatively little research is published on the application of principles in
Education. Both cases provide interesting questions for future research.

Effective Evaluation Sources

A clear message from the analysed papers was the value of using multiple data sources
in evaluating outcomes. Student satisfaction surveys and unit results appear to be
readily available sources of information, and provide valuable evidence of learning
outcomes and student perceptions. This can then be further enhanced by analysis of
student work and staff reflections.

One topic not often discussed in the papers analysed is the ethical implications of
using student work for purposes other than assessing the students learning. Issues
related to the power imbalance of the student-teaching relationship, and issues asso-
ciated with the perception of coercion need to be addressed. If student work is to be
used then an appropriate ethical protocol needs to be developed, and students given
the opportunity to give informed consent for their participation in the research.

Opportunities for Misalignment

There appears to be significant opportunities for misalignment due to the lack of stu-
dent engagement with the alignment process. Many of the papers analysed used a
traditional assessment strategy involving the use of one, or more, assignments and
a final exam. In this situation the teaching staff are entirely responsible for ensuring
alignment between the unit’s intended learning outcomes and the outcomes assessed
in student submissions.

Figure 2.11 tries to capture the situation where staff perform the alignment, for the
purpose of illustrating areas for potential misalignment. Staff use intended learning
outcomes in the design of assessment tasks for the students to perform. These tasks
may aim to elicit outcomes that require high level cognitive activities such as explain-
ing or reflecting on the application of some principles. Staff intentions must then be
communicated to students via the assessment tasks, a complex activity that can be
unintentionally undermined in a variety of ways. Even if the intentions can be cap-

44

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

tured perfectly, student interpretations of these expectations are likely to weaken any
requirements. As indicated in Section 2.1.1, a number of students will aim to perform
assessment tasks with as little effort as possible. These students will employ surface
level approaches to learning where possible, and will not engage high level cognitive
activities if possible.

In addition to misalignment in the design of the assessment tasks there is also op-
portunities for misalignment on the assessment side of the process. Assessment tasks
require assessment criteria that indicate how marks are awarded for the various as-
pects of the task. Where this is carried out quantitatively there is significant potential
for misalignment, with the contents of knowledge needing to be broken down into
identifiable units. As indicated by Biggs (1996) this results in situations where assess-
ment encourages piecemeal identification of details, and provides no encouragement
for combining these details into a coherent whole.

Given the widespread and dominant use of assignments and exams and the potential
for misalignment, it is particularly concerning how few papers provided any in-depth
discussion on how the alignment was performed. Where details of the alignment
were provided, the papers indicated how staff aligned topics in the intended learning
outcomes with the tasks in the assignments and questions in the exams. However, few
papers provided any reflections on the approaches that students had engaged, and
how well these aligned with staff intentions. It should be mentioned that two of the
papers analysed did provide good details on this aspect. Brabrand (2008) provided
a very detailed discussion of how tasks had been aligned to outcomes, and yet still
indicated that their work was not an ideal example of alignment in recognition of these
challenges. Hill (2009) provided significant details on the challenges, and iterative
improvements, with aligning student activity to outcomes and staff intentions with
the delivery of their unit over a six years period.

These challenges indicate that any genuine attempt to implement the principles of
constructive alignment will need to be performed over a number of iterations. Each
iteration should aim to improve alignment based on evidence gathered, and reflected
upon, as part of unit delivery.

45

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

Students

Faculty of Information and Communication Technologies

HIT1301/HIT2080 Programming 1
Laboratory 1: Programs and Procedures
In this laboratory you will build and run a number of small programs of your own.
This will involve:

■ Installing the tools you need: the compiler, and a text editor.
■ Writing source code for the programs, using the supplied pseudocode including:

■ Declaring your own programs
■ Writing procedure calls
■ Declaring your own procedures

■ Compiling your source code, and correcting any syntax errors.
■ Running your programs.
■ Using SwinGame to create small graphical programs.

Resources

The following resources can help you with this topics:
■ Programming Arcana, chapters 1 to 3
■ Learn Programming with SwinGame video podcast (also on Swinburne Commons):

■ LP0 Introduction
■ LP1 Getting Started with SwinGame
■ LP3 Calling Procedures
■ LP5 Creating Your Own Procedures

Submission

You need to submit print outs of the following material at the start of the 2nd lecture:
1. The indicated pages from your glossary.
2. Your Knock Knock program code and screen shot
3. Any extensions you have completed

Attach a lab coversheet to your submission with your details, your tutor's details, and a list of
things you would like feedback on. Once you have discussed this with your tutor, and cor-
rected any issues they raise with you, your work will signed off as complete.

Intentions
TaskOutcome

Teaching
Staff

Motivation
ActionMarks

Assessment
Task

Student
Submission

MarksOutcomes

Intended
Learning

Outcomes

Intentions

Aligns to
Student
view of

Assessment

Design Undertaking

Submission

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Identify,
Memorise,
Reproduce

Aligns to
Staff

view of

Staff Alignment and Potential for Misalignment

Figure 2.11: When using a traditional assignment and exam assessment strategy, par-
ticular attention is needed to ensure Staff intentions carry through to student actions.

46

2.2. REPORTED APPLICATIONS OF CONSTRUCTIVE ALIGNMENT

Business as Usual

In proposing Constructive Alignment, Biggs (1996) describes a teaching and learning
environment which is student-centred. Biggs argued for the use of a range of teaching
and learning activities, and encouraged active student engagement. With assessment,
Biggs argued against examinations, short answer or multiple-choice questions. He
indicated that these approaches to assessment are likely to give credit to lower level
performances than intended, and thereby encourage students to adopt lower cognitive
levels than desired. Biggs (1996) strongly implied the use of portfolios, which was
further elaborated upon in Biggs & Tang (1997). Portfolio assessment in this context
had referred to a body of work demonstrating how the student had met the intended
learning outcomes, with a justification for how the selected pieces related to the unit
objectives. The principles of Constructive Alignment had been discovered by Biggs as
a result of the environment created through this clear focus on the intended learning
outcomes, and the “web of consistency” that had resulted.

The clarity and vision provided by Biggs (1996) does not appear to have resulted in
many changes in the reported work. In many ways the papers analysed indicated a
mostly “business as usual” approach. Constructive Alignment involved staff thinking
about how their lectures, and the tasks they asked students to perform, related to the
unit’s intended learning outcomes. Some of the ideas of constructivism have made
their way into teaching as either group work, and its associated group assessment, or
attempts to make lectures and other classes more interactive. Similarly, approaches to
assessment have remained primarily unchanged from the standard assignments and
final exam. The ideas of learning through mistakes, and centring activities on students
appears to have received little attention. Portfolios, when used, did not strongly fol-
low the principles of Constructive Alignment, or had little details on how they had
been implemented.

47

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

2.3 Constructive Alignment in Introductory Programming

This section examines the topic of introductory programming in computing education
research. It starts with an outline of challenges associated with introductory program-
ming in Section 2.3.1. Following this is a description of published research perspec-
tives on teaching introductory programming in Section 2.3.2. The section concludes
with a summary of two existing approaches to applying constructive alignment to
introductory programming in Section 2.3.3.

2.3.1 Challenges in Introductory Programming

Introductory programming is a central skill for all students studying computer science
and software engineering, and is often also taken by students in other fields. Units
on introductory programming typically occur in students first year of university, and
are widely recognised as being one of the most challenging units for these students.
McGettrick et al. (2005) described the need to better understand programming process
and programmer practice so as to deliver more effective educational outcomes as one
of the seven grand challenges of computing education in recognition of the challenges
related to teaching introductory programming.

Introductory programming can itself be viewed from a variety of perspectives. Di-
jkstra (1989) (see Denning (1989) for associated commentary) proposed a mathemat-
ical view of introductory programming, based upon formal methods and imperative
programming. Palumbo (1990) discussed introductory programming from a problem
solving perspective, with a focus on problem solving skills. DuBoulay (1986) likened
programming to learning to control a notional machine, one that represents an ideal
computer in which the programming constructs being taught are realised. However,
in practice introductory programming units tend to follow a textbook style approach
(Robins et al. 2003), an approach that tends to focus on language syntax and illustra-
tive examples.

The goals of introductory programming have changed little in the last forty years.
Gries (1974) indicated that introductory programming units should aim to teach stu-
dents to solve problems, to describe an algorithmic solution to the problem, and verify
that the algorithm is correct. These same concepts are at the core of all introductory
programming units. This position was echoed by Marion (1999), who commented
that the advent of object oriented programming did not fundamentally change the
objectives of introductory programming. Marion included objectives related to soft-

48

2.3. CONSTRUCTIVE ALIGNMENT IN INTRODUCTORY PROGRAMMING

ware design, algorithm design and analysis, problem solving, and language syntax
necessary for expressing these ideas in a modern programming environment. In their
study on what was taught in introductory programming, Schulte & Bennedsen (2006)
reported that most teachers taught such “classic” topics to the same extent, regardless
of the approach they were using to teach the topic overall.

McCracken et al. (2001) reported on an investigation of programming skills of first
year computer science students across four universities. The investigators reported
that results of the work were disappointing, and indicated that many students did not
know how to program at the end of their first unit in introductory programming. A
total of 216 students completed a Charette, a short assessment carried out in a fixed-
time laboratory session. The results included an analysis of the programs the students
had completed, and indicated that in many cases students were not even able to pro-
duce code that compiled. Later work by Lister et al. (2004) found similar results when
examining students ability to determine output from small code snippets, known as
“code tracing tasks,” and when selecting the code necessary to finish an almost com-
plete piece of code. Given these poor results, gaining better understanding of the dif-
ficulties students face is an important avenue of research in the computing education
research field.

Studies on novice programmers reported in Soloway & Spohrer (1988) indicated that
novices have issues with many aspects of programming including concepts such as
variables, loops, conditions, arrays, pointers and recursion, as well as having short-
comings related to planning and testing program code. The review of a number of psy-
chological studies on programming by Winslow (1996) concluded that novices lacked
appropriate “mental models” of computing, and so were limited to a surface under-
standing. This meant that student lacked sufficient structure to enable relevant aspects
to be called upon when needed, with student approaching problems via control struc-
tures and line-by-line rather than by grouping into logical units. It is interesting to note
that the work of Lahtinen et al. (2005), a survey 559 students across six universities,
found that students also overestimate their understanding. This is likely to be related
to their limited “mental model” and surface understanding of the subject, with many
students failing to gain a relational level of understanding of the associated concepts.

In reporting on their overview of research related to the psychology of programming,
Robins et al. (2003) indicate that novices face various problems, including issues re-
lated to; program design, ability to address algorithmic complexity, and the “fragility”
of their knowledge, with learning to program requiring students to develop viable
models of the problem domain, notional machine, and program structure. They found
that students must then also develop skills necessary to map aspects from the prob-

49

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

lem domain to a the program structure, in such a way that this structure can effectively
control the notional machine and generate the required outputs. The work also identi-
fied students as either “effective novices”, who were able to learning to program with
a reasonable effect, and “ineffective novices” who needed to expended an inordinate
amount of effect to learn the required material.

Differences between effective and ineffective programming novices was reported by
Renumol et al. (2010). The work used verbal protocol analysis to examined the cog-
nitive processes used by nineteen novices. It was found that both effective and in-
effective novices had used the same set of cognitive processes. A total of forty two
cognitive processes were identified, and the work concluded that the use of so many
cognitive processes made programming difficult, and the programming process com-
plex to learn and practice.

A common theme across the various papers on introductory programming is that stu-
dents struggle more with how and when to use programming structures than with
programming language syntax. For example, Winslow (1996) indicated that students
typically found it easy to generate syntactically correct statements once they under-
stood what was required. Similar results were reported by Lahtinen et al. (2005), who
indicated that the biggest problem students faced was not language details, but ap-
plying such details to solve new problems and in the creation of larger programming
structures.

Approach to learning also appears to be recognised as a factor in students success
in learning to program. The work of de Raadt et al. (2005) and Bruce et al. (2003),
previously discussed in Section 2.1.1, indicated that approach to learning does effect
results in introductory programming units, and that students need to engage in deep
approaches to learning. This is further supported by the work of Jenkins (2002) on
difficulties students face in learning to program, which indicated that students face
a range of challenges including cognitive factors related to learning styles and moti-
vation. Jenkins and colleagues noted that many students’ approach to learning was
inadequate for them to succeed in introductory programming units, with motivation
being a contributing factor (Jenkins 2001, Forte & Guzdial 2005).

50

2.3. CONSTRUCTIVE ALIGNMENT IN INTRODUCTORY PROGRAMMING

2.3.2 Research Perspectives on Introductory Programming

Given the challenges involved in teaching introductory programming, this is a very
active area in the field of computing eduction research. In their survey of literature on
introductory programming, Pears et al. (2007) identified four main categories: curric-
ula, pedagogy, language choice, and tool support.

Work on curricula has examined how introductory programming fits into the wider
university computing curriculum, including recommendations for computing curric-
ula by major professional computing societies (ACM/IEEE-CS Joint Task Force 2001,
2008, 2012). Other work in this area has included tailoring introductory programming
content to meet the needs of students not enrolled in computer science majors, such
as that reported in Guzdial & Forte (2005) and Forte & Guzdial (2005).

Computing education research related to pedagogy of introductory programming ex-
amines a range of aspects related to teaching and learning. The work of Ben-Ari (2001),
Denning (1989), Dijkstra (1989), Hoare (1969), Palumbo (1990) and Robins et al. (2003),
discussed earlier in this chapter, all relate to pedagogy. Other work in this area in-
cludes the work of Soloway (1986) who discussed the use of plans and schemas in
problem solving and program design, with additional details on the use of these in
teaching programming being reported by Rist (2004). Green & Petre (1996) and Green
(2000) discussed issues of cognitive load associated with various programming lan-
guage elements and environments. While Eckerdal et al. (2005) described five differ-
ent levels of understanding related to what it means to learning programming; from a
surface level where programming is seen as a study of a programming language and
the program text, to a deep level where programming is seen as involving problem
solving skills that can be taken beyond the programming unit.

Language and, by association, paradigm choice is also widely studied. There exists
a wide variety of papers on which programming language can and should be use
in teaching introductory programming, including the work from Koffman (1988b),
Mody (1991), Roberts (1993), Brilliant & Wiseman (1996), Böszörményi (1998), Howell
(2003), Kelleher & Pausch (2005), Bishop & Freeman (2006), Mannila et al. (2006), Man-
nila & De Raadt (2006), Pendergast (2006), Maloney et al. (2010) and Anik & Baykoç
(2011). There are also a large number of papers on the debate as to which program-
ming paradigm should be used early in the curriculum. See for example Pattis (1993),
Cooper et al. (2003), Bennedsen & Caspersen (2004), Howe et al. (2004), Astrachan et al.
(2005), Lister et al. (2006), Reges (2006) and Ehlert & Schulte (2009). These aspects, and
the associated work, are considered in more detail in Chapter 5.

51

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

Research on tool support for introductory programming examines the use of software
tools specifically designed to support the needs of novice programmers, including
work on automated assessment by Ala-Mutka (2007) and Douce et al. (2005), visu-
alisation (Naps et al. 2002), and programming environments (Gross & Powers 2005,
Kelleher & Pausch 2005, Kölling et al. 2003, Mason & Cooper 2013).

2.3.3 Applying Constructive Alignment to Introductory Programming

Constructive alignment has also been seen as an avenue for improving outcomes in
introductory programming. The work of Armarego (2009) concluded that traditional
teaching approaches did not align well with the requirements of the computer sci-
ence and software engineering disciplines, and may actually inhibit students, both
current and potential, from engaging with associated topics. In agreement with this
we suggest that an effective means of applying constructive alignment to the teaching
of introductory programming is, therefore, imperative.

Thota & Whitfield (2010) and Gaspar & Langevin (2012) have each aimed to use the
principles of constructive alignment to enhance the teaching of introductory program-
ming. Thota & Whitfield (2010) described the development and delivering of an ob-
ject oriented introductory programming unit that aligned with cognitive and affective
learning outcomes. While the work of Gaspar & Langevin (2012) discussed how the
principles of constructive alignment represented a need to explicitly cover program-
ming thought processes in teaching introductory programming, but did not discuss
an overall application of these principles to the development of an associated unit of
study.

The work of Thota & Whitfield (2010) proposed a holistic and constructively aligned
approach to introductory programming that aligned teaching and learning activities
and assessment tasks with cognitive and affective learning outcomes. The described
unit involved five intended learning outcomes related to object oriented program-
ming, listed in Figure 2.12. Each of the intended learning outcomes was mapped to
programming concepts and techniques, and then to the assessment activities using a
tabular matrix as discussed earlier in Section 2.2.

Constructive learning theories were embedded by Thota & Whitfield (2010) through
the use of group work and pair programming. Teaching and learning activities in-
cluded interactive lecture and laboratory classes, and the use of role plays and oral
presentations. Adaptive quizzes, peer feedback, and lecturer feedback provided stu-
dents with a range of useful resources to learn from. The use of class diagrams and an

52

2.3. CONSTRUCTIVE ALIGNMENT IN INTRODUCTORY PROGRAMMING

ILO-1: Demonstrate knowledge and understanding of essential facts and
concepts, relating to OOP.

ILO-2: Deploy appropriate theory, practices and tools for problem defini-
tion, specification, design, implementation, maintenance and eval-
uation of programs.

ILO-3: Use object-oriented design as a mechanism for problem solving as
well as facilitating modularity and software reuse.

ILO-4: Work productively as part of a pair/team.
ILO-5: Demonstrate ability for organisation and internalisation of values.

Figure 2.12: Intended learning outcomes from Thota & Whitfield (2010).

interactive debugger also helped students comprehend critical aspects of objects and
classes.

Assessment in the unit reported by Thota & Whitfield (2010) was divided up into a
number of tasks based upon the intended learning outcomes, and included the use of
quizzes (5%), an exam (10%), programming assignments (30%), group project (50%),
classwork, and a journal (5%). With an additional stipulation that all intended learning
outcomes had to be met to a satisfactory level, though no indication of how this was
checked was provided.

Thota & Whitfield (2010) reported higher mean scores for deep approach to learn-
ing than surface approaches, using Biggs et al. (2001) two-factor study process ques-
tionnaire (R-SPQ-2F). A positive relationship between deep approach to learning and
course grades, and a negative relationship between surface approaches and grades,
was reported but found to be not statistically significant. Informational resources were
considered more important by students as a source of their learning, than collabora-
tion, which group work being cited as a source of conflict in the unit.

Overall the work of Gaspar & Langevin (2012) and Thota & Whitfield (2010) are rep-
resentative of the work on applying constructive alignment in general. Gaspar &
Langevin (2012) refers to the principles of constructive alignment (Biggs 1996) as a
means of suggesting a range of changes, but did not discuss embedding the princi-
ples more deeply. While Thota & Whitfield (2010) provide a more genuine attempt at
embedding these principles throughout their unit, the use of traditional assessment
approaches could easily have resulted in unintended misalignment, which can be fur-
ther eroded through significant use of group marks in students final grades. In these
contexts it is hard to see how any given student’s learning outcomes relate to a unit’s
intended leaning outcomes.

53

CHAPTER 2. APPROACHES TO CONSTRUCTIVE ALIGNMENT

2.4 Summary

Biggs (1996) vision of constructive alignment provided a strong and compelling argu-
ment for focusing on student-centred approaches to learning and assessment. Biggs’
example unit demonstrated clear alignment between the intended learning outcomes
and assessment, with learning activities providing students with the means of ad-
dressing these outcomes in the preparation of their portfolios. In contrast, the reported
applications of constructive alignment have remained primarily teacher-centred, with
teaching staff defining teaching and learning activities that are then assessed using tra-
ditional weighted assignments and exams.

While existing approaches examined in the literature review presented in this chapter
can be argued to be applications of “Constructive Alignment”, they do not appear to
have captured the dramatic shift in thinking reported by Biggs (1996). The student-
centred approach of the portfolios, with alignment to intended learning outcomes at
their core, does not appear to have gone beyond Biggs’ original work. If the papers
analysed in this review are representative of “Constructive Alignment”, then the work
reported by Biggs goes beyond the core principles to capture additional aspects that
are beneficial to student learning. Rediscovering these principles and trying to recreate
the “web of consistency” is a worthwhile pursuit, and a goal of this research.

54

3
Guiding Principles

This chapter describes twelve principles that underlie our model for delivering con-
structive aligned introductory programming. These principles act as guidelines for
decision making, and in many ways underpin the model in the same manner as a
unit’s intended learning outcomes underpin constructively aligned teaching. Each
aspect of the model, the associated curriculum, teaching and learning activities, and
assessment tasks are aligned with one or more of these principles.

The principles cover both how the teaching and learning environment should oper-
ate, and what should be taught. Originally derived from constructive alignment, the
how principles centre on constructivism and aligned curriculum. In relation to what
should be taught, the principles draw upon computing education literature and our
own experiences as educators and software developers.

Reflective practice played an important part in the formation of these principles, and
both sets of principles have developed over the course of this research. This chapter
presents the current working principles we use to guide the development and delivery
of introductory programming. While most were present throughout the research, their
individual emphasis and relationships have developed through our reflective practice.

The chapter first outlines the principles related to how we aim to teach introductory
programming, in Section 3.1. These principles relate to the core principles of con-
structive alignment, described in Chapter 2, but also aim to more tightly integrate
constructivist theories, with their strongly student-centred focus. Following this, Sec-
tion 3.2 presents the principles related to what we aim to teach, specifically covering
details on what we aim to focus on in teaching introductory programming. The full
set of principles is this summarised in Section 3.3.

55

CHAPTER 3. GUIDING PRINCIPLES

3.1 Principles to Guide HOW We Should Teach

Interventions that impact on the learning environment, also referred to as the teach-
ing or academic environment, have been shown to have the potential to positively
influence student learning outcomes (Trigwell & Prosser 1991). Learning environ-
ments have also been found to influence students’ approach to learning (Entwistle
& Tait 1990, Entwistle 1991, Kember & Leung 2007) and perceptions of teaching en-
vironments have been shown to directly, and indirectly, influence learning outcomes
(Meyer & Muller 1990, Lizzio et al. 2002). The aim of these first principles is therefore
to create a positive learning environment for students; one that is demanding of stu-
dents but supports and rewards their efforts to understand the concepts required of
the curriculum.

The following list outlines these principles for educators:

P1 : Recognise that students construct knowledge in response to activity.
P2 : Align activities and assessment to intended learning outcomes.
P3 : Assess learning outcomes, not learning pace or product outcomes.
P4 : Focus on important aspects, while providing access to necessary details.
P5 : Communicate high expectations.
P6 : Actively support student efforts.
P7 : Trust and empower students to manage their own learning.
P8 : Be agile and willing to change in response to measurable indicators.
P9 : Embed reflective practice in all aspects.

These first nine principles relate to how the teaching and learning environment should
operate and could, therefore, be applied to a range of teaching and learning contexts
and topic domains.

Individually each principle has its own merits but they are designed to work together.
As a whole, each principle interacts with the other principles to create a productive
student-centred learning environment. Figure 3.1 shows the key interactions between
these principles. The students active construction of knowledge is central, with vari-
ous aspects of this being supported by the other principles. Each principle is discussed
in detail in the following sections, with the various relationships being discussed along
with associated literature.

56

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

(P9.) Embed in Reflective Practice
that is (P8.) Agile and Willing to Change

Students Construct
Knowledge

Align Activities and
Assessment to ILOs

Assess Learning
Outcomes

Focus on
Important Aspects

Communicate
High Expectations

Actively Support
Student Efforts

Trust and
Empower Students

Encourages Aspiration

Requires
support

Assists
with

Provides
feedback on

Provides
feedback to

assist

Ensures relevant

Encourages
and rewards

Guides
delivery

Ensures
focusEnables

P1.

P2.

P3.

P4.

P5.

P6.

P7.

Figure 3.1: Key interactions between proposed principles for educators

3.1.1 Recognise Students Construct Knowledge in Response to Activity

Decisions about curriculum, teaching and learning activities, and assessment tasks are
all guided by the educator’s theory of teaching and learning (Argyris 1976, Ramsden
1992). While constructivism is often promoted by educators, Phillips (2005) observed
that constructive learning theories have not transitioned to common education prac-
tice, resulting in a “dissonance” between the elements of effective learning and the
characteristics of typical university learning environments. This is symptomatic of
the disconnect between educators espoused theory and their theory-in-use (Argyris
1976). To successfully implement constructive alignment it is, therefore, important to
identify and adopt the key aspects from constructivism, as outlined by Biggs (1996),
Biggs & Tang (1997) and in Biggs & Tang (2007). By adopting constructivism as our
theory-in-use we aimed to create an educational setting that was “in harmony” with
the principles of constructive alignment.

Central to all forms of constructivism is the principle that learning is an active pro-
cess requiring the leaner to construct their own understanding through individual and
social activity (Biggs 1996, Cobb 1994, Duffy & Cunningham 1996, Duffy & Jonassen
1992, Glasersfeld 1989, Jonassen 1991b, Steffe & Gale 1995, Vrasidas 2000). To incorpo-
rate central ideas from these writings on constructive learning theories the following
aspects of constructivism are actively embedded in the model presented in the next
chapter:

• Knowledge is constructed, not transmitted via communication alone.
• Teaching involves creating a context in which learners are able to construct ap-

57

CHAPTER 3. GUIDING PRINCIPLES

propriate cognitive models through individual and social activities.
• Errors in understanding are opportunities for further learning, as these help in-

dicate the students’ current level of development and can be used to guide future
learning activities.

Biggs (1996) reason for adopting constructivism as a central philosophy was due to
its emphasis on the students active role in constructing their own knowledge. When
taken to an extreme this can result in approaches that rely upon students building their
own understanding from “first” principles, possibly isolated concepts and without
structure. Such approaches are promoted in discovery learning (Bruner 1961) and in
some constructivist writings, such as in Glasersfeld (1989) and Duffy & Cunningham
(1996). The unstructured nature of these teaching and learning environments have
received strong criticism.

Anderson et al. (1998) criticises constructive learning theories when “pursued to un-
productive extremes”, as in the case with discovery learning, and argue that there is
significant evidence of the benefits for guided instruction from the area of cognitive
psychology. Mayer (2004) also argues against discovery learning, instead suggesting
that constructivist views of education may be better served through cognitive activity,
instructional guidance, and curricular focus. Furthermore, Kirschner et al. (2006) ar-
gue against discovery learning, indicating that in highly complex environments, such
as software development and introductory programming, free exploration may gen-
erate a heavy workload and detrimentally affect learning.

Embedding constructivism in the model proposed in this research required accepting
the central role of the learner in constructing their knowledge, while avoiding detri-
mental aspects associated with taking these ideas to their extreme. This approach will
temper constructivism with certain practical details, an approach we feel is in line
with the principles of constructive alignment as originally proposed by Biggs (1996).
These details include the following:

• Communication remains a valuable tool for educators to help shape the learning
context, but should not be seen as a means of knowledge transfer.

• Guided instruction is valuable and ensures student activity is likely to be pro-
ductive, though students should also have opportunities to explore content in a
context meaningful to them individually.

• Deliberate practice provides students with opportunities to engage with prin-
ciples in action, but these activities should include opportunities to reflect on
important aspects learnt.

58

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

3.1.2 Align Activities and Assessment to Intended Learning Outcomes

In order to implement constructive alignment we need to work iteratively toward
achieving a “web of consistency” (Biggs 1999) in which we optimise the likelihood
of students engaging appropriately with learning activities and assessment tasks. Biggs
(1996) indicated that this can be achieved through aligning learning activities and as-
sessment tasks to the unit’s intended learning outcomes.

The alignment of activities and assessment to intended learning outcomes is critical for
our model. As shown in Figure 3.1, this alignment is seen as supporting student con-
struction of knowledge. By aligning teaching and learning activities to the intended
learning outcomes we ensure that students are constructing the required understand-
ing. Similarly, by aligning assessment with these same intended learning outcomes
we ensure that students are adequately prepared for this assessment and that the as-
sessment is evaluating students’ attainment of the stated learning outcomes.

One potential issue identified in Chapter 2 is relying too heavily on staff to perform
this alignment. This has the effect of placing the intended learning outcomes outside
the process, interacted with only by staff when reporting their alignment to activities
and assessment. This was shown visually in Figure 2.11, with the students always two
steps from the intended learning outcomes, which provided additional opportunities
for misalignment.

Figure 3.2 presents an altered version of Figure 2.11 from Chapter 2. This illustrates
how the intended learning outcomes become central to this process when students
are included in the alignment process. The central role of the intended learning out-
comes reduces the opportunities for misalignment, as now they form a central aspect
shared by both staff and students. Staff and students now need to develop a shared
understanding of the intended learning outcomes, and collaboratively work toward
students being able to demonstrate they have met all outcomes. In this way, it should
be possible to achieve the “web of consistency”, and hopefully thereby improve the
chances that students engage appropriately with learning activities and assessment
tasks.

3.1.3 Assess Learning Outcomes, Not Learning Pace or Product Outcomes

Assessment in education is often seen as serving one of two possible purposes: sup-
porting learning, or evaluating outcomes. These two purposes are known as formative
assessment and summative assessment, as proposed by Scriven (1967) and Bloom (1969).

59

CHAPTER 3. GUIDING PRINCIPLES

Students

Faculty of Information and Communication Technologies

HIT1301/HIT2080 Programming 1
Laboratory 1: Programs and Procedures
In this laboratory you will build and run a number of small programs of your own.
This will involve:

■ Installing the tools you need: the compiler, and a text editor.
■ Writing source code for the programs, using the supplied pseudocode including:

■ Declaring your own programs
■ Writing procedure calls
■ Declaring your own procedures

■ Compiling your source code, and correcting any syntax errors.
■ Running your programs.
■ Using SwinGame to create small graphical programs.

Resources

The following resources can help you with this topics:
■ Programming Arcana, chapters 1 to 3
■ Learn Programming with SwinGame video podcast (also on Swinburne Commons):

■ LP0 Introduction
■ LP1 Getting Started with SwinGame
■ LP3 Calling Procedures
■ LP5 Creating Your Own Procedures

Submission

You need to submit print outs of the following material at the start of the 2nd lecture:
1. The indicated pages from your glossary.
2. Your Knock Knock program code and screen shot
3. Any extensions you have completed

Attach a lab coversheet to your submission with your details, your tutor's details, and a list of
things you would like feedback on. Once you have discussed this with your tutor, and cor-
rected any issues they raise with you, your work will signed off as complete.

Intentions
TaskOutcome

Teaching
Staff

Motivation
ActionMarks

Assessment
Task

Student
Submission

MarksOutcomes

Intentions

Aligns to
Student
view of

Assessment

Design Undertaking

Submission

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Analyse,
Apply,
Reflect

Aligns to
Staff

view of

Intended
Learning
Outcomes

Figure 3.2: An altered version of Figure 2.11 with students and staff now actively
involved in aligning work to the unit’s intended learning outcomes

60

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

Formative assessment aims to assess student learning for the purpose of providing
feedback. This is distinct from summative assessment where the aim is to assess how
well students have performed on a certain task, typically to determine a final grade.
Biggs & Tang (2007) suggest that for clarity the two forms of assessment are best re-
ferred to as formative feedback and summative grading.

The important role of formative feedback in education is widely reported. Ramsden
(1992) indicates that, of all items on the Course Evaluation Questionnaire (Ramsden
1991), the one that most clearly distinguished between the best and worst courses
related to the provision of helpful feedback. Wiliam (2006) described the use of for-
mative feedback in short, medium and long cycles to improve student learning, and
indicated that – to be formative – outcomes of the assessment must be used by stu-
dents to make adjustments to better meet their learning needs. Black & Wiliam (1998)
showed that substantial learning gains can be achieved by innovations designed to
strengthen frequent feedback students receive. Furthermore, Black & Wiliam (1998)
report that students pay more careful attention to feedback when there are no asso-
ciated marks, or put another way “marks” reduced student attention to formative
feedback. In discussing assessment for learning Brown (2004) stated that “Formative
feedback is critical” and that “feedback must be at the heart of the process” if we are
to make assessment an integral part of learning.

Gibbs & Simpson (2004) listed ten conditions under which assessment assists with stu-
dent learning. These ten conditions can be grouped into three main points, as shown
in the following list.

• Assessment tasks are aligned with intended learning outcomes, and provide stu-
dents with sufficient work to ensure they engage appropriately with the required
learning.

1. Tasks provide students with enough work to require sufficient time on the
task.

2. Tasks direct students to spend appropriate time and effort on the most im-
portant aspects of the unit.

3. Completing tasks is likely to engage appropriate kinds of learning.

• Feedback is constructive in nature, providing information that students will be
able to use to develop their understanding of associated concepts.

4. Feedback is both timely and sufficiently detailed.
5. Feedback focuses on demonstrated learning outcomes, and on actions stu-

dents can control.
6. Students receive the feedback while it is still relevant, and they are able to

incorporate the feedback or seek further assistance.

61

CHAPTER 3. GUIDING PRINCIPLES

7. Feedback needs to be in line with the purpose of the assessment tasks, and
relate to its criteria for success.

8. Feedback should also relate to the student conception of the task, and their
understanding of what they are supposed to be doing.

• Students utilise the feedback.

9. Students must receive, and pay attention to, the feedback.
10. Feedback should influence students future actions.

The experience of Smith & Gorard (2005) indicated that shifting to formative feedback
requires more than simply removing summative marks. In their case study, Smith &
Gorard (2005) reported significantly worse results for the group of early secondary
student who received only formative feedback. In discussing their results, they in-
dicate that, in this case, feedback comments were often not constructive, were mis-
understood by students, and were not integrated back into the teaching and learning
context. It appears that in the case examined by Smith & Gorard (2005) the assessment
remained primarily summative in nature with marks being replaced by comments,
resulting in many of the conditions raised by Gibbs & Simpson (2004) not being met.

Interestingly, in proposing the use of formative feedback in education, Bloom (1969)
indicated that an assessment item can play both formative and summative roles, though
he suggested that in this case the formative feedback will be less effective. The issue
is that the different purpose behind the two forms of assessment will result in stu-
dents approaching each in a different way. To make the most of formative feedback,
the ideal strategy for students is to highlight their misunderstandings and draw at-
tention to what they do not know. By doing this, students will receive feedback that
is more relevant to their current situation and it provides them with the advice they
need to make progress. In contrast, misunderstandings result in lower grades when
the assessment is summative. As a result, summative grading encourages students to
hide their misunderstandings. In extreme cases students plagiarise others work in an
attempt to hide their own misunderstandings, something that does not make sense
when the work is formative in nature.

If used effectively, formative feedback can be used to focus students on gaining re-
quired levels of understanding. With summative assessment marks for assessed work
is typically final, meaning that students have little incentive to incorporate feedback
they may receive in addition to the summative marks. The focus is on the marks
gained, not on discovering opportunities to learn from mistakes. With formative feed-
back the process can be seen as ongoing, with the assessment just one step toward
gaining understanding. Student can then use the provided feedback to engage in addi-
tional learning, helping them to address any misunderstandings. Figure 3.3 provides

62

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

an illustration of these two different views on assessment, highlighting the ongoing
nature of formative feedback.

Teaching
Staff

Student

1 + 1 = 3

Submits

Feedback

! "

1 + 1 = 2!

Try …
Read …

I Understand!

Teaching
Staff

Student

1 + 1 = 3

Submits

Marks

❌Wrong
0 Marks

Well… at least
its over

1 + 1 = ??

Engages
Additional
Learning
Activities

Assessment
is Final

Figure 3.3: Formative feedback enables an ongoing learning process, with feedback
providing details on how work can be completed rather than being an end in itself.

Figure 3.4 highlights another issue with the use of summative assessment during the
teaching period. This figure shows three hypothetical students, Student “A”, Student
“B” and Student “C”, and their depth of understanding over the teaching period. At
the start of the teaching period each student comes in with existing knowledge, and
during the teaching period they construct additional knowledge. When Assessment
1 (A1) is performed each has achieved some level of understanding that is compared
against an expected level of achievement. When summative grading is used at this
point Student “C” has not made sufficient progress and would receive a low grade:
they have learnt too little. At the same time Student “A” has not been challenged by
this assessment, and there is little recognition for this students advanced understand-
ing: they have learnt too much. Student “B” is somewhere between these two, and
therefore receives a “good” grade: they have learnt just enough. The first assessment
is punishing Student “C” for learning these topics too slowly, and is discouraging Stu-
dent “A” by not recognising their current level of understanding. There is also little
distinction between Student “A” and Student “B”, from this perspective they are the
same.

Similar patterns occur for the second assessment (A2) later in the teaching period. Stu-
dent “A” is still not begin challenged, Student “B” is progressing nicely, and Student
“C” is struggling. For Student “C” this negative reinforcement may possibly discour-
age them from attempting to master the concepts, and reinforce any negative opinion
they have of the field in general. In this case, however, Student “C” more fully grasps
the concepts after the completion of the second assessment. The concepts start to come

63

CHAPTER 3. GUIDING PRINCIPLES

U
nd

er
st

an
di

ng

Time

Summative
Grading

Student 'B'

Student 'A'

Student 'C'

A1 A2 A3

Figure 3.4: A hypothetical scenario, showing summative grading measuring pace of
learning.

together, and by the end of the unit Student “B” and Student “C” have a comparable
depth of understanding. This result will, however, not be reflected in their results.
Given that each of the assessment items in our hypothetical unit were summative,
Student “C” will have lost significant marks from the first two assessment items. In
effect, the summative assessment is not only assessing the final level of understanding,
but also the pace at which the student was able to achieve this understanding.

This grading during the semester is also not effective for helping the high achieving
Student “A.” At no point has their advanced knowledge been recognised, and the
constrained nature of the assessments are not likely to have helped their development.

Figure 3.5 shows an alternative picture, one that makes use of formative feedback
and delays all summative assessment to the end of the teaching period. At each of
the assessment points during the semester the students each receive formative feed-
back based on their individual level of understanding demonstrate at that point. The
advanced standing of Student “A” can be recognised, and the student can be encour-
aged to further their understanding with additional resources and advice. Student
“B” can be congratulated for making good progress, their misunderstandings can be
addressed and they can be advised how best to proceed with the upcoming material.
Student “C” can be offered additional support or directed to useful resources, their
lack of progress is not punished but used to indicate the student needs additional
help. This more personal help and attention should result in improved learning, but
even when the progress remains the same the summative assessment at the end of the
semester is still a better representation of the students’ learning outcomes.

To best support student construction of knowledge the model presented in the next
chapter aims to maximise the use of formative assessment: assessment that supports

64

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

U
nd

er
st

an
di

ng

Time

Summative
Grading

Student 'B'

Student 'A'

Student 'C'

Formative
Feedback

A1 A2 A3

Figure 3.5: An alternative to Figure 3.4, showing formative feedback supporting
learning during delivery with summative grading at the end.

learning. This involves the use of frequent formative feedback during the semester
to aid students in developing appropriate understanding, and delaying summative
assessment until after unit delivery.

Our assessment should, as much as possible, focus on providing feedback on student
understanding and ability to meet the intended learning outcomes. We want to focus
on more than just the “product” outcomes from the teaching and learning activities.
Assessment tasks need to include aspects that require students to articulate their cur-
rent understanding of concepts. This can then be used to help determine the students
current level of understanding, and errors evident in this work provides opportunities
for students to learn from their mistakes.

This principle relates to both students construction of knowledge and to the alignment
of activities and assessment, as shown in Figure 3.1. Formative assessment of learning
outcomes during delivery helps students in the construction of knowledge, providing
opportunities to learn from their mistakes without fear of losing marks. These forma-
tive tasks also help both staff and students with the alignment of teaching and learning
activities and assessment tasks. Staff can use the identified misunderstandings to help
guide students individually, and to change or adjust teaching and learning activities
where needed. For students, this ongoing focus on articulation of understanding and
receiving feedback will ensure they are suitably prepared to demonstrate how they
have met all of the intended learning outcomes in the final summative assessment.

The summative assessment also contributes to both students construction of knowl-
edge and to the alignment of activities and assessment. For final unit grades students
will need to demonstrate how their understanding aligns with the units intended

65

CHAPTER 3. GUIDING PRINCIPLES

learning outcomes. The assessment needs then to aim to assess the learning out-
comes, evaluating how suitable the students level of understanding is at the end of
the unit. The SOLO taxonomy (Structure of the Observed Learning Outcome) pro-
posed by Biggs & Collis (1982) provides effective guidelines for performing such an
assessment.

To summarise, the model presented in Chapter 4 aims to enhance learning outcomes
through the use of frequent formative feedback. This will meet the requirements taken
from Gibbs & Simpson (2004), thereby avoiding the issues raised by Smith & Gorard
(2005). To be effective, formative feedback must be communicated effectively to stu-
dents and provide them with clear means of addressing any shortcomings.

3.1.4 Focus on Important Aspects, while Providing Access to Necessary De-
tails

Adopting constructivist learning theories requires a recognition that ideas cannot be
directly communicated, and that teaching is therefore not about presenting the re-
quired material but guiding students to actively construct their own understanding
of the required topics. To accommodate this change in approach, teaching staff need
to carefully plan communication so that it focuses students appropriately on the most
important aspects. In communicating concepts it is important to focus on only core
aspects, ignoring unnecessary details. To borrow an idea from communication theory,
we aim to have as high a signal to noise ratio (Shannon 1949) as possible, ensuring
students will not miss important details amongst the noise, no matter how interesting
teaching staff find particular side issues.

Presentation of teaching and learning resources need to take into consideration their
purpose when determining what is communicated. For example, lectures are not a
suitable means of communicating details, but could be useful for inspiring students,
and motivating them to learn a particular topic. In these situations, the focus should
therefore be on providing only key aspects necessary for students to get started with
a topic, or important concepts to guide their thinking. Further resources can then
provide students with access to relevant details as they are required, and when they
will be appropriate for each student.

With limited resources, primarily time, a classic depth-vs-breadth trade off also needs
to be considered, when thinking about the focus on a particular unit. Given that we
have fixed time, it is important to aim to cover an appropriate breadth and depth of
topics, as illustrated in Figure 3.6. Different units could aim either for a wide breadth

66

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

and shallower depth, or for a narrower focus with a deeper depth.

U
nd
er
st
an
di
ng

Topics

U
nd
er
st
an
di
ng

Topics0 n0 n

Figure 3.6: Given a fixed teaching “volume”, a unit can cover either a breadth of
topics or fewer topics in depth.

The SOLO Taxonomy (Biggs & Collis 1982) provides several levels that can then be
used in defining appropriate intended learning outcomes, as described in Biggs (1996)
and further elaborated upon in Biggs & Tang (2007). These have been found to be ef-
fective means of communicating intended learning outcomes across a range of fields
and units (Brabrand & Dahl 2007, 2009). Biggs recommends that university level de-
grees should aim for relational levels of understanding, indicating that in many re-
gards a focus on depth is more appropriate than a shallow understanding across a
wider range of topics.

Interestingly, the study conducted by Schwartz et al. (2009) found that high school
students who reported studying a major topic in depth earned higher grades in col-
lege than those who reported covering no topics in depth. If this translates to under-
graduate computing education, then a depth of understanding in programming may
help students succeed with other computing units. The strong correlation generally
observed between programming skills and other computing skills (McGettrick et al.
2005) supports this idea.

As programming is central to the discipline of computing (McGettrick et al. 2005) it
is important to focus on building depth of understanding, over covering a breadth of
topics. This is particularly challenging as external parties seek to inject more content
into curriculum. There is a constant pressure to include details on contemporary top-
ics such as developing for mobile devices, web application programming, building
graphical user interfaces, using certain programming languages, development envi-
ronments, or software tools. Introducing such topics may have some merit, but intro-
duces the risk of inappropriately focusing students attention. A successful introduc-
tory unit should focus on building sufficient depth of understanding such that addi-
tional topics can be learnt by the student on their own. In contrast, where a breadth
approach is taken students may learn contemporary tools at the risk of missing the
underlying concepts that would enable them to move beyond what they have learnt.

67

CHAPTER 3. GUIDING PRINCIPLES

By focusing on important aspects the teaching and learning activities and assessment
tasks will help guide students in the construction of their knowledge, and ensure that
they align to sufficiently deep cognitive levels. As tasks define what students will do,
this in turn helps to ensure that students are developing appropriately deep knowl-
edge in relation to the intended learning outcomes.

3.1.5 Communicate High Expectations

Communicating high expectations is an important part in the development of the
model. In listing their principles for good undergraduate education, Chickering et al.
(1987) include communicating high expectations as one of their seven principles. Chick-
ering et al. (1987) state “expect more and you will get more” and indicate that high
expectations are important for everyone – from those who are poorly prepared or un-
willing, to exert themselves to those who are bright and motivated. Similarly, Klem &
Connell (2004) reported that elementary and secondary school students were likely to
be more engaged with learning if they perceived their teachers as using a well struc-
tured environment with high expectations.

Believing in students’ potential is also key to the approach presented by Soetanto
(2003, 2012). Soetanto’s approach aimed to improve students’ discipline, confidence
and belief in their potential, and units delivered with this approach have gained in
popularity despite their technical difficulty and being delivery in a foreign language
(English).

By having high expectations of our students we aim to build student confidence and
to get them to aspire to excellence. High expectations require students to work hard
throughout the unit’s delivery, providing encouragement to spend sufficient time on
the teaching and learning activities. This then requires both time and energy from
students, which should improve outcomes: as stated by Chickering et al. (1987) “time
plus energy equals learning.”

3.1.6 Actively Support Diverse Student Efforts

Both Chickering et al. (1987) and Soetanto (2003, 2012) indicate high expectations
should also apply to teaching staff. If the students are to meet our high expectations,
they will need our active support. This will need to extend beyond providing forma-
tive feedback, to providing active support throughout the process. Given the technical
nature of introductory programming and the exacting nature of a compiler, students

68

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

typically face numerous challenges.

This requires the recognition of student differences, and preferred learning styles. The
various works on learning styles (Coffield et al. 2004) indicate that individuals have
different preferences with how they approach their learning. By providing support for
a range of learning approaches, and through using different ways of communicating
the same ideas, the model aims to help students in the construction of their knowl-
edge. Providing a range of resources will enable students to approach concepts and
topic from a variety of angles.

3.1.7 Trust and Empower Students to Control their Own Learning

Student motivation has a significant impact on learning. In terms of strategies for im-
proving student motivation, McGregor’s work on motivational strategies in business
(McGregor 1960) provides some insight into similar strategies that could be applied to
education, these ideas are summarised in Table 3.1. In regards to personnel manage-
ment, McGregor identified two categories of managers perceptions of their employees:
named “Theory X” and “Theory Y.”

• Traditional businesses were seen to use coercion or persuasion as a strategy to
motivate employees to achieve required levels of productivity. These strategies
are used when managers adopt the view that employees do not want to work and
cannot be trusted, McGregor (1960) named this understanding of human motiva-
tion as Theory X.

• In contrast, Theory Y assumes that, given the right conditions, people want to
work, that they can be trusted and will do their best work when they are.

While originally applied to business organisation management, these views can also
be applied to an educational setting. Markwell (2004) categorised Theory X and The-
ory Y positions for educational settings, as summarised in Table 3.1. In the educational
context Theory X can be categorised as:

• Being dominated by a negative view of students and their motivation.
• Seeing staff as central to the distribution of knowledge.
• Believing that students must be coerced into learning.

The role of the teacher is seen more as a sage on a stage. These attitudes are unlikely to
lead to student-centred approaches to learning, and conflict with constructivist think-
ing.

69

CHAPTER 3. GUIDING PRINCIPLES

The contrasting Theory Y position takes a more positive view of students, their po-
tential and willingness to learn. Students are viewed as being naturally inquisitive,
willing to learning, and capable of engaging appropriately with the learning activi-
ties. The role of the teacher is seen more as a guide by the side. The resulting teaching
and learning context is likely to lead to student-centred approaches that are more in
keeping with constructivist thinking.

These two perspectives represents the two extremes, and no one individual is likely to
hold a pure Theory X or Theory Y position. Markwell (2004) differentiated between a
Hard and Soft form of Theory X. Hard Theory X teachers focus on the punitive aspects
of the assessment, focusing on the punishments for not following the rules. While
Soft Theory X uses marks for encouragement, with the use of bonus marks or similar
motivations. In contrast, Theory Y focuses on providing opportunities and resources
for students to learn from.

In order to achieve many of the principles listed here it is necessary to adopt a pre-
dominantly Theory Y stance. The formative nature of the assessment tasks together
with the high expectations will both require a level of trust in students that cannot
be achieved with a predominantly Theory X stance. High expectations of students is
a natural repercussion of a Theory Y position, and enhancing motivation in this way
will ideally help students in the construction of their knowledge.

70

3.1.
P
R
IN
C
IP
L
E
S
T
O

G
U
ID
E
H
O
W

W
E
S
H
O
U
L
D

T
E
A
C
H

Table 3.1: Comparison of “Theory X” and “Theory Y” attitudes in education, adapted from Markwell (2004)

Theory X Theory Y

Students have little desire to learn new material. Students want to learn, learning is as natural to students as
play or rest.

Students are inherently lazy and will attempt to get the ma-
terial dumbed-down; the teacher must use a controlling en-
vironment to force students to learn and prevent cheating.

Students are not lazy; threats of diminished grades are not
necessary to motivate students. The self-satisfaction from
learning is sufficient to commit students to achieving the ed-
ucational objectives.

Students prefer to be directed and do not want to be respon-
sible for their own learning.

Students will naturally accept responsibility for learning.

The teacher must act as the source of information and ac-
tively transmit it to the students.

The intellectual potential of most students are being only
partially utilized in the classroom.

Many students are not capable of learning the necessary ma-
terial and can be expected to earn a low grade.

Imagination, ingenuity, and creativity are widely distributed
within the student population and will be willingly applied
to the learning process.

71

CHAPTER 3. GUIDING PRINCIPLES

3.1.8 Embed Reflective Practice In All Aspects

In education the idea of reflective practice is to periodically look back at our teach-
ing, and consider how things can be improved. The foundations of this idea can be
traced back to Dewey (1933), though reflective practice itself was originally proposed
by Schön (1983). Farrell (2007, 2008) identified two forms of reflective teaching prac-
tice: a strong form and a weak form. In its weak form, reflective practice involves in-
formal evaluation of various aspects of professional practice that Farrell (2008) likens
to a “thoughtful practice.” The alternative strong form of reflective practice involves
systematic reflection on teaching and taking responsibility for teaching and learning
activities. For reflection to be effective, Richards & Lockhart (1994) state it must be
used “hand-in-hand” with critical self-examination with reflection being the basis for
decision making, planning and action.

Reflection plays an important role for both staff and students in the model presented
in Chapter 4. Students undertaking units taught using this model will graduate and
move into professional practice. Engaging them with reflective practice throughout
their education will help ensure they are adequately equipped for lifelong learning
(Field 2006). The active incorporation of frequent formative feedback provides a direct
means of encouraging students to reflect on their work throughout the delivery of the
unit, and the summative assessment should include some reflective aspects where
students can reflect on what they have achieved in the unit.

The role of reflection, with respect to the teaching and learning activities, for students
is shown in Figure 3.7. When each learning activity is concluded, students are en-
couraged to reflect on their learning. In this process students identify any areas they
would like feedback on, and can use this to ensure their formative feedback is relevant
to their current situation. By reflecting, and through the subsequent formative feed-
back, students reinforce the construction of their knowledge, and are able to inform
their actions for upcoming teaching and learning activities.

At the end of the teaching period for a unit, students are encouraged to reflect on their
unit as a whole. Students can reflect on their achievements, challenges overcome,
work habits and other aspects they felt influenced their learning. This process of re-
flection should help students consolidate their knowledge, drawing into clear focus
exactly what they have achieved and, hopefully, ways they can improve their learning
in future semesters.

Figure 3.8 shows the role of reflection for teaching staff. During the teaching pe-
riod staff reflect upon the delivery of the teaching and learning activities and student

72

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

Student

Teaching and Learning Activities

U
nd

er
st

an
di

ng

Time

Reflect on learning during the
teaching period

Reflect on outcomes after delivery

Unit

...

Reflect on
performance

Adjust
Approach

Figure 3.7: Students reflect on their learning during the teaching period, and on the
outcomes they have achieved after the teaching period.

progress. Common misconceptions of students identified in formative feedback can
be used to update delivery during the teaching periods. After the teaching period stu-
dents’ results – both in terms of grade distributions and quality of evidence demon-
strated in the final summative assessment – can be drawn upon to suggest changes
for subsequent unit deliveries. Reflections on teaching should be shared amongst all
teaching staff related to the unit to encourage reflective practice, and to facilitate col-
laborative improvements.

Reflection underpins all of the principles presented in this work. Students engage in
reflection as a tool to help them construct their knowledge, and the formative feedback
activities enable student and staff reflections. Staff reflect on teaching and learning
activities, their alignment to learning outcomes, and the depth and breadth of cover-
age. Reflections enable educators to realistically manage expectations of students, the
support offered, and to help balance trust with mechanisms to avoid inappropriate
behaviour. Even the very nature and composition of these principles have been the
focus of ongoing reflective practice.

To ensure ongoing improvements for both students and staff, the model incorporates
reflective practice across all aspects. Students engage in reflection throughout the
learning process, using their reflections to direct formative feedback and consolidate

73

CHAPTER 3. GUIDING PRINCIPLES

Teaching and Learning Activities

St
ud

en
t U

nd
er

st
an

di
ng

Time

Reflect on outcomes after delivery

Unit

...

Reflect on delivery during the
teaching period

Teaching
Staff Reflect on

performances

Adjust
Guidance

Figure 3.8: Staff relect on delivery during the teaching period, and on the outcomes
students achieved after the teaching period.

knowledge. Teaching staff reflect on delivery, progress, and outcomes to improve the
teaching and learning environment to better meet student needs.

3.1.9 Be Agile and Willing to Change

For reflective practice to actively enhance teaching educators must embrace change,
focusing on aspects that will deliver the most value for students for the effort required.
Similarly, as software developers this emphasis on delivering value by “focusing on the
things that matter most” is reminiscent of the agile software development principles
(Martin 2003). The agile software development community aimed to move away from
heavyweight, documentation driven, software development processes toward a more
agile approach focused on outcomes. Beck et al. (2001) documented the Agile Mani-
festo; the key priorities from a wide range of agile software development processes.
The Agile Manifesto states the value of:

• individuals and interactions over processes and tools,
• working software over comprehensive documentation,
• customer collaboration over contract negotiation, and

74

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

• responding to change over following a plan.

In many ways the evolution of software development process from the traditionally
heavyweight processes to lightweight agile processes can be likened to a shift from
a predominant Theory X environment to one which is predominantly Theory Y. The
focus on documentation and rigid control over the development process is being re-
laxed, and developers are being trusted and expected to deliver value.

If we are to affect change in education from a mark-driven Theory X environment, to
a student-centred Theory Y environment, then the agile software development prin-
ciples provide useful guidance to inform our model. To realise all of the principles
presented in this chapter it is necessary to adopt similar priorities in our teaching,
valuing things that help students construct their knowledge over other less valuable
activities.

To help manage change effectively we view the education environment as consisting
of an a) overall strategy, b) teaching and learning resources, and c) teaching and learn-
ing activities, as shown in Figure 3.9.

b) Teaching and Learning Resources c) Teaching and
Learning Activities

usesWikis

Podcasts

Lecture Notes
Swinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols

Tutorial and
Laboratory Handouts

Texts

APIs

Tools

guidesguides

a) Overall Strategy

Intended Learning Outcomes
Assessment

Approach
Approach to Select Content

informs creation of
Delivery

Approach

Figure 3.9: Relationship between a) overall strategy, b) resources and c) activities
used to manage change effectively.

75

CHAPTER 3. GUIDING PRINCIPLES

The strategy for delivering unit content informs the approach to material delivery, the
choice of assessment approach, approach to selecting unit content, and the develop-
ment of the intended learning outcomes. The central role of the intended learning
outcomes means that the overall strategy should not change unless significant issues
are identified in the approach overall. Teaching and learning resources can then be
separated from the teaching and learning activities. In this way we can create reusable
resources that are independent of the activities that are used in, meaning that activities
can be adjusted more freely to better help direct student efforts. An overview of this
approach is summarised in the following list, and each of these points are expanded
upon in Chapter 4 and Chapter 5.

• Develop an overall strategy for delivering the unit content. Then:

– Determine appropriate content, by focusing on important aspects and using
principles related to what we aim to teach.

– Derive intended learning outcomes, using appropriate verbs for the in-
tended levels of the SOLO taxonomy.

– Select an appropriate approach to unit assessment, and delivery.
– Focus teaching and learning resources and activities on engaging students

actively with the concepts related to the intended learning outcomes.
– Avoid changing overall strategy, unless there are significant issues.

• Create teaching and learning resources.

– Deliver material following the direction from the overall strategy.
– Make resources generic and self contained.
– See resources as supporting teaching and learning activities with additional

details.
– Invest in initial development for long term value; actively reuse and en-

hance over time.

• Design teaching and learning activities.

– Use activities to focus student activity.
– Actively review each semester, and rework based on reflection.

In developing the overall strategy several aspects need to come together: the intended
learning outcomes, unit content, and approach to assessment and material delivery.
Each of the principles presented in this chapter needs to help shape these aspects
to ensure the overall learning context will enable the desired student centred focus.
Chapter 4 includes a discussion on the application of these principles to select appro-
priate approaches to assessment, in Section 4.1.1, and approach for material delivery,
in Section 4.1.3. Using these approaches, a number of approaches to content delivery
are possible. The selected approach for the examples presented in this working are
discussed in Section 5.1, with the two example units then presenting their associated

76

3.1. PRINCIPLES TO GUIDE HOW WE SHOULD TEACH

intended learning outcomes in the remainder of Chapter 5.

Details related to the development and delivery of teaching and learning activities and
resources also accompanies the two example units discussed in Chapter 5. This dis-
cussion illustrates how these principles helped shape the material developed for the
example units, and lead on to a more in depth discussion of the supporting resources
in Chapter 6. Details of the iterative development and delivery of these resources and
activities is then discussed in Chapter 7.

3.1.10 Summary

This section presented nine principles to guide decisions that together should pro-
duce a student-centred, constructively aligned, learning environment. Each principle
is backed by a range of education theories, and, if valid, together the principles should
enable the creation of an environment that is demanding but supportive, focused on
students building knowledge, agile, constantly improving through reflections, and ac-
cepting of various individual strategies and pace of learning.

77

CHAPTER 3. GUIDING PRINCIPLES

3.2 Principles to guide what we should teach

Principles specific to teaching introductory programming are presented in the follow-
ing list. While the general principles, presented in Section 3.1, helped shape the over-
all teaching and learning environment, these principles helped shape specifics in the
curriculum, activities, and assessment tasks.

P10 : Set the strategy, and structure learning, around a programming paradigm.
P11 : Focus on programming concepts over language syntax.
P12 : Use programming languages as they were designed to be used.

Principle 10 is an implication of Principle 8, the need to be agile and willing to change,
which proposed guiding the development and delivery of the unit by an overall strat-
egy. This strategy will guide decisions on the topics to be included as well as the
approach to delivering these topics. In terms of introductory programming, a key
part of this strategy will be the choice of programming paradigm. Choosing this will
help determine appropriate intended learning outcomes, and will guide the creation
and delivery of teaching and learning activities and resources. Changing paradigm
would require significant changes to teaching and learning activities, and resources,
and so once chosen it will have a lasting impact.

Whichever paradigm is chosen, the constructive learning theories, encompassed in
Principle 1, indicate that the focus of the delivery should be on guiding students,
rather than trying to transfer the knowledge related to programming. This implies
a focus on the underlying concepts, as these are fundamentally more important than
details of the language syntax. This idea is further supported by Principle 4, with the
goal of focusing on the most important aspects. This intention is captured in Prin-
ciple 11, with the aim of using concepts as the central focus for unit delivery and
assessment.

Lastly, Principle 12 indicates that we should aim to use programming languages in the
way they were intended to be used. The goal here is to ensure we are always guid-
ing students in appropriate ways of using programming languages, and designing
programs. Good programming practices should be used throughout the unit, ensur-
ing that there is consistency as students attempt to construct their knowledge of this
challenging topic.

Each of these principles is expanded upon in the following sections, and linked to
associated research.

78

3.2. PRINCIPLES TO GUIDE WHAT WE SHOULD TEACH

3.2.1 Set the Strategy, and Structure Learning, Around a Programming Paradigm

Programming paradigms define fundamental programming styles and abstractions,
and therefore have a profound impact upon the structure and outcomes of introduc-
tory programming units. In designing a new introductory programming unit, a pro-
gramming paradigm – such as the procedural, functional or object oriented paradigm
– needs to be chosen. This can then form the core of the overall strategy for a unit,
and guide the development of its intended learning outcomes, teaching and learning
activities and resources.

Which programming paradigm should be taught first is a popular, sometimes emo-
tive, topic in computing education research. The following list indicates the range of
approaches from imperative-first to objects-first approaches.

• Imperative programming first such as with Koffman (1988a).
• Cooper et al. (2003) suggest a course working with graphics prior to introductory

programming to help students with problem solving skills.
• Felleisen et al. (2004) described an approach to teaching introductory program-

ming using the functional paradigm (using the Scheme programming language).
• Howe et al. (2004) presented a components-first approach.
• Bennedsen & Caspersen (2004) argued for the use of a model-first approach us-

ing the object oriented programming paradigm.

With the predominant role of object oriented programming in industry, a common
trend has been for academic institutes to move from imperative-first approaches to
objects-first approaches.

In their discussion on learning and teaching of programming, Robins et al. (2003)
summarise a range of research on both imperative-first and objects-first approaches
to teaching introductory programming, and indicate that there is not likely to be one
“best” approach. Lister et al. (2006) provided an in depth look at the research per-
spectives on the topic of objects-first, but in general there is no consensus on which
approach should be taken. The objects-first approach has “failed” according to As-
trachan et al. (2005) and Reges (2006), who report on shifting back to a procedural
paradigm after having taught objects-first for a number of years. While Ehlert &
Schulte (2009) reported no significant difference between approaches using objects-
first and objects-later, their later work (Ehlert & Schulte 2010) indicated the objects-
later approach had a greater comfort level for students.

During the design of the introductory programming units developed in this research

79

CHAPTER 3. GUIDING PRINCIPLES

work there was a need to choose which x-first approach to use. The common decision
appears to be between the imperative-first, objects-first or functional-first approaches.
Whichever approach is taken, the choice guides which concepts are covered in the unit
and the order in which these can be tackled.

3.2.2 Focus on Programming Concepts

There are various views of programming in the literature. One perspective views pro-
gramming from a mathematical basis (Denning 1989, Dijkstra 1989, Hoare 1969), others
see it as an exercise in problem solving (Palumbo 1990), or as modelling concepts (Benned-
sen & Caspersen 2004). Interestingly, most textbooks approach the topic through lan-
guage syntax and features (Robins et al. 2003). In this work we avoided the predomi-
nant standard textbook approach, and instead focused on programming concepts.

A similar idea was expressed in Goldman (2004) as a concept-based approach. Their
work introduced students to a number of “big ideas” related to software development
using the JPie interactive programming environment. Our approach differs in that
we focused on the “small ideas” that programs are build upon. In this way we build
depth across these ideas and focus on the core programming abstractions, in line with
our general principles (Principle 4).

Topics such as variables, procedures, control flow, etcetera are each approached as a
concept. By teaching staff focusing on these concepts, it is hoped that students will
engage meaningfully in understanding programming as a whole. Bruce et al. (2003)
indicated that when teaching staff focus on developing student understanding and
integration of programming concepts, it likely to lead to greater student satisfaction,
with students being better prepared for subsequent programming units.

This concept-based approach is similar to the model-based approach of Bennedsen &
Caspersen (2004), but applied to procedural programming concepts. By focusing on
concepts we aim to provide students with reasons why the various programming fea-
tures should be used, when different abstractions should be used, and help students
develop a means of understanding abstract ideas. This concept-based approach can be
applied to procedural programming concepts, object oriented programming concepts,
and other programming paradigms.

Winslow’s comparative study of expert and novice programmers (Winslow 1996) in-
dicated that expert programmers tend to “abstract from a particular language to the
general concept.” By focusing on the concepts first we hope to instil similar expert-

80

3.2. PRINCIPLES TO GUIDE WHAT WE SHOULD TEACH

like ideas in students. Students are encouraged to create conceptual programs, which
can then be mapped to code using the programming language syntax rules. Focusing
first on concepts should encourage a depth of understanding, with students going be-
yond surface learning of the syntax used and thinking conceptually about what they
are trying to achieve.

Programming concepts are tightly interrelated, and yet there is a need to provide a
sequence of activities that can be introduced to students without overloading them
initially. In designing these activities we aimed to ensure that concepts could be intro-
duced to students in such a way as to reduce the amount of “magic” to a minimum.
That is, limiting the cases where students have to do something without being able to
reason why with the concepts they understand.

The aim of this concept-based approach is to enable students to explore language fea-
tures. At each stage in the process students should have sufficient concepts to be
able to understand the programs they are asked to create. To extend students further,
they can be asked to experiment with features using the concepts covered to create
programs they are personally interested in. Ideally this would enhance student moti-
vation, and ensure they spend sufficient time on the task.

The focus on programming concepts means there is a need to:

• introduce programming concepts incrementally;
• provide students with time to put concepts into practice;
• see syntax as a means to an end, not an end in itself;
• avoid using language features before concepts that can explain their use; and
• map concepts to code using programming language grammars.

3.2.3 Use Programming Languages as they were Designed to be Used

While we agree with the “back to basics” approach of Reges (2006), we want to empha-
sise using programming languages in the way they were designed to be used. Our em-
phasis on programming concepts has deliberately relegated language to a secondary
role, and one that can be changed by learning new syntax rules. Given this, chang-
ing between languages should be less problematic, and therefore we should not use
a language simply for its industry relevance, as has been done by many institutions.
Rather, language choice should be based on the programming concepts it supports, its
availability across computing platforms, and the level of support it offers novices.

81

CHAPTER 3. GUIDING PRINCIPLES

Programming language choice for introductory programming is as popular a topic in
the Computing Education Research literature as the choice of programming paradigm.
The following list covers a select number of well-cited papers on the topic of which
programming language to use in teaching introductory programming. It is ordered
by year, and shows the general shift from procedural languages to object oriented
languages.

• Koffman (1988b) argued for Modula-2 over Pascal, PL/1 and Ada.
• Mody (1991) argued against C, and C++ for its lack of coherence, simplicity,

understandability and implementability.
• Roberts (1993) discuss Stanford’s shift from Pascal to C, addressing common is-

sues with C by providing libraries to encapsulate complex features, emphasising
procedural and modular abstractions, and focusing on the discipline of software
engineering.

