High Level Support for Performance
Engineering, and Model Integration and Model

Transformation

Rainbow Yuhong Cai

A thesis submitted in fulfilment of the requirements for the degree of Doctor of
Philosophy in Computer Science, The University of Auckland, February, 2009.

Abstract

This thesis provides high level support for Performance Engineering in software architecture design via
two research projects - Argo/MTE and MaramaMTE+. The Argo/MTE project extends the well
established ArgoUML tool to support software architecture modelling and performance evaluation. The
Argo/MTE research shows how commonly used Components Off The Shelf (COTS) tools can improve
the usability and maintainability of an in-house technology, and how the use of standard model
representations can improve tool integration. The MaramaMTE+ research integrates the traditional
software architecture modelling with the web user behaviour modelling using the Marama meta-tool.
The MaramaMTE+ research shows how model integration can extend the applicable domain of a
software model; how a meta-tool can support efficient tool extension; and how to support automatic

generation of web load testing plans.

This thesis provides high level support for Model Integration and Transformation via the research
project MaramaCRelation. The MaramaCRelation research provides a structured approach to
interconnect domain-specific models. It maintains the rational of an interconnection of domain-specific
models; records semantics maintained and lost across the interconnected models; tracks the evolvement
of modeling elements through the traceability across the interconnected models; and maintains behavior

synchronization across the interconnected models.

The thesis has made contributions in software architecture design, software architecture performance
evaluation, web load testing, and model integration and transformation. More specifically, the research
of the thesis is aimed for improving the automatic support, analysis and design support, and systematic

and structured support for Performance Engineering and Model Driven Engineering.

Acknowledgements

I guess my supervisors, Professors John Grundy and John Hosking, will never know how much I am
grateful for their encouragement and support. But I still want to say a big thank you to them loudly,
publicly. I have been distracted numerous times during my PhD research, and there was a time I almost
gave up. They paid the maximum patience to me, and still held confidence on me even when I myself
almost lost it. They generously shared ideas with me to help me to achieve results quickly; they went
through research details with me when I could not clarify my ideas; they gave me financial support when
I was broke; and they wrote me the best references when I was looking for a job. I owe my

achievements to them. I will do my best to make them proud.

My warm thanks go to the department staff Robyn Young, Anita Lai, Lei Zhang, and Keith Johnston.
Your great help saved me so many hassles during my working and studying in the department. I will not
forget my fellow PhD students Karen Li, Richard Li, Fuad Tabba, Norhayati Mohd Ali, and Christian
Hirsch. I want to thank you all for valuable discussions, productive collaborations, and memorable

laugher.

To my husband, Christopher Xu, I am sure he knows how much I appreciate his life-long trust and

support. This thesis is for you, Christopher!

il

Contents

AADSTIACE ...ttt ettt h e a e b a bt a bt a bbbt et h et h et et eh b e bt eat e bt eat bt eae e i
ACKNOWIEAZEMENESeeeiiiiiie ittt ettt et ettt e et e bt et e s et e eabe e bt e saeeenbe e st e snteenteenseesneeenne i
LISES OF FAGUIES ..euviiiiiiieciie ettt ettt et e e e et e e abeeessaeeesbeeessseessseeenssaeansseessaeenssaennseeensseennsses i1
|5 T B I o (<SSR X
Chapter 1 - INEroduUCtiONooooiiiiiiiiiii ettt e e tre e e et re e e s streeeesssraeesssssneesanssneessnsnses 1
1.1 The problem domain of the Arg0/MTE ProOjJect........ccceeciiirciiieiiieiiiieriee et 3
1.1.1 Using middleware in software architeCturec..cccverveeiieiiierienie e 3
1.1.2 Software architecture MOAEIINGcc.veriieiiiiieiie et 3
1.1.3 Software architecture performance evaluationccccceeeviiieiiieeiieeeiee e 4
1.1.4 ExXtending ATZOUMLcc.oooiiiiieie ettt ettt e et esaae e eseennaeenseenseenneas 4

1.2 The problem domain of the MaramaMTE+ Project..........cccecvvriierieiienieeieeseesee e 4
1.2.1 Marama meta-tool and MaramaMTEc..cccciiiiiiiini e 5
1.2.2 Web load testing and the Form Chart modelcocooiiniiiiiniininiieeeeeeeee e 5

1.2.3 Automatic Web reverse ENZINECETING......ccverveerreerreereeerieerteereeesseesseeseeesseesseesseesssessseesseesnsesnses 6

1.3 The problem domain of MaramaCRelationcccceeriiriiieiieniieeieeiiee e 6
1.3.1 Model Driven Engineering in Software Engineeringccccceevueevievieniieenienienieeeeeeseee 6
1.3.2 MOl INTEZTATIONeeutiiieniirtieie ettt ettt ettt ettt ettt st e e e st et e sat et e ebeenbesaeenteeaeenees 7

1.3.3 Model transformation.cc.eoieierieiiiriee ettt 7
1.3.4 Analyze and desi@n MIKTcc.oooiiiiiiiieiieeeeeee ettt et 8

1.4 OULHNE OF thESIS ..euiiiiiiiiiieice ettt ettt sb et st 8
Chapter 2 - Related WOorkK ..ottt et e et estee e eneee e 10
2.1 Software architecture MOdelliNgc.cooiiiiiiiiiiiie e 10
2.1.1 Architecture Description Lan@UaZEccceeecuiiiriieeiiieeieesieeeireeeieeesveeereeesereeeeaeesneeenens 10

il

2.1.2 Conceptual concepts of software architecture modelingcceeceeveerieevienieniieniieieneene 11

2.1.2.1 COMPONENLS ...vvvieeiriieeiieeeiieeeieeesteeetreeeeteeessteeasseeessseesseeessseesssseesseessssessssseessesesssesensses 11
2.1.2.2 CONNECLOTS ...cuteeuiieitieiieeieeett ettt et eet ettt sa e et e bt e ebt e s bt e bt esbeeeate e bt esbaesateebeenbeesaneens 12
2.1.2.3 CONTIGUIALION ...eentieiiiieiieciie ettt et et ettt stee st e enteeteeseeesnseenseesseeenseenseenseesnsesnseens 14
2.1.2.4 ATChiteCtural SEYIES ...ccveiiieiiieiiieciee ettt e e tre e st e e b e e esraeesnseeeeneas 15
2011205 VIBWS ittt ettt 16

2.2 Software architecture performance evaluationcccceevveriieerieerienieeie et see e 18
2.3 Web application reVerse eNGINEEIING........c.eerueerierrueeriiereeereerteeseeeeeesseeseeesseenseesseesseesseesseessens 19
2.4 Web Application Load TeStING......c..cccvuiiiiiiieiieeeieeeee ettt et eeaaeesereeeeseeesraeesnseeenens 22
2.5 Model Driven ENGINEETINGcocvevtiriiriiiiiitieiesieeierteeie sttt sttt sttt saeeste st entesteenaeseeeneenee 22
2.5.1 Domain-specific modelling languages............ccvverieeriierienieeie ettt saeens 23
2.5.2 Model transformation t€ChNOIOZIEScc.vervieiieriieeiieiieee sttt ens 24
2.5.3 Model integration teChNOlOIES.cccuviieiiieiieeie et 25
2.5.4 Semantics representation and CheCKINGcccueiuiriiiiiiiniiiieeeeeeee e 25
2.5.5 Multi-view Support Software Engineering Environmentsccoccveeeveereeniescieeneeneennens 27

B N 101141 0 1 oy A PSPPSR 28
Chapter 3 - Thesis MOtIVAtIONoocooiiiiiii et 30
3.1 SoftArch/MTE target dOmaincccueeueeriiirieiieeiierie ettt ettt st e esaeeeeee 30
3.2 SOftATCh/MTE OVEIVIEW ..ottt ettt sttt et s 32
3.3 SOftArch/MTE Meta-mMOdE]ccueeiiieiieiieeieeieecie ettt ettt e ebeeteesaeesnseensaens 33
3.4 SoftArch/MTE architecture modelc..oooueiiiiiiiiiiiiii e 35
3.5 SoftArch/MTE performance evaluationccocueerieeriiinierieeiiesiesieeeeeiee et 37
3.6 Problems with SOftATCh/MTEcc.coiiiiiiiiii e 38
TR AN 01411 0) oy SRR 40
Chapter 4 - Argo/MTE Performance Engineering Tool ..., 41
4.1 SoftArch/MTE motivating AT0/MTEoooiiiiiiiee et 41
4.1.1 Sample target project — NEtPaY.......ccocceeiiiiiieiiecie ettt saneen 41
4.1.2 SOftATCh/MTE defiCIENCIESoveeuiiiieiiiiieiieieeteeee et 42
4.2 An Overview Of ATZO/MTE USAZE......cocuiiiiiiieiieeieeeeee ettt st e e 43
4.3 Argo/MTE extending ATZOUMLccciiiiiiiiiiieeieeeiie ettt ee e e et e saeeensaeenes 45

v

4.3.1 Extending UML meta-model to support architecture-specific modelingcccceeeveennene 45

4.3.2 Adding a domain-specific meta-model specification toolccccueeveievierieniiiiiieiecie e 47
4.3.3 Adding an architecture desi@n t0O0]c.eoviiiiiriiiirieiieeieeee e 49
4.4 Data format of the Argo/MTE architecture modelcceevvieeiiieriiiieiieee e 52
4.5 Test bed generation and domain-specific meta-model evolvement...........c.ccceevvervenieenieenneenen. 54
4.6 Automating performance evaluation PrOCESS........ccvueerueereerieerieerieesieeieesteeseeeseeseeesneeeseenseennnes 56
4.6.1 Generating Ant build fles.......coviiiiiiiiiie e 56
4.6.2 Managing automated performance evaluation Process.......c...cocvevienieriieenieenienienieenieenees 58
4.7 Discussion and CONCIUSIONScc.eerueriiriiriieiieeieieeiteste ettt ettt ettt ettt et e s bt estesbeeaeesbeeneens 60
4.7.1 General Discussion 0f ATZO/MTEcoouiiiiiiiiiiieieeee et 60
N V1101 1 0 RSP 62
Chapter 5 - Using Argo/MTE - NetPay Case Study..........c.cccoooiieiiiiiiiieieeeeeeeeee e 63
ST INEEPAY TEVIEW ...ttt ettt ettt e et e st e st eeab e et e e eaeeenbeenseesseesnsesnseenseenneenane 63
5.2 Modelling NetPay system in ATE0/MTEcooviiiiiiiiiieeeee e 65
5.3 NEtPaY tESE DO ...cueiiieiieiieie ettt ettt ettt na e e 67
5.3.1 Test bed generation rules, scripts, and 1OZICcevveeriiiriiriiieiieeee e 67
5.3.2 Generated teSt DEA.........coueriiiiiiiiiiiieee e 70
5.4 Test bed compilation, deployment, execution, and result collecting..........cccccceeveereerieereennenne. 75
5.5 Sample Performance Evaluation ReSUItS...........cccveiiiiriiiiiiiiieiece e 79
I TN 10100 F:) o PSSP 82
Chapter 6 - Review of Marama Meta-Tool and MaramaMTEcccooiiiiiiiiinnine, 83
0.1 Marama META-0O0]......cccuiruiiiiiieieeit ettt et ettt ettt 83
6.2 MaramaMTE...........cooiiiiii ettt 84
6.3 MaramaMTE supporting Form Chart modeling............ccceevvieeiiieieiiieeiiieeieceiee e 87
0.4 SUIMIMIATY ..eeuviieiiieeiiee ettt e stee ettt e eteeestteeetteessteessseeeasseeassseeasseeasseesnseeessseesnseeeanseeanssessnsseesnseesnsses 90

Chapter 7 - MaramaMTE+, Synthesizing Client Load Models for Performance Engineering via

WED CrAWIINE........ooiiiiiiiee ettt e et e e et e et eessteeessbeesssaeessseeessseessseeensseesnsaeennseenns 91
7.1 Introduction of MaramaMTEFc.cccoiiiiiiiiiiiicieeceee ettt 91
7.2 Motivation and related WOTKcccoiiriiriiiiiiiiiieee e 91
7.3 MaramaMTE+ aPPrOaCh........cccviiiiiiiciiicie et et eetr e e sere e e sbeeenseeeenes 93
R I o & 1110 (S F TSRS 95

7.4.1 HTTP 1equest €XEIACTIONS ...ccuvieveeriieriieeieeitiestieseeeteesseessaeeseeaeesseessseesseeseesseeesseensaesseesssennns 95

7.4.2 FOrm CRart @XIIraCtiONco.eiiuiriiiiieiieieeit ettt ettt ettt et st sbe e 96
7.4.3 Form Chart auZmENtatiOnceeviriuieriieriieiieeiteseesee ettt e ste st esbeesitesbeebeesseesnseebeenaeeens 99
7.4.4 Form Chart History-Sensitive Supplementary Modelccccoveeviiieiiiiniiieeieecieeeieeas 100
7.4.5 Generating 10ad teStING PlANS.......cc.eeeuierieriieiiieieecie ettt ste et e e e seeeaeeseessaesaeeseens 101
7.4.6 Running generated 10ad tESTSecuieiieriierieeiieieeeeee e 104

7.5 MaramaMTE+ design and implementationccceveerierieeiienienie e 105
7.6 DISCUSSION ...ttt ettt ettt ettt ettt eae et e b e et b e et eae ettt e et e s bt et e bt et e sbeeabeeaeennesueennes 107

B A 1 1140100 o USSR 110
Chapter 8 - MaramaCRelation Introductionccooeviiiiiiiiiiiiniceec e 111
8.1 Problem StAtEMENL.cc.ueiuiriieiieiieieeitet ettt ettt ettt ettt et ettt ene et 111
8.2 IMIOTIVALION ...ttt b et b e ettt h et eh e et e st e bt e ab e bt eat e bt et e ebe et 112
8.3 Requirements for structured, high level support for MI&Tccccoevieviieiiiniieeeeeeeen 116
8.4 MaramaCRelation OVEIVIEWccceeiiiriieiiiiieiiniieienieeie sttt ettt ettt et ae st be bbb ene 119
8.5 Main features of the MaramaCRelation approachccecevirierenieniniienenesceeeeeieeene 121
LI RN 1 110100 oSSR 122
Chapter 9 - The CRelation Modeloocooiiiiiiiiiiieeeeee e e 123
0.1 TErmS ANd CONCEPLS. ..cuvrerureririeiietierieeteeiteesttesteeeteeteesseessteenseenseesseessseeseeseessseenseenseessseeseensens 123

9.2 Running Example: Interconnecting the Pet Store architecture model with the Pet Store design

TNOAEL .ttt ettt e b e st b e a e e 124
9.3 The CRElation MOAELcceiiuiiiiieiieiiecie ettt ettt s e e be e e seessaeesseeseenneas 126
9.4 The CRelation model abstract syntax and SEMANICS........cc.eereerirerieerierieeieeieeree e e 128
0.4.1 StruCtUTEIMAPPING ..eevveruieeiieiieeiie et ertee sttt et et e st e et e et esaeesateenbe e seesaeesnteeseesneesnsesnseenneas 128
9.4.2 SelectioNREfINEMENLcocoiiiiiiiiiiiiiiiiici e 136
0.4.3 StructureREfINEMENTcccviiiiiiiiieiieie e et e et ssae e esseessaenneas 139
9.4.4 Brief summary of StructureMapping, SelectionRefinement, and StructureRefinement 141
9.4.5 SemaNtiCASSOCIAIONcuuiruiiiiriiiiiniteteet ettt ettt ettt sttt et et et sae et sbeeaesaeenees 141
9.5 The process to construct a MaramaCRelation modelcccooovvieeiiiinciiieiiieieeeeeee e, 148
9.0 SUIMIMATY ...eiiiiieeiiee ettt ettt e et e et e e et eeesaeesaseeesseeensaeeasseessseesnseeeanseesnseeesnseeennseenns 149
Chapter 10 - The MaramaCRelation Tool..................coooiiiiiiiiiiii e 150
10.1 Overview of the MaramaCRelation tool............cccoeciiiiiiiiiiiniiiiicccceeeeee, 150

Vi

10.2 The MaramaCRelation tool supporting constructing a StructureMapping............cccecveerveernnenne. 151

10.2.1 Setting up the value for the entityMapping Propertycceeevverveerueerieeseeereeeseerveennens 152
10.2.2 Setting up the value for the selectionConstraints............ccceeeevierieeneenieenieenieneeeeeenes 156
10.2.3 Setting up value for the behaviourDescription of a StructureMapping.........cccccceveueee. 160
10.2.4 BT SUMIMATY ..ccueiiiieiieeiieeieeieertee ettt et este e st e e b e ebeessaessaessseeseessaesnseenseenneas 171
10.3 The MaramaCRelation tool supporting constructing a SemanticAssociationccecuee.... 171
10.3.1 Setting up the value for the associationMapping propertycccecereeereenverieerneeennnn 172
10.3.2 Setting up the value for the semantic Translation Property..........cccceeveereeseesvveesveennn 174
10.3.3 BIIef SUMMATYoooiiiiiiiciieiieceee ettt et eaeeteesseesnaeenseenneas 179
10.4 Supporting analysis and design of model transformation............ccccceeveevieniiienienienieeeeeeee, 179
10.5 The MaramaCRelation tool supporting traceabilityccccceeeciiieiiiiieiiiecieece e 182
10.5.1 Search conditions and search interfacesc.ceceveerieriiiinienenieeeeeee e 183
10.5.2 Sample MaramaCRelation search CONditionscceeeeerveevieeriienieeieeiiesee e 186
10.5.3 The algorithm of the intercoNNECting PrOCESS.ccvvervrerreeiierieeriieeieeieerieeeeeeeeeneeeneees 188
10.5.4 Interconnecting source and target MOdelS.........cccveerviieriieciiieeriee e 189
10.6 Design and IMplementationeecuerieiererienieeese ettt sb e sbeeee b 191
10.6.1 Building the MaramaCRelation tool from the Marama meta-tool..............cccccevererenneen. 191
10.6.2 Generating Search CONAItIONSevvueeriierierieeieeiierte ettt ee e 192
TO.7 SUIIMATY .ottt ettt ettt sb e st e e et e e sht e e st e et e e sabesab e e bt enbtesabeeabeenbeeeaneenbeenseenane 192
Chapter 11 - Case Study - Using the CRelation Modelccooocoiiiiiiii e, 194
11.1 Case study 1: Interconnecting the Pet Store MaramaMTE model with the Pet Store EJBUML
1007016) PRSPPI 194
11.1.1 The MaramaMTE-EJBUML CRelation model and its entitiesc.cccecerveereruennenee. 194
11.1.2 Generating search conditions and behavior synchronization coordinator 200
11.1.3 INtETCONMNECTING PTOCESS .oevvvrerereerrreerieeerereeeteeesseesssreesseeassseeasseeessseesssssessseesssssessseesnnes 202
T1.1.4 Brief SUMMATYc.coiiiiiieiieiecie ettt ettt st e e e e seesaaeesaeenseessaessseenseenseas 205

11.2 Case study 2: Interconnecting the Travel Planner EML model, the Travel Planner BPMN
model, the Travel MaramaMTE model, and the Travel Planner Form Chart model......................... 205

11.2.1 Interconnecting the Travel Planner EML model with the Travel Planner

BPMN MO ...ttt sttt ettt ettt et nb e nne e 205
11.2.2 Interconnecting the Travel Planner BPMN model with the Travel Planner MaramaMTE
TNOAEL ... et b ettt ettt ettt ettt 216

vil

11.2.3 Interconnecting the Travel Planner MaramaMTE model with the Travel Planner Form

Chart MOAEL.......eeueiiieieie ettt ettt ettt b et b e et s bt et sae et i et 224
11.2.4 The interconnected Travel Planner models...........cccoceriiiiiniiniiniininiiniiccecceee, 231

11.3 DISCUSSION ..cutiieniieiieteeit ettt ettt ettt ettt ettt ettt ettt e e eb e et e bt eat e bt et e bt esbesbeesnesueennens 232
L 10102 oS 233
Chapter 12 - The Evaluation of the MaramaCRelation Approach...............c.cccooviviniiininniinnenn. 234
12.1 CoZNItIVE DIMENSIONSviieeiieeieiieeiieeiieeeiteesieeetteesreeasseeesseeessseesseeessseesseeessseessssessseesssseesnnns 234
12.2 Evaluation against the TeqUITCMENTSc.cccueerieriieeriierieeieeieesteeseeeaeesaeeseeesaeeseessaesnaeeseenseens 238
12.3 SUMIMIATY - ceenetie ettt ettt ettt e ettt e e at e e ettt e e e teeeaeee e steeeasee e aeeesaseeaanseeenneeeenseeeenseeennes 248
Chapter 13 - The Future Work of the MaramaCRelation Researchcccocoeriinnnnnn. 250
13.1 Using the CRelation model to generate model transformation SCriptscccceeeveerveervenveennnns 250
13.2 Formalizing the used algorithms and definitions...........cceevveriiriieenienieeieeeee e 250
13.3 Providing visual context within the CRelation modelccocveriiiiiiiiiniiiiiieicceee, 251
13.4 Developing comprehensive running case StUAIEScccueveerierieriieniriieneeieseeie et 251
13.5 Extending the CRelation model to support functional integrationcceecveeviervenveesieennnnns 252
13.6 Using the third party environments to construct behaviour synchronization mechanisms 252
13.7 Layered software architecture for multi-view environments..............ccceeveereeeveerieeneeneesveenens 253
13.8 Supporting model refinement using the MaramaCRelation approach............cccccceeveveeiveniennnne 253
1319 SUMMATY ...ciiiiie ettt ettt e ettt e eat e e et e e aee e e beeeeateeebeeesabeeeneeeebeeeenseeennes 254
Chapter 14 - CONCIUSIONS.............occuiiiiiieiii et e e e et eesteeetteessseeessseessseeensseesseeesnseeans 255
14.1 The ATZOMTE PIrOJECT......iiiuieeieeieeiieete ettt ettt ettt e et e et esseessaeesseesseesnsesnseeseennseenseens 255
14.2 The MaramaMTE+ PIOJECLcc.uiiiiieiiiriieeieeitesteee ettt ettt st ettt st ebeesaeesaseenneas 257
14.3 The MaramaCReEIation PIOJECT.......c.uieriieeiiieeiieeieeeiee ettt e eieeesreeesereesseeeseseeesaeessseeessneessseeenens 258
14.4 THE SUIMIMATY ...eeviiiiiiiieeitieeie et esteestesteeteesteessseesseeseesseeesseessaesseeasseasseessaessseenseeseesssesssennseesses 261
REFEINCES ..ottt ettt 262
Appendix- QUEeSIONNAIIEcccccoiiiiiiiiii ettt et e et e et eetee et e eneeeeseeenreas 282

viii

Lists of

Figure 1.1.
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 3.1.
Figure 3.2.

et al, 2001)

Figure 3.3.