• Brilliant & Wiseman (1996) discussed programming paradigm and language se-
lection for introductory programming. They concluded that there was no clear
advantage to starting with either procedural programming, object-oriented pro-
gramming, or functional programming paradigms. In terms of language they
discussed moving from Pascal to Ada, C, C++, or Scheme.

• Böszörményi (1998) argued for Modula-3 over Java, discussing features that are
useful to be taught in introductory programming yet missing from Java.

• Howell (2003) claimed that through structured labs, comprehensive grade sheets,
in-class grading and frequent feedback any programming language could be
used.

• Gupta (2004) suggested that a first language should strike a balance between
being easy to grasp and supporting advanced concepts needed for later units.

• Kelleher & Pausch (2005) provided a detailed examination of a wide range of
programming languages used for teaching introductory programming. Their
work discussed various efforts to help make programming more accessible for
novices, including systems that range in support from look at the way programs
are expressed, how programs are structured, understanding of program execu-
tion, to systems that embed learning support. While the work reported on a
range of systems it does not provide any recommendations on which language
to use.

• Bishop & Freeman (2006) presented the pros and cons, from their experiences, in
using the C# programming language, and provided some recommendations for
those looking at using the language.

• Mannila et al. (2006) argued for the use of Python due to its simplicity, with
examples comparing Python to Java.

• Mannila & De Raadt (2006) provided a set of criteria for comparing language

82

3.2. PRINCIPLES TO GUIDE WHAT WE SHOULD TEACH

features for introductory programming. The study then compared several lan-
guages, with Eiffel, Java and Python achieving the highest scores.

• Pendergast (2006) provided a reflection on teaching introductory programming
with Java over a number of years, highlighting some of the issues encountered
and suggesting mechanisms to avoid them.

• Maloney et al. (2010) described the Scratch programming environment, a visual
programming language designed primarily for students aged between 8 and 16.

• Anik & Baykoç (2011) used the Analytic Network Process methodology to help
guide the decision of which language should be used first. The relative weight-
ings given to the various aspects resulted in Java being ranked above the other
languages.

Interestingly, underlying many of these papers is the idea that switching language is
difficult. For example, Brilliant & Wiseman (1996) indicated that teaching multiple
languages increases the overhead necessary to cover language details and peculiari-
ties. While true, the relative proportion and disruption of this depends upon educa-
tors perspective as illustrated in Figure 3.10. When the focus is on using a language
to achieve a task, switching language is highly disruptive as students have focused on
learning the language itself. If the focus can be brought to the associated concepts, the
perceived change is smaller, as the focus has been on underlying concepts that will
apply in the new language. In this case the change is actually supportive of the focus,
helping students to more clearly see the underlying concepts.

Concepts

Language

Focus

int x;

x++;
for (...)

{...}

if (...)

p->x = 10;

Large
Percentage

Change is
Disruptive of

Focus

Concepts

Language

Focus

Small
Percentage

Change is
Supportive of

Focus

Variable

Procedure

Local Parameters

Assignment

Expression

Figure 3.10: When the focus is on the language, changing it changes a large portion
of what has been covered and the change is seen as disruptive. When the focus is
on the concepts, changing the language is now seen as supporting the focus on the
underlying concepts.

By having a focus on programming concepts over language syntax this work aimed
to tackle this problem from a different angle. In our previous teaching we noticed
that many students tended to focus on, if not “cling” to, a particular syntax. Shift-
ing language was a major effort as it was syntax they had learnt. Students felt they

83

CHAPTER 3. GUIDING PRINCIPLES

were “Java programmers” or “C/C++ programmers”; they did not see that they were
learning something far more important; they were not learning a specific language,
they were learning to program.

This focus also becomes evident when you examine the title of many introductory
programming units. Introductory programming unit titles like “Introduction to Pro-
gramming with C” and “Software Development in Java” give the impression that the
language is very important, raising its role from supportive to central in the unit.

Choosing a language for a concept-based approach to introductory programming should
be guided by the following principles, stated in a manner similar to the agile manifesto
(Beck et al. 2001). We value. . .

• Focus on programming concepts over language syntax.
• Teach students how to learn the language over teaching the language explicitly.
• Value languages that clearly support the concepts to be learnt over the lan-

guages that are the current industry trend.
• Use languages that support multiple platforms (operating systems) over those

tied tightly to a single platform.
• See multiple languages as an important part of learning over focusing on a

single language.

– Use multiple languages to encourage students to focus on concepts over
programming language syntax.

– Expose students to language differences enabling them to see different strengths
and weaknesses.

– Encourage students to see that they are learning to program, not learning a
programming language.

– Foster the attitude that language is a choice – students should not feel
constrained to one language and should be open to possibilities other lan-
guages offer.

As with the Agile Manifesto, we agree that there is value in the items on the right, but
we value the items on the left more.

A key aspect in this work that is different from other published work is the deprecated
importance of the use of the language in industry. If a concept-based approach is suc-
cessful, students will be able to quickly acquire skills in industry relevant languages
in later units. Early programming units can focus on using languages that best meet
educational requirements, while later units can cover language specific details and pe-
culiarities concisely knowing students have an understanding of underlying concepts

84

3.3. SUMMARY OF GUIDING PRINCIPLES

and the ability to learning new languages themselves.

3.2.4 Summary

This section proposed the use of a concept-based approach to teaching introductory pro-
gramming. This approach focuses on teaching programming concepts directly, with
use of the programming language grammars to help students map concepts to code.
The aim of this approach is to help students focus on concepts, while providing them
with tools they can use to learn any relevant programming language. The expected
outcome of this approach is that programming language choice is much less important
than which programming paradigm choice.

3.3 Summary of Guiding Principles

This chapter outlined twelve principles related to both how and what we aim to teach
in our constructively aligned introductory programming units.

• Nine principles describe how the teaching and learning environment should op-
erate:

1. Recognise that students construct knowledge in response to activity.
2. Align activities and assessment to intended learning outcomes.
3. Assess learning outcomes, not learning pace or product outcomes.
4. Focus on important aspects, while providing access to necessary details.
5. Communicate high expectations.
6. Actively support student efforts.
7. Trust and empower students to manage their own learning.
8. Be agile and willing to change in response to measurable indicators.
9. Embed reflective practice in all aspects.

• Three principles help guide what we aim to teach:
10. Set the strategy, and structure learning, around a programming paradigm.
11. Focus on programming concepts, not language syntax.
12. Use programming languages as they were designed to be used.

Chapter 4 will outline a model for constructively aligned introductory programming
units. The model was created through the application of these principles, and the
model’s ability to embody these principles is discussed.

85

4
A Model for Constructive Alignment of

Introductory Programming

Chapter 3 outlined twelve principles, nine for guiding how to create a student-centred
learning environment, and three for guiding decisions on what should be taught in
introductory programming. This chapter proposes a model for applying construc-
tive alignment for teaching introductory programming that is in agreement with the
twelve principles.

Section 4.1 describes an application of the principles in defining the overall strategy
for teaching introductory programming, outlining the assessment approach used and
the approach taken to deliver this material in a student centred manner. This section
argues for the user of portfolio assessment, and provides some guidelines for design-
ing and delivering lecture and tutorial classes. Following this, the general model for
constructive alignment is presented in Section 4.2, which describes the overall model,
the processes within it, and means for addressing plagiarism. The chapter concludes
with a brief summary in Section 4.3.

4.1 Overall Strategy

One of the overarching principles from Chapter 3 is the requirement to be agile and
willing to change (Principle 8). In discussing this principle, Section 3.1.9 outlined that
teaching and learning resources need to be guided by an overall strategy. The overall
strategy informs, and is shaped by, the assessment approach, approach to material
delivery, and the approach to the selection of unit content. This section describes the
application of the principles from Chapter 3 to the selection of an assessment approach

4.1. OVERALL STRATEGY

and approach to material delivery. The discussion of approach to selecting content,
and specific intended learning outcomes that follow, are presented in Chapter 5.

4.1.1 Assessment Approach

Assessment plays an important role in defining what students learn. Rowntree (1977)
indicated the central role of assessment procedures in understanding any education
system. This is supported by Ramsden (1992), who stated that “from our students’
point of view, assessment always defines the actual curriculum”, and further sup-
ported by Biggs & Tang (2007) who indicated that “students learn what they think
they will be tested on.” In presenting their conditions for effective assessment, Gibbs
& Simpson (2004) discussed the dominant influence of assessment in defining what
students focus on, indicating that students are able to distinguish between what as-
sessment requires them to pay attention to, and what is likely to result in effective
learning. So the selection of an assessment approach will have a significant impact on
the overall strategy for both students and staff.

Consider a traditional introductory programming, taught using a number of assign-
ments and a final examination. This approach, while commonly used, is not in keeping
with several of our guiding principles, as outlined in the following list.

1. This approach to assessment is teacher-centred, and does not easily incorporate
aspects from constructive learning theory, as discussed in Chapter 2. As a result,
some adjustments are required in order to address Principle 1.

2. The teacher-centred nature of the assessment also excludes students from the
alignment process, Principle 2, with staff performing the alignment of assess-
ment tasks with intended learning outcomes resulting in additional opportuni-
ties for misalignment, as discussed in Chapter 2.

3. Similarly, the use of summative assessment during the semester goes against
Principle 3 with its goal of assessing outcomes, and using frequent formative
feedback to aid student learning.

4. The use of assignment marks to motivate students is also contrary to Principle 7,
with marks being used for motivation in either a hard or soft form of Theory X
strategy.

5. Marked assignments also indicate a finality, with marks being lost or gained
when the assignment is assessed. These results are typically final, and there-
fore provide no incentive for student to reflect on their approach to learning,
and to ensure they have more fully understood concepts before proceeding. Al-
ternate assessment strategies, with a greater emphasis on formative feedback,

87

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

could better encapsulate the ideals of reflective practice, and thereby better meet
Principle 9.

As a result, the principles from Chapter 3 requires us to consider other forms of as-
sessment.

One strategy to address this would be to abandon coursework assignments, delaying
final summative assessment to an examination worth 100% of the student’s grade.
While this would address Principle 3, such a heavy weight examination is very much
a hard Theory X approach, and fails to recognise the value of coursework assignments,
which have been strongly argued for as in Gibbs & Simpson (2004) which provided
several strong arguments for coursework assignments, including the following:

• Units that include coursework assignments, in addition to an exam, resulted in
higher average marks than compared with units that included no coursework
assignments (Chansarkar & Raut-Roy 1987).

• Students prefer coursework assignments over examinations. A position that is
also supported by Kniveton (1996) who stated that students prefer coursework
assignments to exams as assignments assessed a better range of their abilities
and enabled them to organise their time to a greater extent.

• Students attain better results from coursework than examinations. Gibbs & Lu-
cas (1997) indicated a strong positive correlation between the proportion of course-
work assignments and average marks. Though, James & Fleming (2004) indi-
cated that individual students do not consistently perform better, or worse, on
any one form of assessment.

• Coursework assignments are at least as valid a form of assessment as examina-
tions:

– Exams are a poor predictor of future performance (Baird 1985, Gibbs &
Simpson 2004).

– Coursework assignments are a better predictor of long term learning than
exam results (Conway et al. 1992). This supports the idea that students
adopt surface approaches to preparing for exams Marton & Säljö (1976b),
Tang et al. (1999).

– The quality of learning is deeper in assignment-based units, when com-
pared to exam-based units (Tynjala 1998, Gibbs & Simpson 2004).

Examinations have also been found to be at odds with constructive learning theories.
In discussing constructivism for computer science education, Ben-Ari (2001) indicated
that test performances, and group work, were poor indicators of the conceptual mod-
els students had constructed about computer science. Ben-Ari (2001) suggested that

88

4.1. OVERALL STRATEGY

the ideal constructivist assessment would involve observation and questioning of stu-
dents as they worked on authentic problem solving tasks.

In reporting on a constructivist approach to teaching computer graphics Taxén (2004)
described the use of a final examination as causing a disconnect between the teaching
approach and the assessment approach. The work indicated that while the teaching
approach had focused on problem solving, and developing a deep understanding of
associated graphics concepts, the use of an examination had rewarded students for
adopting surface approaches to learning. Taxén (2004) indicated that it was quite pos-
sible for students to pass an exam through memorisation of facts, without developing
the necessary depth of understanding.

When considered in terms of introductory programming, written examinations are
seen to be an ineffective means of assessing student knowledge. A recent study by
Sheard et al. (2013) interviewed programming unit lecturers from eight universities on
the processes associated with setting final exams, the underlying pedagogical reasons,
and how academics sought to prepare students. The work found that there was gen-
eral agreement that a written examination was not ideal for assessing programming
knowledge, though it was felt to be necessary to address issues of plagiarism and to
assess conceptual understanding. Similar concerns were also echoed by Bennedsen &
Caspersen (2006) who advocated for practical laboratory examinations.

The challenge, therefore, is to define an assessment approach that enables students to
construct their knowledge, uses coursework assignments in a formative manner, and
enables 100% of each student’s grade to be determined after the end of the teaching
period, with a strong alignment to unit intended learning outcomes.

4.1.2 Portfolio Assessment

In proposing Constructive Alignment, Biggs (1996) advocated strongly for the use of
an assessment portfolio, and indicated that the principles of constructive alignment
had evolved with the decision to use portfolio assessment. This work was extended
in his later work, presented in (Biggs & Tang 1997), which outlined suggestions for
implementing portfolio assessment and a generalised model for instruction design.
Further advice and details of the generalised model were presented in Biggs & Tang
(2007) book on quality learning at university.

Assessment involves three components, all of which are typically under the control
of the teacher (Biggs & Tang 1997). These include setting criteria, selecting evidence

89

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

and making a judgement. With the assessment portfolio the students take control of
at least the selection of evidence, as illustrated in Figure 4.1. The portfolio is then
a collection of work that the student puts forward for assessment against the unit’s
intended learning outcomes, which helps avoid the teacher-selected sampling effect of
exams.

Set Criteria Select Evidence Make Judgement

Learning

Figure 4.1: With portfolio assessment the student is responsible for, at least, the se-
lection of evidence in the assessment process.

Smith & Tillema (2001, 2003) identified four different kinds of portfolios evident in
the research literature: dossier, reflective, training and personal development. These reflect
the combination of two identified factors: (a) the purpose of the portfolio as either for
selection/promotion or learning, and (b) whether the portfolio is self-directed or man-
dated. The details of these are described in the following list, and shown in Figure 4.2.

Dossier [selection/promotion, mandated] is a portfolio for the purpose of selection or
promotion that contains a mandated collection of work to demonstrate achieve-
ment.

Reflective portfolios [selection/promotion, self-directed] contain a self-selected col-
lection of work that demonstrates growth or accomplishment for the purpose of
admission or promotion. The portfolio is accompanied by a self-appraisal, with
the justification for the selection of pieces being as important as the evidence
itself.

Training portfolios [learning, mandated] are a mandated collection of work performed
in a learning context. The portfolio has a fixed format, and contains representa-
tive work from the student demonstrating acquired skills, knowledge and com-
petencies.

Personal development portfolios [learning, self-directed] are a self-selected collec-
tion of work, and reflective account of personal growth over an extended period.

Biggs’ use of an assessment portfolio clearly fits with the Training portfolio classification,
being a mandated part of the unit assessment for the purpose of evaluating learning
outcomes. In the study of a small group of professionals, Smith & Tillema (2001) found
the training portfolio to be highly rated. Their findings indicated that students found
the training portfolio confusing initially, but that once they had understood its func-

90

4.1. OVERALL STRATEGY

M
an

da
te

d
U

se

Self-D
irected U

se

Selective Purpose

Learning Purpose

Dossier Reflective

Training Personal
Development

Figure 4.2: The four kinds of portfolio based upon purpose and use from Smith &
Tillema (2001).

tion and rational they liked the approach, were easily able to construct their portfolio,
and felt it was a fair way to assess their learning.

Tang et al. (1999) provides further evidence of the value of portfolio assessment. In
evaluating how students approach study, they found that students tended to have
a narrow, surface approach to studying for tests. These same students were found to
adopt wider, more cognitively challenging, approaches when preparing for a portfolio
assessment.

Portfolios have been used to assess introductory programming. (Plimmer 2000) re-
ported the successful use of portfolio assessment in an introductory programming
unit in which the portfolio contributed between 25% and 60% of the students’ final
grades. Programming portfolios were also discussed by (Jones 2010), where students
submitted a number of portfolio assignments during the semester. These two ap-
proaches represent interesting applications of portfolio assessment, but do not use the
portfolio as a means of performing a holistic assessment of the students ability to meet
the intended learning outcomes, as is proposed in this work.

We argue that when used as a holistic assessment of student performances, portfolio
assessment enables a shift from a Theory X “sage on the stage” view, to a Theory Y
“guide by the side” view of education. The traditional approach of setting assign-
ments and exams, in which educators test student ability, becomes inverted with port-
folio assessment. Details of the assessment are no longer hidden, as is the case with
exams, but is shared with students as the goal they need to achieve. Using portfolio

91

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

assessment, the emphasis is on the students, and it is their responsibility to demon-
strate how they have met a unit’s intended learning outcomes. This frees educators to
help students and to guide them in the preparation of their evidence. As illustrated
in Figure 4.3, we are now working side by side with the students, helping them to
achieve the unit’s intended learning outcomes.

Content...
Knowledge

Transmission...

Faculty of Information and Communication Technologies

HIT1301/HIT2080 Programming 1
Laboratory 1: Programs and Procedures
In this laboratory you will build and run a number of small programs of your own.
This will involve:

■ Installing the tools you need: the compiler, and a text editor.
■ Writing source code for the programs, using the supplied pseudocode including:

■ Declaring your own programs
■ Writing procedure calls
■ Declaring your own procedures

■ Compiling your source code, and correcting any syntax errors.
■ Running your programs.
■ Using SwinGame to create small graphical programs.

Resources

The following resources can help you with this topics:
■ Programming Arcana, chapters 1 to 3
■ Learn Programming with SwinGame video podcast (also on Swinburne Commons):

■ LP0 Introduction
■ LP1 Getting Started with SwinGame
■ LP3 Calling Procedures
■ LP5 Creating Your Own Procedures

Submission

You need to submit print outs of the following material at the start of the 2nd lecture:
1. The indicated pages from your glossary.
2. Your Knock Knock program code and screen shot
3. Any extensions you have completed

Attach a lab coversheet to your submission with your details, your tutor's details, and a list of
things you would like feedback on. Once you have discussed this with your tutor, and cor-
rected any issues they raise with you, your work will signed off as complete.

Faculty of Information and Communication Technologies

HIT1301/HIT2080 Programming 1
Laboratory 1: Programs and Procedures
In this laboratory you will build and run a number of small programs of your own.
This will involve:

■ Installing the tools you need: the compiler, and a text editor.
■ Writing source code for the programs, using the supplied pseudocode including:

■ Declaring your own programs
■ Writing procedure calls
■ Declaring your own procedures

■ Compiling your source code, and correcting any syntax errors.
■ Running your programs.
■ Using SwinGame to create small graphical programs.

Resources

The following resources can help you with this topics:
■ Programming Arcana, chapters 1 to 3
■ Learn Programming with SwinGame video podcast (also on Swinburne Commons):

■ LP0 Introduction
■ LP1 Getting Started with SwinGame
■ LP3 Calling Procedures
■ LP5 Creating Your Own Procedures

Submission

You need to submit print outs of the following material at the start of the 2nd lecture:
1. The indicated pages from your glossary.
2. Your Knock Knock program code and screen shot
3. Any extensions you have completed

Attach a lab coversheet to your submission with your details, your tutor's details, and a list of
things you would like feedback on. Once you have discussed this with your tutor, and cor-
rected any issues they raise with you, your work will signed off as complete.

Faculty of Information and Communication Technologies

HIT1301/HIT2080 Programming 1
Laboratory 1: Programs and Procedures
In this laboratory you will build and run a number of small programs of your own.
This will involve:

■ Installing the tools you need: the compiler, and a text editor.
■ Writing source code for the programs, using the supplied pseudocode including:

■ Declaring your own programs
■ Writing procedure calls
■ Declaring your own procedures

■ Compiling your source code, and correcting any syntax errors.
■ Running your programs.
■ Using SwinGame to create small graphical programs.

Resources

The following resources can help you with this topics:
■ Programming Arcana, chapters 1 to 3
■ Learn Programming with SwinGame video podcast (also on Swinburne Commons):

■ LP0 Introduction
■ LP1 Getting Started with SwinGame
■ LP3 Calling Procedures
■ LP5 Creating Your Own Procedures

Submission

You need to submit print outs of the following material at the start of the 2nd lecture:
1. The indicated pages from your glossary.
2. Your Knock Knock program code and screen shot
3. Any extensions you have completed

Attach a lab coversheet to your submission with your details, your tutor's details, and a list of
things you would like feedback on. Once you have discussed this with your tutor, and cor-
rected any issues they raise with you, your work will signed off as complete.

Assessment
Details
Hidden

Faculty of Information and Communication Technologies

HIT1301/HIT2080 Programming 1
Laboratory 1: Programs and Procedures
In this laboratory you will build and run a number of small programs of your own.
This will involve:

■ Installing the tools you need: the compiler, and a text editor.
■ Writing source code for the programs, using the supplied pseudocode including:

■ Declaring your own programs
■ Writing procedure calls
■ Declaring your own procedures

■ Compiling your source code, and correcting any syntax errors.
■ Running your programs.
■ Using SwinGame to create small graphical programs.

Resources

The following resources can help you with this topics:
■ Programming Arcana, chapters 1 to 3
■ Learn Programming with SwinGame video podcast (also on Swinburne Commons):

■ LP0 Introduction
■ LP1 Getting Started with SwinGame
■ LP3 Calling Procedures
■ LP5 Creating Your Own Procedures

Submission

You need to submit print outs of the following material at the start of the 2nd lecture:
1. The indicated pages from your glossary.
2. Your Knock Knock program code and screen shot
3. Any extensions you have completed

Attach a lab coversheet to your submission with your details, your tutor's details, and a list of
things you would like feedback on. Once you have discussed this with your tutor, and cor-
rected any issues they raise with you, your work will signed off as complete.

Faculty of Information and Communication Technologies

HIT1301/HIT2080 Programming 1
Laboratory 1: Programs and Procedures
In this laboratory you will build and run a number of small programs of your own.
This will involve:

■ Installing the tools you need: the compiler, and a text editor.
■ Writing source code for the programs, using the supplied pseudocode including:

■ Declaring your own programs
■ Writing procedure calls
■ Declaring your own procedures

■ Compiling your source code, and correcting any syntax errors.
■ Running your programs.
■ Using SwinGame to create small graphical programs.

Resources

The following resources can help you with this topics:
■ Programming Arcana, chapters 1 to 3
■ Learn Programming with SwinGame video podcast (also on Swinburne Commons):

■ LP0 Introduction
■ LP1 Getting Started with SwinGame
■ LP3 Calling Procedures
■ LP5 Creating Your Own Procedures

Submission

You need to submit print outs of the following material at the start of the 2nd lecture:
1. The indicated pages from your glossary.
2. Your Knock Knock program code and screen shot
3. Any extensions you have completed

Attach a lab coversheet to your submission with your details, your tutor's details, and a list of
things you would like feedback on. Once you have discussed this with your tutor, and cor-
rected any issues they raise with you, your work will signed off as complete.

Faculty of Information and Communication Technologies

HIT1301/HIT2080 Programming 1
Laboratory 1: Programs and Procedures
In this laboratory you will build and run a number of small programs of your own.
This will involve:

■ Installing the tools you need: the compiler, and a text editor.
■ Writing source code for the programs, using the supplied pseudocode including:

■ Declaring your own programs
■ Writing procedure calls
■ Declaring your own procedures

■ Compiling your source code, and correcting any syntax errors.
■ Running your programs.
■ Using SwinGame to create small graphical programs.

Resources

The following resources can help you with this topics:
■ Programming Arcana, chapters 1 to 3
■ Learn Programming with SwinGame video podcast (also on Swinburne Commons):

■ LP0 Introduction
■ LP1 Getting Started with SwinGame
■ LP3 Calling Procedures
■ LP5 Creating Your Own Procedures

Submission

You need to submit print outs of the following material at the start of the 2nd lecture:
1. The indicated pages from your glossary.
2. Your Knock Knock program code and screen shot
3. Any extensions you have completed

Attach a lab coversheet to your submission with your details, your tutor's details, and a list of
things you would like feedback on. Once you have discussed this with your tutor, and cor-
rected any issues they raise with you, your work will signed off as complete.

Assessment
Details
Shared

Sage on
the Stage

Guide by
the Side

Answer Assignment
 & Exam Questions

Demonstrate
Intended Learning

Outcomes

Figure 4.3: Portfolio assessment helps enable the view of teaching staff as acting as a
“guide by the side”, rather than a “sage of the stage”

Portfolio assessment aligns well with all nine “how” principles listed in Chapter 3.

• The portfolio consists of a collection of work the student feels demonstrates the
depth of their knowledge. (P1)

• Assessment criteria for the portfolio can be aligned with the unit’s intended
learning outcomes. (P2)

• The portfolio can be used as the sole form of summative assessment, with stu-
dents being able to take advantage of formative feedback throughout the teach-
ing period. (P3)

• A clear focus, and use of verbs from the relevant levels of the SOLO taxonomy,
will ensure the portfolio requires students to engage appropriate cognitive lev-
els, requiring them to explain, justify and reflect in cases where a depth of un-
derstanding is required. (P4)

• By communicating high expectations, students will strive to create high quality
evidence for their portfolios. (P5)

• Students are able to develop evidence for their portfolio from day one; every-

92

4.1. OVERALL STRATEGY

thing they do could be of value. This will require active support from teaching
staff. (P6)

• Without marks for motivation, an entirely portfolio assessed unit empowers stu-
dents in the learning process, and they must be trusted that they are able to ef-
fectively manage their own learning. (P7)

• Portfolio assessment, with frequent formative feedback, is very much akin to
agile software development processes. In addition, student portfolios provide a
wealth of evidence for educators to guide change. (P8)

• Incorporating a reflective component in the portfolio encourages students to en-
gage in reflective practice. (P9)

Given its role in the formation of constructive alignment, and its clear alignment with
the principles from Chapter 3, the approach to constructive alignment for introductory
programming presented in this chapter uses portfolio assessment.

4.1.3 Delivery Approach

The second aspect of the overall strategy is to define an approach for selecting unit
content, with Principle 10 indicating that the overall strategy needs to be defined
around a programming paradigm. Rather than focusing on the specific question of
which programming paradigm (objects-first or objects-later) was chosen in this work,
this section will demonstrate how the principles from Chapter 3 guide the design and
delivery of teaching and learning activities. These guidelines apply equally to both
approaches, and a range of other teaching and learning contexts. The specifics of
the chosen paradigm for the example implementations is presented in Section 5.1 of
Chapter 5.

A range of teaching and learning activities are appropriate for helping students de-
velop an understanding of introductory programming. In the following sections we
illustrate how the principles from Chapter 3 can be used to focus lecture away from
knowledge transmission, and provide structured learning in laboratory sessions.

Focused Lecture Slides

Principle 11 and Principle 12 proposed a concept-based approach to teaching intro-
ductory programming content. These principles, along with Principle 4, guided the
choice to use the “Beyond Bullet Points” style of presentation for lectures (Atkinson
2007). This approach draws upon the work of Richard Mayer (see Mayer (2005)), and

93

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

structures presentations using a storyboard that guides the audience toward a stated
“solution.” Using this structure helps to enable a shift in focus, from presentations
as providing information to presentations as providing cognitive guidance, where the
aim of the presentation is to guide the audience to build appropriate knowledge. An
example of the storyboard template, outlining a presentation on arrays, is shown in
Figure 4.4. This story guided the audience to the solution “Use arrays to store multiple
values in a single variable.”

The first five slides, termed Act 1, that set up the “story”, telling the audience why
they are there and centring them as the main character in the story. This helps moti-
vate discussion, and focused teaching staff on clearly communicating the motivation
behind the topic. The first five slides contain the following details:

Slide 1: The setting, sets the context, positing the story at a relevant place within the
content of the unit.

Slide 2: The protagonist indicates the story is about the students, they are the focus
not the teaching staff.

Slide 3: Indicates the imbalance, stating a current problem, challenge or opportunity
that motivates the need to find a solution.

Slide 4: Juxtaposing the imbalance, the balance presents the goal, the situation in
which the problem or challenge has been addressed, or the opportunity has been
realised.

Slide 5: Presents our solution, indicating how students (the protagonist) can get from
the current imbalance to the desired balance.

Slides contain a full sentence, written in an active voice. Ideally the slide text is ac-
companied by iconic visuals that set a theme or metaphor for the presentation. The
time and resources necessary to prepare slides in this manner is, however, contrary to
Principle 8, being agile and willing to change these teaching and learning activities. If
significant effort is spent developing slides in this way it is likely to increase resistance
to change by staff if adjustments to the topics message are desired. Instead, we suggest
a minimalist approach with slides clearly showing the sentence text and using images
to help communicate concepts central to the topic, as can be seen in the example slides
shown in Figure 4.5.

For a fifteen minute presentation, the body of the presentation contained three main
points, supported by three sub-points. Each addressed a “why” or “how” point, and
supported the main solution. Once again these required a single short sentence in an
active voice. The composition of these slides usually drew upon visuals created as
part of the teaching and learning resources for the unit.

94

4.1. OVERALL STRATEGY

Managing Multiple Values by Andrew Cain
Act I: Set up the story

The setting Computers are unintelligent, but can process data quickly

The protagonist Developers need tools to make it possible to process lots of data

The imbalance Variables can store data, but lots of data?

The balance With the right tools processing lots of data is a simple loop away...

The solution Use arrays to store multiple values in a single variable

Act II: Develop the action
5-Minute Column 15-Minute Column 45-Minute Column

See how arrays can be used to
store and retrieve multiple
values

An array is a variable that
stores multiple values

Assignment statements can be
used to store values in arrays

You can read values from an
array within an expression

Define actions for each element
of an array with little code
using a for loop

See how the for loop moves an
index variable from one value to
another

Use the index variable with an
array to define the actions to
perform for each element

Define code in the for loop to be
performed for each element of
the array

Put these concepts to practice
by using arrays in your own
programs

Create arrays to store multiple
values

Use functions and procedure to
manipulate these values using
for loop

Pass arrays by reference to
avoid copying all of the arrays
values

Turning point Will you be able to process large amounts of data in your programs?

Act III: Frame the resolution

The crisis Computers process data quickly, but plain variables need too much code...

The solution Use arrays to store multiple values in a single variable

The climax Arrays make processing lots of data a simple loop away

The resolution Start using arrays and for loops in your programs

Figure 4.4: An example of lecture material developed for one of the units using
the storyboard template, provided by Atkinson (2007) and available from http:

//beyondbulletpoints.com, that outlines the stages in a Beyond Bullet Points pre-
sentation.

95

http://beyondbulletpoints.com
http://beyondbulletpoints.com

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

The last five slides conclude the presentation, reminding students of the overall solu-
tion and the new balance it brings about. These slides contain the following details:

1. The first slide in the conclusion was the turning point. This is a question that
asks a question of the students, indicating the presentation has turned to the
conclusion. In effect it asks them if the concepts presented have shown them
how to address the imbalance from the introduction.

2. Next the crisis slide restates the balance and imbalance, reminding the students
of where the presentation started and where it was aiming to go.

3. This then leads nicely to a restating of the solution. This is an exact duplicate of
the solution from the introduction, but now the student have been though the
“story” and it should have more meaning.

4. The climax brings all of the pieces of the story together in summary and give the
teaching staff a final opportunity to motivate students to study the topic further
themselves.

5. The final slide is the resolution, and indicates the end of the presentation.

Many of these guidelines from the Beyond Bullet Points approach were applied in the
development of the lecture slides for the units discussed in Chapter 5. This included
the general structure of the storyboard, though in some cases the three points were
stretched to four but not beyond. The body of the presentations did include some
information on “what” can be used, rather than purely focusing on “how” and “why.”
The use of active sentences, and visual communication, free from lists of bullet points,
were also applied.

Focusing lecture slides in this manner helps to address the following principles from
Chapter 3:

• Presentations aim to provide cognitive guidance, supporting students construc-
tion of knowledge. (P1)

• Completing the story board requires a focus on the most important aspects for
each topic. Where this focus is appropriately targeted, this also helps support
alignment with intended learning outcomes. (P2 and P4)

• Shifting details from presentation to other resources requires a trust in students
willingness to learn, supporting the need for a Theory Y attitude to motivation.
(P7)

• Using visuals for communicating core concepts, and minimalist themes for scaf-
folding slides, helps ensure presentations can be changed to respond to student
needs. (P8)

• The presentation style encourages a focus on concepts as little (if any) syntax

96

4.1. OVERALL STRATEGY

would be used in the slides themselves. Instead, slides focus on visual represen-
tations to communicate programming concepts, leaving lower level details to be
communicated via other means, as is discussed in Chapter 6. (P11)

Interactive Lecture Demonstrations

Delivering one short, fifteen minute, presentation for each week’s topic leaves a sig-
nificant portion of a two hour lecture for other purposes. This time can be used to
demonstrate the application of the concepts, providing students with a first experience
of how these concepts can be used to create working programs. Similar approaches
have been found to be an effective means of engaging students by Gaspar & Langevin
(2007) and Rubin (2013), and help to implement the constructivist approaches to teach-
ing introductory programming discussed by Ben-Ari (1998, 2001) and Van Gorp &
Grissom (2001) which were reviewed in Section 2.1.2.

The interactive sessions involve writing programs from scratch, guiding students through
the whole software development process. This involves questioning students about
what we should do, and which concepts we needed to apply. Program’s are devel-
oped together with the students, enabling discussion as they evolve. This enables a
focus on the thought processes behind program creation, taking students through the
decisions that need to be made in crafting the design of the program being creating.

One important strategy we applied in these interactive coding sessions was for staff
to become selectively forgetful, typically forgetting the syntax related to the current
concept, for example. In this way, staff had to make use of the resources available
to the students to find the necessary details. For example, when focusing on how
to declare variables this could be achieved by saying “We want to create a variable
here, but I can not remember the syntax. Where could I look to find the syntax for
this?” This triggers a discussion, and enables staff to demonstrate how to locate the
associated resources, and lookup the relevant sections. Switching back to the code
would be another point to “forget” the syntax, “So what do I type first?”. The aim of
this is to demonstrate to the students how these resources could be used to learn the
language’s syntax. In essence, providing an example of how to solve problems.

Depending on the topic, lectures typically follow one of two formats. Either the pre-
sentation was delivered in its entirety and was followed by the interactive session, or
the interactive session was interwoven with the presentation itself. These two strate-
gies can be applied at different times throughout the teaching period, depending on
the topic.

97

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

Example Slides from Act 1

Example Slides from Act 2

Example Slides from Act 3

Figure 4.5: Sample slides from the lecture created from the template shown in Fig-
ure 4.4. Act 1 and 3 use minimalist sentences, with visual representations of program-
ming concepts being used to communicate the important concepts.

98

4.1. OVERALL STRATEGY

Topics in the first part of a unit are likely to have the interactive sessions interwoven
with presentations. At this stage each of the concepts was totally new to the students.
Presentations focused entirely on concepts is likely to make the topic very abstract. By
interweaving live coding demonstration with presentations we aim to address student
apprehension about how concepts are realised in practice.

Later topics, which reinforce earlier concepts, are likely to benefit from progressing
more quickly through the slides and using a longer interactive demonstration. This
would have the benefit of allowing a wider range of concepts to be demonstrated in a
single session.

The use of interactive lecture demonstrations helps to address the following principles
from Chapter 3:

• These sessions help provide students with a demonstration of applying unit con-
cepts, aiding them in the construction of their own knowledge. (P1)

• In introductory programming, many of the intended learning outcomes relate to
applying programming concepts to the development of small programs. These
demonstrations are, therefore, directly aligned with activities we expect students
to be able to demonstrate by the end of the unit. (P2)

• Guiding students through the use of supporting resources helps keep the focus
on the most important concepts, while also helping students learn how to use
available resources. (P4, P6 and P11).

• Demonstrations also provide an opportunity to illustrate good programming
practice, and to show students examples of programs they are expected to be
able to create. (P5)

• Incorporating student input into the live demonstrations helps to motivate stu-
dents, and requires a willingness to adapt to student requirements and needs.
(P7 and P8)

99

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

Laboratory Sessions

Laboratory sessions provide an opportunity for students to try applying the concepts
covered in the lecture classes themselves. To help structure these sessions we organ-
ised these tasks into three groups:

Laboratory tasks were designed to be a guided exercise that was to be completed
in class, providing detailed instructions on how to approach the problems pre-
sented.

Core tasks had to be completed and submitted for feedback, helping students to de-
velop pieces they can include in their portfolios.

Extension tasks provided students with optional exercises they could use to extend
themselves, requiring greater levels of independence and a better understanding
of the concepts.

Tutors guide students through each week’s laboratory tasks. These tasks were de-
signed to give students their first hands-on experience with each week’s concepts.
Laboratory notes provided detailed step-by-step instructions to enable students to
work through these on their own if they wanted, or need, to. At the end of the labora-
tory exercises students should be sufficiently prepared to undertake the core tasks.

Students then apply their understanding of each weeks concepts to complete the core
tasks. It is important that these tasks ask the students to perform actions related to the
unit’s intended learning outcomes, as these tasks will help them create evidence they
can include in their portfolios. For example, this could include tasks such as creating
one, or more, small programs, or performing code reading exercises that ask students
to hand execute programs and explain the program’s behaviour, or identify issues in
the presented code.

Core tasks also form an integrated part of the formative feedback process. Once these
tasks are completed students submit this work for feedback. Staff can then assess the
work, and provide guidance on identified issues, and highlight possible misconcep-
tions. If the work has issues, it can then be returned to the student with instructions
on what needs to be corrected. Students can then work to address these issues, and
associated misconceptions, and resubmit the work at a later stage. Where the task has
been performed to a sufficient standard it can be signed off as complete, indicating
that the student appears to have understood the associated concepts.

Extension tasks provide students with extra activities they can perform each week
to demonstrate a deeper understanding of the associated concepts. These tasks are

100

4.1. OVERALL STRATEGY

typically loosely defined, requiring students to explore the concepts in a more inde-
pendent manner. A range of challenging tasks can be provided to support different
student interests, and to provide students with ideas for activities that are likely to
help them create pieces that will demonstrate valuable learning in their portfolios.

Laboratory sessions are highly student-centred, so organising these sessions in this
way helps to address many of the principles from Chapter 3.

• Activities help students develop their knowledge of the concepts being covered.
(P1)

• Staff help ensure that these tasks relate to the unit’s intended learning outcomes,
ensuring students will be able to demonstrate how they have met these out-
comes when they submit their portfolios. (P2)

• Core tasks are used to provide students with formative feedback during the
semester. (P3)

• Students are able to focus on the most important aspect for them at their current
stage of development. Laboratory tasks focus on getting students started, core
tasks focus on problems that demonstrate passable knowledge, while extension
tasks can support the demonstration of more advanced levels of understanding.
(P4)

• The formative process, with changes to core tasks being required before they
are signed off, helps to clearly communicate the high standard expected of stu-
dents. This is further supported by the list of extension tasks provided each
week. These communicate the extra tasks the students should be completing to
demonstrate a deeper understanding of the concepts. (P5)

• The different laboratory task levels each provide support for students at different
stages of capability, while options in the extension tasks also help to support a
range of student interests. (P6)

• Using this approach students take a greater responsibility for their own learning.
(P7)

101

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

4.1.4 Summary

The overall strategy is defined by two approaches: the assessment approach, and the
approach to content selection. Decisions related to these two approach were guided
by the principles from Chapter 3, and resulted in the selection of a portfolio assess-
ment approach to units that are taught using a range of student-centred teaching and
learning activities. Figure 4.6 shows an updated version of Figure 3.9, showing the
selected approaches discussed in this section. The next section describes the model
for constructive alignment that developed from this overall strategy.

b) Teaching and
Learning Resources

c) Teaching and Learning Activities

uses

Swinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols

Laboratory, Core, and
Extension Tasks

guidesguides

a) Overall Strategy

Intended Learning Outcomes

Objects-First or Objects-Later
Approach to Programming

informs creation of

Focused Slides

Interactive coding
demonstrations

Portfolio
Assessment

Student
Centred
Delivery

Figure 4.6: An updated version of Figure 3.9 showing the selected assessment ap-
proach, and the interactive teaching and learning activities.

102

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

4.2 Constructively Alignment with Portfolio Assessment

4.2.1 Model Overview

Having decided upon an overall strategy, the next stage of our research was to de-
termine how Biggs’ model of constructive alignment (Biggs 1996), and the details on
using portfolio assessment suggested by Biggs & Tang (1997), could be used to guide
the creation of an introductory programming unit. This involved the examination
of the practical advice from Biggs & Tang (2007), which further elaborates on Biggs’
model of constructive alignment and portfolio assessment. Using this together with
the principles from Chapter 3, a model of constructive alignment for introductory pro-
gramming was defined. The resulting model was documented in Cain & Woodward
(2012), and captured staff and student processes and the artefacts generated and ex-
changed throughout the learning process, as illustrated in Figure 4.7.

Processes within the model are performed either by students or teaching staff. These
processes are distributed across three stages of unit development and delivery: being
either prior to the start of the teaching period, during the teaching period, or after the
teaching period. Figure 4.7 illustrates this with separate columns for teaching and
student processes, and rows for the stages in which these processes occur.

Prior to the start of the teaching period (a) the teaching staff define intended learning
outcomes and construct assessment criteria. Together these aspects form a critical compo-
nent of unit, defining what students will be able to achieve after successfully complet-
ing the unit, and how well they must perform in order to achieve different grade out-
comes. Both the intended learning outcomes and assessment criteria are documented
in the Unit Outline, a document that is a common practice in university environments.
The Unit Outline forms the central focus for subsequent processes, and informs and
guides staff in the development of teaching and learning activities. Unit outlines may also
be used by students in evaluating units to select in their course of study.

The developed teaching and learning activities and their associated resources are then
used during the teaching period (b) by staff to deliver the unit. Students follow the
guidance of teaching staff, and ideally these activities aid students as they construct
knowledge. The work that students produce can then be submitted for formative feed-
back, which provides an opportunity for teaching staff to provide feedback and guidance.
The process of students undertaking activities, constructing knowledge, and receiv-
ing formative feedback is designed to be an ongoing iterative process throughout the
teaching period.

103

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

Portfolio
(a) Prior to the Teaching Period

(b) D
uring the Teaching Period

(c) After conclusion of
the Teaching Period

Teacher Student

Unit Outline

Student Grades

Define Intended
Learning Outcomes

Construct Assessment
Criteria

Assess Student
Portfolios

Develop Teaching and
Learning Activities and

Resources

Provide Feedback
and Guidance

Deliver Unit

Selects and
Enrols in Unit

Constructs
Knowledge

Submit Work for
Formative Feedback

Constructs Portfolio for
Summative
Assessment

Process /
Activity Input Output

{ Iterative }

Feedback /
Guidance

Students learn to focus on marks,
rather than the required learning

Marks LearningLearning

3

University study is highly geared
towards assessment and marks

2

Portfolio Assessment
Overview of Assessment Approach

1

Swinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols

Evidence of Learning

Teaching and Learning
Activities / Resources

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Figure 4.7: An overview of teacher and students roles (columns), and iterative de-
livery, in the constructive alignment model developed for the introductory program-
ming units.

104

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

After the conclusion of the teaching period (c) students prepare their work for summa-
tive assessment through the construction and submission of their portfolios. These portfo-
lios are then assessed by the teaching staff against the intended learning outcomes and
assessment criteria prepared prior to the unit’s delivery.

Each of these processes is described in more detail in the following subsections.

4.2.2 Defining Intended Learning Outcomes

Intended learning outcomes are central to the concept of constructive alignment as a
statement of what students will be able to achieve at the end of the unit. Aligned cur-
riculum in constructive alignment indicates that teaching and learning activities and
assessment must align to these intended learning outcomes. The findings in Chapter 2
indicate that alignment is typically performed by staff who indicate how teaching and
learning activities and assessment tasks are aligned. Alignment is a matter external
from the actual teaching itself. There is little involvement of the student in this pro-
cess.

With portfolio assessment the alignment becomes intrinsically entwined with unit de-
livery and assessment. The teaching staff relinquish control of this aspect and the
outcomes themselves take on their true purpose: as a statement of what students will
be able to achieve at the end of the unit. All other aspects of the unit must now align to
this purpose. Teaching and learning activities must prepare students to demonstrate
that they have achieve these outcomes. Assessment aims to verify the extent to which
students have reached these outcomes.

One way to conceptualise the central role of the intended learning outcomes is to pic-
ture this situation as a very long examination. The intended learning outcomes are
the questions, the things students need to demonstrate they can do by the end of the
“exam.” The intended learning outcomes have become the assessment, a direct re-
alisation of the fact that “assessment always drives the curriculum” (Ramsden 1992).
In this arrangement there is little opportunity for misalignment between the unit ob-
jectives and assessment, but a greater importance on the exact nature of the intended
learning outcomes. This critical role of the intended learning outcomes means that
they are instrumental in the success of the unit.

For the introductory programming units it was important to design the intended
learning outcomes so that, as a group, they cover the required programming com-
petencies as well as the associated conceptual knowledge. The intended learning out-

105

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

comes play a central role in driving the processes of both students and teaching staff.
As a result, it is important they are expressed clearly and simply so as to be understood
by all involved.

Development of unit outcomes has a variety of input sources. Thota & Whitfield (2010)
propose inputs related to pedagogic theory (constructivism and phenomenography)
as well as student factors such as approach to learning, learning styles, and prior
knowledge. Armarego (2009) highlights the needs for inputs from industry, such as
the Computer Science and Software Engineering Curriculum from professional stan-
dards bodies and associated Bodies of Knowledge Abran et al. (2001). For curriculum
recommendations from professional standards bodies see Lethbridge et al. (2006), Cas-
sel et al. (2008), and ACM/IEEE-CS Joint Task Force (2012).

In defining the intended learning outcomes for an introductory programming unit
using constructive alignment with portfolio assessment we suggest drawing upon
these sources, as well as the guiding principles from Chapter 3, overall strategy, re-
sourcing factors, and accreditation requirements as shown in Figure 4.8. Resourcing
factors provide additional constraints on what intended learning outcomes can in-
clude. Factors such as staffing, availability of texts, required tools, and others all need
to be considered to ensure that students will be able to engage in activities associ-
ated with demonstrating the expected outcomes. Accreditation standards, such as the
Australian Qualifications Framework (Australian Qualifications Framework Council
2013), require intended learning outcomes to demonstrate certain levels of achieve-
ment in order for degree programmes to gain recognition and funding. As these units
will form an important part of programme objectives, these requirements must also
be considered.

Biggs & Tang (2007) provided a number of recommendations for the development
of intended learning outcomes. They indicated that it was appropriate for a unit to
have between four and six intended learning outcomes, expressed at suitably high
cognitive levels. Adopting this approach enables the clear focus on what is important
for the unit, and encourages depth over breadth, Principle 4 from Chapter 3. A small
number of intended learning outcomes keep the focus clear for students.

As discussed in Chapter 2, the SOLO Taxonomy proposed by Biggs & Collis (1982)
provides a framework for ensuring intended learning outcomes aim for suitably high
cognitive levels. Each of the identified cognitive levels has an associated list of verbs
likely to elicit that level of activity. Table 4.1 lists selected verbs associated with the
various levels of the SOLO taxonomy. These verbs can be used when defining the
unit’s intended learning outcomes. Biggs suggests that intended learning outcomes

106

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

for university level units should aim for at least the multistructural level, with many
units aiming for understanding at the relational level. In a review of science curric-
ula in Danish universities, Brabrand & Dahl (2009) argued that the SOLO taxonomy
provided a good tool for specifying competency with a range of areas showing pro-
gressing depth in terms of SOLO verbs from undergraduate to graduate education.

We developed the following guidelines that can be used to inform the formation of
the intended learning outcomes for portfolio assessed programming units.

LO-1: Express outcomes using verbs at an appropriate level of understanding with
reference to the SOLO taxonomy.

LO-2: Cover both the required conceptual knowledge, and programming competencies.

LO-3: Use simple terms (where possible) to communicate outcomes, thereby help-
ing to ensure they can be understood by all students undertaking the unit.

LO-4: The number of outcomes should be minimal, ideally between four and six.
This is to help ensure that each outcome covers a meaningful body of knowl-
edge to a sufficient depth.

LO-5: Outcomes need to be general to facilitate assessment of diverse portfolios,
and sufficient to ensure that differing degrees of proficiency and understand-
ing can be assessed.

LO-6: There needs to be flexibility to enable students to choose a range of means
when addressing outcomes.

Developing intended learning outcomes in this way helps to address the following
principles from Chapter 3:

• Stated outcomes become the goal students work toward throughout the teaching
period. Ensuring these are expressed using appropriate verbs from the SOLO
taxonomy ensures they are likely to engage appropriate cognitive levels. (P1
and P2)

• Keeping the list of objectives short help ensure they are focused on the concepts
related to the unit. (P4 and P11)

• Using verbs from the relational level of the SOLO taxonomy helps communicate
staff expectations. (P5)

• Ensuring flexibility and clarity helps support a wider range of student interests
and capabilities. (P6)

107

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

Influencing Factors

(a) Prior to the
Teaching Period

Define Intended
Learning Outcomes

Teaching Staff

Guiding
Principles Overall Strategy

Industry
Requirements

Student FactorsResourcing
Factors

Accreditation
Requirements

Unit Outline

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

resulting ILOs
documented in

Construct
Assessment Criteria

resulting assessment
criteria documented in

ILOs

Portfolio
Guidelines

Assessment
Practices

SOLO
Taxonomy

Figure 4.8: Factors that influence the defining of a unit’s intended learning outcomes,
and the construction of assessment criteria. These activities are undertaken by teach-
ing staff prior to the start of the teaching period, see (a) from Figure 4.7.

Table 4.1: Selected list of verb related to the levels of the SOLO Taxonomy suitable
for defining intended learning outcomes, adapted from Biggs & Tang (2007).

SOLO Level Verbs likely to elicit indicated cognitive level

Unistructural memorize, identify, recognise, count, define, draw, find, label, match,
name, quote, recall, recite, order, tell, write, imitate

Multistructural classify, describe, list, report, discuss, illustrate, select, narrate, compute,
sequence, outline, separate

Relational apply, integrate, analyse, explain, predict, conclude, summarise, review,
argue, transfer, plan, characterise, compare, contrast, differentiate, or-
ganise, debate, make a case, construct, review and rewrite, examine,
translate, paraphrase, explain causes

Extended Abstract theorise, hypothesise, generalise, invent, originate, make original case

108

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

4.2.3 Constructing Assessment Criteria

Assessment criteria are developed alongside the definition of intended learning out-
comes. The intended learning outcomes state what students need to demonstrate by
the end of the unit, but these outcomes can be achieved to different standards. It is
the role of the assessment criteria to state the required level of achievement students
must demonstrate in order to be awarded various grade outcomes. This means that
at the end of the teaching period students’ portfolios can be assessed against the de-
veloped assessment criteria, but also that the assessment criteria can be used to guide
the teaching and learning activities during delivery. Providing assessment criteria in
the unit outline creates a simplified learning contract (Stephenson & Laycock 1993), in
which students know “up front” what is required to achieve the different grades.

Principle 3 indicates that assessment should judge outcomes. To provide this holis-
tic judgement the final summative assessment is criterion-referenced, as suggested by
Biggs & Tang (1997). The criteria must, therefore, provide a means for teaching staff
to assess submitted portfolios while also providing students with guidance they can
use during the delivery and in the construction of their portfolios. Ensuring that the
assessment criteria are stated clearly also helps ease students transition to this new
form of assessment (Smith & Tillema 2001).

There is some contention regarding the specification of assessment criteria for assess-
ing portfolios. For example, some consider that by overly specifying criteria students
are limited in what can be included (see Driessen et al. (2005) and Tigelaar et al. (2007)).
However, Smith & Tillema (2001) indicated that clearly communicating portfolio re-
quirements helped ease students transition to this new, possibly unfamiliar, assess-
ment approach. This is further supported by Allan (1996), who argued that clear com-
munication of intended learning outcomes and assessment criteria enabled students
to focus on developing knowledge required to succeed in a unit, and by Thorpe (2000)
who noted that students found it easier to reflect on their learning if they were able to
apply criteria defined by teaching staff.

The assessment criteria development process takes input from the intended learning
outcomes, along with guidelines for portfolio assessment (Biggs & Tang 2007) and
levels of achievement from the SOLO taxonomy (Biggs & Collis 1982) as shown in
Figure 4.8. The resulting criteria are placed alongside the intended learning outcomes
in the unit outline.

In order to facilitate assessment, and to guide student activity, the assessment criteria
need to indicate clearly distinct requirements for each grade outcome. In the univer-

109

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

sity where this work was carried out there are five grade categories: Fail, Pass, Credit,
Distinction and High Distinction. The assessment criteria indicate what students need
to demonstrate to achieve each grade.

The following list presents the assessment criteria developed in this work. The criteria
are cumulative, with each level beyond pass requiring all previous requirements to be
satisfied in addition to some deeper level of understanding being demonstrated. Pass
requires that each intended learning outcome is met to a minimally acceptable stan-
dard, which will depend on the verb used in their description. Credit then requires an
overall picture of the unit, with students starting to see how the various aspects of the
unit come together as a whole. This is then required to achieve the Distinction grade,
in which students must show they can apply unit concepts to the creation of a piece
of work of their own invention. This does not need to be new or “ground breaking”
work, just something the student created on their own that shows all of the intended
learning outcomes in play. High Distinction then goes beyond this by asking students
to engage is a small research project, encouraging them to work toward an extended
abstract1 level of understanding, but not requiring that they achieve this.

Fail is a result of anything less than Pass level.
Pass demonstrates minimally acceptable level of achievement. Students have been able

to complete core tasks from the teaching and learning activities, and pass any
hurdle2 requirements.

Credit demonstrates all Pass requirements and shows a good depth of understanding
across all intended learning outcomes, but does not go beyond presented work.
Demonstrates at least a multistructural level of understanding of the unit over-
all.

Distinction demonstrates Credit level requirements and the ability to apply unit con-
cepts to the creation of work of the students own invention. This demonstrates
at least a relational level of understanding of the unit overall.

High Distinction demonstrates all Distinction level requirements and the ability to
research a topic related to the unit. This still requires only a relational level of
understanding, but provides opportunities and encouragement for students to
explore beyond the current knowledge and work toward that extended abstract
level of understanding.

1Extended abstract requires a level of understanding where new knowledge can be created.
2Hurdle requirements are anything that must be “passed” to pass the unit, but do not contribute

marks toward the final grade.

110

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

The following guidelines were used to inform the definition and communication of
the assessment criteria:

AC-1: Communicate assessment criteria using simple terms (similar to LO-3).

AC-2: Require sufficient progress to be demonstrated for all intended learning out-
comes. At least a multistructural level of understanding should be obtained
for passing students.

AC-3: Higher grades should require:

• evidence of deeper learning, while specifically avoiding an excessive vol-
ume of work.

• integrated understanding across related intended learning outcomes,
as well as within each intended learning outcome.

AC-4: Aim to develop clearly distinct assessment criteria for each grade outcome,
facilitating timely assessment and providing clear requirements for students.

AC-5: Clearly map assessment criteria to grade outcomes, ensuring students and
staff have a shared understanding of how a portfolio relates to final grades.

Constructing the assessment criteria using these guidelines helps to address the fol-
lowing principles from Chapter 3:

• Requiring progressively higher levels of understanding for each grade classifi-
cation help promote deep learning, and indicates staff expectations in terms of
required levels of demonstration. (P1 and P5)

• Assessment criteria align to unit outcomes, with higher grades requiring stu-
dents to demonstrate an understanding of the relationships between the intended
learning outcomes and their associated concepts. (P2 and P11)

• Grades are awarded using criterion referenced assessment, assessing students’
learning outcomes. (P3)

• Specific criteria help focus students on the most important aspects, with higher
grades requiring demonstration of deeper learning. (P4)

• Simple terms help support a wide range of student language capabilities. (P6)
• Students can take responsibility for their learning, being able to aspire to achieve

a given grade, and being able to apply their own imagination and interests in
applying concepts to achieve higher grades. (P7)

• Evidence from student submissions provide a source of evidence for change,
and can be reflected upon at the end of each teaching period to inform future
changes. (P8 and P9)

111

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

4.2.4 Develop Teaching and Learning Activities and Resources

Having defined the intended learning outcome, and assessment criteria, teaching staff
develop, or select, appropriate teaching and learning activities and resources. Fig-
ure 4.9 illustrates the role of this process in the overall unit delivery. The process uses
inputs from the Unit Outline, and generates both teaching and learning activities and
resources.

(a) Prior to the
Teaching Period

Teaching Staff

Swinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols

Develop Teaching and
Learning Activities and

Resources

Students learn to focus on marks,
rather than the required learning

Marks LearningLearning

3

University study is highly geared
towards assessment and marks

2

Portfolio Assessment
Overview of Assessment Approach

1

Teaching and Learning
Resources

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Teaching and Learning
Activities

Unit Outline

Select / Develop

Intended
Learning

Outcomes
Assessment

Criteria

Figure 4.9: Development of teaching and learning activities and resources uses de-
tails from the unit outline to create/select appropriate resources and activities to en-
sure students engage appropriate activities during the teaching period.

The teaching and learning activities aim to elicit appropriate behaviour from students,
ensuring that they engage in the cognitive processes representative of the desired level
of achievement for each intended learning outcome. Output generated from this pro-
cess includes lecture slides and tutorial/laboratory handouts. In relation to the overall
strategy, these activities are likely to change frequently as teaching staff become bet-
ter able to direct student efforts. In keeping with our agile principles (Principle 8) the
effort spent on developing these teaching and learning activities should be minimised.

In contrast, teaching and learning resources provide students with detailed informa-
tion they will require to successfully complete the teaching and learning activities.
If designed appropriately, these resources should have a longer lasting value, and
can change less frequently than the teaching and learning activities. Central to this
approach is the idea of focusing (Principle 4) each aspect of the teaching and learn-

112

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

ing environment to best benefit the construction of student knowledge (Principle 1).
Teaching and learning resources provide details, and extra attention and effort are re-
quired in their development, with the benefit of being able to be used in a range of
contexts. Examples of resources include textual and visual illustrations, video pod-
casts showing example usage, online tools, and supportive software. Some of these
resources can then be used in the creation of the lecture slides, but the lectures focus
on providing cognitive guidance, directing students through the most important as-
pects with the details to be discovered later when students make use of the provided
resources.

The following guidelines were used to inform this process:

• Teaching and learning activities should:

TLA-1: Actively engage the students – students must actively construction
their own knowledge, as knowledge cannot be transferred by com-
munication alone.

TLA-2: Align with the unit’s intended learning outcomes – activities should
relate to appropriately high cognitive levels, and students should be
able to relate gained understandings to one or more of the unit’s in-
tended learning outcomes.

TLA-3: Focus on providing guidance – use communication to guide activity,
but avoid attempting to provide all of the required details as these can
be better provided in resources.

– Lectures should inform, motivate and inspire students. Providing
students with an overview of key concepts needed to get started
with the tutorial/laboratory tasks.

– Tutorial/Laboratory tasks should direct students to perform ac-
tivities that engage appropriate cognitive levels, helping them cre-
ate artefacts that can be included in their portfolios.

• Teaching and learning resources should:

TLR-1: Provide the details students require to perform the tasks from the
teaching and learning activities.

TLR-2: Be created with a focus on re-usability.

TLR-3: Support a range of different learning styles.

113

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

Material developed using these guidelines address the following principles from Chap-
ter 3:

• Aligning activities to intended learning outcomes ensures students develop ap-
propriate knowledge related to the units concepts. (P1, P2, and P11)

• Focusing these activities on appropriate cognitive levels helps direct student at-
tention, and communicate staff expectations. (P4 and P5)

• Separating activities from resources helps ensure activities can change to better
meet student needs. (P8)

See Section 4.1.3 for some example activities developed using these guidelines.

4.2.5 Iteratively Deliver Unit and Provide Feedback

Constructive learning theories emphasise the active role of the learner in constructing
knowledge. Our guiding principles are centred on this notion and adopt Biggs’ prag-
matic view of constructivism. The iterative, students centred, delivery process aims
to embody Biggs’ quote “It’s what the student does that counts.” (Biggs 1996), a state-
ment that can be traced back to Tyler’s quote, “It is what he does that he learns, not
what the teacher does” (Tyler 1969).

Existing work on constructive approaches to teaching introductory programming pro-
vide some advice on designing and delivering student-centred teaching and learning
activities. Ben-Ari (1998, 2001) discussed the need for students to construct appropri-
ate models of the computer. Van Gorp & Grissom (2001) described collaborative and
constructive environments with the use of code walk-throughs, writing code, debug-
ging and other activities. Thramboulidis (2003a) presented a design-first approach to
object oriented programming that focused on engaging students with object oriented
design processes. Wulf (2005) reported strategies such as moving content from lec-
tures to online video presentations. Similarly, the work of Thota & Whitfield (2010)
also presented constructive approaches to teaching introductory programming that
focused on group work, and the active role of the student.

Figure 4.10 illustrates the iterative delivery process at the heart of the model presented.
The process centres on the students construction of knowledge, which draws up the
teaching and learning activities and resources. This active process of learning gen-
erates pieces of work that the student submits for formative feedback. The teaching
staff evaluate the evidence presented, trying to identify issues with the students cur-
rent mental models, and provide formative feedback to the student. This feedback

114

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

(b) D
uring the Teaching Period

<<teaching staff>>
Provide Feedback

and Guidance

<<teaching staff>>
Deliver Unit

<<students>>
Constructs
Knowledge

<<students>>
Submit Work for

Formative Feedback

Teaching and Learning
ResourcesSwinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols

Students learn to focus on marks,
rather than the required learning

Marks LearningLearning

3

University study is highly geared
towards assessment and marks

2

Portfolio Assessment
Overview of Assessment Approach

1

Uses
details
from

Deliver to
students

Takes
guidance

from

Produces

Evidence of learning

Teaching and Learning
Activities

evaluates

Well done
with ...
Fix …

Focus on …
Try ...

�
�
�

Learns
from

Unit Outline

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Guides

submits

provides
input for

Figure 4.10: Iterative nature of the unit delivery process

115

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

helps inform the student of their progress, and provides them with tasks they can act
up thereby ensuring we close the loop.

All of these processes occur on a weekly basis, with rapid iteration ensuring feedback
is timely and gives students the best chance of addressing misconceptions before the
end of the teaching period. Each week, students will:

1. Attend lectures which guide them in relation to key aspects and motivations.
2. Undertake set tasks from tutorial handouts, while drawing upon teaching and

learning resources for required details.
3. Produce work and submit for feedback.
4. Receive feedback aimed to help them improve, and a list of changes required to

meet the expected standard.

For any one topic, this iterative process may take a couple of iterations before the stu-
dent is successful in getting the work signed off. Figure 4.11 is an illustration shown
to students to indicate the iterative nature of the submission process. The highly con-
nected nature of the topics in introductory programming means that it is critical stu-
dents understand earlier topics before they move on. Work that is submitted is not
considered complete by teaching staff until it demonstrates certain levels of under-
standing. While this is not the case, students need to correct and resubmit the work.

Requiring students to resubmit work ensures that each topic is completed in its en-
tirety. This focus on quality, and depth of understanding, helps communicate the high
standards expected of students, Principle 5. Students are expected to submit some
work for assessment each week. To enable fast turn around, this work is required
in hard copy at the start of each week’s lecture. This work is then evaluated by the
teaching staff before that week’s tutorial classes (in practice 1 to 2 days). In the tutorial
classes the work is returned to students, and the teaching staff briefly discuss progress
with each student and the aspects of their work they can improve upon. This dialogue
focuses on the student’s individual understanding, and their demonstration thereof.

The following guidelines were developed and used to inform the planning and deliv-
ery of teaching and learning activities:

IDU-1: Provide opportunities through activity design to actively engage students –
it is what the student does that counts.

IDU-2: Relate all activities to the objectives, providing students with opportunities
to create evidence for their portfolio.

IDU-3: Use ungraded formative feedback to aid knowledge construction, with pref-

116

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

Constructs
Knowledge

Submit Work for Formative Feedback

Sign off

Perform Tasks

Listen to Lectures

Reading
Understand

Feedback

Teaching Staff

!
✅

D
em

onstrate

Think ... study

Figure 4.11: Iterative process students undertake to get work signed off.

117

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

erence for small, frequent guidance.

IDU-4: Actively support students both during and outside of scheduled class times.

Adopting these guidelines in the delivery of a unit will help address the following
principles from Chapter 3:

• Frequent formative feedback aids students’ construction of knowledge, and helps
ensure learning aligns with unit outcomes and concepts. (P1, P2, P3 and P11)

• Feedback can focus on the most important aspects, ensuring it is relevant to each
student and their current level of understanding. (P4 and P8)

• Requiring work to be completed to a good standard helps reinforce staff expec-
tations, and supports students by encouraging reflection and deep approaches
to learning. (P5, P6, and P9)

• Using formative feedback, without the marks associated with summative assess-
ment, requires a Theory Y attitude to student motivation. (P7)

• Aiding students during and outside of scheduled class times directly supports
their learning. (P6)

4.2.6 Construction, Submission, and Assessment of Portfolios

The final phase of the process is the development and submission of portfolios by
students, and assessment by staff. This process uses the intended learning outcomes
and assessment criteria from the Unit Outline to determine what needs to be demon-
strated and assessed. Figure 4.12 illustrates the processes for portfolio construction
by students, and assessment by staff. Students construct their portfolios from work
completed during the teaching period. This work can incorporate feedback received,
enabling students to showing off their best work and providing them with encourage-
ment to act upon the feedback. Figure 4.13 shows an illustration used to explain the
portfolio construction process to students.

In preparing the portfolio, students must demonstrate that they have met all of the
unit’s intended learning outcomes. This alignment is documented by students in a
Learning Summary Report. The Learning Summary Report starts with a self assessment,
in which the student indicates which grade they are applying for with this portfolio. In
the following sections students provide justification for why they should be awarded
this grade. Students are required to list the pieces of work they have includes, and then
explain how these pieces demonstrate that the student has attained all intended learn-
ing outcomes. The report ends with a reflection in which the student is encouraged

118

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

to reflect upon the significance of what they have learnt, as well as on the process of
learning itself. This learning summary report is then combined with the other pieces
of work, printed, bound and submitted for assessment.

The submission process differs based upon the grade students are aiming for in their
portfolios. Students aiming for a Pass or Credit grade submit their portfolio by a set
date in the examination period. These portfolios contain primarily work set out in
the teaching and learning activities (“core” tasks), and will have been checked already
by teaching staff throughout the teaching period as part of the formative feedback
process. Students aiming for Distinction or High Distinction are required to present
their portfolio at an interview. In this interview students outline their custom work,
and discuss how this relates to the unit’s intended learning outcomes. The interviews
are conducted in an open, relaxed, and friendly manner, and students are encouraged
to elaborate on what they have achieved.

Based on our experience we suggest the following guidelines be used to inform the
creation and assessment of portfolios:

AP-1: Encourage unique, diverse, concise, and strongly aligned evidence.

AP-2: Motivate students to include evidence of learning from formative experi-
ence.

AP-3: Require students to reflect on their learning, and the evidence in their final
portfolio, with respect to the intended learning outcomes of the unit and the
assessment criteria.

AP-4: Use an interview, or hurdle test(s), to check for minimal pass criteria in an in-
vigilated manner. Where tests are used they need only distinguish between
Pass and Fail, and do not need to address higher grades.

AP-5: Accurately and consistently follow the terms of the assessment criteria, as
this is the contract the students work towards.

Applying these guidelines to the creation and assessment of portfolios helps address
the following principles from Chapter 3:

• Students are actively encouraged to include pieces that demonstrate their learn-
ing. (P1)

• Pieces included in the portfolio must align with the unit’s intended learning
outcomes. (P2)

• Feedback from the formative feedback process can be acted upon by students,
with improved versions of earlier work being included as pieces in their final

119

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

(c) After conclusion of the Teaching Period

Assess Student
Portfolios

Constructs Portfolio for
Summative
Assessment

Evidence of learning

Learning
Summary

Report

Selects
from

Documents
outcomes in

Combines
and submits

as a
Evaluates

Unit Outline

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Aligns to

Evaluates using
outcomes and
assessment

criteria

Student Grades

Reported as Portfolio

Well done
with ...
Fix …

Focus on …
Try ...

�
�
�

Formative Feedback

Incorporates

Teaching Staff Student

Figure 4.12: Processes of constructing, submitting, and assessment portfolios.

Notes from
study session

Program
Code

More
Programs

Concept
Map

Own
Program

Work during semester is included in your portfolio!

Learning
Summary

Reports

Figure 4.13: Illustration shown to students to highlight the process of constructing
their portfolio during the teaching period

120

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

portfolios. (P3)
• In writing the Learning Summary Report, students need to address the assess-

ment criteria that capture staff expectations for each grade outcome. (P5 and
P7)

• Students are encouraged to reflect on their learning experience, and to document
these reflections in the Learning Summary Report. (P9)

4.2.7 Addressing Plagiarism

Sheard et al. (2003) reported two studies on student attitudes and behaviours asso-
ciated with cheating, and work practices of students in the Information Technology
domain. This work identified widespread cheating within the Information Technol-
ogy discipline, with the most common forms of cheating being associated with as-
signments and class tasks. This is particularly concerning, as the approach presented
in this chapter focuses heavily on similar tasks at the core of its assessment strategy.

A subsequent follow up study (Sheard & Dick 2011) outlined a number of strategies
that had been applied to address plagiarism, and indicated that frequency, and ac-
ceptability, of cheating had decreased over the ten years between the studies. The
strategies implemented included adjustments to plagiarism policies to simplify its im-
plementation, strategies to raise student awareness of plagiarism, as well as tools and
practices to help identify and reduce cheating. These positive findings indicate the
potential to address plagiarism issues through procedural changes.

The work of Sheard et al. (2003) also identified reasons students cheat, and reasons
for not cheating. The top reasons for cheating included issues associated with time
pressures, fear of failure, and difficulty of tasks. In contrast, reasons for not cheat-
ing related to personal factors associated with students taking responsibility for their
learning.

While embodying a predominantly Theory Y atmosphere (Principle 7), the model
presented in this chapter aims to minimise plagiarism by reducing reasons for cheat-
ing, while encouraging students to take greater ownership of their learning. This is
achieved through the following mechanisms.

• Formative assessment does not punish students for misunderstandings. Rather,
it actively encourages student to highlight their issues so that teaching staff can
provide them with valuable feedback.

• Weekly interactions between students and teaching staff provide an opportunity

121

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

to verify understanding of the submitted work. For work to be signed off by the
teaching staff, students need to be able to discuss the work with their tutors in
class.

• A number of hurdle tests were included in the teaching and learning activities,
the last of which had to be passed under examination conditions.

• Higher grades required an interview in which students elaborated on their work.
This required the discussion of specific details that would be hard to fabricate.

All of these aspects are primarily included for other purposes, with the exception of
the hurdle tests which are provided primarily as a means of validation for students
having met minimum requirements. Unlike standard examinations, these tests aim
only to assess core aspects of the unit that all students should be able to perform with-
out issues. Figure 4.14 shows an illustration used to describe the tests to the students.

Core Tasks Test covers the
same material!

Lab 1, Lab 2, Lab...

! !!
!

✅ ✅ ✅
✅

Figure 4.14: Tests cover aspects already presented in the tests, helping verify students
completed the work themselves.

As the tests only assess core competencies, the tests are marked to an exacting stan-
dard. Students can be awarded one of three grades: pass, fix or redo.

• The pass grade requires the large majority of the test to be correct. Small issues
like minor syntax errors, or other small mistakes can be overlooked, but as a
majority the work must demonstrate good mastery of the topics covered.

• Fix grades indicate some larger issues are present, but nothing critical and the
work still demonstrates a sufficient mastery of the content.

• Where the test indicates larger issues that represent critical misunderstandings
for the student, their test is marked as redo and they must resit the test to be
eligible to pass the unit. When no additional test opportunities are available this
grade would indicate a Fail result for the unit.

122

4.2. CONSTRUCTIVELY ALIGNMENT WITH PORTFOLIO ASSESSMENT

With both pass and fix grades, students are expected to correct all issues in their test
and include the corrected versions in their portfolios.

It is important to note that the redo grade is awarded where critical misunderstandings
are demonstrated. This is not equivalent to getting less than 50%, or some other arbi-
trary percentage, of available marks. The work is assessed qualitatively, with teaching
staff making expert judgements about the level of understanding being demonstrated.
The response to even a single question could demonstrate critical misunderstandings,
though typically this knowledge would be tested across a number of questions.

Students must include the tests in their portfolios, and the last test has to be passed in
examination conditions. All tests also perform a formative role, with students need-
ing to correct any issues themselves and resubmit the work, with the test only being
signed off when students have been able to address it to the required standard.

These mechanisms help to address the main reasons that students cheat: time pres-
sures, fear of failure, and difficulty of tasks (Sheard et al. 2003). The iterative nature
of the formative feedback process, with the ability to resubmit work without penalty,
helps to address all of these reasons. Time pressures are reduced with the summative
assessment being delayed until the end of the teaching period. Frequent formative
feedback, without penalties for misunderstandings, also helps to alleviate some of the
issues associated with the fear of failure.

At the same time, the portfolio assessment puts the emphasis on the student to take
responsibility for their own learning. This helps encourage aspects associated with
reasons not to cheat as indicated by Sheard et al. (2003). Custom work required for
higher grades requires students to invest something of their own interest in the work
they submit, helping build student pride in their own work. At the same time, the
formative feedback process provides students with opportunities to correct their own
work without needing to resort to cheating to get a good mark.

Through a combination of mechanisms to reduce the reasons for cheating, and encour-
aging aspects associated with taking responsibility for their own learning, the model
addresses issues of plagiarism without unduly emphasising a punitive approach. This
is in keeping with Principle 7 from Chapter 3.

123

CHAPTER 4. A MODEL FOR CONSTRUCTIVE ALIGNMENT OF INTRODUCTORY
PROGRAMMING

4.3 Summary

This chapter has outlined an overall strategy for teaching introductory programming
with portfolio assessment based on an objects-later approach. Using the principles
from Chapter 3, a model for the development of constructively aligned units was pre-
sented. Chapter 5 continues this work by demonstrating the application of this model
in the creation and delivery of two introductory programming units.

124

5
Applying Constructive Alignment and
Portfolio Assessment for Introductory

Programming

Chapter 4 proposed a model for delivering introductory programming units based
upon the principles from Chapter 3. The proposed model uses portfolio assessment,
with a concept-based delivery that focuses on the students active construction of knowl-
edge. This chapter provides example implementations of this model, demonstrating
how the principles from Chapter 3 and the model from Chapter 4 can be realised in a
programming curriculum.

Section 5.1 provides the final piece of the overall strategy for delivering introductory
programming, describing the choice of programming paradigm for the first program-
ming units. The following two sections, Section 5.2 and Section 5.3, then describe two
programming units implemented using the model from Chapter 4. For each of these
exemplar programming units the subsections are ordered to follow the processes from
Chapter 4. First we outline the definition of the intended learning outcomes and the
construction of the assessment criteria. This is followed by examples of various teach-
ing and learning activities and resources developed and delivered as part of this cur-
riculum. Finally each section concludes with an overview of how student portfolios
were assessed.

125

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

5.1 Paradigm Choice

In describing Principle 8, Section 3.1.9 of Chapter 3 outlined a overall strategy that
could be used to guide the development of the units. This strategy included the sep-
aration of material for teaching and learning activities from more detail focused re-
sources, but also included defining an overall strategy to guide the development of
this material. Within the overall strategy was the requirement to make decisions re-
lated to assessment and delivery approach that were subsequently discussed in Sec-
tion 4.1 of Chapter 4, leaving only decisions related to choosing an approach to select-
ing content to be discussed.

Principle 10 from Chapter 3 indicated that, with programming, the choice of which
content to include is heavily influenced by programming paradigm. As discussed
in Section 3.2.1, a number of programming paradigms could be used to teach intro-
ductory programming. This section addresses the question of which programming
paradigms were selected, and why, for the two introductory programming unit exam-
ples in this chapter.

Prior to conducting this research we have had experience with teaching introductory
programming using both imperative-first and objects-first approaches. Our view mir-
rors those of Rist (1996) who reported on plans and cognitive schemas, the funda-
mental units of program design. In relating plans to objects, Rist (1996) indicated that
objects were not different, they were more, as objects require additional overhead re-
lated to defining object1 structures. Given this, units that take an objects-first approach
will still need to have a significant focus on procedural aspects, as indicated by Robins
et al. (2003), a reasoning that was also echoed in the “back to basics” approach of
Reges (2006). Table 5.1 lists the main concepts programming concepts related to pro-
cedural and object oriented programming to illustrate this point. Conceptually objects
represent a combination of structured data and associated functionality, so from this
perspective objects build upon procedural programming concepts.

As a result, an objects-later approach was taken with the units reported in this work.
However, we believe that the model discussed in Chapter 4 would also be appropriate
for units developed using an objects-first approach – see Chapter 8 for further discus-
sion on this point.

In covering structured procedural programming, the focus was on procedural pro-
gramming concepts such as control flow, functions and procedures, parameter pass-

1Object structures are typically defined using classes or similar mechanisms in languages such as Java

126

5.1. PARADIGM CHOICE

Table 5.1: Illustration of the programming concepts related to procedural and object
oriented programming

Concept
Procedural
Program-

ming

Object
Oriented
Progam-

ming
Calling procedures to perform actions X X
Variables to store values X X
Parameters to pass values to procedural abstractions X X
Functions to calculate values X X
Code as a sequence of action statements X X
Selecting using if and case statements X X
Repetition using for, while, and repeat loops X X
Arrays to store multiple values X X
Iteration over array contents to process data X X
Structures to record multiple field values in a variable X X
Pointers to refer to other values X X
Classes to combine templates for object creation X
Methods called upon objects X
Inheritance of behaviour from parent classes X
Abstract class members X
Pure abstract interface definitions X
Subtype polymorphism X

ing, and data modelling using structures and records. Maintaining a clear focus on
these concepts helps to address Principle 4 and Principle 11 from Chapter 3.

Reges (2006) back to basics approach also aimed to teach imperative programming
concepts, which they did using the Java programming language. However, Java is an
object oriented programming language and so, in effect, this approach taught students
how not to use Java. While we have adopted the imperative programming focus,
Principle 12 indicates that we must select a programming language that was designed
for this purpose. The discussion of which language was used for the example units is
presented in the following sections.

While objects did not appear in the first programming unit, their importance in stu-
dents’ education remained a focus. Rather than seeing programming as being deliv-
ered in a single stand-alone unit, we designed a sequence of two units that worked
closely together. The first covered structured procedural programming, focusing on
aspects such as control flow. The second focused on object oriented programming,
which can then use a model driven approach similar to the one reported in Bennedsen
& Caspersen (2004), but without having to cover procedural programming aspects.

Figure 5.1 shows the final overall strategy for the example units presented in this the-
sis. Structured procedural programming principles were used to inform the creation
of the intended learning outcomes for the introductory programming unit. These out-
comes then become prerequisite knowledge for the object oriented programming unit,

127

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

guidesguides

a) Overall Strategy

Intended Learning Outcomes

Structured Procedural
Programming

informs creation of

Intended Learning Outcomes

Object Oriented Programming

informs creation of

prerequisite
knowledge

for

b) Teaching and
Learning Resources

c) Teaching and Learning Activities

uses

Swinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols

Laboratory, Core, and
Extension Tasks

Focused Slides

Interactive coding
demonstrations

Portfolio
Assessment

Student
Centred
Delivery

Figure 5.1: An updated version of Figure 3.9 showing the programming paradigms
that will form the approach for selecting content

128

5.1. PARADIGM CHOICE

which focused on object oriented programming principles. Both units used portfolio
assessment, and focused on active student centred approaches to introducing students
to unit content.

The objects-later approach taken by these example units aligns well with the principles
from Chapter 3, providing a clear focus that supported a concept-based approach to
introductory programming. Concepts related to object oriented programming were
then the focus of the second programming unit. The alignment of these two units to
the what principles from Chapter 3 is outlined in the following list.

1. The first programming unit, introductory programming discussed in Section 5.2,
is aligned with the principles in the following way:

• Content selection was guided by the structured procedural programming
paradigm.

• Focus is on fundamental programming concepts, which include functions
and procedures, variables, control flow, parameter passing, and related
concepts.

• The chosen programming language, or languages, must have been designed
for procedural programming.

2. The second programming unit, object oriented programming discussed in Sec-
tion 5.3, aligns with the principles in the following way:

• Content selection was guided by the object oriented programming paradigm.
• Focus is on object oriented programming concepts including abstraction,

encapsulation, inheritance, and polymorphism.
• The chosen programming language, or languages, must have been designed

for object oriented programming.

129

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

5.2 Introductory Programming

5.2.1 Aims for Introductory Programming

The aim of the introductory programming unit was to introduce students to program-
ming and software development fundamentals. While the focus was on developing
depth in this area, the holistic nature of the portfolio assessment approach meant that
programming was placed in the context of software development in general. As a
result, this unit also touched on a number of areas not traditionally associated with
introductory programming such as professional ethics and communication skills.

5.2.2 Defining Intended Learning Outcomes

The first process in creating the introductory programming unit was to define appro-
priate intended learning outcomes. This was influenced by a number of factors as
described in Chapter 4 (see Section 4.2.2). These factors are discussed below, and are
followed by a description of the unit’s intended learning outcomes that resulted.

Influencing Factors

Figure 4.8 shows the specific factors that influenced the definition of the introductory
programming unit. Three aspects will be discussed in the following sections: the over-
all strategy, accreditation requirements and industry requirements. The objects-later
approach meant that this unit focused on procedural programming concepts. Accred-
itation requirements from the Australian Computer Society (ACS) focused the content
on the wider role of software development in general. Whilst the model curriculum
from the Association for Computing Machinery (ACM) and Institute for Electrical and
Electronic Engineers (IEEE) provided guidance from an industry perspective.

Objects-Later The objects-later approach to this unit meant that it focused on struc-
tured and procedural programming concepts. The following list outlines the core con-
cepts that were taught in this unit.

• Procedural programming abstractions:
– Functional abstractions: functions and procedures
– Data abstractions: variables, constants, arrays and types

130

5.2. INTRODUCTORY PROGRAMMING

Influencing Factors

(a) Prior to the
Teaching Period

Define Intended
Learning Outcomes

Teaching Staff

Guiding
Principles Objects-Later

ACM/IEEE
CS2013

Student FactorsResourcing
Factors

ACS Core Body
of Knowledge

Unit Outline

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

resulting ILOs
documented in

Construct
Assessment Criteria

resulting assessment
criteria documented in

ILOs

Portfolio
Guidelines

Assessment
Practices

SOLO
Taxonomy

Figure 5.2: Factors that influenced the definition of the intended learning outcomes
for introductory programming. Highlighting specific factors from the previous more
general factors presented in Figure 4.8.

131

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

• Structured programming principles:
– Sequence, selection and repetition
– Control flow: pre-test and post-test loops, if and case
– Iteration through an array of values

• Program comprehension:
– Memory layout: stack, heap and static memory
– Execution of control flow
– Parameter passing: pass-by-value and pass-by-reference

Accreditation Requirements The Australian Computer Society (ACS) documented
the ICT profession and associated body of knowledge (Gregor et al. 2008), which indi-
cated graduates should develop both skills and knowledge as part of their undergrad-
uate education. In the work, the skills component drew upon the Skills Framework for
the Information Age (SFIA) while the knowledge area was divided into three aspects:
a core body of knowledge, role specific knowledge and complementary knowledge.
As a central role for a range of IT degrees, the introductory programming unit devel-
oped both student’s skills and knowledge.

SFIA (Foundation 2011) documented a range of IT skills across six categories. In terms
of the SFIA, the Introductory Programming unit aimed to contribute to the develop-
ment of programming and software development skill from the Solution development and
implementation category. SFIA ranked each skill across seven levels of responsibil-
ity, ranging from follow to set strategy, inspire and mobilise. Introductory programming
aimed to provide significant progress towards students attaining a Level 2, assist, stan-
dard in this skill. To achieve this level of responsibility, students need to demonstrate
the ability to design, code, test, correct, and document simple programs, as well as
being able to assist with the development of larger software solutions.

The ACS divides the core body of knowledge into six areas: problem solving, profes-
sional knowledge, technology building, technology resources, service management
and outcomes management. Introductory programming contributed toward the de-
velopment of the problem solving, professional knowledge, technology building and
technology resources as outlined in the following list:

• Problem solving:
– Students used procedural programming abstractions, and were required to

explain their various roles, properties and purpose.
– Students followed methods and processes for designing and modelling pro-

cedural programming solutions.

132

5.2. INTRODUCTORY PROGRAMMING

• Professional knowledge:
– Students developed general computer competencies, including the use of

compilers, shell scripting and basic Bash commands.
– Students read briefly about the history of computing, and the ICT disci-

pline, providing a context for procedural programming and the structured
programming principles.

– Professionalism, and the role of reflection and life-long learning in profes-
sional behaviour was instilled in students.

– Students performed self assessment of their competencies, and expertise, in
applying procedural programming concepts.

– The emphasis on demonstrating understanding enabled students to de-
velop their written communication skills, including both technical and per-
sonal communications.

– Frequent interaction with staff aimed to help students development their
interpersonal skills.

• Technology building:
– Students experienced many aspects of the software development lifecy-

cle: undertaking simple analysis, design, implementation and testing pro-
cesses.

– Students worked with iterative software development processes, building
larger solutions across a number of iterations.

– The procedural programming topics listed developed practical technology
building skills.

– An understanding of the structured programming principles helped guide
program construction and evaluation.

– Students used simple white-box testing techniques to determine the success
of their programs.

• Technology resources:
– Students developed a basic understanding of software systems, including

the basics of software processes, memory layout and file systems.

Industry Requirements The Association for Computing Machinery (ACM) and IEEE
Computer Society 2013 Computer Science Curriculum documents (ACM/IEEE-CS
Joint Task Force 2012) outlines a number of areas to be covered in a Computer Science
curriculum. In terms of the ACM/IEEE model curriculum, the introductory program-
ming unit primarily focused on Software Development Fundamentals, but also integrated
a number of other areas, as shown in the following list.

• Algorithms and Complexity:

133

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

– Algorithmic Strategies: Students were introduced to divide-and-conquer, and
the idea of recursive backtracking.

– Fundamental Data Structures and Algorithms: All students programmed sim-
ple numeric algorithms, sequential search, and basic sorting.

• Computational Science:
– Processing: Fundamental programming concepts were covered in depth in-

cluding algorithms, implementing algorithms in code, and processes in the
software development lifecycle.

• Discrete Structures:
– Basic Logic: Students used truth tables to learn to evaluate and construct

boolean expressions.
• Graphics and Visualisation:

– Fundamental Concepts: Applications of computer graphics, double buffering
and animation were covered to make programming more interactive.

– Geometric Modelling: Optional tasks allowed students to explore procedu-
rally generated models (fractals).

• Human-Computer Interaction
– Programming Interactive Systems: Students developed code to manage events

and user interactions.
• Programming Languages:

– Basic Type Systems: Students explored the use of a range of basic types, along
with the definition of custom enumerated and record types.

– Language Translation and Execution: Students were introduced to the topics
of compilers and interpreters, as well as run-time layout of memory (call-
stack, heap, static data), and manual memory management.

• Software Development Fundamentals
– Algorithms and Design: Students were introduced to the concept of algo-

rithms, problem solving using divide-and-conquer, abstraction and pro-
gram decomposition.

– Fundamental Programming Concepts: Students used programming language
syntax, developed programs that contained statements, expressions, used
variables, simple input and output operations, conditional control flow, in-
cluded functions, various parameter passing techniques, and were intro-
duced to the concept of recursion.

– Fundamental Data Structures: Programs students implemented made use of
arrays, record structures, strings and basic string processing, and students
implemented a simple linked list.

– Development Methods: Program comprehension was central to the unit, with
basic details of program correctness being introduced. Students were also
required to use basic refactoring techniques to restructure code, and pro-

134

5.2. INTRODUCTORY PROGRAMMING

gram tracing was covered as a debugging technique.
• Software Engineering

– Software Processes: Students used an iterative software development process
model, and were introduced to the phases of the software development
lifecycle.

– Software Design: Students were introduced to the principles of the struc-
tured design paradigm, and used these principles in the design and devel-
opment of the programs they created.

– Software Construction: Coding standards, and defensive coding practices
were introduced to students.

• Social Issues and Professional Practice:
– Professional Ethics: Students developed skills in professional practice includ-

ing self assessment, reflective practice, computer fluency, and general ap-
proaches to life-long learning.

– Professional Communication: To demonstrate their understanding students
were required to read, understand and communicate technical material us-
ing clear language and visual mediums.

Intended Learning Outcomes

All of the factors listed above, and the factors and guidelines stated in Section 4.2.2
of Chapter 4, guided the definition of the intended learning outcomes for the intro-
ductory programming unit. The following list shows how the guidelines for defining
intended learning outcomes were used in the development of the introductory pro-
gramming unit.

• Verbs were selected from appropriate levels of the SOLO taxonomy. (LO-1)
• Outcomes aimed to cover both an understanding of procedural programming

concepts and applied programming skills. (LO-2)
• Care was taken with the language used to help ensure students were able to

understand each outcome. (LO-3)
• Only four outcomes were included. (LO-4)
• Outcomes could be met in a variety of ways, and assessed at a range of levels of

understanding. (LO-5 and LO-6)

Given the wide range of skills and knowledge mentioned, the challenge was to ensure
that this could be expressed in a small number of intended learning outcomes. This
task was assisted by the use of the SOLO taxonomy, and recognising that the SOLO
level of each outcome indicated that earlier levels must already have been achieved.

135

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

Each outcome aimed to engage students in activities likely to help them achieve a re-
lational level of understanding. The verbs analyse, apply, construct, implement, interpret
and use represent activities in which students need to use cognitive activities at the
relational level of understanding. The multistructural describe verb and the unistruc-
tural locate verb are also used, but as a supporting activity for a higher level verb, such
as with describe and relate.

By applying these guidelines, the resulting outcomes helped the introductory pro-
gramming unit realise the following principles from Chapter 3, as previously dis-
cussed in Section 4.2.2.

• Use of verbs at the Relational level of the SOLO taxonomy indicated the activities
students needed to be able to demonstrate to pass the unit. (P1, P2, and P5)

• The small number of outcomes provided a clear focus on the concepts related to
structured programming. (P4 and P11)

• Flexibility in how outcomes were addressed helped to engage a wide range of
student interests. (P6)

The final statement of the intended learning outcomes for the introductory program-
ming unit are listed below, with the verbs from the SOLO taxonomy indicated in bold.

ILO-1: Apply code reading and debugging techniques to analyse, interpret, and
describe the purpose of program code, and locate within this code errors in
syntax, logic, and/or good practice.

ILO-2: Describe the principles of structured programming, relate these to the syn-
tactical elements of the programming language used, and the way programs
are developed using this language.

ILO-3: Construct small programs, using the programming languages covered that
include the use of arrays, functions and procedures, parameter passing with
pass-by-value and pass-by-reference, custom data types, and pointers.

ILO-4: Use modular and functional decomposition to break problems down func-
tionally, represent the resulting structures diagrammatically, and imple-
ment the structure in code as functions and procedures.

Introductory programming used a procedures-first approach, and focused on the struc-
tured programming principles of organising code using sequence, selection and repeti-
tion. Students learnt to use functional and modular decomposition to break problems
down, and implement solutions using functions and procedures. Data was managed
using arrays and custom data types. Pointers and memory management were intro-

136

5.2. INTRODUCTORY PROGRAMMING

duced. Various forms of parameter passing were covered, including pass-by-value
and pass-by-reference. Weaved through this was an iterative development process, a
focus on writing clear and legible code, and other good programming practices.

In addition to writing code, students learnt to read code for debugging purposes, and
to demonstrate their ability to interpret other people’s code. This outcome aimed to
actively encourage stduents to develop effective models of computation. From a con-
structivist perspective this model is of critical importance, as it provides depth of un-
derstanding in relation to how programs work upon the machine, an imperative that
was highlighted by Ben-Ari (1998, 2001) in their analysis of constructivism in com-
puter science education. By requiring students to describe how programs work, the
intended learning outcomes aimed to ensure students developed effective models of
computation.

Other factors, not directly stated as intended learning outcomes, were incorporated in
the unit as a means of addressing wider graduate attributes, or as beneficial outcomes
not directly assessed in determining the final student grades. This included profes-
sional communication, software engineering methods and graphics and visualisation.

Professional Communication Traditionally, many programming units have focused
on assessing code outcomes, assuming that if students could produce code, they un-
derstood it. Others, such as Lister et al. (2004), extended this to include small code
reading and tracing tasks in order to expand on the assessment of student’s under-
standing of code.

With the example introductory programming unit this is taken further, with the stu-
dents needing to write about the associated principles and to describe code. This ex-
panded assessment had the dual benefit of engaging higher levels of cognitive activity,
while also helping students to develop their professional communication skills.

Each of the intended learning outcomes requires students to communicate their under-
standing. For example, in meeting the first outcome students needed to demonstrate
the ability to interpret supplied code, and to communicate its purpose and any issues
in logic or the application of recommended good practice. While not a direct focus
of the assessment, communication skills play an enabling role in achieving this, and
students were provided with support and encouragement in developing their com-
munication skills alongside their technical skills.

137

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

Software Engineering Methods While typically the focus of later software engi-
neering units, the software development lifecycle and iterative development methods
were embedded within the unit. Students engaged in the development of software
throughout the unit: analysing, designing, developing and testing software became
a means for them to achieve these outcomes. Students experienced the software de-
velopment lifecycle first hand, without needing it to be stated in the unit’s intended
learning outcomes.

Larger programs in the unit were broken down into a number of iterations, and stu-
dents build these solutions by performing these iterations. Once again, this enabled
them to experience software development methods without these methods being ex-
plicitly included in the assessed outcomes.

Together, both of these aspects were related to the more general concept of problem
decomposition. The idea of approaching a solution through discrete iterations provided
an example of decomposing a problem into smaller steps. Similarly, the idea of break-
ing each of these steps into more manageable processes was used to explain both the
idea of decomposition and the software development lifecycle.

Graphics and Visualisation Identifying appropriate applications for student to de-
velop is a common problem with teaching introductory programming. In teaching
introductory programming it was decided to focus on having students program small
computer games. The research literature related to the use of games indicates that
this is popular with students (Bayliss & Strout 2006), and helps motivate them to
spend time on the task (Feldgen & Clua 2004, Rajaravivarma 2005, Cliburn 2006), as
well as supporting development of student understanding of programming concepts
(Roberts 1995, Leutenegger & Edgington 2007). Similar approaches focusing on me-
dia manipulation (Guzdial & Soloway 2002, Guzdial 2003) have also shown positive
results in motivating students to learn introductory programming.

The use of games as a context for software development requires students to gain
some familiarity with fundamental concepts related to graphics and animation. The
interactive nature of games also introduces students to the concept of programming
in response to user input events and real-time signals.

138

5.2. INTRODUCTORY PROGRAMMING

5.2.3 Constructing Assessment Criteria

The construction of the assessment criteria happened alongside the definition of the
intended learning outcomes. The goal, as stated in Section 4.2.3 of Chapter 4, was to
create clearly distinct grades where each required students to demonstrate a deeper
understanding of programming concepts and software development practices. These
goals were met by applying the guidelines from Chapter 4 as outlined in the following
list.

• Simple language was used to describe the various levels to which the outcomes
could be met. (AC-1)

• Pass and higher grades required students to demonstrate how they had met each
of the unit’s intended learning outcomes. (AC-2)

• Critieria for grades higher than Pass required student to demonstrate deeper
understanding of the concepts related to the intended learning outcomes. (AC-
3)

• Each grade required distinct evidence. (AC-4)
• A clear mapping was provided from the assessment criteria to grade outcomes,

and was provided in the unit outline. (AC-5)

Figure 5.3 shows the assessment criteria developed for the introductory programming
unit. To receive a Pass or Credit grade, students completed set exercises, which were
signed off through student interaction with staff. Distinction required the implemen-
tation of a program of the student’s own creation, while High Distinction required a
small research project.

To receive at least a Pass grade, students needed to satisfactorily complete three hurdle
tests as well as a number of pieces of work that demonstrated they had met all of the
intended learning outcomes. These pieces of work needed to come from the weekly
tasks, but did not need to have been signed off by teaching staff.

The Credit grade required students to meet all Pass requirements, and to have suc-
ceeded in getting all tasks signed off. This ensured teaching staff were happy they
had completed the work themselves and provided students with incentives to engage
in the formative feedback process. Students’ explanations of programming concepts
and abstractions were the main items used to distinguish between Pass and Credit in
terms of depth of understanding. In this regard, the student’s work needed to demon-
strate good coverage of all outcomes for the student to be eligible for a Credit grade.

139

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

Figure 5.3: Assessment criteria from the Unit Outline of the introductory program-
ming unit

Figure 5.4: Example images of student work, including screenshots of games and a
photograph of hardware components.

140

5.2. INTRODUCTORY PROGRAMMING

Distinction built on top of Credit requirements and required students to create a pro-
gram of their own design. This could be any program the student was interested in
creating, as long as it demonstrated good coverage of all of the unit’s intended learn-
ing outcomes. In effect, this meant that students needed to create a program that con-
tained a number of functions and procedures, used arrays and record types, and was
of sufficient size and complexity. Most students who received this grade had imple-
mented a game of some kind, many emulating classic arcade games such as asteroids,
pong, frogger or space invaders. However others implements small databases, and
in a couple of cases implemented programs for custom hardware. Figure 5.4 shows
a number of images of student work, including a number of games and one piece of
custom hardware.

High Distinction required students to engage in the creation of a short research report,
in addition to having met the Distinction grade requirements. Each student aiming
to achieve this grade worked together with staff to define a topic they could examine,
and then the student carried out data collection, analysis and reporting tasks. As an
introductory programming unit, this research was limited to examining simple tasks
such as algorithm efficiency, different techniques to perform a task, or comparing per-
formance aspects of different code. Students were encouraged to think deeply about
their results, and to document their outcomes clearly.

As indicated in Section 4.2.3, the use of these assessment criteria in the introductory
programming unit helped it to embody the following principles from Chapter 3:

• Criteria for Credit, Distinction, and High Distinction grades required progres-
sively higher levels of understanding which promoted deep learning, and com-
municated high staff expectations. (P1 and P5)

• Students needed to demonstrate understanding across all outcomes. (P2)
• The criteria determined each student’s final grade, delaying all summative as-

sessment until the end of the unit and encouraging students integrate feedback
they received. (P3 and P8)

• Different levels in the assessment criteria focused on addressing the most impor-
tant aspects for students to focus on. (P4)

• As with the learning outcomes, the use of simple terms helped support a wide
range of student language capabilities. (P6)

• Clearly distinct requirements helped students take responsibility for their learn-
ing, allowing them to aim to meet certain grade criteria. (P7)

• Students reflected on their learning in preparing their portfolios. (P9)
• Students needed to demonstrate appropriate use of procedural programming

concepts, and programming languages. (P10, P11 and P12)

141

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

5.2.4 Developing Teaching and Learning Activities

Section 4.2.4 of Chapter 4 provided three guidelines to inform the development of
teaching and learning activities. These indicated that teaching and learning activities
should actively engage students (TLA-1), align with unit outcomes (TLA-2), and focus
on providing guidance rather than aiming to transfer knowledge (TLA-3). All of these
guidelines were adopted in the development of the teaching and learning activities
for the introductory programming unit.

Allocated classes for this thirteen week introductory programming unit included a
two hour lecture, and a two hour laboratory class each week. All classes were de-
signed with the goal of actively engaging students, as discussed in Section 4.1.3. A
typical lecture included a short presentation using “Beyond Bullet Points” style lec-
ture slides (Atkinson 2007), an interactive programming demonstration and group ac-
tivities. In the laboratory sessions, students were involved in code reading activities,
guided programming tasks and practical hands-on exercises.

The teaching period consisted of twelve teaching weeks, and a single week semester
break. Topics for the twelve lectures are shown in the following list. In weeks one
to six students explored these concepts using a modern version of the Pascal pro-
gramming language (Wirth 1971, Van Canneyt & Klämpfl 2011). To help reinforce the
applicability of the programming concepts across programming languages, students
were introduced to the C programming language (Ritchie et al. 1978) in week 7, and
this language was used for the remainder of the semester.

1. Programs, Procedure, Compiling and Syntax
2. User Input and Working with Data
3. Control Flow: Branches and Loops
4. Procedural and Structured Programming
5. Arrays
6. Custom Data Types and Pointers
7. Learning a New Language
8. Programming in C
9. File Input and Output

10. Dynamic Memory Management
11. Recursion and Backtracking
12. Review and Future Studies

Each week’s laboratory class consisted of a number of activities. At the start of the
class the teaching staff returned the feedback from the previous week’s core exercises,

142

5.2. INTRODUCTORY PROGRAMMING

but delayed discussing feedback with students until after working through the exer-
cises. Students where then guided through the week’s laboratory exercises, and the
core exercises were discussed. Students spent the remaining laboratory time on the
week’s core exercises. During this time the teaching staff visited each student indi-
vidually to discuss their progress, and to mark their work as signed off. At the end
of laboratory classes students were reminded of the tasks they needed to complete by
the following week, and encouraged to attempt extension tasks.

To provide students with an opportunity to demonstrate their understanding, each
week’s core exercises also had students developing a detailed glossary. For the intro-
ductory programming unit, the glossary had students record details on the following
topics:

• Core concepts:

– Control flow
– Structured programming principles
– Functional and modular decomposition
– Good programming practices

• Programming terminology:

– Statements
– Expressions
– Identifiers
– Parameters, local variables and global variables

• Programming abstractions:

– Programs
– Functions and Procedures
– Constants and Variables
– Arrays
– Records and Enumerations
– Pointers

• Statements:

– Function and procedure calls
– Assignment statements
– If and case statements
– While and repeat/do..while loops
– For loops

Table 5.2 shows the planned alignment between the introductory programming unit’s
topics and its intended learning outcomes. This planned alignment was not shared
with students to ensure that their portfolios reported how they believed the tasks

143

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

aligned with the outcomes. In this way, the process of alignment was carried out by
both staff and students – teaching staff planned activities they believed aligned with
outcomes, while students reflected on their learning experience and reported how
their work demonstrated they had met the outcomes.

By following the guidelines from Section 4.2.4, the teaching and learning activities in
the introductory programming unit addressed a number of the principles stated in
Chapter 3.

• Activities aimed to actively engaged students in tasks likely to engage the re-
quired cognitive levels. (P1)

• Staff planned activities they believed would enable the students to demonstrate
they had met the unit’s intended learning outcomes. (P2)

• Activities supported the use of weekly formative feedback, providing tasks over
which staff and students could have meaningful dialogue. (P3 and P7)

• Activities focused on concepts, providing students with a range of opportunities
to develop pieces that would demonstrate they had gained the required knowl-
edge. (P4, P6 and P11)

• Core and extension tasks helped to communicate staff expectations. (P5)
• Leaving language details to be covered in teaching and learning resources helped

to ensure activities could change in response to student needs. (P8)
• Activities ensured students implemented a range of procedural programs, mak-

ing use of programming languages in ways in which they were intended. (P10
and P12)

Table 5.2: Alignment matrix showing staff-planned alignment of weekly topics to the
introductory programming unit’s intended learning outcomes. Student descriptions
of the topic alignment differed based on their individual learning.

Topic ILO-1 ILO-2 ILO-3 ILO4
Programs, Procedure, Compiling and Syntax X X X X
User Input and Working with Data X X X X
Control Flow: Branches and Loops X X X
Procedural and Structured Programming X X X X
Arrays X X X
Custom Data Types and Pointers X X
Learning a New Language X X X X
Programming in C X X X X
File Input and Output X
Dynamic Memory Management X X
Recursion and Backtracking X X
Review and Future Studies X X X X

144

5.2. INTRODUCTORY PROGRAMMING

Procedures First Topic Sequence

The order of topics was guided by Principle 11 from Chapter 3. The main objective
being to enable each week’s topic to build upon earlier topics, while providing a con-
sistent set of abstractions for students to work with.

This was achieved using a procedures-first approach in which students program their
own procedures from Week 1. The following list indicates the concepts, programming
abstractions and statements introduced each week.

1. Programs, Procedure, Compiling and Syntax
• Sequence: The focus of this week was on programs and procedures as a

sequence of instructions that get the computer to perform a task.
• Syntax Rules: Students learnt to use visual “railroad” diagrams (Braz 1990)

to understand programming language syntax.
• Program: Students created small programs that contained a sequence of

procedure calls, with all values being hard coded.
• Procedure: Students developed a small number of procedures, each with a

defined task that contributed to the overall program.
2. User Input and Working with Data

• Data: The central idea of this week was data, the idea that values can be
stored and calculated.

• Variables: Students created local variables, global variables and parame-
ters.

• Constants: Students declared constants.
• Functions: Students used functions in the laboratory and core exercises,

and developed their own in the extension tasks.
• Assignment Statements: Students used assignment statements to store val-

ues in variables.
3. Control Flow: Branches and Loops

• Control Flow: The ideas of sequence, selection and repetition were central
to this week.

• Selection: Students used if statements and case statements to implement
branching in their control flow.

• Repetition: Students repeated code using while loops and repeat loops.
4. Procedural and Structured Programming

• Functional and Modular Decomposition: The idea of solving problems
using divide-and-conquer was the main theme of this week.

• Software Development Lifecycle: The basic steps of the software develop-
ment lifecycle were discussed.

145

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

• Iterative Development: The idea of iteratively working toward a solution
was discussed.

• Structured Programming: The structured nature of a functions/procedures
code was discussed, illustrating how these steps can be broken down into
blocks performing sequence, selection or repetition.

• No new programming abstractions or statements were introduced in this
week.

5. Arrays
• Arrays: Students started to use arrays to store multiple values in their pro-

grams.
• For loops: The for loop was introduced as a convenient means of looping

through the contents of an array, allowing the code to easily apply a set of
operations on each element in the array.

6. Custom Data Types and Pointers
• Types: Custom types and the role of types in a programming languages

were discussed.
• Records: Students developed their own custom record types to model en-

tities associated with their programs.
• Enumerations: Students use of enumerations as a means of creating a type

to represent a list of options.
• Pointers: Pointers were used to create relationships between values, and to

illuminate how pass-by-reference worked internally.
7. Learning a New Language

• Language Syntax: Ways to approach a new programming language were
discussed, and students used a new language to recreate previously devel-
oped programs.

8. Programming in C
• No new programming concepts or abstractions were presented in this week.

Instead the week was used to consolidate knowledge of the new language,
and to develop a wider range of programs using the previously presented
concepts.

9. File Input and Output
• File Input and Output: The idea of persisting data was presented, and

students learnt to save data to a file and read it back.
10. Dynamic Memory Management

• Stack and Heap: Specifics related to memory layout were discussed, in-
cluding the limitations of the stack.

• Dynamic Memory Allocation: Students used memory allocation functions
to allocate memory from the heap, and used pointers to work with the
newly allocated space.

146

5.2. INTRODUCTORY PROGRAMMING

11. Recursion and Backtracking

• Recursion: Students developed simple recursive solutions for problems
like the Fibonacci sequence and the Towers of Hanoi.

• Backtracking: The idea that a recursive solution can backtrack to search
alternative paths was discussed, and extension tasks introduced backtrack-
ing to solve Sudoku and the Eight Queens puzzle.

12. Review and Future Studies

• This week did not introduce any new programming concepts or abstrac-
tions, instead it was used to review everything that had been covered and
to discuss future programming units.

Pattis (1990, 1993) indicated that the main challenge with the procedures first ap-
proach was that students did not have anything meaningful to program in their pro-
cedures prior to introducing control flow. Pattis (1993) reported that the majority of
procedures-first texts had moved control flow prior to procedure declarations in re-
sponse to this issue. We took an alternative approach, and introduced students to a
game development framework in Week 1. This framework provided a range of useful
procedures that students could call, and thereby addressed the issues that Pattis had
raised. Details of this game development framework are presented in Chapter 6.

The following list outlines the focus of each week’s tasks.

1. Programs, Procedure, Compiling and Syntax

• House Drawing: Students created a procedure to draw a house at a fixed
location on the screen, using a sequence of procedure calls.

• Knock Knock: Students created a number of procedures to show images
and play sound effects necessary to display a knock knock joke.

• Custom Splash: Extensions encouraged students to develop a procedure
to show their own splash screen.

2. User Input and Working with Data

• House Drawing: Redeveloped to make use of parameters and local vari-
ables, allowing the house position to be changed.

• Bike Drawing: Students developed a procedure to draw a fixed size bike,
using parameters for the bike’s location and colour.

3. Control Flow: Branches and Loops

• Lots of Bikes: Students created a custom screen saver like program that
drew thousands of bikes to the screen.

• Circle drawing: Students developed a program in which they could move
a circle around the screen, switching it between outlined and filled modes,
and mouse clicking it to make the circle jump to a random position.

147

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

4. Procedural and Structured Programming

• User input functions: Students created functions to read strings, integers,
doubles, and ranges of values (between a minimum and maximum) from
the user. These build on top of each other to demonstrate the power of
functional decomposition.

• Arcade game: Students were encouraged to develop a simple clicking ar-
cade game using the concepts already covered.

5. Arrays

• Statistics: Students developed a program that read in a number of values
from the user and then calculated various statistic values. This included
median, which required the values in the array to be sorted.

6. Custom Data Types and Pointers

• Address Book: A simple address book, with links to friends was developed
to demonstrate records and pointers.

• Pop Game: Provided a larger, multiple iteration, project in which students
developed a simple arcade style game. The game involved popping differ-
ent kinds of shapes, with rounds of ten shapes each of random sizes and
colours.

7. Learning a New Language

• User Input Functions: Students redeveloped the user input functions using
the new programming language.

8. Programming in C

• Statistics was reimplemented in the new programming language.

9. File Input and Output

• Address Book was reimplemented in C, and added the ability to save it to
file, and load it from file.

10. Dynamic Memory Management

• Address Book: Dynamic memory management was used to allow for a
variable number of contacts in the address book.

• Maze Game: Extension tasks had the students develop a network of rooms
connected using pointers.

11. Recursion and Backtracking

• Recursive Programs: Extension tasks had students develop recursive func-
tions.

• Linked List: Extension tasks demonstrated how to use pointers and record-
s/structures to create a linked list.

12. Review and Future Studies

• There was no lab exercises this week, and the lab was used to help students
complete any outstanding tasks.

148

5.2. INTRODUCTORY PROGRAMMING

Programming Language Choice

Introductory programming aimed to teaching students to program, not the details of
a programming language. We did not aim to develop students’ expertise in one pro-
gramming language, but to equip them with the knowledge and skills to become pro-
ficient in any imperative programming language.

Whenever discussing introductory programming it is always interesting to note how
quickly people jump to the question of language. In the delivery of this unit the pro-
gramming language was always a secondary concern – an enabling feature – not an
aspect of great importance. The language choice was based on its ability to support
the following requirements:

• Explicit over implicit
– Require explicit variable declaration, with clear indication of the variable’s

type.
– Strongly typed, avoiding implicit type conversions.

• Procedural programming abstractions over support for other paradigms.
– Functions and procedures.
– Pass-by-value and pass-by-reference.
– Arrays, constants and variables.
– Declaration of custom types including enumerations and record structures.
– Pointers and dynamic memory management.

Table 5.3: Comparison of programming languages for the introductory programming
unit.

C C++ C# Java Pascal Python

Explicit Variables X X X X X

Strongly Typed X X X X

Functions and procedures X X Partial X X

Parameter passing options X X X

Data abstractions X X X X X X

Records and enumerations X X X X

Pointers X X Partial X

Explicit memory management X X X

Used by staff X X X X X X

Table 5.3 lists the languages considered for the introductory programming unit. Pas-
cal met all of the requirements, with C++ and C# satisfying most. C# was designed

149

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

for object oriented programming, and therefore using it for procedural programming
was against Principle 12, which indicated we would only use languages as they were
designed to be used.

The choice between C++ and Pascal was more challenging. C++ had the advantage of
being widely used, and the popularity of the C-style syntax would mean that learning
its syntax would more directly help students when with these other languages. How-
ever, the C++ language itself is cryptic and would be more challenging for students to
master on their own. Pascal, on the other hand, was seen as having a more “beginner
friendly” syntax. Pascal had also been used by Becker (2002), who stated that it had
enabled them to focus less on the syntax, as compared to C++.

Rather than choosing one language it was decided to take advantage of both lan-
guages. Students would be able to focus more on the concepts using Pascal’s more
friendly syntax over the first few weeks of the semester. Once all the concepts were
covered the language could be switched and students could explore the procedural
aspects of C++, getting a start with a C-style syntax.

The focus on teaching students to “understanding syntax” from Week 1 supported,
and was supported by, the change of language. Students had been exposed to pro-
gramming language syntax using the visual “railroad” diagram syntax notation (Braz
1990), and had used this to learning Pascal over the first weeks of the unit. After the
switch to C++, students could reinforce these same skills by applying them to learn a
second programming language. Students again consulted railroad diagrams as they
learnt the C syntax themselves. This approach aimed to encourage students to focus
on the concepts, which would then enable them to more quickly learning the new
language.

5.2.5 Delivering the Unit

Delivery of the unit followed the iterative delivery process outlined in Section 4.2.5
of Chapter 4, and used the activities outlined in the previous section. The process in-
volved the delivery of lectures to guide student activity, used resources to provide stu-
dents with details, provided weekly formative feedback on assessment tasks, which
students then incorporated to improve their understandings. The following list out-
lines how the guidelines from Section 4.2.5 were adopted, with additional details pro-
vided in the following paragraphs.

• Lecture and laboratory classes aimed to actively engage students, as described

150

5.2. INTRODUCTORY PROGRAMMING

in Section 5.2.4. (IDU-1 and IDU-2)

• Students submitted work weekly for formative feedback, with the portfolio be-
ing the only work that contributed to the students’ grades. (IDU-3)

• An online discussion board and Programming Help Desk were used to actively
support students throughout the teaching period. (IDU-4)

Each week the lecture presented the relevant concepts, with demonstrations introduc-
ing students to the syntax. Laboratory sessions helped students prepare for the core
tasks, which they completed after each class. Completed core and extension tasks were
submitted for formative feedback at the start of subsequent lectures and the process
repeated across each week of the teaching period.

With lectures providing guidance, and laboratories getting students started with a
topic, students often had questions outside of scheduled class times. These were sup-
ported via a Programming Help Desk and an online discussion board. The Program-
ming Help Desk was available to students during the week, and was staffed by later
year students and teaching staff from the unit. Students were encouraged to drop
in to the help desk to seek clarification on any issues they had with the concepts or
programming language syntax. The unit also made heavy use of the university’s on-
line learning management system to provide additional support for students outside
of scheduled class times. The use of the discussion board was actively encouraged,
and questions were promptly answered by teaching staff, and in some cases by fellow
students.

Delivering the introductory programming unit in this way ensured it met all of the
principles stated in Chapter 3, as outlined in the following list.

• Students were actively engaged in constructing their own knowledge as they
worked through the teaching and learning activities. (P1)

• Activities provided opportunities for students to develop pieces of work that
aligned to the unit’s intended learning outcomes. (P2)

• Weekly tasks were used to provide frequent formative feedback, with students
actively being encouraged to incorporate the feedback to improve their work
and understanding. (P3)

• Activities had a clear focus: lectures providing guidance, laboratory classes a
first exposure, and support structures providing assistance outside of scheduled
class times. (P4)

• Weekly tasks, along with extensions, helped communicate high staff expecta-
tions. (P5)

151

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

• The discussion board and Programming Help Desk provided active support for
students in addition to scheduled class times. (P6)

• Student had to take responsibility for their learning, no marks were attached to
any of the weekly work so as to ensure it retained its formative focus. (P7)

• Execution of teaching and learning activities provided insights that could be feed
back into the reflective agile process, ensuring changes helped address student
needs. (P8 and P9)

• The concepts central to the unit focused on structured procedural programming.
(P10 and P11)

• Students used the Pascal and C programming languages in ways in which they
are intended to be used. (P12)

5.2.6 Assessing Student Portfolios

At the end of the teaching period student portfolios were assessed using the process
shown in Figure 5.5. This illustration had been included in the unit outline, to help
communicate the assessment approach to students. This process adheres to the guide-
lines presented in Section 4.2.6 of Chapter 4 as outlined in the following list.

• Students were encouraged to include pieces of work that were relevant to them
personally, including work such as hand written notes or learning journals. Any
work that was included had to be referred to in the student’s Learning Summary
Report, ensuring it aligned with at least one of the unit’s intended learning (AP-
1)

• All work included in the students’ portfolios should have incorporated feedback
they had received during the teaching period. (AP-2)

• The Learning Summary Report required each student to reflect on their learn-
ing, and how the pieces they had included demonstrated they had achieved the
unit’s intended learning outcomes. (AP-3)

• Hurdle tests were used, and included as a compulsory piece in student portfo-
lios. These tests only checked core competencies that all students should have
been able to easily demonstrate if they had met all of the unit’s intended learning
outcomes. Students who aimed for a Distinction or High Distinction grade were
interviewed to allow them to demonstrate how they had met the assessment
criteria to these standards. (AP-4)

• Portfolios were assessed using the assessment criteria expressed in the Unit Out-
line document. (AP-5)

Portfolio assessment by staff involved the following steps:

152

5.2. INTRODUCTORY PROGRAMMING

1. Determine a starting grade from the student’s self assessment, cross referenced
with data collected by staff during the teaching period.

2. Initially assume the work is “average” within its grade category, then examine
the evidence and student’s self assessment to determine if the result is of a higher
or lower standard.

3. Portfolios sorted by grade outcomes, and quickly compared for consistency.
4. After assessing all of the portfolios, re-examine the portfolios of students who

achieve the “top” High Distinction grade and determine if any should be awarded
a perfect score.

The clearly distinct criteria for each grade made determining portfolio grades a simple
task, with consistent outcomes. Pass criteria required students to have satisfactorily
completed the hurdle tests, Credit required a good quality glossary and all work to be
signed off, Distinction the custom project, and High Distinction the research report.

For each of the grades the quality of the distinguishing artefacts needed to be checked
against the expected standard. In the final portfolio assessment this task was greatly
simplified due to the requirement for students to engage in the formative feedback
process for Credit and higher grades. This meant that student work had already been
checked by teaching staff, typically a number of times, before their portfolios were
submitted. Any issues should have been identified and corrected before the final sub-
mission.

Students aiming for the Distinction and High Distinction grades were all interviewed.
Each interview lasted around ten minutes, and was conducted by multiple teaching
staff. In the interviews students were asked about their custom project and research
work. The portfolio was used to guide the discussion, with screenshots and print outs
of code often referred to. Overall the experience was very positive for students and
staff, and provided staff with an opportunity to engage with the students who had
achieved the most in the unit.

Assessing the students of the introductory programming unit in this way ensured all
of the principles stated in Chapter 3 were embedded throughout the unit.

• Assessment of portfolios aimed to assess the structure of the observed learning
outcomes, as demonstrated in student portfolios. (P1)

• Portfolios had to demonstrate how the students’ work aligned with all of the
unit’s intended learning outcomes. (P2)

• Final grades were based entirely on student portfolios, enabling frequent forma-
tive feedback to support student efforts during the unit delivery. (P3, P6 and

153

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

W
ea

k
St

ro
ng

Fa
il

Pa
ss

C
re

di
t

D
is

tin
ct

io
n

H
ig

h
D

is
tin

ct
io

n

50
 P

Ve
ry

 W
ea

k.

Ha
s

pa
ss

ed
 te

st
s.

M
iss

in
g

so
m

e
fe

at
ur

es
 in

 c
or

e
pi

ec
es

.

Di
d

no
t p

as
s

te
st

s,
Fa

ils
 to

 d
em

on
st

ra
te

 c
ov

er
ag

e
of

 a
ll I

LO
s

M
iss

in
g

a
nu

m
be

r o
f c

or
e

pi
ec

es
Ch

ec
k

te
st

 re
su

lts
,

IL
O

 c
ov

er
ag

e,
gl

os
sa

ry
,

co
re

 p
ro

gr
am

s

Hi
gh

 q
ua

lity
 g

lo
ss

ar
y,

re
fle

ct
io

ns
 o

n
le

ar
ni

ng
,

ch
ec

k
co

de
, a

nd

ex
te

ns
io

ns

O
wn

 p
ro

gr
am

 +
10

 m
in

 In
te

rv
ie

w
(2

 s
ta

ff)

Re
vie

w
98

's
wi

th
 p

an
el

to

 c
he

ck
 fo

r 1
00

s

1

Ca
te

go
ris

e
ba

se
d

on
 g

ra
de

 fi
rs

t!
Us

e
se

lf
as

se
ss

m
en

t,
wi

th
 s

an
ity

 c
he

ck
.

Sh
ou

ld
 b

e
ob

vio
us

, b
as

ed
 o

n
wo

rk
 in

clu
de

d.

2
As

su
m

e
is

"a
ve

ra
ge

" i
ni

tia
lly

W
or

k
up

/d
ow

n
ba

se
d

on
 e

vid
en

ce

3

Re
se

ar
ch

 +
In

te
rv

ie
w

As
se

ss
m

en
t C

rit
er

ia 75
 D

So
m

e
iss

ue
 w

ith

su
bm

iss
io

n,
 b

ut

m
ee

ts
 m

os
t

re
qu

ire
m

en
ts

 fo
r D

85
 H

D
So

m
e

iss
ue

 w
ith

su

bm
iss

io
n,

 b
ut

m

ee
ts

 m
os

t
re

qu
ire

m
en

ts
 fo

r H
D

65
 C

So
m

e
iss

ue
 w

ith

su
bm

iss
io

n,
 b

ut

m
ee

ts
 m

os
t

re
qu

ire
m

en
ts

 fo
r C

10
0

H
D

 (t
hi

nk
 A

++
)

So
m

et
hi

ng
 s

pe
cia

l!

98
 H

D
 (t

hi
nk

 A
+)

Re
se

ar
ch

 w
el

l
co

m
m

un
ica

te
d.

Ev

id
en

ce
 o

f g
oo

d
an

al
ys

is.

88
 H

D
 (t

hi
nk

 A
-)

W
ea

k
P,

 C
…

 w
or

k
M

in
im

al
 a

na
lys

is
in

re

se
ar

ch
 w

or
k.

92
 H

D
 (t

hi
nk

 A
)

Av
er

ag
e

"h
ig

h
di

st
in

ct
io

n"

82
 D

 (t
hi

nk
 B

+)
So

lid
 o

wn
 p

ro
gr

am
,

m
ee

ts
 g

oo
d

P
an

d
C

cr
ite

ria
. S

ol
id

in

te
rv

ie
w

re
sp

on
se

s.

80
 D

 (t
hi

nk
 B

)
Av

er
ag

e
"d

ist
in

ct
io

n"

78
 D

 (t
hi

nk
 B

-)
W

ea
k

P,
 o

r C
 w

or
k

O
wn

 p
ro

gr
am

de

m
on

st
ra

te
s

co
nc

ep
ts

 b
ut

 is
 w

ea
k

70
 C

 (
th

in
k

C
)

Av
er

ag
e

"c
re

di
t"

68
 C

 (
th

in
k

C
-)

G
oo

d
gl

os
sa

ry

de
sc

rip
tio

ns
 b

ut
 p

oo
r

co
de

 fo
rm

at
tin

g,

m
in

im
al

 e
xt

en
sio

ns
.

et
c.

72
 C

 (t
hi

nk
 C

+)
G

oo
d

co
de

 q
ua

lity
,

go
od

 ra
ng

e
of

ex

te
ns

io
ns

 e
tc

.

55
 P

 (t
hi

nk
 D

-)
So

m
e

we
ak

/m
iss

in
g

as
pe

ct
s

wi
th

 p
oo

r
at

te
nt

io
n

to
 d

et
ai

l.
W

ea
k

ju
st

ific
at

io
ns

/
re

fle
ct

io
ns

. e
tc

.

58
 P

 (
th

in
k

D
)

Av
er

ag
e

"p
as

s"

62
 P

 (
th

in
k

D
+)

St
ro

ng
 "p

as
s"

. E
xt

ra

ef
fo

rt/
pi

ec
es

, g
oo

d
co

de
 q

ua
lity

,
re

fle
ct

io
ns

,
ju

st
ific

at
io

ns
, e

tc
.

Figure 5.5: An overview of the assessment process used to explain the criteria to
students.

154

5.2. INTRODUCTORY PROGRAMMING

P7)
• Assessment could focus on structured procedural programming concepts, as

well as how they are realised in student programs. (P4, P10 and P11)
• Assessment criteria provided a clear message of high expectations, indicating

what was required for students to achieve good grades. (P5)
• Portfolios provided valuable evidence on the effectiveness of the learning envi-

ronment, activities, and resources for staff reflections. (P8 and P9)
• Portfolios provided opportunities for students to reflect on their learning. (P9)
• Programs created by students needed to demonstrate appropriate use of the pro-

gramming languages used. (P12)

5.2.7 Introductory Programming in Summary

This section has presented an application of the model presented in Chapter 4, with
the resulting unit encapsulating all of the principles from Chapter 3. The introduc-
tory programming unit was centred around its intended learning outcomes, and the
central role of the student in constructing their own knowledge. The assessment cri-
teria rewarded students for demonstrating a depth of knowledge, pushing students
to strive for relational level understanding. Teaching and learning activities were de-
veloped to support the constructive nature of the unit, and to provide students with
suitable challenges. The final summative assessment used assessment criteria and a
specific process to quickly and efficiently determine student grade outcomes from the
portfolios they submitted.

Chapter 7 and Chapter 8 provide further discussion of the results from delivering this
unit.

In the next section another application of the model is presented in discussing the
object oriented programming unit.

155

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

5.3 Object Oriented Programming

5.3.1 Aims for Object Oriented Programming

Object oriented programming was the second programming unit in the sequence of
programming units described in Section 5.1. Having completed the introductory pro-
gramming unit, many students went on enrol in the object oriented programming
unit, which introduced them to the object oriented programming paradigm.

The design of the object oriented programming unit followed the model outlined in
Section 4.2 in a similar way to the introductory programming unit presented in Sec-
tion 5.2. To help illustrate the general applicability of the model, this section briefly
describes the steps taken and discusses how these differ from the approach taken with
the introductory programming unit. The following subsections outline the processes
from the model described in Section 4.2, including the definition of the intended learn-
ing outcomes, construction of the assessment criteria, development of the teaching
and learning activities, delivery of the unit, and portfolio assessment.

5.3.2 Defining Intended Learning Outcomes

Defining the object oriented programming unit’s intended learning outcomes followed
the same process as outlined for the introductory programming unit in Section 5.2.2.
The process was influenced by similar factors, and used the guidelines stated in Sec-
tion 4.2.2. The main difference between the object oriented programming unit and the
introductory programming unit was the underlying programming paradigm.

Principle 10 indicates that the strategy for delivering the unit should be founded on
the programming paradigm being taught. The introductory programming unit cov-
ered procedural programming concepts, with the plan that the object oriented pro-
gramming unit shift students to the object oriented programming paradigm, a shift
that can be challenging for student (Manns & Nelson 1993, Sheetz et al. 1997, White
& Sivitanides 2005). In recognition of these challenges, the unit’s intended learning
outcomes focused on enabling students to make this shift in thinking.

To facilitate the paradigm shift the unit focused on the core principles underlying the
object oriented programming paradigm: abstraction, encapsulation, inheritance, and
polymorphism. Students learnt to use these principles to design and implement ob-
ject oriented programs. In addition to the core principles, students learnt to use an

156

5.3. OBJECT ORIENTED PROGRAMMING

integrated development environment (IDE), and unit testing tools such as JUnit (Junit
n.d.). Object oriented thinking and design were also central to the unit, with designs
being communicated using Unified Modelling Language (UML) (OMG 2011) class
diagrams and sequence diagrams. While design patterns and heuristics provided stu-
dents with a means of evaluating the quality of their designs.

The intended learning outcomes for the object oriented programming unit were:

ILO-1: Explain the principles of the object oriented programming paradigm specif-
ically including abstraction, encapsulation, inheritance and polymorphism,
and explain how these principles are used to create object oriented pro-
grams.

ILO-2: Design, develop, test, and debug object oriented programs, using an inte-
grated development environment.

ILO-3: Select and use appropriate collection classes, from the language’s class li-
brary, to manage collections of multiple objects.

ILO-4: Construct appropriate diagrams and textual descriptions to communicate
the static structure and dynamic behaviour of an object oriented solution.

ILO-5: Apply accepted good practices related to the construction of object oriented
programs.

The following list shows how the guidelines for defining intended learning outcomes,
stated in Section 4.2.2, were used in the development of the object oriented program-
ming unit.

• Verbs from the relational levels of the SOLO taxonomy were used to set appro-
priate levels of understanding. (LO-1)

• Outcomes aimed to cover both an understanding of object oriented program-
ming concepts and applied programming skills. (LO-2)

• Simple terms were used to help ensure students were able to understand each
outcome. (LO-3)

• Five outcomes were included, keeping the focus on a few key aspects. (LO-4)
• Outcomes were expressed in a general sense, enabling them to be met in a vari-

ety of ways and assessed at a range of levels of achievement. (LO-5 and LO-6)

These guidelines helped with the formation of the intended learning outcomes for the
object oriented programming unit, as they had introductory programming unit. The
same general approach was taken, with differences in outcomes relating to the various
unit focuses.

157

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

5.3.3 Constructing Assessment Criteria

The general nature of the assessment criteria from the introductory programming unit
enabled these same criteria to be used for the object oriented programming unit. These
did not need adjustment as each grade was described in a topic neutral manner. For
example, for a Distinction students needed to “demonstrate the application of the unit’s
concepts to the creation of a program of their own design.” This statement worked
equally well for the object oriented programming unit as it did for the introductory
programming unit.

In essence, the assessment criteria described in Section 5.2.3 aimed to ensure students
had reached a relational level of understanding in order to achieve a Distinction or
higher grade, and as a result the assessment criteria are likely to work for other tech-
nical software engineering units. Removing all topic specific details from these criteria
results in criteria that could form the basis for a wide range of university units, as out-
lined in the following list.

Pass is awarded to students who have done no more than meet the unit’s minimum
standards, as checked in weekly work or hurdle tests.

Credit is awarded to students who have demonstrated an integrated understanding
of unit concepts, but have not demonstrated they can apply the concepts to the
creation of a piece of work of their own creation.

Distinction is awarded to students who have demonstrated an integrated under-
standing of unit concepts, and have demonstrated they can apply the concepts to
the creation of a piece of work of their own creation.

High Distinction is awarded to students who have met the Distinction criteria and go
beyond the scope of the unit in some way, such as through conducting a small
research project.

The following list outlines how these general assessment criteria relate to the princi-
ples stated in Chapter 3.

• Students are encouraged to meet all intended learning outcomes, and to develop
a relational level of understanding to achieve higher grades. (P1 and P2)

• If portfolios determine all of a student’s final grade then all summative assess-
ment is delayed until the end of the unit. (P3)

• Student attention is focused on achievable steps at each level of the assessment
criteria. (P4)

• Criteria for Distinction and High Distinction grades help communicate high staff
expectations. (P5)

158

5.3. OBJECT ORIENTED PROGRAMMING

• Simple terms help support a wide range of student language capabilities, help-
ing to ensure students will understand what is required of them. (P6)

• Use of clearly distinct requirements allow students to aim to meet certain grade
criteria based on their personal interests and motivation. (P7)

• Frequent formative feedback encourages students to reflect on their learning and
integrate feedback they receive. (P8 and P9)

• Students needed to demonstrate appropriate application of concepts associated
with the unit. (P10, P11 and P12 in the case of introductory programming units)

5.3.4 Developing Teaching and Learning Activities, and Delivering the Unit

Teaching and learning activities in the object oriented programming unit did differ
from those in the introductory programming unit due to the altered focus of the unit.
Section 5.1 outlined the programming concepts shared between procedural and object
oriented programming, as illustrated in Table 5.1. This shows that object oriented pro-
grams and procedural programs share many features, and therefore many low level
details do not need to be elaborated upon as students should be familiar with these
concepts from the introductory programming unit.

Object oriented programming involves constructing programs that consist of a num-
ber of interrelated object, with each object interacting with other objects to help achieve
system goals. The thinking involved in designing object oriented programs, therefore,
differs significantly from structured procedural programming. While the focus on the
introductory programming unit had been on the internal implementation details of
functions and procedure, the object oriented programming unit focused on modelling
objects and designing object interactions. This required a different approach to unit
teaching and learning activities.

As with the introductory programming unit, the guidelines stated in Section 4.2.4
helped to shape the teaching and learning activities used. The activities aimed to ac-
tively engage students (TLA-1), align with unit outcomes (TLA-2), and provide guid-
ance (TLA-3). These guidelines resulted in the use of the Beyond Bullet Points ap-
proach to presentations and object role-plays in lecture sessions, and the development
of a number of case studies in laboratory classes.