Figure 3.6.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.
Figure 4.8.
Figure 4.9.

Figures

The three individual yet closely related research projects.........cceeceeveeeveercieesiienienieeieeeeeen. 2
A refinement mapping declared in SADL (Medvidovic et al, 2000)ccccoceeverienrinienncnn. 14
A sample SoftArch/MTE architecture design (Grundy and Cai et al, 2005).cceennee.. 16
“4+1” views of software architecture (Kruchten, 1995)c.ccovvvieiiieiiinieceeeeeece s 17
Web Application Reverse Engineering process (Tramontana et al, 2002)cccveeueenneen. 20
Form Chart model example (Draheim et al, 2005).........ccccviiieiiiiiiiiniieeeeeee e 21
Relationships between syntax and semantics (Chen et al, 2004)cccceeveevienienneennennnen. 26
Parts of a simple on-line video system (Grundy and Hosking, 2000).............cccecvververrennnnns 31
Outline of the SoftArch/MTE architecture performance analysis process (Grundy and Cai
.. 32
A sample SoftArch/MTE meta-model for e-commerce applications (Grundy and Cai et al,
... 34
Sample SoftArch/MTE meta-model abstractions and properties (Grundy and Cai et al,
... 35
Sample high-level distributed on-line video software architecture (Grundy and Cai et al,
... 36
System deployment and test run process (Grundy and Cai et al, 2001)..........ccceeeevvrerveennenn. 37
NetPay micro-payment system architecture (Cai et al, 2004)ccceveevienenienieienieenens 42
Overview of Argo/MTE architecture (Cai et al, 2004)cccveeeiierieiieeie e 44
Extending ATZOUML.......ccuiiiiiieieeeee ettt ettt et eenaesnneeneeen 45
Extending UML meta-model with Argo/MTE architecture modelling abstractions.............. 46
An Argo/MTE e-commerce-specific meta-model...........occveeierieeiieiieniesieeeeeeeee e 48
Part of the Argo/MTE architecture model for the complex micro-payment system.............. 50
Sample collaboration views of an Argo/MTE architecture designccccoeevevvevevvenieninnne 51
Sample SoftArch/MTE architecture design XML filecccooviiviiniiiiinniiiencceee 52
A sample Argo/MTE architecture design XML file.........ccceoiieiiiiiiiiienienieceeieeeeseeeee 53

il

Figure 4.10. Framework for Argo/MTE code Zeneration............c.ccueecueerieeriesieeieenieesieeeeesieesseesaeeneens 54
Figure 4.11. (a): a sample Argo/MTE meta-model for tiered web systems; (b) a conceptual
framework to evolve Argo/MTE domain-specific meta-models..........coceeueevieniiniiiinienienieeieeeenee 55

Figure 4.12. (1) sample Ant build file snippet; (2) a conceptual framework to manage the evolvement

OF ANE SCTIPE ZENETALIONevvieeieieieeeiieiteeette et et esteeeteeteesteessaeaseesseessseesseesseessseanseesseesseeasseesseenseesssenseens 58
Figure 4.13. Argo/MTE test execution & results CaptUuIe.coerueruirieriirieniinieieetese et 59
Figure 4.14. Example of result viSualiZzation.cocceciiiiiiiiniiiiiniiiinicecececece e 59
Figure 5.1. Basic NeyPay software architecture (Cai et al, 2004)ccocervieririienieienieieseeie e 64
Figure 5.2. Partial architecture of NetPay in Argo/MTEccoooiiiiiiiieieee e 66
Figure 5.3. Argo/MTE meta-model supporting test bed generation............ccceeveeveereerieniiieneeneesieeeeens 68
Figure 5.4. Argo/MTE meta-model and code generation SCIIPLS.........cueevveerueerierierrieenienieeieesieesieseens 69
Figure 5.5. Structure of the generated NetPay test bed..........cccovieieriiieninieieeeee e 71
Figure 5.6. CustomerRegiStrationPage.jSP....c.cecuveriiiiiieiieeie ettt ssae e enseens 72
Figure 5.7. RemoteCustomMerManager.JAVAcccueerveriuieriierieeieesieesiteeteesieesieeeseesseesseesnseesseesseesnseeseens 73
Figure 5.8. MYSQLCONM.JAVA.....ccuuiiiiiieiiiieiteeeieeeeteeeiteeeteeesteeeereeetaeessseeessseesssasesssesesssessssssesssesessseeans 74
Figure 5.9. Argo/MTE meta-model supports build file generation scripts and logic........cccceeceerueeeennenne. 75
Figure 5.10. Sample meta-type and the middleware technologiesccceeviieriiiciieiienieeeceese e 76
Figure 5.11. Sample NetPay Ant build file compile.Xml.........cccoooiniiiiiniiiiniiieccee 77
Figure 5.12. Argo/MTE deploys and runs a test bed, and collects testing results...........ccoceevverierneennen. 78
Figure 5.13. Evaluation results of remote service “doORE@ISter”..........ceeviierieriieiierieeieeceeesee e 80
Figure 5.14. Evaluation results of “dODiISPlay”........cccoociiriiiiiienierieeeee et 81
Figure 6.1. The Marama approach to realizing Eclipse-based visual language tools (Grundy and

HOSKING € A1, 20000)ieiieiiieeiieeiieciieete ettt te ettt e s e et e ebeestaessaeesseesaessseenseesseesssesnseenseensseesseenseens 84
Figure 6.2. MaramaMTE meta-modelcoooiiiiiiiiiiiieiieiiesee ettt 85
Figure 6.3. visual notations for the MaramaMTE meta-modelcccccooeiiiniiiiniiiniiiicee 86
Figure 6.4. MaramaMTE VIEW LYPEC.....cccciiiiiiiiciiieiiie et cieeerieeeeeeeteeeseteesaeeesebeeesnseesssaesssseeesssesensseenns 86
Figure 6.5. The simplified FormChart meta-modelcoocuieiiiiiieiiieiiecieceeeeee e 88
Figure 6.6. (a) High-level view of Pet Store software architecture; (b) sample Stochastic Form Chart
LOAAINEG ...ttt ettt et e et e bt e bt e s a e et e et e et teenb e et e e bt e enteenbe e bt e snteenbeeteenns 89
Figure 7.1. Crawling websites to extract Form Charts and generating stress-tests with MaramaMTE+
(€A1 €L @l 2007ttt ettt h et b et b et bt et bt et e h e et e eh e e bt e at e beeaeetes 94
Figure 7.2. MaramaMTE+ using WebSphinx to extract structural information from the Pet Store web

210 0] F U221 o) | BUN U USSP 96
Figure 7.3. Generating Form Chart pages by importing Website Pages........ccccvveeveeriiieniiieeriieeiieeeieenns 97

v

Figure 7.4. Generating Form Chart actions by importing http requestscccvevveriieeiieerieneenieeieeeeens 97

Figure 7.5. Generating Form Chart transitions by importing http requestscccevveereveeiiereeniieeieeeenns 98
Figure 7.6. Manually adjusted generated Form Chart modelcccooiiiiiiniiiiiiniieeeeeee 98
Figure 7.7. A synthesized Pet Store Form Chart modelcccoooiireiiiiniiiiiecs e, 100
Figure 7.8. A supplementary decision MOdelcccueeiieiiiinieiiiieiieiece e 101
Figure 7.9. JMeter test plan, JMeter, and test bed client application...........ccceceevverieenienieniieeeeeeee. 102
Figure 7.10. Generated load testing java PrOZIaml........c.cueeveeriierieeieeiieniieseeeieesieesee e et eseeesseenaee e 103
Figure 7.11. Sample load testing raw result data of java Pet Storecccccvvevviievienieiiiceceeceee, 104
Figure 7.12. Request Response Time changes with Request Launch Frequency...........ccoeevveevvenivennnne. 105
Figure 7.13. Distribution of average Request Response Time for Web Pages.........c.ccocveviveiienieennnnne. 105
Figure 7.14. High-level architecture of MaramaMTE+.............c.ccooiiiiiiiiiiiiieeceeee e 106
Figure 7.15. JMeter test plan generation from MaramaMTE+ Form Chart model.cccccocenene. 107
Figure 8.1. Consistency during MIKTcccveeiieiieiieeieeeesee ettt ae e nneas 117
Figure 8.2. CRelation model lIfECYCIEooiiiiiiiieieeeeee e 119
Figure 8.3. (a) MaramaMTE meta-model; (b) EJBUML meta-model; (c) MaramaMTE-EJBUML
MaramaCRelation MOAEL...........ccuiiiiiiiieeiieiiece ettt e eeaeesbeesaaeeseebeesaeeenseenseenees 120
Figure 9.1. (a) MaramaMTE architecture meta-model; (b) EJBUML meta-model; (c) Pet Store MTE-
architecture model; (d) Pet Store EJBUML mMoOdel..........ccouviiiiiiiiiiiiiecee et 125
Figure 9.2. (a) CRelation meta-model; (b) a sample CRelation modelccccooeeiiniineniininienen. 127
Figure 9.3. (a) sample property sheet of a “StructureMapping”; (b) sample “selectionConstraints”
property sheet; (c) sample “behaviourDescription” property Sheet..........ccoevvevieviiiiiinienicieeeee 129
Figure 9.4. The schema of the behavior synchronization descriptioncccceevveeecieercieeerveeeieeeene, 131
Figure 9.5. “SourceModelEvent” part of the “behaviourDescription”...........ccceevverieevieenieneeeieeneenne 133
Figure 9.6. “TargetModelEvent” part of the “behaviourDescription”...........ccccveevieerierieeieenieeieeeene 134
Figure 9.7. Example usage of StructureMappingcccueeeueerueerienieeiieeniesieeieesite e sre e seeseeeseeesaees 135
Figure 9.8. (a) a sample Pet Store MaramaMTE model; (b) a sample Pet Store EIBUML model........ 136
Figure 9.9. Property sheet and sample property value of a SelectionRefinementc.cccvvevuvennenne. 137
Figure 9.10. Example usage of SelectionRefinement...........ccceveueerieniiiiienieniesieeeeeece e 138
Figure 9.11. Properties and values of an example StructureRefinement............ccccoeveevieniiinieniennennne. 139
Figure 9.12. Sample value of selectionConstraints of a StructureRefinement............c.ccccoveveivenennennnnn. 140
Figure 9.13. Example usage of StructureRefinementcccoeeveriiiiieiiienienie e 141

Figure 9.14. (a) a SemanticAssociation associates two StructureMappings ; (b) property sheet of a
sample SemMAaNtiCASSOCIATIONecicuiiiiiieiiieecteeeteeeieeeete e et e e eereeetaeessee e aseessseeesseesssaeessseesssaeasssesennns 142

Figure 9.15. Directed paths between source (target) parts of the associated StructureMappings 144

A\

Figure 9.16. Using SemanticAssociation to detect semantic inconsistency during MI&T 145

Figure 9.17. Sample semantic constraints and translated semantic constraints..........c..cceceeceeverienennnene 147
Figure 9.18. Example of using SemantiCASSOCIAtIONcccuiiruierierieriieriie ettt 148
Figure 10.1. The main interface of the MaramaCRelation tool.............cocueriiiniiniiniiiniiiceeeee 151
Figure 10.2. Loading the source meta-modelccoooieriiiiieiieiie e 153
Figure 10.3. Loading the target meta-model...........cccoeviiiiiiiiiiiiieeeeee e 154
Figure 10.4. Calculating and listing available meta-model elements and constructs of the source and

L2 gl v 151 2 B 0 o T [T USRS 155
Figure 10.5. Using OCL + java to define StructureMapping selectionConstraints..............cccceervveennenne. 156
Figure 10.6. Using OCL + java to define selection constraints of a SelectionRefinement 157
Figure 10.7. Using OCL + java to define selection constraints of StructureRefinement 158
Figure 10.8. Using ATL to define selection CONSIIAINESccuerveerieriierienieiesieeee et 159
Figure 10.9. More samples of using ATL to define selection cONStraintsccceeveerveevreereesveeneenne. 160
Figure 10.10. An empirical algorithm to rewrite an existing selection constraint..........c..ceceeeeevereennee 161
Figure 10.11. A valid Selection CONSIIAINTc.eeriirieiiiieniienie ettt 162
Figure 10.12. The rewritten selection CONSLIAINTcc.evieruirieriieierieeieri ettt 164
Figure 10.13. A valid Selection CONSLIAINTc.eeruierieeiieriiesieeieeieeseeete et e e e eae e e saeeseaeenseesaeseennnas 165
Figure 10.14. The rewritten selection CONSIIAINTcoeriiriiriiniinieniee ettt 165
Figure 10.15. The algorithm of generating behaviourDescription for a StructureMapping 166
Figure 10.16. The algorithm of generating “changed” events for the behaviourDescription 167
Figure 10.17. The algorithm of generating “removed” events for the behaviourDescription 168
Figure 10.18. A sample StructureMapping and its selection cONStraintcceecveeveeereenierieeeneeneennn 169
Figure 10.19. A rewritten SeleCtion CONSIIAINT..........cccverrueerieerieeieeieeseeseeereesteeseeeaeesteesseeesseeseesseeenns 169
Figure 10.20. Generating source model events for the behaviourDescriptioncccceeceeevenenenen. 170
Figure 10.21. Generating target model events of the behaviourDescriptionc.cceceeveeveeienienicnenne 171
Figure 10.22. How to set up the associationMapping value of a SemanticAssociation......................... 172
Figure 10.23. An associationMapping With INCONSISTENCYcecveerurerreeriiereeseeeieesieeseeeaeeseesseesseenns 173
Figure 10.24. An associationMapping Without INCONSISTENCYcccveerueerieriieriierieeieeeerieesee e eeeeneees 174
Figure 10.25. Setting up value for the semanticTranslation property of a SemanticAssociation 175
Figure 10.26. The empirical algorithm to translate translatable semantic constraints.............cc.cceuenee. 177
Figure 10.27. Translating S€mMantic CONSLIAINEScueereerieeireerienieeteereeseeeseesseeseesneeseesseessseeseesnns 178
Figure 10.28. Using the Crelation model to analyze and design ATL SCIIPtS.....cccccvveveverveeerienieeieennen. 181
Figure 10.29. Setting up traceability between two models using the MaramaCrelation tool................. 183
Figure 10.30. Methods of the StructureMapping search interface...........ccoceeevveeecieeencieeecie e, 184

vi

Figure 10.31. Methods of the SemanticAssociation Interface............cccveveveeviienieniiecciesiece e 185

Figure 10.32. Methods of the StructureRefinement Interfaceccccooeeveiiiiiniininiiniicee 185
Figure 10.33. Sample search CONAItIONScoceeouirieiiiiiiiiiiiinteeeee ettt 187
Figure 10.34. The algorithm of the interconNecting ProCesscocververrieerieriieeieenienieeiee e ereeieeees 188

Figure 10.35. Selecting a CRelation model to interconnect Pet Store MaramaMTE model and Pet

Store EJBUML MOMEL.......coouiiiiiiiiiiiiieee ettt st ettt st 189
Figure 10.36. Assigning target model element or construct to the source model element..................... 190
Figure 10.37. Building the MaramaCRelation tool by using the Marama meta-toolccceueee. 191
Figure 10.38. The process of generating search CONditions.........c.cccuververieeriienieiieeeesee e 192

Figure 11.1. (a) the MaramaMTE-EJBUML CRelation model; (b) the sample entityMapping property
sheet of StructureMapping DBandTable2Database APccccvieriieeiiieiiieerreeeiee e eree e evee e 195
Figure 11.2. The selectionConstraints property sheet of SelectionRefinement
refineTargetPartConstruCtAPPHOMEcc.veviiiiieiie et s enae e 196
Figure 11.3. The selectionConstraints property sheet of StructureRefinement
refineAppServer2EJBBeanInterfaceHOMEcoooviieiiiiiiiieecce e 197
Figure 11.4. The behaviourDescription property sheet of StructureMapping

D) TN el I:1o) (S0 B 1 1 B T AN o o TSRS 198
Figure 11.5. The associationMapping and semantic Transformation property sheets of
SemanticAssociation assocServerObj2assocBeanAssocHomeAssocInterface Assoccccevveeeeennenee. 199
Figure 11.6. Java search conditions generated from the MaramaMTE-EJBUML CRelation model...... 201
Figure 11.7. The synchronizer generated from the MaramaMTE-EJBUML CRelation model 202
Figure 11.8. Interconnecting the Pet Store MaramaMTE model with the Pet Store EJBUML model... 203

Figure 11.9. Using java synchronizer to synchronize model behavioursccccoeceverieniinieneenenen. 204
Figure 11.10. (a): the MOF-based EML meta-model (b): the EML Travel Planner model 206
Figure 11.11. (a): the MOF-based BPMN meta-model; (b): the BPMN Travel Planner model 208
Figure 11.12. The EML-BPMN CRelation model............ccccoiiriiiiiiiiiiiieieeeieeeeee et 209

Figure 11.13. The selectionConstraints and the partially generated behaviorDescription property
sheets of StructureMapping “processEnd2eventEnd"coovieviieiieiieiiieeeee e 210

Figure 11.14. The semanticTranslation property sheet of SemanticAssociation

“assocOperProEnd2assoCEVENtENAACEcciiiiiiieieeeeeeee ettt re e e saeeesee e 211
Figure 11.15. Java search conditions generated from the EML-BPMN CRelation model..................... 212
Figure 11.16. The synchronizer generated from the EML-BPMN CRelation model...............cccccceueee. 213

Figure 11.17. Interconnecting the EML Travel Planner model with the BPMN Travel Planner model 214

Figure 11.18. Behaviour synchronization between the interconnected models..........c.cccccvvereverenveennnenn. 215

vil

Figure 11.19. (a): the BPMN-MaramaMTE CRelation model; (b) the selectionConstraints of
StructureMapping “eventStart2appClientRequest”; (c) the selectionConstraints of

SelectionRefinement “refine Appclient&REqUESE”cccviiiiciiiiiiie e e 217
Figure 11.20. The behaviorDescription of StructureMapping “eventStart2appClientRequest” 218
Figure 11.21. The semanticTranslation property sheet of SemanticAssociation
“assOCEVentStart2assoCCHENESEIVET™.......cc.oiiiriiiiiieeieee ettt 219
Figure 11.22. Java search conditions generated from the BPMN-MaramaMTE CRelation model 220
Figure 11.23. The synchronizer generated from the BPMN-MaramaMTE CRelation model 221
Figure 11.24. Interconnecting the Travel Planner BPMN model with the Travel Planner

MaramaMTE MOGEL.....c...oouiiiiiiiiie ettt sttt st sa e sttt eae 222
Figure 11.25. Synchronization between the Travel Planner BPMN and the Travel Planner

MaramaMTE MOAEISc..oouiiiiiiie ettt ettt 223
Figure 11.26. (a) the MaramaMTE-FormChart CRelation model; (b) the selectionConstraints

property sheet of StructureMapping “appClientRequest2page”..........ccceevueeveenieriieenienieeieeeesee e 224
Figure 11.27. The behaviorDescription of StructureMapping “appClientRequest2page™..................... 225
Figure 11.28. The semanticConstraints property sheet of SemanticAssociation
“asSOCCHENtSEIVET2IANSTHIONitieiiiitieieeet ettt ettt ettt ettt et sb e et e sttt esae et 226
Figure 11.29. Java search conditions generated from the MaramaMTE-FormChart CRelation model . 227
Figure 11.30. The synchronizer generated from the MaramaMTE-FormChart CRelation model........ 228

Figure 11.31. Interconnecting the Travel Planner MaramaMTE model with the Travel Planner Form

Chart MOGCL....c..eouiiiieie ettt ettt b et s b et sh et sb e sttt e bt et eae et 229
Figure 11.32. Interconnecting the Travel Planner MaramaMTE model and the Travel Planner Form
CRAIT MOAECL.... ettt ettt e et e st e e b e e beesaeessseesse e saessaeenseenseensseesaessseenseenseenneas 230
Figure 11.33. Interconnecting the Travel Planner’s EML model, BPMN model, MaramaMTE model,
and Form Chart MOlo.oouiiiiiiiii ettt sttt 231
Figure 12.1. The abstraction gradient of the MaramaCRelation approach..........cccccecceevveniiiienneennenne 235

viii

List of Tables

Table 2.1. Some of the ADLs reviewed by Nenad Medvidovic and Richard N. Taylor (Medvidovic et

AL, 2000) 1.ttt bttt ettt b ettt et ea e a ettt et et e eaeas 11
Table 2.2. Sample architectural SEYIESccuiiiiiiiiiieiii et eeee e ee e 15
Table 2.3. Views and their interested Stakeholders...........ccveviieiiieiiiiieeiecieceee e 17
Table 4.1. A sample Argo/MTE meta-model abstractions and their propertiesccceeceeveveevveereenennne 49
Table 5.1. Evaluation results of remote service “dOREZISTEr”ccovuiriiiiriieriiiiieierieeteeeee e 80
Table 5.2. Evaluation results of process “doDiSplay™cccceciierieieiiieeiie et 81
Table 7.1. Load teStiNg PATAIMETIETSeecveerieiieeieeteesteesteeieesteessaeeseesseessaeeseesseesssessseesseessseenseenseesses 104
Table 7.2. Empirical cOMPAriSON TESUILS.........cvuiieiieiieriieeieeie ettt ettt et siee e eseesneas 108

Table 10.1. Interconnected elements between the Pet Store MaramaMTE model and the Pet Store

BEIBUML IMOAEL ..o 190

iX

Chapter 1 - Introduction

“Software Performance Engineering (SPE) is a systematic, quantitative approach to construct cost-
effective software systems to meet their performance requirements” (Feldman et al, 2007). SPE aims for
helping people to make decisions on architecture, design, and implementation; and it involves activities

of analysis, modeling, estimation, evaluation, and comparison.