Lectures were developed using the Beyond Bullet Points approach to ensure the fo-
cus was on concepts (TLA-3 supporting P4 and P11). The short lecture presentations
provided opportunities to engage students in more interactive activities in scheduled
lecture times (TLA-1 supporting P1). Where the introductory programming had made

159

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

use of interactive code demonstrations, the object oriented programming used role-
plays to focus students on object interactions, rather than language syntax (P11). In
these role-plays students take on the role of objects in a program and send each other
messages, simulating the objects students would later create in their code. Similar use
of object role-plays was reported by Börstler & Schulte (2005), who found that they
were beneficial in helping students understand object oriented concepts and thinking.

The nature of object oriented paradigm means that it is best suited to developing larger
solutions than those used in the introductory programming unit. The use of the object
oriented programming principles, specifically inheritance and polymorphism, require
a certain amount of infrastructure to see how these dramatically influence the way pro-
grams are designed. To help students engage with these principles, and to encourage
students to develop greater learning independence, laboratory classes were adjusted
to focus on a smaller number of programming problems that were larger than prob-
lems addressed in the introductory programming unit. These decisions were guided
primarily by the chosen paradigm (P10) and the need to ensure programs students
create are an appropriate use of the chosen languages (P12).

A total of four programming “case studies” were used in the object oriented program-
ming unit, two in the first half of the unit and a further two in the second half of the
unit. One case study in each half of the teaching period was designed with significant
guidance for students, and replaced the laboratory tasks that had been used in the in-
troductory programming unit. The second case study required the application of the
same principles, but with less guidance helping students to apply the concepts being
learnt (P1). UML diagrams were provided to explain the design of each case study,
with iterations building relevant parts of the overall program. As the iterations pro-
gressed the details of the design were reduced, with students being required to design
and implement the later iterations.

Case studies supported students active role in the development of their knowledge
and ensured students made appropriate use of the associated concepts (TLA-1 and
TLA-3 supporting P1, P10, P11, and P12). As with the introductory programming
unit, the alignment was performed by both staff and students. Staff planned for the
case studies to align with the unit’s intended learning outcomes, and students related
their individual learning to the outcomes in the preparation of their portfolios (TLA-2
supporting P1, P2 and P11).

160

5.3. OBJECT ORIENTED PROGRAMMING

In terms of alignment (P2) teaching staff planned for each case study to align with all
of the intended learning outcomes, as shown in Table 5.4. The following list indicates
how the staff planned for each of the intended learning outcomes to relate to the case
studies. Students were also required to indicate how they felt the pieces they had
included in their portfolios aligned to the unit’s intended learning outcomes, as was
done in the introductory programming unit.

• Students understanding of object oriented principles (ILO-1) was central to each
case study, with students encouraged to reflect on how these principles were
realised in the designs they implemented.

• Each case study involved aspects of design, development, testing, and debug-
ging (ILO-2) with students building functional programs.

• The programs developed required students to use a range of classes from the
languages’ class libraries, including a variety of collection classes.

• Students needed to read as well as develop UML class and sequence diagrams
in various parts of the case studies.

• Designs for the case studies demonstrated accepted good practice, and the iter-
ative formative feedback process ensured students followed these, and associ-
ated, practices in their design and implementation tasks. Later case studies also
introduced students to design patterns including the Composite and Command
patterns (Gamma et al. 2001).

Core, and laboratory, tasks in the weekly work had students develop central object
roles in the various case studies. These tasks were extended with optional extension
tasks which were required in order to fully complete the programs described in the
case studies. This helped communicate high expectations (P5) with all students being
exposed to the full set of requirements and being encouraged to complete more than
just the core tasks. As an example, Figure 5.6 shows a UML class diagram from the
core tasks for the fourth iteration of the Monopoly case study, which focused on inher-

Table 5.4: Alignment matrix showing staff-planned alignment of case studies to the
object oriented programming unit’s intended learning outcomes. As with the intro-
ductory programming unit, student descriptions of the case study alignment differed
based on their individual learning.

Topic ILO-1 ILO-2 ILO-3 ILO4 ILO5
First Half
Case Study 1 - Drawing Program X X X X X
Case Study 2 - Monopoly X X X X X
Second Half
Case Study 3 - RPN Calculator X X X X X
Case Study 4 - Text-based Adventure X X X X X

161

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

itance and polymorphism. Extension tasks associated with this iteration had students
implement a “Jail Tile” and a “Go To Jail Action.”

Using such large case studies as the basis for the weekly tasks also helped to encourage
students to think in terms of objects. Each case study started with an overall descrip-
tion of the final program, but built up the number of abstractions used each iteration to
encourage this focus on object roles, responsibilities, and collaborations (Wirfs-Brock
& McKean 2003).

Unit delivery followed the same iterative process as described for the introductory
programming unit. Lectures were used to guide student activity, case studies had
students apply concepts, weekly formative feedback assisted with student progress,
and students incorporated feedback to improve their work and understanding. The
following list outlines the similarities between the teaching and learning activities in
the two programming units.

• Lectures focused on concepts, with role-plays taking the place of interactive cod-
ing demonstrations.

• Case studies formed the basis of the weekly laboratory, core, and optional tasks.
• Weekly tasks were submitted for formative feedback, and students were encour-

aged to incorporate the feedback they received.
• Staff discussed progress with each students weekly, and their work was signed

off as complete after necessary feedback had been incorporated.
• The Programming Help Desk was available to support students outside of sched-

uled class times.
• Students were encouraged to use online discussion boards, with questions being

monitored and answered by teaching staff and fellow students.
• A glossary was used alongside the case studies as a means for students to explain

the concepts learnt.

The following list outlines how the object oriented programming unit’s teaching and
learning activities and delivery met all of the principles stated in Chapter 3.

• Case studies and lectures were designed to actively engage students in the con-
struction of their own knowledge, providing guidance rather than aiming to
transfer knowledge to students. (P1)

• Staff planned for lecture topics and case studies to align with the unit’s intended
learning outcomes, and students reflected on how these activities had aligned
from their perspective. (P2)

• Weekly tasks did not carry any weight in the final assessment, with learning

162

5.3. OBJECT ORIENTED PROGRAMMING

+
Pl

ay
er

 (
st

rin
g

na
m

e,
 M

on
op

ol
y

G
am

e
ga

m
e

)

+
Pl

ac
e

O
n

(T
ile

 t
)

+
M

ov
e

(D
ice

 d
ie

)
+

M
ov

e
(i

nt
 d

ist
, s

tri
ng

 d
es

c
)

+
Ch

an
ge

 C
as

h
(i

nt
 d

el
ta

Ca
sh

, s
tri

ng
 d

es
c

)

+
To

St
rin

g
()

 :
st

rin
g

<<
 o

ve
rri

de
 >

>

+
Ca

sh
 :

in
t <

<r
ea

do
nl

y
pr

op
er

ty
>>

- _
isO

n
: T

ile
- _

na
m

e
: s

tri
ng

- _
pl

ay
in

g:
 M

on
op

ol
y

G
am

e
- _

ca
sh

: i
nt

Pl
ay

er

+
M

ov
e

(P
la

ye
r p

, D
ice

 d
, i

nt
 re

m
ai

ni
ng

)
+

La
nd

 (
Pl

ay
er

 p
)

+
Le

av
e

(P
la

ye
r p

)

+
La

nd
 A

ct
io

n
: I

Ac
tio

n
<<

 p
ro

pe
rty

 >
>

+
Pa

ss
 A

ct
io

n
: I

Ac
tio

n
<<

 p
ro

pe
rty

 >
>

+
Ne

xt
 :

Ti
le

 <
<p

ro
pe

rty
>>

+
To

St
rin

g
()

 :
st

rin
g

<<
 o

ve
rri

de
 >

>

- _
ne

xt
 :

Ti
le

- _
pl

ay
er

s:
 L

ist
 <

 P
la

ye
r >

- _
na

m
e:

 S
tri

ng
- _

la
nd

Ac
tio

ns
: I

Ac
tio

n
- _

pa
ss

Ac
tio

n:
 IA

ct
io

nTi
le

B
oa

rd 0.
.*

0.
.*

_n
ex

t

D
ie

D
ic

e
0.

.*

_i
sO

n

+
M

on
op

ol
yG

am
e

()
- C

re
at

eB
oa

rd
 (

)
- C

re
at

eD
ice

 (
)

- S
et

up
Bo

ar
dA

ct
io

ns
 (

)

+
Cu

rre
nt

Pl
ay

er
 :

Pl
ay

er
 <

<r
ea

do
nl

y
pr

op
er

ty
>>

+
Pl

ay
er

Co
un

t :
 in

t <
<r

ea
do

nl
y

pr
op

er
ty

>>
+

Di
ce

 :
Di

ce
 <

<r
ea

do
nl

y
pr

op
er

ty
>>

+
Bo

ar
d

: B
oa

rd
 <

<r
ea

do
nl

y
pr

op
er

ty
>>

+
Ad

dP
la

ye
r (

 P
la

ye
r p

)
+

Pl
ay

er
At

 (
in

t i
dx

)
: P

la
ye

r
+

Pe
rfo

rm
M

ov
e

()

+
An

no
un

ce
 M

on
op

ol
y

Ev
en

t (
 M

on
op

ol
y

Ev
en

t e
vt

)

- _
bo

ar
d:

 B
oa

rd
- _

di
ce

: D
ice

- _
pl

ay
er

s:
 L

ist
 <

 P
la

ye
r >

- _
cu

rre
nt

Pl
ay

er
Id

x:
 in

t

M
on

op
ol

y
G

am
e

1

0.
.*

1

+
Pe

rfo
rm

 (
Pl

ay
er

 p
)

<<
in

te
rfa

ce
>>

IA
ct

io
n

_p
as

sA
ct

io
n

0.
.1

_l
an

dA
ct

io
n

0.
.1

+
Tr

an
sA

ct
io

n
(i

nt
 v

al
, s

tri
ng

 d
es

c
)

+
Pe

rfo
rm

 (
Pl

ay
er

 p
)

- _
va

lu
e

: i
nt

- _
de

sc
rip

tio
n

: s
tri

ng

Tr
an

sA
ct

io
n

+
M

ov
e

Ac
tio

n
(i

nt
 d

ist
, s

tri
ng

 d
es

c
)

+
Pe

rfo
rm

 (
Pl

ay
er

 p
)

- _
di

st
an

ce
 :

in
t

- _
de

sc
rip

tio
n

: s
tri

ng

M
ov

e
A

ct
io

n

cr
ea

te
s

_p
la

yin
g

+
To

St
rin

g
: s

tri
ng

 <
<

ov
er

rid
e

>>

+
Pl

ay
er

 :
Pl

ay
er

+
De

sc
rip

tio
n

: s
tri

ng
+

Ki
nd

 :
Ev

en
tK

in
d

+
O

th
er

 :
ob

je
ct

M
on

op
ol

y
Ev

en
t

DI
CE

_E
VE

NT
PA

SS
_E

VE
NT

LA
ND

_E
VE

NT
M

O
VE

_E
VE

NT
TR

AN
SA

CT
IO

N_
EV

EN
T

<<
 e

nu
m

 >
>

Ev
en

t K
in

d

Figure 5.6: An example UML class diagram from the Monopoly case study in the
object oriented programming unit.

163

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

outcomes being assessed from evidence included in student portfolios. (P3)
• Lectures focused on providing guidance, case studies on applying concepts, and

support structures on providing assistance outside of scheduled class times. (P4)
• Case studies, with the associated core and extension tasks, helped communicate

high staff expectations. (P5)
• Students were actively supported during and outside of scheduled class times.

(P6)
• Students were trusted to manage their own learning, with no marks being asso-

ciated with weekly work to ensure it remained focused on developing student
understanding. (P7)

• Students and staff were encouraged to reflect on teaching and learning activities;
students in terms of what they had learnt, and staff in terms of how well the
activities had helped students understand the concepts. Staff reflections were
used to alter subsequent delivery of the unit, while student were encouraged to
incorporate reflections in the learning process. (P8 and P9)

• Concepts related to the object oriented programming paradigm were central to
all aspects of the unit. (P10 and P11)

• Students developed object oriented programs using programming languages in
ways in which they are intended to be used. (P12)

Choosing an Object Oriented Programming Language

Another interesting aspect of the object oriented programming unit was the decision
to allow students to choose which programming language they would use in the unit.
By allowing students to choose their language, teaching staff were forced to discuss
details at a conceptual level, making the unit clearly about object oriented program-
ming and not the details of one specific language.

While a wide variety of languages could be used in this unit, students were only
provided with a choice between four programming languages: C#, C++, Java and
Objective-C. Each of these languages had a C-style syntax, helping ease students into
the new syntax. C#, Java and Objective-C had similar support for object oriented
programming principles, with C++ being sufficient but requiring some extra atten-
tion to syntax to achieve the same outcomes. C#, C++ and Java are statically typed,
while Objective-C is dynamically typed. All had support from modern integrated de-
velopment environments, and unit testing tools also required by the unit’s intended
learning outcomes.

Using multiple languages forced lectures, and laboratory class discussions, to focus

164

5.3. OBJECT ORIENTED PROGRAMMING

on concepts (P11), while empowering students to choose a language they saw as rel-
evant to their future careers (P7). At the same time, the use of multiple languages
enabled deeper exploration of concepts through the examination of how different lan-
guages implement object oriented features. For example, the difference between static
and dynamic typing were discussed in lectures, and demonstrated to show different
views on these concepts impact on program design. Similarly, different approaches to
memory management were also discussed including manual memory management,
reference counting, and garbage collection. In each case, these discussions focused
on the general concepts and highlighted the various strengths and weaknesses of the
various language implementations, providing a much richer learning experience than
would have been possible with a single language.

Once again, the different languages helped strengthen the overall approach. This unit
focused on object oriented programming, not on the specifics of a single language.
The aim was not for students to develop a depth in one programming language, but to
learn the principles that underlie all object oriented programming languages. Using
multiple languages concurrently helped draw attention to this, and beneficially forced
teaching staff to communicate at the concept level.

5.3.5 Assessing Student Portfolios

As the assessment criteria were the same, the process of assessing student portfolios
was the same as outlined for introductory programming. To pass, students had to sat-
isfactorily complete two hurdle tests and demonstrate sufficient progress with the four
case studies. Credit required a glossary that clearly documented the object oriented
programming principles, and how they applied to programs the student had created.
Distinction required a custom project that demonstrated the application of the object
oriented programming principles, while High Distinction involved a research report.
As with the introductory programming unit, students aiming for distinction and high
distinction were interviewed as part of the assessment process.

Given the process was the same for assessing the object oriented programming unit,
as it had been for the introductory programming unit, it too was able to embody all of
the principles stated in Chapter 3.

• Portfolios were assessed to determine how well students understood object ori-
ented programming concepts. (P1)

• Students needed to demonstrate how their work aligned with all of the unit’s
intended learning outcomes. (P2)

165

CHAPTER 5. APPLYING CONSTRUCTIVE ALIGNMENT AND PORTFOLIO
ASSESSMENT FOR INTRODUCTORY PROGRAMMING

• Delivery involved an iterative process centred around formative feedback that
supported student learning. (P3, P6 and P7)

• Object oriented programming principles and concepts were central to the entire
process, including both delivery and assessment. (P4, P10 and P11)

• Case studies and assessment criteria aimed to clearly communicate high expec-
tations. (P5)

• Staff and students were involved in reflective practice, reflecting on past learning
experiences to improve outcomes. (P8 and P9)

• Students developed a range of object oriented programs, demonstrating appro-
priate use of the languages they were expressed in. (P12)

5.3.6 Comparison with the Introductory Programming Unit

Both programming units applied all of the principles stated in Chapter 3, and the
guidelines from Chapter 4, in delivery and assessment. The following list outlines
common features in both units.

• The central role of the learner in constructing their own knowledge was incor-
porated through activities designed to actively engage students, with portfolios
capturing learning outcomes understandings for assessment. (P1)

• Activities and assessment aligned to each unit’s intended learning outcomes
with both staff and students involved in performing this alignment. (P2)

• Assessment aimed to evaluate learning outcomes, with formative feedback be-
ing used throughout the delivery of the unit. (P3)

• Activities were designed to focus on actively engaging students as appropriate
for the various class types used. (P4)

• High staff expectations were communicated to encourage students to aim for
excellence. (P5)

• Students were actively supported both in class activities, and between scheduled
classes. (P6)

• Students were trusted and empowered to manage their own learning, with flex-
ibility in how outcomes were met. (P7)

• Activities and resources were organised to encourage change to better meet stu-
dent needs. (P8)

• Staff and students reflected upon learning outcomes; staff to incorporate change
between semesters, and students in addressing weekly feedback and in prepa-
ration of their portfolios. (P9)

• Each unit focused on a given programming paradigm, introducing students to
structured procedural programming and object oriented programming paradigms.

166

5.4. SUMMARY

(P10)
• Concepts were central to each unit, with each week’s activities building up un-

derstanding developed in previous week’s topics. (P11)
• Both units used programming languages in the ways they were intended, ensur-

ing the chosen languages were appropriate for each unit. (P12)

Where the units differed was in the requirements expressed in the unit’s intended
learning outcomes. The central nature of these in constrictive alignment meant that
altered intended learning outcomes impacted on the kinds of activities used, and ex-
pectations of what needed to be included in student portfolios. These example units
help to demonstrate the general applicability of the student centred approach to con-
structive alignment described in Chapter 4, with each unit following the processes and
guidelines presented. They also help to demonstrate the versatility of the portfolio as-
sessment approach, and applicability of the SOLO taxonomy, with both units able to
use the same assessment process and criteria.

5.4 Summary

This chapter provided two example implementations, in Section 5.2 and Section 5.3, of
the model described in Chapter 4. In each case the unit was developed and delivered
using the processes discussed in Chapter 4, and was guided by the principles from
Chapter 3. The described units have been delivery successfully across a number of
teaching periods, and Chapter 7 reports on the evaluation of these units while Chap-
ter 8 discusses the relative importance of the various aspects of the approach overall.

In the following Chapter 6 we describe the teaching and learning resources that sup-
ported the delivery of these units.

167

6
Supporting the Curriculum with Tools and

Technologies

In addressing the need to be agile and willing to change, Principle 8, the model from
Chapter 4 proposed the separation of teaching and learning activities from resources
used to support these activities. This separation aimed to enable greater flexibility in
the activities, which were then supported by more generally targeted resources.

Chapter 5 outlined the teaching and learning activities for two example implemen-
tations of the proposed model from Chapter 4. The teaching and learning activities
discussed in Chapter 5 were supported by a number of tools and resources, and these
resources are the topic of this chapter.

Resources described in this chapter include tools to support both how, and what, we
teach. Section 6.1 describes an online tool used to support the teaching and learning
environment, providing support for how we teach the units. Section 6.3, Section 6.4
and Section 6.2 describe three different resources used to support what we teach in
the units. Section 6.3 describes a programming text that was used to support the
concept-based approach, providing students with details in order to support the con-
cept focused lectures. These details were also provided as a series of video podcasts
on language syntax, as outlined in Section 6.4. Providing general support for what we
teach, Section 6.2 describes a game development framework used to enable students
to create more engaging programs.

6.1. VISUALISING TASK PROGRESS TO SUPPORT FORMATIVE FEEDBACK

6.1 Visualising Task Progress to Support Formative Feedback

Formative feedback (P3) plays an important role in shaping the teaching and learning
environment for the units implemented using the model presented in Chapter 4. The
emphasis on iterative feedback helps support the focus on students active construc-
tion of their own knowledge (P1) but provides an additional challenge as students no
longer have marks to influence their behaviour.

One risk of this greater flexibility is the potential for students to underestimate the
amount of work required to satisfactorily complete all of the unit’s core tasks within
the scheduled time frame. As described in Section 4.1.3, these core tasks help the
students develop pieces for their portfolio and, ideally, students should complete all
of these tasks during the teaching period.

Student engagement in the iterative delivery process, discussed in Section 4.2.5 and
Section 5.2.5, is integral to the underlying principles (P1, P3, P6, and P7). To help
encourage students to remain actively engaged with the unit, a task tracking tool was
developed. This tool, named “Doubtfire”, is outlined in this section, which expands
on previous publications related to the tool (Cain et al. 2013, Woodward et al. 2013).
Section 6.1.1 outlines the requirements for Doubtfire, with Section 6.1.2 describing the
approach taken to address these requirements. A brief analysis of the ability of the
Doubtfire tool to meet its requirements is then provided in Section 6.1.3, with further
analysis being presented in Chapter 7. The section concludes with a short summary
in Section 6.1.4.

6.1.1 Requirements

Doubtfire’s primary requirement was to provide students with a means of tracking
their progress on a unit’s tasks. To achieve this it was decided to adapt burn down
charts from the Scrum agile software development process (Schwaber & Beedle 2002).
Using this approach, each chart shows the cumulative amount of work remaining for
week-by-week, which decreases as work is complete, or “burns down” over time.

Agile software development methods (Beck et al. 2001) embrace change (Beck 2000) by
specifically allowing for adaptive and periodic adjustment of activities. The basis for
such adaptation in Scrum is empirical information; a consistent measure of the work
remaining (“backlog”), and a measure of the rate work is being completed by the team
(“velocity”).

169

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

The purpose of a burn down chart is to allow stakeholders to consider the velocity
of the team with respect to the current backlog. This chart acts as a “information ra-
diator” (Cockburn 2002) for the team, providing details on either release or “Sprint”
iteration schedules. Since quality of work should not be compromised, the require-
ments (backlog) of work can be adjusted in order to meet the required schedule and
cost (Sutherland & Schwaber 2007).

In adapting burn down charts as a tool for supporting students engagement with for-
mative assessment tasks, the assessment tasks become the “backlog.” Students are
then able to see the number of tasks remaining, and use their current “velocity” to
determine if their progress is sufficient to complete the unit on time. The core tasks
represent the minimal set of activities that students should complete by the end of the
unit, but additional tasks – such as the extension tasks, custom project, and research
report – can be acquired if velocity permits.

Burn down charts provide students with a visual representation of the tasks they need
to complete, the number of tasks, the scheduled task due dates, and estimated ef-
fort. Students should be able to use the tool to assess their progress, and to determine
whether they need to increase their rate of progress (velocity). If so, they can commit
more time or take greater advantage of the support resources available.

To assist in providing students with support in their learning (P6), it was decided to
extend the scrum-style Boolean marking of tasks as completed, to allow students to
indicate if they were working on, or having trouble with, particular tasks. This require-
ment aimed to increase student engagement with the tool, and improve likelihood
that students would make active use of the tool throughout the teaching period.

Gamification (Deterding et al. 2011) provided a second inspiration for encouraging
students to further engage with the tool. Badges could be awarded to students for ap-
propriately engaging with the tool, providing them with further motivation to engage
appropriately with unit content. Badges could be awarded for completing tasks on
time, and for indicating tasks students are working on or having issues with. Encour-
agement could also be provided for persisting with formative tasks, and getting work
signed off after revisions are incorporated.

Task heterogeneity required staff to be able to set a specific weight for each task. This
weight represents the estimated effort students needed to expend to satisfactorily
complete the task, based on staff opinion and historical data. Rather than specify-
ing task weight in terms of hours, this was done in a more abstract unit. One popular
approach within agile software development is to assign tasks “t-shirt size” weights

170

6.1. VISUALISING TASK PROGRESS TO SUPPORT FORMATIVE FEEDBACK

(Peixoto et al. 2010). Using this approach, task weight is set to a common t-shirt size:
extra small, small, medium, large, extra large etcetera. The t-shirt sizes are then allocated
weights, with each increment in size doubling the associated weight: extra small had a
weight of one, small a weight of two, medium four, etcetera.

Task weights needed to be incorporated into the burn down chart, with each chart
showing the cumulative number of task-points remaining. Using task-points in the
burn down chart enables it to visually show weeks where more, or less, effort is likely
to be required.

Progress also needed to be projected to indicate an expected completion date. This
projection can be calculated from the average number of task-points the student com-
pletes each week, their velocity. For example, if six task-points were completed in one
week, based on the velocity, a thirty-six task-point project is expected to be completed
in six weeks. Each student’s projected completion needed to be recalculated as time
progresses.

To aid with assessment, Doubtfire’s requirement also included the ability for teaching
staff to sign tasks off as complete. This could then be used by teaching staff to indicate
that the individual student had demonstrated satisfactory knowledge in the associated
concepts. Using the tool in this way also supports the rapid assessment of student
portfolios, as work marked as complete demonstrates Pass/Credit understanding, and
would not need to be checked thoroughly in final portfolio submissions.

As an interactive system, Doubtfire had a number of requirements to ensure that it
could be best utilised by all targeted users. Our aim was to create a tool that was
simple and appealing for students to use and was easily accessible from a range of
devices and locations. Students not should feel that interaction with the tool is difficult
or additional “work.” The following requirements were identified:

• Online: Students needed to be able to easily access the tool both in and out of
scheduled class times. It was decided to make Doubtfire an online tool, thereby
making it accessible from virtually anywhere. It also simplified the development
progress with only web platforms needing to be supported, and avoided the
need for students to install client software.

• Easy to use: The tool needed to be simple to use; with good usability to reduce
barriers for student adoption.

• Mobile friendly: Staff and students needed to be able to quickly check, and
update, their progress from a range of devices. It was thought that by ensur-
ing Doubtfire could be easily accessed via a mobile device it would encourage

171

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

students to access the tool even when they were away from desktop computers.
• Aesthetically pleasing user interface: To encourage adoption of the tool among

students, a visually appealing user interface was desirable.

Doubtfire also needed to addressed the requirements of teaching staff. Tutors are re-
sponsible for managing classes, and therefore need to be able to respond to student
actions. Convenors have overall responsibility for the unit, and need to be able to
observe the performance of the student cohort and perform simple administrative ac-
tions. All teaching staff benefited from the requirements listed, with the mobile nature
allowing tutors to easily check and update student progress during scheduled classes.

In terms of the development and deployment of the tool, a number of software quali-
ties were desirable, including:

• Supporting the teaching environment: The tool should play a supportive role,
and should therefore fit inside the teaching environment; it should not be neces-
sary to fit the teaching environment around the tool.

• Quick to develop and extend: It should be easy to add new features to the tool,
and adapt existing features, to ensure it remains relevant.

• Controllable: The schema that defines the way tutors and students interact over
tasks must be easy to alter to allow for adaptation if assessment criteria change.

6.1.2 Doubtfire Solution

Features

Doubtfire allows each student to track their progress against a unit’s core tasks using
a “burn down chart” as shown in Figure 6.1. The burn down chart consists of three
lines, shown in Figure 6.1. The lines indicate:

• Actual Completion: Shows the number of task-points signed off for the student
by week.

• Target Completion: Shows the recommended schedule from the task due dates
set by the convenor.

• Projected Completion: Indicates the current velocity, which is then projected to
indicate an expected end date if current velocity is maintained.

The following list provides an overview of Doubtfire’s current features. Each of these
features is more fully described in the following section, which describes the features

172

6.1. VISUALISING TASK PROGRESS TO SUPPORT FORMATIVE FEEDBACK

Figure 6.1: An example burn down chart showing progress against weekly tasks

in relation to the associated user roles.

• Individual student progress can be monitored using a Burn Down chart
• Collectively, student progress can be viewed in terms of six statuses: ahead, on

track, behind, in danger, doomed,1 and haven’t started.
• Units, their tasks and students, can be administered allowing tasks and student

to be added and removed.
• Task status can be updated in response to student work, and staff feedback.
• The tool can be accessed using modern web browser, and provides an adaptable

user interface, which caters for both mobile and desktop access.
• Role based access, providing appropriate interfaces and actions for teaching staff

and students.

User Roles

Doubtfire provides functionality for three distinct user roles: Convenor, Tutor and
Student. Each of these roles has access to a different set of features, as described in
Table 6.1. Convenor and Tutor roles support teaching staff, with the students having
a separate role.

1The “doomed” status was a wordplay related to the classic “Doom” 3D shooter game, and the notion
of incorporating gamification ideas. This status was only visible to staff.

173

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Table 6.1: Available features for each user group in Doubtfire

Role Features

C
on

ve
no

r

Unit Administration: Includes the ability to enrol students and create tasks.

Monitor Student Progress: View distribution of students by progress indica-
tors. See Figure 6.2.

Monitor Task Progress: View progress distribution for each unit’s tasks. See
Figure 6.3.

Examine Student Progress: View student list showing status for each task.
See Figure 6.4.

Update Task Status: Mark student work as complete.

Tu
to

r Examine Student Progress: View student list showing status for each task.
See Figure 6.4.

Update Task Status: Mark student work as complete.

St
ud

en
t Update Task Status: Mark student work as complete. See Figure 6.6.

Monitor Progress: View progress on task completion using a burn down
chart showing Target, Actual and Projected completion.

174

6.1. VISUALISING TASK PROGRESS TO SUPPORT FORMATIVE FEEDBACK

Unit convenors are responsible for the overall delivery and management of the unit.
To support this role, Doubtfire provides convenors with tools to set up tasks and enrol
students. A dashboard provides an overview of student progress, and enables quick
access to views of student progress by task, and to individual students via sched-
uled classes. Figure 6.2 shows an example convenor dashboard overview of students
progress within a unit. Figure 6.3 shows an example chart that visualises the distri-
bution of student status for each task. In addition to these tasks, Convenors also have
the ability to perform the same actions as Tutors.

Figure 6.2: Overview of progress by unit from the Convenor Dashboard showing
indicators of student progress

Tutors are responsible for conducting the tutorial classes, and providing formative
feedback to the students. To support this role, Doubtfire provides tutors with a class-
list view showing student progress. From the class list, tutors can drill down to view
individual students and their burn down charts. It also provides a convenient means
for tutors to update the status of student tasks.

Figure 6.4 shows an example of the class list used by Tutors to view student details
and update task status. Each task is represented by a coloured rectangle that indicates
the task’s current status for that student. Tutors are able to update the status of a
student’s tasks directly from the class list by selecting the task, and updating it from a
list of possible options, also shown in Figure 6.4.

Figure 6.5 shows an example of the dashboard provided to students, which shows
their progress for the units they are enrolled in. For each unit, students can view their

175

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Figure 6.3: Convenor view showing distribution of student status by task, bars can
be stacked as shown or grouped by task status.

Figure 6.4: Tutor view of class group, and adjustment of task status. Student names
and id numbers have been obscured.

176

6.1. VISUALISING TASK PROGRESS TO SUPPORT FORMATIVE FEEDBACK

burn down chart and each task’s status. Students can update the status of a task by
selecting it in the task last, and choosing a new status as shown in Figure 6.6.

Figure 6.5: Student dashboard in Doubtfire showing personal progress for each en-
rolled unit using the tool

Task Processes

Tasks in the Doubtfire system have one of a number of states, with different users
being responsible for updating task status at various stages during unit delivery. The
main states and the transitions between these is shown in Figure 6.7 as a UML State
Chart (OMG 2011), with additional annotations to indicate user roles reponsible for
performing the highlighted transitions.

Initially all tasks are set to the Not Started status. When students begin work on the
task they are encouraged to update its status to Progressing, and when it is ready for
assessment to the Ready to Mark status. Once tutors receive the work, they examine
the work and provide the student with formative feedback. After having discussed the
task with the student, the tutor updates the status by either returning it to a Progressing
state if the task needs to be fixed, or updating the task as Complete.

The Progressing status was divided into a number of sub-states for the purpose of

177

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Figure 6.6: The “Tasks” list enables students to view and change task status

indicates started

indicates ready to mark

signs off

Tutor

Student

provides feedback

Not Started

Progressing

Ready to
Mark

Complete

Figure 6.7: UML state chart showing task states and transitions, and Tutor or Student
roles associated with performing these transitions.

178

6.1. VISUALISING TASK PROGRESS TO SUPPORT FORMATIVE FEEDBACK

providing students with finer-grained feedback.

Students were able to set the status of a task to Working on It or Needs Help to indicate
their current progress on the task to their tutor and to the unit convenor. Fix and Redo
statuses could be used by students to indicate that tasks needed some aspects adjusted
(the Fix status) or that it should be redone (the Redo status). These status, shown in
Figure 6.8, were designed to help provide more accurate details of progress for both
staff and students. Students indicated how they were progressing with the tasks, and
staff could provide feedback on the outcomes students had achieved.

Progressing

indicates started

indicates ready to mark

signs off

indicates needs fixing
indicates should be redone

Tutor

Student

Not Started

Ready to
Mark

Working
On It Need Help Fix Redo

Complete

Figure 6.8: UML state chart showing the detailed states within the Progressing state

179

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Architecture and Implementation

Figure 6.9 provides an overview of the main components of the Doubtfire system. The
core of Doubtfire was implemented using Ruby on Rails (Ruby et al. 2013), with a
RESTful API (Richardson & Ruby 2007). This encapsulated the core entities – units,
users, and tasks – and their associated processing. Data is persisted to a MySQL
(MySQL 2013) database, while an LDAP (Sermersheim 2006) compliant directory server
is accessed to provide authentication against the university wide data store.

On the front end, the dynamic nature of the site is achieved though the use of a number
of libraries, backed primarily by the jQuery (jQuery 2013) JavaScript library. D3.js
(D3.js 2013), and NVD3 (NVD3 2013), are used to provide all of the charts, including
the burn down charts. The visual style, and layout, of the website is achieved through
use of Twitter Bootstrap (Twitter Bootstrap 2013).

Web Tier

Client Side

Database Server Directory Server

MySQL LDAP

Apache Web
Server Ruby on Rails

D3

NVD3

Bootstrap jQuery

University wide server

Doubtfire specific component

Connection / Communication path

Figure 6.9: Overview of main software components in Doubtfire’s implementation

180

6.1. VISUALISING TASK PROGRESS TO SUPPORT FORMATIVE FEEDBACK

6.1.3 Use and Evaluation of Doubtfire

While Chapter 7 provides a more in-depth discussion of the use of Doubtfire, this
section briefly comments on how it was used in the delivery of the introductory pro-
gramming and object oriented programming units, and discusses how well its imple-
mentation met its requirements.

Doubtfire has been successfully used in multiple iterations of the programming units
described in Chapter 5. In each case, the core tasks from the teaching and learning
activities were used as the tasks to be completed, and teaching staff assigned each a
t-shirt style weighting to represent its relative size. During unit delivery, students and
staff tracked progress against these tasks, with work being signed off by the tutors
once complete.

Analysis of student reflections indicated that the effectiveness of the tool, for students,
depended on their level of engagement with the unit. Engaged students made active
use of Doubtfire, and responded quickly to addressing issues and closing gaps in their
knowledge. Students who struggled to complete the weekly tasks generally made
poor use of the tool at the start of the teaching period, but engaged actively later in
the semester. While some, characteristically disengaged, students avoided use of the
system and attempted to establish progress in their own way.

For teaching staff, the Doubtfire tool provided useful information on how students
were engaging with the formative process. It was easy to see which students were
doing well, to identify those who were falling behind, and those who were not en-
gaging with the unit at all. This information was used to prompt students, encourage
those who were doing well and suggest appropriate resources for those who were
struggling or falling behind.

In terms of its requirements, Doubtfire was felt to meet its core requirement of provid-
ing students with a means of viewing their task progress. The following list outlines
the requirements that Doubtfire has met, and those that are currently on the backlog
to be implemented in future iterations.

• Requirements met:

– Staff and students are able to track progress against unit tasks.
– Heterogeneous tasks are supported with task weights.
– Tasks support a range of states, encouraging students to engage with the

system beyond marking work as complete.
– Students and staff are able to update task progress based upon their roles.

181

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

– Student burn down charts show target, projected, and actual completion
lines to help indicate likely end dates if current velocity is maintained.

– Doubtfire is visually appealing, easy to use, and mobile friendly.
• Requirements not implemented:

– Optional tasks can be entered into the system, but cannot be acquired by
students.

– Gamification ideas were not implement.
– Task overviews are provided to staff, but finer-grain detail requires data to

be manually exported from the database.

In relation to the principles from Chapter 3, approach from Chapter 4, and example
units from Chapter 5, Doubtfire provided the following contributions:

• Doubtfire supported the principles by providing:
– Staff and students with progress data on formative tasks. (P3)
– Staff will details to help support student learning. (P6)
– Staff with a means of verifying students had completed tasks, without hav-

ing to revert to marks for motivation. (P7)
– Staff with evidence of student progress that can be used to inform future

adjustments to unit delivery. (P8 and P9)
– Students with progress details they can reflect upon in their Learning Sum-

mary Reports. (P9)
• Doubtfire supported the approach, and example units by:

– Encouraging students to engage in the formative feedback process.
– Providing evidence that students had completed core tasks.
– Enabling staff to identify students who needed additional help and encour-

agement.

6.1.4 Summary

The strong use of formative feedback in the model provides a challenge as students
cannot be motivated to work by the fear of losing marks during the teaching period.
This can lead to students allocating insufficient time to complete learning activities,
resulting in them falling behind in the unit.

Doubtfire was designed to address these concerns through the use of agile develop-
ment burn down charts that visually represented the amount of work students had re-
maining in the unit. By using this tool staff and students were able to monitor progress
throughout the teaching period.

182

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

6.2 A Game Library to Support Procedures First

Chapter 5 described two programming units implemented using the approach de-
scribed in Chapter 4, and principles stated in Chapter 3. Following Principle 10,
these units were each centred around concepts associated with a single programming
paradigm. As described in Section 5.1, an objects-later approach was adopted for the
introductory programming unit, which focused on introducing students to the pro-
cedural programming paradigm, with the subsequent object oriented programming
unit introducing the object oriented paradigm.

Principle 11 indicates the desire to structure the programming curriculum around pro-
gramming concepts in such a way that each topic builds upon prior knowledge. This
lead to the procedures first approach for the introductory programming unit described
in Section 5.2.4.

With the procedures first approach to teaching introductory programming, students
are introduced to calling and creating procedures before being introduced to other
programming concepts. This approach promotes a focus on sequence in these early
tasks, with students creating procedures to group together a sequence of procedure
calls that perform a certain task.

The challenge with this approach, as identified by Pattis (1993), is finding meaningful
tasks for students to perform. Standard programming language features do not pro-
vide sufficient functionality for student to perform meaningful, and engaging, actions
without having to use a wider range of programming constructs.

This section describes SwinGame (SwinGame 2013) a game development library de-
signed to facilitate a procedure first introduction to programming, and to help stu-
dents create more interesting programs. Section 6.2.1 outlines the requirements for
the SwinGame library, which is then described at a high level in Section 6.2.2. Sec-
tion 6.2.3 describes how SwinGame was used to support the teaching of introductory
programming, and relates this to the principles, approach, and units from chapters 3
to 5. The discussion of SwinGame concluded with a short summar in Section 6.2.4

183

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

6.2.1 Requirements

SwinGame was created to help teaching the introductory programming unit described
in Chapter 5. The main goal for SwinGame was to provide students with resources to
enables them to create more engaging programs, while also providing support for a
procedures-first approach to the programming curriculum.

The requirements for SwinGame were to:

• Provide functions, procedures, and custom types to enable the creation of small
two dimensional games. Including:

– Resource management for images, sounds, animations, and maps.
– Drawing operations to draw primitive shapes, images, and text.
– Sprite management, enabling the creation of movable, animated, game en-

tities.
– Ability to play sound effects and music.
– Collision detection operations including collisions of geometric shapes, and

pixel level image collisions (image-image, and image-shape collisions).
– Support for two-dimensional game physics.
– Input handling routines to support keyboard, mouse, touch, accelerometer,

and gyroscope input.
– Time tracking, and management.
– Camera support, enabling game space coordinates to be mapped to screen

coordinates for drawing.
– Network support to enable peer-to-peer interactions, as well as enabling

http requests to get/post high score details to web servers, for example.
• Give the programmer full control over the game’s actions, requiring explicit re-

quests to perform any task.
• Enable developers to develop their programs on a number of platforms: Linux,

MacOS, and Windows.
• Enable programs to be run on a number of devices: Desktop computers, tablets,

and smart phones.
• Be implemented in such a way that it can be developed and extended by stu-

dents.
• Provide access to the functionality across a range of programming languages,

ensuring that each language provides appropriate programming abstractions to
ensure that the library can be used appropriately. (P12)

184

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

6.2.2 SwinGame Solution

Figure 6.10 provides an overview of the components involved in the use of develop-
ment of the SwinGame library. The library itself, provides students with an interface
that, to procedural programming languages, exposes a range of functions and proce-
dures that can be called to perform required actions. The logic of SwinGame itself is
divided into Core Logic, and Back-end Logic. The components in the Core Logic imple-
ment the higher level game engine mechanics, while the components in the Back-end
Logic provide a consistent interface to lower level third party components.

Student
Program

SwinGame
Library

Interface

SwinGame
Core Logic

Images Graphics

Audio Geometry

Sprites Physics

Input

Text

...

CallsCalls

SwinGame
Back-end Logic

Third Party Libraries

Calls

Calls

SDL

OpenGL
Graphics

Driver
Audio
Driver

Freetype

...

Text
Driver

Input
Driver

Image
Driver ...

Figure 6.10: Overview of the components in the SwinGame library, their connections
and organisation.

The division of SwinGame, into Core Logic and Back-end Logic, decouples the core
game engine logic from the lower level libraries used. This enables the library to up-
date Back-end components with minimal impact on the core logic. Currently SwinGame
supports a number of different back-end components used to support different plat-
forms and underlying third party libraries.

SwinGame provides users with a number of components and features. The main com-
ponents are briefly outlined in the following list.

• Animations: provides the ability to load and play cell based animations.
• Audio: supports loading and playing of sound effects and music.
• Camera: enables a virtual camera to be moved around the game world – adjust-

185

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

ing what is shown by mapping game to screen coordinates.
• Geometry: provides mathematical operations to manipulate geometric shapes.
• Graphics: enabling a window to be opened and providing functions to draw

geometric shapes.
• Images: supports loading and drawing bitmap images.
• Input: supports keyboard, touch, and accelerometer input.
• Networking: provides the ability to create and use network connections.
• Physics: provides functions to perform collisions between entities.
• Resources: supports the management of image and sound resources, mapping

names to resources.
• Sprites: enables the creation of image based sprites.
• Text: supports font loading, and text rendering.
• Timers: provides access to components to track and manage time based actions.
• User Interface: enables creation of user interfaces including labels, text boxes,

lists, buttons, and other components.
• Utilities: provides other miscellaneous operations useful for game develop-

ment.

6.2.3 Use and Evaluation of SwinGame

Supporting Early Exercises and Lecture Demonstrations

SwinGame was used to support the early exercises in the teaching and learning ac-
tivities for the introductory programming unit described in Chapter 5. For example,
procedures were introduced in Week 1 where students developed a small program
that drew a house, the resulting code from this exercise is shown in Listing 6.11. This
task aims to focus students attention on concepts related to procedure declarations,
procedure calls and instruction sequence. Sequence was explored by adjusting the or-
der of the instructions in the program, and examining the results on the images drawn.
Core exercises in Week 1 then built on this, having students complete a program that
used images and sound effects to deliver a joke, the starting code for which is shown
in Listing 6.12. Screen-shots of the resulting programs are shown in Figure 6.13.

With the students in full control of their programs, any form of user interaction re-
quired students to implement their own event handling loop. This provided a con-
venient motivation for control flow mechanisms in Week 3 of introductory program-
ming. By this point, students could create parametrised procedures to draw shapes,
but program duration was always set by the length of the delay coded into the se-

186

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

program HouseDrawing;

uses SwinGame;

procedure DrawBackground ();

begin

ClearScreen(ColorWhite);

FillEllipse(ColorGreen , 0, 400, 800, 400);

end;

procedure DrawHouse ();

begin

FillRectangle(ColorGrey , 300, 300, 200, 200);

FillTriangle(ColorRed , 250, 300, 400, 150, 550, 300);

end;

procedure Main ();

begin

OpenGraphicsWindow('House Drawing ', 800, 600);

DrawBackground ();

DrawHouse ();

RefreshScreen ();

Delay (5000);

end;

begin

Main ();

end.

Pascal

♥

Figure 6.11: The Pascal code for the House Drawing laboratory exercise from the
introductory programming unit. In this program students explored concepts related
to procedures and sequence.

187

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

program KnockKnock;

uses SwinGame;

procedure LoadResources ();

begin

LoadBitmapNamed('door', 'KnockKnock.jpg');
LoadSoundEffectNamed('knock ', 'door -knock -3. wav');
LoadFontNamed('joke font', 'Action Man.ttf', 48)

end;

procedure DrawDoor ();

begin

DrawBitmap('door', 0, 0);

RefreshScreen ();

Delay (2000);

end;

procedure ClearAreaForText (); ...

procedure ShowKnockKnock ();

begin

ClearAreaForText ();

PlaySoundEffect('knock ');
DrawText('Knock knock ...', ColorWhite , 'joke font', 200 ,500);

RefreshScreen ();

Delay (2000)

end;

procedure Main (); ...

begin

Main ();

end.

Pascal

♥

Figure 6.12: The core exercise in Week 1 of the introductory programming unit had
students complete a program that told a joke. This included code to draw images,
play sound effects and draw text.

188

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

Figure 6.13: The programs created in Week 1 of the introductory programming unit

quence. By introducing repetition it became possible to keep a window open until
the user asked for it to close. With selection user actions could then be responded to,
updating values in variables that changed how things were drawn on the screen.

The visual nature of the games developed with SwinGame help create a more engag-
ing atmosphere in lectures. By creating visual programs, the lecture demonstration
code can be designed and implemented with the students. For example, in Week 3
of the introductory programming unit the lecture demonstration created a small pro-
gram where the user could move a light around the screen and turn it on and off.
The code in Listing 6.14 shows a part of the code developed in this lecture. The pro-
gram was created iteratively, involving the students at each stage, as outlined in the
following list.

1. Initially the program was developed using concepts from previous week, with
the code implementing the DrawLight procedure. At this stage a call to Delay

was used to keep the program open for a short period. In this way the example
helps build upon student’s prior knowledge. (P11)

2. The first problem was highlighted by explaining how the program worked, while
it was running. Half way through the explanation the program ended, leading
to the question “How can we keep the program open until we want it to close?”.
Via various prompts the event loop was described, and coded as the repeat loop
in main. Counting out a period longer than the previous delay highlighted that
the new code had solved the old problem, and the class discussed what was ac-

189

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

tually happening behind the scenes to enable this. Closing the window demon-
strated the ending of the repeat loop.

3. The next problem was to make the program more interactive: “Wouldn’t it be
good to be able to turn the light on and off?”. This lead to a discussion of what
needed to vary in the program, and the addition of the lightIsOn variable in
Main. This was set to false when the program started, and its state was flipped
(on to off, and visa versa) in the repeat loop.

4. Running the program had an interesting effect, as the light flickered between its
two states. Questions started with “Do we always want to change the state of
the light?”, and eventually lead to “So, you only want to change the state of
the light if the user has typed the space bar?” and follow on to “How can we
achieve this in our code?”. After reviewing selection, and the syntax for the if
statement, the assignment statement that changed the lights state was put within
an if statement. The program was executed and the results discussed.

Other features were added in a similar style, each focusing on the application of the
concepts to solve a problem or to introduce a new feature. The exercise demonstrates
the application of constructive learning theories (P1) , in that it aims to help guild
students in the construction of their knowledge. The example starts at a point they
should be familiar with, and identifies ways in which the new knowledge, control
flow in this case, can enhance the functionality of the program they are creating (P11).
In this way, the examples demonstrate appropriate applications of the new concepts,
helping students work toward the goal of thinking and acting as experts.

Each week’s lecture demonstrations followed a similar sequence. SwinGame enabled
the focus on programming concepts (P11) due to its requirement for explicit control,
while its support for multimedia resources helped make the programs more “fun.”
Later week’s lecture demonstrations continued to expand on concepts learnt, and cul-
minated in the development of a small game. The functionality and theme of these
games were proposed by students, helping them take ownership of the learning activ-
ities (P7). Students supplied images and sound effects, suggested features, discussed
implementation strategies and were engaged in the iterative implementation of these
games. Figure 6.15 shows screen-shots of two games developed in the lectures, the
code of which was then shared with the students.

Supporting Custom Projects

As well as supporting the delivery of lecture material, SwinGame provided students
with a wide range of capabilities they could use in the creation of their custom projects.

190

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

program GameMain;

uses SwinGame , sgTypes;

procedure LoadResources ();

begin

LoadBitmapNamed('on', 'on.png');
LoadBitmapNamed('off', 'off.png');

end;

procedure DrawLight(isOn: Boolean; x, y: Integer);

begin

if isOn then

DrawBitmap('on', x, y)

else

DrawBitmap('off', x, y);

end;

procedure Main ();

var

lightX , lightY: Integer;

lightIsOn: Boolean;

begin

lightX := 10;

lightY := 10;

lightIsOn := False;

OpenGraphicsWindow('Light Switch ', 800, 600);

LoadDefaultColors ();

LoadResources ();

repeat

ProcessEvents ();

if KeyTyped(vk_Space) or MouseClicked(LeftButton) then

lightIsOn := not lightIsOn;

if KeyDown(vk_Left) then lightX := lightX - 1;

if KeyDown(vk_Right) then lightX := lightX + 1;

if lightX < 0 then lightX := 0;

ClearScreen(ColorWhite);

DrawLight(lightIsOn , lightX , lightY);

RefreshScreen ();

until WindowCloseRequested () or KeyTyped(vk_Escape);

end;

begin

Main ();

end.

Pascal

♥

Figure 6.14: The final code from the lecture example developed with students in the
Week 3 lecture of the introductory programming unit. The program shows a light
bulb image that can be turned on and off with the mouse and space bar, and moved
around the screen using arrow keys.

191

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Figure 6.15: Games developed with students across a number of weeks in introduc-
tory programming

The assessment criteria developed for the introductory programming unit, described
in Section 5.2.3, required students to demonstrate they could apply the concepts from
the unit to develop a program of their own design. While there was no requirement
for students to use the library, most chose to create a game using SwinGame.

To help support students with their use of SwinGame was documented on a web-
site (SwinGame 2013), as shown in Figure 6.16. The website was created to list the
SwinGame functions and procedures, and additional documentation was added for
some of the more common tasks, with the aim of supporting students as they started
to develop their own programs (P6). The site also provided a means of distributing
the SwinGame library to a wider audience.

Developing SwinGame and its Documentation

SwinGame was developed through the collaboration of both staff and students over a
number of years. At the end of each year, students were invited to work on enhancing
SwinGame’s implementation and documentation. This provided an opportunity for
staff to work closely with students, and for students to further develop their software
development skills outside of the standard teaching periods.

192

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

Figure 6.16: The SwinGame website provides a means of distributing SwinGame and
its documentation

Promoting opportunities to work on SwinGame also provided an opportunity to indi-
cate the depth of knowledge students had developed in the past. This helped commu-
nicate the high expectations of staff (P5) and provided encouragement for students to
do their best.

Supporting Multiple Languages

With the introductory programming unit using two programming languages, and ob-
ject oriented programming using four, SwinGame was required to be accessible from
a range of programming languages. This included both procedural and object ori-
ented programming languages, which each needed to be supported with appropriate
abstractions (P12). To achieve this goal a number of tools were created to simplify the
process of creating programming language specific versions of SwinGame.

SwinGame’s core logic can be accessed via language specific wrappers as shown in
Figure 6.17. Each wrapper mirrors the SwinGame functionality, and acts as an adapter
that performs any required transformation of data between the program’s runtime
environment and the native SwinGame library, which is accessed via the SwinGame
Library Interface. This interface consolidates all of the SwinGame functionality and

193

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

exposes it as a native library, it also acts as an adapter that converts SwinGame types
to, and from, appropriate native representations that can be exchanged across the na-
tive interface.

SwinGame ProgramSwinGame Native Code

SwinGame
Library

Interface
Calls

SwinGame
Core Logic

Images Graphics

Audio Geometry

Sprites Physics

Input

Text

...

Calls

SwinGame
Language Wrapper

Images Graphics

Audio Geometry

Sprites Physics

Input

Text

...

Student
Program

Figure 6.17: SwinGame core logic is implemented in a number of modules that are
accessible via language specific wrappers

To ease the creation of the language specific wrappers a translator was created that
reads the source code of the SwinGame core logic and outputs the SwinGame Library
Interface, a number of matching language specific wrappers, and the programmer
documentation for the SwinGame website, as shown in Figure 6.18. This ensures con-
sistency between the wrapper, SwinGame Library Interface and the documentation,
while allowing the development of SwinGame to focus on enhancing the core logic.

SwinGame
Library

Interface

SwinGame
Core Logic

Images Graphics

Audio Geometry

Sprites Physics

Input

Text

...

SwinGame C Wrapper

SwinGame C++ Wrapper

SwinGame C# Wrapper

SwinGame Objective C Wrapper

SwinGame Pascal Wrapper

SwinGame ... Wrapper
Generates

Reads

SwinGame
Translation
Scripts SwinGame

Library Documentation

Figure 6.18: SwinGame’s language specific wrappers, library interface and program-
mer documentation are all generated from its source code. The translator reads the
source code, and outputs the SwinGame library, and language specific wrappers for
a range of programming languages.

194

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

SwinGame’s language translation scripts requires additional information to enable the
construction of the various artefacts. It was decided to store these additional details
using attributes in comments in the code of the core logic. These special comments
started with /// and contained documentation as well as other information needed to
assist with the translation. These attributes were marked using the @ symbol followed
by a attribute identifier and a number of values. Two example functions from the
SwinGame core logic are shown in Figure 6.19, and Table 6.2 provides details of the
attributes shown.

/// Loads the `SoundEffect ` from the supplied filename. The

/// sound will be loaded from the Resources/sounds folder

/// unless a full path to the file is passed in...

///

/// @param filename name of the sound effect file to load.

///

/// @lib

///

/// @class SoundEffect

/// @constructor

/// @csn initFromFile :%s

function LoadSoundEffect(filename: String): SoundEffect;

/// This version of PlaySoundEffect allows you to indicate

/// the number of times the sound effect is repeated.

/// ...

///

/// @lib PlaySoundEffectA(effect , loops , 1.0)

/// @uname PlaySoundEffectWithLoop

/// @sn playSoundEffect :%s looped :%s

///

/// @class SoundEffect

/// @overload Play PlayWithLoops

/// @csn playLooped :%s

procedure PlaySoundEffect(effect: SoundEffect; loops: Longint);

Pascal

♥

Figure 6.19: Example of markup language used to annotate SwinGame core logic to
enable generation of language specific wrappers

The @lib parameter determines if the function or procedure is added to the SwinGame
Library Interface. When the function or procedure is not to be added, an alternative
call is provided. The generated wrapper code is then adjusted to call the appropriate
function. The code in Figure 6.19 indicates that LoadSoundEffect should be included
directly in the interface, whereas this version of the PlaySoundEffect procedure calls
PlaySoundEffectA and passes in default values for some parameters.

All SwinGame resources are accessible via pointers, enabling the language translation
scripts to create object oriented abstractions when this is appropriate for the wrapper’s

195

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Table 6.2: The main language translation attributes, their format and purpose.

Attribute Format Purpose
@param @param name docs Provides additional documentation for a parameter.
@lib @lib Indicates the function/procedure should appear in the

SwinGame Library Interface.
@lib call Indicates that the wrapper should call another func-

tion/procedure from the SwinGame Library Interface.
@uname @uname name Function and procedure names in the SwinGame Library

Interface, and some wrappers, need to be unique. This at-
tribute provided a unique name for this function or pro-
cedure.

@sn @sn format Provides a format string for the creation of the Objective
C signature for this function/procedure. This allows pa-
rameters to be mixed with the name of the method.

@class @class name The name of the class to add the method to.
@method @method The name of the method to add to the class.
@overload @overload name uname Overloads the method name, uname is used in langauges

that do not support overloading.
@csn @csn format Similar to @sn, providing the format for the Objective C

signature for the method added to the class.

programming language. Figure 6.20 illustrates the main components created by the
translator.

Each function and procedure in the core logic is capable of creating two methods in
the object oriented language wrappers. The first method is created as a static2 member
of a class that mirrors the module from the core logic. The second method can then be
associated with a matching resource class, as an instance member. The specific class is
indicated by the @class attribute. These classes contain a field to track the resource’s
pointer, and so the method will have one fewer parameters. When these methods are
called, they calls the matching method static method and pass in the value from the
pointer field along with any other parameter values passed to the method.

The Objective C syntax required special attention, as method signatures do not sepa-
rated name from parameters. For example, the procedure PlaySoundEffect shown in
Figure 6.19 could be called using [Audio playSoundEffect:effect looped:3]. The
signature to match this required the parameters to be embedded within the method’s
name. This was achieved by adding @sn and @csn attributes that allow the developer
to specify a format string into which the parameter signatures are injected.

By supporting both procedural and object oriented programming languages, SwinGame
was able to be used in both the introductory programming and object oriented pro-
gramming units. In introductory programming students worked with SwinGame
from Week 1, and explored its use from both the Pascal and C programming lan-

2Static in this context is meant to indicate that the method is associated with the class, rather than
instances of the class.

196

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

Core Logic Audio Module

Generates

Reads

SwinGame
Translation
Scripts

SoundEffect

Audio Class

WrapperInterface

AudioPlaySoundEffectA
(effect, loops)

static
AudioPlaySoundEffectA

(effect, loops)

Play
(loops)

static PlaySoundEffect
(effect, loops)

Figure 6.20: Attributes in the core logic code define the generation of a module level
wrapper, and the creation of classes for object oriented access to SwinGame resources.

guages. In the object oriented programming unit, SwinGame provided a familiar
framework for students to work with at the start of the teaching period. As the teach-
ing period progressed, students were transitioned away from using SwinGame to en-
courage them to explore other commercially available libraries by the end of the unit.

Supporting What We Teach

SwinGame performed a central role in supporting what was taught in the two exam-
ple programming units described in Chapter 5. It also provided backing for other re-
sources developed to support the teaching of these units, as illustrated in Figure 6.21.
SwinGame helped enable interactive lectures, and provided the tools necessary to cre-
ate engaging examples in the Programming Arcana text, outlined in Section 6.3, and
the video podcasts, described in Section 6.4.

It also provided a consistent library for students to use as they moved between pro-
gramming languages, and programming units (P6 and P11). While the SwinGame in-
terface differed slightly, adapting to language conventions and abstractions, the inter-
face was still a familiar quantity as students moved between languages and paradigms.
This meant that students could more rapidly create programs in the new language, as

197

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

the SwinGame library remained relatively consistent between the different environ-
ments.

Programming Arcana

Video Podcasts

SwinGame API

Uses Syntax
Diagrams From

Uses in examples code

Demonstrates
concepts

using

Figure 6.21: SwinGame supported unit delivery, the Programming Arcana, and the
video podcasts.

Evaluation and Support of Principles

Staff and student reflections indicate that SwinGame has been a successful part of
the teaching strategy for the introductory and object oriented programming units. In
the introductory programming unit SwinGame enabled staff to use interactive lec-
ture demonstrations, and provided students with a library they could use to create
small games for their custom projects. It supported the shift between programming
languages, and between programming paradigms as student transition from the in-
troductory programming unit to object oriented programming.

SwinGame has met most of the requirements listed in Section 6.2.1, the following list
outlines current strengths and weaknesses.

• Strengths:

– Provides required procedural, and object oriented, access to functionality
to enable the creation of 2D games.

– Works cross platform, and across multiple languages.

– Device support includes desktop computers, and iOS devices (with touch
and accelerometer support).

– Does provide support for drawing (shapes and images), audio, sprites, re-
source management, camera management, input, timers, networking, and

198

6.2. A GAME LIBRARY TO SUPPORT PROCEDURES FIRST

physics.

– Does not take control away from the programmer – less productive for bet-
ter understanding.

• Weaknesses (wish list):

– Documentation is very weak, developed by students early in their degree
programmes.

– SwinGame is not highly optimised, being developed primarily by students.

– Needs support for a wider range of mobile devices, and support for addi-
tional input mechanisms.

– Does not support:

* Image rotation and scaling, an often requested feature.

* Particle effects.

* Special effects, such as blur, fog, etcetera.

– Lacks developer support beyond immediate teaching staff.

SwinGame directly supported the programming units outlined in Chapter 5. Many of
the lectures and weekly tasks in the introductory programming unit made use of the
game library. Similarly, many of the early tasks in the object oriented programming
unit used SwinGame as a means of learning the new language, and paradigm, without
also needing to learn a new library.

In terms of the principles stated in Chapter 3, and the model outlined in Chapter 4,
SwinGame provided the following support:

• SwinGame helped realise the principles through:

– Interactive lecture demonstrations aimed to help guide students in the con-
struction of their knowledge. (P1)

– Requiring explicit programmer control helped align SwinGame program-
ming tasks with the programming concepts, and in turn the unit’s intended
learning outcomes. (P2 and P11)

– The consistent framework helped students overcome language differences,
to better focus on programming concepts. (P4)

– Student involvement in the development of SwinGame provided a means
of communicating high staff expectations. (P5)

– SwinGame documentation, and simple interface, helped support student
exploration of the library. (P6)

– SwinGame helped staff engage with students, enabling them to guide lec-
ture content. (P7)

199

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

– SwinGame provides procedural and object oriented programming abstrac-
tions, enabling it to be use in both procedural and object oriented program-
ming languages. (P10 and P12)

• SwinGame helped implement the model in the example units by:

– Providing a valuable resource used in the teaching and learning activities
of both programming units.

– Enabling students to develop a range of games for their custom projects.

– Providing a consistent library to help simplify the transitioning between
languages.

– Supporting visual programming, making it easier for students to see when
their programs were not working successfully.

6.2.4 Summary

SwinGame provided a valuable resource in supporting students learning in the in-
troductory programming units. The consistent library supported students transition
between languages, interactive lecture demonstrations, and provided a wealth of fea-
tures students could exploit in their custom programs. The strengths of SwinGame
help maintain the focus on programming concepts. SwinGame remains an actively
used library, and development continues to help address some of its current weak-
nesses.

200

6.3. PROGRAMMING TEXT TO SUPPORT CONCEPT-BASED APPROACH

6.3 Programming Text to Support Concept-Based Approach

Concepts are central to what we aim to teach. Principle 11 indicates that we should
focus on concepts over language syntax. In addressing this principle the programming
units from Chapter 5 had little, if any, coverage of syntax in lectures, leaving these
details instead to teaching and learning resources for students to use. These resources
provide the syntax details students need to turn these concepts into working code.

One of the central ideas of “Beyond Bullet Points” is to fully document a presentation
using the notes attached to a presentation’s slides (Atkinson 2007). In effect, details
are moved from a slide itself to the slides’ notes area, which can then be printed as an
informative handout. While documenting slides in this manner can provide students
with the required details, it does mix the purpose of the presentation’s slides as a
means of guiding student thoughts and providing detailed information.

From our experience using the “Beyond Bullet Points” approach, this has a number
of drawbacks in relation to the principles from Chapter 3. The dual purpose of the
presentation works against maintaining a clear focus (P4) as details may be better
presented in a different order to the presentation slides, and visa versa. Similarly,
the need for detailed notes for each slide works against Principle 8, being agile and
willing to change. The creation of the detailed notes results in significant effort being
expended on the creation of each week’s presentation, and thereby adds resistance to
change if the presentation is found to be ineffective.

Instead of documenting these notes in the presentations themselves, they were written
up in a separate resource which became the “Programming Arcana” (Cain 2013b). The
title, cover image (see Figure 6.22), and layout were designed around a magic theme
in the aim of engaging students, they are becoming wizards of the modern era capable
to making the computer do amazing things.

Documenting language details in a separate text from the presentations also helped to
address another issue raised as a result of choosing Pascal as one of the programming
languages. Pascal is not currently a popular language with institutions or text book
writers, and while the Free Pascal Language Reference Guide (Van Canneyt 2013) pro-
vides details of the language it is not designed for beginners. By providing our own
text it was possible to maintain the concept-based ideas throughout all teaching and
learning resources and activities, while also providing details on the Pascal and C lan-
guages, along with suitable programming examples.

This section outlines the requirements that the Programming Arcana aimed to met in

201

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Figure 6.22: Front cover of the Programming Arcana, which used a magic theme to
engage students as they worked towards becoming wizards with the computer.

Section 6.3.1. Section 6.3.2 describes the structure of the Programming Arcana, and
the way in which it met its requirements. A short evaluation of the use of the Pro-
gramming Arcana follows in Section 6.3.3. This section then concludes with a brief
summary in Section 6.3.4.

6.3.1 Requirements

The requirements for the Programming Arcana were to:

• Focus on programming concepts, presenting them in a language neutral manner.
• Order concepts to align with the introductory programming unit.
• Demonstrate application of the concepts to create a sample program, illustrating

the thought process experts use.
• Provide syntax details to map concepts to code for the Pascal and C program-

ming languages.
• Explain how the concepts operate on a notional machine.
• Provide sample code demonstrating applications of concepts, large and small.
• Be concise, focusing only aspects necessary to understand core ideas – rather

than presenting details on a range of possible options.
• Communicate ideas using a range of media.

202

6.3. PROGRAMMING TEXT TO SUPPORT CONCEPT-BASED APPROACH

6.3.2 Arcana Solution

Chapter Sequence

Chapters in the Programming Arcana align with the concept topics from the intro-
ductory programming unit. This means that the text embodies the concept-based ap-
proach (P11) with each chapter providing a coherent set of concepts that build upon
concepts presented earlier in the text. The following list outlines the main focus for
each chapter. Additional details are provided in Appendix A2 which lists the pro-
gramming concepts that are presented in each of these chapters.

1. Building Programs: Introduces students to the tools they require, and shows
them a basic, “Hello World”, program they can compile to check that their tools
are working.

2. Program Creation: describes how code can be written to create a Program.
3. Procedure Declaration: Introduces the idea that you can create your own proce-

dures to encapsulate the steps of a task.
4. Storing and Using Data: Makes programs more dynamic using variables and

constants to store data, and functions to calculate values.
5. Control Flow: Introduces structured programming principles, along with selec-

tion and repetition.
6. Managing Multiple Values: Presents the use of arrays to make it easier to work

with a large amount of data.
7. Custom Data Types: Describes how developers can create types to help them

organise the data in their programs, much as functions and procedures helped
to organise functionality.

8. Dynamic Memory Allocation: Extends programs beyond the confines of the
stack, allowing the allocation of data on the heap.

9. Input and Output: Describes how to save and load data from file.

In proposing Principle 11, with its focus on programming concepts, Chapter 3 outlined
the requirement “Introduce programming concepts incrementally.” The Programming
Arcana provides an example of how the details of a programming language can be
presented in such a way as to ensure most topics are presented with each topic build-
ing upon the previously presented topics.