Performance engineering in software architecture design has become crucial in the development of large
scale software systems. People want to evaluate, improve the performance of software architecture at the
early stage of Software Development Life Cycle. SoftArch/MTE (Grundy and Cai, 2004; Grundy and
Cai et al, 2001), the research in the master thesis of the author, provides an effective, efficient approach
to evaluate the performance of software architecture. SoftArch/MTE allows architects to use a visual
Architecture Description Language to sketch high-level system descriptions, including: client, server,
database and host elements, and expected client requests and server and database services. From these
descriptions, SoftArch/MTE automatically generates a reusable, deployable performance test-bed. The
test bed is a fully functional distributed java application containing performance evaluation information.
It can be deployed and run as a real distributed software system. The performance evaluation results can

then be collected, stored, analyzed, and visualized (Grundy and Cai, 2004; Grundy and Cai et al, 2001).

The initial success of SoftArch/MTE prompts many problems for further research. Among them, the
most interesting ones are:
1. The proprietary SoftArch/MTE tool can not deal with large industrial cases of architecture
modeling and performance evaluation.
2. The performance evaluation technology of SoftArch/MTE does not support the process of model

refinement and transformation, but generates test bed directly.

3. The performance evaluation technology needs to extend its applicable scope by integrating with
other software modeling technologies.
4. In Model Driven Engineering, when transforming and integrating models, there is no structured

high-level support.

The four problems motivated three individual yet intrinsically related research projects in this thesis, and
they are: Argo/MTE, MaramaMTE+, and MaramaCRelation. Argo/MTE, a continuation of the
SoftArch/MTE project, is aimed for industrial usage by extending an open-source UML CASE tool to
provide high level support for software architecture analysis, design, and performance evaluation. The
MaramaMTE+ project ports many of the Argo/MTE features to using the Marama meta-tool (Marama
meta-tool, 2007). The MaramaMTE+ project also leverages the strength of the Stochastic Form Chart
model for realistic client behavior modeling; and it uses a web crawler to synthesize Form Chart models.
The challenges of complex model and tool integration involved in both Argo/MTE and MaramaMTE+
motivated the development of the MaramaCRelation project — a high-level support for Model Integration
and Transformation (MI&T). The MaramaCRelation project also offers a central place to review,
organize the main research issues involved in MI&T. Figure 1.1 briefly summarizes the problem domain

of each project, and a detailed explanation of this figure is given in the following sections of this chapter.

Project 1 ™
ArgoMTE

Project 3
MaramaZFEelation

Project 2
MaramahfTE+

o Software architecture

o MNiddlewatre technology

® Software architecture
performance evaluation

® Extending open source
ArgoTTML to support
software architecture
and performance
evaluation

® Web load testing

® Form Chart medel

& Tntegrate form chart
modeling with software
architecture modeling

* Synthesize a form chart
model wa web crawling

* Tlodel Integration
and Transformation

o Analyze and design
Mo del Integration
and Transformation

y

4

Figure 1.1. The three individual yet closely related research projects

1.1 The problem domain of the Argo/MTE project
The problem domain of Argo/MTE covers: middleware technologies, software architecture modeling,

software architecture performance evaluation, and tool integration.

1.1.1 Using middleware in software architecture

Middleware, a structured software component, becomes an important part of web application software
architecture (Oracle, 2006). Middleware technologies mask some kinds of heterogeneity of large
distributed systems, including: heterogeneity of networks and hardware; heterogeneity of operating
systems or programming languages, or both; and even heterogeneity among vendor implementations of
the same middleware standard (Bakken, 2003). The popular middleware technologies include CORBA
(OMG, 1995), RMI (Java RMI, 1999), J2EE (Java EE, 2007), NET (MS .NET, 2007), and
COM/DCOM (MS COM/DCOM, 2007).

With their increasing popularity and functionality, middleware technologies become more and more
important in software architecture design (Oracle, 2006; Jackson et al, 2005; Feast, 2002). Today,
software architects would always select one or more middleware products to develop large distributed
computing systems rather than start from scratch. Faced with a number of middleware products, it is
always hard for end-users to select the right one for the project being constructed (CSIRO, 2000). The
Argo/MTE project supports software architects in their modeling of complex, middleware-based
software architectures. Argo/MTE embodies the main components of a middleware technology in
software architecture models, and supports the software architect in quickly evaluating and comparing
the performance of various middleware technologies through comparing the performance of these

software architecture models.

1.1.2 Software architecture modeling

The Argo/MTE tool models software architecture of middleware-based web applications. An
Argo/MTE-styled software architecture model is designed to: 1) abstract away middleware-level
component information from web applications and yet provide enough information for test bed
generation, and hence decision making; 2) define the behavior of each component and allows

components to interact with each other; 3) specify how the components interact with each other, and

omit the information that does not pertain to component interaction; and 4) comprise multiple views to

analyze the possibly very complex software architecture design.

1.1.3 Software architecture performance evaluation

Decisions of software architecture design need to be made at the early stage of Software Development
Life Cycle (SDLC) (White et al, 1997; MacKenzie, 2002). Performance is one of the main non-
functional requirements to compare candidate architecture designs (Grundy et al, 2001; Liu et al, 2005).
It is important to evaluate an intended software architecture design realistically, accurately, and
efficiently. Argo/MTE was intended to provide tool support for evaluating the performance of
middleware-based software architecture of web applications in particular. An Argo/MTE-styled software
architecture model generates a fully functional test bed (consisting of java program, web pages, and
database files) that contains performance evaluation information. The generated test bed can be executed
to produce accurate evaluation results. The performance evaluation process is highly automated, and is

seamlessly integrated with that of software architecture modeling (Cai et al, 2004).

1.1.4 Extending ArgoUML

Argo/MTE extended an open source UML CASE tool — ArgoUML (ArgoUML, 2003), to support
software architecture modeling and performance evaluation. Argo/MTE leverages the strength of
ArgoUML as it is a well-accepted, open source modeling environment. Argo/MTE added architecture-
specific data to the existing UML meta-model, which allows software architecture modeling and
performance evaluation to follow the same style as that of the existing UML modeling (e.g. UML class
diagram modeling). Compared with SoftArch/MTE (Grundy and Cai et al, 2005) - the predecessor of
Argo/MTE, Argo/MTE provides a much better modeling environment, and has greatly improved the
flexibility, maintainability, and usability of the technology of test bed generation and performance

evaluation.

1.2 The problem domain of the MaramaMTE+ project
The problem domain of MaramaMTE+ covers: the Marama meta-tool, web load testing and Form Chart

modeling, and automatic web reverse engineering.

1.2.1 Marama meta-tool and MaramaMTE

The Marama meta-tool developed by Grundy et al (Marama meta-tool, 2007) is a set of tools for
building diagramming applications in Eclipse. It provides facilities to specify complex diagram-based
meta-models, shapes and connectors, and views. It also supports: complex behavior specification via
OCL constraints, visual event handlers, and a comprehensive APl (Marama meta-tool, 2007). The
Marama meta-tool allows software development organizations to develop Domain-Specific Software
Tools effectively and efficiently. The Marama meta-tool aims for rapid prototyping of multi-view, multi-

user diagramming applications with live update and easy end-user accessibility.

The feasibility of the Marama meta-tool is demonstrated through the development of selected proof-of-
concept domain-specific tools, and MaramaMTE (MaramaMTE, 2007) is one of the successful and
complex examples. MaramaMTE is a domain-specific tool built on top of the Marama meta-tool. It re-
implements the key features of software architecture modeling and performance evaluation of
Argo/MTE. The Marama meta-tool makes it possible for MaramaMTE to efficiently interact with other
domain-specific modeling technologies to leverage their strength for software architecture modeling and

performance evaluation.

1.2.2 Web load testing and the Form Chart model

Web Application Load Testing (WALT) is an important part of web performance engineering. WALT
measures response time, throughput, and availability of a target website from a client’s perspective
(usually a web browser) (Apache JMeter, 1999; WebLOAD, 2003; Proxy-Sniffer, 2008). It needs to be

undertaken rigorously before a robust cost-effective website can be constructed.

MaramaMTE supports WALT via its integration with the formal Stochastic Form Chart modeling
(Draheim et al, 2006). A Form Chart model is a technology-independent bipartite state diagram, and is
used to simulate web user behavior (Draheim et al, 2006). It describes at a high level what the user sees
as system output, and what he or she provides as input to the system. A Stochastic Form Chart
additionally provides probabilities around user interactions with web forms and their responses to these

interactions. Essentially this provides a probabilistic model of user-website interactions.

Like most of the existing technologies of software architecture modeling, MaramaMTE is originally
focused on the structure of the main components of a software system (e.g. server components); and is
lack of realistic analysis and design of client behavior. Combining Stochastic Form Chart modeling with
MaramaMTE’s software architecture modeling provides a powerful model-based performance
estimation approach. The user behavior model can be used to evaluate a web application’s performance

under loading at design time before significant implementation expenses are incurred.

1.2.3 Automatic web reverse engineering

MaramaMTE+ was designed to extend MaramaMTE in two key aspects: 1) to automate the process of
Form Chart model structuring, because manually modeling a Form Chart model is tedious and error-
prone; and 2) to generate complex web load testing plans and scripts. MaramaMTE+ uses a web crawler
to extract structural information from a running target website and aggregates the collected data to
generate Form Chart models, which efficiently provides users with skeletons of the Form Chart models.
Users then manually augment the generated skeletons to complete their Stochastic Form Chart models.
A complete Form Chart model is then used by MaramaMTE+ to generate a client side program for a
MaramaMTE-styled architecture test bed, as well as testing plans for a specific target third party testing
tool such as Apache JMeter.

1.3 The problem domain of MaramaCRelation

The problem domain of MaramaCRelation covers: model driven engineering, model integration, and

model transformation.

1.3.1 Model Driven Engineering in Software Engineering

In software development, Model-Driven Engineering (MDE) refers to a range of development
approaches that use models as a primary form of expression (Schmidt, 2006). The models involved in
MDE range from platform-independent models at high abstraction level (e.g. business requirement
model, business process model) to platform-dependent models at low abstraction level (e.g. UML class
model, UML sequence model). The software engineering models, much more than the intuitive “box-
and-line” diagrams, can: 1) contain a certain level of detail and then code is written by hand in a separate
step; 2) contain executable actions; and 3) generate code ranging from system skeletons to complete,

deployable products. For example Argo/MTE and MaramaMTE+ both use a variety of abstract models

of architecture, process, and website usage and OO design; and these models are used to synthesize

detailed code and scripts for performance test beds.

1.3.2 Model integration

Model integration is an important operation in MDE. Software modeling technologies cover every
aspect of software development lifecycle at various abstraction levels (BPMN, 2004; Li et al, 2007;
Krutchen, 1995; Garlan et al, 1997; Medvidovic et al, 1996). Model integration combines models with
different target domains to serve a more comprehensive target domain for operational, tactical, and
strategic purposes. Model integration has been researched through model comparison (Soto, 2008;
Briand, 1998; IBM, 2005), model merging (Sabetzadeh et al, 2006), and multi-model coordination and
synchronization (Kirwan et al, 2008). For example, MaramaMTE+ integrates a domain-specific
architecture modeling language (based on that from Argo/MTE) with a Stochastic Form Chart model,
using each modeling language for its intended domain of discourse (architecture structuring and website
predictive interaction respectively). These models are integrated to provide a multi-view approach to

web architecture modeling and usage prediction.

The MaramaCRelation approach uses the CRelation model to capture the rationale that motivates model
integration, and uses the captured rationale as a central place to review and reorganize the main issues
involved in the model integration. For example, MaramaCRelation allows users to model
interconnection relationships between architecture and form chart models in MaramaMTE+, and

maintain traceability and behavior synchronization between the models.

1.3.3 Model transformation

Model transformation, a process of converting one model to another, is a core technology in MDE. It
involves extensive research in: transformation languages (ATLAS Transformation, 2006; XSLT
Transformation, 2001; Csertan et al, 2002), traceability (Falleri et al, 2006; Amar et al, 2008), behavior
and view synchronization (Garcia, 2008; Xiong, 2007; Sendall, 2004), and consistency management

(Kuster, 2004; Sanchez et al, 2008).

Model transformation is meaningful because the involved models share common semantics conceptually.

A transformation preserves certain semantics of the source model in the transformed target model. The

preserved semantics can be presented significantly differently in the transformed model; the traceability
can be easily lost; and the behavior and view synchronization among models is hard to achieve. The
MaramaCRelation approach captures the rationale that motivates the model transformation, and uses the
captured rationale to support a flexible traceability mechanism, as well as a behavior and view
synchronization mechanism for the model transformation. For example, in MaramaMTE+ the combined
architecture and form chart models are high-level abstract models that need to be transformed into
lower-level code and scripts to support performance evaluation of the architecture model under the
specified predictive usage models. MaramaCRelation provides a model and associated infrastructure to

support analysis, design, and beyond of the transformation process.

1.3.4 Analyze and design MI&T

The MaramaCRelation approach supports analysis and design of MI&T, and reviews some of the main
issues involved in MI&T at a central place from a high abstraction level. The MaramaCRelation uses the
CRelation model to: visually represent the rationale behind MI&T; decompose the traditionally
monolithic transformation scripts; associate the traditionally isolated rules and templates in the context
of a broader model; and differentiate what from how to integrate and transform models. The
MaramaCRelation approach supports model integration and transformation in the same way that Object
Oriented Analysis (OOA) and Design (OOD) technologies support Object Oriented Development. It
views MI&T at a high level, which raises the level of automated, flexible support for the traceability as
well as behavior and view synchronization during MI&T. In MaramaMTE+, for example,
MaramaCRelation can provide visual mappings between architecture, form chart, OO design, and EJB
models. It allows transformations between these to be modeled precisely and declaratively. It organizes
the inter-model transformation and consistency rules using inter-model entities and relationships. Finally,
it provides infrastructure support for realizing model transformations, traceability, and behavior

synchronization for the MaramaMTE+ tool.

1.4 OQOutline of thesis

Chapter 2 reviews the related work. It introduces the important concepts used in the research, and
identifies the problems that motivated the research.
Chapter 3 introduces the main features of the SoftArch/MTE project, and specifies the motivations for

the research in this thesis.

Chapter 4 cxamines the development of Argo/MTE. The improvements of Argo/MTE from
SoftArch/MTE are detailed.

Chapter 5 presents a case study of using Argo/MTE to support software architecture modeling and
performance evaluation. Argo/MTE-styled software architecture is showcased; the performance
evaluation test bed is generated and executed; and the performance results are collected and discussed.
Chapter 6 introduces the Marama meta-tool and MaramaMTE. The basic ideas of the Marama meta-tool
are discussed. The main improvements from Argo/MTE to MaramaMTE are explained.

Chapter 7 examines the development of MaramaMTE+. The process of generating Form Chart model
skeleton via web crawling is detailed. The process of automatically generating web load testing plan is
well explained.

Chapter 8 specifies the problem domain of the MaramaCRelation project. It introduces the background
and motivation of the research, and highlights of the research. The chapter prepares readers for the
MaramaCRelation project.

Chapter 9 presents the CRelation modeling. The chapter presents the used terms and concepts of the
CRelation model. It introduces the abstract syntax and semantics of the CRelation model through a
running example.

Chapter 10 discusses the MaramaCRelation prototyping tool. It presents the mechanisms and algorithms
of how the MaramaCRelation prototyping tool supports the CRelation modeling.

Chapter 11 presents two running case studies of using MaramaCRelation to support MI&T. One case
study is small and has been used to explain the MaramaCRelation approach throughout chapters 8§, 9,
and 10. The other one is more comprehensive and can demonstrate that the MaramaCRelation research
has achieved the proposed requirements.

Chapter 12 evaluates the MaramaCRelation approach by using a comprehensive questionnaire.

Chapter 13 discusses the interesting future research questions raised from the MaramaCRelation
research.

Chapter 14 finishes the thesis with a comprehensive discussion of the achieved results throughout the

thesis.

Chapter 2 - Related Work

As is introduced in chapter one, the research in the thesis is focused on Performance Engineering and
Model Driven Engineering (MDE). More specifically, Performance Engineering is researched through
software architecture modelling, software architecture performance evaluation, web reverse engineering,
and web load testing; and MDE is researched through Model Integration and Transformation (MI&T),
software engineering environments, and model semantics representation and checking. This chapter
reviews the leading work of these related areas by introducing their concepts, goals, and problems;
introduces the essential background for understanding the research in the thesis; and discusses the

problems and goals that motivate the research in the thesis.

2.1 Software architecture modelling

The software architecture of a software system is the structure or structures of the system (Len Bass et al,
2003). Software architecture describes intended software by using structural elements, architectural
components, subsystems, sub-assemblies, parts or "chunks" (Bachmann et al, 2000). It must support the
functional requirements of the software, and take into account of the dynamic behavior of the software.
It must also concern about the attributes of the intended system, including performance, security,

scalability, and flexibility or extensibility (Software Architecture, 2008).

2.1.1 Architecture Description Language

Software architects often use an Architecture Description Languages (ADLs) to model architectures.
Nenad Medvidovic and Richard N. Taylor reviewed and compared a substantial group of ADLs
(Medvidovic et al, 2000), and some of them are listed in Table 2.1. Other ADLs include UML (UML,
1996), Booch Notation (Booch, 1994), xADL (Khare et al, 2001), and SoftArch/MTE (Grundy and Cai
etal, 2001).

10

ADL Definition

ACME (Garlan et al, 1997) supporting architectural interchange, predominantly at the structural level
Aesop (Garlan, 1995) supporting the use of architectural styles

C2 (Medvidovic et al, 1996) supporting the description of user interface systems using an event-based style
Darwin (Magee et al, 1995) supporting the analysis of distributed message-passing systems

Rapide (Luckham et al, 1995) | allowing architectural designs to be simulated, and has tools for analyzing the

results of those simulations

SADL (Moriconi et al, 1997) providing a formal basis for architectural refinement

UniCon (Shaw et al, 1995) generating Glue code for interconnecting existing components using common

interaction protocols

Wright (Allen, 1997) supporting the formal specification and analysis of interactions between

architectural components

Table 2.1. Some of the ADLs reviewed by Nenad Medvidovic and Richard N. Taylor (Medvidovic
et al, 2000)

2.1.2 Conceptual concepts of software architecture modeling
Software architects model software architecture based on a set of conceptual concepts, including:
components, connectors, configurations, views, and styles. All available ADLs support those conceptual

concepts to certain extent.

2.1.2.1 Components

“In software architectures, components represent the primary computational elements and data stores of
a system” (Medvidovic et al, 2000). Typical software components include: clients, servers, filters,
objects, blackboards, and databases. A component describes its features mainly using: interfaces,

semantics, types, and constraints.

Component interfaces define points of interaction between a component and its environment. The
interface specifies the services (messages, operations, and variables) a component provides and needs.
An interface point in SADL (Moriconi et al, 1997) or Wright is a port (Allen, 1997), and in UniCon a
player (Shaw et al, 1995). In SoftArch/MTE, the interface of a component is consisted of a set of
properties that define how the component interacts with the other model elements to construct a fully

functional distributed system (Grundy and Cai et al, 2001).

11

Component types abstract and encapsulate functionality into reusable blocks. A component type needs
to be instantiated and can be instantiated multiple times in a single architecture. It may also be reused
across architectures. All of the ADLs distinguish component types from instances. For example, Rapide
defines types in a separate type language (Luckham et al, 1995). SoftArch/MTE defines types in a

separate domain-specific meta-model (Grundy and Cai et al, 2001).

Component semantics is a set of associated information that performs analysis, enforces architectural
constraints, and ensures consistent mappings of architectures from one level of abstraction to another.
Component types can be viewed as a part of component semantics. Component semantics needs to be
defined at a high level model. All ADLs support specification of component semantics, although to
varying degrees. For example, UniCon express semantic information in component property lists (Shaw
et al, 1995). SoftArch/MTE implicitly specifies semantic information in the code generators of the

supporting tool together with documents written in natural language (Grundy and Cai et al, 2001).

“A constraint is an assertion about a system or one of its parts, the violation of which will render the
system unacceptable (or less desirable) to one or more stakeholders” (Clements, 1997). Component
constraints can also be viewed as a part of component semantics. An example stylistic invariant is C2’s
requirement that a component has exactly two communication ports, one each on its top and bottom
sides (Medvidovic et al, 1996). SoftArch/MTE provides constraints in a meta-model (where types and
semantics are also specified). A sample SoftArch/MTE constraint requires that, in multi-tier client server
architecture, a client program must be associated with at least one remote application server

program(Grundy and Cai et al, 2001).

2.1.2.2 Connectors

“Connectors are used to model interactions among components and rules that govern those interactions”
(Medvidovic et al, 2000). Some ADLs treat connectors as first-class entities (e.g. Aesop (Garlan, 1995),
UniCon (Shaw et al, 1995)), some of them treat connectors as second-class entities (e.g. UML,
SoftArch/MTE). A connector describes its features mainly using: interfaces, types, semantics, and

constraints.

12

A connector’s interface is a set of interaction points between the connector and the components.
Connector interfaces enable proper connectivity of components, as well as their interaction, which helps
to reason about architectural configurations. In general, when treated as first-class entities, connectors
support explicit specification of connector interfaces. For example, connector interface points in ACME,
Aesop, UniCon, and Wright are roles, which are named and typed (Medvidovic et al, 2000). When
treated as second-class entities, connectors have fairly simple functionality and do not support explicit

interfaces. For example, in UML and SoftArch/MTE connectors do not have explicit interfaces.

Connector types abstract and encapsulate component communication, coordination, and mediation
decisions. Connector types categorize complicated interaction protocols, and make them reusable both
within and across architectures. For example, ACME, Aesop, C2, SADL, and Wright base connector
types on interaction protocols (Medvidovic et al, 2000). SoftArch/MTE connectors are also typed, but
the types do not support generic interaction protocols, and only constrain what types of components that

can be connected (Grundy and Cai et al, 2001).

Connector semantics is a set of associated information that enable component interaction analysis,
consistent refinement of architectures across levels of abstraction, and enforcement of interconnection
and communication constraints (Medvidovic et al, 2000). Connector semantics must be defined at high
level. Connector types can be viewed as part of component semantics. All ADLs support specification of
connector semantics, although to varying degrees. For example, SADL provides a constraint language
for specifying style-specific connector semantics (Moriconi et al, 1997). SoftArch/MTE implicitly
specifies semantic information in the supporting tool together with documents written in natural

language (Grundy and Cai et al, 2001).