203

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

There were two cases where concepts could not be suitably explained within the over-
all context presented in a chapter. There were:

1. In Chapter 1 the code for a working program was given to enable students to
compile something before they understood what it represented. However, the
main focus of the chapter was the tools being presented and not the specific
details of the program’s code, and so this does not directly contradict the under-
lying principle.

2. Chapters 2 and 3 makes use of values passed to procedures before topics related
to how data can be stored in a program. The idea that data can be passed to a
procedure is covered, but not how that data was received, as the concept of a
variable was not introduced until Chapter 4.

Other than these two cases, all other chapters were able to explain all concepts in terms
of the presented, or previously presented, concepts.

When comparing the suitability of the C and Pascal languages for supporting the
concept-based approach it was noted that, in general, mapping the concepts to syntax
was simpler for the Pascal programming language, with the C3 language providing
a number of challenges. C’s standard input and output functions, printf and scanf,
provided a range of challenges associated with the use of format strings and point-
ers. The format string provides an additional syntax to learn, and results in a range of
runtime errors where the types indicated in the format string do not match the types
of the associated variables or expressions. The need to pass explicit pointers to scanf
also required a brief description of pointers in early material. Other challenges related
to the need to understand arrays before working with strings. Early topics avoided
strings, or used only string literals. In this way one example can be mapped to both C
and Pascal languages.

In relation to the use of the text in supporting the introductory programming unit,
many of the issues with C were avoided due to the use of Pascal in the first part of the
unit. This enabled teaching and learning activities to take advantage of Pascal’s more
convenient support for strings and terminal input and output. For example, consider
a program that asked the user to enter their name and then echoes back a welcome
message. In C this requires an understanding of variables, format string syntax, ar-
rays, pointers, and how arrays are automatically passed by references. In Pascal the
same program only requires an understanding of variables and pass-by-reference, as
the language abstracts away many underlying details of how strings work.

3The C code was compiled with a C++ compiler to add support for function and procedure overload-
ing, and pass-by-reference.

204

6.3. PROGRAMMING TEXT TO SUPPORT CONCEPT-BASED APPROACH

Chapter Layout

Each chapter of the Programming Arcana has a similar sequence to its sections, with
the intention of reducing cognitive overhead and promoting a consistent approach to
studying each of the topic. In keeping with Principle 11, the concepts were presented
as the focus of each chapter.

1. Concepts: Each chapter starts with a list of related concepts, each of which is
described at a relevant level of detail for that chapter.

2. Applying the Concepts: An example of how to apply the chapter’s concepts is
then discussed, using pseudocode and flowcharts to illustrate how the concepts
can be applied.

3. Syntax in C and Pascal: Details related to the syntax needed to realise these
concepts in code are first presented for the C programming language, and then
for the Pascal language.

4. Understanding the Concepts: Traces the execution of the pseudocode on a con-
ceptual machine, with the aim of showing students how the concepts are realised
at run time.

5. Examples: A number of examples are given to further demonstrate the appli-
cation of the chapter’s concepts, each is presented in pseudocode and then in C
and Pascal code.

6. Exercises: Provides a sequence of exercises students can use to develop their
understanding of the topic.

Details of the sections related to presenting the concepts follow. This outlines how
the Programming Arcana implemented the concept-based approach, and reinforce the
focus on concepts over syntax throughout the material presented.

205

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Concepts Each chapter starts with a section that provides details of the concepts
being presented. This starts with a brief overview describing how all of the concepts
are related, with following subsections presenting details for each concept. Concepts
are presented using a textual description, visual concept map, and a series of notes
with important details related to the topic. At the end of the concept section an overall
concept map is included to visually summarise the relationships between the concepts
covered.

Figure 6.23 shows an example of the concept of branching from Chapter 5 of the
Programming Arcana. The diagrams were deliberately drawn using irregular, rough
looking, shapes to indicate these were a conceptualisation, rather than an exact repre-
sentation of the associated concepts.

One of the design goals was to fit each concept on a single page. This goal aimed
to help support a student’s active construction of knowledge, Principle 1. Aiming to
keep each topic to a single page ensured a focus (Principle 4) on the most important
details, and where topics expanded over multiple pages the details were examined to
ensure they did not included any unnecessary details.

5.1. CONTROL FLOW CONCEPTS

5.1.2 Branching

There are two main ways of controlling the sequence of actions in a program. The first of these
is called branching, or selection. Branching allows you to get the computer to take one of a
number of paths based on the value of a condition.

Branching

Condition is an Expression that
controls that path is taken...

Paths converge
after the branch

Condition

Each path can
contain other
instructions

Figure 5.4: Branching commands the computer to take one of a number of possible paths

• Branching is a kind of action. You can command the computer to take of a number
of paths.

• A branch has a condition that is evaluated, and based on the condition the computer
takes one path.

• The branch is the act of choosing the path, when its command is performed the
computer evaluates the condition and then moves to the instructions in the indicated
path.

• Languages usually o�er two kinds of branching statements:
– If Statement to select between two paths based on a Boolean expression.
– Case Statement to select a path based on an ordinala value.

• The Branch will have one entry point, and one exit point. This feature allows you to
combine statements together like building blocks. This idea comes from the princi-
ples of Structured Programming, where each component in the code should have
a single entry and exit point.

aIntegers and Characters are ordinal values. Ordinal values have a defined sequence, so it is possible to say
which value comes next in the sequence. Integers are Ordinal as you can say that the number after 1 is 2. Real
numbers are not ordinal as you cannot say which value comes next in the sequence.

Note

�

285

CHAPTER 5. CONTROL FLOW

If Statement

The if statement is the most frequently used branching statement. It allows you to selectively
run code based on the value of a Boolean expression (the condition). The if statement has an
optional else branch that is executed when the condition is false.

If Statement

Condition is a
Boolean Expression

Condition

This path is taken
when the condition

is True

Statement

Is a kind of
Statement

FalseTrue

else

The False path
can optionally

have instructions
in an else path

If there is no else
part the if statement

just skips the True
path when the condition

is False

Figure 5.5: If statement lets you selectively run a branch of code

• An if statement is an action. It allows you to command the computer to select a
path based on a Boolean expression.

• The if statement has two branches, one that is taken when the condition is True, the
other when it is False.

• The False branch may optionally have instructions that are carried out when the
condition is False.

• If there are no instructions you want performed when the condition is False you
do not need to include an else branch, and the if statement will just skip the True
branch when the condition is False.

• The if statement has one entry point, two paths, and then one exit point.

Note

�

286

CHAPTER 5. CONTROL FLOW

5.1.7 Summary

This section has introduced a number of new actions that you can use in your code to create
more dynamic programs.

ProgramProcedure

Statement

ArtefactArtefact

Term

Function

Artefact

Type
Artefact

Boolean

Is a
Existing Artefact

If Statement

Case Statement

Compound
Statement

While Loop
Do While / Repeat

Loop

Break Statement
Continue

Statement

Return / Exit
Statement

Action

Ends a

Affect the
sequence in a

Select to
run one of a
number of

options

Groups

Repeats, 0..n
or 1..n times

Action

Action

Action

Controlled
by a

Term

Figure 5.17: Key Concepts introduced in this Chapter

• Artefacts are things you can create and use.
• Terms are things you need to understand.
• Actions are things you can command the computer to perform.

Note

�

298

Figure 6.23: Example concept pages from Chapter 5 of the Programming Arcana,
showing the use of visual concept maps to help explain concepts.

206

6.3. PROGRAMMING TEXT TO SUPPORT CONCEPT-BASED APPROACH

Applying the Concepts After the concepts are presented, the next section outlines
how these concepts work together to create an example program. This helps demon-
strate the thought process of an expert programmer in applying these concepts to a
program design, with the aim of helping students construct similar thought patterns
(P1). This section starts with a specification of a program to be created. This is then
followed by a discussion of how a program can be designed using the concepts cov-
ered to that point in the text. The description of the design includes pseudocode,
flow charts, sequence diagrams and structure charts, and the section concludes with a
complete design for the specified program. Figure 6.24 shows an example of design-
ing a “Guess that Number” game that demonstrates the application of control flow
concepts.

5.2. USING THESE CONCEPTS

Combining blocks for the Perform Guess

With the basic theory at hand, we can now start to design the control flow for the Guess
that Number program. This process will involve, once again, the idea of abstraction. When
designing the flow for a program you first need to be able to perform the process yourself, even
if its just on paper, and then work out the steps that you undertook so that you can code these
within the program.

For the Guess that Number program we can start by designing the control flow within the
Perform Guess function. The specification of this is shown in Table 5.6. Think about the steps
that need to be performed to achieve this. If you had been asked to do this what would you
need to do?

Function

Perform Guess

Returns
Boolean True when the user has guessed the number, False

otherwise.
Parameter Description
Guess Number The number of the current guess, used in the prompt

asking for the user to enter their guess.

Target The number the user is aiming to guess.

Perform Guess is responsible for coordinating the actions needed to
perform a single guess within a game of Guess that Number. The user’s
guess is read, and the value checked against the target value. A mes-
sage is then output telling the user if the target value is less than,
larger than, or equal to their guess. This function returns True when
the user’s guess is equal to the target.

Table 5.6: Specification for the Perform Guess Function.

The first task the Function needs to perform is to get the guess from the user. This can be
performed in a sequence: display a prompt, read the value from the user. This first sequence
is shown in Figure 5.26.

Perform
Guess

Output 'Guess ', and
Guess Number

Read value from
user into guess

Figure 5.26: Initial Sequence in Perform Guess

307

CHAPTER 5. CONTROL FLOW

The next step in this sequence is to give the user feedback based upon their guess and the
target number. This code requires a the ability to select a given branch. The computer needs to
output di�erent messages based upon the users guess. This can be achieved with a selection
block. Looking back at Figure 5.24 there are three possible alternatives for implementing this
selection. The if with no else is not a valid option as there are three paths we need to take.
The case block is also not valid as we are not matching a value, but comparing values to each
other. The last option is the if-else block, but this only has two branches. It is not going to
be possible to code all three options within one block, but it can be achieved using two if-else
blocks.

The first if-else block will check if the target is greater than the user’s guess. If this is true
then the computer can take the first branch and output the message ‘The number is larger
than ’ and the value from the user’s guess. The flow chart for this part is shown in Figure 5.27.
This block is the third task in the sequence, this if block has a single entry, causes a branch
in the flow, and will have a single exit.

Perform
Guess

Output 'Guess ', and
Guess Number

Read value from
user into guess

Target is
larger than

Guess

Output "The number is
larger than " and the

guess

Yes No

Figure 5.27: First branch in Perform Guess

• The conditions within the If Statement are Boolean Expressions.
• This condition is checking if target > guess.
• There are now two paths through this code, one when target is > guess, and another

when it is not.

Note

�

308

CHAPTER 5. CONTROL FLOW

The Pseudocode for Perform Guess

Listing 5.1 contains the Pseudocode for the Perform Guess logic from the flowchart in Fig-
ure 5.30. Notice how the indentation in this mirrors the block structures in the flowchart. It
is good practice to indent your code in this way as it helps you, and any person who reads
your code, to see the structure of the logic. You will be able to avoid many errors by making
sure that you always indent your code so that it highlights the code’s structure.

Function: Perform Guess

Returns: Boolean - True if the user has guessed the Target

Parameters:

1: Num Guess (Integer) - The number of the guess (1..7)

2: Target (Integer) - The target the user is aiming for

Steps:

1: Output 'Guess ', num_guess , and ': '
2: Read input into guess

3:

4: if target is less than guess then

5: Output 'The number is less than ', guess
6: else

7: if target is larger than guess then

8: Output 'The number is larger than ', guess
9: else

10: Output 'Well done... the number was ', guess
11: Return the result, target = guess

Listing 5.1: Pseudocode for Perform Guess

Pseudocode

|

• Code indentation makes it easier to read, and helps locate many common issues.
• Tab you code in within a structured statement.

– Indent the code in the branches of an If Statement and Case Statement.
– Indent the code within the body of the While Loop and the Do While or Repeat

Until loops.
• Make this a habit. When you code a Branching or Looping statement automatically

indent the next line of code.
• Always keep you code neat, make it look good.
• The C code for Perform Guess is shown in Listing 5.2.
• The Pascal code for Perform Guess is shown in Listing 5.3.
• Notice how the two code samples are laid out in a similar way. The indentation

makes it easy to identify which statements are associated with each of the branches
through the Function.

Note

�

314

Figure 6.24: Example pages related to applying the concepts from the Programming
Arcana

In each chapter explanatory text accompanies the design, and highlights how the con-
cepts covered contribute to the end result. This discussion also presents a way of
approaching problems using the concepts to introduce students to the ideas they can
use in approaching the design of their own programs.

207

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Syntax Having covered concepts, and how they can be used to design a program,
the next two sections deal with realising these concepts using the C and Pascal pro-
gramming languages. The syntax sections start with an implementation of the pro-
gram designed in the section on applying the concepts, in this way students see de-
sign through to its implementation with the aim of helping them develop appropriate
conceptual connections (P1). This is followed by details of each part of the language
syntax, providing this section with a clear focus (P4). An example of pages from this
section is shown in Figure 6.25.

C
R
e
f
e
r
e
n
c
e

CHAPTER 5. CONTROL FLOW

5.3 Control Flow in C

5.3.1 Implementing the Guess that Number in C

Section 5.2 of this Chapter introduced the ‘Guess that Number’ program. This program con-
tained a Function to Perform Guess and Procedures to Print Line and Play Game. Each of these
involved some control flow in their logic, as shown in the Flowcharts in Section 5.2. The full
C implementation of the Guess that Number program is shown in Listing 5.8.

/*

* Program: guess-that-number.c

* This program is an implementation of the "guess that number"

* game. The computer randomly chooses a number and the player

* attempts to guess it. (It should never take more than 7 guesses)

*/

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <stdbool.h>

#define MAX_NUMBER 100

#define MAX_GUESSES 7

// Print a line onto the Terminal.

void print_line(int len)

{

int i = 0;

while (i < len)

{

printf("-");

i++;

}

printf("\n");

}

// Perform the steps for the guess. Reads the value entered by the user,

// outputs a message, and then returns true if the got it otherwise it returns

// false.

bool perform_guess(int num_guess , int target)

{

int guess;

printf("Guess %d: ", num_guess);

scanf("%d", &guess);

if (target < guess) printf("The number is less than %d\n", guess);

else if (target > guess) printf("The number is larger than %d\n", guess);

else printf("Well done... the number was %d\n", guess);

return target == guess;

}

// Implements a simple guessing game. The program generates

// a random number, and the player tries to guess it.

void play_game()

{

326

C
R
e
f
e
r
e
n
c
e

5.3. CONTROL FLOW IN C

5.3.4 C If Statement

The if statement is a Branching statement. This can be used to optionally run a block of code,
providing two alternate paths controlled by a Boolean expression.

if statement if (expression) statement

else statement

Figure 5.40: C Syntax for an If Statement

/* Program: test-if.c */

#include <stdio.h>

int main()

{

int num, num1;

printf("Enter a number: ");

scanf("%d", &num);

if (num != 2)

printf("Num is not 2!\n");

printf("Enter another number: ");

scanf("%d", &num1);

if (num1 == 2 && num != 2)

printf("You got the hint... num1 is 2!");

if (num > num1)

printf("The first number you entered was the larger.");

else

printf("The first number you entered was not larger.");

return 0;

}

Listing 5.10: C if test code

C

}

• This is the C syntax for the If Statement.
• The parenthesis surround the expression. This enables the compiler to tell where

the expression ends.
• Notice that the else branch is optional.
• When the expression is false (0 in C), the else branch is taken.
• For any other value the first path is taken.
• You only need to include stdbool.h if you want to use the bool type and the values
true or false.

Note

�

331

C
R
e
f
e
r
e
n
c
e

CHAPTER 5. CONTROL FLOW

5.3.5 C Case Statement

The case statement allows you to switch between a number of paths.

case statement switch (expression) { case }

default case

case case constant expression :

statement break;

;

default case default:

statement

;

Figure 5.41: C Syntax for a Case Statement

• This is the C syntax to declare a Case Statement.
• The constant expressions in each case must be ordinal values (integers or characters).
• The code in Listing 5.12 shows an example use for a case statement.
• The default path is taken when none of the other paths match the expression.
• If the break is left o� the end of a case then execution will continue into the next

case. For example, in Listing 5.11 if the user enters ‘c’ the output will be ‘C and D’
• Each case can contain a number of Statements.
• Watch http://www.youtube.com/watch?v=zIV4poUZAQo for important details on the leg-

endary Knights of Ni.

Note

�

/* Program: simple-case.c */

#include <stdio.h>

int main()

{

char ch;

printf("Enter a character: ");

scanf("%c", &ch);

switch(ch)

{

case 'a':
case 'b': printf("A or B\n");

break;

case 'c': printf("C ");
case 'd': printf("and D\n");
default: printf("Something else...\n");

}

return 0;

}

Listing 5.11: C case test code with a character

C

}

332

P
a
s
c
a
l
R
e
f
e
r
e
n
c
e

5.4. CONTROL FLOW IN PASCAL

5.4 Control Flow in Pascal

5.4.1 Implementing the Guess that Number in Pascal

Section 5.2 of this Chapter introduced the ‘Guess that Number’ program. This program con-
tained a function to Perform Guess and procedures to Print Line and Play Game. Each of these
involved some control flow in their logic, as shown in the flowcharts in Section 5.2. The full
Pascal implementation of the Guess that Number program is shown in Listing 5.17.

// This program is an implementation of the 'guess that number'
// game. The computer randomly chooses a number and the player

// attempts to guess it. (It should never take more than 7 guesses)

program GuessThatNumber;

const

MAX_NUMBER = 100;

MAX_GUESSES = 7;

// Print a line onto the Terminal.

procedure PrintLine(len: Integer);

var

i: Integer = 0;

begin

while (i < len) do

begin

Write('-');
i += 1;

end;

WriteLn();

end;

// Perform the steps for the guess. Reads the value entered by the user,

// outputs a message, and then returns true if the got it otherwise it returns

// false.

function PerformGuess(numGuess , target: Integer): Boolean;

var

guess: Integer;

begin

Write('Guess ', numGuess , ': ');
ReadLn(guess);

if target < guess then WriteLn('The number is less than ', guess)
else if target > guess then WriteLn('The number is larger than ', guess)
else WriteLn('Well done... the number was ', guess);

result := target = guess; // return true when "target equals guess"

end;

// Implements a simple guessing game. The program generates

// a random number, and the player tries to guess it.

procedure PlayGame();

var

myNumber, numGuess: Integer;

gotIt: Boolean = False;

begin

myNumber := Random(MAX_NUMBER) + 1;

numGuess := 0; //Keep track of the number of guesses

WriteLn('I am thinking of a number between 1 and ', MAX_NUMBER);

339

P
a
s
c
a
l
R
e
f
e
r
e
n
c
e

CHAPTER 5. CONTROL FLOW

5.4.4 Pascal If Statement

The if statement is a Branching statement. This can be used to optionally run a block of code,
providing two alternate paths controlled by a Boolean expression.

if statement if expression then statement

else statement

Figure 5.47: Pascal Syntax for an if statement

program TestIf;

procedure Main();

var

num, num1: Integer;

begin

Write('Enter a number: ');
ReadLn(num);

if num <> 2 then

WriteLn('Num is not 2!');

Write('Enter another number: ');
ReadLn(num1);

if (num1 = 2) and (num <> 2) then

WriteLn('You got the hint... num1 is 2!');

if num > num1 then

WriteLn('The first number you entered was the larger.')
else

WriteLn('The first number you entered was not larger.');
end;

begin

Main();

end.

Listing 5.19: Pascal if test code

Pascal

~

• This is the Pascal syntax for the If Statement.
• The then keyword tells the compiler where the if’s condition ends.
• Notice that the else branch is optional.
• When the expression is True the first path is taken.
• When the expression is False the else branch is taken.
• Notice that there is no semicolon (;) after the first statement before the else branch.

Note

�

344

P
a
s
c
a
l
R
e
f
e
r
e
n
c
e

5.4. CONTROL FLOW IN PASCAL

5.4.5 Pascal Case Statement

The case statement allows you to switch between a number of paths.

case statement case expression of case end

; default case

case constant expr. : statement

.. constant expr.

,

default case else

statement

;

Figure 5.48: Pascal Syntax for a case statement

• This is the Pascal syntax to declare a Case Statement.
• The constant expressions in each case must be ordinal values (integers or characters).
• By using constant..constant the case will match any value in this range, e.g. 0..9.
• The code in Listing 5.21 shows an example use for a case statement.
• The default path is taken when none of the other paths match the expression.
• Each case contain a single statement.
• Watch http://www.youtube.com/watch?v=zIV4poUZAQo for important details on the leg-

endary Knights of Ni.

Note

�

program SimpleCase;

procedure Main();

var

ch: Char;

begin

Write('Enter a character: ');
ReadLn(ch);

case ch of

'a', 'b': WriteLn('a or b');
'c', 'e': WriteLn('c or e');
'd': WriteLn('d');
'f'..'z', 'F'..'Z': WriteLn('f to z or F to Z')
else WriteLn('Something else...');

end;

end;

begin

Main();

end.

Listing 5.20: Pascal case test code with a character

Pascal

~

345

Figure 6.25: Example pages from the Programming Arcana showing C and Pascal
syntax and examples

Maintaining a clear focus on the most important aspects continues in the presentation
of the syntax (P4). The design aimed for each aspect of the syntax to be presented
in a single page. The grammar, and examples, presented focus on best representing
the concepts, which in many cases means only presenting a small subset of what is
possible with the programming language.

208

6.3. PROGRAMMING TEXT TO SUPPORT CONCEPT-BASED APPROACH

Understanding the Concepts In order to think and act as experts, the goal of con-
structivist education, it is important for students to understand how the instructions
affect the machine they are programming (P1). This imperative was highlighted by
Ben-Ari (1998, 2001) in their analysis of constructivism in computer science education,
in which they indicated the critical importance of ensuring students develop an ef-
fective model of computation. For the introductory programming unit, the intended
learning outcomes indicated that students need to be able to explain their programs,
this aimed to encourage students to develop, and communicate, their model of com-
puting, and required resources they could draw upon to highlight these lower level
operations (P2).

The notional machine represents an ideal computer in which the programming con-
structs being taught are realised (DuBoulay 1986). To help students realise the goal
of understanding how to program this machine, the next section of each chapter in the
Programming Arcana provided a series of illustrations. These illustrations aim to com-
municate the state and behaviour of the notional machine as it executes the example
program developed in earlier sections. Figure 6.26 shows an example of the notional
machine from the Programming Arcana, the machine contains a persistent storage de-
vice, central processing unit (CPU), terminal for input and output, and memory that is
divided into sections for global values, stack, instructions, and heap – in later chapters.

Figure 6.27 shows some examples from the chapter on control flow. The illustration of
the notional machine focuses on memory, and the instruction the computer is execut-
ing. Instructions from the pseudocode are executed, one by one, with each instruction
being explained on a single page. The state of the machine is discussed after each
instruction, with each page including a short description of what is occurring, a vi-
sualisation of the notional machine, related notes on the steps taken by the machine,
and any language specific notes. Annotations were added to the visualisation of the
notional machine to help link the comments to changes in the machine’s state.

209

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

Function: Sum

Returns: Double - The sum of the numbers from the data array
Parameters:
 1: data (by const ref, array of Double) - values to sum
 2: size (Integer) - the number of elements in data (C only)
Local Variables:
 *: i (Integer) - index of the current element in the array
 *: total (Double) - running total
Steps:
 1: total is assigned 0
 2: For i, starts at 0 and loops to the highest index of data
 3: total is assigned total + data[i]
 4: Return the result, total

Procedure: Main

Local Variables:
 *: my_data (array containing 3 Double values) - data array
Steps:
 1: Call Populate Array (my_data, 3)
 2: Output 'Sum is ', and Sum (my_data, 3)
 3: ...

Instruction:

Main
my_data[]: 10.0

-5
17.21

Step 2

Instruction:

Sum
data[]: bfff1

Step 2

size: 3

i: 3

Enter value 1: Ten
Please enter a number.
Enter value 1: 10.0
Enter value 2: -5
Enter value 3: 17.21

The end of the for loop's body triggers
the increment of its control variable i,

so it now has the value 3

2

total: 22.21

This is the end of the loop, so i must be incremented
and control returns to step 2

1

i is now out of range
so the body will now be skipped

3

result: 92

Figure 6.26: Example of the visualisation of the notional machine used in the Pro-
gramming Arcana

5.5. UNDERSTANDING CONTROL FLOW

5.5 Understanding Control Flow

This Chapter has introduced new statements that can be used to control the sequence of
actions the computer performs. These statements allow you to add Branching and Looping
paths to your code. The flowcharts presented in Section 5.2 are a great way of visualising the
order in which the computer will execute the instructions. To help you fully understand these
concepts this section will look at how these statements work within the computer.

5.5.1 Understanding Branching in Perform Guess

Figure 5.53 shows the flowchart for the Perform Guess that was developed in Section 5.2.4 on
Designing Control Flow for Perform Guess. The following sections show how the computer
executes these actions. These illustrations will start at the call into Perform Guess, skipping
the illustration of the steps that lead up to this call.

Perform
Guess

Output 'Guess ', and
Guess Number

Read value from
user into guess

Target is
larger than

Guess

Target is
less than

Guess

Output "The number is
larger than " and the

guess

Output "The number is
less than " and the guess

Output "Well done... The
number was " and the

guess

Yes No

Yes No

Return the result
Target equals Guess

End

Figure 5.53: Logic for the Perform Guess Procedure from Figure 5.58

In the following illustrations Perform Guess will be called three times with the target number
being 37 in each case. The following three guesses will be performed, ensuring that all paths
through the flowchart are covered.

1. On the first guess the user enters a guess of 50, allowing for the left most branch of this
flowchart to be followed.

2. The second guess will be 25 to test the middle branch, taking the else branch of the first
decision and the true branch of the second decision.

3. Finally the third guess will be 37, testing the right most path through the code.

351

CHAPTER 5. CONTROL FLOW

Perform Guess is called for guess 1

In the Guess that Number program, the Perform Guess function is responsible for reading in the
user’s guess and giving them feedback. Figure 5.54 shows the Perform Guess code being called
for the first time, it is passed 1 to its num guess parameter and 37 to its target parameter.

Function: Perform Guess

Returns: Boolean - True if the user has guessed the Target
Parameters:
 1: Num Guess (Integer) - The number of the guess (1..7)
 2: Target (Integer) - The target the user is aiming for
Steps:
 1: Output 'Guess ', num_guess, and ': '
 2: Read input into guess
 3:
 4: if target is less than guess then
 5: Output 'The number is less than ', guess
 6: else
 7: if target is larger than guess then
 8: Output 'The number is larger than ', guess
 9: else
 10: Output 'Well done... the number was ', guess
 11: result := target = guess;

Perform Guess is called,
num guess is passed 1, and

target is passed 37

1

Instruction:

...

...

Instruction:

Perform Guess

target: 37

Step 1

guess: -9137

num guess: 1

I am think of a number ...

result: False

Figure 5.54: Perform Guess is called for the first time

• In Figure 5.54 the indicated areas show the following:
1. Perform Guess is called, with 1 being passed to num guess and 37 passed to
target.

• At this point the previous code would have output ‘I am thinking of a number . . . ’ to
the Terminal.

• The values in guess and result have not been initialised, so they have whatever value
was in that memory location previously.

Note

�

352

CHAPTER 5. CONTROL FLOW

Loop condition is checked at the end of guess 1, with the loop being repeated

At the end of the loop the condition is checked, in this case the loop will run again.

Procedure: Play Game

Local Variables:
* My Num, Guess Num (Integer)
* Got It (Boolean)
Steps:
 1: Assign My Num, a Random number between 1 and MAX_NUMBER
 2: Assign to Guess Num, the value 0
 3: Output 'I am thinking of a number... 1 and ', and MAX_NUMBER
 4: Repeat
 5: Increase Guess Num by 1
 6: Assign Got It, Perform Guess(Guess Num, My Num)
 7: Until Guess Num >= MAX_GUESSES or Got It
 (* While Guess Number < MAX_GUESSES and not Got It *)
 8: If Not Got It then
 9: Output 'You ran out of guesses... ', and My Num

Condition is false, so the
body will be repeated1

Instruction:

...

...

Instruction:

Play Game

guess num: 1

Step 7

got it: False

my num: 37

I am think of a number ...
Guess 1: 50
The number is less than 50

Figure 5.70: Condition indicates that the loop’s body should be executed again

• In Figure 5.70 the indicated areas show the following:
1. The condition is checked, and the expression is false.

• With repeat...until you can evaluate the expression by:
1. Guess Num >= MAX_GUESSES is 1 >= 7 , this is false
2. Got it, this is a variable, its value is false
3. Or the above together, false or false , this is false, repeating the loop.

• With do...while you can evaluate the expression by:
1. Guess Num < MAX_GUESSES is 1 < 7 , this is true
2. Got it, this is a variable, its value is false, so !Got it, is not false, is true
3. And together these results, true and true is true, repeating the loop.

Note

�

For C you will need to code this as a C Do While Loop. The code for this will be
do...while(guess_num < MAX_GUESSES && !got_it);

C

}

For Pascal you will need to code this as a Pascal Repeat Until Loop. The code for this will
be repeat...until (guess_num >= MAX_GUESSES) or (got_it);

Pascal

~

368

Figure 6.27: Examples pages from the Programming Arcana illustrating how the con-
cepts worked to instruct the notional machine

210

6.3. PROGRAMMING TEXT TO SUPPORT CONCEPT-BASED APPROACH

6.3.3 Use and Evaluation of the Programming Arcana

The Programming Arcana was able to meet all of its core requirements, though the
use of multiple media formats could be enhanced if the book transitioned to an e-
book format. Reflections from teaching staff indicate that it has provided a valuable
tool in teaching the introductory programming unit. Staff have received a number of
messages from students indicating how valuable they found the resource, a sentiment
often reflected in reflections from student portfolios. The following list outlines how
the Programming Arcana helped with the delivery of the example units, supported
the model described in Chapter 4, and reflected the principles stated in Chapter 3.

• The Programming Arcana embodies the following principles:
– Explanations aim to guide students to deeper understanding of the con-

cepts associated with the introductory programming unit. (P1, P2, and P11)
– Each section focuses on important aspects, avoiding unnecessary details.

(P4)
– Examples and explanations of concepts, syntax, and execution help support

student learning. (P6)
– Resources from the Programming Arcana provided material used in lecture

notes. (P8)
– The Programming Arcana focuses on communicating procedural program-

ming concepts, in an appropriate manner for the two programming lan-
guages. (P10 and P12)

– Chapters are organised so that later chapters built upon concepts presented
in earlier chapters. (P11)

• The Programming Arcana supported the use of the model in delivering the in-
troductory programming unit by:

– Providing details that were removed from lectures, to enable these to be
more interactive.

– Aligning content presented in the text, with the material from lectures and
core tasks, thereby providing a consistent experience for students.

– Supporting the focus on concepts, providing students with additional ex-
planations and examples.

– Providing resources to aid students with the core tasks.

211

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

6.3.4 Summary

The Programming Arcana textbook demonstrates how the concept-based approach of
the model can be embedded down to the syntax level. The text provides students with
the details related to programming concepts, how they apply to program design, the
associated syntax, and details on how they work within a notional machine. A range
of learning styles are supported through the presentation of the syntax and concepts
using both images and text. Overall, the Programming Arcana supported the concept-
based approach to teaching introductory programming by providing students with
details on the concepts, their application, syntax and operations.

6.4 Video Podcasts to Support the Programming Text

While it was able to meet most of its requirements, the one area where the Program-
ming Arcana was limited was its use of static text and images, a limitation of its for-
mat. To provide students with an alternative medium, a number of video podcast
series were created and made available to students via iTunesU. Three series were cre-
ated in total, and each took a different approach to what should be presented. The first
series, “Object Oriented Programming”, covers object oriented programming princi-
ples and focused on communicating these concepts with little coverage of language
syntax. “Learning Programming with SwinGame” was the second series created, and
focuses on communicating Pascal syntax. The third series, “Introductory Program-
ming”, focuses on a combination of the two, presenting the concepts and the syntax
together. Each of these series is discussed in the following subsections.

6.4.1 Requirements

The following list outlines the requirements for the video podcasts. This is divided
into general requirements for all podcasts, and specific requirements for the individual
series.

• All video podcasts were required to:
– Clearly present a number of concepts or syntax.
– Provide live coding demonstrations.
– Be small in size, enabling fast downloads, while ensuring code was still

readable.
– Incorporate Swinburne’s introduction and summary video material.

212

6.4. VIDEO PODCASTS TO SUPPORT THE PROGRAMMING TEXT

– Be accessible published to iTunesU with associated meta-data.

• The Object Oriented Programming series was required to:

– Provide all content traditionally delivered in lectures.
– Enable a classroom “flip”, where lectures are used to discuss content and

the video podcast takes the place of the traditional lecture.

• The Learn Programming with SwinGame series was required to:

– Demonstrate Pascal programming syntax.
– Each video should focus on a single piece of syntax, and demonstrate its

use in general and in relation to programming small games.

• The Introductory Programming series was required to:

– Provide a summary of lecture content of lecture content.
– Demonstrate C programming syntax.

6.4.2 Video Podcasts Solution

Each of the Video Podcast series was developed using a number of video editing tools.
Video from coding demonstrations, images of presentation slides, voice over audio,
and character animations were all combined together in the video editing software to
create each video podcast. Typical processing involved first recording coding demon-
strations, and exporting presentation slides, then recording voice over audio. There
were then combined with a video editing tool, which involved adjusting slide and
video speed to match audio.

Table 6.3 provides an overview of the three podcast series. The Object Oriented Pro-
gramming series was used by the object oriented programming unit, and provided
traditional lecture style content. Learning Programming with SwinGame focused on
presenting Pascal programming language syntax, as a more dynamic extension of the
Programming Arcana. Whereas the Introductory Programming series provided both
lecture style content, and coding demonstrations.

Table 6.3: Video podcast series details

Series Name Episodes Episode Length
Object Oriented Programming 19 6-36 minutes
Learning Programming with SwinGame 26 2-15 minutes
Introductory Programming 7 17-38 minutes

213

CHAPTER 6. SUPPORTING THE CURRICULUM WITH TOOLS AND
TECHNOLOGIES

6.4.3 Use and Evaluation of Video Podcasts

All three podcast series were used to support students learning in the example units
discussed in Chapter 5. The podcasts provided students with an alternative medium
for approaching the concepts and syntax that was included in the Programming Ar-
cana, with the expectation that students would be able to use both resources to support
the construction of their knowledge.

The following list relates the video podcasts to the principles stated in Chapter 3.

• Video podcasts provided an additional source of material students could use to
help construct their own knowledge. (P1)

• Content presented in the video podcasts aligned with the intended learning out-
comes of the example programming units. (P2)

• The video podcasts provided another set of resources to help support student
learning efforts. (P6)

• In each case, episodes demonstrate appropriate use of programming languages.
(P12)

In addition to the above list, it was felt that the Learning Programming with SwinGame
series had also demonstrated use of the following principles. These principles were
not present in the other series which tended to focus on information provision, with a
wider set of concepts.

• Episodes focused on demonstrating a single statement, and provided a number
of examples to illustrate its use. (P4)

• The small focus of these podcasts helped reduce time needed to produce the se-
ries. The specific nature of the series also allowed it to be re-used when activities
and lecture sequences changed. (P8)

• Podcasts provided support for language syntax, allowing other activities to fo-
cus on underlying concepts. (P11)

Interestingly, the Learning Programming with SwinGame series proved to be the most
useful of the three series. Its clear focus on communicating programming syntax al-
lowed it to be used more flexibly, as it did not depend on other teaching and learning
activities. In contrast, the other two series inclusion of concepts meant that they had a
greater dependence on how, and in which order, topics were covered in the unit. The
use of a larger number of more specific episodes in the Learning Programming with
SwinGame series, also made it easier to incorporate the videos in relevant lecture and
laboratory notes.

214

6.5. CHAPTER SUMMARY

Teaching staff indicated that future video podcasts would continue to use the format of
the Learning Programming with SwinGame series. Specifically, the narrow focus and
short duration. New series are currently planned to help demonstrate how to achieve
certain effects in game programs developed using the SwinGame library. These pod-
casts would demonstrate how to combine a number of concepts in creating slightly
larger programs.

6.4.4 Summary

Video podcasts provided students with an alternative means for studying unit con-
cepts and programming language syntax. It was found that specific, short duration,
podcasts had a longer lifespan as they worked together with teaching and learning
activities.

6.5 Chapter Summary

This chapter has discussed four resources used to support how and what was taught in
the example units from Chapter 5. Doubtfire helped to support the use of formative
feedback during the semester, with visual feedback being used in lieu of marks to help
motivate students. SwinGame provided a game library to help students create rich
and interactive programs. The Programming Arcana provided students with details
on the concepts, their application, associated syntax, and operation on the notional
machine. Which was also supported by the video podcasts, which provided students
with an alternative means of study.

Chapter 7 presents a further evaluation of these resources, the teaching and learning
activities from Chapter 5, and model from Chapter 4.

215

7
Evaluation of the Teaching and Learning

Context

This chapter presents the results from a number of small studies into the effectiveness
of the model presented in Chapter 4. The units analysed match those described in
Chapter 5, and they made use of the resources discussed in Chapter 6.

Section 7.1 describes the action research method, and thematic analysis approach,
used in this work and outlines how the ethical issues related to analysing student
work were addressed. This is followed by Section 7.2 that presents a discussion of the
evolution of the model, and the associated resources and assessment criteria, across all
iterations of the action research process. Section 7.3 and Section 7.4 provide the results
and discussions from the thematic analysis of student portfolios from two teaching
periods. Section 7.3 discusses issues that students reported in their reflections, while
Section 7.4 examines student progress as depicted by the burn down charts included
in student portfolios.

7.1. RESEARCH DESIGN

7.1 Research Design

7.1.1 Action Research

Due to the practical and applied nature of this research – with its focus on student
learning, and the embedded reflective process – it was decided to follow a Practical
Action Research (Creswell 2008) design based on Mills’ (Mills 2010) dialectic action re-
search spiral. This model, shown in Figure 7.1, includes a four step process: (1) identify
an area of focus, (2) collect data, (3) analyse and interpret the data, and (4) develop an
Action Plan.

Identify an
Area of Focus

Collect Data

Analyse and Interpret
Data

Develop an
Action Plan

Figure 7.1: A visual representation of Mills (Mills 2010) Dialectic Action Research
Spiral

Iterations in the work presented aligned to teaching periods that included the deliv-
ery of one or more of the programming units discussed in Chapter 5. Each iteration
included an action plan related to implementing the approach from Chapter 4, which
influenced the focus for the iteration, the data collected, and the analysis performed.

The overall focus for this research was on the development, application and itera-
tive improvement of the model from Chapter 4. The iterative nature of the action
research process meant that the specific focus in each teaching period addressed rele-
vant aspects of the model, based on its state at that time and feedback from previous
iterations.

Data collection included analysis of student portfolios, student grades, unit documen-
tation and staff reflections, as illustrated in Figure 7.2. The Unit Outline, prepared
prior to the start of the teaching period, documented the intended learning outcomes
and assessment criteria around which the unit delivery was focused. Student work

217

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Teaching Period

Portfolio

Students

Engage in teaching and learning activities,
producing piece of work.

Document learning, with evidence and
reflections in portfolio for assessment.

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Unit Outline

Unit Review

Swinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols Portfolio Assessment

Overview of Assessment Approach

1

Swinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols

Students learn to focus on marks,
rather than the required learning

Marks LearningLearning

3

Swinburne Higher Education Division Test Paper

 Page 1 of 1

 Test 3 Cover Sheet

1. CANDIDATE DETAILS: Student to complete (please print)

Family Name: _______________________________ First Name: _______________________________

ID Number: _______________________________

2. TEST DETAILS: Semester: 2 Year: 2009 Total # of pages (incl. cover) 4

FACULTY: Information and Communication Technologies Subject Code: HIT2302/HIT6302

Description: Object Oriented Programming

Duration of Exam: 90 min Reading Time: 0 min

3. INSTRUCTIONS TO CANDIDATES
Materials Allowed You may take the following materials/equipment into the exam venue:

Writing material

Material/equipment that is not on this list is unauthorised material.

Where a student is found in possession of any unauthorised material:
• That material will be removed as soon as it is detected
• The Student Examination Irregularity procedures of the Assessment and Appeals Policy and Procedures – Higher

Education will be implemented.

Answering Requirements

Answers are to be written only in the spaces provided.

Answer all questions.

Write neatly and clearly.

4. CANDIDATE DECLARATION
• I am the person stated above
• I agree to obey the Examination Supervisors instructions for proper conduct of the exam
• I have read and understood the Instructions to Candidates provided
• I understand the it is my responsibility to ensure that I have been correctly enrolled for the above subject and that I am

fully liable for any outstanding fees and charges
• I am aware that I am not allowed to present for any special examination unless approval has been granted by the

appropriate Swinburne or external authority.

STUDENT SIGNATURE: DATE:

Faculty of Information and Communication Technologies

Object Oriented Programming

Assignment 4

Overview

In this assignment you will use what you have learnt from the Random Shape Drawing programs to create a
simple drawing program and write up a short report on your understanding of these principles. This will allow
you to further explore the principles of Abstraction, Encapsulation, Inheritance, and Polymorphism.

Due: This assignment is due at the start of next week's lecture.

Purpose

Your aims while undertaking this assignment should be as follows:

1. To learn to program using C#, Java, or Objective C.

2. To learn to define and use interfaces.

Submitting this assignment on time will ensure that you get feedback on the following aspects:

1. Implementation and use of interfaces.

Preparation

The following resources are available to assist you in undertaking this task:
• Podcasts on iTunes:

• 2008 - Module 4 - Interfaces
• Swinbrain (http://swinbrain.ict.swin.edu.au): The following articles relate to the object oriented principles of

encapsulation and abstraction.
• Drawing Example at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Drawing_Example
• Interfaces at http://swinbrain.ict.swin.edu.au/wiki/Object_Oriented_Programming_-_Interfaces_and_Protocols

University study is highly geared
towards assessment and marks

2

Deliver teaching and learning activities

50 P
Very Weak.

Has passed tests.
Missing some

features in core
pieces.

Did not pass tests,
Fails to demonstrate coverage of all ILOs

Missing a number of core pieces

75 D
Some issue with
submission, but

meets most
requirements for D

85 HD
Some issue with
submission, but

meets most
requirements for

HD

65 C
Some issue with
submission, but

meets most
requirements for C

100 HD (think A++)
Something special!

98 HD (think A+)
Research well
communicated.

Evidence of good
analysis.

88 HD (think A-)
Weak P, C… work
Minimal analysis in

research work.

92 HD (think A)
Average "high

distinction"

82 D (think B+)
Solid own program,
meets good P and C

criteria. Solid
interview responses.

80 D (think B)
Average "distinction"

78 D (think B-)
Weak P, or C work

Own program
demonstrates

concepts but is weak

70 C (think C)
Average "credit"

68 C (think C-)
Good glossary

descriptions but poor
code formatting,

minimal extensions.
etc.

72 C (think C+)
Good code quality,

good range of
extensions etc.

55 P (think D-)
Some weak/missing
aspects with poor
attention to detail.

Weak justifications/
reflections. etc.

58 P (think D)
Average "pass"

62 P (think D+)
Strong "pass". Extra
effort/pieces, good

code quality,
reflections,

justifications, etc.

Assess
Portfolios

Reflections

Reflections

Reflections

Reflections

Reflections are captured during delivery and assessment and
documented in unit review

Teaching Staff

Unit Results

Figure 7.2: Various documents used in the data collection for this research

from the teaching period was collected and submitted for assessment in student port-
folios. Students could opt to make this work available to the action research project
using the process outlined in Section 7.1.3 to address ethical considerations. Reflec-
tions from Teaching Staff, Unit Results and Unit Reviews also provided data for the
action research project.

Thematic analysis (Braun & Clarke 2006) was used to examine reflections in student
portfolios, which is discussed further in Section 7.1.2. As the thematic analysis of stu-
dent portfolios was a time consuming process, it was not performed in all iterations.
In teaching periods where a thematic analysis of the portfolios was not performed, the
student grades and staff reflections provide insights into the composition of student
portfolios.

Unit documentation included the Unit Outline and Unit Review documents. The Unit
Outline documented the intended learning outcomes and assessment criteria used in
the given teaching period. This document was provided to students prior to the com-

218

7.1. RESEARCH DESIGN

mencement of classes and was an actively used and referred to by both teaching staff
and students. At the conclusion of the teaching period, and after results were reported,
a Unit Review document was created. This document captured details of student per-
ceptions of the teaching, teaching and learning approach, results, unit management,
and any planned changes for future delivery of the unit. These documents were pre-
pared by the Unit Panel, and included input from all teaching staff.

Staff reflections indicate the overall and particular qualities exhibited in the student
portfolios for a given semester. Staff reflections were captured both during the semester
and after portfolios were assessed. These reflections were recorded in personal log
book notes, which in most cases were summarised in the Unit Review document.

Student grades provide an indication of how well students performed in the given
semester. Together with the staff reflections, results provide some insight into the
learning outcomes students achieved – insights not available by considering students
grades alone.

Figure 7.3 illustrates the interactions between the activities in the action research project,
and the teaching and learning activities for an individual teaching period. The action
research activities, on the left, provided inputs to help refine the model and inform
adjustments to the Unit Outline. These activities coincided with the teaching and
learning activities associated with defining the intended learning outcomes, and con-
structing the assessment criteria.

Interestingly, the Unit Review document provided input into the data collection, while
also incorporating inputs from the analysis and interpretation of the data. This was
achieved in two phases, initially the teaching staff prepared the unit review incorpo-
rating their reflections on the teaching period as well as data from student surveys and
unit results. The Unit Review document was then used as part of the action research
project, which further analysed the data available. The outputs of this analysis were
then added to the Unit Review, to ensure they helped inform subsequent iterations.

219

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Documents from Iteration n - 1

Identify an
Area of Focus

Collect Data

Analyse and
Interpret Data

Develop an
Action Plan

Iteration n

Define Intended
Learning Outcomes

Construct Assessment
Criteria

Assess Student
Portfolios

Develop Teaching and
Learning Activities and

Resources

Deliver Unit

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Unit Outline Unit Review

Unit Results Portfolios

Staff
Reflections

 Page 2 of 10

Unit of Study Outline

Unit of study code HIT2302/HIT6302

Unit of study name Object Oriented Programming

Semester & Year Semester 2, 2008

Total contact hours 54 hours in total

Prerequisites HIT1301 Algorithmic Problem Solving, or

A university level programming subject

Corequisites None

Credit Points 12.5

Aims

This unit of study aims to introduce you to object oriented programming and design.

Intended Learning Outcomes (Learning Objectives)

After successfully completing this unit, you should be able to:
1. Explain the use, implementation of, and relationships between, the principles of the object

oriented programming paradigm specifically including abstraction, encapsulation, inheritance,
and polymorphism.

2. Explain object oriented programming language implementation details and language specific
culture, features, and environments.

3. Design, develop, test, and debug programs using object oriented principles in conjuncture
with development tools including integrated development environments, debuggers, unit
testing tools, and version control tools.

4. Construct appropriate diagrams and textual descriptions to communicate the static structure
and dynamic behaviour of an object oriented solution, explain these structures to other
developers, and convert them into working implementations.

5. Describe and explain the factors that contribute to a good object oriented solution, using your
own experiences and by drawing upon accepted good practices.

Content
 Object Oriented Programming with C# and Java
 Responsibility Driven Design
 Software development tools

Key Generic Skills for this Unit of Study

You will be provided with feedback on your progress in attaining the following generic skills:
 Communication skills
 Problem solving skills
 Ability to work independently

Unit Outline

Portfolios

Unit Review

Unit Results

Staff
Reflections

Ac
tio

n
Re

se
ar

ch
 A

ct
ivi

tie
s

Teaching and Learning Activities

Provides input

Provide Feedback
and Guidance

Refine Model

Figure 7.3: Interactions between Action Research Activities and Teaching and Learn-
ing Activities, and their input into various documents.

220

7.1. RESEARCH DESIGN

7.1.2 Thematic Analysis of Reflections

Reflections in student portfolios provide a wealth of information. To help identify
themes and patterns in the portfolios it was decided to perform a thematic analysis
using the process outlined by Braun & Clarke (2006). This process involves six phases,
with some terminology1 adapted for clarity:

1. Familiarising yourself with the data
2. Generating initial themes,
3. Searching for strong themes
4. Reviewing themes
5. Defining and naming themes
6. Producing the report

In each teaching period where a thematic analysis was performed, familiarity with
the data was obtained early in the process with all portfolios being read as part of the
unit assessment. At the end of the unit assessment, teaching staff made notes related
to general issues, progress, and the overall quality of portfolios. This was part of
standard unit delivery procedures, with the resulting reflections being summarised in
the Unit Review document as mentioned in Section 7.1.1.

Once the portfolios were made available for this research initial themes were gen-
erated by revisiting the reflective component of each portfolio and looking for the
qualities under examination. These themes were then documented, and recorded in a
spreadsheet. Spreadsheet software was used to collate the themes and record the port-
folio details of where these themes had been mentioned, along with any illustrative
comments using the students own words.

In phases 3 through 5 the identified themes were broadly grouped together, and then
each broad group was examined for sub-themes. All of the themes identified in the
examination of student portfolios were maintained in the final categorised results.
Themes that did not clearly relate to any of the identified groups were grouped to-
gether as a miscellaneous group.

In the reporting of this analysis the raw results are presented, grouped into the iden-
tified themes. Illustrative quotes from student reflections are provided to help define
the themes.

1The term “code” has been changed to “theme” to avoid confusion relate to the use of this term in
computer science.

221

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

7.1.3 Addressing Ethical Concerns

In studies related to an educational context, the student-teacher relationship can be
a source of potential ethical problems, with perceptions of coercion being the central
concern where the research is also involved in teaching the students. Participants in
this study were students of the investigators, and so it was important to design an
appropriate process whereby students could offer informed consent to participate in
the research with no risk of coercion.

This issue was further complicated as the researchers at times taught both the first and
second programming units. For example students could undertake the introductory
programming unit in the first half of the year, and the object oriented programming
unit in the second half of the year. As most students who completed the first unit
progressed to the second unit the following semester, there was the potential for the
perception of coercion in this second unit.

An appropriate research protocol was developed, and granted ethical approval from
Swinburne’s Human Research Ethics Committee. Figure 7.4 shows an overview of the
protocol approved and used.

Teaching Period Teaching Period

Research &
Teaching Staff

Students

Research Staff

Introductory
Programming

Unit

Object Oriented
Programming

Unit

Informed
Consent

Informed
Consent

Informed
Consent

Include
Portfolio:

Other
Questions:

�

❌

Informed
Consent

Include
Portfolio:

Other
Questions:

�

❌

Studies units, and provides informed
consent to research staff

Informed consent
provided to research
staff also involved in

teaching the units
under investigation

Delivers units, and assesses portfolios

Collects Informed Consent forms, and keeps secure
until after period of potential conflict

Figure 7.4: Overview of the protocol used to avoid perceptions of coercion across all
units involved in this research

Students were informed that participation in the research was voluntary, and their
participation would in no way influence their results or relationship with the univer-
sity. Informed consent was then gained using a printed Informed Consent form, which
was distributed to students in lectures during each teaching period. Forms were com-

222

7.1. RESEARCH DESIGN

pleted by all students, and indicated their willingness to have their work included in
the research. All students were required to complete and sign the form, so that it was
not be possible to determine those who did, or did not, wish to participate simply by
observing those who signed the form.

To avoid issues of coersion in the second programming unit, the Informed Consent
forms were withheld from researchers involved in teaching these students until the
period of potential influence was deemed to have passed. Until such time, the forms
were kept in a sealed envelope in a locked cabinet at Swinburne by the researchers
who were not directly involved in teaching of the units.

The period of potential influence was deemed to have passed based on the following:

• For the introductory programming units where the researchers were not in-
volved in teaching a follow on unit, the period of potential influence was deemed
to have passed once the results for the introductory programming unit were pub-
lished.

• For the introductory programming units where the researchers were involved in
the teaching the follow on unit, the period of potential influence was deemed to
have passed once the results for the second unit were published.

• For the object oriented programming units, the period of potential influence will
be deemed to have passed once the results for the unit were published.

223

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

7.2 Lessons Learnt through Action Research

The action research process was used in the development, application, and evaluation
of the model presented in Chapter 4. A total of nine iterations were completed over
a five year period, involving thirteen unit deliveries, with a total of 983 portfolios
assessed. This section reports on the development of the model, its guiding principles,
the teaching and learning activities and supporting resources.

7.2.1 The Units

Chapter 5 presented details of two example implementations of the model. These ex-
amples represent the current status of this research, which evolved iteratively from the
delivery of four separate programming units: two introductory programming units,
and two object oriented programming units. Table 7.1 shows the four different pro-
gramming units, and the iterations in which they were involved. All of the units were
taken by undergraduate students early in their degree programme and were convened
by the author.

Table 7.1: Units in each iteration.

Units \ Iteration 1 2 3 4 5 6 7 8 9 Current

Introductory Programming (A) X X X X X X

Introductory Programming (B) X X X X

Object Oriented Programming (A) X X X X X

Object Oriented Programming (B) X X

General details of the four units follow, and any changes to individual iterations are
presented in the following sections.

Introductory Programming (A)

Introductory Programming (A) was typically taken by students in their first semester
of their degree programme, and introduced them to procedural programming, as out-
lined in Chapter 5. The intended learning outcomes included: the ability to read and
interpret code; write small procedural programs; iteratively use modular and func-
tional decomposition to break problems down; and the ability to apply the principles
of structured programming (focusing on blocks of code and using sequence, selec-
tion, and repetition). Outcomes were expressed in a programming language neutral
manner as the focus of the unit was on the underlying programming concepts.

224

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

Introductory programming (A) was taken by students studying a range of degrees.
Most students were enrolled in a Bachelor of Science majoring in Computer Science,
Professional Software Development or Games Development.

Object Oriented Programming (A)

Object Oriented Programming (A) had Introductory Programming (A) as a prerequi-
site and was predominantly taken by students in their second semester. As outlined
in Chapter 5, the intended learning outcomes in this unit required students to: design,
develop and test object oriented programs; communicate the underlying principles of
abstraction, encapsulation, inheritance and polymorphism; use professional software
development tools; and describe factors that influence the quality of an object oriented
program. As with Introductory Programming (A), the outcomes were expressed in a
language neutral manner and the focus was on underlying concepts.

The student cohort in Object Oriented Programming (A) consisted only of students
that had completed Introductory Programming (A).

Introductory Programming (B)

Prior to iteration seven this unit was taught using a common textbook style approach
with assignments and a final exam. In iteration seven the unit was adapted to a
portfolio-based approach, and then combined with Introductory Programming (A)
from iteration eight.

Intended learning outcomes for Introductory Programming (B) covered similar topics
to Introductory Programming (A) but with specific reference to the C programming
language. When this was combined with Introductory Programming (A) in iteration
eight, the combined outcomes matched those from Chapter 5, and the focus shifted
from language syntax to programming concepts.

The cohort of Introductory Programming (B) included students from a range of de-
gree programmes. This included students studying for a Bachelor of Information and
Communication Technology, Bachelor of Engineering and Bachelor of Science (Com-
puter Science and Software Engineering). The unit was included in a number of other
degrees as an elective.

225

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Object Oriented Programming (B)

As with Introductory Programming (B), Object Oriented Programming (B) was taught
using a specific language (C++), used a textbook style approach, traditional assign-
ments and final exam. This unit covered the same topics as Object Oriented Pro-
gramming (A), and in iteration nine the two object oriented programming units were
combined into a single unit. This combined unit used portfolio assessment and its
intended learning outcomes matched those from Chapter 5, and focused on program-
ming concepts and principles. Students continued to enrol in the individual units, but
were taught as a single cohort. Students enrolled in Object Oriented Programming (B)
were required to include evidence in their portfolios of being able to apply the unit’s
concepts using the C++ language.

Relationship Between Units

Figure 7.5 shows progression paths through these units. The students we broadly
classified as being enrolled in a software development focused degree took Introductory
Programming (A) in the first semester of their first year, and then Object Oriented
Programming (A) in the second semester of their first year. Introductory Program-
ming (B) was taken primarily by student enrolled in an Engineering degree, who sub-
sequently took an intermediate programming unit before studying Object Oriented
Programming (B). The intermediate programming unit aimed to further develop stu-
dents’ programming knowledge with the C and C++ programming languages, and
included a brief introduction to objects in the last few weeks. For the Engineering
students, this sequence may be extended over more than three consecutive semesters
depending on their degree programme.

Merged from
Iteration 9

Introductory
Programming (A)

Object Oriented
Programming (A)

Introductory
Programming (B)

Intermediate
Programming

Object Oriented
Programming (B)

Predominantly Software
Development Students

Engineering and
General IT Students

Merged from
Iteration 8

Figure 7.5: Progression pathways through the introductory programming units

226

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

7.2.2 Prior to Portfolio Assessment

Prior to Iteration 1, the introductory programming units at Swinburne were taught
using some of the principles stated in Chapter 3. The principles incorporated in these
units are outlined in Table 7.2, and described in the following list.

• Lectures incorporated a number of constructivist learning theories (P1), but the
units used more traditional forms of assessment with assignments, tests, and
exams.

• Teaching staff aligned assessment tasks to unit learning outcomes (P2), but this
activity was done informally, was not documented, and did not involve the stu-
dents.

• Lectures did focus on trying to communicate a few important aspects (P4), though
it lacked the clarity that evolved in later iterations.

• Students were actively supported throughout the teaching period (P6).
• Staff were willing to change (P8), but were not focused on adopting principles

from agile software development.
• The unit focused on concepts associated with a single paradigm (P10).
• Concepts (P11) were central to the teaching, but lacked the clear focus that de-

veloped in later iterations.
• Programs students created made appropriate use of the programming languages

used (P12).

Table 7.2: Principles related to the introductory programming units prior to convert-
ing to constructive alignment with portfolio assessment. The X indicates a princi-
ple in the form presented in Chapter 3, ∼ indicates partially present but neither in
planned focus nor in final form.

Iteration P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Prior ∼ ∼ ∼ X ∼ X ∼ X

Assessment in the programming units consisted of assignments, tests, and an exam.
While pass rates were good, the teaching staff felt that in many cases final results
did not accurately represent student capabilities. Marking assignments and exams
often identified significant misunderstandings that were not correctly reflected in the
quantitative assessment schemes used. Often these issues were uncovered in the final
exam, when it was too late to provide students with feedback. When misunderstand-
ings were identified in assignment submissions, feedback appeared to be ignored by
most students as they focused on the numeric grade attached to the work, an observa-
tion that is consistent with the findings of Black & Wiliam (1998).

227

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Additionally, staff felt that examinations were not ideal for assessing programming
capabilities, a sentiment also echoed by other academics teaching introductory pro-
gramming units (Sheard et al. 2013). As discussed in Section 4.1.1, test and exams
poorly align with constructivist learning theories, which see test performances as pro-
viding poor indicators of the conceptual models students had constructed Ben-Ari
(2001). This, together with the general feeling that grades were not accurately reflect-
ing learning outcomes, was the primary motivation for trialling portfolio assessment
in Iteration 1.

It is interesting to note that the introductory programming units prior to Iteration
1 could be considered to have already embodied the core principles of constructive
alignment. Teaching and learning activities aimed to actively engage students, adopt-
ing aspects from constructive learning theories (P1), and the unit content and assess-
ment was aligned to learning outcomes by the teaching staff (P2).

In terms of constructivist learning theories, the introductory programming units made
explicit use of a notional machine as described by DuBoulay (1986), a practice that Ben-
Ari (1998, 2001) indicated as essential for the adoption of constructive learning theories
in computer science. Additionally, the lectures made use of many of the strategies
described in Chapter 4, including the use of story structure for lecture presentations
(Atkinson 2007) and interactive coding demonstrations (Van Gorp & Grissom 2001).
While these practices had previously been used, they were the result of intuition rather
than explicitly related to constructive learning theories.

Ideas from aligned curriculum were also present, though the processes of aligning
assessment tasks and lecture content to intended learning outcomes was done infor-
mally and was not documented as part of the unit delivery. However, in reflection it
was possible for teaching staff to align each of the assessments and weekly topics back
to the unit’s intended learning outcomes.

228

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

7.2.3 Early Iterations

Iteration 1

Focus This first iteration attempted to implement constructive alignment, with as-
pects of portfolio assessment. This involved clearer implementation of constructivist
learning theories (P1) and aligned curriculum (P2) as indicated in Table 7.3.

Table 7.3: Principles related to the introductory programming unit in Iteration 1. Fo-
cus is indicated by ? , Xindicates the principles is in the form presented in Chapter 3,
∼ indicates partially present but neither in planned focus nor in final form.

Iteration P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Iteration 1 ? ? ∼ X ∼ X ∼ X

Action Plan The approach used was an iterative step toward the general model pre-
sented in Chapter 4. Students were required to complete six assignments and six tests,
with the option to include a portfolio. The aim of the assessment strategy was for
students to demonstrate their understanding of core concepts in the assignments and
tests, with the portfolio used to determine student ability in the higher grade brackets.
Weights were applied to each of the assessment items and these were added together
to calculate the final grade.

In terms of the model from Chapter 4, this iteration lacked many of the aspects de-
fined. Intended learning outcomes had been defined, there were some assessment
criteria (though they lacked the clarity of later iterations) teaching and learning activ-
ities were presented to students with lectures including interactive components, and
students did present a portfolio of work for assessment. The major difference was the
lacked of the iterative formative feedback process. The dynamic from this iteration
was more consistent with “standard” teaching and learning environments teaching
staff had experienced before implementing constructive alignment, with the portfolio
representing yet another assignment.

Key differences from the portfolio model presented in Chapter 4:

• The unit included a total of eleven intended learning outcomes, each making use
of active verbs and relating to specific parts of the unit.

• It used multiple assignments (six) over the semester.
• It included tests that were marked and contributed to the final grade.
• Submission of a portfolio was optional. All students who submitted a portfolio

were interviewed.

229

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Similarities with later portfolio iterations included:

• It included qualitative criteria for each grade, though these were described in
general terms.

• Students included a self assessment against the criteria.

Key differences from the introductory programming unit described in Chapter 5 in-
cluded the following:

• Focus was on programming concepts, but there was some crossover of topics in
the early material.

• The teaching and learning activities made limited use of SwinGame.
• Procedures were introduced later (SwinGame was not used in the early parts of

the teaching period).
• Students were only briefly introduced to the C programming language at the

end of the unit.
• None of the supporting tools from Chapter 6 had been developed at this stage.
• Lecture slides closely followed the “Beyond Bullet Points” approach (Atkinson

2007), and included extensive notes on each slide.
• An earlier edition of the Pascal Language Reference (Van Canneyt 2013) was

used as the unit text.

Data Unit results across all iterations are shown in Table 7.4, which lists the number
of students receiving each grade over the nine iterations. Grades include those stu-
dents who enrolled but did not submit a portfolio (NA) those who failed (N) and those
who received Pass (P) Credit (C) Distinction (D) and High Distinction (HD) result. The
results for Iteration 1 are shown in Figure 7.6. In this iteration a large percentage of
students managed to receive an HD grade.

Reflections and Analysis Use of portfolios was limited in this iteration, with posi-
tive and negative results. Positive aspects of the unit delivery included the improved
confidence of staff in the potential for using portfolio assessment in units related to
software development. Overall, it was felt that portfolio assessment offered great po-
tential, but that this iteration had not managed to create a suitable environment in
which these benefits could be realised.

The two main issues were the weakness of the expressed assessment criteria and the
combining of results from the assignments and tests. Together, these issues resulted
in many students receiving a higher grade than staff felt was appropriate given the

230

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

Table 7.4: Unit Results Across Iterations 1 to 9

Iter. Unit NA N P C D HD

1 Introductory Programming (A) 3 1 4 5 6 11

2 Object Oriented Programming (A) 19 7 14 19 13 11

3 Introductory Programming (A) 9 1 2 9 6 9

4 Object Oriented Programming (A) 4 7 3 17 6 5

5 Introductory Programming (A) 10 6 9 19 12 14

6 Introductory Programming (A) 14 3 28 20 14 5

7 Introductory Programming (B) 42 12 56 47 22 7

Object Oriented Programming (A) 5 8 18 10 8 9

8 Introductory Programming (A) 11 5 20 21 17 14

Introductory Programming (B) 39 47 84 36 20 9

9 Introductory Programming (B) 61 4 78 24 25 7

Object Oriented Programming (A) 14 0 25 6 14 7

Object Oriented Programming (B) 7 0 25 5 3 4

Figure 7.6: Result distributions from Iterations 1 and 2, note in particular the shift in
the number of High Distinctions.

231

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

outcomes demonstrated in student portfolios. This is supported by the high portion
of students with HD grades when informally compared with other unit results.

Staff reflections included several interesting aspects related to the assessment in this
iteration:

• There were too many intended learning outcomes. This had made it difficult
for staff to clearly communicate how teaching and learning activities related to
the outcomes. Students had also found it difficult to relate their portfolio pieces
back to the intended learning outcomes.

• Criteria were difficult to apply, being weakly defined, and student interpreta-
tions tended to weaken the criteria further in their self assessment.

• Significant effort had been put into creating “Beyond Bullet Point” slides and
associated notes, which had been useful in terms of delivery but restricted op-
portunities to adapt the material.

• Assessing the portfolios was very time consuming due to the loosely defined
criteria. Staff needed to “extract” value from the portfolios, rather than the em-
phasis being on students demonstrating understanding.

• The time consuming nature of the portfolio assessment meant that teaching staff
did not feel the approach could scale to larger class sizes.

• Staff felt confident that a portfolio of work could provide a suitable means of
assessing student outcomes in technical units, addressing a key concern at the
time.

• Core assignments and tests:
– Covered the minimum expectations for the intended learning outcomes.
– Received high marks, which only indicated basic coverage of the intended

learning outcomes.
• Students with weak portfolios, showing shallow coverage of the intended learn-

ing outcomes, were still able to receive high grades indicating the assessment
strategy was poor.

Development of Principles The first experience of delivering a portfolio assessed
unit had been informed by examining the principles of constructive alignment, and
the experience provided a number of insights that helped form the principles stated
in Chapter 3. These included:

• Constructive learning theories (P1) and aligned curriculum (P2) had been at the
centre of this experience. However, the utility of both had been hampered by
the large number of intended learning outcomes. This guided the importance of

232

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

having a small number of more highly targeted outcomes.
• The portfolios had been able to capture student outcomes, but results had been

impacted by the use of weighted assessment used to motivate students during
the semester. While alternative schemes, or weightings, could have been devel-
oped, it was felt these incentives were not required and a greater use of formative
feedback would be of greater benefit to students. This emphasis on formative
feedback evolved into Principle 3 and influenced a change from a soft Theory X
to Theory Y (P7) perspective.

• Teaching staff were willing to change, and wanted to be able to adjust teaching
material in response to student issues. However, the significant effort that had
gone into the develop of the “Beyond Bullet Points” lecture slides had created
a resistance to change. This conflict started a change in attitude that resulted in
the definition of Principle 8; the aim to be both agile and willing to change.

Iteration 2

Focus Iteration 2 included the delivery of Object Oriented Programming (A), and
aimed to address several of the main concerns from Iteration 1 by having fewer intended
learning outcomes around which everything would be based, assessing each student’s
outcomes as a whole with 100% portfolio assessment, and using specific assessment criteria
to express what was expected for each grade. In addition to this, the unit material was
separated into teaching and learning activities and teaching and learning resources, in
an effort to enable greater flexibility with future changes.

Table 7.5 shows the principles related to this iteration, highlighting the additional fo-
cus on frequent formative feedback (P3), adoption of Theory-Y perspectives on mo-
tivation (P7), and on means of effectively managing teaching and learning activities
and resources (P8).

Table 7.5: Principles related to Iteration 2. Focus indicated by ? , present indicated
by X, partially present indicated by ∼ .

Iteration P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Iteration 2 ? ? ? ∼ X ? ? X ∼ X

Action Plan The transition from assignments plus portfolio, to 100% portfolio as-
sessment meant that this iteration did include most aspects of the model described in
Chapter 4. Most notably, the iterative feedback process was initiated, and students
were actively encouraged to develop pieces for their portfolios throughout the teach-
ing period. Where the model did differ was in how the various activities were guided,

233

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

as result of the absence of Principle 5 and the overly zealous application of construc-
tive learning theories (P1).

In this iteration the following aspects of our model were included:

• The number of intended learning outcomes was reduced from eleven to five,
reducing redundancy and providing a clearer focus (Principle 4).

• Assessment criteria were developed for each grade using the different levels
from the SOLO taxonomy (Biggs & Collis 1982). This was presented in a for-
mat similar to that shown in Figure 5.3, though some details differed.

• Feedback was provided to students using weekly formative assessments and
tests.

• Notes previously embedded in slides were shifted to a single document and
distributed to students as a PDF.

The following aspects differed from Iteration 1:

• Each intended learning outcome had criteria for meeting it to differing stan-
dards: Marginal, Adequate, Good, and Excellent.

• A Credit grade required three intended learning outcomes to be addressed at an
Adequate standard, Distinction required two at a Good standard (with all other
adequate) and High Distinction required two Excellent and all others Good.

• A flipped classroom model (Baker 2000, Lage & Platt 2000) was adopted: student
were provided with online videos covering the typical weekly lecture material
and class room activities were predominantly interactive.

Key differences from the final version of the object oriented programming unit de-
scribed in Chapter 5 include the following:

• A greater emphasis was placed on constructive learning theories, and a shift
toward discovery learning. Concepts were presented using the video podcasts,
and lecture activities included a greater emphasis on group discussions.

• Lectures used a number of interactive quizzes; questions were typically taken,
then discussed in small groups, and retaken before a wider group discussion on
any changes in understanding.

• While multiple languages were used, and students could only choose between
the Java and C# programming languages.

• Laboratory exercises also had less guidance, and students explored their chosen
language and how it could be used to implement object oriented programs.

• SwinGame was introduced early in the teaching period to enable students to

234

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

visualise object interactions through the creation of a drawing program.

Data Figure 7.6 shows the result distributions for Object Oriented Programming (A)
in Iteration 2. The number of High Distinction results was closer to expectations,
though the low pass rate was a cause for concern.

Reflections and Analysis Key staff reflections included:

• The shift to formative feedback had been challenging, with a great deal of anxi-
ety for teaching staff about whether students would engage in the weekly tasks
when they had not been allocated marks.

• Interviewing all students provided staff with high confidence that students had
completed the work themselves, but meant that portfolio assessment was very
time consuming.

• The general structure of the assessment criteria was suitable, but there was a
disconnect in student perception of the required standard: the interpretation of
“good” was significantly different between staff and students. Students felt that
Good equated to having completed the work, whereas staff viewed this as the
required standard for Adequate and Good required the work to be of a higher
standard.

• The quality of work included in student portfolios was of a weaker standard
than desired across all grades.

• Most students did not appear to benefit from the classroom flip, with few prepar-
ing adequately for the classroom discussions.

• It was felt that many students “coasted” along, and did not genuinely attempt
the planned activities.

• Progress on understanding weekly topics was very slow, with the lack of guid-
ance resulting in students not making the best use of their time.

• Separation of teaching and learning activities and resources had enabled a greater
freedom in creating the interactive lecture, and the resources could be reused for
future unit deliveries.

Staff felt that most of the issues from the semester could be attributed to the shift to-
ward non-productive “discovery learning” (Anderson et al. 1998). In our effort to im-
plement constructive learning theories we had reduced the amount of guided learning
activities, and student productivity appeared to have been adversely affected.

It was still felt that portfolio assessment could be beneficial but that, again, we had
failed to realise any significant benefits. In many ways the results from this teaching

235

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

period, in terms of student learning outcomes, had felt like a backward step.

Development of Principles The teaching and learning environment created in Itera-
tion 2 had been informed by the constructive learning theories, and a trusting Theory
Y environment. At the end of this iteration it was felt that the Theory Y attitude was
still appropriate, but that the overly zealous application of constructive learning the-
ories had meant students were unable to appropriately apply themselves. The lack of
guidance had resulted in many students spending too much time working out what it
was they needed to learn, and not enough time applying the concepts related to object
oriented programming to actually construct the required knowledge.

This experience influenced a number of the principles stated in Chapter 3.

• Constructive learning theories, central to Principle 1, were tempered to include
stronger guidance along with the focus on the central role of the learner in con-
structing their own knowledge.

• We needed to more clearly communicate our high expectations of students (P5).
In this iteration many students did not seem to be aware of what had been ex-
pected of them.

• The shallow responses and evidence in student portfolios also indicated the need
to focus on depth of understanding (P4).

236

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

7.2.4 As the Model Stabilised

Experiences from iterations 1 and 2 had hinted at the potential for portfolio assess-
ment, but the implementation had been unsuccessful. The changes to the model at the
end of Iteration 2 resulted in a more successful application of portfolio assessment,
and Iterations 3 to 6 all applied the model in a similar way.

Iterations 3 to 6

Focus The focus of Iterations 3 to 6 was on both extended how we taught the units,
and developing resources to support what we taught. In relation to how we taught,
the focus was on the development of assessment criteria, with the aim to ensure these
were clear for both staff and students, and could be applied efficiently to assess stu-
dent outcomes. At the same time, each iteration worked on extending the resources
available to support what and how we taught.

Table 7.6 indicates the principles in focus for iterations 3 to 6. Iteration 3 was the first
iteration in which all of the principles were present in some form, with most being ac-
tively incorporated to address limitations identified in Iteration 2. After this iteration
the majority of the principles were in place, and subsequent the focus in subsequent it-
erations was on improving the incorporation of these principles. Iteration 5 marks the
next change, with the incorporation of the hurdle tests and template for the learning
summary report.

Table 7.6: Principles related to Iterations 3 to 6. This uses the same symbols as in
Table 7.3 and Table 7.5: focus ? , present X, partially present ∼ .

Iteration P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Iteration 3 ? ? ? ? ? X ? ? ? X ∼ X
Iteration 4 X X ∼ ? ∼ X ∼ ∼ ∼ X ∼ X
Iteration 5 X X ∼ ∼ ∼ X ? ? ? X ∼ X
Iteration 6 X X ∼ ∼ ∼ X X X X X ∼ X

In terms of the model described in Chapter 4, Iterations 3 onward incorporated all
aspects. Each iteration provided greater insights into how to successfully deliver units
in this approach, and the related guidelines were developed from the changes made
from Iteration 3 to Iteration 9.

Action Plan Assessment criteria in each iteration adopted the changes from prior
iterations, and made improvements in wording to better capture staff intentions and

237

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

expectations for each grade criteria. An example of the overall assessment criteria is
shown in Figure 7.7, and details of the assessment criteria related to an individual
intended learning outcome is shown in Figure 7.8.

Specific changes included:

1. Iteration 3: Changes in this iteration aimed to address the poor outcomes from
Iteration 2 by providing students with additional guidance, and communicating
our high expectation of their outcomes (P5).

• The flipped classroom idea was dropped, with videos now being used to
support classroom activity. This aimed to use a more moderate form of
constructive learning theories inline with the ideas communicated in Prin-
ciple 1.

• Adjusted the main category descriptors to: Adequate, Good, Outstanding,
and Exemplary. Students had interpreted “good” to a much weaker stan-
dard than staff, shifting this down a category helped better indicate the
desired standards.

• A specific reflective report was added as required piece in student portfo-
lios. The report included a self assessment, in which the student aligned the
pieces they submitted to the intended learning outcomes, and general re-
flections (Principle 9). This aimed to help students identify how their work
aligned with learning outcomes, while also assisting staff in assessing stu-
dent portfolios.

2. Iteration 4: This iteration aimed to reduce the amount of work students needed
to do in order to get higher grades, thereby enabling students to focus on build-
ing depth of knowledge. (P4)

• Reduced the number of items expected for each grade: Credit required one
Good, Distinction one Good another Outstanding, and High Distinction
required one Good another Outstanding and a further one at Exemplary.

3. Iteration 5: The success of iteration 4 meant that iteration 5 made only slight
adjustments aimed at improving productivity.

• Pass and Credit students were no longer interviewed. Interviews had been
used to assess all students up to this point, but the use of common tasks
by all Pass and Credit students meant that staff felt the model could be
adjusted to use hurdle tests and no longer require an interview for students
aiming for Pass and Credit. (P8)

• Tests became a hurdle requirement, and had to be completed to a satisfac-
tory standard for students to be eligible to pass the unit. Students who did
not pass the test first time, could sit a second test at a later date. (P3)

4. Iteration 6: Staff reflections from Iteration 5 indicated the Distinction and High

238

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

Distinction grade criteria could be better organised as most students favoured
only one or two of the intended learning outcomes. It was decided to rethink
the criteria to better define what each grade category meant.

• Short reports that discussed aspects related to each intended learning out-
come were required to meet the Good standard.

• To meet the Outstanding standard for an intended learning outcome, stu-
dents were required to develop a program of their own design and relate
this to intended learning outcomes.

• Meeting the Exemplary standard required a research report related to the
intended learning outcome.

At the same time, the resources used to support the teaching of these units were also
developed. Resources for Introductory Programming (A) were developed during its
delivery in Iterations 3, 5 and 6, as outlined in the following list.

1. Iteration 3:

• A first version of the “Programming Arcana” book was developed. This
combined the syntax diagrams from the Pascal Language Reference man-
ual (Van Canneyt 2013) with the notes that had previously been embedded
within the lecture slide handouts.

• Students continued to be introduced to SwinGame later in the semester,
with a number of students choosing to develop custom SwinGame projects
for higher grade outcomes.

2. Iteration 5:

• Optional tasks were added to week 1 that encouraged students to start us-
ing SwinGame, and to go beyond the “basics.”

• The Learn Programming with SwinGame video podcasts were created and
delivered to students during the delivery of the unit.

• A template was provided for the Reflective Report (which later became the
Learning Summary Report), see Figure 7.9. The template provided a cover-
age matrix for students to indicate how well they believed their portfolios
had met each of the intended learning outcomes. This was followed by sec-
tions for each intended learning outcome where students documented how
the specific pieces they had included demonstrated they had achieve the
outcome to the level indicated in their coverage matrix.

3. Iteration 6:

• Templates were provided for each of the short reports that were required to
meet the Good standard for each intended learning outcome.

• The Learning Summary Report template was expanded to include a specific
section for students to reflect upon their learning.

239

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Figure 7.7: Overview assessment criteria provided to students in the unit outline of
Introductory Programming (A) in Iteration 6.

Figure 7.8: Example assessment criteria related to a single intended learning outcome

240

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

Student Name (id) Reflective Report

Unit Title 2

Assessment Matrix

 Adequate Good Outstanding Exemplary

ILO 1

ILO 2

ILO 3

ILO 4

ILO 5

Introduction
Introduce report…

ILO 1: Reading and Interpreting
Read, interpret, and describe the purpose of sample code, and locate within this code errors
in syntax, logic, style and/or good practice.

Details…

ILO 2: Language Syntax
Describe the syntactical elements of the programming language used, and how these relate
to programs created with this language.

Details…

ILO 3: Writing Programs
Write small programs using the language provided that include the use of pointers, records,
functions and procedures, and parameter passing with call by reference and call by value.

Details…

ILO 4: Functional Decomposition
Use functional decomposition to break a problem down functionally, represent the resulting
structure diagrammatically, and implement the structure in code as functions and procedures.

Details…

ILO 5: Structured Programming
Describe the principle of structured programming and how they relate to the structure and
construction of programs.

Details…

Conclusion
Summary…

Figure 7.9: Main contents page from the template provided in Iteration 5

241

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Resources for Object Oriented Programming (A) were developed during its delivery
in Iteration 4:

• Additional video podcasts were created to add support for the newly introduced
Objective C programming language.

• Rather than develop a custom text, a range of textbooks and online resources
were made available to students. This enabled the support of a range of lan-
guages, without the student overhead of developing additional resources.

• Previous exercises distributed to students with the lecture notes were moved
online.

Data Figure 7.10 shows the grade distributions for Introductory Programming (A).
The pass rate improved over these iterations: from 69% in Iteration 1, to 72%, 77%,
then 80% in Iteration 6. At the same time the percentage of students receiving Dis-
tinction and High Distinction grades decreased from 57% in Iteration 1, to 42% then
37% and 23% by Iteration 6. These results relate to the changes for the various itera-
tions, with additional guidance and experience helping a greater number of students
achieve passing grades, while tightening of criteria for higher grades required stu-
dents to demonstrate progressively deeper learning over these iterations.

Figure 7.10: Result distributions for Introductory Programming (A) from Iterations
1, 3, 5, 6 and 8.

Figure 7.11 shows the grade distributions for Object Oriented Programming (A). In
Iteration 2 the pass rate was 69%; this improved in Iteration 4 to 74%. The percentage
of students achieving Distinction and High Distinction dropped over this time from

242

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

29% to 26% in Iteration 4. As with the introductory programming unit, these results
help demonstrate improvements in both guidance and expectations.

Figure 7.11: Result distributions for Object Oriented Programming (A) from Itera-
tions 2, 4, 7 and 9.

Reflections and Analysis Staff reflections from these teaching periods indicated the
improvements to assessment criteria had helped reduce the time needed to perform
the portfolio assessment, and this improved with each iteration. In terms of student
learning, the lost productivity from Iteration 2 was not present in these iterations and
student portfolios demonstrated continually improving outcomes. We believe this can
be attributed to our developing experience with portfolio assessment, student social
sharing of their experiences, the improvements in the clarity of the assessment criteria,
and the availability of prior portfolios as examples of what was required.

Having addressed the issues encountered in Iterations 1 and 2, staff reflections over
these iterations started to indicate the benefits we had hoped this teaching environ-
ment may achieve. Staff felt that student outcomes better matched their expectations,
and that the quality of student work improved each semester as better guidance was
provided.

More interestingly, however, was a change in attitude to assessment. Traditionally, ex-
amination periods had been dreaded by staff involved in teaching these programming
units. The thought of having to work through large numbers of student exams had
never been a pleasant prospect. In many respects, reflections on Iterations 3 and 4 had
similarly dreaded work in the examination period with significant work interviewing

243

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

the Pass and Credit students, who all exhibited similar qualities in their portfolios.
This changed in Iterations 5 and 6, with interviews focusing on the Distinction and
High Distinction students. These students consistently impressed staff with their cre-
ativity, imagination, and clear demonstrations of programming competencies. The
examination period changed to become one of the more enjoyable aspects of teaching
these units.

The other major change, in terms of the learning environment, was the students’ ac-
tive incorporation of the feedback they received. Teaching staff felt that this changed
the nature of assessment itself, making it more collaborative than confrontational. Stu-
dents no longer argued about why they had lost marks on assignment tasks, but in-
stead worked to improve their grades, and understanding, by incorporating feedback
they received from teaching staff. The portfolio assessment model enabled staff to
work together with students to help them improve their learning outcomes. Inter-
esting, the number of students querying their final grades dropped significantly, with
most teaching periods having no students wanting to know why they had not received
a better mark for the unit.

Development of Principles The environment created in Iterations 3 to 6 had aimed
to address the issues identified in Iteration 2, and then worked on improving the as-
sessment criteria and available resources. At the end of these iterations it was felt that
portfolio use was an effective means of assessing student outcomes.

By the end of Iteration 6, it was apparent that the separation of assessment criteria by
individual intended learning outcome was overly confusing, and had not productive
for either staff or students aiming for higher grades. The criteria to meet the Out-
standing standard had required students to create a program of their own design. To
achieve this, students had to apply their understanding of the concepts covered by the
unit, but the assessment criteria had then required separate documentation for each
intended learning outcome. This was time consuming for the students to prepare and
for staff to assess. At the same time the separation of these reports made it difficult for
students to relate to “real world” use of these concepts.

This experience influenced a number of the principles stated in Chapter 3.

• The model had demonstrated an effective combination of constructive learning
theories (P1) and aligned curriculum (P2).

• Clearly communicating high expectations (P5) had helped with the Theory Y
environment (P7) and the focus on formative feedback (P3).

244

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

• The use of a reflective component in the portfolios, which relates to Principle 9,
had been positive, and helped students to reflect upon what they had learnt.

• Improvements in both how we taught and what we taught was greatly aided by
reflective practice (P9) and the focus on creating a productive learning environ-
ment (P8).

• The separation of the assessment criteria by intended learning outcome had neg-
atively impacted on students ability to demonstrate depth of knowledge, work-
ing against Principle 4.

7.2.5 Latest Iterations

Iterations 3 to 6 had started to demonstrate the benefits of portfolio-based assessment.
Over these iterations the units had been delivered to students enrolled in a degree with
a focus on computer science. At the start of Iteration 7 the university was looking to
consolidate programming units, and it was decided to trial the portfolio assessment
approach with engineering students, in Introductory Programming (B). As such, these
iterations aimed to continue to develop the model while also testing it with a wider
range of students.

1. Iteration 7: Introductory Programming (B) was taught using the C programming
language.

2. Iteration 8: The two introductory programming units were combined into a sin-
gle unit. This used two programming languages, starting with Pascal and then
moving to C later in the semester.

3. Iteration 9: Combined together the two object oriented programming units. Prior
to this iteration Object Oriented Programming (B) had been taught using a text-
book style approach, focusing on language syntax, and was assessed using as-
signments and a final exam.

Iterations 7, 8, and 9

Focus The focus for iterations 7 to 9 was on expressing assessment criteria that re-
quired a consolidation of knowledge across the unit’s intended learning outcome. In
prior iterations, the separation of assessment criteria by individual intended learning
outcomes, as illustrated in Figure 7.8, had been in conflict with the desire for students
to demonstrate an integrated understanding of the concepts. The solution came in the
realisation that higher grades could require students to apply the concepts related to
the unit’s intended learning outcomes in the development of a project of the students

245

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

own design. The clarity of this helped in communicating expectations, and greatly
simplified the assessment criteria.

The second focus of these iterations was the incorporation of other units into this ap-
proach: Introductory Programming (B) and Object Oriented Programming (B). This
increased the number of students to which this approach was delivered, and broad-
ened the cohort to include students not necessarily interested in software develop-
ment. This required a secondary focus on addressing issues of scale, and potentially
additional issues related to plagiarism.

In relation to the principles stated in Chapter 3, Table 7.7 illustrates the principles on
focus for each iteration. Limitations identified in Iteration 6 resulted in changes to the
expectation (P5) of students, and the focus (P4) of the formative feedback process (P3).
At the same time, the larger class numbers renewed the need for productive learning
environments (P8), and the further use of multiple languages helped guide the clear
focus on concepts (P11).

Table 7.7: Principles related to Iterations 7 to 9: focus ? , present X, partially present
∼ .

Iteration P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Iteration 7 X X ? ? ? X X ? X X ? X
Iteration 8 X X X X X X X X X X X X
Iteration 9 X X X X X X X X X X X X

Action Plan For these iterations the assessment criteria was as reported in Chap-
ter 5 and shown in Figure 5.3. This was accompanied by an explanation of what was
required from the individual components: weekly tasks, tests, own program, and re-
search report.

For the assessment criteria, the main challenge in iterations 7 to 9 had been on trying
to find clear requirements for the Credit grade. This needed students to demonstrate
good coverage of the intended learning outcomes, while limiting the required work-
load. The following list shows what was used as the criteria for the Credit grade over
these iterations.

• Iteration 7: Students were required to complete a piece of their own creation
that demonstrated good coverage of all intended learning outcomes. The Unit
Outline was not specific, but suggested that this could include reports, concept
maps, glossaries, or any other piece the student wanted to create.

• Iteration 8 and 9: Weekly tasks included core tasks, and extension tasks. The core
tasks included strong guidance, whereas the extension tasks required a greater

246

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

level of independence. The Credit grade required all weekly tasks to be com-
pleted, as well as a selection of the weekly extension tasks. This also kept the
other piece of the students own creation as in Iteration 7. Figure 7.17 shows an
example of the assessment criteria from Introductory Programming (B) in Itera-
tion 9.

In terms of teaching and learning resources, these iterations included the redevelop-
ment of a number of resources, and the development of the Doubtfire task tracking
system.

1. Iteration 7:

• A new version of the Programming Arcana was created. This version used
SwinGame and focused on procedures first and the C programming lan-
guage.

• SwinGame was used from week 1 in core lab tasks, enabling the procedures
first approach.

• Syntax diagrams created for the Programming Arcana were used in the Lec-
ture slides.

• Weekly exercises were moved into the Programming Arcana to help en-
courage student to make greater use of the resource.

• The Introductory Programming video podcasts were created to support the
lecture material.

2. Iteration 8:

• The new Programming Arcana was extended to include both the C and
Pascal programming languages.

• Weekly exercises were moved back into the laboratory handout for a num-
ber of reasons including practicalities related to changes, and issues with
student engagement. Changing the exercises in the Programming Arcana
required the entire text to be recompiled and re-distributed to students,
which made it more difficult to make changes during the delivery of the
unit. Students also seemed less engaged with these exercises, and appeared
to view these as “textbook questions” that could be skimmed over – as they
were related to the “textbook” not specifically designed for the unit.

• Additional documentation was provided to demonstrate the research pro-
cess, and how a small research project could be conducted and documented.

3. Iteration 9:

• Weekly exercises were adjusted to include Lab exercises, Core exercises,
and Extension exercises. The Lab exercises were designed to be worked
through in a laboratory class with the guidance of a tutor. These exercises
did not need to be included in student portfolios.

247

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

• The Doubtfire tool was developed, and Core exercises were used as the
weekly tasks for the burn down charts. To be eligible for Credit students
needed to have all Core exercises signed off.

Data For software development students the pass rate continued to rise through
these iterations, with 82% of students passing Introductory Programming (A) and 79%
passing Object Oriented Programming (A) in Iteration 9.

In Iteration 7, Introductory Programming (B) was introduced and achieved a 71%
pass rate. However, student portfolios were generally considered to be weaker than
for those in Introductory Programming (A) and fewer students achieved high grades.
This can also be seen in Figure 7.12, which shows the results for the combined units in
iterations 8 and 9.

Figure 7.12: Result distributions for combined units in iterations 8 and 9

Reflections and Analysis With Introductory Programming (A) the quality of sub-
mitted portfolios continued to improve through these iterations. In Iteration 8 extra
guidance was provided on how to conduct and document a small research project,
and this seems to have been beneficial with an increased number of High Distinction
portfolios.

With other student cohorts, the results seem less positive. Staff indicated a difficulty
in engaging students not enrolled in a degree that focused on software development.

248

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

This was most pronounced in the combined introductory programming unit, as can
be seen in Figure 7.12. Given that both groups of students had been delivered the
same material, in the same classes, it had been assumed that the distribution of results
should be similar.

The clarity of the assessment criteria and the clear delineation of what is required for
the Pass, Distinction and High Distinction grades further reduced the time needed for
staff to assess the portfolios. This meant that the majority of the assessment could
be performed quickly at the end of the teaching period, allowing teaching staff to
concentrate on assessing the Distinction and High Distinction portfolios. Interviewing
these students remained a pleasurable experience, as portfolios demonstrated what
the most successful students had been able to achieve.

Over these iterations, the teaching and learning environment retained its positive, sup-
portive, and student-centred focus as reported for Iterations 3 to 6. The clarity of the
assessment criteria enabled even closer collaboration between students and staff as
they worked together to ensure students succeeded at demonstrating the required un-
derstandings.

While staff felt that the portfolio assessment was very successful through these itera-
tions, the criteria for the Credit grade remained unclear and tended to require students
to complete more work rather than demonstrate better understanding.

Development of Principles These iterations followed the model described in Chap-
ter 4, and delivered the units as outlined in Chapter 5. Implementations across these
iterations embodied all of the principles from Chapter 3. The focus on creating a pro-
ductive learning environment incorporating reflective practice (P8 and P9) continued
to ensure that the process itself improved in each iteration.

7.2.6 Current Iteration

Focus This teaching approach is currently being used to deliver Iteration 10. In this
iteration the focus is on achieving better outcomes in the combined units, and to re-
duce the workload required by the Credit criteria while still maintaining the a high
standard.

As with iterations 7 to 9, Iteration 10 incorporates all of the principles outlined in
Chapter 3. Similarly, Iteration 10 is using the model described in Chapter 4, and incor-

249

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

porates all activities and guidelines. The exemplar units from Chapter 5 are based the
units being delivered in this iteration.

Iteration 10 differs from Iteration 9 only in its strengthening of the use of the Glossary
as the criteria for Credit.

Plan One of the success stories from Iteration 9 was the use of a Glossary covering
programming terminology, abstractions, and statements. This was used as a means of
getting students to describe and explain principles and associated concepts, and seemed
to be an effective means of both engaging the students with the material and assessing
their learning outcomes. As a result, Iteration 10 will use the glossary for the Credit
criteria. It is hoped this will help students engage appropriately with the teaching and
learning activities.

7.2.7 Summary

This section has presented results and analysis from nine iterations of an action re-
search project that examined the implementation of portfolio assessment. The overall
focus of this work was on development, application, and ongoing evaluation of the
model from Chapter 4.

Initial attempts at portfolio assessment failed to demonstrate expected outcomes, and
student portfolios were generally weaker than desired. Over subsequent iterations,
assessment criteria were evolved to more tightly define what was expected of each
grade and students portfolios improved to meet these expectations. In the later it-
erations, staff were able to quickly assess portfolios, and felt that grades accurately
reflected student outcomes.

This work provides additional evidence of the strength of portfolio assessments for
assessing and supporting learning. In each iteration the assessment criteria helped
guide students in preparing their portfolios, and as the criteria evolved the evidence in
student portfolios improved. Experience delivering portfolio assessed units resulted
in criteria that clearly relates to active verbs at the multi-structural and relational levels
of the SOLO taxonomy, providing a strongly aligned assessment of intended learning
outcomes.

Our experience highlights the importance of ensuring intended learning outcomes
are expressed clearly, and capture the core concepts and principles that need to be

250

7.2. LESSONS LEARNT THROUGH ACTION RESEARCH

demonstrated in student portfolios. The assessment criteria then maps the intended
learning outcomes to statements of required levels of achievement. Together the in-
tended learning outcomes and assessment criteria express what needs to be done and
how well it needs to be done by the students to achieve different grades.

The model presented in Chapter 4 provided an effective means of achieving con-
structive alignment. For students the process provides support and encouragement
through iterative formative feedback, gives them clear expectations of what they need
to achieve, and results in meaningful grades. After the initial investment, the intended
learning outcomes and assessment criteria provided a dual means for staff to express
expectations, and the resulting environment encouraged reflective practice. During
the teaching period, staff and student efforts were both directed toward the one goal:
helping students achieve the intended learning outcomes to the best of their ability.

251

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

7.3 Issues Identified in Student Reflections

Student reflections provide a rich opportunity to identify issues that are relevant from
the students’ perspective. The investigation presented in this section analyses issues
identified in student reflections from the Introductory Programming (A) unit in Itera-
tion 6, and provides support for recommendations to help inform the development of
units using this approach.

7.3.1 Method

This study examined student reflections from the Introductory Programming (A) unit
from Iteration 6, the current iteration at the time of the study. It was decided to use
portfolios from a single iteration for a number of reasons. Time was a primary consid-
eration, with the thematic analysis being a time consuming process. By limiting the
analysis to a single iteration this would also provide a snapshot of issues related to this
particular iteration. Future studies could then repeat the analysis for future iterations,
with this first study providing a point of comparison.

This section is divided into three parts to clearly describe the details of Introductory
Programming (A) in Iteration 6, the Student Cohort and Research Participation, and the
Thematic Analysis of Reflections. In the Introductory Programming Unit section we pro-
vide details of the unit that was investigated as part of this research. The Student
Cohort and Research Participation section details the student body undertaking this
unit and how they were recruited to be part of this research. Finally the Thematic
Analysis of Reflections section outlines the process followed to extract and analyse
the data from the student portfolios.

Iteration 6: Introductory Programming (A)

In Iteration 6, Introductory Programming (A) had implemented the large majority of
the principles and processed discussed in Chapter 3 and Chapter 4. The teaching and
learning activities differed slightly from the introductory programming unit described
in Chapter 5, though the emphasis on concepts over syntax was present. The topics
for the twelve lectures for this teaching period are shown in the following list as they
relate to the topics mentioned in student reflections.

1. Programs, Procedure, Compiling and Syntax

252

7.3. ISSUES IDENTIFIED IN STUDENT REFLECTIONS

2. User Input and Working with Data
3. Functions, Procedures, and Parameters
4. Branches and Loops
5. Custom Data Types
6. Functional Decomposition
7. Case Study
8. Pointers and Dynamic Memory Management
9. Structured Programming

10. Recursion and Backtracking
11. Portfolio Preparation
12. Review and Future Studies

The unit’s delivery included an early introduction topic of “understanding syntax”,
where students were taught how to read programming language syntax using the vi-
sual “railroad” diagram syntax notation. This allowed later lecture topics to focus on
concepts, with syntax being offloaded to programming demonstrations and supplied
notes, which included railroad diagrams and small code examples for each program-
ming statement.

As described in Chapter 5, the allocated classes were designed with the goal of ac-
tively engaging students. Lectures typically included a review of previous topics,
a short presentation using “Beyond Bullet Points” style lecture slides, an interactive
programming demonstration, and group activities. Laboratory sessions involved code
reading activities, guided coding activities, and practical hands-on exercises.

The approach to assessment included weekly submissions and formative feedback to
help students develop their understanding, three hurdle tests to ensure basic compe-
tence, and portfolio assessment for final grades.

Students were asked to reflect on their learning in a Learning Summary Report, and a
template document was provided to assist students in preparing their comments. The
template prompted students to describe the pieces they had included in their portfolio,
to describe how these pieces related to the unit’s intended learning outcomes, and then
to reflect on what they had learnt from the unit.

To help students in writing their reflections, the following instructions were provided
in the template.

Think about what you have learnt in this unit, and reflect on what you think were
key learning points or incidents. Answer questions such as: What did you learn?
What do you think was important? What did you find interesting? What have

253

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

you learnt that will be valuable for you in the future? Which activities helped you
most? Has this changed the way you think about software development? Did
you learn what you wanted/expected to learn? Did you make effective use of
your time? How could you improve your approach to learning in the future? Etc.

Note that there were no prompts for students to include details on issues they had
encountered, meaning that any issues expressed should have been significant to the
learning experience of the student.

Student Cohort and Research Participation

In Iteration 6 the Introductory Programming (A) unit was undertaken by 84 students,
70 of whom submitted a portfolio for assessment. Participation in the research was
voluntary, with informed consent being sought in lecture 11 as outlined in Section 7.1.3.

Table 7.8 shows the number of portfolios made available to this research, the num-
ber that included comments related to the theme of “issues” and the distribution of
grades. The grade distribution is also shown in Figure 7.13, and will be discussed in
Section 7.3.3.

Figure 7.13: Distribution of grades for the full unit, for those students who agreed to
participate in the research, and for those who commented on issues.

Thematic Analysis of Reflections

The thematic analysis of student reflections followed the process outlined in Sec-
tion 7.1.2. Initial themes were generated by examining the reflective component of

254

7.3. ISSUES IDENTIFIED IN STUDENT REFLECTIONS

each portfolio and looking for all explicit mention of issues the student faced. Each
new issue identified was matched to a theme and recorded in a spreadsheet. To ensure
that all issues were reported in the results, the process of grouping themes did not re-
move or ignore any issues raised. All issues that could not be grouped into an existing
theme were collected together as a miscellaneous “other” theme. The Results section
outlines the different themes identified, and how these themes relate to the comments
raised by students in their reflections.

7.3.2 Results

A number of themes emerged from the analysis, and can be broadly classified as either
general learning issues or programming related issues. (See Table 7.8 and Figure 7.14.)
Each of these categories is presented in Table 7.9 along with the number of students
who raised these issues, broken down by grade. The following sections describe the
individual themes in more detail.

Figure 7.14: Number of students mentioning learning issues and programming is-
sues. See Table 7.8.

General Learning Issues

The general learning issues capture all of the comments made by students that do not
relate directly to a given programming topic or technical aspect of the unit, but instead
relate to the students’ learning experience in general. In this category the themes that
appeared include time management, getting started with the unit, and learning through
mistakes. The issue counts and grade distribution of these are included in Table 7.9,
and can also be seen in Figure 7.15.

Time management issues identified in the students’ reflections included comments about

255

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Table 7.8: Portfolios submitted, issue comments and grade distribution.

Total HD D C P F

Submitted Portfolio 70 5 14 20 28 3

Agreed to participate 59 5 13 16 23 2

Commented on Issues 35 2 6 11 14 2

- Learning Issues 26 2 3 9 12 1

- Programming Issues 22 1 4 8 7 2

Table 7.9: Issue count results for grade and theme. Values of interest are indicated
using bold format.

Theme Description Total HD D C P F

Learning Issues Issues related to learning in general.

- Time Issues Time constraints, or issues with
time management.

14 1 0 5 8 0

- Getting Started Comments relating to initial weeks,
or tacking early hurdles.

8 0 1 2 5 0

- Learn through mistakes Specifically commented on having
issues and learning from these.

7 1 2 2 2 0

- Other Other learning related concepts not
allocated to other themes.

5 0 0 2 2 1

Totals 2 3 11 17 1

Programming Issues Issues related to programming top-
ics, or technical areas.

- Pointers Use of pointers and dynamic mem-
ory allocation functions.

11 1 2 4 3 1

- Parameters Mentions parameters, or parameter
passing

8 0 1 4 3 0

- Program Design Algorithm and program structure
design

7 0 1 1 3 2

- Other (Syntax) Other issues, but related to the lan-
guage syntax or concepts.

7 0 0 2 3 2

- Other (General) Other programming issues not allo-
cated to other themes.

5 0 0 2 2 1

- Recursion Declaration and use of recursive
functions or data structures.

4 0 1 2 1 0

Totals 1 4 14 11 3

256

7.3. ISSUES IDENTIFIED IN STUDENT REFLECTIONS

aspects such as “staying on task”, wishing they had “asked for help earlier”, or the
general need to improve their time management to enable them to achieve higher
grades. It can be seen that the majority of these concerns were raised by students
who obtained either a Pass or Credit grade. These comments are further supported
by observations from teaching staff, who noted concerns about students not working
consistently through the semester and not seeking help in a timely manner.

The next largest general learning issue was getting started with programming. These
comments specifically indicated issues related to the initial hurdle of getting started
with the unit. One student noted this as their first experience using a computer, while
others commented on the difficulty of the first few weeks’ lab exercises. Again, these
findings are supported by observations from the teaching staff who noted that a num-
ber of students withdraw from the unit before census date,2 and there was a general
drop in enrolment numbers around this time. This may indicate that a larger number
of students faced these issues but did not continue with the unit, though further work
would be needed to verify this.

The last main issue in this section related to students reflecting on the mistakes or
struggles that provided them with an opportunity to learn something important, re-
ferred to as learning through mistakes. For example, one student’s reflection noted that:

“. . . I suddenly gained insight [into the code] I had been struggling with
. . . ”

The reflection continued on to comment that having overcome these issues they gained
a clearer understanding of the concepts taught up to that point, and that subsequent
programs were easier to understand.

The following other issues were raised by individual students:

• transitioning to university life and study,
• finding information in the online learning management system,
• seeking help in general,
• keeping up with the pace of the unit, noted as “challenging but good”, and
• adjusting to portfolio assessment.

2This is the date when the university records enrolment numbers, typically a few weeks after the start
of the semester to allow for changes of enrolment.

257

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Figure 7.15: Number of students mentioning issues related to learning. See Table 7.9.

Programming Issues

As already mentioned, fewer students commented on programming or technical is-
sues in their reflections than the more general learning issues. The programming
sub-themes matched specific topics covered in the unit, including pointers, parameters,
program design, and recursion. In this theme the other sub-theme featured more promi-
nently, with a larger range of issues being located in the reflections of only one or two
students. The data for these themes is listed in Table 7.9 and shown in Figure 7.16.

Amongst the identified programming issues, pointers featured most prominently. Com-
ments typically referred to having issues with “pointers”, with the more detailed com-
ments discussing issues with knowing when to dereference pointers and being unsure
of when to use pointers. This is further supported by notes from teaching staff indicat-
ing that pointers tended to be problematic even for students who demonstrated strong
programming skills up to that point in the material.

Parameters were also mentioned by a number of students as being a topic that was par-
ticularly challenging. This included comments relating to tracing parameter values
through a number of function or procedure calls, and issues of a single value having
different names across different routines. From these comments there is a direct con-
nection from parameter issues to a student’s understanding of program structure, or
more importantly execution flow.

258

7.3. ISSUES IDENTIFIED IN STUDENT REFLECTIONS

Figure 7.16: Number of students mentioning issues related to programming. See
Table 7.9.

Issues relating to Program Design were also raised in the portfolio reflections. These
comments related to aspects such as using functional decomposition, planning pro-
gram structure, and designing algorithms.

The other issues for the programming category captured issues identified by one or
two students. These were classified as relating either to syntax and concepts or gen-
eral programming issues.

• Syntax issues included:

– iteration and working with loops,
– using arrays (two comments),
– creating composite data types using records,
– functions in general,
– dealing with syntax errors, and
– using units to divide programs into multiple files.

• General programming issues included:

– “programming in general”,
– “following program code” in code reading exercises,
– difficulties finding and using resources from the SwinGame library, and
– the maths needed to achieve programming tasks.

There were also a number of reflections that raised the topic of recursion; these men-
tioned issues with both recursive functions and data structures.

259

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

7.3.3 Discussion

Investigation Focus and Sample Quality

Comments provided by students, when reflecting on their learning during any unit,
can be valuable and interesting in many ways, especially with respect to the evalu-
ation of a particular approach to teaching. Our investigation focused specifically on
the theme of issues mentioned or identified by students in their reflective reports. Re-
sults of the thematic analysis, presented in Section 7.3.2, identified clear key themes.
Additionally, several individual comments were selected.

The analysis considered a sample of reflective reports presented in a single semester
unit. Of the 70 students in the class, almost 85% were willing to participate. Within the
participant group, 35 students wrote one or more comments that matched the target
theme. Table 7.8 and Figure 7.13 show that the relative distribution of grades in the
contributing group matches closely to both the participant group and the entire results
for the unit. This strongly supports that the results are a representative sample of the
unit, at least with respect to grade distribution.

General Learning Versus Programming Issues

Beginning with the two key themes of general learning issues and programming is-
sues (Table 7.8 and Figure 7.14) it can been seen that the distribution of student grades
is very similar, with a slightly stronger representation of Pass students in the learning
issues theme.

Overall, more students commented on learning in general. This is of particular in-
terest given the relative emphasis of the course material, which focuses on teaching
programming concepts over syntax details. Despite the relatively small time spent on
syntax, students did not mention having related issues.

A closer examination of the issues related to programming strengthens this analysis
further. Most student comments on programming issues (Table 7.9) concerned apply-
ing programming concepts, rather than issues of understanding syntax. Also, these
comments were about when and how to use the related programming concepts rather
than specifically how to apply the syntax of the language used.

Comparison of the grade distributions within the learning issues (Figure 7.15) and

260

7.3. ISSUES IDENTIFIED IN STUDENT REFLECTIONS

programming issues (Figure 7.16) suggests potentially interesting differences, such as
issues specific to grade groups, and other issues across all grades. The sample size of
this investigation limits any significant insight although some points are listed in later
discussion.

Learning Issues

Time Management issues were identified by the largest number of students (Ta-
ble 7.9). The grade distribution is skewed towards student’s who achieved Pass and
Credit results (bold values), suggesting that students who do achieve Distinction or
High Distinction results managed time better, and that the unit structure requires good
time management to achieve these outcomes.

Developing a portfolio that demonstrates the ability to apply concepts taught requires
time: time to practice using the concepts, and time to demonstrate their use compe-
tently. For students to achieve Distinction and High Distinction grades, they needed
to be able to organise their time effectively.

With more traditional forms of assessment, marks can be used as incentives. Using
assessment due dates during the delivery of the unit has the effect of turning marks
into time distributed weighted incentives. Marks no longer represent the importance
of the learning outcome, but match allocation of incentive. Consider, for example,
the allocation of marks for lab attendance. These marks do not help measure the stu-
dents’ learning outcomes, but are purely there to incentivise lab attendance. Similarly,
assignments due within the unit delivery period assess the speed of acquiring and
demonstrating the required knowledge.

With portfolio assessment the summative assessment is delayed until after unit deliv-
ery. This has the benefit of providing a more direct assessment of learning outcomes,
but has a cost related to loss of incentives during delivery. While this is positive from a
learning perspective, it can easily lead to students delaying their work on portfolio as-
sessed units in order to address what they perceive as more time critical assignments
in other units. Given the number of comments related to this issue, it appears to be
easy for students to then lose sight of how they are falling behind in a unit with a
relatively flexible portfolio assessment.

The prevalence of issue provided the incentive to implement the Doubtfire tool de-
scribed in Section 6.1. The use of this tool is discussed in 7.4.

261

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Getting Started is another issue facing many students (Table 7.9 and Figure 7.15).
In the first few weeks of the semester, students face practical and conceptual issues.
Practical issues include installing compiler software and text editors, learning to use
command line tools, and issues with general computer use. At the same time students
need to build a viable conceptual model of computing (Hoc & Nguyen-Xuan 1990),
and relate this to the programs they are creating.

Early on students may also face challenges transitioning to university study and uni-
versity life in general. In the first few weeks students are also more likely to have
issues with syntax, and dealing with syntax errors. Together these challenges can
present a significant hurdle for students.

These issues could be addressed in a number of ways. Shifting toward a single, easy
to install, IDE could remove some issues related to the use of the command line com-
piler. However, IDEs are typically designed for professional audiences and would
add overhead related to use of a more complex programming environment. These
environments also obscure the underlying tools which and does not assist students in
building their conceptual model of computing. The teaching staff also considered that
students undertaking this unit do need to learn how to use a command line, and this
early introduction meant that later units could expect at least some student familiarity
with command line tools.

Learning Through Mistakes The students’ active role in building their own concep-
tual model of a topic plays a significant role in constructive learning theories (Glasers-
feld 1989). Effective teaching then becomes the ability to place students in situations
where errors in their understanding can be challenged to help the students build vi-
able conceptual models.

With this in mind it is interesting to note, as shown in Table 7.9, the number of students
who commented on gaining significant understanding through making mistakes. In
line with constructive thinking, these students encountered situations in which their
conceptual model was inappropriate, and in addressing the associated problems they
were able to gain a better, more robust, conceptual model.

Comments about learning through mistakes were distributed across all grades, from
Pass through to High Distinction (Figure 7.15). This suggests that mistake-based learn-
ing experiences are beneficial to a wide range of students, albeit with some students
gaining a better understanding than others through the process.

262

7.3. ISSUES IDENTIFIED IN STUDENT REFLECTIONS

Other Learning Issues From the other issues students noted, many can be attributed
to transitioning to university education. For example, learning to locate and use learn-
ing resources and to seek help, are all issues that students must come to deal with
when shifting to university education.

It is interesting to note that one student did raise a complaint about portfolio assess-
ment, indicating that it would be easier to sit an exam. While this is only a single
student, it does highlight that the purpose of the ongoing assessment may not be re-
alised by all. Tang et al. (1999) indicated that students tend to apply narrower learning
strategies for examinations, focusing on memorising material covered in lectures. In
contrast, Tang et al. (1999) also found that with portfolio assessment students adopted
a wider perspective, making use of higher cognitive activities such as application, re-
lation, and reflection. Students are likely to find these higher cognitive activities more
challenging, and therefore those who wish to apply surface learning approaches are
likely to prefer other assessment strategies.

Programming Issues

Pointers and Recursion Our results support those from Lahtinen et al. (2005) in indi-
cating that students find learning pointers challenging. Issues related to using point-
ers and memory management featured across a range of grade results (Table 7.9 and
Figure 7.16), indicating that this concept was challenging even for those students who
managed to achieve good results in the unit.

Pointers require a good conceptual understanding of computing, and the mental abil-
ity to debug logical errors. Issues with pointers can often result in abrupt program
termination, which can be very confronting for beginner programmers. Locating the
cause of these errors is an additional challenge, that requires a students to build a
mental model of what is happening within the programs they have written.

Issues with recursion were raised by fewer students than other issues, which is in
contrast to the study by Lahtinen et al. (2005). This may be explained by the short
time students had with recursion in this study. A deep exploration of recursion was
not required for students to pass the unit. It is likely, therefore, that many students did
not have sufficient time to explore more involved applications of recursion.

In addition to being complex, pointers and recursion both occur relatively late in the
curriculum. With pointers, students had little time to develop the skills necessary to
handle associated issues, whereas with recursion the short time meant students had

263

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

little opportunity to develop programs of sufficient complexity to encounter issues. In
either case, at the time of writing their reflections, issues with later lecture topics are
perhaps more likely to be in focus.

Parameters require students to understand local scoping of variables, procedure and
function calls, and methods for sharing these values between functions and proce-
dures. This appears to be another point at which students need to expand their inter-
nal mental model of computing (Hoc & Nguyen-Xuan 1990).

While parameter concepts can take time to understand, issues are likely to be construc-
tive in nature. When the logic for a program is contained within a single procedure,
students can develop a simplistic model of what is occurring when other functions or
procedures are called. When students need to design their own functions and proce-
dures that require parameters, they are presented with situations that challenge their
simplistic model. This suggests that parameters provide a significant learning oppor-
tunity from a constructive perspective.

The two different parameter passing methods are taught in the unit, with pass by ref-
erence being used to create procedures to swap parameter values, as well as allowing
procedures to modify data within structures and arrays. Call by reference provides an
early introduction to references.

Program and Algorithm Design Program and algorithm design are progressively
taught throughout the unit, with the main focus being in the middle of the unit’s
delivery in topics related to functional decomposition and structured programming.
Comments by students indicated several issues on how to practically apply the con-
cepts covered to create programs.

We initially expected a larger representation of this issue, as design tasks require a
deeper relational understanding of the concepts being used. However, the core tasks
students had to submit for a Pass grade were accompanied with detailed instructions
to help ease these design issues. Extension tasks required for a Credit grade did re-
quire some design components, and less guidance was provided. Students attempting
their own program, necessary for a Distinction grade, needed to perform design ac-
tivities as these programs were of their own design and creation.

Other Programming Issues raised by students can be classified as individual chal-
lenges. It seems that students are likely to learn at different paces, in different ways,

264

7.3. ISSUES IDENTIFIED IN STUDENT REFLECTIONS

and find different topics challenging. Again, general comments concerned the applica-
tion of programming concepts, rather than with programming language syntax itself.
Each of the raised issues indicated a point at which students had an an awareness of
these and an opportunity to challenge and develop their conceptual understanding of
programming and their model of computing.

Recommendations

Based on the thematic results and on the experiences of staff involved in the unit de-
livery, there are a number of implications and recommendations that can be made.
These recommendations are listed below, and their explanations follow.

• Strongly avoid mixing formative with summative assessment
• Give students time to adjust to portfolio assessment
• Focus on student “awareness”
• Use a quick formative feedback process
• Avoid the “tutor debugging” phenomena
• Use visual methods to convey progress
• Make students aware of issues they are likely to face

These recommendations have been incorporated into the model described in Chap-
ter 4, and in the exemplar units discussed in Chapter 5. For example, the use of the
sign off process for core tasks aimed to raise student awareness, and is linked to the
Doubtfire tool’s visual burn down charts.

Always formative, lastly summative Separating formative feedback processes from
summative marking has a clear value, and this is reflected in student comments. Our
observation is that using a punitive marking system creates an incentive for students
to hide faults and limits in their understanding. However, students need to know
what they need to learn and need to expose their misunderstandings in order to help
staff guide them in developing appropriate mental models. Related to this is the time
a student may spend asking about marking schemes or lost marks – time better spent
on learning.

Students need time to adjust In comments to staff, students have said that it takes
time to get used to a portfolio based unit even if they understand the principles. If we
consider that students are somewhat conditioned to respond to summative marking

265

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

and due dates as a way of allocating their attention, an interesting question emerges:
how do we help students maintain an active engagement with the unit activities with-
out marks? The Doubtfire tool was one attempt at answering this question, though
this remains an ongoing challenge and research opportunity.

Focus on student awareness Primarily, student awareness is the basis for positive
engagement and an aware student has the opportunity to make appropriate choices.
To support this, staff need to communicate the structure, activities and expectations
of a portfolio-based unit to students as effectively as possible. Unfortunately students
may essentially have poor habits that can take time to adjust. It is possible to help
students with issues such as time management and, hence, learning outcomes.

Although formative activities many not have due date or marks (grade penalties),
staff should still express clear expectations of when work needs to be done. In some
cases this leverages a students’ habits to their advantage as they feel compelled to do
the work. Ideally, students should give these formative tasks as high a priority as
assignments with marks.

Use quick formative feedback Very quick feedback helps to create strong reinforce-
ment to each student that the process really is formative and personally valuable. In
a students’ experience summative marking is often a delayed process. If formative
feedback takes a long time it is removed from the students’ current learning and chal-
lenges, and so can be confused as summative marking. Students need to be engaged
with the formative nature of these assessments, making use of the feedback to help
develop their understanding.

Avoid tutor debugging A possible problem with quick formative feedback, and re-
submission opportunities, is that students may submit poorly prepared “drafts” and
use staff simply to “fix things.” This issue has been described as “tutor debugging”
by some of our staff, and should be actively discouraged. One approach to this is to
set minimum submission standards for work submitted for feedback.

Use visual methods to convey progress Visual charting of tasks and completed
work, calendar events and strong reminders of work and time limitations help to en-
gage students. It is also possible that a “gamefication” approach, by recognising per-
sonal or group achievements and rewarding with awards, “badges” an other game-
related concepts, can create a fun and personal incentive for students. We also recog-

266

7.3. ISSUES IDENTIFIED IN STUDENT REFLECTIONS

nise that there are also risks with gamefication, such as trivialisation of the value of
core learning activities or distorting the value of learning activities through association
to a gamefication artefact.

Tell students what to expect Finally, helping students understand the issues they
are likely to face should help them prepare sufficiently for the more challenging tasks.
This is particularly relevant to the issues related to getting started. The challenges
early on in the unit may put a number of students off, and these students are likely to
lose motivation and engagement with the unit. Making them aware that these chal-
lenges are “normal”, and to be expected, may assist them in getting over early hurdles.

7.3.4 Summary

In this section we have presented a thematic analysis of reflective reports presented
by students as part of their assessment in the Introductory Programming (A) unit
from Iteration 6. The development and delivery of the unit followed the model from
Chapter 4, being an implementation of the introductory programming unit described
in Chapter 5. A good representation of students distributed across all result grades
agreed to participate in the study.

Thematic analysis was directed specifically at the theme of issues identified by stu-
dents. Overall results showed that more students raised learning issues than program-
ming related issues. Significant learning themes included time management, getting
started and mistake-based learning. The most common programming issues were re-
lated to pointers and parameters, with only a small number of issues related to syntax,
and both these results were expected. Issues related to program design were raised
less than expected.

The discussion considered a number of interesting results, and put forward recom-
mendations and future directions for research in this area.

267

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

7.4 Evaluating Progress using Burn Down Charts

The work presented in this section examines the rate of student progress, as recorded
using the Doubtfire task tracking tool and reported in student portfolio. By examin-
ing the various rates of progress and grades associated with these portfolios, we are
able to gain some insights into the teaching and learning environment, and provide
recommendations to help inform the development of units using this approach.

7.4.1 Method

As with Section 7.3.1, this section is divided into three parts with the aim of clearly
describing the teaching and learning context, the student cohort, and the details for
the thematic analysis.

Teaching and Learning Context

This work analysed the progress of students from Introductory Programming (B) in
Iteration 9. In Iteration 9, the teaching period consisted of thirteen weeks, twelve of
which were teaching weeks, and a single week semester break in week six. Topics for
the twelve lectures are shown in the following list.

1. Programs, Procedure, Compiling and Syntax
2. User Input and Working with Data
3. Control Flow: Branches and Loops
4. Procedural and Structured Programming
5. Arrays
6. Custom Data Types
7. Pointers and Dynamic Memory Management
8. Learning a New Language (C)
9. Portfolio Discussion

10. Arrays and Structures in C, and Recursion
11. Pointers in C, and Backtracking
12. Review and Future Studies

An overview of the assessment criteria for Introductory Programming (B) in Iteration
9 is shown in Figure 7.17. To be eligible for a pass grade students include a range of
work of the weekly assessment tasks, and indicated how the pieces included demon-

268

7.4. EVALUATING PROGRESS USING BURN DOWN CHARTS

strated coverage of all intended learning outcomes. For Credit, student needed to
complete all weekly assignments and include pieces that demonstrated good coverage
of all intended learning outcomes. Distinction and High Distinction grades required
students to go beyond these weekly tasks. Distinction grades were awarded for being
able to apply the concepts learnt in the development a program designed by the stu-
dent. High Distinction required students to undertake a small research project, and
write this up in a short research report.

Figure 7.17: Overview of assessment criteria provided to students in the unit outline

In Iteration 9, the Doubtfire tool was used to track student progress against the Core
Tasks from the weekly exercises. An example of the charts from Introductory Pro-
gramming (B) in Iteration 9 is shown in Figure 7.18. As described in Chapter 6, the
charts show the cumulative amount of work remaining week-by-week, which de-
creases as work is completed.

269

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Figure 7.18: An example burn down chart from the online tool Doubtfire, showing
progress against weekly tasks for Introductory Programming (B) in Iteration 9.

Student Cohort and Research Participation

At the end of the teaching period 139 students submitted portfolios for assessment. Of
these, 87 agreed to participate in this research. Participation in the research was volun-
tary, with informed consent being sought using the process described in Section 7.1.3
in lecture 9.

Table 7.10 shows the grade distribution of the submitted portfolios, those made avail-
able to this research and of these, those who included their burn down chart in their
portfolio.

Table 7.10: Grade distribution of portfolios submitted

Total HD D C P N

Submitted Portfolio 139 7 25 24 79 4

Agreed to Participate 87 6 22 17 39 3

Included Chart 80 6 22 17 33 2

Thematic Analysis to Identify Trends in Progress

The process from Section 7.1.2 was used in order to identify the themes and patterns
associated with student progress. To gain familiarisation with the data, the burn down

270

7.4. EVALUATING PROGRESS USING BURN DOWN CHARTS

Figure 7.19: Distribution of grades for the full unit, for those students who agreed to
participate in the research, and those who included the burndown chart.

charts from each portfolio were scanned. Each page of the resulting document in-
cluded the chart and a code to identify the portfolio from whence it came. To ease the
process of visual classification the charts were scaled to similar size. Each chart was
then printed and spread out in a large visual space to enable “visual” themes to be
identified, and to determine appropriate classifications.

Charts were classified based on the separation between the Target Completion line
(target due dates), and the Actual Completion line, which indicated student progress
based on the work having been signed off as complete by their Tutor. This process
resulted in a number of chart classifications, and subclasses. Once the charts were
classified they were examined again for any common features that occurred across
classifications.

7.4.2 Results

Identifed Chart Classifications

Analysis of the charts made available to this research identified seven different clas-
sification related to the distance between the actual and target completion lines.Each
classification is described in the following list, and illustrated in Table 7.11.

Table 7.12 shows the frequency of each chart class in the analysed portfolios, and their
associated grade distributions. The pie chart in Figure 7.20 shows the distribution of

271

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Table 7.11: Illustrations of the seven chart classifications identified in this work. The
thinner blue line represents the Target Completion line, the thicker orange line the
Actual Completion.

Class A

Class B

Class C

Class D

Class E

Class F

Class N

Tight trend with little
diversion from the target
completion line

Close to line and similar to
Class A but with more
deviation, though never
more than one to two weeks
delay before returning to the
target completion line

Consistently trending down,
but with sustained small
gap(s) from the target
completion line

Primarily off the target
completion line, with
occasional (rare) points
where work caught up with
the schedule

More distant from the line,
but catching up toward the
end of the unit

Mostly distant from the line,
with progress made in large
steps

Not complete, chart included
but student was not able to
get all work signed off

272

7.4. EVALUATING PROGRESS USING BURN DOWN CHARTS

the classifications, with the highlighted section indicating the number of students who
did not get all tasks signed off (Class N).

Table 7.12: Chart classification numbers, and grade distribution.

Class Total HD D C P N

A 7 1 6 0 0 0

B 7 2 1 4 0 0

C 10 1 5 3 1 0

D 9 0 2 5 2 0

E 6 0 3 2 1 0

F 9 2 4 2 1 0

N 32 0 1 1 28 2

9%
9%

13%

11%
8% 11%

40%

Distribution of Chart Classifications

Class A

Class B

Class C

Class D

Class E Class F

Class N

Figure 7.20: Distribution of portfolios according to chart class. Note that 40% of
students did not have all weekly tasks signed off.

Chart Features and Subclasses

Five of the seven Class A charts demonstrated cases where students got ahead of the
scheduled work. This was also evident in five of the seven Class B charts, and three
Class C charts. Of note are two students with Class D charts, more distant from the
target completion line, who also managed to get ahead. A total of fifteen students
were able to get ahead at some stage, and in all cases this occurred around week nine,
after the shift to the C programming language.

273

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Two subclasses were evident in the Class C charts, as illustrated in Figure 7.21. The
first subclass included a consistent gap from the scheduled line. This subclass con-
stantly trended down, but did not rejoin the scheduled line during the semester. The
second subclass exhibited a jagged shape with constant gaps coming back to the sched-
uled line at regular intervals. Interestingly none of the second subclass got ahead at
any stage. Both subgroups consisted of five charts.

Class C (Subclass 1) Class C (Subclass 2)

Figure 7.21: Illustrations of the two Class C subclasses, subclass 1 with a consistent
gap and subclass 2 with a jagged sawtooth pattern.

The Class D charts had two identified subclasses, as illustrated in Figure 7.22. The
larger subclass, subclass 1, had “golf club” shaped charts with effort at the end after
a long period without progress (a flat line). The second subclass was characterised by
a slow start, but catching up to the target completion line around the middle of the
semester. The first subclass consisted of five charts, with four in the second subclass.

Class D (Subclass 1) Class D (Subclass 2)

Figure 7.22: Illustrations of the two Class D subclasses, with the “golf club” shaped
subclass 1.

Figure 7.23 illustrates the three subclasses that were identified for the charts most dis-
tant from the scheduled line (Class F). The subclasses included (1) three large steps
to reach the end, (2) a plateau mid semester then progress toward the end, and (3) a
similar “golf club” shape to Class D with a large amount of work being signed off at
the end of the semester.

Of the 32 students who did not get all weekly tasks signed off (Class N) 13 (41%) had
completed 75% or more of the work by the end of the unit. A further 9 had completed
more than 50%, 8 had more than 25%, with 2 having less than 25% of the work signed

274

7.4. EVALUATING PROGRESS USING BURN DOWN CHARTS

Class F (Subclass 1) Class F (Subclass 2)

Class F (Subclass 3)

Figure 7.23: Illustrations of the three Class F subclasses, with three large steps for
subclass 1, plateau in subclass 2, and larger “golf club” shape in subclass 3.

off. This is shown in visually in Figure 7.24, with the pie chart in Figure 7.25 illustrat-
ing the percentage of each of the end points. Two portfolios in Class N were awarded
grades higher than Pass as a result of special consideration.

Of the other classes, most charts that were close to the line (Class B) had their deviation
around week five, which coincided with the arrays topic. Whereas the group more
distant from the line (Class E) typically had slow starts with strong finishes.

Grades by Chart Classification

Table 7.12 includes the result distribution for each chart class, shown graphically in
Figure 7.26. Pass results were primarily from Class N, Credit results were distributed
across classes B through F, Distinction across classes A through F, with High Distinc-
tions coming from classes A though C and F.

275

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

Quartile 1 with < 25% complete Quartile 2 with >= 25% and < 50%

Quartile 3 with >= 50% < 75% Quartile 4 with >= 75%

Figure 7.24: Illustrations of the different graph end points for Class N charts

Amount of Work Signed Off (for N class charts)

6%

25%

28%

41%

Quartile 1

Quartile 2

Quartile 3

Quartile 4

Figure 7.25: Percentage tasks signed off for students with Class N charts.

276

7.4. EVALUATING PROGRESS USING BURN DOWN CHARTS

Figure 7.26: Distribution of grades for each of the identified chart classes

7.4.3 Discussion

Focus of Investigation and Quality of Sample Used

Understanding how students progress through an introductory programming unit
can provide valuable insight into the strategies they are using and the methodology
underpinning the teaching and learning context. Our investigation examined burn
down charts included in student portfolios, which captured the rate at which students
were able to complete formative assessment tasks and have them signed off by their
tutors. Results of the visual thematic analysis, presented in Section 7.4.2, identified a
number of different chart classes and presented details on associated result distribu-
tions.

The investigation examined a sample of the portfolios submitted in a single semester,
with 80 (58%) of the portfolios being included in the analysis. The distribution of
grades for these groups are shown in Table 7.10 and Figure 7.19. The relative distri-
bution of grades in the group with charts is a reasonable representation of the entire
unit, though the Pass grade is under represented. However, as the pass grade students
tended to be clustered in Class N, it is likely that the sample captured the variations
in general student progress across all grades.

Participation in Formative Assessment

A number of the charts indicate active student engagement with the formative as-
sessment throughout the semester. This is evident in the chart classes A through C,

277

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

D (subclass 2), E, and N (for those who completed between 75% but less than 100%
of the scheduled tasks). This represented 47 (59%) of the 80 charts, and in all cases
the charts indicated ongoing progress, which was only possible by engaging with the
formative process.

Our interpretation of the charts from Class D Subclass 1, with its distinctive “golf
club” shape, is that these students are likely to have their attention diverted mid-
semester. A possible cause is that the due dates for first assignments in parallel, but
unrelated, units typically fall in this period. Alternatively, these students may have
needed additional time to bring all of the concepts together before continuing on with
the C programming language. In either case, toward the end of the unit these students
were then able to get back on track, and in some cases get ahead of schedule. It would
be interesting for future work to examine the reflections of these students to verify
these interpretations.

The large drops in the Class F charts may be evidence of confident students who only
occasionally submit their work for assessment. This idea is supported by the large
portion of D and HD results in this group.

A cause for concern is the large number of Class N charts, particularly where less than
75% of the formative tasks were completed. This group made up 30 (38%) of the 80
portfolios examined. The unit teaching staff indicated, overwhelmingly, that a lack of
student engagement had been of particular concern for the semester under analysis.
These students had little interest in learning to program, and seemed to have taken
superficial approaches to learning and doing this work. This is evidenced in the both
the final results and number of students with Class N charts.

Progress, Grades, and Formative Assessment

In reflecting on the distribution of grades across the different chart classifications, we
believe that students have been able to achieve good results using a number of differ-
ent strategies. If this is compared with units that use summative assessment during
the semester, as illustrated in Figure 3.4, students with charts in classes C through F
are likely to have lost some marks early on, as they were behind the target completion
line at various stages during the semester. With the portfolio approach, 50% of these
students were able to go on and achieve a Distinction or higher grade.

Of particular interest are the students with charts in class E, which was characterised
by a slow start and a strong finish. These appear to be students who struggled with

278

7.4. EVALUATING PROGRESS USING BURN DOWN CHARTS

concepts initially but eventually gained sufficient mastery to quickly catch up later
in the semester. It is interesting to note the large portion of these students who were
subsequently able to achieve a Distinction result. Even with the slow start, these stu-
dents were able to apply the concepts learnt to the creation of their own program.
Had this been a traditional programming unit, using summative assessment during
the semester, loss of marks early on may have lead to them not receiving a grade that
represented their final learning outcome. If these students lacked confidence, then this
negative reinforcement may possibly discourage them from attempting to master the
concepts, and reinforce any negative opinion they have of the field in general.

Concept Based Approach

The charts also provide evidence of the effectiveness of the concept-based approach
used. A total of 15 (19%) of the 80 charts showed students getting ahead of the sched-
ule after the switch to the C programming language. This mostly consisted of students
with charts in classes A and B, though it also includes several students in classes C and
E.

After the language change, tasks were concerned with expressing previously pre-
sented concepts in the C language. We propose that students who committed to
understanding the underlying programming concepts, rather than focussing on the
Pascal language itself, were able to exploit this understanding when introduced to
C. Analysis of reflections in these portfolios may provide additional evidence to help
verify this.

Reflecting on Programming Issues

This work helps support two of the general learning issues, as identified in Section 7.3,
facing students: getting started, and learning through mistakes. Other than classes A
and B, most of the student’s progress appears to indicate that they had issues getting
started. This is understandable, given the highly interrelated nature of the program-
ming concepts presented in early weeks. The progress students showed later in the
semester also demonstrates that students are able to make progress while learning
through mistakes.

In relation to time management – the number one issue identified in our previous
work – further analysis of student reflections is needed to determine if the tool pro-
vided them with useful feedback and motivation to keep on track. That said, the

279

CHAPTER 7. EVALUATION OF THE TEACHING AND LEARNING CONTEXT

tool was actively used and provided staff with useful information on student progress
throughout the teaching period.