Connector constraints ensure adherence to intended interaction protocols, establish intra-connector
dependencies, and enforce usage boundaries. Connector constraints can also be viewed as part of
connector semantics. A simple constraint of a connector is a restriction on the number of components
that interact through the connector. For example, C2 imposes a restriction that each connector port may
only be attached to a single other port (Medvidovic et al, 1996). SoftArch/MTE imposes a restriction
that two typed components can only be linked by appropriate types of connectors (Grundy and Cai et al,

2001).

13

2.1.2.3 Configuration

Architectural configurations, or topologies, are connected graphs of components and connectors that
describe architectural structure (Medvidovic et al, 2000). Architectural configurations must support
features including: understandable specifications, compositionality, refinement and traceability,
heterogeneity, scalability, evolability, dynamism, and constraint (Medvidovic et al, 2000). The features
that are most related to the research in the thesis include:

Refinement and Traceability — A main goal of software architecture modeling is to bridge the gap
between informal, “boxes and lines” diagrams and low-level application design activities (e.g. design
and implementation). It is important to enable correct and consistent refinement of architectures into
executable systems, and maintain the traceability of changes across levels of architectural refinement.
Compared with other ADLs, SADL and Rapide support refinement and traceability more extensively.
SADL uses its maps (see Figure 2.1) to prove the correctness of architectural refinements. The mapping
refines components and connectors from Level 1 architecture (arch L1) to Level 2 architecture
(arch_L2). Overall, ADLs provide limited support for refinement and traceability. Many of them
generate code directly from architectures without showing the refining process and maintaining

traceability (e.g. SoftArch/MTE, C2).

arch map MAPPING FRCM arch L1 TO arch L2

BEGIN
comp --> (new comp)
conn --> {(new comp!subcomp)

port --= {

Figure 2.1. A refinement mapping declared in SADL (Medvidovic et al, 2000)

Heterogeneity — An ADL needs to deal with the ever-increasing complexity and variety of software
architecture concerns. It is important that ADLs provide facilities for architectural specification and
development with heterogeneous components and connectors. For example, C2 currently supports
development in C++, Ada, and Java (Medvidovic et al, 1996), while SoftArch/MTE supports
development in a list of middleware technologies including CORBA, RMI, J2EE, and .NET (Grundy
and Cai et al, 2001).

14

Evolvability — As software systems continuously evolve, so do their architectures. ADLs must provide
evolution support to maintain the validity of software architectures when components and connectors are
incrementally added, removed, replaced, and reconnected. Most existing ADLs and their supporting
toolsets are very rigorous; and they provide limited support for architecture evolution, such as
component addition, and incomplete architecture designs. For example, in Darwin (Magee et al, 1995),
MetaH (Binns et al, 1996), Rapide (Luckham et al, 1995), and UniCon (Shaw et al, 1995), compilers,
constraint checkers, and runtime systems have been constructed to raise exceptions if architecture is
incomplete. XADL is a highly extensible ADL (Khare et al, 2001). It uses a set of XML schemas to
define an initial set of architectural concepts. The schemas are modular and extensible. Each
architectural concept is defined in a separate schema and each individual schema can serve as the basis
for further extension. SoftArch/MTE uses a domain-specific meta-model to support the evolution of the
target software architectures. The meta-model can be extended and modified to support the evolution of

software architecture.

2.1.2.4 Architectural styles

Patterns and styles help people to reuse well-established knowledge. Very often, people choose a certain
software architectural style to describe software architecture. An Architectural Style defines a family of
systems in terms of a pattern of structural organization. More specifically, an architectural style defines a
vocabulary of components and connector types, and a set of constraints on how they can be combined

(Shaw et al, 1996). Table 2.2 lists several well-known architectural styles and their main characters.

Architectural Style Definition

client-server representing software architecture where a component interacts with other components by
requesting their services, and the communication between the components is typically a

bidirectional pairing of "uses" relationships (Taylor et al, 2008)

pipe and filter showing data flow architectures based on graphs of pipes and filters (Taylor et al, 2008)

blackboard representing a family of software systems that are based on shared data space and a set of

knowledge sources (Taylor et al, 2008)

multi-tier representing a client-server architecture in which, the presentation, the application processing,

architecture and the data management are logically separate processes (Taylor et al, 2008)

Table 2.2. Sample architectural styles

15

Most ADLs support architectural styles. For example, Wright supports pipe-and-filter architectural style
(Allen, 1997). SoftArch/MTE supports multi-tier architectural style (Grundy and Cai et al, 2001). Figure
2.2 illustrates a 3-tier SoftArch/MTE architecture design. The components enclosed in the green
rectangle represent the presentation tier. Components enclosed in the red rectangle represent the
application processing tier. Components enclosed in the blue rectangle represent the data tier. In this
architecture design, web users send requests through the presentation tier. The presentation tier sends
user requests to application servers, and receives feedback from the application processing tier. The

application processing tier contacts with data tier to retrieve and store data.

T

[video 5 cture - 111

Archite

File Edt Wiew Changes Code-Generstion Colaboraton

aaidorfnn Sener,

— o y
_______mwrzﬂ]
ClientTeat
neg 2 g 3 Y
I@ uwpdate Customner

“—————_hm\:.________}
-
VideaMnrager
/49_1 \QJ

/

\Ms_2
Cusbarweriianager
/Ae_a k&ion_ﬂ
Ddabe Cuishoiner sl

dbenlect_a

FraCuslomer_seniee

metlideo_senice

dbgela 3

=F
<

dbypdate_

’24 sot_1
i Videa_gur 1)

/4&2

rentlidea_guery

/

reatVideo_updute

find Cusbomer_guery

dod@be G shower_guend

I
ta f_“ pdate

1al b\“:uen,r_s
L L

tabja_quan_d

t:lbﬂqvqntry_'.l hy{_qutrr_2
N ¥

i

rembal_toble

customor tablo

/fsr:?

‘\d{lt{f

Shape: Im [Debuy Propagation Displa',rShaDesI
Figure 2.2. A sample SoftArch/MTE architecture design (Grundy and Cai et al, 2005).

2.1.2.5 Views

Different stakeholders of a software system have different concerns and view points of software
architectures. Software architecture needs to be organized in views to allow stakeholders to focus on
their specific concerns. Table 2.3 lists a set of well-accepted architecture views and their interested

stakeholders.

16

View

Abilities

stakeholders

functional/logic

describing what the system should provide in terms of

services to its users.

managers

development/structural

representing software module organization (hierarchy

of layers, software management, reuse, constraints of

tools)

managers

physical/deployment

representing how to map software architecture to

underlying hardware (Topology, Communication)

technicians, system

engineers

user action/feedback

defining how users interact with the system, such as

how to enter data, send request, put feedback.

end-users, business

analysts

data explaining how the data flow happens in the software data analysts, developers
and project managers
Table 2.3. Views and their interested stakeholders
End-user Programmers

Functionality

Logical View

Process View

: Development
View
,..--""'—"
(Scenarios) l
— Physical View

Integrators
Performance
Scalability

Software management

System engineers
Topology
Communications

Figure 2.3. “4+1” views of software architecture (Kruchten, 1995)

17

developers and project

developers and project

Most ADLs support only functional/logic view of an architecture (in textual or graphical or both format),
although their functional/logic views may vary (Medvidovic et al, 2000). The existing ADLs rarely
support more views. The multi-view feature of software architecture is best demonstrated by the “4+1”
view model (Kruchten, 1995). As is illustrated in Figure 2.3, the “4+1” view model describes the
architecture of software-intensive systems by using multiple, concurrent views. The four views of the
model are logical, development, process and physical view. In addition, selected use cases or scenarios
are utilized to illustrate the architecture. The views of software architecture must be well-coordinated in

their presentation, behavior, and data.

2.2 Software architecture performance evaluation

Software architecture design and performance evaluation have become crucial in the development of
large scale systems (ECPerf, 2002; Gorton et al, 2000; Grundy and Cai et al, 2001). Validation of non-
functional requirements is particularly critical. System performance is one of the most challenging
requirements to validate (Gorton et al, 2000; Nimmagadda et al, 1999; Petriu et al, 2000). In general,
there are three main types of performance evaluation approaches for software systems; and they are

benchmarking, rapid prototyping, and simulation.

Benchmarking (Balsamo et al, 2002; Balzer, 1985; SPEC benchmarks, 2002) uses a fair and useful set of
metrics to differentiate candidate systems. For example, SPECjAppServer2002 is a benchmark for
measuring the performance of Java Enterprise Application Servers by using a subset of J2EE APIs in a
web application (ECPerf&JDBC Benchmark, 2002). It gives Java users an objective and representative
benchmark for measuring Enterprise JavaBeans (EJB) container in a J2EE 1.3 compatible server. Other
J2EE-related benchmarks include SPECjbb, SPECjvm, SPECMail (SPEC benchmarks, 2002).
Benchmarking technologies provide objective goals for the applications that are closely related to the
benchmark applications. For example, the SPEC J2EE benchmark applications are only useful for J2EE-
related technologies. Benchmark applications are not always available for new technologies of software
development. Benchmarking technologies can not provide instant evaluation results or guidelines for

designing new software products.

Rapid Prototyping (RP) (Hu et al, 1997) develops partial software applications to implement

performance-critical parts of the code e.g. network-centric and database-intensive. The CSIRO

18

middleware technology evaluation project (CSIRO, 2000) uses RP to evaluate middleware technologies.
RP is a simplified process of software development, and much effort is expected for even simple
prototypes. Most rapid prototypes are manually built and are not flexible. Whenever the software design

is changed, the prototypes also need to be changed (mostly manually).

Both benchmarking and RP are empirical approaches. They evaluate the whole or part of real software
systems. Simulation Approaches obtain formal models (Markovian, 1986) of the intended distributed
applications, and use the models to estimate the performance of the real applications (Markovian, 1986).
The Simulation Approaches simulate performance instead of testing real software systems. Their
accuracy varies widely, and it is difficult to obtain effective formal models for applications such as

databases.

2.3 Web application reverse engineering

Reverse engineering is a process of analyzing a subject system to identify the system’s components and their
interrelationships, for the purpose of creating representations of the system in another form or at a higher
level of abstraction (Chikofsky et al, 1990). The main objectives of web application reverse engineering
include: pattern abstraction, re-documentation, and architecture recovery (Patel et al, 2007). Pattern
abstraction is focused on improving the quality of web application source code. It involves activities
such as analyzing web application source code; identifying instances of commonly used patterns and
styles, and resulting in abstract representations of fragments of source code; and discovering human
inspired concepts and then linking them to implemental concepts. Re-documentation is the process of
generating accurate documentation from existing, undocumented software. Architecture Recovery aims
for obtaining an understanding of the structural aspects of a system’s architecture. WARE (Di Lucca et al,
2001) and Revangie (Draheim et al, 2005) demonstrate the main activities involved in web application

reverse engineering.

WARE (Di Lucca et al, 2001) is an approach that extracts information of a web application, and abstracts
documentation that describes the physical and conceptual structure of the application. Figure 2.4
illustrates the WARE’s reverse engineering process. During extraction process, WARE analyzes the

source code of web application components (client and server pages, script modules) statically as well as

19

dynamically, extracts the information that is needed for building up analysis models, and stores the

extracted information in a relational database (Tramontana et al, 2002).

Abstraction
Extraction Identification of —» Chbned components
cloned components
SWAE » Stalx:_ Identification of . .
Code Analysis Interaction Design — Interaction Design Patterns
|_., Patterns
Dynamic Concepts describing Reverse
WA Executi s * i . | S)
™ » Analysis Ass:gmm,nmf g Engineering artifacts
Concepts
Functional Clustering p Croups ofpages realizing Web

Apphication use cases

Business Lovel UML Structural and Business
Dagram Abstractions > Level UML diagrams

—p Maintanability assessment

Figure 2.4. Web Application Reverse Engineering process (Tramontana et al, 2002)

The retrieved information is processed during the abstraction process. Clone analysis examines if there
are cloned pages in the web application, and may suggest reengineering to eliminate page duplications.
Web Application user interfaces need to be analyzed to identify Interaction Design Patterns. The
existing concepts used in the web application need to be retrieved, analyzed, and exploited to support the
assignment of concepts to reverse engineering artifacts. The pages of the web application need to be
clustered in subsets; the subset cohesion must be maximized; and the coupling between the subsets must
be minimized. In order to recover business level UML Diagrams, WARE build up attributes, methods
and relationships of UML diagrams by analyzing the data a user inputs by a form, the data exchanged
between Web Application pages, the data flow between the application and the databases. WARE can
recover the information such as Cloned components, Interaction Design Patterns, and Concepts
describing Reverse Engineering artifacts. The extracted and abstracted information is then used to

evaluate some quality characteristics of web applications such as maintainability.

20

Revangie (Draheim et al, 2005) supports source code independent reverse engineering of dynamic
websites. Revangie has three modes of operation to extract form-oriented information of a web
application, including the crawl mode, snoop mode, and guide mode. The crawl mode operates
automatically on the client side like an automated web browser. It uses an HTTP client to request pages,
submit values, and analyze the trace of submitted values and visited pages. The snoop mode can either
operate as a proxy server or a fagade to the web server. It monitors the HTML communication of one or
more users to collect data of actual sessions of a web application. The snoop mode is user-driven. The
guide mode tries to combine the advantages of crawl and single-user snoop mode: automation and the
possibility to enter form data manually. The goal of all three modes is to obtain information to build a

form-oriented analysis model to describe the user interface of web applications.

The form-oriented user interface model is a typed, bipartite state machine. In the form-oriented model,
one set of states represents client-side web pages, and the other set represents server actions that
generate the pages. The recovered form-oriented models can be, for example, exploited for the purpose
of requirements engineering and load test development (Draheim et al, 2005). Figure 2.5 shows a form-
oriented model of a web application. The model starts at web page “login” that should contain a form for
submitting user’s login information to server action “checkpw” . If the submitted information is invalid,
the user is shown another instance of the “login” page; otherwise the user is forwarded to page “home”.
The “home” page can be navigated to either the “buyCars” page or the “buyBikes” page. The
“buyCars” and “buyBikes” pages represent all the possible web screens showing lists of cars and bikes
respectively; and they both use the same action” buy” to process the submitted data (Draheim et al,

2005). The form-oriented model can be used to analyze realistic user behavior in web load testing.

buyCars

checkpw

buyBikes

Figure 2.5. Form Chart model example (Draheim et al, 2005)

21

2.4 Web Application Load Testing
Web Application Load Testing (WALT) is an important part of web performance engineering. WALT

measures response time, throughput, and availability of a target website from a client’s perspective
(usually a web browser). Load testing needs to be undertaken rigorously before a robust cost-effective
website can be achieved (Mensace et al, 2002). A wide range of load testing tools (Apache JMeter, 1999;
Cai et al, 2004; Draheim et al, 2006; Microsoft, 2002; Mensace et al, 2002; Subraya et al, 2000) and
generic performance and reliability engineering tools (Denaro et al, 2004; Smith et al, 2005; Sprenkle et
al, 2005) have been developed. The core functionality of these tools includes modelling client behaviour
as well as constructing load testing plans. Almost all such tools support only a fairly basic model of
client behaviour, which provides a sequence of requests on a website arranged into repeating groups,
allows multiple threads to mimic large numbers of client browsers, and supports limited control logic
depending on the website response. Some tools support parameterisation of loading tests to allow
configuration of different test cases and test data, but the configuration is limited. To date, limited
formal client loading models for web applications have been developed, but they rarely are used to

generate web load testing plans (Draheim et al, 2006; Draheim et al, 2003; Subraya et al, 2000).

A load testing plan describes a series of steps a load testing will execute. For example, a complete
JMeter test plan consists of: one or more Thread Groups, logic controllers, sample generating controllers,
listeners, timers, assertions, and configuration elements (Apache JMeter, 1999). JMeter load testing
plans can be complicated and tedious. Although the JMeter tool provides a user friendly GUI, it is still
time consuming and error-prone to construct testing plans. To achieve accurate testing results, a load
testing plan should model realistic behaviour of web users. Most existing load testing tools, focused on
operational goals of a running loading test, do not support users to analyze if their plans can realistically
capture the web user behaviour. For example, JMeter can support complicated testing plans, but it does

not assist people to analyze if the plans realistically capture the user behaviour.

2.5 Model Driven Engineering

Model Driven Engineering (MDE) refers to a range of development approaches that use software
modeling as a primary form of expression. The main principals of MDE include: 1) well-defined models,
instead of third-generation languages (e.g. java, C++), are the main forms to express systems for

enterprise-scale solutions; 2) the building of systems is developing a set of models at different layers.

22

The models are organized into an architectural framework, and can be transformed between each other
(normally from high platform-independent models to lower platform-dependent models); and 3) the
integration and transformation between models must be formally underpinned at meta-model level, and

need to be done automatically through tools (OMG MDA, 2001).

The principles of MDE are best demonstrated by MDE’s well-known incarnation — Model Driven
Architecture (MDA) (OMG MDA, 2001). MDA is an architectural framework of the model-driven
software development. It separates business and application logic from underlying platform technology
by using OMG’s (Object Management Group) established standards, including Unified Modeling
Language (UML), Meta-Object Facility (MOF), XML Metadata Interchange (XMI), Enterprise
Distributed Object Computing (EDOC), Software Process Engineering Metamodel (SPEM), and
Common Warehouse Metamodel (CWM)). Through MDA, high level platform-independent models
(must be UML models or other associated OMG modelling standards) can be realized on virtually any
platforms, open or proprietary, including Web Services, .NET, CORBA, J2EE, and others. MDA allows
business and technical aspects of an application or integrated system can each evolve at its own pace

(OMG MDA, 2001).

MDE is a broader concept than MDA. On top of the focuses of MDA including: technical variability by
making a difference between platform independent and platform dependent models, and defining
transformations between these models, MDE is also focused on application-domain variability by adding
modeling dimensions for subject areas (e.g. order entry, customer portal, back-end administration) and

architectural aspects (e.g. data, presentation, security, business rules, workflows) (Hann, 2008).

2.5.1 Domain-specific modelling languages

Domain-Specific Modelling (DSM) is a core technology of MDE. It refers to constructing models by
using concepts that represent things in the application domain, not concepts of a given programming
language. Domain-Specific Modelling Languages (DSMLs) capture the domain abstractions and
semantics, which allow developers to work directly with domain concepts. DSMLs use type systems to
formalize the application structure, behaviour, and requirements within particular domains, such as
software-defined radios (PrismTech, 2008), avionics mission computing (Balasubramanian et al,
20006), online financial services (Tolvanen, 2008), warechouse management (Deng et al, 2003), and the

domain of middleware platforms (Grundy and Cai et al, 2001).

23

DSMLs use meta-models to capture the concepts of an application domain, define the relationships
among concepts in the domain, and precisely specify the key semantics and constraints associated with
these domain concepts. For example, SoftArch/MTE models the domain of middleware-based multi-tier
online business (Grundy and Cai et al, 2001; Grundy and Cai et al, 2005). It uses a domain-specific
meta-model to capture the domain-specific concepts, define how the concepts are connected, and specify

semantics to check the validity of the captured domain-specific concepts.

2.5.2 Model transformation technologies

Model transformation is a core technology in the MDE paradigm. Model transformation is the process of
converting one model to another. The OMG QVT standard (OMG QVT, 2001) for model transformation
has been supported by a wide range of model transformation solutions, including ATL (ATLAS
Transformation, 2006), XSLT (XSLT Transformation, 2001), VIATRA (Csertan et al, 2002). ATL is a
model transformation language specified both as a meta-model and a textual concrete syntax. It is a
hybrid of declarative and imperative. An ATL transformation program is composed of rules that define
how the source model elements are matched and navigated to create and initialize the elements of the
target models. XSLT, an XML-based language, is used for the transformation of XML documents into
other XML or "human-readable" documents. An XSLT transformation style sheet contains XSLT
program text (or ‘source code’ in other languages, such as HTML and Java). It describes a collection of
template rules and other directives that guide the XSLT processor in the production of the output
document. VIATRA is a model transformation-based framework supporting the systems designed using
UML. The transformation language of VIATRA is consisted of graph patterns, graph transformation
rules, and control structure. Graph Transformation (GT) is the primary means for elementary model
transformation steps. GT provides a rule and pattern-based manipulation of graph based models. The
application of a GT rule on a given model replaces an image of its precondition (left-hand side, LHS)
pattern with an image of its post condition (right-hand side, RHS) pattern, and additional actions can be

executed (Varr’o et al, 2003).
Both the ATL and XSLT transformation programs/scripts are textual, and deal with models through the

models’ textual format (e.g. XML format). A VIATRA transformation program contains graphic (e.g.

graph patterns) as well as textual information (e.g. textual rules, pattern-based manipulation language),

24

and deals with models through the models’ graphic format. ATL and XSLT are focused on transforming
models, while VIATRA explores broad range of issues related to model transformation, including:

checking consistency, completeness, and dependability requirements.

2.5.3 Model integration technologies

Model integration combines the strength of various domain-specific software models to serve a more
comprehensive target domain for operational, tactical, and strategic purposes. It means different things
in different context, and roughly falls into two categories: "deep" integration and "functional" integration

(Geoffrion, 1996).

Deep Integration (DI) produces a single new model that combines two or more given models. DI, also
expressed in the literature as model merging, is to form a new model that must be represented in the
same definitional formalism as the given models; the new model must semantically match the
modeller’s intentions as much as possible. The main concerned issues involved in DI include model
comparison, difference highlighting and model merging. IBM’s Rational Software Architect (IBM

Rational, 2008) is a representative support tool for domain-specific model merging.

Functional Integration (FI), in contrast, does not yield a new model but leaves the given models as they
were. FI superimposes a computational agenda for coordinating calculations over the involved models,
typically directing certain models' outputs to other models' inputs while specifying the order of
computations (Geoffrion, 1996). The main focuses of FI are: consolidating previously self-evolved
domain modelling knowledge, supporting multi-model coordination and synchronization, and finding
new uses for the existing domain modelling knowledge. FI has not been researched as intensively as

deep integration. Most of FI research is done case by case without systematic and structured support.

2.5.4 Semantics representation and checking

Semantics of a model is consisted of semantic domain and semantic mapping. A semantic domain
provides a set of expressions that have well defined meaning and behaviors. Semantic mapping refers to
a process that maps abstract syntax to the semantic domain (Chen et al, 2004). Figure 2.6 illustrates the

relationships among abstract syntax, concrete syntax, and semantic domain.

25

Explicit, formalized semantics of models can help users to correctly represent their meaning in the
models, and allow models to be read and understood by machines. Some modelling languages (e.g. Web
Ontology Language (W3C, 2004) and Web Service Modelling Languages (W3C, 2005)) have explicit,
formal semantics, as well as well-formed abstract syntax. But for many other modelling languages, their
semantics is often implicitly defined by its model interpreter, and needs to be explained by documents
written in a natural language (Grundy and Cai et al, 2001; UML, 1996). For example, the UML provides
informal descriptions and insights into the semantics through its abstract syntax. Although the implicit
UML semantics is far from being satisfactory and needs to be improved, the UML document (UML,
1996) is practical, and can provide sufficient information for experienced users to gain knowledge about
the meaning of the constructs of UML. SoftArch/MTE also does not have explicit, formal semantics.
SoftArch/MTE has a fairly small semantic domain, as well as a small set of abstract syntax. It is
practical to introduce its semantics in natural language, and explains semantics together with abstract

syntax, which reduces the learning load brought by separate, formal semantics descriptions.

DSML=<C, A, M., S, Mg >

Determine meaning
and behaviors of
language constructs

Modeling constructs
Relationships
Integrity constraints

Semantic
Mapping

Syntactic
Mapping

Notation for representing
modeling constructs

Figure 2.6. Relationships between syntax and semantics (Chen et al, 2004)

Semantic Consistency needs to be maintained during Model Integration and Transformation (MI&T).
Most existing MI&T technologies are focused on achieving operational goals and provide little support
to maintain semantic consistency during MI&T. However, consistency maintenance has been argued as

the essential basis for Model Driven Architecture (MDA) or more generally for Model Driven

26

Engineering (MDE) (Pieter Van et al, 2005; Graaf et al, 2007). Consistency maintenance allows
modellers to specify: what to transform and integrate, what the conditions are for an intended
transformation and integration, and what the expected results are after the transformation and

integration.

Semantic Consistency provides requirements for software modellers to analyze and design an intended
MI&T. Without semantic consistency requirements, software modellers can only produce rules and
templates driven by ad-hoc operational goals and based on personal experiences. Without appropriate

analysis and design, MI&T may cause unnecessary semantic inconsistencies.

Currently, consistency maintenance is mainly done through consistent transformation or consistency
comparison (Egyed, 2001). Consistent transformation ensures consistency via well-defined
transformation steps where source models are transformed into target models in a manner that
guarantees consistency (Engels et al, 2002). Consistency comparison is done after transformation.
Sample consistency comparison approaches include VisualSpecs (Cheng et al, 1994), JViews (Grundy et
al, 1998), and ViewlIntegra (Egyed, 2001 2). Both VisualSpecs and JViews convert graphical models
into either a formal language (VisualSpecs) or a data repository (JViews) in which they perform
consistency analyses. ViewIntegra rewrites (through reverse modelling or model generation) the source
(target) model into the target (source) domain, and then compares both versions of target models (source

models).

2.5.5 Multi-view Support Software Engineering Environments

Multi-view Support Software Engineering Environments (MSSEEs) allow people to develop software

products with different concerns, at various abstraction levels, and based on different domain-specific

knowledge. Popular MSSEEs include Rational Rose (IBM, 2001) and Eclipse (Eclipse 2001). Although

different multi-view systems have different foci (Rational Rose is OO analysis and design oriented,

Eclipse is tool development oriented), they share the common issues: 1) data consistency management; 2)
view synchronization; and 3) event propagation management. Those issues have been widely researched;
and the representative work includes MViews (Grundy et al, 1996), VIATRA2 (Kocsis et al, 20006),

FUJABA (Fujaba, 2007), and Spearmint (Ulrike Becker-Kornstaedt et al, 1999). MViews uses a central

repository to hold a base model; and the base model can then be represented in different views by

27

different visual notations. VIATRA2 also keeps a base model, although the base model evolves in
different views. FUJABA uses the same model to maintain the integrity of data that is represented
differently in different views. Most of the multi-view approaches use low-level (source code level or
database level) common data repositories, which normally need to be updated at programming level
whenever new domain-specific knowledge (new target domains) need to be supported. In those

approaches, synchronization is normally implemented by low level code-bound event-handling systems.

2.6 Summary

Software architecture modelling is aimed at raising the abstraction level of software development. A
software architecture design provides far more analysis and design support for software development
than intuitive “box-and-line” diagrams. Each of the reviewed ADLs addresses certain concerns at
architectural level, and allows software architects to model well-defined software architecture, which, in
turn, can provide well-structured guidance for the other stages of Software Development Life Cycle.
Software architecture performance evaluation is focused on improving the performance of architecture
design. Architecture designs with rigorous performance evaluation are highly desirable and influential
on the quality of the final software systems. The Argo/MTE project of the thesis supports software
architecture modelling and performance evaluation in a different way from benchmarking, rapid
prototyping, and simulation. It models software architecture of an intended software system, and
generates fully functional architecture level test bed of the system. Argo/MTE improves the integration

between software architecture modelling and the other UML modelling.

Web reverse engineering is aimed for improving the existing web applications to achieve better source
code structure, better scalability and performance, and better maintainability. The reviewed web reverse
engineering technologies explain the main concerns and show the solutions in this area. The
MaramaMTE+ project of the thesis focuses on web load testing modelling and testing plan generation.
The project captures realistic client behaviour through form chart modelling, automatically synthesizes

structure of form chart model, and generates testing plans for a third party tool (e.g. JMeter).
Model Driven Engineering (MDE) is a big paradigm where models, instead of third-generation

languages, are the main form of expressions in software development. MDE is a sensible context to host

active research areas including domain-specific modelling languages, model transformation, model

28

integration, and model-transformation-based software tools. The problems found in those research areas
motivate the research of the MaramaCRelation project. The MaramaCRelation project of the thesis
provides analysis and design support for MI&T, construction of multi-view support software systems,
and consistency maintenance. The MaramaCRelation approach is intended to provide better solutions for

some of the main issues involved in MI&T.

29

Chapter 3 - Thesis Motivation

The SoftArch/MTE project, done as part of the author’s Masters research, provides an approach for
software architecture modeling and performance evaluation. It allows users to model software
architecture of a middleware-based web application; generates a fully functional performance test bed
from the software architecture model with client and server code, database configuration and
deployment scripts; and automates the performance evaluation process of test bed generation,
compilation, and deployment and performance metric result collection. This chapter presents an
overview of the SoftArch/MTE performance evaluation technology, and identifies a number of
challenges that motivated the research in this thesis. Specifically, the challenges include: the need to use
a well-established CASE tool platform (e.g. ArgoUML, Eclipse); the need to better capture architecture
patterns and models for reuse; the need to better capture user interaction with web applications; the need
to develop a higher level of model integration and transformation support; and the need to better support

traceability and consistency management in multi-view tools.

3.1 SoftArch/MTE target domain

SoftArch/MTE is aimed for modeling and evaluating the architecture of middleware-based web
applications (Grundy and Cai et al, 2001; Grundy and Cai et al, 2005). A SoftArch/MTE software
architecture model abstracts main-stream middleware technologies to architectural level concepts, and
provides essential information to generate a fully functional test bed (middleware-based web
applications). A test bed carries performance metric information to measure the performance of the
interested part(s) of the software architecture. SoftArch/MTE allows software architects to compare
performance of available middleware technologies, and generate the best-of-practice functional

prototype for the intended web applications.

30

Consider the development of an on-line video shop (Grundy and Hosking, 2000), where the main tasks
include: supporting an on-line video store library; supporting customer on-line video search/reservation;
and supporting staff in-store video rental management tasks. Some example interfaces for such a system
are illustrated in Figure 3.1(a). One candidate architecture design for the system is shown in Figure
3.1(b). In this example, video store staffs use desktop applications connecting to the database(s).
Customers interact with user interfaces that connect to application servers, which, in turn, are connecting
to possibly other servers and one or more databases e.g. holding staff, customer, video, and video rental
details. Data processing may be centralized or spread across clients or servers. Middleware may be Java
RMI, DCOM, CORBA, or J2EE. Server objects may be COM, CORBA or Enterprise Java Beans. Data

management may use relational, object or XML databases, or files.

=812

“ Customer [nterfaces
Bach « = = 3 [7) | DGemch [ajFoecites [P History]
= - . Video Search Meszagin
--?m]ﬂ"yﬂgmmw""‘"“umllmﬂm |tk 7] l I | Lne Staff Interfaces — MS Acess™
- Ty Viiee Flemal - Hictanill | eleinvel Esphiesi =121]
Video Search e EQ Yoa Fods Inh Hee “ Widen Maintenance
Gk - o= - D F) A Bteeen e ghaw |- Soml B R

Foind wdeo L) T Ty p———— e ————" | [P l Video Renial | l Reports I

; . 5 \

I 1000 "

Hame Toe Wigee | Y1020 Rental

Chingeey: nul Blid dleware

Cost 00 P.ﬂ::d.n.deo

Hights: 0 SeEI[1 Fasswoed Hame: Tobn Gruady St

Biaeng: nul

HOT AVAILABLE | Qestomir ID: |1 Hates ot grendy _ Cusiorrer |

List ol vick o lound Vides I fiom Tile: Seecless in Seale | MOViGAD |

Slesplens in Secile werividen | isumiiden '\‘

_ ——
Fibore B ledriae ” Rentals
Part of tifle: | Categery | =
| . Dtabose Acces
Saeech | Detmls Rsitabal le—> e Access
Frocessing

& Oome £ Loos rbarnet = L
A e e (e SR (I_))

Figure 3.1. Parts of a simple on-line video system (Grundy and Hosking, 2000)

A software architect typically has some performance constraints that any chosen architecture design
must meet. Such constraints might include maximum number of users, and response time for different
user requests and data processing services. Further constraints may include hardware and software
constraints e.g. must run on Windows/LINUX machines; must run on low-end desktop machine; must
run over 56kbps modem connection; and must use either CORBA or DCOM middleware protocol, must

use SQL Server™ 7 database.

31

To determine a suitable architecture for a system, including appropriate middleware and database
choices, an architect typically relies on the past experience. SoftArch/MTE generates performance test-
beds (essentially rapid prototypes) directly from software architecture descriptions/models; and it
enables architects to quickly and iteratively understand the performance impacts of their architecture-

level design decisions.

3.2 SoftArch/MTE overview

C_ =architectures
— =chant=
Cé =pame>Cuitomer=/name=
=/climat=

P

2. Generate XML-encoded

1. HiEh'l’WeL architecture design
architecture designs ¥

Clisat] Regusctl: 157 22
Cliszrl Roguestd: 89 1ET

3. FRun XSLT

6. Run tests & transformation
send resulis to

I - - t
SoftArch/MTE Scripts

for visualisation /

Prablic clce clisnzl {

Public void static main() {

- T Server Reguastl();
— - J— }
¥

5. Compile & upload to 4. Generate code, IDLs,
multiple host machines deployvment info, etc

Figure 3.2. Outline of the SoftArch/MTE architecture performance analysis process (Grundy and
Cai et al, 2001)

Figure 3.2 outlines the process whereby software architects obtain performance results from test beds
(real code) generated by SoftArch/MTE. Steps 2-6 are fully automated. The architect first constructs a
high-level architecture design that specifies architectural components and connectors such as: clients,

servers, remote server objects and database tables, client-server, server-server, client/server-database

32

requests and server services, and various kinds of connectors between these architectural abstractions
(e.g. belongs-to, runs-on, network connection) (1). The components and connectors specify various
properties: client, server and database host machine; number and frequency of requests (e.g. 1000 times;
continuous; every 0.25 seconds; etc); database table and request complexity (e.g. one row select; 100
row select/update; one row insert/delete etc); and middleware protocol (e.g. CORBA using Visibroker
4.0; TCP/IP socket using textual XML document; etc). The abstraction types of those components and
connectors are specified in extensible SoftArch/MTE meta-models. The architect instructs
SoftArch/MTE to generate an XML encoding of the architecture model (2). The XML-encoded
architecture model is then passed through a number of XSLT (XML style sheet transformations) scripts
(3), which generate Java, C++, Delphi etc code, along with CORBA and COM IDL files, EJB
deployment descriptors, database table creation and population scripts, and compilation and start-up

scripts (4). This generated code is a fully working performance test bed.

The compiled (deployable) client and server program code is then uploaded to the specified client,
server, and database host machines; all the host machines run a SoftArch/MTE deployment agent and
can receive the test bed code. The deployed client and server programs and appropriate database servers
are started on all hosts. The clients wait for a SoftArch/MTE signal (via their deployment agent), or a
scheduled start time, to begin execution i.e. sending requests to servers. Once the tests complete, the
deployment agents collect results (usually from client and server program output files) and send them to
SoftArch/MTE (6). SoftArch/MTE annotates architecture diagrams in various ways to highlight the
performance measures captured from running the generated test beds. SoftArch/MTE can also generate
performance summary analysis reports and invoke a 3rd party data visualization tool to show
performance details and summary charts (we use MS Excel™ to do this). Multiple test run results using
different middleware, databases and client/server request can be visualized together. Architecture
designs and their performance results can also be versioned within SoftArch/MTE; users can compare

the performance results of the different architecture design options (Grundy and Cai et al, 2005).

3.3 SoftArch/MTE meta-model

SoftArch/MTE uses domain-specific meta-models to define abstractions of domain-specific knowledge.
Figure 3.3 shows a sample SoftArch/MTE meta-model for e-commerce applications. In the meta-model,

a software architect specializing in e-commerce system domain defines abstractions (basic parts,

33

components, or modeling types) of e-commerce systems including: Client, Request, AppServer,
RemoteObj, RemoteService, DatabaseServer, and Database. Relationships between abstractions also
need to be defined. Each abstraction’s characters and behaviors are defined by a set of properties as well

as the abstraction’s relationships with other abstractions.

& Basic E-Commerce Meta-Model g@@

File Edit View Changes Code-Generation

b

S—
> contietServer—————fmiseme—> Gop SsontagtDB Server
"-_\,‘ ’-F‘_‘“—\

ssUes hosts

R n@(—— ;@, findDBSemer

%

\

‘. sl

LBRequesd —r,-cnsuh = B ase Servs

ntains

ELET L S AMMCompShape +| [Debug Propagation DisplayShapesl

Figure 3.3. A sample SoftArch/MTE meta-model for e-commerce applications (Grundy and Cai et
al, 2001)

A number of properties for each of these architectural abstractions need to be designed. Figure 3.4
illustrates the properties of the abstractions in Figure 3.3. The properties may be structural properties e.g.
names, middleware types used, and roles. The structural properties are denoted with “AP” (Architectural
Parameter) in Figure 3.4. The other properties are related to performance evaluation e.g. number of
times to call a server request, number of concurrent threads to create for a client or server, pause

duration (if any) between making requests, number of rows and columns a database table has, number of

34

rows expected to be returned or updated by a database query, and number of arguments a server request
expects. These properties are denoted with “CG” (Code Generation) in Figure 3.4. A property may have
single value, multiple values, or expressions. Both structural and performance evaluation properties are

used by the SoftArch/MTE code generator for the generation of test-bed code and scripts.

Element Type Main Attributes Property Description
Client ClientType (AP, CG) Type of a clicnt, For example, a clicnt can be a browser, 2 CORBA clicut, or a RMI clicnt,
Threads(0G) Number of ¢lients that will be nuoning during, perfformanse testing.
RooatcPoguest RemoteScrver (AP, CG) The name of remote ssrver, to which the remots request is unched
RemoteCiyect(AP, CG) The: name of remote abjeet, which provides servieos required by the remate regquest
EemoteMethod{ AP, CG) The name of remote service, which completes the remate request
Becord Time(C(3) A switch'boolean that defines if the performance testing resules are recorded or not.
TimesToCall(CG) Bepetition time of ¢erinin eperations during performance festing
DERequest CueryType (AP, CG) Type of query for test bed and performancs testing, such as “select’, “updade’, “msert’, ole.
Dibased AP, CG) The name of queried database
Table{AP, CG) The name of queried table
TimesToCall(CG) Repetition times of certain operations during performance festing
Bowvs Returned{C0G) Mumber of retunsed resalts of the database request
Becord Time(CG) A switch/boclean that defines if the performance testing results are recorded or not.
Caching A switch/boelean that defines if quary results ane cached or not
AppRerver RemoteCigs (AP, C) Mames of all chjects this application seever hosts
Type (AP, CG) Type of the application server, such as CORBA, BMI, and 12EE,
RpmeteOlj Type (AP, CG) Type of the remote object. Typs could be OORBA, RML, and EnticyBean.
RemoteService Arguments (CO Argruments wsed by the serviceloperation
Threading (C0) A Boolean that records if this service symbols multi<hreads character or single-thread
character
ConcurrencyContral {CG) A Boolean parameter that reconds if the service has concurrency control or not
Recording Time (C0F) A gwitcluboolean that defines if the performance
testing, resuls ane recorded or nol,
DBServer Dibases (AF) Mame of all databases this database server haosts
ServerType (AP, CG) Type of database server, such as MESQL, Clowdscape, and ORACLE... ..
DBase Name: (AP, CG) Database name
Type (AP, CG) Type of database server, such as MSSCOL, Clowdscape. and ORACLE.
Table Mamwe (AP, CG) Table mme
PrimaryKey (CG) The primary key of the table
Rowes {CG) Mumiber of rows of data expected in talls
Columns (CG) Number of columns expected in table

Figure 3.4. Sample SoftArch/MTE meta-model abstractions and properties (Grundy and Cai et al,
2001)

3.4 SoftArch/MTE architecture model

A SoftArch/MTE architecture model is an instance model of a SoftArch/MTE meta-model. An architect
is able to model architectures using the abstractions of a domain-specific meta-model. The
SoftArch/MTE code generator must understand the used meta-model. An architect can parameterize

software architecture designs with available component and connector properties. For example, the

35

architect may specify a method call between client request and server service is implemented by
CORBA and 100 calls are to be made; and having code generated to implement this in their test bed.
The architect may then change this to RMI and 250 calls for generation of a new test bed and subsequent
test run. The architect can easily define a more specialized kind of architectural component or provide
further characteristics about a component in a domain-specific meta-model, but the test bed code

generation scripts need to be modified if this is done.

=10y

Fie Ecit ‘View Chunges Cudc Gnnerdlm Colaboration

-
i @) e
L\ - O
:) @ =
/Ae_g &gion_ﬂ

mm't:&smw ﬁ-“ Xi\n‘z_Q
S . >
G (4) (4 £ “ i\i)
7 atsalact_3 dikelect 4
j dptelect 2 dbypdate

455 st 1 _
dod @b Corsiower_guen
fad Cuzborer_guery -
find Wideo_guw D matlideo_uodate

r tabld_quary_d
120 updatez tabhe_quen_3
tably_gquery 1 table_query 2
L k
m.-r!ar daible cwstomer_table
m
\M\h &3 la2

(‘}
Shape: |Move =| [Debug Propagation Display Shapes |

Figure 3.5. Sample high-level distributed on-line video software architecture (Grundy and Cai et
al, 2005)

Figure 3.5 shows an example 3-tier architecture design for part of the on-line video system. The design
uses the SoftArch/MTE meta-model displayed in Figure 3.3. In this example, staff and customer client
programs have a number of requests that they can make on remote services e.g. find
video/customer/rental, add/update rental item, and update customer details (1). The requests can be
simple (one remote call) as well as complicated (involving several remote requests). For each client, the
architect can specify its property values, such as assigning a value to the property “Threads” to simulate

the number of the video shop users. Similarly, for each client request, the architect can specify a number

36

of times to call the remote service(s) and time to pause (if any) between invocations. This information
configures the server loading tests, which will be run by SoftArch/MTE’s generated performance test-
beds. The server side components include a video application server (2) and its remote objects (3). The
remote objects provide services (4) that retrieve appropriate data from the video database (5) for client
requests. The video application server can be CORBA, RMI, or J2EE. The database can be MS Access,
Oracle, or Microsoft SQL server. The architecture model in Figure 3.5 can generate CORBA, RMI, or
J2EE applications that use MS Access, Oracle, or Microsoft SQL databases.

3.5 SoftArch/MTE performance evaluation

Source
enerated Code
scripts

i Performance

i Deployment Agent —

E 4

i (3 Running client/ Remote
i SETVET Hosts
=

Figure 3.6. System deployment and test run process (Grundy and Cai et al, 2001)

SoftArch/MTE architecture models also generate DOS batch files to coordinate the tedious and error-
prone process of test bed compilation, deployment, execution, and result collecting. Figure 3.6 outlines
the SoftArch/MTE performance testing process. A generated test bed is compiled by SoftArch/MTE,
using generated compilation scripts (1). The compiled code/IDLs/deployment descriptors, together with
the scripts to configure and deploy these on a host, are up-loaded to remote client and server hosts using

the remote SoftArch/MTE deployment agents (2). On each host machine, the deployment agent

37

organizes the uploaded code and associated scripts into suitable directory structures. It runs the scripts to
properly configure the host machine, its database and registries, and the deployed test-bed code. The
client and server programs are then run: CORBA, RMI and other server programs are started; EJB, JSP
and ASP components are deployed into J2EE and IIS servers; database servers started and database table
initialization scripts run; and finally clients are started (3). The clients look up their servers and then
await SoftArch/MTE sending a signal (via their deployment agent) to run, or may start execution at a
specified time. Clients send servers requests, logging performance timing for different requests to a file
(4). Servers like-wise log the time taken to execute their remote methods and database operations.
Performance results are currently collected in comma-separated value text files. These results are sent
back to SoftArch/MTE after tests have completed (5). SoftArch/MTE collects the test results, and
aggregates them using simple data processing algorithms to form a unified result set. The results are
associated with SoftArch/MTE architecture model instances using data annotation facilities built into the
SoftArch modelling tool’s repository. SoftArch/MTE then uses data visualization techniques (e.g. 3rd
party tools like MSExcel™) to display the results of the performance tests to architects (6).