7.4.4 Summary

In this section we presented a visual thematic analysis of student progress as evi-
denced by burn down charts included in their final portfolios. Details of the unit, its
delivery, assessment, and its use of burn down charts to track progress was described
as a context for this work.

Thematic analysis identified several different chart classes and subclasses, based on
the shape of the chart and its distance from the target completion line. These classes
provided some indication of students’ approach to learning, with most concentrating
on language features rather than underlying programming concepts. The different
chart classes also presented evidence that students struggle to get started with intro-
ductory programming, but that once concepts were mastered they were able to catch
up and, in some cases, get ahead of schedule. Interestingly, the use of formative feed-
back resulted in students being able to achieve high grades even when they struggled
initially.

280

8
Discussion

Chapter 3 presented twelve principles that extend the core principle of constructive
alignment to help create a student-centred learning environment focusing on construc-
tive learning theories. These principles were then used to guide the creation of the
model of constructive alignment for introductory programming presented in Chap-
ter 4. Chapters 5 and 6 provided details of two example units implemented using
this approach, and some of the supporting resources used to assist students in con-
structing appropriate knowledge. Analysis of results from these units was presented
in Chapter 7, which discussed the iterative evolution of the approach and assessment
criteria, issues students faced, and the use of the Doubtfire tool for tracking student
progress.

This discussion chapter considers the overall experience of developing and deliver-
ing units using this approach. Section 8.1 reiterates the importance of the principles
stated in Chapter 3, and discusses the likely implications of failing to address each of
these principles. Following this, Section 8.2 discusses the approach in relation to con-
texts beyond introductory programming, and provides support for Biggs’ claim for
the general applicability of constructive alignment. Section 8.3 relates the approach
presented to prior work on constructive alignment, including Biggs’ original work on
constructive alignment with portfolio assessment, and to prior work on the teaching
of introductory programming. Challenges for the wider adoption of this approach are
then discussed in Section 8.4, followed by suggestions for how to approach the tran-
sition from traditional forms of assessment to portfolio assessment in Section 8.5. The
chapter concludes with closing comments in Section 8.6.

281

CHAPTER 8. DISCUSSION

8.1 Principles in Review

Chapter 3 provided twelve principles which underlie the creation of the student cen-
tred approach to teaching introductory programming presented in Chapter 4. While
each principle has its own individual merits, we believe that they are all required to
work together in order to achieve the outcomes presented; none should be removed.
This section draws upon the experiences of teaching staff, as reported in Chapter 7, to
discuss the potential impact of failing to include each of the principles on the overall
learning environment.

8.1.1 Constructive Learning Theories (P1)

Principle 1 plays a central role in providing the motivation for all of the other prin-
ciples. Where understanding is not seen as being constructed by individual learners,
there is little need to attempt to create teaching and learning activities that actively
engage students. Effective teaching becomes a matter of effectively delivering the re-
quired knowledge, resulting in teacher-centred activities coming to the fore.

Adopting constructive learning theories in teaching and learning activities addresses
only part of the overall teaching and learning environment. The central role of assess-
ment implies that such theories need to extend beyond teaching and learning activ-
ities to assessment. Applying traditional assignment and exam assessment schemes
limits the opportunity for students to demonstrate their understanding in a way that
is meaningful to them. Given students role in constructing their knowledge, they are
best situated to determine what represents the best demonstration of their understand-
ing. Implementing the other principles without adopting more flexible assessment
approaches is likely, therefore, to limit the effectiveness of the learning environment
overall as students are limited by the assessment approach.

These competing views can be best thought of as a continuum based upon commu-
nication; from knowledge transmission with objectivist learning theories, to discover
learning with constructivist theories. This continuum is shown visually in Figure 8.1,
which depicts the underlying concepts that drive the actions of teaching staff when
they hold such views. At the objectivist end of the continuum communication is key,
and teaching staff work to communicate all of the aspects students need to under-
stand. This view is teacher-centred as the teacher communicates the required under-
standing for students to passively absorb. At the other end, the extreme constructivist
view discards any value in communication, instead students are placed in situations

282

8.1. PRINCIPLES IN REVIEW

and asked to “discover” the knowledge themselves. Adopting either of these extreme
positions is not likely to result in an effective, student-centred, learning environment.

Principle 1 requires a middle ground approach. To embrace this approach, educators
need to accepts the central role of the student in constructing their own knowledge,
while also accepting that communication can be a powerful tool to help guide this
construction. Communication then becomes a valuable tool, with teaching staff being
encouraged to communicate as little or as much as is needed by the students at that
stage of their learning. Communication is not used to transfer knowledge, but to help
guide students.

Reflections from the evaluation of the unit deliveries across the various iterations in
Chapter 7 provide support for taking this middle ground approach. Teaching staff at-
tributed many of the failings of the object oriented programming unit in Iteration 2 to
an overly zealous application of constructive learning theories. Moving back from this
extreme, to a more moderate application of constructive learning theories addressed
this situation in later iterations, and as staff expertise in guiding students improved,
so did student results.

8.1.2 Aligned Curriculum (P2)

Aligning all aspects of the teaching and learning environment (P2) makes good intu-
itive sense. Failing to address this principle is likely to result in one of three potential
outcomes based upon misalignment between the three component parts: teaching and
learning activities, assessment tasks, and intended learning outcomes.

1. Where assessment aligns to intended learning outcomes, but activities do not,
students are likely to be unprepared for the assessment tasks. Whilst assessment
defines the curriculum for students, activities fail to provide a means of prepar-
ing them for this assessment.

2. Where activities align to intended learning outcomes, but assessment does not,
students may construct appropriate knowledge but the assessment is unlikely to
identify this. Final student grades fail to represent student learning outcomes.

3. Where neither assessment nor activities align with intended learning outcomes,
students are not likely to learn what was intended. While students may ef-
fectively learning something valuable, and the assessment appropriately report
this, the misalignment is likely to cause issues for students in later units, or pro-
fessional life.

283

CHAPTER 8. DISCUSSION

ObjectivismConstructivism

Discovery is key:
Tell students nothing,

let them discover
their own knowledge.

Communicate is key:
Tell students everything.

I need to tell them
what they need

to know.

Guidance is key:
Tell students whatever
is going to help them
at their current stage.

Keep them active.

Volume of
Student's Knowledge

50%
Structure of

Student's Knowledge

Assess how
much they have
retained of what

was communicated
to them

Assess the
structure of what

they have
understood

Everyone
assessed on the
same work. It's
about matching

their responses to
what is known

Different people can
submit different

evidence. It's about
demonstrating their

individual
understanding

Student
Activity

Staff
Activity

Figure 8.1: Thoughts that guide teaching staff at either end of the constructivism-
objectivism continuum. Chapter 3 advocates a pragmatic approach to constructivism,
somewhere on the constructivist side of the continuum.

284

8.1. PRINCIPLES IN REVIEW

Alignment is, therefore, a critical aspect in creating an effective learning environment.
By aiming to achieve consistency between teaching and learning activities, assessment
tasks, and intended learning outcomes, teaching staff provide students with the great-
est opportunity to learn the required knowledge in an effective manner.

It is also critical to understand that students must also be involved in this alignment
process. The interplay between Principle 1 and Principle 2 means that students, not
staff, are in the best position to report on how teaching and learning activities and
assessment tasks aligned with the intended learning outcomes. It is the students who
followed the planned activities, carried out the assessment tasks all of which helped
them in the construction of their knowledge. It is the students, therefore, who truly
experience and know how these activities aligned.

The implication of this is that there is not likely to be one measure of alignment for a
set of teaching and learning activities. Each student’s learning will be unique, based
upon their prior experiences and current knowledge structures, resulting in the ac-
tivities influencing each student in a unique manner. Alignment reported by staff
in carefully prepared matrices are, therefore, illustrative at best. It should be impor-
tant for activities to provide students with a range of opportunities to engage with
each learning outcome, giving students the best opportunity to actually achieve these
learning outcomes.

The matrices for the units presented in Chapter 5 demonstrate this wide coverage
of outcomes, as shown in Table 5.2 and Table 5.4. In these units students were pro-
vided with a number of opportunities to engage with each of the intended learning
outcomes.

8.1.3 Assessing Learning Outcomes (P3)

Principle 3 aims to encourage educators to evaluate student learning outcomes in
terms of a student’s developed understanding at the end of the teaching period. To
achieve this, Chapter 3 advocated the use of frequent formative feedback and assess-
ment tasks that require students to articulate their understanding, in addition to prac-
tical application, of the concepts covered. The following list outlines three ways in
which the principle of assessing student outcomes can be violated, each of which is
then discussed.

1. Frequency of feedback is reduced.
2. Assessment might focus on product outcomes and not require students to artic-

285

CHAPTER 8. DISCUSSION

ulate their understanding.
3. Summative tasks could be used during the teaching period.

With regards to point 1, there may be some temptation to reduce the frequency of for-
mative feedback, to reduce staff and student workloads. However, rapid iterations
are key to ensuring student learning remains “on track.” As the frequency of forma-
tive feedback is reduced, there are less opportunities for staff to positively influence
student outcomes, and overall results are likely to be weaker.

This temptation is also ill-founded, as frequent feedback does not aim to increase
workloads but to distribute this work more consistently throughout the teaching pe-
riod. Figure 8.2 illustrates this aim, showing that the goal is to provide smaller fre-
quent feedback in order to maintain similar overall effort. Where this can be achieved,
students are more likely to develop appropriate understandings, as misconceptions
can be addressed earlier in the process. For the example units presented in Chapter 5,
the use of weekly formative feedback helped ensure that each small task could be as-
sessed quickly, thereby ensuring students received their feedback in a timely manner.
Had larger tasks been used additional time would be needed to assess these thereby
further delay feedback.

Task
Size

Feedback time
(staff)

Small tasks, more frequently
Fast turn around

Total
Task
Effort

Task
Size

Total
Feedback

Effort
Large tasks, less frequently

Slower turn around

Time

Time

Figure 8.2: Illustration of time allocation to assessment tasks, with rectangle areas
representing effort expended by students preparing submissions, and arrows repre-
senting effort for staff to provide feedback.

286

8.1. PRINCIPLES IN REVIEW

The second issue listed above relates to the assessment of student understanding, in
addition to product outcomes. This is particularly relevant to programming units,
where it is easy to assess the programs students create rather than attempting to as-
sess their understanding. Assessing product outcomes alone encourages surface ap-
proaches to learning, as it is the product and not the understanding that is being as-
sessed. Including some tasks that require students to articulate their understanding
provides opportunities for students to engage appropriate cognitive levels, helping
them develop the required understanding, while also communicating the importance
of this understanding to the students. In this way, such tasks help to encourage stu-
dents to appropriately engage with learning activities, and to use deep approaches to
learning.

The final issue relates to the use of summative assessment, rather than formative
feedback, during the teaching period. Including summative assessment during the
semester breaks several critical aspects of the approach presented. Assessing tasks
within the teaching period means that an overall assessment of student learning out-
comes is no longer possible. This was evident in the results from the first iteration
discussed in Chapter 7, with results failing to match outcomes demonstrated in stu-
dent portfolios.

Using summative assessment during the teaching period also limits the likelihood of
students incorporating feedback they receive. Summative assessment is, by its very
nature, final, and so students are not encouraged to learn from such assessment. A
positive aspect of using formative feedback during the delivery of the example units
was that understanding became the key focus. Tasks were not complete until stu-
dents had demonstrated the required understanding. There was no punishment for
not having understood an aspect of a topic on the first attempt, freeing teaching staff
to provide relevant feedback and guide students toward the required understanding.

While summative assessment during the teaching period works against the overall
principles stated in Chapter 3, the distinction between formative feedback and sum-
mative assessment changes when using summative assessment that aims to provide a
qualitative, holistic, assessment of student outcomes. Constructive learning theories
require staff to gain an understanding of the likely level of understanding students
have developed in order to provide formative feedback. As a result, teaching staff
are able to perform summative assessment of student performances at any stage dur-
ing the teaching period. In effect, the assessment at the end of the teaching period
represents an arbitrary point in time at which this assessment does occur. Ideally, ad-
ditional flexibility in education could allow this point to be adjusted for individual
students further catering for a wide range of capabilities.

287

CHAPTER 8. DISCUSSION

Formative feedback with qualitative, holistic, summative assessment of student out-
comes is seen as critical to the success of the approach presented in this thesis.

8.1.4 Supporting Principles (P4 to P12)

As shown in Figure 8.3, principles 4 to 9 can be considered as providing underlying
support for the central principles related to the adoption of constructive learning the-
ories, alignment of curriculum, and assessment of learning outcomes. While embrac-
ing these principles helps support the central principles, it is possible that alternatives
could offer similar outcomes.

Encourages
aspiration

Supports
student-centred

learning activities

Accepts diversity,
encouraging

and rewarding
creativity

Ensures focus
and guides delivery

Focus on
Important Aspects

P4. Communicate
High Expectations

P5.

Actively Support
Student Efforts

P6. Trust and
Empower Students

P7.

Agile and Willing
 to Change

P8. Encouraging
Reflective Practice

P9.

Align Activities and
Assessment to ILOs
P2.

Assess Learning
OutcomesP3.

Students Construct
KnowledgeP1.

Recognises the need
to change to improve

learning outcomes

Encourages professional
practice for teaching

staff and students

Figure 8.3: An alternative view of the principles outlined in Chapter 3, showing Prin-
ciples 4 to 9 providing support for the central principles of constructive learning the-
ories, alignment of curriculum, and assessment of learning outcomes.

Principle 4 encourages a focus on communicating only key concepts, and providing
students with access to details which they can use as needed. This principle was in-
strumental in the displacement of lecture content to teaching and learning resources;
an approach that also resulted in light-weight teaching and learning activities that
made it easier to make iterative improvements in line with Principle 8. If this prin-
ciple had not been embedded within the example units then the shift away from
teacher-focused lectures, to more constructive activities with greater student engage-
ment, would have been more challenging.

Principle 5 encourages teaching staff to communicate high expectations to their stu-
dents, in an effort to promote deep learning. Staff expectations are communicated
deliberately, through assessment tasks and feedback, and indirectly, through tone and

288

8.1. PRINCIPLES IN REVIEW

attitude. In all cases these expectations encourage students to strive to achieve ex-
cellence. In the example units, high expectations were communicated throughout
the iterative process, with work only being signed off when it was completed to a
high standard. The handling of tests in the example units is a particularly relevant
case, with students needing improve their answers even when they had successfully
completed most of the test questions. Had these high expectations not been commu-
nicated, students would be more likely to lower their internal expectations, as was
encountered in the first few iterations discussed Chapter 7.

Principle 6 aims to actively support student efforts. When constructive learning the-
ories are adopted, teaching staff can no longer tell students what they need to know;
instead staff need to guide students in their learning. Additional assistance helps stu-
dents develop their understanding as they attempt to engage with learning activities.
With challenging unit content, such as in introductory programming units, this sup-
port helps ensure a larger number of students will successfully complete the unit.
Where this support is not provided results are likely to suffer, either in terms of over-
all expectations or number of students successfully completing the unit.

Principle 7 indicates a need to view students as being genuinely motivated to learn, a
Theory-Y view of education. Where this principle is not held, staff are likely to resist
the move away from summative assessment during the teaching period. Theory-X
strategies of coercions and punitive assessment need to be avoided for the benefits of
formative feedback to be realised.

Principle 8 recognises the need to be agile and willing to change. The iterative de-
velopment of the example units reported in Chapter 7 provides a clear demonstration
of the value of this principle. In many regards, initial implementations of portfolio
assessment were seen as only partially successful, but by embracing change, iterative
improvements resulted in the positive learning environment experienced in later iter-
ations. Where change is not embraced, situations are not likely to improve on their
own. However, once the approach taken does result in good learning outcomes, the
need for change reduces.

Finally, Principle 9 encourages the use of reflection by both staff and students. Stu-
dents are encouraged to reflect on their learning, while staff reflect on student out-
come and use this feedback to direct change. Reflection works “hand-in-hand” with
Principle 8 in shaping the units outlined in Chapter 5, as reported in Chapter 7. Failing
to incorporate this principle would lessen the impact of any change. Similarly, failing
to encourage students to reflect on their learning is not taking full advantage of the
learning environment created.

289

CHAPTER 8. DISCUSSION

8.1.5 Principles Related to “What” We Teach (P10, P11, and P12)

In addition to the nine principles related to “how” we teach, Chapter 3 presented
three principles on “what” we teach. These aimed to work together with the “how”
principles to create an effective environment for students learning introductory pro-
gramming concepts. As each of these principles relates specifically to the teaching of
introductory programming, they may not be relevant to teaching other units. This
also implies that these principles need not even be addressed by other introductory
programming units.

Principle 10 indicates that introductory programming units should aim to communi-
cate a consistent set of programming concepts centred upon a programming paradigm.
In the example units presented in Chapter 5, the procedural paradigm was used in the
formation of the introductory programming unit, while object oriented programming
principles were focused upon in a second unit. While this selection, and order, of
paradigms could be adjusted, it would be hard to imagine an introductory unit that
did not centre on an in-depth coverage of a single paradigm.

Each paradigm centres around a number of programming abstractions, with programs
being conceptually constructed through the abstract definition and configuration of
these abstractions. Principle 11 encourages educators to focus on communicating
these conceptual structures, and associated programming concepts. Associated con-
cepts, such as DuBoulay’s notional machine (DuBoulay 1986), then become the focus,
rather than the specifics of a programming language’s syntax. The realisation of this
principle enabled the example units to introduce students to a range of programming
languages, helping them better understand the underlying concepts.

While this concept focus was important for these units, Principle 11 is not critical to
the the overall approach. Ideally educators should aim to communicate underlying
concepts, as these provide students with a broader understanding of programming in
general. Where depth in a single language is desired, this could still be achieved with
a focus on concepts. So there is little reason not to adopt this principle, though it does
require a certain level of expertise from teaching staff, and availability of resources for
students to use as they learn syntax themselves.

Finally, Principle 12 advocates for appropriate use of programming languages. Con-
structive learning theories indicate that the goal of education is to help students “think
and act” like experts. This necessitates the appropriate use of the tools, and concepts,
in teaching and learning activities. By not adhering to this principle, students can
learn how not to do something. This is likely to result in students developing inappro-

290

8.2. GENERAL APPLICABILITY OF APPROACH

priate understandings of how the relevant tools or concepts should function. These
understandings must then be unlearnt before students are able to “think and act” as
experts.

8.2 General Applicability of Approach

Chapter 4 described an approach that has been used to deliver a constructively aligned
introductory programming units that embodied all of the principles from Chapter 3,
and outlined the overall strategy taken to unit delivery and assessment. This section
discusses the wider applicability of the approach, and constructive alignment in gen-
eral.

8.2.1 Applicability of Constructive Alignment in General

Biggs’ original proposal of constructive alignment concluded with the following ques-
tion:

“Can the principle of constructive alignment be generalised from the con-
text of in-service teacher education?” Biggs (1996)

While others have applied the core principle of constructive alignment, as discussed in
Chapter 2, this thesis has identified additional principles that help create the “web of
consistency” phenomenon that inspired Biggs’ constructive alignment model (Biggs
1996, 1999). The twelve principles stated in Chapter 3 underpin an approach to con-
structive alignment described in Chapter 4 which, together with the principles, guided
the design, development, and delivery of the units described in Chapter 5. The re-
sults? A supportive, student-centred, teaching and learning environment in which, to
use the words of Biggs & Tang (2007) (p.51), students consistently “stun” teaching staff
with the “rich and exciting” work they demonstrate in their portfolios.

As outlined by Biggs (1996), the model of constructive alignment makes intuitive
sense, and comes together as a whole when the following conditions are met.

1. Teaching staff are clear about the intended learning outcomes.
2. Assessment criteria are provided to indicate how these outcomes can be met at

various levels of achievement, forming a hierarchy from barely satisfactory to
most acceptable.

291

CHAPTER 8. DISCUSSION

3. Students are required to perform activities that are likely to elicit the required
understandings.

4. Students provide evidence that their learning has matched the stated outcomes.

Chapter 4 demonstrated how the guiding principles described in Chapter 3 can be
applied to create an approach to teaching introductory programming that meet, and
in many regards go beyond, Biggs’ four conditions. The processes described started
with the clear expression of intended learning outcomes, with the development of
assessment criteria providing the required performance objectives required for differ-
ent grade outcomes. The development of teaching and learning activities aimed to
provide students with tasks likely to engage them in activities that will enable them
to construct appropriate understandings, and produce evidence they can include to
demonstrate their newly gained knowledge. This evidence could then be collected
together and presented in student portfolios as a means of demonstrating how the
stated objectives had been met.

Therefore, the approach presented in Chapter 4, along with the example implemen-
tation discussed in Chapters 5 to 7, provide additional support for Biggs’ suggestion
that constructive alignment using portfolio assessment can be generalised to a range
of educational contexts.

8.2.2 Applicability of Approach to Other Units

The general applicability of constructive alignment gives rise to the question: Can the
approach presented in Chapter 4 be used beyond the context of introductory program-
ming? We believe so, and have been working with others to bring this approach to a
wider range of units. To date, this approach has been used in the design and delivery
of the following units:

• Artificial Intelligence for Game used intended learning outcomes related to the
use of Artificial Intelligence in creating immersive gaming experiences. Student
portfolios included a number of programs to demonstrate various techniques,
with higher grades demonstrating the application of learnt concepts in the de-
velopment of a program of the students own invention.

• Concurrent Programming covered the use and implementation of concurrency
control mechanisms such as semaphores, barriers, and channels. Portfolios in-
cluded implementations of these utilities, along with programs demonstrating
solutions to classic synchronisation problems.

• Enterprise Software Development involved the use of a range of software tools

292

8.2. GENERAL APPLICABILITY OF APPROACH

to implement larger, multi-tier, solutions to business scenarios. Portfolios in-
cluded demonstrations of various technologies, architectural designs, and tech-
nical demonstrations of core components of these designs.

• Games Programming introduced concepts related to game design, and the im-
plementation of game engine concepts. Portfolios included demonstrations of
various programming techniques and optimisations related to game develop-
ment, with students implementing game prototypes for higher grades.

• Mobile Software Development explored the implementation of software for mo-
bile devices, and associated usability issues. Students applied concepts they
learnt in the creation of their own programs for higher grades.

• Research Project involved undergraduate students undertaking and document-
ing a small research project. Portfolios included artefacts created from the re-
search project, which consisted of, at least, a research proposal and plan, research
report, artefacts associated with an oral presentation, and a learning summary
report.

In each case the units involved incorporated the principles from Chapter 3, with the
central role of programming paradigms (P10) in the development of introductory pro-
gramming units being adjusted to focus on key aspects relevant for each unit. The
use of portfolio assessment in each case meant that similar, in many cases identical,
assessment criteria were used for the different intended learning outcomes.

These units have been successfully delivered using portfolio assessment, and have
demonstrated similar student-centred learning environments that focus on encour-
aging and rewarding students for developing a depth of understanding. In general,
these units exhibit many of the positive aspects from reported in Chapter 7, including:

• Portfolios demonstrating a range of capabilities from completing core aspects to
creating custom projects and research reports.

• High pass rates, with few students failing.
• Good student evaluations in student feedback on teaching surveys.
• Staff indicate good productivity from applying portfolio assessment, with time

being spent assisting students rather than assessing them.

Future work could look to evaluate the effectiveness of constructive alignment with
portfolio assessment in these and other units as the approach is applied more widely.

293

CHAPTER 8. DISCUSSION

8.2.3 Applicability to Team Work and Project Units

The use of the approach from Chapter 4 could provide a means of assessing learn-
ing outcomes for students in units that include significant use of group work, such
as with team-based final year capstone projects. The focus on assessing learning out-
comes (P3) over assessing product outcomes, and the portfolio’s focus on students
demonstrating how they have met the unit’s intended learning outcomes, provide a
means of assessing individuals.

In these units, students work as part of a team, with obvious challenges in assessing
the learning outcomes from individual students as final work products are a team
effort. Using the approach from Chapter 4 it would be possible to create a learning
environment for these units that meet the following criteria:

• Intended learning outcomes capture the required technical and teamwork skills
and understandings students need to demonstrate to successfully complete the
unit.

• Assessment criteria indicate how these outcomes need to be demonstrated in
order to achieve different grade outcomes.

• Students engage in teamwork activities, which are likely to elicit the required
outcomes.

• Each student collects personal evidence that they have met all of the intended
learning outcomes, and aligns their evidence in a Learning Summary Report,
which is presented for assessment.

In this way, each student’s grade would reflect how well they, as individuals, have met
the intended learning outcomes. Creating such a scheme would require the embodi-
ment of all principles stated in Chapter 3, particularly the need to trust and empower
students in their learning (P7).

8.2.4 Applicability to Large Class Sizes

One place where we differ from the recommendations of Biggs & Tang (2007) is in
the use of portfolios for larger class sizes. Incorporating frequent formative feedback,
tracked by the online Doubtfire tool, made it possible to use portfolio assessment with
classes in excess of 300 students (323 students completed the introductory program-
ming units in iteration 8). The frequent formative feedback meant that student work
submitted in their portfolios had already been checked, often multiple times, and if
completed successfully this had been indicated in the Doubtfire tool. As a result, the

294

8.2. GENERAL APPLICABILITY OF APPROACH

majority of student work did not need to be re-checked in their final portfolios, and
grades could be quickly determined from the Learning Summary Report and records
of assessment feedback and test completion.

Reflections from teaching staff indicate that the process enabled student portfolios to
be assessed in significantly less time than it took to assess the previously used exams
– which consisted of multiple choice, short answer, and coding questions. It was also
felt that the grades awarded aligned with the capabilities students had demonstrated
during the teaching period.

Given this, and ongoing improvements through reflective practice, it is also believed
that the use of portfolio assessment could scale to significantly larger class sizes.

8.2.5 Applicability of Overall Strategy

Section 4.1 described the overall strategy used to underpin the development and de-
livery of the units later presented in Chapter 5. This strategy centred around the use
of portfolio assessment as an assessment approach, and utilised a variety of student-
centred delivery approaches to help embed constructive learning theories in unit de-
livery. This section discusses these decisions, and if and how alternatives could be
incorporated.

Portfolio Assessment

Biggs’ early work on constructive alignment strongly advocated for the use of portfo-
lio assessment (Biggs 1996, 1999). Biggs & Tang (2007) provided a range of alternative
means of implementing constructive alignment under the premise that portfolio as-
sessment is not applicable for large class sizes. However, as shown in Chapter 7, our
approach has been able to scale from teaching tens of students in early iterations, to
hundreds of students in later iterations through the implementation of the principles
described in Chapter 3.

Alternative assessment schemes involving the use of summative assessment during
the teaching period, and examinations at its end, are not able to reproduce the same
“web of consistency” as they break several of the core principles outlined in Chap-
ter 3. Existing work reporting on applications of constructive alignment are largely
representative of this situation, with the large majority still producing students final
grade as a combination of weighted assignment and exam outcomes. This traditional

295

CHAPTER 8. DISCUSSION

approach to assessment fail to meet the conditions outlined by Biggs (1996):

• Teaching staff may clearly express intended learning outcomes, but students will
focus on the assignments and exams as “assessment defines curriculum” for the
students (Ramsden 1992).

• Assessment criteria allocate marks for the assignments and exam questions, fail-
ing to provide a hierarchy of criteria related to performance against the intended
learning outcomes.

• Instead of providing evidence that their learning has matched the stated out-
comes, students provide solutions to the assignments and exam questions.

The beauty of constructive alignment with portfolio assessment is its simplicity. In-
tended learning outcomes provide the central focus for teaching staff and students,
who work together during the teaching period to help students construct evidence
that they can achieve these stated outcomes. Hierarchial assessment criteria then sup-
port this to encourage and reward students for demonstrating depth of understand-
ing. This clear focus is essential in developing Biggs’ “web of consistency”, and are
central to the successes outlined in Chapter 7.

This simplicity is lost with more traditional forms of assessment, even when carefully
aligned with intended learning outcomes. Separating the assessment tasks from the
intended learning outcomes diminishes the importance of the outcomes and focuses
students on the assessment task and its marking criteria. From the students perspec-
tive what is important is maximising their marks on the assessment tasks, potentially
using shallow approaches that fail to develop appropriate understanding. While port-
folio assessment does not guarantee that all students will deeply approach learning, it
is designed to encourage and reward students who do.

Delivery Approach

Section 4.1 outlined the incorporation of constructive learning theories into the teach-
ing and learning activities using the Beyond Bullet Points approach for lecture presen-
tations, interactive lecture demonstrations, and laboratory sessions with lab, core, and
optional tasks. While each of these was seen as effective in the delivery of the example
units, other units and different teaching staff are likely to need different strategies.

In deciding upon a delivery strategy, teaching staff need to identify tasks that are likely
to actively involve students in constructing their own knowledge. Where previous
activities may have relied upon knowledge transmission (such as the standard lecture)

296

8.3. APPROACH IN RELATION TO PRIOR WORK

these need to be redesigned with constructivist ideals in mind.

8.2.6 Applicability of Activities within the Model

After outlining the overall strategy taken in this work, Chapter 4 presented the model
of constructive alignment used, and described a number of processes that existed
within this model. Given the use of portfolio assessment, a central aspect of the model
as outlined in Section 8.2.5, these processes are likely to be appropriate for the deliv-
ery of a number of portfolio based units. For teaching staff, the model utilised the
following steps:

1. Define Intended Learning Outcomes
2. Construct Assessment Criteria
3. Develop Teaching and Learning Activities and Resources
4. Deliver Unit
5. Provide Feedback and Guidance
6. Assess Student Portfolios

The outcome of this work suggests that each of these activities is essential in delivering
any unit using constructive alignment with portfolio assessment. Intended learning
outcomes need to be stated using active verbs, which can be drawn from the SOLO
Taxonomy. These outcomes then become the central focus of the unit with students
aiming to demonstrate they have achieved these outcomes in their portfolios. Assess-
ment criteria define performance objectives for each grade outcome, and indicate the
kinds of evidence students need to construct. Teaching and learning activities and re-
sources need to be developed, or existing activities and resources identified and used.
Delivery of the unit will need to incorporate frequent formative feedback to ensure
that student work is most likely to meet intended learning outcomes, and finally stu-
dent portfolios must be assessed in order to determine final grades.

8.3 Approach in Relation to Prior Work

8.3.1 In Relation to Work on Constructive Alignment

Previous work on applying constructive alignment, as reported in the systematic lit-
erature review in Chapter 2, has predominantly seen the application of constructive
alignment as simply the staff centred task of aligning teaching and learning activities

297

CHAPTER 8. DISCUSSION

with the unit’s intended learning outcomes. This differs vastly from the view of con-
structive alignment presented in this thesis, where constructive alignment is seen as
a much greater shift from a teaching-centred to a student-centred focus, with all as-
pects working together to guide and support students in the construction of their own
knowledge – as captured in the principles outlined in Chapter 3.

The introductory programming units delivered prior to adopting the approach out-
lined in Chapter 4 had incorporated the core aspects of constructive alignment. The
unit used delivery approaches consistent with constructive learning theories for com-
puter science, and teaching and learning activities and assessment tasks were aligned
(informally) to intended learning outcomes. By adopting the wider set of principles
described in Chapter 3 the introductory programming units demonstrated improve-
ments in both the teaching and learning environment and learning outcomes, as re-
ported in Chapter 7.

Staff involved in teaching the units prior to the change to portfolio assessment re-
ported assessment as a negative experience, as indicated in the reflections in Chap-
ter 7. Marking assignments and exams identified, often for the first time, a large range
of student misconceptions. The illusion that lectures had been effective in transferring
knowledge to students disappeared, but too late to affect learning outcomes. This
was further reinforced by the arbitrary weights of assignments and exams, which of-
ten resulted in cases where teaching staff felt that student results did not match the
knowledge, or lack thereof, that students had demonstrated qualitatively in the final
assessment tasks. It is not surprising that traditional exam-based forms of assessment
often resulted in disappointments.

Reflections from teaching staff, reported in Chapter 7, indicate that these frustrations
abated with the shift in approach. Final student assessment shifted from a negative
experience, to became a positive and rewarding experience for teaching staff. Use of
frequent formative feedback meant that students misconceptions were addressed of-
ten, allowing teaching staff to direct students and guide them to better understand
unit concepts. “Assessments” were no longer final, so students were encouraged and
rewarded for incorporating feedback they received, with each student receiving indi-
vidual feedback based upon their current level of understanding. Assessment criteria
provided a means for teaching staff to set expectations, while still providing oppor-
tunities for students to pursue their own interests and to use their imagination and
creativity. In these ways final assessment did not hold any negative surprises. Portfo-
lios provided an opportunity for students to “show off ” what they had learnt. Where
students had achieved Distinction and High Distinction results, these portfolios often
went well beyond staff requirements, making assessment a rewarding experience for

298

8.3. APPROACH IN RELATION TO PRIOR WORK

teaching staff and students as students demonstrated just how much they had been
able to achieve.

This change in assessment had a flow on effect to the teaching and learning envi-
ronment as a whole. Students were no longer losing marks in their assignments, but
could use feedback to improve their learning outcomes – both in terms of final grade,
and depth of understanding. Improvements in clarity of assessment criteria, and tools
to support the formative feedback process, enabled closer collaboration helping staff
to better guide students to the desired learning outcomes. The system was in har-
mony, with all aspects focusing on students demonstrating the unit’s intended learn-
ing outcomes. The simplicity of constructive alignment with portfolio assessment, had
resulted in a clear embodiment of Biggs’ “web of consistency”.

It is hard not to draw parallels between these different approaches to education and
different software development life-cycle models. Traditional assessment approaches,
based upon assignments and exam, can be likened to the Waterfall approach (Royce
1970). Teaching and learning activities are delivered in sequence, with little feedback
from students. When feedback is provided on summative assignments it is often over-
looked (Black & Wiliam 1998), as students focus on the grade they achieved rather
than on opportunities for deeper learning. Any accumulated misunderstandings are
then propagated to the final examination. In contrast, the iterative process outlined
in Chapter 4 is more akin to processes in Agile software development. Students and
staff interact frequently, enabling staff to guide students with the focus being clearly
on their learning during the teaching period. Final summative assessment in student
portfolios assess to what level students have been able to achieve stated unit outcomes,
with higher grades indicating a demonstration of deeper understanding.

This discussion raises an important question, what is constructive alignment? Is it
predominantly an issue of alignment performed by staff, as appears to be the majority
view of the literature reviewed in Chapter 2, or is it predominantly an an application
of constructivist learning theories with student alignment, as originally proposed by
Biggs (1996) and outlined in this thesis? The answer is perhaps both, but more explicit
terminology would help communicate which variant is being reported upon in future
research work. The differing focus of the alignment, being performed either by staff
or students, suggests that could be a means of distinguishing between the two. Con-
structive Aligned Teaching could be used to refer to teacher-centred approaches, where
teaching staff aim to embed constructive learning theories in activities but retain tra-
ditional approaches to assessment. Similarly, Constructive Aligned Learning could be
used to refer to use of constructive learning theories in both activities and assessment,
where the student performs the alignment and presents a body of work to demon-

299

CHAPTER 8. DISCUSSION

strate their ability to achieve the intended learning outcomes.

8.3.2 In Relation to Work on Introductory Programming

Engaging Deep Approaches to Learning

This work presents a system for implementing constructive alignment for teaching in-
troductory programming that encourages and rewards students for engaging in deep
approaches to learning. The use of holistic, criterion referenced assessment, as pre-
sented in Chapter 4 and discussed in Chapter 7, in the example units resulted in
grades that represented clearly distinct learning outcomes. Students who achieve a
Pass grade had demonstrated the ability to meet at the unit intended learning out-
comes to a minimal standard. A Credit grade indicated the student had completed all
set tasks to a high standard, had demonstrated their progress to their tutor throughout
the teaching period, and had constructed a portfolio that demonstrated a good cover-
age of all intended learning outcomes. In additional to meeting these criteria, students
who achieved a Distinction or higher grade were able to demonstrate the application
of the unit learning outcomes to the design and implementation of a program of their
own creation.

Given these clearly distinct grade outcomes, it is encouraging to note that 82% of Com-
puter Science students who enrolled in the unit managed to achieve a passing grade
in the introductory programming unit reported in Iteration 8, with 59% achieving a
grade of Credit or higher and 35% achieving a Distinction or higher grade. For these
students the portfolio based approach appears to have worked well, with them ac-
tively engaging with the unit content.

With the primarily engineering focused students, the approach has been less suc-
cessful. The results from Iteration 9 indicate that 67% of these students were able to
achieve a Passing grade, with 28% achieving a Credit or higher result. However, these
results are not moderated in any way and still indicate that these students were able
to demonstrate all of the units intended learning outcomes in their portfolios. This in-
dicates the significant role of motivation for any student centred approach to learning
that incorporates flexible assessment. For these students, passing the unit appears to
have been their primary goal. Once they achieved this goal they were satisfied and
did not strive to achieve better results.

The different results for these two cohorts, when taught using the same approach, sup-
ports the claims of (Bruce et al. 2003) that students need to engage deep approaches

300

8.3. APPROACH IN RELATION TO PRIOR WORK

to learning introductory programming, as surface approaches alone are unlikely to
be sufficient. Designing the assessment criteria to require students to demonstrate
deeper levels of understanding should mean that the system is sensitive to the ap-
proach students take to their learning, with those who engage in deeper learning
achieving higher grades.

Motivation, therefore, remains key to addressing the challenges associated with teach-
ing introductory programming raised by (McGettrick et al. 2005). Where students can
be motivated to engage in deep learning the approach presented in this work provides
a framework for supporting and directing student efforts toward their attainment of
the unit’s intended learning outcomes. For these students the support and freedom
offered provides a means for them to engage meaningfully in developing a deep un-
derstanding of the associated programming concepts.

Programming Difficulties Faced

The results reported in Chapter 7 support the work of Winslow (1996) and Lahtinen
et al. (2005) in indicating that students struggle more with programming concepts
than with programming language syntax. Reflections from student portfolios indi-
cated that for these students the primary challenges they faced in their learning were
associated with general learning issues, or with issues associated with programming
language concepts.

These findings support the more concept-based approach to teaching introductory
programming presented in Chapter 4 and Chapter 5. By moving language syntax de-
tails to supporting resources, such as the programming text described in Section 6.3,
the approach presented frees additional class time to focus on the programming con-
cepts students need to grasp in order to more fully understand the programs they are
creating. The results from the example units show that these classes can be successful
once students engage appropriately with the learning activities.

Applying Constructive Learning Theories

The approach presented in Chapter 4, and example units described in Chapter 5,
demonstrate how constructive learning theories can be embedded within an intro-
ductory programming unit. The approach presented incorporates a range of practices
recommended by Ben-Ari (2001), including the use of a notional machine, interactive
lecture demonstrations, code tracing tasks, and other activities to encourage the stu-

301

CHAPTER 8. DISCUSSION

dents to develop viable mental models of computing and program structure.

The success of the introductory programming unit indicates the effectiveness of these
constructivist activities. It remains the case that “it is what the student does that
counts” (Biggs & Tang 2007), but when students do engage these activities, these tasks
provide them with the guidance they need to succeed in learning the associated con-
cepts. Incorporating constructivist learning activities with frequent formative feed-
back does create a system capable of supporting a range of student capabilities and
interests.

8.4 Challenges for Wider Adoption

8.4.1 Adopting Constructive Learning Theories

Constructivist learning theories are central to the principles and approach outlined in
this thesis. This requires that educators adopt key aspects of constructivism as their
theory-in-use, not just their espoused theory (Argyris 1976). A shift from a primarily
objectivist view of education, to one centred on constructive learning theories, requires
a significant conceptual change and is likely to be a large challenge to the wider adop-
tion of this approach.

Objectivist views provide educators with a number of convenient truths, for exam-
ple knowledge transfer is conceptually simple: get a number of people in a room and
tell them what they need to know. Guiding students in the construction of their own
knowledge may seem like a much greater challenge. Accepting the students central
role in constructing their own knowledge, means rethinking old strategies, and look-
ing for new ways to engage students with the material.

Constructivist learning theories require a move from teacher-centred to student-centred
learning environments, which in turn requires educator to release some control of the
learning environment. With teacher-centred activities, such as lectures, teaching staff
have complete control of the content, pace, and method of delivery. With traditional
lectures there is the possibility for well scripted lectures to be delivered by teaching
staff who are not experts in the area. As more student-centred activities are adopted
there is a need to incorporate greater input from students, enabling them to shape the
environment to their needs. This requires teaching staff who are able to dynamically
adjust delivery, ensuring the direction and focus of class activities are likely to result
in productive learning for as many students as possible. Teaching staff need to be ex-

302

8.4. CHALLENGES FOR WIDER ADOPTION

perts of the subject matter, as well as likely student misconceptions and strategies to
address those misconceptions.

8.4.2 Removing Mark-based Assessment

Another significant challenge is the loss of “marks” as a means to motivate students.
As noted in Chapter 7 (Iteration 2) one of the great challenges in implementing a
Theory-Y based approach had been the anxiety of teaching staff over this perceived
loss of control. This challenges the commonly held, Theory-X based, idea that students
only work on tasks allocated marks. If you want students to do some task, then that
task must be allocated marks. With this view, marks are the “carrot and stick” for edu-
cators wanting to motivate students. Abolishing the practice of allocating summative
marks during the teaching period removes this as a form of motivation, and requires
teaching staff to adopt Theory-Y based perspective of student motivation.

As with the shift to constructive learning theories, abandoning mid-term summative
marks is a large challenge. The systematic literature review in Chapter 2 indicated
that most reported applications of constructive alignment had adopted constructive
learning theories for teaching and learning activities, but that assignments and exams
remained the dominant assessment strategy. Moving away from the common strat-
egy appears to be a larger challenge than accepting constructive learning theories. In
many ways this is reflected in the comments of Sheard et al. (2013), who indicated that
while academics feel exams are not an ideal means of assessing learning outcomes in
introductory programming units, there was a general resistance to considering other
approaches to assessment.

Part of this challenge is confronting an educator’s prior experiences, a result of the
self-fulfilling nature of the Theory-X focus on marks. Students want to achieve a good
result from the unit, and unit grades provide an externally visible measure of this
performance. Marks are awarded for successfully completing tasks, and these marks
directly relate to the grade students will achieve. Consider the case where laboratory
tasks are not marked, but assignments are marked. In this situation students are en-
couraged by the marks to focus on the assignment work, despite the valuable learning
that may have taken place if they did the lab tasks. Any staff member using combi-
nations of mid-term marked and unmarked work will have experienced this focus,
leading to the common perception that students only focus on tasks that have marks
associated with them.

303

CHAPTER 8. DISCUSSION

8.4.3 Holistic Assessment over Piece-by-Piece Assessment

The approach to portfolio assessment described in Chapter 4 aims to holistically eval-
uate student learning outcomes, the core of Principle 3. This goes against the common
education practice of allocating percentages to each artefact a student submits, and
determining their final result from a combination of weighted tasks. With the ap-
proach presented in this thesis, it is the intended learning outcomes together with the
assessment criteria that determine final grades, not the artefacts themselves. Using
the portfolio assessment scheme outlined in this thesis requires a change in thinking
about how students are assessed overall.

Consider the portfolio assessment of the Research Project unit. This unit required stu-
dents to undertake a research project, and to submit a portfolio that consisted of a
research proposal and plan, research report, artefacts associated with an oral presen-
tation, a learning summary report, and other artefacts relevant to the student’s project.
Given this list of required components, traditional approaches would seek to allocate
percentages to each of these components. In contrast, applying the guidelines from
Chapter 4 requires the definition of standards of achievement for the different grade
outcomes, with the artefacts acting as the student’s evidence of their ability to meet
the intended learning outcomes.

While this may be understood by the academics involved in the teaching of the unit,
this distinction also needs to be communicated to administrators and other academic
staff who oversee unit accreditation. Units delivered using the approach recommended
in this thesis are likely to stand out as being “different”, with a greater chance of en-
countering resistance despite good pedagogical foundations. Overcoming these ob-
stacles is likely to require support at a larger institutional level.

8.4.4 Perceived Workload Issues

Frequent formative feedback and portfolio assessment can have the appearance of
requiring significant extra work for staff, and students, making it easy to dismiss as
impractical. Teaching staff do need to be given sufficient time to engage with students,
but as outlined in Section 8.1.3 this need not result in significant extra effort. Time
taken to mark assignments now goes into providing formative feedback, in which staff
can focus on providing a relevant level of detail to improve learning. Focusing on
formative feedback should take less time than performing a “complete” and detailed
assessment that is not necessarily relevant to learning. Similarly, time allocated to

304

8.4. CHALLENGES FOR WIDER ADOPTION

mark exams goes to grading portfolios, which can draw upon the evidence of student
learning collected from the formative feedback process.

Efficiencies can the gained through reflective practice, with each iteration aiming to
improve staff, and student, productivity by ensuring teaching and learning activities
meet student needs.

8.4.5 Availability of Experienced Teaching Staff

Units are typically taught by a team of teaching staff, including lecturers and tutors
for example. When the approach is first implemented at a given institute, there is not
likely to be any teaching staff who have experience with this approach. This adds
additional overhead for the first few iterations, as staff and students learn about the
new teaching and learning environment.

8.4.6 Combined Issues

Constructive alignment with portfolio assessment, as outlined in this thesis, helps cre-
ate a productive student-centred teaching and learning environment, but. . . it is easy
to find a reason not to implement this approach. Change is hard, and the approach pre-
sented in Chapter 4 requires teaching staff adopt key constructive learning theories, a
Theory-Y perspective of student motivation, and abandon the common use of marked
assignments for holistic assessment of a body of work against set criteria. Then, once
an individual academic has made this transition there are potential institutional barri-
ers that need to be overcome to allow the approach to be implemented.

Once the approach is implemented it is also important to realise that any change of this
nature is likely to require a number of iterations before the full benefits are realised. In
many cases it is possible that the first iterations will encounter unexpected difficulties,
as was the case with the implementation of this approach in Iterations 1 and 2 as
discussed in Chapter 7. As such, once the approach is undertaken it will require a
degree of persistence to see the implementation through to productive outcomes.

These tight constraints, and the general resistance to changes in assessment strategy,
represent significant challenges for the wider adoption of this approach. However,
as aspects of the approach slowly gain in popularity, such as the use of constructive
learning theories, this reduces the amount of change necessary for others to consider
this approach.

305

CHAPTER 8. DISCUSSION

8.5 Transitioning to Portfolio Assessment

This section provides an example of how an existing unit could transition from using
assignments and exams, to portfolio assessment with frequent formative feedback.
This example assumes existing intended learning outcomes are sufficient, and that
assessment tasks currently align with the unit’s intended learning outcomes.

Consider a unit that assesses students using two essays and a final examination. In
order to shift to portfolio assessment, with frequent formative feedback, these assess-
ment tasks could be broken down into a number of smaller tasks, with students re-
ceiving feedback at each stage. It is likely that these larger assessment tasks included a
number of smaller activities; tasks that staff assumed students would perform. Making
these activities the unit’s weekly tasks would ensure students performed the required
activities, while also generating artefacts that staff can use to provide students with
specific feedback.

These smaller tasks would form the basis of the Pass and Credit criteria for the unit.
To balance workload, the scope or scale of these small tasks may need to be adjusted,
with the expectation that students would perform the task to a high standard in order
to achieve a passing grade. The two essays could become the required artefacts for
the Pass and Credit criteria, or could potentially become the Distinction (relational)
criteria with output from the smaller tasks making up the Pass and Credit grades.

Where an essay was still desired, subtasks could be set that require students to demon-
strate understanding of relevant background reading material, to prepare outlines for
the final essay, and possibly to perform a peer review of other student work. An ex-
ample set of subtasks is shown in the following list.

1. Read background material, summarise, and communicate in the form of a blog
entry on <insert topic>

2. Prepare a draft outline of essay on <insert topic>which incorporates references
from background reading material

3. Prepare complete draft version of essay on <insert topic>
4. Write a peer review of two other student’s work on <insert topic>using the tem-

plate provided
5. Submit final version for assessment in portfolio, along with peer reviews and

reflections on alterations made.

By completing these tasks, staff would have multiple opportunities to guide student
learning, ensuring that the resulting essays demonstrate that each student had at-

306

8.5. TRANSITIONING TO PORTFOLIO ASSESSMENT

tained at least the Pass grade standard.

Frequent student interaction should also help to address potential staff workload is-
sues, as staff aim to provide a small amount of specific feedback on each of the sub-
tasks. Blog entries could be quickly scanned to see that students had captured critical
aspects from each of the reading tasks, outlines could be quickly checked to ensure
appropriate structure, while more detailed feedback would need to be provided on
completed drafts. Each of these could be marked off in a task tracking system, like
Doubtfire, when they had been completed to a satisfactory standard. Assessing the
final portfolio would simply involve first checking that work had been marked off,
and considering the changes students had made in response to peer feedback.

Tasks appropriate for Distinction and High Distinction would also need to be consid-
ered, and staff and student workloads balanced with the core tasks. Distinction tasks
can be devised by teaching staff considering what they really want student to be able
to do by the end of the unit. For example, in the programming units described in
Chapter 5 this resulted in the Distinction criteria requiring students to demonstrate
the ability to create a program that demonstrated an appropriate application of the
unit concepts. This could, for example, involve developing mathematical models for
units on mathematics, preparing financial reports in units on accounting, or explaining
metabolic processes in units on biochemistry. Assessment criteria can then be defined
to require students to perform these tasks in order to achieve Distinction and High
Distinction grades.

With the essay assignments now broken down into a number of smaller tasks, the
overall strategy for delivering the unit should consider the kinds of activities likely
to be the most effective in ensuring students can successfully perform these tasks.
Using this strategy, the design of the activities themselves need to support students
as they complete these tasks, providing them with guidance on associated concepts,
tools, techniques, and approaches. Focusing on constructive learning theories, and
“what the student does” (Biggs & Tang 2007), should ensure the teaching and learning
activities aim to guide students rather than convey knowledge.

The examination would no longer be necessary as a means of assessing learning out-
comes. Instead the exam could be converted to a hurdle test, as was the case in the
introductory programming units, and used to verify that students had engaged in the
work themselves. Where units had small student numbers the test may not be neces-
sary as staff can closely monitor student work across the teaching period.

Having altered assessment, delivery can follow the activities outlined in Chapter 4.

307

CHAPTER 8. DISCUSSION

The wording of intended learning outcomes would need to be checked to ensure they
will be appropriately understood by students, which could incorporate the guidelines
from Section 4.2.2. Assessment criteria would need to be defined using the guide-
lines from Section 4.2.3. The teaching and learning activities would to help students
achieve the intended learning outcomes, as planned by staff with the core tasks in
the assessment work. Iterative delivery would permit students to receive feedback on
their progress, while also providing staff with a clear picture of student progress and
potential areas of misunderstandings. Finally, student work can be captured in their
portfolios and assessed against the criteria set out at the start of the unit.

While initial iterations are likely to encounter some issues, the incorporation of the
principles from Chapter 3 should eventually result in a similar positive, student-centred,
teaching and learning environment as reported with the introductory programming
units in Chapter 7. The use of portfolio assessment is central to this success, as it en-
ables staff and students to work together in helping students build appropriate learn-
ing outcomes.

8.6 Discussion Summary

This chapter provided a discussion of the approach presented in this thesis, and its
underlying principles. The general applicability of the approach was considered, in-
dicating that it should be applicable beyond the context of introductory programming
to a wider range of educational contexts. The importance of each of the principles
was outlined, along with a discussion of the likely impact of ignoring each principle
on the resulting teaching and learning environment, indicating that key aspects from
the principles are required for benefits to be realised. Similarly, the critical importance
of the portfolio assessment and constructive learning theories in guiding the delivery
approach were also discussed.

Challenges facing wider adoption are numerous, as the delivery and assessment ap-
proach differ from education norms. Where these challenges can be overcome, an ef-
fective teaching and learning environment can be achieved, one that encourages and
rewards students for focusing on developing deep understanding. In this environ-
ment, students engage their imagination and creativity in meeting unit intended learn-
ing outcomes, working collaboratively with staff who provide students with guidance
and feedback. The results, as Biggs (1996) indicated, are portfolios that consistently
impress staff with the quality of the learning outcomes students have been able to
achieve.

308

9
Conclusion and Future Work

Constructive alignment has been widely accepted as a valuable framework for im-
proving the quality of teaching and learning in higher education. Chapter 2 of this
thesis provided a comprehensive reviewed of prior work on applications of construc-
tive alignment, finding that most applications adopted constructivist approaches to
content delivery, but retained traditional approaches to assessment based around the
use of assignments and exams. This review indicated that none of the reviewed papers
had attempted to recreate the “web of consistency” reported in Biggs original work.

Chapter 3 presented twelve principles, nine related to how we teach and three related
to what we teach. These principles became the foundation for the approach to con-
structive alignment presented in Chapter 4, which applied constructive learning theo-
ries to unit delivery and assessment. Chapters 5 and 6 demonstrated the application of
the approach from Chapter 4 in the creation of two introductory programming units,
and tools and resources to aid in their delivery. These chapters also demonstrated
how the principles from Chapter 3 embedded within the approach, were realised in
the teaching and learning activities and resources created.

The iterations from the action research projects were presented in Chapter 7, along
with analysis of issues students faced, and analysis of student progress. Analysis
shows the development of the approach, and its underlying principles, as a result
of the reflective practice embedded within the iterative action research method used.
Increasing student numbers in later iterations also helps demonstrate the applicability
of the model presented to the teaching of units involving hundreds of students.

This thesis has demonstrated how the “web of consistency” associated with Biggs
early work can be recreated through the application of the principles proposed in
Chapter 3. As discussed in Chapter 8, this approach has enabled teaching staff to

309

CHAPTER 9. CONCLUSION AND FUTURE WORK

successfully deliver a range of introductory programming units. The results demon-
strated the effective use of all twelve principles, illustrating how they work together
to create a positive, student-centred, teaching and learning environment in which stu-
dents are rewarded for demonstrating depth of understanding, and encouraged to use
their imagination and creativity.

As outlined in the introduction, the key contributions of this thesis are:

• A systematic literature review of applications of constructive alignment, exam-
ining the areas in which this has been applied and strategies used for delivery
and assessment.

• A set of guiding principles for the development and delivery of units that aim
recreate the “web of consistency” evident in Biggs’ early work on constructive
alignment.

• An approach to constructive alignment, developed from the guiding principles,
with strong links to constructivism in both teaching and learning activities and
approach to assessment.

• An online task tracking tool to help students monitor their progress on tasks de-
signed to provide them with feedback in units that delay summative assessment
until after the teaching period.

• Evaluation of the resulting teaching and learning context and tools, that demon-
strates how effective assessment criteria can be used to quickly evaluate student
learning outcomes.

• An introductory programming curriculum designed using the principles of con-
structive alignment.

• An approach to teaching introductory programming, that embodies the identi-
fied principles, with guidelines for implementing this approach.

• Example implementations of the approach presented, demonstrating its appli-
cation to teaching a number of introductory programming units.

• A concept-based approach to introductory programming, together with sup-
porting resources including a concept-focused text, a game development frame-
work, and a range of video podcasts.

This work is mearly a beginning and it is hoped that it will continue to explore the
opportunities discussed in Section 9.1 in future work.

310

9.1. FUTURE WORK

9.1 Future Work

Having developed the principles and an approach across a number of iterations, there
are now opportunities to further analyse the portfolios collected, to examine ongoing
changes in the activities used and their impact on student results, and to explore the
wider application of the approach presented.

The structure literature review reported in Chapter 2 identified a range of work on
constructive alignment. In collating the data for this review it was noticed that there
appeared to be little referencing between the analysed papers, however this reference
data was not collected and analysed. A further analysis, and reporting, of these con-
nections may help provide a richer understanding of the field.

Work to date has collected hundreds of student portfolios, each of which captures an
individuals learning outcomes from their engagement with the teaching and learn-
ing environment. While some analysis has been performed on these portfolios there
are many other opportunities that can now be considered. Student reflections, their
programs, reports, custom projects, and research reports all provide different oppor-
tunities to explore aspects of the teaching and learning environment from student per-
spectives.

While student portfolios have demonstrated their ability to create programs, it would
be very interesting to repeat an experiment similar to that conducted by McCracken
et al. (2001). The mathematical nature of the exercises should be changed to better
reflect the more general nature of the programming units, but otherwise it would be
interesting to evaluate student ability to implement a set specification. Where students
were unable to get the program working, it would be interesting to extend the exper-
iment to determine the likely cause of the problem, and the extent of help needed for
the student to succeed in implementing the program. This would help improve un-
derstanding of the limitation of students at the end of their first year of programming,
and likely assistance they would need in implementing programs on their own.

Continued delivery of the introductory programming units discussed in Chapter 5
also offers a range of opportunities to examine the approach in more depth. Con-
sistency of portfolio assessment could be examined to determine if there is variation
between grades awarded by different teaching staff. A more formal evaluation of staff
workloads could be carried out by examining the time spent providing feedback, as-
sessing portfolios, and supporting students during the teaching period. Results could
then be compared with the amount of time allocated to these tasks by the educational

311

CHAPTER 9. CONCLUSION AND FUTURE WORK

institution to determine if workload is comparable to other approaches.

It would also be very interesting to study students within the environment, examining
differences between successful and unsuccessful students. This could help identify
reasons why students fail in what is considered to be a highly supportive environment,
and suggest strategies that could be applied to help students succeed. It is expected
that intrinsic motivation plays a significant role in this.

Longitudinal studies could examine how students from portfolio units progressed
through later units. Interviewing students at the end of their degree programme could
provide a deeper understanding of what is working, and what can be improved with
the proposed approach. This could examine aspects such as:

• Do the introductory programming units help students succeed at later program-
ming units?

• Do students feel they learnt general skills they could apply to a wider range of
units, or was the learning entirely focused on programming knowledge?

• How do portfolio assessed units relate to other units, from the students perspec-
tive?

• What differences do student identify between the different delivery strategies?
• Would students like to see more portfolio units?

In the broader context, future work is needed to trial the approach in other fields and
educational institutions. It would be interesting to see how well the approach can
be adapted to non-technical units, both within Information Technology and beyond.
Where the principles from Chapter 3 can be adopted, it is believed that similar positive
learning outcomes will be achieved.

While Section 8.4 outlined some of the challenges facing wider adoption of this ap-
proach, a more systematic analysis of peoples responses to the approach would also
be enlightening. The approach is considered to be genuinely better than alternatives,
but discussions with other teaching staff have been met with general resistance. Bet-
ter understanding people’s doubts about the approach could help adapt strategies to
more effectively encourage people to consider its use.

If wider adoption has been achieved, it would be interesting to compare learning out-
comes from units using constructive alignment with portfolio assessment, from those
using more traditional forms of assessment. By examining a range of units, in differ-
ent contexts, it should be possible to gain some comparative statistics to support the
qualitative findings from this work.

312

References

Abran, A., Moore, J. W., Dupuis, R., Dupuis, R. L. & Tripp, L. L. (2001), Guide to the
Software Engineering Body of Knowledge - SWEBOK, IEEE.

ACM/IEEE-CS Joint Task Force (2001), Computing curricula 2001, Technical report,
New York, NY, USA.

ACM/IEEE-CS Joint Task Force (2008), Computer science curriculum 2008: An interim
revision of CS 2001, Technical report.

ACM/IEEE-CS Joint Task Force (2012), Computer science curricula 2013: Ironman
draft (version 0.8), Technical report.

Ala-Mutka, K. M. (2007), ‘A survey of automated assessment approaches for program-
ming assignments’, Computer Science Education 15(2), 83–102.

Allan, J. (1996), ‘Learning outcomes in higher education’, Studies in Higher Education
21(1), March 1996.

Anderson, J. R., Reder, L. M., Simon, H. A., Ericsson, K. A. & Glaser, R. (1998), ‘Rad-
ical constructivism and cognitive psychology’, Brookings papers on education policy
(1), 227–278.

Andrews, S. (2011), Aligning the teaching of FCA with existing module learning
outcomes, in ‘Conceptual Structures for Discovering Knowledge, 19th Interna-
tional Conference on Conceptual Structures’, Lecture Notes in Computer Science,
Springer, pp. 394–401.

Anik, Z. & Baykoç, O. F. (2011), ‘Comparison of the most popular object-oriented
software languages and criterions for introductory programming courses with ana-
lytic network process: A pilot study’, Computer Applications in Engineering Education
19(1), 89–96.

Argyris, C. (1976), ‘Theories of action that inhibit individual learning’, American Psy-
chologist 31(9), 638:654.

Armarego, J. (2009), Constructive Alignment in SE education: aligning to what?, in
H. Ellis, S. Demurjian & Naveda, eds, ‘Software Engineering: effective teaching and
learning approaches and practices’, ACM, pp. 15–37.

Astrachan, O., Bruce, K., Koffman, E., Kölling, M. & Reges, S. (2005), ‘Resolved: objects
early has failed’, ACM SIGCSE Bulletin 37(1), 451–452.

313

REFERENCES

Atkinson, C. (2007), Beyond Bullets Points: using Microsoft® Office PowerPoint® 2007 to
create presentations that inform, motivate, and inspire, Microsoft Press.

Australian Qualifications Framework Council (2013), Australian Qualifications Frame-
work, 2nd edn, Australian Qualifications Framework Council, South Australia.

Baird, L. L. (1985), ‘Do grades and tests predict adult accomplishment?’, Research in
Higher Education 23(1), 3–85.

Baker, J. W. (2000), The classroom flip. using web course management tools to become
the guide on the side, in ‘11th international Conference on College Teaching and
Learning, Jacksonville, FL’.

Bayliss, J. D. & Strout, S. (2006), ‘Games as a “flavor” of CS1’, SIGCSE Bulletin
38(1), 500–504.

Beck, K. (2000), Extreme Programming Explained: Embrace change, Addison-Wesley.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A. & Jeffries, R. (2001), ‘Manifesto for agile
software development’, The Agile Alliance pp. 2002–04.

Becker, K. (2002), ‘Back to Pascal: retro but not backwards’, Journal of Computing in
Small Colleges 18, 17–27.

Ben-Ari, M. (1998), Constructivism in computer science education, in ‘Proceedings
of the 29th SIGCSE Technical Symposium on Computer Science Education’, ACM,
New York, NY, USA, pp. 257–261.

Ben-Ari, M. (2001), ‘Constructivism in computer science education’, Journal of Comput-
ers in Mathematics and Science Teaching 20(1), 45–73.

Bennedsen, J. & Caspersen, M. E. (2004), ‘Programming in context: a model-first ap-
proach to CS1’, SIGCSE Bulletin 36, 477–481.

Bennedsen, J. & Caspersen, M. E. (2006), Assessing process and product - a practi-
cal lab exam for an introductory programming course, in ‘Proceedings of the 36th
Annual Frontiers in Education Conference’, IEEE, pp. 16–21.

Biggs, J. (1996), ‘Enhancing teaching through constructive alignment’, Higher Education
32, 347–364.

Biggs, J. (1999), ‘What the student does’, Higher Education Research and Development
18(1), 57–75.

314

REFERENCES

Biggs, J. B. (1987), Student Approaches to Learning and Studying. Research Monograph,
Australian Council for Educational Research Ltd., Radford House, Frederick St.,
Hawthorn 3122, Australia.

Biggs, J. B. & Collis, K. F. (1982), Evaluating the Quality of Learning: The SOLO taxonomy
(Structure of the Observed Learning Outcome), Academic Press New York.

Biggs, J. B. & Tang, C. (2007), Teaching for Quality Learning at University, 3rd edn, Open
University Press.

Biggs, J., Kember, D. & Leung, D. Y. P. (2001), ‘The revised two-factor study process
questionnaire: R-SPQ-2F’, British Journal of Educational Psychology 71(1), 133–149.

Biggs, J. & Tang, C. (1997), ‘Assessment by portfolio: Constructing learning and de-
signing teaching’, Research and Development in Higher Education pp. 79–87.

Bishop, W. & Freeman, G. (2006), The use of C# as a First Programming Language, in
‘Proceedings of the 2006 International Conference on Frontiers in Education: Com-
puter Science and Computer Engineering (FECS ‘06)’, pp. 97–103.

Black, P. & Wiliam, D. (1998), ‘Assessment and classroom learning’, Assessment in Ed-
ucation 5(1), 7–74.

Bloom, B. S. (1969), ‘Some theoretical issues relating to educational evaluation’, Edu-
cational Evaluation: New Roles, New Means (National Society for the Study of Evaluation
Yearbook, Part II) 68, 26–50.

Börstler, J. & Schulte, C. (2005), ‘Teaching object oriented modelling with crc cards and
roleplaying games’, Proceedings IFIP World Conference on Computers in Education .

Böszörményi, L. (1998), ‘Why Java is not my favorite first-course language’, Software-
Concepts & Tools 19(3), 141–145.

Boyer, E. L. (1990), Scholarship Reconsidered: Priorities of the Professoriate, Carnegie Foun-
dation for the Advancement of Teaching, Princeton, N.J.

Brabrand, C. (2008), ‘Constructive alignment for teaching model-based design for con-
currency’, Transactions on Petri Nets and Other Models of Concurrency I pp. 1–18.

Brabrand, C. & Dahl, B. (2007), Constructive alignment and the SOLO taxonomy: a
comparative study of university competences in computer science vs. mathematics,
in ‘Proc. Seventh Baltic Sea Conference on Computing Education Research (Koli
Calling 2007), Koli National Park, Finland. CRPIT’, Vol. 88, pp. 3–17.

Brabrand, C. & Dahl, B. (2009), ‘Using the SOLO taxonomy to analyze competence
progression of university science curricula’, Higher Education 58(4), 531–549.

315

REFERENCES

Braun, V. & Clarke, V. (2006), ‘Using thematic analysis in psychology’, Qualitative Re-
search in Psychology 3(2), 77–101.

Braz, L. M. (1990), Visual syntax diagrams for programming language statements, in
‘Proceedings of the 8th Annual International Conference on Systems Documenta-
tion’, SIGDOC ’90, ACM, New York, NY, USA, pp. 23–27.

Brilliant, S. S. & Wiseman, T. R. (1996), ‘The first programming paradigm and language
dilemma’, SIGCSE Bulletin 28, 338–342.

Brown, N., Smyth, K. & Mainka, C. (2006), Looking for evidence of deep learning
in constructively aligned online discussions, in ‘Networked Learning Conference’,
pp. 10–12.

Brown, S. (2004), ‘Assessment for learning’, Learning and Teaching in Higher Education
1(1), 81–89.

Bruce, C. S., McMahon, C. A., Buckingham, L. I., Hynd, J. R. & Roggenkamp, M. G.
(2003), ‘Ways of experiencing the act of learning to program: A phenomenographic
study of introductory programming students at university’, Journal of Information
Technology Education 3, 143–160.

Bruner, J. S. (1961), ‘The act of discovery’, Harvard Educational Review 31, 21–32.