3.6 Problems with SoftArch/MTE

A number of problems were identified during the development of SoftArch/MTE. These include: using
proprietary tool platform; limited support for reuse of meta-models and code generation scripts; lack of
analysis of user interaction with systems; limited multi-view integration; limited model integration and
model transformation; and low-level implementation of cross-view traceability, constraint checking and
consistency management. The main problems that motivated the three projects of the thesis are

introduced as follows:

1) Using proprietary tool platform

The SoftArch/MTE tool is proprietary. It uses JVIews (Grundy et al, 1998), a multi-view support
programming framework, to implement back-end model, model representation, model persistency, XML
processing, user interface, and so on. The user interface and modeling style of the SoftArch/MTE tool
may cause huge learning load for tool users. The initial feedback of SoftArch/MTE users showed that it
was highly desirable to transplant the automatic performance evaluation technology to well-established
tool platforms (e.g. ArgoUML, Rational Rose, and Eclipse). Leveraging well-established platforms can
improve the quality of the SoftArch/MTE performance evaluation technology from both users’ and tool

developers’ perspective. This desire motivated the Argo/MTE and MaramaMTE+ projects, where the

38

performance evaluation technology was ported to ArgoUML platform (in the Argo/MTE project) and
Eclipse platform (in the MaramaMTE and MaramaMTE+ projects) respectively. Argo/MTE,
MaramaMTE, and MaramaMTE+ have hugely improved the quality of the performance evaluation
technology in terms of user interface, model exchange, code generation flexibility and reusability,

domain-specific knowledge integration and transformation, and tool maintainability.

2) Lack of the support for user behavior modeling

SoftArch/MTE is focused on modeling and evaluating the server-side parts of a web application. It has
very limited capability to model how clients (e.g. web users) interact with software systems (e.g. web
applications). This motivated the MaramaMTE (a project done by John et al. but closely based on
SoftArch/MTE) project that integrates architecture modeling with Form Chart modeling. Form Chart
models are used to specify web user behavior and generate realistic load testing plans. The load testing
plans can then run against the test bed of other parts (e.g. application servers and database servers) of the
web application software architecture design, or run against a running legacy web application. The
MaramaMTE project extends the applicable scope of the SoftArch/MTE performance evaluation
technology; and motivated the MaramaMTE+ project to synthesize Form Chart models through web

crawling.

3) Lack of support for model refinement

SoftArch/MTE generates java code directly from architecture models without showing the refining
process, which makes the code generation very obscure, hard to understand, and hard to modify. A well-
structured refining process is highly desirable to: improve the flexibility and maintainability of code
generation; improve the chance of leveraging the strength of other modeling technology (e.g. Object
Oriented Design); and support transformation between architecture models and their test beds. The
problem of lack of a refining process was further identified in the development of Argo/MTE,
MaramaMTE, and MaramaMTE+, which motivated the MaramaCRelation project. The
MaramaCRelation project supports model refinement through model integration and transformation. The
MaramaCRelation project provides a high-level support for model integration and transformation, which,

in turn, helps to construct flexible, extensible model refinement.

A sound refinement mechanism also requires the support for traceability, behavior synchronization, and

semantic consistency between the models involved in a refining process. SoftArch/MTE’s one-off code

39

generation process does not support traceability, behavior synchronization, and semantics consistency
management between architecture models and their test beds. SoftArch/MTE’s poor support for
traceability, behavior synchronization, and consistency management during code generation was further
identified in the development of Argo/MTE, MaramaMTE, and MaramaMTE+, which motivated
MaramaCRelation to specify conceptual model relationships, and support traceability and consistency

management between related models.

3.7 Summary

The SoftArch/MTE research provides a high-level, extensible architectural modeling language. It
encodes architecture designs in XML; it uses a set of extensible XSLT transformations scripts to
transform the XML-encoded architecture design into test bed client and server programs as well as
compilation/deployment scripts. A deployment agent running on available client and server hosts is used
to automatically upload compiled systems and to configure and deploy them. Test runs are performed,
and the performance results are automatically captured and aggregated by the SoftArch/MTE tool. These
results are visualized by either the annotations in the architecture design diagrams within the
SoftArch/MTE tool, or by a 3rd party application like MS Excel™. The SoftArch/MTE tool has been
used to model a number of distributed systems, generate performance test-beds for these models; capture
results and compare the performance measures obtained from hand-implemented, completed distributed
systems. The initial results have demonstrated that SoftArch/MTE technology provides a useful,
accurate automated architecture performance analysis approach for these distributed systems. The
problems found in the development of the SoftArch/MTE technology are generic in the areas of software
architecture modeling and software architecture performance evaluation; and they need systematic
solutions. Those problems motivated the research of projects Argo/MTE, MaramaMTE+, and
MaramaCRelation. Argo/MTE redeveloped the technology of software architecture modeling and
performance evaluation in the well-established ArgoUML environment. It has improved the original
SoftArch/MTE technology in many ways. MaramaMTE redeveloped SoftArch/MTE technology in
Eclipse environment by using the Marama meta-tool (Marama meta-tool, 2007), which hugely improved
the chance of model and tool integration. The MaramaMTE project is extended by the MaramaMTE+
project that provides automatic support to synthesize form-chart models, and generation of load testing
plans. The MaramaCRelation project is aimed for providing high level support for model integration and

transformation, which, in turn, supports structured, flexible model refinement.

40

Chapter 4 - Argo/MTE Performance Engineering Tool

The research of Argo/MTE extends the SoftArch/MTE research. Argo/MTE is aimed for industrial
usage of the SoftArch/MTE performance evaluation technology by redeveloping and improving the
technology in the well-established ArgoUML CASE tool (ArgoUML, 2003). This chapter identifies a
range of problems that arose from scaling the SoftArch/MTE research on performance test bed
generation; presents approaches used to solve these problems in Argo/MTE; reports on deployment and

evaluation of Argo/MTE architecture designs; and discusses effectiveness of the used solutions.

4.1 SoftArch/MTE motivating Argo/MTE

After the initial success, SoftArch/MTE has been used on several industrial projects where software
architecture becomes complicated. NetPay (Dai et al, 2007; Cai et al, 2004) is one of the tested large size

software systems.

4.1.1 Sample target project — NetPay

NetPay is an on-line micro-payment software system (Dai et al, 2007). By using the NetPay system, a
customer buys a collection of “e-coins” (virtual money) from a broker; and the coins are cached in an
“e-wallet” (virtual wallet) on the customer’s machine. The customer, when buying many small-cost
items from a vendor, pays for these transparently by passing the e-coin information to the vendor.
Periodically the vendor redeems the e-coins with the broker for “real” money. E-coins can be

transparently exchanged between vendors when the customer moves to another site (Dai et al, 2002).

Figure 4.1 shows a component-based architecture of the NetPay system. When developing such software,
architects must be able to model architecture, including clients, servers, machines, networks, protocols,
caching, databases, messages, and user interfaces. The architecture needs to be specified in various

levels of detail, from overview, refining into successively more detailed designs. Architects would be

41

interested in getting support to gauge likely design performance, even from early, high-level designs

(Grundy and Cai et al, 2001). The NetPay architecture in Figure 4.1 will be explained in more details in

chapter 5.
i Broker
HTTES HTTP Sacver Seaff PCx
Cuscomer PCs I oL
| cozma =
[ErcanerEWallst
Bank
Apgplication
ETTP S QL 0L DB Sarer
HITF . CC)B..E:‘: iy Anthorication
i Vendorl
HITTP Sarvar
COBRBA
I| i1 | rrEE Sarme AL
socket T H—
T '-'3153-"- | EIE cozainer
- {
I _.-—""-- We Contzzar
Applization - H QL DB Senver
Serwr -
5L 5L DB Server

Figure 4.1. NetPay micro-payment system architecture (Cai et al, 2004)

4.1.2 SoftArch/MTE deficiencies
In the SoftArch/MTE research, the technology of test bed generation and performance evaluation is tied
up with the SoftArch/MTE tool. The experiences and attempts to use the SoftArch/MTE performance
evaluation technology on industrial complicated projects such as NetPay revealed major deficiencies,
including:
* Non-standard design tool and modeling notation
The SoftArch/MTE tool is an experimental proof-of-concept tool. While it is proved suitable for
experimenting with the concepts of test bed generation and performance evaluation, the
SoftArch/MTE tool has poor usability, which causes heavy learning load for tool users. It also has
limited integration with other CASE tools, which makes it hard to leverage the strength of other well-

established modeling technologies.

42

* Proprietary XML architecture model format

The SoftArch/MTE tool saves model designs in an ad-hoc XML format developed only for in-house
experimental work. This makes it difficult to exchange architecture designs with other tools. The
SoftArch/MTE architecture model ad-hoc XML format and test bed generation scripts (XSLT scripts)

are also excessively tangled together, which makes code generation very inflexible.

* Poor support for evolvement of code generation

SoftArch/MTE hard-codes monolithic control logic for a domain-specific meta-model to co-ordinate
the processes of code generation, compilation, deployment, and result capture and visualization (steps
3-6 in Figure 3.2). When the domain-specific meta-model evolves to support new middleware
technologies (e.g. JSP and ASP web server components, web services WSDL descriptions and
deployment scripts), the SoftArch/MTE tool does not provide structured support for tool developers to

evolve the meta-model’s code generation scripts and control logic.

* Proprietary test bed deployment tool

SoftArch/MTE has its own Java deployment tool to package test bed components, deploy components,
unpack deployed components (if it is necessary), run test bed, and collect evaluation results.
SoftArch/MTE generates DOS batch files from architecture models; and the deployment tool uses the
DOS batch files to control the evaluation process. The proprietary deployment tool proved to be too
difficult to adapt to different deployment environments, and it lacked robust fundamental code

deployment and test control facilities.

4.2 An Overview of Argo/MTE usage

Argo/MTE is designed to solve above problems. Argo/MTE is aimed to become an “industrial strength”
performance test bed generation tool by extending a well-established CASE tool — ArgoUML.
ArgoUML is open source; well-structured and extendable at both diagramming and modeling levels; it
uses common data representation standards such as XMI; and its cognitive support could be used to

provide architecture design process support (Robbings et al, 1999; Robbings et al, 1998).

Figure 4.2 provides an overview of the Argo/MTE architecture and its usage. Multiple Argo/MTE

domain-specific meta-models can be defined using a new Argo/MTE meta-tool (an ArgoUML tool

43

extension based on the SoftArch/MTE meta-tool), each providing a different set of architecture
modeling abstractions and code generators (1). These meta-model abstractions are stored using an
extended form of ArgoUML’s Meta-data Interchange (XMI). Argo/MTE allows tool users to draw,
modify, refine, and revise software architecture designs, again using a new architecture modeling tool
(an ArgoUML tool extension based on the SoftArch/MTE architecture design tool) (2). Architecture
models are developed using one or more meta-models and multiple design views. Each Argo/MTE
design encodes essential data to generate a test bed (a distributed software system) for a given level of
abstraction. The test bed not only implements fundamental functional requirements of the intended
system, but also carries performance evaluation information. Meta-models and architecture models are

saved in an extended XMI format (3).

Argo/UML CASE Tool

Remote Hosts

Result
Visualusation
Plug-m

Architecture
Meta-model
Dhagrams

Existimg UML
Diagrams. ..

Ant Seript
Invocation
Plug-m

— I
Euisting XMI-based - Ant Seripts
' A u
Model Repository e
Generation Q)]
/‘ @ | ¥ Plug-n /—‘\
Extended XMIbased = | Xelan XSLT
Model Repository | Engine
+ P~ /

e

() | XML Architecture
Models

Reusable
Meta-models

Generation Scripts

Figure 4.2. Overview of Argo/MTE architecture (Cai et al, 2004)

In addition to the generation of a test bed, an architecture model also generates a set of Ant (Apache Ant,
2004) configuration management tool scripts to perform the test bed’s compilation, deployment, test
initiation and results capture (4). The XMI-encoded software architecture model is transformed into a
range of Ant-related files and scripts (5). A set of XSLT scripts and the Xalan (Apache Xalan, 2004)
XSLT engine are needed to perform this work. The functional test bed code is compiled and deployed to
multiple host machines (6). Performance tests are then run producing text files capturing the

performance profiling results (7). The results are downloaded and captured in an MS Access database,

44

producing an archive of architecture model/performance results over time. The result database is queried,
and performance results for a single or multiple performance test runs are visualized using various

graphs and architecture model annotations (8).

4.3 Argo/MTE extending ArgoUML

Figure 4.3 illustrates the three important extensions made to ArgoUML. Argo/MTE extends the existing
UML meta-model with a set of predefined elements to support Argo/MTE-styled architecture modeling.
Argo/MTE extends the ArgoUML tool by adding a domain-specific meta-model specification tool to
support domain-specific meta-modeling. Argo/MTE extends the ArgoUML tool by adding an

architecture design tool to support architecture modeling.

pre-build UML meta-
model-level abstractions
for architure modeling

— extends ————» TIML Meta-Model

|

ArgoMTE Domam-specific meta-model
(e.g.tieved e-comnerce web systems)

l

ArgoMTE Software Arclutecture Nodel
— models —» {instance model, e.g. on-line video shop)

ArgoMTE meta-model
specification tool

models

ArgoMTE architecture
design tool

Figure 4.3. Extending ArgoUML

4.3.1 Extending UML meta-model to support architecture-specific modeling
Figure 4.4 illustrates the pre-defined UML meta-model level abstractions for architecture modeling,
including: objects (ArchOperHost), nodes (ArchHost), operations (ArchOperation), attributes

(ArchAttribute) and two types of properties (i.e. ArchitecturalParameters, TestingParameter).
ArchOperHost: an architectural abstraction that hosts operations. For example, a remote object of a

CORBA application server in the NetPay system (refer to Figure 4.1) contains a set of business

operations, and can be abstracted to an ArchOperHost.

45

ArchOperation: an architectural abstraction of operations/logic of an ArchOperHost. For example, a

business operation of a CORBA remote object in the NetPay system (refer to Figure 4.1) can be

abstracted to an ArchOperation.

ArchAttrHost: an architectural abstraction that hosts attributes (e.g. tables in a database). For example,

a database in the NetPay system (refer to Figure 4.1) contains a set of tables, and can be abstracted to an
ArchAttrHost.

Classifienfrom Core

i

Behawioral Feature(from Core ArchNode

Structural Featurelfrom Core

i i i

lorch Operation] &rch OperHost ArchHost #rohAtrHost Aech fatribute

=

1Arch Parameter

lrchhdetaType——

A

Architectural PFarameter Testing Parameter

Figure 4.4. Extending UML meta-model with Argo/MTE architecture modelling abstractions

ArchAtrribute: an architectural abstraction of attributes for an ArchAttrHost. For example, a table of a

database in the NetPay system (refer to Figure 4.1) can be abstracted to an ArchAttribute.

46

ArchHost: an architectural abstraction that hosts ArchOperHosts and ArchAttrHosts. For example, the
CORBA NetPay Broker application server (refer to Figure 4.1) hosts a set of ArchOperHosts (such as
CORBA remote objects), and can be abstracted to an ArchHost.

ArchParameter: an architectural abstraction of properties for ArchOperHosts, ArchAttrHosts,
ArchOperations, and ArchAttributes. There are two types of ArchParameter; and they are

ArchArchitectureParameter and ArchTestingParameter.

ArchitecturalParameter (similar to AP in SoftArch/MTE, refer to section 3.3.2 of chapter 3):
representing properties that represent architectural/structural information. For example, a client request
needs architectural parameters to define which remote server it calls, and which remote service it

requests.

TestingParameter (similar to CG in SoftArch/MTE, refer to section 3.3.2 of chapter 3): representing
properties that are related to performance measurements. For example, a client request needs testing
parameters to define how many repetitive calls need to be made, and how long it takes for the request to

get the response of the server.

ArchMetaType: an abstraction similar to the UML stereotype. An ArchMetaType represents a domain-
specific abstraction. Sample ArchMetaTypes for the e-commerce domain can be Client, AppServer, and

RemoteObject.

4.3.2 Adding a domain-specific meta-model specification tool

Same to SoftArch/MTE, Argo/MTE uses domain-specific meta-models to abstract domain-specific
knowledge by specifying abstraction types and their relationships. Each such modeling type defines a set
of architectural and testing parameters. Architectural parameters define structural data of an architecture
design, while testing parameters provide data related to performance measures. A well-defined domain-
specific meta-model is essential to ensure an architecture design has adequate, low redundancy
information for test bed generation. Argo/MTE extends ArgoUML to build the Argo/MTE meta-
modeling tool. Figure 4.1 shows a sample Argo/MTE meta-model for the domain of tiered e-commerce

web systems (e.g. NetPay). This meta-model includes abstractions for clients, databases, application

47

servers, remote objects, and other architecture modeling types. The domain abstractions and their
properties are listed in Table 4.1(similar to Figure 3.4). Element attributes annotated with “AP” are
“ArchitecturalParameters” (refer to Figure 4.4) representing structural information. Ones marked “TP”
are “TestingParameters” (refer to Figure 4.4) representing performance measures. Figure 4.5 shows that
Argo/MTE meta-tool has similar look and feel of UML modeling, which reduces the learning load of

users’ domain-specific meta-modeling.

Cliert

OBaseServer

,{ _______

Oatabase

Reiuteﬂequesto
OB Request

Table

(a)

FppServer

<-4 T

Femote Object

Remote Servicel)

Figure 4.5. An Argo/MTE e-commerce-specific meta-model

Abstraction Properties Property Description
Client Name (AP) name of the client
(typed by ArchOperHost)
Type (AP) type of the client, e.g. browser, CORBA, RMI
Threads (TP) simulate the number of clients
RemoteRequest Name (AP) name of the request
(typed by ArchOperation)
RemoteServer (AP) name of the remote server the request tries to
contact
RemoteObject(AP) name of the remote object the request tries to
contact
RemoteService(AP) name of the remote service the request tries to
contact
WarmUp (TP) how long the request needs to wait before it
contacts the remote server
RecordTime (TP) if the response time needs to be saved or not
AppServer Name (AP) name of the server
(typed by ArchHost)
Type (AP) type of the server, e.g. CORBA, RMI, J2EE,
http-enabled
RemoteObject Name (AP) name of the remote object
(typed by ArchOperHost)

48

Type (AP)

type of the remote object, e.g. CORBA, RMI,
J2EE

RemoteService Name (AP) name of the service
(typed by ArchOperation)
RemoteServer (AP) name of the server the service tries to contact
RemoteObject(AP) name of the remote object the service tries to
contact
RemoteService(AP) name of the remote service the service tries to

contact

WarmUp (TP)

how long the service needs to wait before it
responds a request

RecordTime (TP) if the operation time needs to be saved or not
DBaseServer Name (AP) name of the database server
(typed by ArchHost)
Type (AP) type of the database server, e.g. MS Access,
MS SQL
Database Name (AP) name of the database
(typed by ArchAttrHost)
Table Name (AP) name of the database table
(typed by ArchAttribute)
DBRequest Name (AP) name of the request
(typed by ArchOperation)
RemoteDBServer name of the database server this request tries to
(AP) contact
RemoteDB(AP) name of the database this request tries to
contact
RecordTime (TP) if the response time needs to be saved or not

Table 4.1. A sample Argo/MTE meta-model abstractions and their properties

4.3.3 Adding an architecture design tool

The Argo/MTE architecture design tool was developed by specializing the class diagramming and
collaboration diagramming tools from ArgoUML. This approach provides architects with design tools
similar to the look and feel of the ArgoUML toolset. Part of the complex, distributed NetPay system
architecture is shown in Figure 4.6 to illustrate this tool. The architecture modeling notation extends the
UML class and collaboration diagram appearance and layout. A class icon-like representation of
architectural components is used. The Argo/MTE architecture model (Figure 4.6) comprises components
(rectangles), requests and services of components (labels), associations (solid black lines) and hosting
associations (dashed lines). Each component and association is typed by a domain-specific abstraction
looking like the UML stereotype. Each modeling element (e.g. components, operations, and attributes)
has a set of properties derived from its type. The architecture in Figure 4.6 comprises a customer PC-

hosted browser and payment client (1), a broker (2), and a vendor site (3). The client browser accesses a

49

vendor’s web pages (4), which, in turn, access application server components (5) communicating with a
database (6). Components are associated via relationships. More details about this architecture model

will be explained in chapter 5.

k% Serverr
<< Client > P
BrokerSernver
Reader |mmmmmm e mm e — e —— =
===
N ! |__;-———a.—"')—— {2}
access NetPay Siee)| | r << fppServers
1 ! | << Pop Serversx
1 ! | . Femote Customerhianagersener
{1} | 1 \U" Remete EcoinhanagerServer
| T
<« ject s> ! < ject>> T 1
Remote Object | Remote Object | v
i i | i |
CustomerRegistration Page| | CustomerBuy BxoinPage v <¢Remote Object >
registarCustomen) : buy Ecain() <<Remote Object > Femote CustomertvEnager
1 i <<DBaseerver:»
| Riemote Beainivianager] insert Customer
'\|f,r _ BrokerDB Senrar
generate Ecoing) select Customemn)
. T
< <Remote Object > > generateTandI0) | update Customen)
i |
EcoinInterface select Eoint] |
do Generate Beoinl) \:/r
doRegister() <<Database:>
Broker
customer
Eain
handp
wendorhost
< <fpplervers:
(B[——— (5)
Enews Server
F——————-—--=-=-z <sfppServers? <<PppServers»
: {4} r RemoteAicleivBnagerSenver] [|RemuoteTand IviEnager Server|
|
! 1 I 1
: | I I
1 | |
h'd hd | i
<<RemateObject>?] [:<RemoteObject>> ! !
o W
EcoinPage Peticlelnterface <¢Ramote Object >>
<< Remote Object »
ecoin Login doseticle Content() RemoteAticlehBnagen
Femuote Tand IvEnagen
doDisplaw() warify Eeoind) <<[OHaseServer:x e ndent
genergte Index
select Aticle | D0) wendorDBSerrer
I requineTand 1)
selectAticler) |
|

Vi

+¢[atabasers

MHemspaper

(6)

article
redeem
section
tandi

wvendorhost

Figure 4.6. Part of the Argo/MTE architecture model for the complex micro-payment system

50

Argo/MTE supports multiple views for complex architecture specifications. Figure 4.7 shows two
sample collaboration views of the architecture model, which both visualize/specify the same

collaboration process between client requests

and server services. In Figure 4.7(1), the

collaboration/messaging view is overlaid with the structural architecture design. In Figure 4.7(2) the
collaboration/messaging view is displayed separately. Collaboration views provide complementary

support for users to specify how the structural modeling information collaborates to complete concrete
tasks.

4ZChent 3 (1} < Apnferuert s
Fiazer AOSenier
e Tttt TTIILiIzzEeT
accesshlet Pay Siel] —m T T
re 2fpp Sennart 4 Ppnfenrerd s
RermoteCusiomeddanagerierven Remuoie Ecinbbanager Seruen
ra w
i b T -
<<Remutelbject>> 1 Remobz bt > : :
Wy
CustormerFegistratonFage CuzmerBuyEcoinFage ul I —
[" -HRen:nt Object> 41 DBaseServert? “UEmRITE
¥ {registanCustome) . e aseerver
Y buyEzain] Femuts Eccinldanager
Remute Customersznager BokerDB%emver | ——— —— ~ |
B P — e Bl
" ingert Custormerl) R
— genargieTandI[
<4 Remotebpect = selectCusamen;)
sekCLBNIg)
Exoin Int=rfars update Customer] 1y
—_— e '
doidenzraiz Ecoin) cilgtzbases>
[:;dnﬂngi:tr[) Broker
B |
© usamer
sl
Faadar
post
4 Femate Obiecgr
LT oTar Pl plltrad or Pagg
fa (FELSr Do) +Fzmet eljao
R mole Eumnm:pr
e Cusbomer)
{2} < Famooz Db os = b et Custornery
Escinlntariaze FR—
o [e e rar e Eecina) I
da Fepiztan Broher
wecin
hardp
endorast

Figure 4.7. Sample collaboration views of an Argo/MTE architecture design

51

4.4 Data format of the Argo/MTE architecture model

SoftArch/MTE architecture models are saved as a proprietary XML format (a sample XML file is shown
in Figure 4.8). The schema of the architecture XML files is based on the used SoftArch/MTE domain-
specific meta-model. It uses abstraction types (e.g. Client in line 2, RemoteRequest in line 6) and their
properties (e.g. Name in line 3, Threads in line 5) as the main tags. Whenever the domain-specific meta-
model is changed (e.g. change of meta-type name), the schema of architecture XML is changed, and the
related SoftArch/MTE XML reader and writer need to be changed as well (manually). The problem is
getting worse when modeling larger systems, where types are complicated. The architecture XML files
also have the fundamental problem that only the SoftArch/MTE tool could ever generate and read them.
Argo/MTE is aimed at representing the architecture models in a more standardized format, and

eventually making Argo/MTE model data exchangeable with other XMI-supporting CASE tools.

<Client=

<Mame>Reader</Nama>

<Type> browser</Type=

<Threads=20</Threads>

<RemoteRequest=
<Mame=registerCustomer</Mame:=
<RemoteSerer=Broker</RemoteSerers
<RemuoteObject=CustomerRegistrationPage</RemoteObject=
<RemoteSericesregisterCustomer</RemoteSerices
<WarmUp =10<Marmlp =
<RecordTime =true</RecordTime >

</RemoteReguest=

</Client=

Figure 4.8. Sample SoftArch/MTE architecture design XML file

For now, Argo/MTE extends ArgoUML’s XMI representational format, and uses the extended XMI-
format to record Argo/MTE architecture designs. The architecture-specific elements of the extended
UML meta-model (shown in Figure 4.5) consist of the main tags of architecture design XMI files
(illustrated in Figure 4.9). Instead of being the main tags, the domain-specific abstraction types are
recorded as the values of tag ArchMetaType (see lines 31 and 48 in Figure 4.9). This extended XMI
format is more stable than the proprietary SoftArch/MTE architecture model data format, because the
evolvement of an Argo/MTE domain-specific meta-model will not influence the reader and writer of the
Argo/MTE tool but the values of ArchMetaType. For example, when users modify a domain-specific

meta-model by changing the name of an abstraction type or adding more testing or architectural

52

parameters to a type, the Argo/MTE tool can save the architecture design without changing the model
reader and writer of the tool. Using UML meta-model level architecture elements to record Argo/MTE
architecture design models separates domain-specific abstractions from architecture model data format,
which leaves the Argo/MTE domain-specific meta-models to be focused on: domain-specific
abstractions, their code generation scripts, and the logic that coordinates the code generation scripts

when generating fully functional test bed.

<ArchOperHost name="Reader” xrmiid="xmi.7"
wrmi.udid="-126--40-38--114-47 cadf. f8dc455e28. -7 ">
<ArchOperations=
<ArchOperation=
<ArchOperation. TestingParameters>
=ArchOperation. TestingParameter=
Boolean RecordTime=true
=/ArchQperation. TestingParameter=
<ArchOperHost. TestingParameters=
Integer Warmllp =10
<fArchOperHost. TestingParameters=
=fArchOperation TestingParameters=

=ArchOperation. ArchitecturalParameters=
<ArchOperation ArchitecturalParameters
String Mame=registerCustomer
<fArchOperation. ArchitecturalParameters
<ArchOperation ArchitecturalParameter>
String RemoteServer=Braker
</ArchOperation. ArchitecturalParameter=
<ArchOperation. ArchitecturalParameters
String RemoteObject=CustomerRegistrationPage
<fArchOperation. ArchitecturalParameters
<ArchOperation ArchitecturalParameters
String RemoteService=registerCustomer
</ArchOperation. ArchitecturalParameters
</ArchOperation. ArchitecturalParameters:

<ArchMetaType=RemoteRequest<fArchiMetaType:
<fArchOperation=
«</ArchOperations=>

<ArchOperation TestingParameters:
<ArchOperHost. TestingParameters
Integer Threads =20
<fArchOperHost. TestingParameters
«<fArchOperation TestingParameters:
<ArchOperHost. ArchitecturalParameters=
=ArchOperHost ArchitecturalParameters
String Name=Reader
=fArchOperHost ArchitecturalParameters
<ArchOperHost. ArchitecturalParameters
String Type =browser
<fArchOperHost ArchitecturalParameters
</ArchCperHost. ArchitecturalParameters=
<ArchidetaType=Client</ArchMetaTypes=
={ArchOperHost>

Figure 4.9. A sample Argo/MTE architecture design XML file

53

4.5 Test bed generation and domain-specific meta-model evolvement

Figure 4.10 illustrates the framework of Argo/MTE code generation. The extended UML meta-model
provides architecture model data format (1) and works as the meta-model for domain-specific meta-
modeling (2). A domain-specific meta-model records abstractions of an interested domain (in this case,
tiered middleware-based web systems); it provides appropriate code generation script(s) (e.g. Client.xslt,
RemoteRequest.xslt) for each of its abstraction; and it provides control logic to coordinate the code
generation scripts to generate functional code. The role of domain-specific meta-models in test bed

generation will be explained in detail through a case study in Chapter 5.

extended UML
meta-maodel

abstraction level 1

2. provide meta-model

| provide archite cture domain-specific
model data format meta-model

3.provide domain-specific abstractions,
their code gereration scripts, and the
logic to coordinate the scripts

+

v
metance architecture

abstraction level 2 design model
¥ I Tl___.

Figure 4.10. Framework for Argo/MTE code generation

An Argo/MTE domain-specific meta-model may evolve with new architectural concerns coming up.
When a domain-specific meta-model evolves, its code generation scripts and logic need to evolve. At
this stage, Argo/MTE provides a conceptual framework to support the evolvement. Figure 4.11(b)
illustrates the conceptual framework that can support the evolvement of the meta-model in Figure

4.11(a).
In Figure 4.11(b), steps (a) and (b) are preparation steps. Before extending a domain-specific meta-
model to support new domain-specific concerns, tool users/developers need to analyze the new concerns

to decide their performance-critical atomic functional code part (step (a)). Tool users/developers derive

54

the intended new domain-specific abstractions and construct programs (mainly XSLT scripts) to bridge

the intended abstractions with their functional code part (e.g. java source code) (step (b)).

Client OBaseServer '(j — — | Database
Renweﬂequesto Tabla
DBRq 0]
lepplication Server Remate Object

I Remote Sanvice)

(a)

design ntended)

(a) abstractions(meta-
types), thewr properties,
and code generation
templates/scnpts

l (2)

compare
concernedimtended
(b) abstractions with
other exsting
abstractions ih a
domain-specific

/ meta-model "\
+

pre-buid
petformance-crtical | (1)
functional code part

ic

@ ard) 5"
(d) o (e) v A | ®
adding new meta-type modifymg emsting meta-type ad.dn.lg new I:an.dadate valunj:s .for
and create relationships by adding and deleting its existing properties of an existing

meta-type and modify
relationships with other exsting
meta-types

with existing meta-types| | properties and modify
relationships with other

existing meta-types

Figure 4.11. (a): a sample Argo/MTE meta-model for tiered web systems; (b) a conceptual

framework to evolve Argo/MTE domain-specific meta-models

After the preparation, tool users/developers start to evolve the existing meta-model to support the new
intended abstractions, and they have three options to do so: 1) none of the existing abstractions is even

close to the intended abstraction, and a new abstraction need to be added to the existing meta-model

55

(step(d)); 2) one existing abstraction is similar to the intended abstraction, and can represent it via slight
modifications of the existing properties (such as adding and/or deleting properties)(step (e)); 3) an
existing abstraction is very close to the intended abstraction, and can represent the intended abstraction
by adding and/or deleting a few candidate values for some of its properties (step(f)). The three options
allow users to extend the domain-specific meta-model in different scopes to make sure that new meta-

modeling information goes to the right places without causing much redundant modeling information.

A domain-specific meta-model must always be validated while it is evolving. For example, for every
newly-added modeling abstraction, users need to check how it influences the existing meta-
types/abstractions, such as, if the newly added abstraction is able to work with the existing abstractions
as they are, or if the existing abstractions need to be modified before they can work with the newly
added abstraction. This evolvement-validation cycle is represented by the bi-directional arrows (3), (4),

(5) in Figure 4.11(b).

This conceptual structured framework helps users to develop, modify, and reuse domain-specific meta-
models in the Argo/MTE’s meta-model specification tool. The conceptual framework will be supported

by the Argo/MTE tool in the future work.

4.6 Automating performance evaluation process

Besides test bed generation, the performance evaluation process involves test bed compilation,
deployment, execution, and result collecting. Argo/MTE uses third party tools (mainly Ant tool) to
automate the tedious and error-prone evaluation process. The efficiency and maintainability of

Argo/MTE evaluation process have been hugely improved from those of SoftArch/MTE.

4.6.1 Generating Ant build files

The test bed performance evaluation process is complicated. For example, to successfully compile a web
system (e.g. NetPay), the order of compiling each part of the system is important, as some parts rely on
the compiled results of other parts (such as a CORBA object can not be compiled until its IDL file is
compiled). SoftArch/MTE hard-codes a set of monolithic guidelines (logic) to generate DOS batch

files from an architecture model, and uses the DOS batch files to automate the process of test bed

56

performance evaluation. As the complexity of the test bed increases, the hard-coded monolithic

guidelines are hard to evolve, and DOS batch files are extremely hard to manage.

Argo/MTE uses the Ant tool (Apache Ant, 2004) to improve the flexibility and manageability of the
performance evaluation process. Ant build files are well-structured; and their target actions are
functionally independent. They can manage complex dependencies among the parts of a large test bed

program at each stage of compilation, deployment, and execution.

Figure 4.12(a) illustrates a small piece of generated Ant build file for compiling the BrokerServer and
EnewsServer of the generated NetPay test bed. Details of the build file will be explained through the
case study in Chapter 5. Figure 4.12(b) describes a conceptual framework for Argo/MTE to manage the
evolvement of build file generation. Steps (a) and (b) are preparation steps. Each meta-model abstraction
must bring pre-built scripts to generate its individual Ant build files for various operational tasks,
including compilation.xml, deployment.xml, and resultCollection.xml (step a). The meta-model itself
must provide control logic to coordinate the individual build files of the abstractions (step (b)). When the
meta-model evolves (refer to Figure 4.11), users need to update the pre-built generation scripts of each
abstraction (by replacing old ones or adding new ones); and they must also validate the control logic to
coordinate all the involved scripts to synthesize appropriate Ant build files for the process of test bed

performance evaluation (step (c)),

< l—— =============== (Compile BrokerServer server=s=s=s================== ——3
target name="BrolkerServer" depends=="RemoteEcoinManagerServer . RenoteCustomeranagerServer”
¢javac srodir="src-Broker" destdir="${build. home}-WEB-INF-clazses"
debug="%${compile.debug}" deprecaticn="${compile deprecation}"
optimize="s{compile optimizel":
tzlasspath refid="compile.clas=spath"-:
<sjavac:

|—— =================== Conpile EnewsServer serversssss=ss=s=s======= ——3
target name="EnewszServer" depends="RemoteTandiManagerSerwer . RemoteirticledanagerServer”:
¢javac srcdir="src-enews " destdir="${build home}-WEB-INF-cla=z=ze=s"
debug="%{compile.debug}"” deprecation="s{compile. deprecation}”
optimize="5{conpile. optinizel}" >
¢classpath refid="compile.classpath"~ >
cojavac: (1)
Starget » .

57

each abstraction (meta-type) @ (b)
brings templates/scnpts to
generate

meta-model brings Ant
coordmation logic, e g the
dependency between two
Ant actions

Lunt build files:
-compilation xal

\ -deplovment sanl
-regultCollecting xanl

!

(c)

medify existing Ant-generaton 2
templatesizcrpts and 2)
vahdate &nt coordination logic

Figure 4.12. (1) sample Ant build file snippet; (2) a conceptual framework to manage the

evolvement of Ant script generation

4.6.2 Managing automated performance evaluation Process

Figure 4.13 illustrates the Argo/MTE process of test bed deployment, execution, and results
management. Argo/MTE instructs Ant to upload and initialize generated test client and server programs,
scripts, IDLs and database scripts (1).The generated Ant build script is run with “deployment” parameter,
resulting in multiple file uploads to remote hosts using a local SFTP client and remote SFTP servers(2).
Each remote host has another generated Ant script uploaded as part of this deployment process. This is
used by a remotely-deployed Ant build engine. The Ant build engine, running on each host to initialize
deployed programs and configuration scripts, synchronizes the start of multiple client programs (3).
Results from performance evaluation are captured as text files (4). The Argo/MTE Ant engine
downloads these results via SFTP (5). It updates a test database by inserting performance results for each

model item grouping them by test run (6).

58

ArgofMTE - netpay.zargo

R[4 el T] 215 (==l O [alole~Nalalsiz

s Clian s »
Faader

Feemote Ant
Build Manager

=

Femote Cliznt & Server Hosts

Femote ACT tool
Databases etc

]

Test bed Famnmg
Programs

ie Edit wew Crewia Olagam Tadbed orchoollaboration Smange Seneration doiiqua] =il

S ApplcaonSerner

e comcx it Py S

| Erteturar

e e T R e e
i :__' FE e
| ' !
I
N i Sy
4 sFemooe Objecr - : R e 1= = L
[: i P s ! ot e ormear B i B Pags
ragictar Cuato mas) I —
1
1
I3

E:-gn.np.urn
el e brba e
dadanaiataEod in:

4
Aui
il oe-
rapaatTime 1atal
I IEEL]
10 [1gac

e A A 3 T e 3 D e b b e e

" BarChar |

Evaluation Results

3] -

2)

SR

.- cortegimber): o o O e s Eenin | |

Figure 4.14. Example of result visualization

59

The result visualization component queries the test result database and displays test run results as graphs
or annotations to architecture model diagrams. This is shown in Figure 4.14 where architecture
components with performance results available are annotated with a small box at the top left corner
(Figure 4.14(1)). The collected results can then be examined in tabular (Figure 4.14(2)) or graph (Figure
4.14(3)) form within Argo/MTE. The visualization component closely integrates the result visualization

support into Argo/MTE architecture model diagrams (7).

4.7 Discussion and Conclusions

4.7.1 General Discussion of Argo/MTE

Argo/MTE has been used to model and test several software architectures and has compared generated
performance results against that of actual implemented applications for accuracy. Applications modeled
include several variants of thick and thin-client versions of an on-line video application (Grundy and Cai
et al, 2001), a Java Pet Shop application (MSDN, 2002), substantial parts of NetPay (Dai et al, 2007; Cai
et al, 2004), and several architectural approaches to Enterprise Application Integration (EAI) support
system (Grundy and Bai et al, 2003). Argo/MTE successfully modeled these diverse architectures. The
meta-modeling tool permitted users to define allowable modeling abstractions and tailor meta-models
for ever-growing interested target technologies (e.g. from RMI, CORBA, to J2ee, .NET). The structural
architecture modeling facilities were predominantly used to define clients and their requests, multi-tier
servers, server objects, web components and relationships, and databases and tables. More complex
architectures like the EAI and NetPay systems used multiple views with collaboration to manage the
modeling complexity. Argo/MTE also presents conceptual framework to support the evolvement of test

bed generation and Ant files generation as the domain-specific meta-model evolves.

J2EE and .NET test bed code is generated for each modeled and tested system. Generated test beds are
run by using one or more SQL Server 2000database servers. Some of the tested applications had pre-
existing implementations in both J2EE and .NET (video system and Pet Shop); others had
implementations in Java, J2EE, Java Messaging Service and CORBA (NetPay and the EAI application).
Generated performance tests were run against the original, hand-implemented applications. In general,
performance results obtained from the generated test bed code are accurate, with detailed Argo/MTE
models producing performance results within 20-40% of the hand implemented applications. Larger

variances occurred with systems with complex business logic (conditional execution of substantial

60

remote object and database services) and complex transaction processing logic as these violate
Argo/MTE’s assumption of low overhead of such code. For some implementation technologies,
including Java Messaging Service and .NET web services, Argo/MTE had only rudimentary code
generators, resulting in inaccurate generated code. Overall, the performance results obtained from
Argo/MTE’s generated test beds were reasonably close to those obtained when running the exact same
clients against the real implemented system servers. As the code generation scripts/templates encode
“the best-of-practice”, test bed can also help to discover implementation errors in the real system
developed by less experienced developers when Argo/MTE test bed results are wildly different from
those obtained from the real system. Correction of these programming errors resulted in much closer
performance result correlation. Argo/MTE’s performance test database proved useful to capture all test

results in one place and allow complex analysis and result visualization.

The conceptual frameworks (Figure 4.11 and Figure 4.12) provide structured guidelines to extend code
generation facilities with the ever-evolving domain-specific meta-model. The frameworks need to be
elaborated to get full tool support in the future. Argo/MTE can annotate architecture models with the
evaluation results, and present evaluation results through the seamless integration with third party tools

(e.g. MS Access, MS excel). The performance visualization support is still basic and needs improving.

The XMI extensions, based on the UML meta-model extensions, are arbitrary, although they are a
significant improvement on the proprietary architecture model format of SoftArch/MTE. The format
used may require revision as standardization occurs in the representation of architecture information in

UML and XMLI.

Extensions to the UML meta-model, test bed evolvement management and Ant-file evolvement
management are all much more structured and flexible than with SoftArch/MTE, which allows
Argo/MTE to deal with more complex architecture design models than the SoftArch/MTE. Most of the
systems tested by Argo/MTE had several servers and databases, with numerous remote operations per
server, even with greatly simplified architectural models. Compared with SoftArch/MTE, Argo/MTE is

more user-friendly, better structured, easier to manage, and more efficient.

61

4.8 Summary

Applying SoftArch/MTE automated performance test bed generation tool to industrial case studies
proved problematic. It was found that while this automated software engineering technique was
applicable to the case study domains, the proof-of-concept tool had many problems when trying to scale
it. Argo/MTE was developed to integrate the test bed generation approach into an open source, UML-
based CASE tool. Extensions of UML modeling notations and data representations of models are used to
describe architectures. A number of third-party tools, including XSLT, Ant, SFTP and MS Access, are
used to realize the performance test bed generator support in a much more scalable and flexible way.
Using Argo/MTE on several large industrial case studies indicates these approaches have generally been

successful in scaling SoftArch/MTE test bed generation approach.

62

Chapter 5 - Using Argo/MTE - NetPay Case Study

This chapter uses NetPay as a comprehensive case study to examine the features of Argo/MTE. The case
study demonstrates how Argo/MTE specifies software architecture of complicated web systems;
generates a high abstraction level test bed; deploys and executes the distributed test bed; and collects and
stores performance evaluation results. The case study also compares the performance evaluation results

of a generated NetPay test bed with those of a legacy NetPay software system.

5.1 NetPay review

As is introduced in Chapter 4, NetPay is a micro payment system to charging for web content (typically)
for situations with a small cost-per-use/ high use-frequency. An example use of NetPay is on-line
newspaper purchase, where users may intend to spend large numbers of small amounts of money at web
sites in exchange for various content or services (Dai et al, 2007; Cai et al, 2004). A NetPay micro-
payment system includes customers (e.g. newspaper readers), vendors (e.g. on-line e-newspapers) and a
broker. The broker is responsible for the registration of readers, and for crediting the e-newspaper’s
account and debiting the reader’s account. Other main concepts in a NetPay system include: e-coin
(electronic money used in NetPay system), and e-wallet (cached e-coin information), and touchstone (e-

coin transaction history) (Dai et al, 2007).

Figure 5.1 illustrates the architecture of the NetPay system (Cai et al, 2004). The Broker hosts a database
that holds the information of: customer and vendor account, generated coins and payments, and
redeemed coins and micro-payments made (buying coins and redeeming money to vendors). Through a
set of CORBA interfaces, the Broker application communicates with vendor application servers when
they request touchstones and redeem e-coins. The Broker server also communicates with one or more

bank servers to authorize micro-payments (customer buying coins or broker paying vendors when

63

redeeming spent coins). The customer can access the Broker to buy e-coins, and check their e-wallet

balances and transaction history (Dai et al, 2007; Cai et al, 2004).

The customer accesses the broker and vendor servers through a web browser. The customer’s e-wallet
(cached e-coin information) resides on the vendor server, and is transferred from the broker to each
vendor he/she is buying content from. When the customer buys e-coins the Broker’s application server
updates the customer’s e-wallet. When the customer purchases information, the vendor’s web server

accesses e-coin information using his/her e-wallet.