Cain, A. (2013a), Developing assessment criteria for portfolio assessed introductory
programming, in ‘Proceedings of the 2nd IEEE International Conference on Teach-
ing, Assessment and Learning for Engineering’, IEEE, pp. 55–60.

Cain, A. (2013b), Programming Arcana, Swinburne University of Technology.
URL: http://mercury.it.swin.edu.au/acain/programming-arcana.pdf

Cain, A. & Woodward, C. J. (2012), Toward constructive alignment with portfolio as-
sessment for introductory programming, in ‘Proceedings of the first IEEE Interna-
tional Conference on Teaching, Assessment and Learning for Engineering’, IEEE,
pp. 345–350.

Cain, A. & Woodward, C. J. (2013), Examining student reflections from a construc-
tively aligned introductory programming unit, in ‘Proceedings of the 15th Aus-
tralasian Computer Education Conference’, Vol. 136, pp. 127–136.

Cain, A., Woodward, C. J. & Pace, S. (2013), Examining student progress in portfolio
assessed introductory programming, in ‘Proceedings of the 2nd IEEE International
Conference on Teaching, Assessment and Learning for Engineering’, IEEE, pp. 67–
72.

316

REFERENCES

Cassel, L., Clements, A., Davies, G., Guzdial, M., McCauley, R., McGettrick, A., Sloan,
R., Snyder, L., Tymann, P. & Weide, B. (2008), ‘Computer science curriculum 2008:
An interim revision of CS 2001’.

Chansarkar, B. A. & Raut-Roy, U. (1987), ‘Student performance under different assess-
ment situations’, Assessment and evaluation in Higher Education 12(2), 115–122.

Chickering, A. W., Gamson, Z. F. & Poulsen, S. J. (1987), ‘Seven principles for good
practice in undergraduate education’, American Association for Higher Education Bul-
letin pp. 3–7.

Cliburn, D. (2006), The effectiveness of games as assignments in an introductory pro-
gramming course, in ‘Frontiers in Education, 36th Annual Conference’, IEEE, pp. 6–
10.

Cobb, P. (1994), ‘Where is the mind? constructivist and sociocultural perspectives on
mathematical development’, Educational Researcher 23(7), 13–20.

Cockburn, A. (2002), Agile Software Development, Addison-Wesley Professional.

Coffield, F., Moseley, D., Hall, E. & Ecclestone, K. (2004), ‘Learning styles and peda-
gogy in post-16 learning: A systematic and critical review’.

Cohen, S. A. (1987), ‘Instructional alignment: Searching for a magic bullet’, Educational
Researcher 16(8), 16–20.

Conway, M. A., Cohen, G. & Stanhope, N. (1992), ‘Comment: Why is it that university
grades do not predict very-long-term retention?”, Journal of Experimental Psychology:
General 121(3), 382–384.

Cooper, S., Dann, W. & Pausch, R. (2003), Teaching objects-first in introductory com-
puter science, in ‘Proceedings of the 34th SIGCSE Technical Symposium on Com-
puter Science Education’, SIGCSE ’03, ACM, New York, NY, USA, pp. 191–195.

Creswell, J. W. (2008), Educational Research: Planning, Conducting, and Evaluating Quan-
titative and Qualitative Research, Pearson/Merrill Prentice Hall, Upper Saddle River,
N.J.

D3.js (2013), ‘D3.js: Data-driven documents’. Accessed 2013-07-09.
URL: http://d3js.org

Davey, A. K. & Bond, C. (2002), ‘Learning about clinical pharmacokinetics: A case
study’, Pharmacy Education 2(2), 83–92.

de Raadt, M., Hamilton, M., Lister, R., Tutty, J., Baker, B., Box, I., Cutts, Q., Fincher,
S., Hamer, J. & Haden, P. (2005), Approaches to learning in computer programming

317

REFERENCES

students and their effect on success, in ‘Proceedings of the 28th HERDSA Annual
Conference: Higher Eduation in a Changing World (HERDSA 2005)’, Higher Edu-
cation Research and Development Society of Australasia (HERDSA), pp. 407–414.

Denning, P. J. (1989), ‘A debate on teaching computing science’, Communications of the
ACM 32, 1397–1414.

Deterding, S., Dixon, D., Khaled, R. & Nacke, L. (2011), From game design elements
to gamefulness: defining gamification, in ‘Proceedings of the 15th International
Academic MindTrek Conference: Envisioning Future Media Environments’, ACM,
pp. 9–15.

Dewey, J. (1933), How We Think: A Restatement of the Relation of Reflective Thinking to the
Educational Process, D. C. Heath, Boston.

Dijkstra, E. W. (1989), ‘On the cruelty of really teaching computing science’, Communi-
cations of the ACM 32(12), 1398–1404.

Donnison, S. & Edwards, D. (2011), Re-designing a first year teacher education com-
munity service-learning subject using constructive alignment, in ‘ATEA Conference
2011: Valuing Teacher Education: Policy, Perspectives and Partnerships’.

Douce, C., Livingstone, D. & Orwell, J. (2005), ‘Automatic test-based assessment of
programming: A review’, Journal of Educational Resources in Computing 5.

Driessen, E., van der Vleuten, C., Schuwirth, L., Van Tartwijk, J. & Vermunt, J. (2005),
‘The use of qualitative research criteria for portfolio assessment as an alternative to
reliability evaluation: a case study’, Medical Education 39(2), 214–220.

DuBoulay, B. (1986), ‘Some difficulties of learning to program’, Journal of Educational
Computing Research 2(1), 57–73.

Duffy, T. M. & Cunningham, D. J. (1996), Constructivism: Implications for the design
and delivery of instruction, in D. J. Jonassen, ed., ‘Handbook of research for educa-
tional communications and technology’, pp. 170–198.

Duffy, T. M. & Jonassen, D. H. (1992), Constructivism and the Technology of Instruction:
A Conversation, Lawrence Erlbaum.

Eckerdal, A., Thuné, M. & Berglund, A. (2005), What does it take to learn ’program-
ming thinking’?, in ‘Proceedings of the First International Workshop on Computing
Education Research’, ICER ’05, ACM, New York, NY, USA, pp. 135–142.

Ehlert, A. & Schulte, C. (2009), Empirical comparison of objects-first and objects-later,
in ‘Proceedings of the Fifth International Workshop on Computing Education Re-
search’, ICER ’09, ACM, pp. 15–26.

318

REFERENCES

Ehlert, A. & Schulte, C. (2010), Comparison of OOP first and OOP later: first results re-
garding the role of comfort level, in ‘Proceedings of the Fifteenth Annual Conference
on Innovation and Technology in Computer Science Education’, ACM, pp. 108–112.

Entwistle, N. J. . J. (1991), ‘Approaches to learning and perceptions of the learning
environment’, Higher Education 22(3), 201–204.

Entwistle, N. & Tait, H. (1990), ‘Approaches to learning, evaluations of teaching, and
preferences for contrasting academic environments’, Higher Education 19(2), 169–
194.

Farrell, T. (2007), Reflective Language Teaching: From Research to Practice, Continuum
Press, London.

Farrell, T. (2008), ‘Reflective practice in the professional development of teachers of
adult english language learners’, CAELA Network .

Feldgen, M. & Clua, O. (2004), Games as a motivation for freshman students to learn
programming, in ‘34th Annual Frontiers in Education’, IEEE, pp. 1079–1084.

Felleisen, M., Findler, R. B., Flatt, M. & Krishnamurthi, S. (2004), ‘The TeachScheme!
project: Computing and programming for every student’, Computer Science Educa-
tion 14(1), 55–77.

Field, J. (2006), Lifelong Learning and the New Educational Order, Trentham Books Lim-
ited.

Forte, A. & Guzdial, M. (2005), ‘Motivation and nonmajors in computer science: iden-
tifying discrete audiences for introductory courses’, Education, IEEE Transactions on
48(2), 248–253.

Foundation, T. S. (2011), SFIA 5 Framework Reference: Skills Defined in Categories and
Subcategories.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (2001), Design Patterns: Abstraction
and Reuse of Object-Oriented Design, Springer.

Gaspar, A. & Langevin, S. (2007), Restoring coding with intention in introductory pro-
gramming courses, in ‘Proceedings of the 8th ACM SIGITE Conference on Informa-
tion Technology Education’, ACM, pp. 91–98.

Gaspar, A. & Langevin, S. (2012), ‘An experience report on improving constructive
alignment in an introduction to programming’, Journal of Computing Sciences in Col-
leges 28(2), 132–140.

319

REFERENCES

Gibbs, G. & Lucas, L. (1997), ‘Coursework assessment, class size and student perfor-
mance: 1984-94’, Journal of further and higher education 21(2), 183–192.

Gibbs, G. & Simpson, C. (2004), ‘Conditions under which assessment supports stu-
dents learning’, Learning and Teaching in Higher Education 1(1), 3–31.

Glasersfeld, E. (1989), ‘Cognition, construction of knowledge, and teaching’, Synthese
80, 121–140.

Goldman, K. J. (2004), ‘A concepts-first introduction to computer science’, SIGCSE
Bulletin 36, 432–436.

Green, T. R. G. (2000), Instructions and descriptions: some cognitive aspects of pro-
gramming and similar activities, in ‘Proceedings of the Working Conference on Ad-
vanced Visual Interfaces’, AVI ’00, ACM, New York, NY, USA, pp. 21–28.

Green, T. R. G. & Petre, M. (1996), ‘Usability analysis of visual programming environ-
ments: A ’cognitive dimensions’ framework’, Journal of Visual Languages and Com-
puting 7(2), 131–174.

Gregor, S., von Konsky, B. R., Hart, R. & Wilson, D. (2008), The ICT profession and the
ICT body of knowledge (Version 5), Australian Computer Society, Sydney, Australia.

Gries, D. (1974), ‘What should we teach in an introductory programming course?’,
SIGCSE Bulletin 6, 81–89.

Gross, P. & Powers, K. (2005), Evaluating assessments of novice programming envi-
ronments, in ‘Proceedings of the First International Workshop on Computing Edu-
cation Research’, ICER ’05, ACM, New York, NY, USA, pp. 99–110.

Gupta, D. (2004), ‘What is a good first programming language?’, Crossroads 10(4), 7–7.

Guzdial, M. (2003), A media computation course for non-majors, in ‘ACM SIGCSE
Bulletin’, Vol. 35, ACM, pp. 104–108.

Guzdial, M. & Forte, A. (2005), Design process for a non-majors computing course, in
‘Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Edu-
cation’, ACM, pp. 361–365.

Guzdial, M. & Soloway, E. (2002), ‘Teaching the nintendo generation to program’, Com-
munications of the ACM 45(4), 17–21.

Haigh, M. (2013), ‘Writing successfully for the journal of geography in higher educa-
tion’, Journal of Geography in Higher Education 37(1), 117–135.

320

REFERENCES

Hartfield, P. J. (2010), ‘Reinforcing constructivist teaching in advanced level biochem-
istry through the introduction of case-based learning activities’, Journal of Learning
Design 3(3), 12.

Hedges, M. R. & Pacheco, G. A. (2012), Constructive alignment, engagement and
exam performance: It’s (still) ability that matters, in ‘New Zealand Association of
Economists Conference’.

Henderson, F. (2006), Enriching the learning for offshore students in a 1st year man-
agement subject, in ‘Conference Proceedings of the 17th ISANA International Edu-
cation Conference’, ISANA International Education Association.

Hendry, G. D., Frommer, M. & Walker, R. A. (1999), ‘Constructivism and problem-
based learning’, Journal of Further and Higher Education 23(3), 369–371.

Hill, R. (2009), ‘“Why should i do this?” Making the information systems curricu-
lum relevant to strategic learners’, ITALICS: Innovations in Teaching and Learning in
Information and Computer Sciences 8(2), 14–23.

Hoare, C. A. R. (1969), ‘An axiomatic basis for computer programming’, Communica-
tions of the ACM 12, 576–580.

Hoc, J. M. & Nguyen-Xuan, A. (1990), ‘Language semantics, mental models and anal-
ogy’, Psychology of Programming 10, 139–156.

Hoddinott, J. (2000), Biggs constructive alignment: Evaluation of a pedagogical model
applied to a web course, in ‘Proceedings of World Conference on Educational
Multimedia, Hypermedia and Telecommunications 2000’, AACE, Chesapeake, VA,
pp. 1666–1667.

Houghton, W. (2004), Engineering Subject Centre Guide: Learning and Teaching Theory
for Engineering Academics, Higher Education Academy Engineering Subject Centre,
Loughborough University.

Howe, E., Thornton, M. & Weide, B. W. (2004), Components-first approaches to
CS1/CS2: principles and practice, in ‘Proceedings of the 35th SIGCSE Technical
Symposium on Computer Science Education’, SIGCSE ’04, ACM, New York, NY,
USA, pp. 291–295.

Howell, K. (2003), ‘First computer languages’, Journal of Computing Sciences in Colleges
18(4), 317–331.

Israel, N., Pitman, M. & Greyling, M. (2007), ‘Engaging critical thinking: Lessons from
the RDA tutorials and projects’, South African Journal of Psychology 37(2), 375–382.

321

REFERENCES

James, D. & Fleming, S. (2004), ‘Agreement in student performance in assessment’,
Learning and Teaching in Higher Education 1(1), 32–50.

Jenkins, T. (2001), ‘The motivation of students of programming’, SIGCSE Bulletin
33, 53–56.

Jenkins, T. (2002), On the difficulty of learning to program, in ‘Proceedings of the 3rd
Annual Conference of the LTSN Centre for Information and Computer Sciences’,
pp. 53–58.

Jonassen, D. H. (1991a), ‘Context is everything’, Educational Technology 31(6), 35–37.

Jonassen, D. H. (1991b), ‘Objectivism versus constructivism: Do we need a new philo-
sophical paradigm?’, Educational Technology Research and Development 39(3), 5–14.

Jonassen, D. H. (1992), ‘Evaluating constructivistic learning’, Constructivism and the
Technology of Instruction: A Conversation pp. 137–148.

Jones, M. (2010), An extended case study on the introductory teaching of program-
ming, PhD thesis.

Jones, P. (2007), When a wiki is the way: Exploring the use of a wiki in a construc-
tively aligned learning design, in ‘ICT: Providing choices for learners and learn-
ing. Proceedings ASCILITE Singapore 2007’, Centre for Educational Development,
Nanyang Technological University Singapore.

Joseph, S. & Juwah, C. (2012), ‘Using constructive alignment theory to develop nursing
skills curricula’, Nurse Education in Practice 12(1), 52 – 59.

jQuery (2013), ‘jQuery: write less, do more’. Accessed 2013-07-09.
URL: http://jquery.com/

Junit (n.d.).

Kelleher, C. & Pausch, R. (2005), ‘Lowering the barriers to programming: A taxon-
omy of programming environments and languages for novice programmers’, ACM
Computing Surveys 37, 83–137.

Kember, D. & Leung, D. Y. P. (2007), ‘Characterising a teaching and learning environ-
ment conducive to making demands on students while not making their workload
excessive’, Studies in Higher Education 31(2), 185–198.

Kenney, J. L. (2012), ‘Getting results: small changes, big cohorts and technology’,
Higher Education Research and Development pp. 873–889.

322

REFERENCES

Kirschner, P. A., Sweller, J. & Clark, R. E. (2006), ‘Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching’, Educational psychologist
41(2), 75–86.

Kitchenham, B. (2007), Guidelines for performing systematic literature reviews in soft-
ware engineering, Technical report, Keele University.

Klem, A. M. & Connell, J. P. (2004), ‘Relationships matter: Linking teacher support to
student engagement and achievement’, Journal of School Health 74(7), 262–273.

Kniveton, B. H. (1996), ‘Student perceptions of assessment methods’, Assessment &
Evaluation in Higher Education 21(3), 229–237.

Koffman, E. B. (1988a), Pascal: Problem Solving and Program Design, Addison-Wesley
Longman Publishing Co., Inc.

Koffman, E. B. (1988b), ‘The case for Modula-2 in CS1 and CS2’, SIGCSE Bulletin 20, 49–
53.

Kölling, M., Quig, B., Patterson, A. & Rosenberg, J. (2003), ‘The BlueJ System and its
Pedagogy’, Computer Science Education 13(4), 249–268.

Kuhn, K.-A. L. . A. L. (2009), ‘Curriculum alignment: Exploring student perception
of learning achievement measures’, International Journal of Teaching and Learning in
Higher Education 21(3), 351–361.

Lage, M. J. & Platt, G. (2000), ‘The internet and the inverted classroom’, The Journal of
Economic Education 31(1), 11–11.

Lahtinen, E., Ala-Mutka, K. & Järvinen, H. M. (2005), ‘A study of the difficulties of
novice programmers’, ACM SIGCSE Bulletin 37(3), 14–18.

Lakoff, G. (1987), ‘Women, fire, and dangerous things: What categories reveal about
the mind’.

Lethbridge, T., LeBlanc Jr, R., Sobel, A. & Hilburn, T. (2006), ‘SE2004: Recommenda-
tions for undergraduate software engineering curricula’, IEEE SOFTWARE pp. 19–
25.

Leutenegger, S. & Edgington, J. (2007), ‘A games first approach to teaching introduc-
tory programming’, ACM SIGCSE Bulletin 39(1), 115–118.

Likert, R. (1932), ‘A technique for the measurement of attitudes’, Archives of psychology
.

323

REFERENCES

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney,
R., Moström, J. E., Sanders, K., Seppälä, O., Simon, B. & Thomas, L. (2004), ‘A multi-
national study of reading and tracing skills in novice programmers’, SIGCSE Bulletin
36(4), 119–150.

Lister, R., Berglund, A., Clear, T., Bergin, J., Garvin-Doxas, K., Hanks, B., Hitchner, L.,
Luxton-Reilly, A., Sanders, K., Schulte, C. & Whalley, J. L. (2006), Research perspec-
tives on the objects-early debate, in ‘Working Group Reports on ITiCSE on Innova-
tion and Technology in Computer Science Education’, ITiCSE-WGR ’06, ACM, New
York, NY, USA, pp. 146–165.

Lizzio, A., Wilson, K. & Simons, R. (2002), ‘University students’ perceptions of the
learning environment and academic outcomes: Implications for theory and prac-
tice’, Studies in Higher Education 27(1), 27–52.

Maloney, J., Resnick, M., Rusk, N., Silverman, B. & Eastmond, E. (2010), ‘The Scratch
Programming Language and Environment’, Transactions on Computing Education
10(4), 16:1–16:15.

Mannila, L. & De Raadt, M. (2006), An objective comparison of languages for teach-
ing introductory programming, in ‘Proceedings of the 6th Baltic Sea Conference on
Computing Education Research: Koli Calling 2006’, ACM, pp. 32–37.

Mannila, L., Peltomaki, M. & Salakoski, T. (2006), ‘What About a Simple Language?
Analyzing the Difficulties in Learning to Program’, Computer Science Education
16(3), 17.

Manns, M. L. & Nelson, J. (1993), An exploration of schema development in
procedure-oriented programmers learning object-oriented technology, in ‘Proceed-
ings of the International Conference on Information Systems’, SOCIETY FOR IN-
FORMATION MANAGEMENT, pp. 385–385.

Marion, W. (1999), ‘CS1: what should we be teaching?’, SIGCSE Bulletin 31, 35–38.

Markwell, J. (2004), ‘The human side of science education: Using McGregor’s theory
Y as a framework for improving student motivation’, Biochemistry and Molecular
Biology Education 32(5), 323–325.

Martin, E., Prosser, M., Trigwell, K., Ramsden, P. & Benjamin, J. (2000), ‘What univer-
sity teachers teach and how they teach it’, Instructional Science 28, 387–412.

Martin, R. C. (2003), Agile Software Development: Principles, Patterns, and Practices, Pren-
tice Hall PTR.

Marton, F. & Booth, S. (1997), Learning and awareness, Lawrence Erlbaum.

324

REFERENCES

Marton, F. & Säljö, R. (1976a), ‘On qualitative differences in learning- II outcome as
a function of the learner’s conception of the task’, British Journal of Educational Psy-
chology 46(2), 115–127.

Marton, F. & Säljö, R. (1976b), ‘On qualitative differences in learning: I - outcome and
process’, British Journal of Educational Psychology 46(1), 4–11.

Marton, F. & Säljö, R. (2005), Approaches to learning, in F. Marton, D. Hounsell &
N. Entwistle, eds, ‘The Experience of Learning: Implications for teaching and study-
ing in higher education’, 3rd internet edn, Edinburgh: University of Edinburgh,
Centre for Teaching, Learning and Assessment, pp. 39–58.

Mason, R. & Cooper, G. (2013), Distractions in programming environments, in
‘Proceedings Fifteenth Australasian Computing Education Conference (ACE2013)’,
Adelaide, SA.

Mayer, R. E. (2004), ‘Should there be a three-strikes rule against pure discovery learn-
ing?’, American Psychologist 59(1), 14.

Mayer, R. E. (2005), The Cambridge Handbook of Multimedia Learning, Cambridge Uni-
versity Press.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B.-
D., Laxer, C., Thomas, L., Utting, I. & Wilusz, T. (2001), ‘A multi-national, multi-
institutional study of assessment of programming skills of first-year CS students’,
SIGCSE Bulletin 33(4), 125–180.

McGettrick, A., Boyle, R., Ibbett, R., Lloyd, J., Lovegrove, G. & Mander, K. (2005),
‘Grand challenges in computing: Education - a summary’, The Computer Journal
48(1), 42–48.

McGregor, D. (1960), The human side of enterprise, McGraw-Hill.

Meyer, J. H. F. & Muller, M. W. (1990), ‘Evaluating the quality of student learning. An
unfolding analysis of the association between perceptions of learning context and
approaches to studying at an individual level’, Studies in Higher Education 15(2), 131–
154.

Mills, G. E. (2010), Action Research: A Guide for the Teacher Researcher, 4th edn, Pearson.

Mody, R. P. (1991), ‘C in education and software engineering’, SIGCSE Bulletin 23, 45–
56.

Morton, J. (2008), ‘Learning to be a sport and exercise scientist: evaluations and reflec-
tions on laboratory-based learning and assessment’, The Journal of Hospitality Leisure
Sport and Tourism 7(2), 93–100.

325

REFERENCES

MySQL (2013), ‘MySQL: The world’s most popular open source database’. Accessed
2013-07-09.
URL: https://www.mysql.com

Naps, T. L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Ko-
rhonen, A., Malmi, L., McNally, M., Rodger, S. & Velázquez-Iturbide, J. A. (2002), Ex-
ploring the role of visualization and engagement in computer science education, in
‘Working Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education’, ITiCSE-WGR ’02, ACM, New York, NY, USA, pp. 131–152.

Norton, L. (2004), ‘Using assessment criteria as learning criteria: a case study in psy-
chology’, Assessment & Evaluation in Higher Education 29(6), 687–702.

NVD3 (2013), ‘NVD3: Re-usable charts for d3.js’. Accessed 2013-07-09.
URL: http://nvd3.org

OMG (2011), OMG Unified Modeling Language (OMG UML), Superstructure, OMG.
URL: http://www.omg.org/spec/UML/2.4.1/Superstructure

Palincsar, A. S. (1998), ‘Social constructivist perspectives on teaching and learning’,
Annual Review of Psychology 49(1), 345–375.

Palumbo, D. B. (1990), ‘Programming language/problem-solving research: A review
of relevant issues’, Review of Educational Research 60(1), 65.

Pardede, E. & Lyons, J. (2012), ‘Redesigning the assessment of an entrepreneurship
course in an information technology degree program: Embedding assessment for
learning practices’, IEEE Transactions on Education 55(4), 1.

Pattis, R. E. (1990), A philosophy and example of CS-1 programming projects, in ‘Pro-
ceedings of the 21st SIGCSE Technical Symposium on Computer Science Education’,
SIGCSE ’90, ACM, New York, NY, USA, pp. 34–39.

Pattis, R. E. (1993), The procedures early approach in CS 1: a heresy, in ‘Proceedings of
the 24th SIGCSE Technical Symposium on Computer Science Education’, SIGCSE
’93, ACM, New York, NY, USA, pp. 122–126.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M. &
Paterson, J. (2007), ‘A survey of literature on the teaching of introductory program-
ming’, ACM SIGCSE Bulletin 39(4), 204–223.

Peixoto, C. E. L., Audy, J. L. N. & Prikladnicki, R. (2010), Effort estimation in
global software development projects: Preliminary results from a survey, in ‘Global
Software Engineering (ICGSE), 2010 5th IEEE International Conference on’, IEEE,
pp. 123–127.

326

REFERENCES

Penaluna, A., Media, D., , University, S. M., Swansea, Penaluna, K. & Wales (2009),
‘Assessing creativity: drawing from the experience of the uk’s creative design edu-
cators’, Education + Training 51(8), 718–732.

Pendergast, M. O. (2006), ‘Teaching introductory programming to IS students: Java
problems and pitfalls’, Journal of Information Technology Education 5, 491–515.

Petticrew, M. & Roberts, H. (2008), Systematic Reviews in the Social Sciences: A Practical
Guide, Wiley-Blackwell.

Phillips, D. C. (1995), ‘The good, the bad, and the ugly: The many faces of construc-
tivism’, Educational Researcher 24(7), 5–12.

Phillips, R. (2005), ‘Challenging the primacy of lectures: The dissonance between the-
ory and practice in university teaching’, Journal of University Teaching & Learning
Practice 2(1).

Piaget, J. (1950), Psychology of Intelligence, Routledge & Kegan Paul, London.

Plimmer, B. (2000), A case study of portfolio assessment in a computer programming
course, in ‘Proceedings of the 13th Annual Conference of the National Advisory
Committee on Computing Qualifications’, pp. 279–284.

Prosser, M. & Millar, R. (1989), ‘The how and what of learning physics’, European Jour-
nal of Psychology of Education 4(4), 513–528.

Qiao, A., Sun, L. & Wang, N. (2009), The design of web-based learning activities a case
study on learning activities design from mainland China, in ‘2nd IEEE International
Conference on Computer Science and Information Technology’, IEEE, pp. 126–129.

Raeburn, P., Muldoon, N. & Bookallil, C. (2009), Blended spaces, work based learn-
ing and constructive alignment: Impacts on student engagement, in ‘Same Places,
Different Spaces: Proceedings ASCILITE 2009’, Auckland, pp. 820–831.

Ragonis, N. & Ben-Ari, M. (2007), ‘A long-term investigation of the comprehension of
OOP concepts by novices’, Computer Science Education 15(3), 203–221.

Rajaravivarma, R. (2005), ‘A games-based approach for teaching the introductory pro-
gramming course’, SIGCSE Bulletin 37(4), 98–102.

Raman, A. (2008), ‘The need for a philosophical grounding in higher degree science
research programmes’, Current Science 95(5), 590–593.

Ramsden, P. (1991), ‘A performance indicator of teaching quality in higher education:
The course experience questionnaire’, Studies in Higher Education 16(2), 129–150.

Ramsden, P. (1992), Learning to Teach in Higher Education, Psychology Press.

327

REFERENCES

Ramsden, P. & Entwistle, N. J. (1983), Understanding Student Learning, Croom Helm.

Reges, S. (2006), Back to basics in CS1 and CS2, in ‘Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education’, SIGCSE ’06, ACM, New
York, NY, USA, pp. 293–297.

Renumol, V. G., Janakiram, D. & Jayaprakash, S. (2010), ‘Identification of cogni-
tive processes of effective and ineffective students during computer programming’,
Transactions on Computing Education 10(3), 10:1–10:21.

Richards, J. C. & Lockhart, C. (1994), Reflective Teaching in Second Language Classrooms,
Cambridge University Press.

Richardson, L. & Ruby, S. (2007), RESTful Web Services, O’Reilly Media.

Rist, R. (2004), Learning to program: Schema creation, application, and evaluation,
in S. Fincher & M. Petre, eds, ‘Computer Science Education Research’, Routledge
Falmer.

Rist, R. S. (1996), System structure and design, in ‘Empirical Studies of Programmers,
Sixth Workshop’, pp. 163–194.

Ritchie, D. M., Johnson, S. C., Lesk, M. E. & Kernighan, B. W. (1978), ‘The C program-
ming language’, The Bell System Technical Journal 57(6), 1991–2019.

Roberts, E. S. (1993), ‘Using C in CS1: Evaluating the Stanford experience’, SIGCSE
Bulletin 25, 117–121.

Roberts, E. S. (1995), ‘A C-based graphics library for CS1’, SIGCSE Bulletin 27, 163–167.

Robins, A., Rountree, J. & Rountree, N. (2003), ‘Learning and teaching programming:
A review and discussion’, Computer Science Education 13(2), 137–172.

Ross, J. (2010), Extending constructive alignment beyond unit content: a critical think-
ing and writing skills improvement project, in ‘RMIT Accounting Educators’ Con-
ference’, Melbourne Victoria.

Rountree, N., Rountree, J. & Robins, A. (2002), ‘Predictors of success and failure in a
CS1 course’, ACM SIGCSE Bulletin 34(4), 121–124.

Rowntree, D. (1977), Assessing Students: How Shall We Know Them?, Taylor & Francis.

Royce, W. W. (1970), Managing the development of large software systems, in ‘Pro-
ceedings of IEEE WESCON’, Vol. 26, Los Angeles.

Rubin, M. J. (2013), The effectiveness of live-coding to teach introductory program-
ming, in ‘Proceeding of the 44th ACM technical symposium on Computer science
education’, SIGCSE ’13, ACM, New York, NY, USA, pp. 651–656.

328

REFERENCES

Ruby, S., Thomas, D. & Heinemeier Hansson, D. (2013), Agile Web Development with
Rails 3.2, The Pragmatic Bookshelf.

Salleh, N., Mendes, E. & Grundy, J. (2011), ‘Empirical studies of pair programming
for CS/SE teaching in higher education: A Systematic Literature Review’, Software
Engineering, IEEE Transactions on (99), 1–1.

Savery, J. R. & Duffy, T. M. (1995), ‘Problem based learning: An instructional
model and its constructivist framework’, EDUCATIONAL TECHNOLOGY-SADDLE
BROOK NJ- 35, 31–31.

Schaefer, D. & Panchal, J. (2009), ‘Incorporating research into undergraduate design
courses: a patent-centered approach’, The International Journal of Mechanical Engi-
neering Education 37(2), 98–110.

Schmidt, H. G., Van der Molen, H. T., Te Winkel, W. W. & Wijnen, W. H. (2009), ‘Con-
structivist, problem-based learning does work: A meta-analysis of curricular com-
parisons involving a single medical school’, Educational Psychologist 44(4), 227–249.

Schön, D. A. (1983), The Reflective Practitioner: How Professionals Think in Action, Basic
books.

Schulte, C. & Bennedsen, J. (2006), What do teachers teach in introductory program-
ming?, in ‘Proceedings of the Second International Workshop on Computing Edu-
cation Research’, ICER ’06, ACM, pp. 17–28.

Schwaber, K. & Beedle, M. (2002), Agile Software Development with Scrum, Prentice Hall.

Schwartz, M. S., Sadler, P. M., Sonnert, G. & Tai, R. H. (2009), ‘Depth versus breadth:
How content coverage in high school science courses relates to later success in col-
lege science coursework’, Science Education 93(5), 798–826.

Scott, L. M. & Fortune, C. F. (2009), Promoting student centered learning: Portfolio
assessment on an undergraduate construction management program, in ‘Building
Research and Education: ASC2009, Proceedings of the 45th Annual Conference’.

Scriven, M. (1967), The methodology of evaluation, in R. W. Tyler, R. M. Gagne &
M. Scriven, eds, ‘Perspectives of Curriculum Evaluation’, Vol. 1, Rand McNally,
Chicago, IL, pp. 39–83.

Sermersheim, J. (2006), Lightweight Directory Access Protocol (LDAP): The Protocol, The
Internet Society.
URL: http://tools.ietf.org/html/rfc4511

Shannon, C. E. (1949), ‘Communication in the presence of noise’, Proceedings of the IRE
37(1), 10–21.

329

REFERENCES

Sheard, J., Carbone, A. & Dick, M. (2003), Determination of factors which impact on
it students’ propensity to cheat, in ‘Proceedings of the fifth Australasian conference
on Computing Education’, Vol. 20 of ACE ’03, Australian Computer Society, Inc.,
Darlinghurst, Australia, Australia, pp. 119–126.

Sheard, J. & Dick, M. (2011), Computing student practices of cheating and plagiarism:
a decade of change, in ‘Proceedings of the 16th Annual Joint Conference on Innova-
tion and Technology in Computer Science Education’, ITiCSE ’11, ACM, New York,
NY, USA, pp. 233–237.

Sheard, J., Simon, Carbone, A., D’Souza, D. & Hamilton, M. (2013), Assessment of
programming: pedagogical foundations of exams, in ‘Proceedings of the 18th ACM
conference on Innovation and Technology in Computer Science Education’, ITiCSE
’13, ACM, New York, NY, USA, pp. 141–146.

Sheetz, S. D., Irwin, G., Tegarden, D. P., Nelson, H. J. & Monarchi, D. E. (1997), ‘Ex-
ploring the difficulties of learning object-oriented techniques’, Journal of Management
Information Systems 14, 103–131.

Shepherd, J. (2005), Weaving a web of consistency: a case study of implementing con-
structive alignment, in ‘HERDSA 2005 Conference Proceedings’.

Shoufan, A. & Huss, S. A. (2010), ‘A course on reconfigurable processors’, Trans. Com-
put. Educ. 10(2), 7:1–7:20.

Smith, E. & Gorard, S. (2005), ‘ ’They don’t give us our marks’: The role of formative
feedback in student progress’, Assessment in Education: Principles, Policy & Practice
12(1), 21–38.

Smith, K. & Tillema, H. (2001), ‘Long-term influences of portfolios on professional
development’, Scandinavian Journal of Educational Research 45(2), 183–203.

Smith, K. & Tillema, H. (2003), ‘Clarifying different types of portfolio use’, Assessment
& Evaluation in Higher Education pp. 625–649.

Soetanto, K. (2003), Proposing the IOC pedagogy for Japanese higher education in the
Universalize era, in ‘Proceedings of the 25th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439)’,
IEEE, pp. 3521–3524.

Soetanto, K. (2012), Motivational education for science course, in ‘Proceedings of IEEE
International Conference on Teaching, Assessment, and Learning for Engineering
(TALE) 2012’, IEEE, pp. W2A–5–W2A–7.

Soloway, E. (1986), ‘Learning to program = learning to construct mechanisms and ex-
planations’, Communications of the ACM 29, 850–858.

330

REFERENCES

Soloway, E. & Spohrer, J. C. (1988), Studying the Novice Programmer, L. Erlbaum Asso-
ciates Inc., Hillsdale, NJ, USA.

Steffe, L. P. & Gale, J. E. (1995), Constructivism in Education, Lawrence Erlbaum Asso-
ciates, NJ.

Steffen, M., May, D. & Deuse, J. (2012), The industrial engineering laboratory, in ‘Pro-
ceedings of the 2012 IEEE Global Engineering Education Conference (EDUCON)’,
IEEE, pp. 1–10.

Stephenson, J. & Laycock, M. (1993), Using Learning Contracts in Higher Education,
Routledge.

Sutherland, J. & Schwaber, K. (2007), The Scrum Papers: Nuts, Bolts, and Origins of an
Agile Process.

SwinGame (2013), ‘SwinGame: Build your imagination’. Accessed 2013-07-09.
URL: http://www.swingame.com

Szili, G. & Sobels, J. (2011), ‘Reflections on the efficacy of a constructivist approach to
teaching and learning in a first-year bachelor of environmental management topic’,
Journal of Geography in Higher Education 35(4), 499–512.

Talay-Ongan, A. (2003), Online teaching as a reflective tool in constructive alignment,
in ‘Proceedings of International Education Research Conference AARE–NZARE,
Auckland, New Zealand, Australian Association for Research in Education’.

Tang, C., Lai, P., Arthur, D. & Leung, S. F. (1999), ‘How do students prepare for tra-
ditional and portfolio assessment in a problem-based learning curriculum’, Themes
and Variation in PBL. Newcastle: Australian Problem Based Learning Network pp. 206–
217.

Taxén, G. (2004), ‘Teaching computer graphics constructively’, Computers & Graphics
28(3), 393 – 399.

Teater, B. A. (2010), ‘Maximizing student learning: A case example of applying
teaching and learning theory in social work education’, Social Work Education
30(5), 571–585.

Terrell, J., Richardson, J. & Hamilton, M. (2011), ‘Using Web 2.0 to Teach Web 2.0: A
case study in aligning teaching, learning and assessment with professional practice’,
Australasian Journal of Educational Technology p. 17.

Thorpe, M. (2000), ‘Encouraging students to reflect as part of the assignment process:
Student responses and tutor feedback’, Active Learning in Higher Education 1(1), 79–
92.

331

REFERENCES

Thota, N. & Whitfield, R. (2010), ‘Holistic approach to learning and teaching introduc-
tory object-oriented programming’, Computer Science Education 20(2), 103–127.

Thramboulidis, K. (2003a), ‘A constructivism-based approach to teach object-oriented
programming’, Journal of Informatics Education and Research 5(1), 1–12.

Thramboulidis, K. (2003b), Teaching advanced programming concepts in introductory
computing courses: a constructivism based approach, in ‘ICEE International Con-
ference on Engineering Education’.

Thramboulidis, K. C. (2003c), ‘A sequence of assignments to teach object-oriented
programming: a constructivism design-first approach’, Informatics in Education
2(1), 103–122.

Tigelaar, D., Dolmans, D., Wolfhagen, I. & Vleuten, C. (2007), ‘Quality issues in judg-
ing portfolios: implications for organizing teaching portfolio assessment proce-
dures’, Studies in Higher Education 30(5), 595–610.

Treleaven, L. & Voola, R. (2008), ‘Integrating the development of graduate attributes
through constructive alignment’, Journal of Marketing Education 30(2), 160–173.

Trewin, D. (2000), Australian Standard Classification of Education (ASCED), Australian
Bureau of Statistics.

Trigwell, K. & Prosser, M. (1991), ‘Improving the quality of student learning: the influ-
ence of learning context and student approaches to learning on learning outcomes’,
Higher Education 22(3), 251–266.

Trigwell, K., Prosser, M. & Waterhouse, F. (1999), ‘Relations between teachers’
approaches to teaching and students’ approaches to learning’, Higher Education
37(1), 57–70.

Twitter Bootstrap (2013), ‘Twitter Bootstrap: Sleek, intuitive, and powerful front-end
framework for faster and easier web development’. Accessed 2013-07-09.
URL: http://twitter.github.io/bootstrap/

Tyler, R. W. (1969), Basic Principles of Curriculum and Instruction, University of Chicago
Press.

Tynjala, P. (1998), ‘Traditional studying for examination versus constructivist learning
tasks: Do learning outcomes differ?’, Studies in Higher Education 23(2), 173–189.

Van Canneyt, M. (2013), Free Pascal: Language Reference Guide.
URL: ftp://ftp.freepascal.org/pub/fpc/docs-pdf/ref.pdf

332

REFERENCES

Van Canneyt, M. & Klämpfl, F. (2011), Free Pascal User’s Guide.
URL: ftp://ftp.freepascal.org/pub/fpc/docs-pdf/user.pdf

Van Gorp, M. & Grissom, S. (2001), ‘An empirical evaluation of using constructive
classroom activities to teach introductory programming’, Computer Science Education
11(3), 247–260.

van Rossum, E. J. . J. & Schenk, S. M. (1984), ‘The relationship between learning con-
ception, study strategy and learning outcome’, British Journal of Educational Psychol-
ogy 54(1), 73–83.

Vanfretti, L. & Milano, F. (2012), ‘Facilitating constructive alignment in power systems
engineering education using free and open-source software’, IEEE Transactions on
Education 55(3), 309–318.

Vogel, D., Kennedy, D., Kuan, K., Kwok, R. & Lai, J. (2007), Do mobile device applica-
tions affect learning?, in ‘40th Annual Hawaii International Conference on System
Sciences’, IEEE, p. 4.

Vrasidas, C. (2000), ‘Constructivism versus objectivism: Implications for interaction,
course design, and evaluation in distance education’, International Journal of Educa-
tional Telecommunications 6(4), 339–362.

Warren, I. (2005), Teaching patterns and software design, in ‘Proceedings of the 7th
Australasian Conference on Computing Education’, pp. 39–49.

White, G. & Sivitanides, M. (2005), ‘Cognitive differences between procedural pro-
gramming and object oriented programming’, Information Technology and Manage-
ment 6(4), 333–350.

Wiedenbeck, S. (2005), Factors affecting the success of non-majors in learning to pro-
gram, in ‘Proceedings of the First International Workshop on Computing Education
Research’, ICER ’05, ACM, New York, NY, USA, pp. 13–24.

Wiliam, D. (2006), ‘Formative assessment: Getting the focus right’, Educational Assess-
ment 11(3-4), 283–289.

Winslow, L. E. (1996), ‘Programming pedagogy: a psychological overview’, ACM
SIGCSE Bulletin 28(3), 17–22.

Wirfs-Brock, R. & McKean, A. (2003), Object Design: Roles, Responsibilities, and Collabo-
rations, Addison-Wesley Professional.

Wirth, N. (1971), ‘The programming language Pascal’, Acta informatica 1(1), 35–63.

333

REFERENCES

Woodward, C. J., Cain, A., Pace, S. & Jones, A., F. K. J. (2013), Helping students track
learning progress using burn down charts, in ‘Proceedings of the 2nd IEEE Inter-
national Conference on Teaching, Assessment and Learning for Engineering’, IEEE,
pp. 104–109.

Wulf, T. (2005), Constructivist approaches for teaching computer programming, in
‘Proceedings of the 6th Conference on Information Technology Education’, ACM,
pp. 245–248.

Yip, W. (2005), Web-based support for constructive alignment, in ‘Proceedings of the
IASTED International Conference: Web-based Education’, ACTA Press, Switzer-
land.

334

A1
Constructive Alignment Literature Survey

Data

This appendix lists the data from the systematic literature review of applications of
constructive alignment, as reported in peer reviewed literature. The data is presented
in four tables:

1. Table A1.1 provides overview details of each paper, listing its field, the year level
of the unit it described, the method of the unit’s delivery, and the geographic
location of the reported work.

2. Table A1.2 lists the details associated with the evaluation of constructive align-
ment, including the data sources used, and any reported positive or negative
effects.

3. The teaching and learning activities used in the reported units is listed in Ta-
ble A1.3, along with any method used to incorporate constructive learning the-
ories in the delivery of the unit.

4. Finally, Table A1.4 lists the methods of assessment used and details of how the
assessment, teaching methods, and intended learning outcomes were aligned.

A further discussion and analysis of this data is presented in Chapter 2.

335

CHAPTER A1. CONSTRUCTIVE ALIGNMENT LITERATURE SURVEY DATA

A1.1 Paper Overview Details

Table A1.1 lists each paper, its field, year level, method of delivery and geographic
location. The following abbreviations are used in the this table.

• Field values include:

AERS : Agriculture, Environmental And Related Studies

AB : Architecture And Building

CA : Creative Arts

EDU : Education

ENG : Engineering And Related Technologies

FHPS : Food, Hospitality And Personal Services

HEAL : Health

IT : Information Technology

MC : Management And Commerce

MIX : Mixed Field Programmes

SCI : Natural And Physical Sciences

SOC : Society And Culture

• Level values include:

PG : Postgraduate

UG : Undergraduate

Yr 1 : First year

Yr 2 : Second year

Yr 3 : Third or later years

• Delivery values include:

F2F : Face to Face

OL : Online

336

A1.1. PAPER OVERVIEW DETAILS

Table A1.1: Summary details of papers analysed in systematic literature review on
constructive alignment.

Author (Year) Field Level Delivery Location
Tang et al. (1999) HEAL UG (Yr 3) F2F Hong Kong
Hoddinott (2000) SCI UG (Yr 3) and PG OL Canada
Davey & Bond (2002) HEAL UG (Yr 3) F2F New Zealand
Talay-Ongan (2003) EDU UG & PG F2F & OL Australia
Norton (2004) SOC UG (Yr 3) F2F United Kingdom
Warren (2005) IT UG (Yr 2) F2F New Zealand
Shepherd (2005) MC UG (Yr 2) F2F Australia
Yip (2005) IT UG & PG F2F Hong Kong
Henderson (2006) MC UG (Yr 1) F2F Australia
Brown et al. (2006) AERS UG & PG OL United Kingdom
Israel et al. (2007) SOC UG (Yr 3) F2F South Africa
Vogel et al. (2007) MC UG & PG F2F Hong Kong
Jones (2007) SOC UG (Yr 3) F2F & OL Australia
Brabrand (2008) IT UG & PG F2F Europe
Treleaven & Voola (2008) MC PG F2F Australia
Morton (2008) SOC UG (Yr 2) F2F United Kingdom
Raman (2008) AERS UG (Yr 3) F2F Australia
Kuhn (2009) MC UG (Yr 1) F2F Australia
Raeburn et al. (2009) HEAL UG & PG OL Australia
Hill (2009) IT UG (Yr 3) F2F United Kingdom
Scott & Fortune (2009) AB UG (Yr 1) F2F & OL Europe
Schaefer & Panchal (2009) ENG UG & PG F2F America
Qiao et al. (2009) EDU Not Specified F2F China
Thota & Whitfield (2010) IT UG (Yr 1) F2F China
Teater (2010) SOC UG (Yr 2) F2F United Kingdom
Hartfield (2010) SCI UG (Yr 3) F2F Australia
Ross (2010) MC UG (Yr 3) F2F Australia
Shoufan & Huss (2010) IT UG & PG F2F Europe
Szili & Sobels (2011) AERS UG (Yr 1) F2F Australia
Andrews (2011) IT UG (Yr 3) F2F United Kingdom
Terrell et al. (2011) SOC PG OL Australia
Donnison & Edwards (2011) EDU UG (Yr 1) F2F Australia
Joseph & Juwah (2012) HEAL UG (Yr 3) F2F United Kingdom
Pardede & Lyons (2012) IT Not Specified F2F Australia
Kenney (2012) MC UG (Yr 2) F2F Australia
Hedges & Pacheco (2012) MC UG (Yr 1) F2F New Zealand
Vanfretti & Milano (2012) ENG UG & PG F2F Europe
Steffen et al. (2012) ENG PG F2F Europe

337

CHAPTER A1. CONSTRUCTIVE ALIGNMENT LITERATURE SURVEY DATA

A1.2 Evaluation Data

Table A1.2 list the evaluation sources, and the reported positive and negative effects
of applying constructive alignment. The following abbreviations are used in the this
table.

• Evaluation sources include:

SFT : Survey results from student feedback of teaching surveys.

IV/FG : Student interviews of focus groups.

Table A1.2: Evaluation details from papers analysed in the systematic literature re-
view of applications of constructive alignment.

Evaluation Source +’ve Effects -’ve Effects

Author (Year) SF
T

R
es

ul
ts

St
ud

en
t W

or
k

O
nl

in
e

A
ct

iv
it

y

IV
/F

G

R
efl

ec
ti

on
s

on
Te

ac
hi

ng

O
ut

co
m

es

Sa
ti

sf
ac

ti
on

En
ga

ge
m

en
t

O
th

er

St
af

f
W

or
kl

oa
d

St
ud

en
tW

or
kl

oa
d

O
th

er

N
o

Ev
al

ua
ti

on

Tang et al. (1999) X X

Hoddinott (2000) X X X

Davey & Bond (2002) X X X

Talay-Ongan (2003) X X X

Norton (2004) X X X X

Warren (2005) X X X X X X

Shepherd (2005) X X X X

Yip (2005) X

Henderson (2006) X X X

Brown et al. (2006) X X

Israel et al. (2007) X X X X X X

Vogel et al. (2007) X X X X

Jones (2007) X

Brabrand (2008) X X

Treleaven & Voola (2008) X X X X

Morton (2008) X X

Raman (2008) X

Kuhn (2009) X X X

Raeburn et al. (2009) X X X X X

Hill (2009) X X X X X

Scott & Fortune (2009) X X X X X X

Schaefer & Panchal (2009) X X

Continued on next page

338

A1.2. EVALUATION DATA

Table A1.2 – Continued from previous page
Evaluation Source +’ve Effects -’ve Effects

Author (Year) SF
T

R
es

ul
ts

St
ud

en
t W

or
k

O
nl

in
e

A
ct

iv
it

y

IV
/F

G

R
efl

ec
ti

on
s

on
Te

ac
hi

ng

O
ut

co
m

es

Sa
ti

sf
ac

ti
on

En
ga

ge
m

en
t

O
th

er

St
af

f
W

or
kl

oa
d

St
ud

en
tW

or
kl

oa
d

O
th

er

N
o

Ev
al

ua
ti

on

Qiao et al. (2009) X X X

Thota & Whitfield (2010) X X X

Teater (2010) X X X

Hartfield (2010) X X X X X X

Ross (2010) X X X X X

Shoufan & Huss (2010) X X X X

Szili & Sobels (2011) X X X X X

Andrews (2011) X X X

Terrell et al. (2011) X X X X X

Donnison & Edwards (2011) X

Joseph & Juwah (2012) X X X X

Pardede & Lyons (2012) X X X X

Kenney (2012) X X X

Hedges & Pacheco (2012) X X X

Vanfretti & Milano (2012) X X

Steffen et al. (2012) X X

339

CHAPTER A1. CONSTRUCTIVE ALIGNMENT LITERATURE SURVEY DATA

A1.3 Teaching and Learning Activities

Table A1.3 lists the teaching and learning activities used, and details on how construc-
tivism was incorporated. This table uses the following abbreviation.

Construct : Method for incorporating constructive learning theories.

Table A1.3: Paper summary details from the systematic literature review on applica-
tions of Constructive Alignment.

Activities Construct

Author (Year) Le
ct

ur
es

Tu
to

ri
al

C
la

ss
es

O
th

er

In
te

ra
ct

iv
e

C
la

ss
es

G
ro

up
D

is
cu

ss
io

n

Pr
ob

le
m

-b
as

ed
Le

ar
ni

ng
Tang et al. (1999) X X X X

Hoddinott (2000)
Davey & Bond (2002) X X X X

Talay-Ongan (2003) X X X X

Norton (2004) X X X

Warren (2005) X X X X

Shepherd (2005) X X X X

Yip (2005) X X X

Henderson (2006)
Brown et al. (2006)
Israel et al. (2007) X X X X

Vogel et al. (2007)
Jones (2007) X X X

Brabrand (2008) X X X X

Treleaven & Voola (2008) X X

Morton (2008) X X X X

Raman (2008)
Kuhn (2009) X X

Raeburn et al. (2009)
Hill (2009) X X

Scott & Fortune (2009) X X X

Schaefer & Panchal (2009) X X

Qiao et al. (2009)
Thota & Whitfield (2010) X X X X X

Teater (2010) X X X X

Hartfield (2010) X X X X

Ross (2010) X X X

Continued on next page

340

A1.3. TEACHING AND LEARNING ACTIVITIES

Table A1.3 – Continued from previous page
Activities Const.

Author (Year) Le
ct

ur
es

Tu
to

ri
al

C
la

ss
es

O
th

er

In
te

ra
ct

iv
e

C
la

ss
es

G
ro

up
D

is
cu

ss
io

n

Pr
ob

le
m

-b
as

ed
Le

ar
ni

ng

Shoufan & Huss (2010) X X X X

Szili & Sobels (2011) X X X

Andrews (2011) X X

Terrell et al. (2011)
Donnison & Edwards (2011) X X X

Joseph & Juwah (2012) X X

Pardede & Lyons (2012) X X X X

Kenney (2012) X X

Hedges & Pacheco (2012) X X

Vanfretti & Milano (2012) X

Steffen et al. (2012) X X

341

CHAPTER A1. CONSTRUCTIVE ALIGNMENT LITERATURE SURVEY DATA

A1.4 Assessment and Alignment

Table A1.4 lists the assessment methods used, and the means of aligning teaching
and learning activities and assessment tasks to the reported unit’s intended learning
outcomes.

Table A1.4: Paper summary details from the systematic literature review on applica-
tions of Constructive Alignment.

Assessment Aligned By

Author (Year) Ex
am

Te
st

s

A
ss

ig
nm

en
ts

G
ro

up
W

or
k

Pa
rt

ic
ip

at
io

n

Po
rt

fo
li

o

R
efl

ec
ti

ve
Jo

ur
na

l

St
af

f
O

nl
y

Li
tt

le
D

et
ai

ls

M
at

ri
x/

Ta
bl

e

Tang et al. (1999) X X X X

Hoddinott (2000) X X X X X

Davey & Bond (2002) X X X X

Talay-Ongan (2003) X X

Norton (2004) X X X X

Warren (2005) X X X X

Shepherd (2005) X X X X X X

Yip (2005) X X

Henderson (2006) X X X X X

Brown et al. (2006) X X

Israel et al. (2007) X X X X

Vogel et al. (2007) X X

Jones (2007) X X X X

Brabrand (2008) X X X

Treleaven & Voola (2008) X X X X X

Morton (2008) X X X

Raman (2008) X X X

Kuhn (2009) X X X X X

Raeburn et al. (2009) X X X

Hill (2009) X X X X

Scott & Fortune (2009) X X

Schaefer & Panchal (2009) X X X X X

Qiao et al. (2009) X X

Thota & Whitfield (2010) X X X X X X

Teater (2010) X X X

Hartfield (2010) X X X X

Ross (2010) X X

Shoufan & Huss (2010) X X X

Szili & Sobels (2011) X X X X X

Andrews (2011) X X X

Terrell et al. (2011) X X X X

Continued on next page

342

A1.4. ASSESSMENT AND ALIGNMENT

Table A1.4 – Continued from previous page
Assessment Aligned By

Author (Year) Ex
am

Te
st

s

A
ss

ig
nm

en
ts

G
ro

up
W

or
k

Pa
rt

ic
ip

at
io

n

Po
rt

fo
li

o

R
efl

ec
ti

ve
Jo

ur
na

l

St
af

f
O

nl
y

Li
tt

le
D

et
ai

ls

M
at

ri
x/

T a
bl

e

Donnison & Edwards (2011) X X X

Joseph & Juwah (2012) X X X X

Pardede & Lyons (2012) X X X X X

Kenney (2012) X X X X X X

Hedges & Pacheco (2012) X X X X

Vanfretti & Milano (2012) X X X X X

Steffen et al. (2012) X X X X X

343

A2
Chapters from the Programming Arcana

The following list outlines the chapters from the Programming Arcana, and the con-
cepts covered.

1. Building Programs: Introduces students to the tools they require, and shows
them a basic, “Hello World”, program they can compile to check that their tools
are working.

• Programs are introduced as a sequence of instructions that get the com-
puter to perform actions.

• Machine and Assembly code provides some context as to why compilers
are necessary. Machine code is presented as the computer’s natural lan-
guage, and Assembly code as a first step toward making this code more
human-friendly.

• Source code and compilers are introduced with the idea of third generation
languages, and the need for a compiler to convert source code to machine
code.

• The Terminal is introduced as a means of running programs, and the steps
for using the compiler are presented. This section also introduces the Bash
shell, along with commands to navigate through the file system.

• The final concept outlines the code for a Hello World program in C and
Pascal, together with the steps needed to compile and run this program.

2. Program Creation: describes how code can be written to create a Program.

• Introduces the idea that a Program can be created in code, and that it has a
name and a list of instructions for the computer to perform.

• Procedures are introduced as a named group of instructions that performed
a task. These instructions can be run using a Procedure Call.

• The idea that procedures can be distributed in a Library was discussed.
• Programming language terminology is also introduced, including State-

ments as the technical term for commands, Expressions for calculated val-
ues, Types to describe different kinds of data, and Identifiers as the names
for artefacts such as the programs created and the procedures called.

• Comments are discussed as a means of documenting code.

3. Procedure Declaration: Introduces the idea that you can create your own proce-
dures to encapsulate the steps of a task.

• Procedure declaration describes how procedures can be created as a se-
quence of instructions that are run when the procedure is called.

• The concept of a Program is extended to indicate that a program’s code can
include procedure declarations.

4. Storing and Using Data: Makes programs more dynamic using variables and
constants to store data, and functions to calculate values.

• Variables are introduced as a means of storing data that changes within the
code, while Constants are introduced as a means of storing data that does
not change.

• The assignment statement is introduced as the means of storing a value in
the variable, and the concept of an expression is updated to indicate it can
read a value from the variable.

• Programming terminology related to the location of a variable is intro-
duced; local variables are declared within a procedure, global variables
within a program, and parameters are a means of enabling data to be passed
to a procedure.

• The different parameter passing options are presented, with pass-by-value
indicating that the value of the expression in the procedure call was passed,
while with pass-by-reference the parameter needs to be passed a variable to
which it will refer.

• Creating Functions to calculate values is also introduced, along with up-
dating what an expressions is to include the use of function calls.

• To realise these concepts, the previous statement, program and procedure
declaration concepts are updated.

5. Control Flow: Introduces structured programming principles, along with the
control flow mechanisms of selection and repetition.

• Boolean data is discussed as a means of directing the control flow state-
ments. This includes the use of comparisons to calculate boolean values, as
well as the logical operators (and, or, and not).

• Selection is described in terms of branching, including the ideas of if state-
ments and case statements.

• Looping introduces pre-test loops that repeated code zero or more times,
and post-test loops that repeated code one or more times.

• Other control flow statements are covered in the section on jumping. This

345

CHAPTER A2. CHAPTERS FROM THE PROGRAMMING ARCANA

includes break to jump out of a loop, continue to jump to the end of a loop,
exit/return to jump out of a function or procedure, and the infamous goto
statement.

• Finally, the idea of grouping statements in a compound statement was
presented, and explained in terms of providing a sequence of statements
within the control flow statements.

6. Managing Multiple Values: Presents the use of arrays to make it easier to work
with a large amount of data.

• Arrays are shown as a means of managing a number of values in a sin-
gle variable. String is discussed as an example of an array students have
already been working with.

• The importance of pass-by-reference is reinforced.
• For loops are introduced as a convenient means of looping over the ele-

ments of an array.
• The Assignment statement and Expression concepts are updated to indi-

cate how arrays can be used.

7. Custom Data Types: Describes how developers can create types to help them
organise the data in their programs, much as functions and procedures helped
to organise functionality.

• Types are described again in more detail to provide context.
• Type declaration is discussed along with records/structs, enumerated types

and unions, as well as what a Program can contain.
• The Assignment statement and Expression concepts are updated to indi-

cate how the various custom types can be used.

8. Dynamic Memory Allocation: Extends programs beyond the confines of the
stack, allowing the allocation of data on the heap.

• The Stack and Heap are discussed. This highlights the need for values on
the stack to have a known size, requiring another “space” for allocating
data when its size is not known at compile time.

• Pointers are introduced as a means of referring to space allocated on the
Heap.

• The need for specific actions to allocate memory, and to free that allocation
are presented.

• Common issues with pointers are discussed, including why they are likely
to occur and how to address these issues. This includes access violations,
memory leaks and accessing released memory.

9. Input and Output: Describes how to save and load data from file.

• The concept of persisting data is discussed along with the idea of a process
and its memory being freed after a program terminates. This leads to details
on saving data from the program’s memory onto persistent storage.

346

• Files and text and binary file formats are discussed.
• Interacting with Files describes typical input and output operations you

likely to perform on files.
• Other output devices relates the concepts presented to terminal input/out-

put and the idea that the same concepts apply to sending data across a net-
work connection.

347

A3
Ethics Approval for Research Protocol

This appendix includes one attachment related to the granted ethics approval for the
work reported in this thesis: SUHREC Project 2011/021 Ethics Clearance – email re-
ceived indicating approval to carry out this research.

All conditions pertaining to this clearance were properly met, and annual reports have
been submitted each year as per the required reporting standards.

SUHREC Project 2011/021 Ethics Clearance

Kaye Goldenberg <KGOLDENBERG@groupwise.swin.edu.au> 4 April 2011 13:16
To: acain@swin.edu.au, jgrundy@swin.edu.au

To: Prof. John Grundy, FICT/Mr Andrew Cain

Dear Prof. Grundy,

SUHREC Project 2011/021 Evaluating the effectiveness of constructive alignment in teaching
introductory programming
Prof. John Grundy, FICT/Mr Andrew Cain
Approved Duration: 4 April 2011 To 30/04/2017 [Adjusted]

I refer to the ethical review of the above revised and resubmitted project protocol undertaken on behalf of
Swinburne's Human Research Ethics Committee (SUHREC) by SUHREC Subcommittee (SHESC4) at a meeting
held on 4 March 2011. Your response to the review as e-mailed on 22 March 2011 were put to a nominated
SHESC4 delegate for review.

I am pleased to advise that, as submitted to date, the project has approval to proceed in line with standard on-
going ethics clearance conditions here outlined.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and external
regulatory standards, including the National Statement on Ethical Conduct in Human Research and with respect
to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel appointed to or
associated with the project being made aware of ethics clearance conditions, including research and consent
procedures or instruments approved. Any change in chief investigator/supervisor requires timely notification and
SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC. Amendments
to approved procedures or instruments ordinarily require prior ethical appraisal/ clearance. SUHREC must be
notified immediately or as soon as possible thereafter of (a) any serious or unexpected adverse effects on
participants and any redress measures; (b) proposed changes in protocols; and (c) unforeseen events which
might affect continued ethical acceptability of the project.

- At a minimum, an annual report on the progress of the project is required as well as at the conclusion (or
abandonment) of the project.

- A duly authorised external or internal audit of the project may be undertaken at any time.

Please contact me if you have any queries about on-going ethics clearance. The SUHREC project number should
be quoted in communication. Chief Investigators/Supervisors and Student Researchers should retain a copy of
this e-mail as part of project record-keeping.

Best wishes for the project.

Yours sincerely

Kaye Goldenberg
Secretary, SHESC4

Kaye Goldenberg
Administrative Officer (Research Ethics)
Swinburne Research (H68)

Swinburne University of Technology
P O Box 218
HAWTHORN VIC 3122
Tel +61 3 9214 8468

349

	Introduction
	Research Goals
	Research Approach
	Key Contributions
	Thesis Structure

	Approaches to Constructive Alignment
	Constructive Alignment
	Approaches to Learning
	Constructivism
	Aligned Curriculum
	The Model of Constructive Alignment
	Biggs' Example Implementation

	Reported Applications of Constructive Alignment
	Review Method
	Results
	Discussion

	Constructive Alignment in Introductory Programming
	Challenges in Introductory Programming
	Research Perspectives on Introductory Programming
	Applying Constructive Alignment to Introductory Programming

	Summary

	Guiding Principles
	Principles to Guide HOW We Should Teach
	Recognise Students Construct Knowledge in Response to Activity
	Align Activities and Assessment to Intended Learning Outcomes
	Assess Learning Outcomes, Not Learning Pace or Product Outcomes
	Focus on Important Aspects, while Providing Access to Necessary Details
	Communicate High Expectations
	Actively Support Diverse Student Efforts
	Trust and Empower Students to Control their Own Learning
	Embed Reflective Practice In All Aspects
	Be Agile and Willing to Change
	Summary

	Principles to guide what we should teach
	Set the Strategy, and Structure Learning, Around a Programming Paradigm
	Focus on Programming Concepts
	Use Programming Languages as they were Designed to be Used
	Summary

	Summary of Guiding Principles

	A Model for Constructive Alignment of Introductory Programming
	Overall Strategy
	Assessment Approach
	Portfolio Assessment
	Delivery Approach
	Summary

	Constructively Alignment with Portfolio Assessment
	Model Overview
	Defining Intended Learning Outcomes
	Constructing Assessment Criteria
	Develop Teaching and Learning Activities and Resources
	Iteratively Deliver Unit and Provide Feedback
	Construction, Submission, and Assessment of Portfolios
	Addressing Plagiarism

	Summary

	Applying Constructive Alignment and Portfolio Assessment for Introductory Programming
	Paradigm Choice
	Introductory Programming
	Aims for Introductory Programming
	Defining Intended Learning Outcomes
	Constructing Assessment Criteria
	Developing Teaching and Learning Activities
	Delivering the Unit
	Assessing Student Portfolios
	Introductory Programming in Summary

	Object Oriented Programming
	Aims for Object Oriented Programming
	Defining Intended Learning Outcomes
	Constructing Assessment Criteria
	Developing Teaching and Learning Activities, and Delivering the Unit
	Assessing Student Portfolios
	Comparison with the Introductory Programming Unit

	Summary

	Supporting the Curriculum with Tools and Technologies
	Visualising Task Progress to Support Formative Feedback
	Requirements
	Doubtfire Solution
	Use and Evaluation of Doubtfire
	Summary

	A Game Library to Support Procedures First
	Requirements
	SwinGame Solution
	Use and Evaluation of SwinGame
	Summary

	Programming Text to Support Concept-Based Approach
	Requirements
	Arcana Solution
	Use and Evaluation of the Programming Arcana
	Summary

	Video Podcasts to Support the Programming Text
	Requirements
	Video Podcasts Solution
	Use and Evaluation of Video Podcasts
	Summary

	Chapter Summary

	Evaluation of the Teaching and Learning Context
	Research Design
	Action Research
	Thematic Analysis of Reflections
	Addressing Ethical Concerns

	Lessons Learnt through Action Research
	The Units
	Prior to Portfolio Assessment
	Early Iterations
	As the Model Stabilised
	Latest Iterations
	Current Iteration
	Summary

	Issues Identified in Student Reflections
	Method
	Results
	Discussion
	Summary

	Evaluating Progress using Burn Down Charts
	Method
	Results
	Discussion
	Summary

	Discussion
	Principles in Review
	Constructive Learning Theories (P1)
	Aligned Curriculum (P2)
	Assessing Learning Outcomes (P3)
	Supporting Principles (P4 to P12)
	Principles Related to ``What'' We Teach (P10, P11, and P12)

	General Applicability of Approach
	Applicability of Constructive Alignment in General
	Applicability of Approach to Other Units
	Applicability to Team Work and Project Units
	Applicability to Large Class Sizes
	Applicability of Overall Strategy
	Applicability of Activities within the Model

	Approach in Relation to Prior Work
	In Relation to Work on Constructive Alignment
	In Relation to Work on Introductory Programming

	Challenges for Wider Adoption
	Adopting Constructive Learning Theories
	Removing Mark-based Assessment
	Holistic Assessment over Piece-by-Piece Assessment
	Perceived Workload Issues
	Availability of Experienced Teaching Staff
	Combined Issues

	Transitioning to Portfolio Assessment
	Discussion Summary

	Conclusion and Future Work
	Future Work

	Constructive Alignment Literature Survey Data
	Paper Overview Details
	Evaluation Data
	Teaching and Learning Activities
	Assessment and Alignment

	Chapters from the Programming Arcana
	Ethics Approval for Research Protocol