: Broker
HTTES HTTE Server Seaff PCs
Customer PCs 5
o COREA L
[Browser+=EWallet
: : Bank
i Application i
HTTP i Server SQL QL DE Server] i
H o :
S F CORBA Auhersaton
Vendorl N A e R ‘
. Vendor2
HTTP Server
COREBA
J2EE Sarver QL
socket _‘- :
CORBA | ETE conminer
L 3 i Web Container
Application : i SQL DB Server|
Server - i
SQL 5QL DB Server

Figure 5.1. Basic NeyPay software architecture (Cai et al, 2004)

The vendor sites provide an http-enabled application server. The Vendors provide web pages with
contents that need to be paid for. In order to verify the e-coins being spent and to redeem the spent e-
coins, the Vendor application server needs to access the Broker application server via CORBA to obtain
information. Vendor application servers communicate with each other to pass on e-coin info via a
CORBA interface. Vendors may use quite different architectures. In the example above, Vendor #1 uses

a web server, custom application server and relational database. Vendor #2 uses a J2EE-based

64

architecture with J2EE server providing Java Server Pages (web services) and Enterprise Java Beans

(application server services) (Cai et al, 2004).

After developing the NetPay system architecture and a prototype, we wanted to determine its scalability
and performance (mainly through average response time) under heavy loading. Argo/MTE was used to
retrieve the software architecture model of the NetPay system and generate performance test beds to
empirically evaluate NetPay performance. As part of this work we wanted to assess both the
performance of the legacy NetPay system as well as the performance of the Argo/MTE-generated test
bed under Argo/MTE-generated client loadings. To this end we:
e developed an architecture model of the NetPay system in Argo/MTE
e generated client load test application code and ran these against the legacy NetPay system
e generated server-side code from the NetPay architectural model and ran the same NetPay-
generated client load test applications against it
e compared the results obtained by these two performance evaluations
e made modifications to the legacy NetPay code base to correct performance faults discovered
during this process
e re-ran the client loading tests against the existing, modified NetPay application and compared the

results with those from our generated server-side code

5.2 Modelling NetPay system in Argo/MTE

Figure 5.2 shows part of the Argo/MTE architecture design of the CORBA-based NetPay software
architecture in Figure 5.1. This architecture model uses the e-commerce domain-specific meta-model
introduced in section 4.3.2, Chapter 4. Like Figure 5.1, the model contains three main parts, including
the “Reader” (typed as Client), the “BrokerServer” (typed as AppServer), and the “EnewsServer” (typed
as AppServer). Unlike Figure 5.1, this model only contains one vendor. In Figure 5.2, the “Reader”
accesses the “BrokerServer” to buy e-coins, and accesses the “EnewsServer” to purchase web contents

by using the e-coins.

65

The two

A4

<<{Femote Object>] [¢<Femaote Object >
EcoinPage Ariclelnterface
ecoin Loging doAticle Content()
doDisplay(

(8)

RemuotesticlehnagerServer)

< <fppSenvery
<<Cliart>> “op
{1} BrokerServer
Reader
== T T T T T T T T T T T T IS {3}
1 R {2}
accessMet Pay Site)| 1 ! r - <4fppSarversy
| ! | 4 App Server:
1 ! | : Remote Customerhinagerserver
\\[‘; 1 \b/ Remote BeoinhianagerServer|
| T
I et | I jectss T 1
Remote Object | Remote Object | \'bf
. . | . |
(CustomerRegistration Page | CustomerBuy BcoinPagel \w,r <4RemateDbiect>>
reqister Custamer) : bury Evoing) <<Femote Object > > Femote Customerhianager
1 i <0 BazeServer::
| Remote Broinhianager insert Customen()
\y _ BrokerD B Server
generate Booin) =elect Customen()
£ jects !
Femote Object generateTandI0) I update Customen)
i |
Ecvinlnterface < elect Ecein() |
do Generate Bxoin) {-I'} \\L,r
do Register) <<[0atabaze >
Broker
customer
ecain
handp
{g} wendorhost
< <PppServer:
Enews Senver |
r—-—————=—=--—--= 44 fppServers » <OfppServersr

RemoteTandIvanager Server]

A4

<<Remote Object >

Femote AticlehBnager]

(6)

warify Bcoin)
select Aeticle 00

selact Articie)

<< BazeServery:

windor DB Senver

V4

&

W

<<Remote Object >

FemoteTand IvBnagen

qenerate index ()

rzquiraTand ()

<¢0atabasesr

Mewspaper

article
redeem
section
tandi

wendorhost

Figure 5.2. Partial architecture of NetPay in Argo/MTE

remote objects

“CustomerRegistrationPage”

and

“CustomerBuyEcoinPage”

of

the

“BrokerServer” (1) provide services for users to register themselves with the NetPay service and

purchase e-coins respectively. The “BrokerServer” provides clients with further services from the

66

“RemoteEcoinManagerServer” (2) and the “RemoteCustomerManagerServer” (3) via the
“Ecoinlnterface” (4). The “RemoteEcoinManagerServer” (2) hosts the “RemoteEcoinManager” that
provides e-coin-specific operations, such as “generateEcoin”, “generateTandI”, and “selectEcoin”. The
“RemoteCustomerManagerServer” (3) hosts the “RemoteCustomerManager” that provides customer-

specific operations, such as “insertCustomer”, “selectCustomer”, and “updateCustomer”. Customers and

their e-coin status are recorded in the “Broker” database on the database server “BrokerDBServer”.

The “EnewsServer” (5) accepts e-coins via the “EcoinPage” (8); the “EnewsServer” requests web
contents from the “RemoteArticleManagerServer” (6) via the “Articlelnterface”; and it processes
customers’ e-coin status with the help of the “RemoteTandIManagerServer” (7). The
“RemoteArticleManagerServer” (6) hosts the “RemoteArticleManager” that first verifies customers’ e-
coin status (via operation “verifyEcoin”) then presents web contents (via operations “selectArticleID”
and “selectArticle”). The “RemoteTandIManagerServer” (6) hosts “RemoteTandIManager that checks
the security stamp and credit status (via operation “requireTandl”) of an e-coin and updating a
customer’s e-coin status (via operation “generatelndex”). The ‘“Newspaper” database records
transaction-related information (e.g. web contents of “article” and “article section”, e-con status of

“redeem”).

Although only just a part of the NetPay system, Figure 5.2 shows considerable complexity. There are six
application servers involved, two of them (“BrokerServer” and “EnewsServer”) must be http-enabled
(e.g. J2EE, .Net server), and the others can be simple application servers (e.g. CORBA, RMI, etc) as
well as complicated http-enabled ones. Inter-component and inter-service communications are also
complicated, including communications between the reader and the broker, the broker and the vendor,
the broker and other more specific servers (“RemoteEcoinManagerServer”,
“RemoteCustomerManagerServer”), and the vendor and other more specific servers

(“RemoteArticleManagerServer” and “RemoteTandI[ManagerServer”).

5.3 NetPay test bed

5.3.1 Test bed generation rules, scripts, and logic
An Argo/MTE domain-specific meta-model must provide rules, scripts, critics, and test bed generation

logic. As is illustrated in Figure 5.3, each domain-specific abstraction must provide a textual rule to

67

describe what targeted concept to generate code for (e.g. the concept of application server of CORBA,
the server-side remote object of CORBA, the client of CORBA) (1). The abstraction must provide XSLT
scripts to define how to generate functional code for the concept (2). The meta-model itself provides
critics (through hard-coded logic) to validate software architecture design and coordinate test bed
generation (3). The meta-model itself also needs to provide test bed generation logic to determine the

structure of the generated test bed (4).

ArgoMTE domain-specific
meta-model

.1ule for test bed generation .

{informal textual rules)

abstraction —|abstraction 1. test bed generation sciipts
L {zzslt scripts)

b ————=13_ critics for validity of the
abstraction desien and test hed
\ (hard-coded logic)
4. test bed generation
logic

{hard-coded logc)

Figure 5.3. Argo/MTE meta-model supporting test bed generation

An abstraction’s test bed generation rules and scripts are based on the used extended-UML meta-type
(refer to section 4.3.1 of chapter 4) and the used middleware technologies. For example, in Figure
5.4(a)(1), abstraction RemoteObject is an ArchOperHost and has two properties “Name” and “Type”
(Figure 5.4(a)(2)). The property “Type” represents the middleware technologies (also as targeted
technologies of the evaluation) supported by Argo/MTE, including CORBA, RMI, and EJB (Figure
5.4(a)(3)). So, the rule for designing test bed generation scripts for abstraction RemoteObject is “that the
combination of ArchOperHost and CORBA middleware targets at generating code for the concept of
CORBA server-side remote object, the combination of ArchOperHost and RMI middleware targets at
generating code for RMI server object; and the combination of ArchOperHost and EJB targets at
generating code for session bean and entity bean”. The rule then leads to the design of the abstraction’s
test bed generation scripts such as, corba object.xsl, rmi object.xsl, entityBean.xsl, jsp.xsl,
sessionBean.xsl. The various middleware-specific scripts of an abstraction can be refactored to make it

easier to organize XSLT scripts.

68

Client DBaseServer |‘€ ——————— Diatabase

Fteim:eRequestO Table

DBfRequest

o SppServer | ‘x/: _____ Femate Object

Femote Service)

Furchitectural |z me:String
Farameter=:

Type:Middlewars —— e ER=re ~

CORBA
Rl
EJB

(22 (2) (3)

— =xsl:template match
— =xslichoose=
+ =u=zlrwhen test="_f ArchitecturalParameters/ Type="15SP' "=
- <xsl:otherwise=
package
=xshivalue-of select= ./ fArchitecturalParameters,/Host" /=
; import java.util import java.io.*; import java.net.®; import java.sqgl.*; import
supportFiles.*; import org.omg.CosMaming.®; import
org.omg.CosMaming.NamingContextPackage.™;
+ <xsl:for-each
select="/ fArchOperations/ArchOperation/SubOper/ArchitecturalParameters,/UsingRemServer
[generate-id()=generate-id(key("distinct-remServer",.})]" "=
+ <xsl:choose=
=xszl:apply-templates mode="CORBA" =clect="." />
=xsl:apply-templates select="/ f ArchOperation” /=

ArchOperHest" =

</x=sl:otherwise=
<fxsl:choosa=
=/ms=l:template=
— =x=sl:template match="ArchOperation"=

public void (b)
=wsiiwvaiug-of seiect=". /7 ArchitecturaiFarameters,'Name" />
=wsl:apply-templates mode="normal” ==l=ct=". f AdmualParameters"” /=

<wxzliwvariable name="recordingTime" z=clect="/ /RecordingTime" /=
=ws=l:wvariable name="repetition" =clect="/ fRepetition" /=
— =mx=sl:if test="SrecordingTime = "true""=
boolean recordingTime =
<w=l:wvalue-of =elect="S$recordingTime" /=
; long startTime = System.currentTimeMillis(;
<fxsl:if=
— =mxshiif test="Srepetition '="null""=
int repetition =
=w=zlivalue-of =elect="Srepetition” /=

H
< wslif=
=zwsl:apply-templates select="SubOper” /=
long endTime =System.currentTimeMillis(); System.out.printin "
=w=zliwvalue-of =elect=". fArchitecturalParameters,/Name" /=
(: " + fendTime - startTime1¥: *
</xsl:itemplate=
— =mu=l:template match="SubOper"=
=wxslivariable name="dbQuery" =clect=". f ArchitecturalParameters,/QueryType" /=
=xslivariable name="remMethod" select=". f ArchitecturalParameters/UsingRemMethod" /=
— =xslichoose=
- =m=zl:when test="SdbQuery" =
=x=z=l:apply-templates mode="dbRequest" s=lect="." /=
</xsl:when=
+ =m=liwhen test="SremMethod"=
</msl:choose=
=/wz=litemplate=
— =m=l:template mode="dbReguest" match="SubOper">=
try {
<xsliapply-templates mode="composeQuery" scslect=
¥} catch (Exception ex) { ex.printStackTrace();}
=/ms=l:template=

if=

Figure 5.4. Argo/MTE meta-model and code generation scripts

69

Figure 5.4(b) illustrates the refactored test bed generation script (an XSLT script) for abstraction
RemoteObject. The script merges the common parts of all the ArchOperHost-related scripts (as
highlighted in grey in Figure 5.4(b)). It points/directs to the middleware-specific XSLT files when
necessary (e.g. highlighted in cyan in Figure 5.4(b)). It provides java code for the ArchOperHost and its
operations (ArchOperations) in the appropriate templates (e.g. the area highlighted in yellow).

The e-commerce meta-model provides critics to validate the architecture model and coordinate the test
bed generation. For example, in Figure 5.2, the “registerCustomer” operation of the
“CustomerRegistrationPage” wants to use the service “doRegister” of the “Ecoinlnterface”, which
actually assumes that the operation “registerCustomer” requires the existence of the remote service
“doRegister”. If the remote service “doRegister” does not exist, the model will not be able to generate a
valid test bed. At this stage, Argo/MTE meta-model developers need to hard code a set of critics/logic

for generating valid and functional test bed.

The e-commerce meta-model also needs to provide test bed generation logic to determine the structure
of a test bed. More specifically, the logic needs to define if an abstraction should generate a folder of
files or a single file, and what files a folder should contain. At this stage, the logic needs to be hard-

coded in the Argo/MTE tool.

5.3.2 Generated test bed

Figure 5.5 illustrates the structure of the test bed generated from the Argo/MTE NetPay architecture
design (refer to Figure 5.2). In this case, the fest bed generation logic defines that each instance of
domain-specific meta-types “DBaseServer” and “AppServer” generates a folder of files. So the test bed
contains two DBaseServer folders, including BrokerDBServer and VendorDBServer, and six AppServer
folders, including BrokerServer, EnewsServer, RemoteArticleManagerServer,
RemoteCustomerManagerServer, RemoteEcoinManagerServer, and RemoteTandIManagerServer (left
of Figure 5.5). The supportFiles folder contains a set of pre-built files to work with the generated files
(test bed).

70

1. Ecoinlnterface. java
—(a) 2. web/CustomerBuyEcoinPage jsp
& sic E]E] 3. web/CustomerFegistrationPage jsp
Fle Edt view Fa > g — (b)—a 1. Archinterface java
» 2. webS/EcoinPage {sp
O Back - 7, 'ﬂ‘ _
1. RemoteCustomerhIanagerServer.idl

address |3 7:\araol a G0 2. RemoteCustomerhlanagelmpl java
3. RemoteCustomethlanagerServer java

Name 4. RemoteCustomethlanagerServer-
LBrokerDBServer ; idlf_RemoteCustomethlanagel mplBase java
) BrokerServer 5. RemoteCustomerhlanagerderver
[JEnewsServet idlf RemoteCustomerhlanagerStub java
I RemaotedrticleManager Server 6. RemoteCustomethlanagerderver

(c)—at idl'RemoteCustomethl anager java

7. RemoteCustomethlanagerServer-
idlfBemoteCustomethlanagerHelper java

-) 2. RemoteCustomethlanagerServer-

_h|sup|:n:|rtF|Ie> idlfRemoteCustometll anagerHolder java

) VendarDBServer 2. RemoteCustomerhIanagerServer-

deployment. prop idlfBemoteCustomethl anagerOperations java

) RemoteCustomerManagerSeryer—
) RemoteEcoinManager Server
) RemoteTandIManagerServer

< (left) (d)—st 1. MySQLConn java (right)

Figure 5.5. Structure of the generated NetPay test bed

Folder BrokerServer contains (a) the Ecoinlnterface.java that encodes the “Ecoinlnterface” of Figure
52. The CustomerBuyEcoinPage.jsp and CustomerRegistrationPage.jsp encode the
“CustomerBuyEcoinPage” and the “CustomerRegistrationPage” of Figure 5.2 respectively. Folder
EnewsServer contains (b) the ArticleInterface.java file that encodes the “Articlelnterface” of Figure 5.2;

and the EcoinPage.jsp encodes the “EcoinPage” of Figure 5.2.

In the NetPay architecture design of Figure 5.2, the “RemoteCustomerManagerServer” is a CORBA
server. Figure 5.5 shows (c) that folder RemoteCustomerManagerServer contains the
RemoteCustomerManagerServer.idl (CORBA IDL file), the RemoteCustomerManagerServer.java
(CORBA server main program), and the RemoteCustomerManagerlmpl.java (CORBA remote object
program). More CORBA-related files are generated in the folder of RemoteCustomerManagerServer-idl.
Folders RemoteArticleManagerServer, RemoteEcoinManagerServer, and RemoteTandIManagerServer

contain the similar files as folder RemoteArticleManagerServer.

71

Figure 5.5 also illustrates that Argo/MTE provides a set of pre-built support files for large distributed
applications to make test bed fully functional (d). Support files, such as MySQLConn.java, are

independent on the software system under modelling.

The CustomerRegistrationPage.jsp in the folder BrokerServer of Figure 5.5 is illustrated in Figure 5.6.
The highlighted cyan areas show the functional information of the JSP file. The highlighted grey area in
line 11 shows that this JSP file uses java bean class BrokerServer.EcoinInterface that encodes the remote
object “EcoinInterface” of the “BrokerServer” of Figure 5.2. The highlighted grey area in line 26 shows

that this JSP uses service “doRegister” of remote object “Ecoinlnterface” of Figure 5.2.

“HTML=
“HEAT=
“TITLE=<xsl:walue-of select="_JirchitecturalParameters Name" =</ TITLE=
= /HEAD =
=H3r=xsl:wvalue-of select="_/ irchitecturalParameters /Nane" /== H3i=>
=BODT bgocolor="white":=
=%@ page import="java.io.PrintStreaw,java.io. Filelutputitrean">
=%@ page import="BrokerSerwver._ *"%=
=jsp:useBean id="EcoinInterface" scope="session'
class="BrokerSerwver. EcoinInter face" /=
=%
PrintStream out_stream = null;
tEv{
out_stream = new Printitream| new FilefutputStream(
"CustomerPegistrationPage result.txt"));
System. setlut (out_stream) ;
}
catchi{Exception exp){3ysten. out.println{"Error in EcoinInterface. jawva") ;|
hoolean recordingTime =true;
long startTime = System. currentTimeMilli=i);
int repetition =Z0;
tEv{
for{int i=0; i<repetition; i+t++)
{
EcoinInterface. doPRegister();
}
}

catch(Exception exp) {Systen. out.println("Error in EcoinInterface. jawa") ;]
long endTime =System. currentTimeMillis();
System. out . printlng " Do Pegistration: " + (endTime - startTime));
&=
registerCustomer takes time <i(={endTime-startTime)>;
= fbody=
</ HTML*>

Figure 5.6. CustomerRegistrationPage.jsp

72

public class RBemoteCustomerManagerImpl extends

FemoteCustomerManagerServer_idl. RemoteCustomerManagerInplEase

i
public woid insertCustomer (int paraw?,String paraml)
{
hoolean recordingTime =true;
long startTime = System. currentTimeMillisi();
int repetition =10;
try |
foriint i=0; i<repetition; it+)
{
MyrEQLConn. getInstance () executeuery("insert into customer
walues('1000', 'Johnboe', 'studentc ', '12348567')");
}
} catch (Exception ex) { ex.printitackTrace();}
long endTime =System. currentTimeMillis();
System. out.printlni " dinsertCustonmeri): " + (endTime - startTime)) ;
}
public woid selectlfustomer (int paraw?,String paraml)
{
hoolean recordingTime =true;
long startTime = System. currentTimeMillis();
int repetition =10;
try |
foriint i=0; i<repetition; it+)
{
Myr2QLConn. getInstance () . executeuery | "select * FROM customer WHERE ID = 1"}
}
} catch (Exception ex) { ex.printitackTrace();:}
long endTime =System. currentTimeMillisi);
Bystem. out _printlni " selectlCustowmer (): " + (endTime - startTime));
}
public woid updatelCustomner (int param?, String paraml)
{
hoolean recordingTime =true;
long startTime = System. currentTimeMillisi();
int repetition =10;
Try o
for (int i=0; i<repetition; it++)
{
MyS0LCont. getInstance () executeluery { "update customer set column?

=h""+'password"+"y""+" WHERE ID = 1");
}
} catch (Exception ex) { ex.printitackTrace();:}
long endTime =System. currentTimeMillisi);
System. out . printlni " updatelfustonmeri(): " + (endTime - startTime));

Figure 5.7. RemoteCustomerManager.java

Figure 5.7 illustrates part of the generated RemoteCustomerManagerlmpl.java of the
“RemoteCustomerManager” of Figure 5.2. The highlighted grey code in lines 16, 32, and 47 encode the

three operations of this remote object. The highlighted yellow code in lines 24 and 25 implements a

73

simple database query. A test bed does not focus on the complexity of business logic but focus on the
performance-intensive parts (e.g. establishment of remote connections, inter-server requests and
services) of a distributed web system. The highlighted cyan code from line 18 to 20 and from line 28 to

29 is performance evaluation code recording the time consumed for this service to complete.

Figure 5.8 illustrates a sample support file, MySQLConn.java, which is used by test beds to handle the

establishment of database connection and disconnection, and execute database queries.

rublic class MySQLConn
{

protected boolean comnected = false;

rriwvate Connection cong;

rrivate String driverName = "com. microsoft.jdbc.sglserver. S0LServerDriwver" ;
rrivate String dbMame = "jdbc:odbeo:bhroker";

rrivate static MySQLConn instance = new MySQLConni) .

public MySQLConn()

i}
public static MySQLConn getInstancel)
{
return instance;
i

public woid comnect (Btring database) throws Exception
SF connect to MySQL database serwer
{

ifi{contiected)

return;
else |
Class. forName (driverName) ;
con = DriverManager. getConnection("jdbcimicrosoft:sglserver: //yoailosd:
1433 :;DatabaszeNane="+databaset+" ;user=honghong ;password=honghong")
con. setiutofonmit (truae) 7
connected = true;

}

public woid discomnect () throws Exception
Ff disconnect from MyEQL database serwer
{

con.close() ;

comnected = false;

}

public hoolean isConnected()
{
return conknected;

}

public synchronized woid execute(String sgl) throws Exception
{

Statement stmt = con.createStatement () ;

stnt . execute (sgl);

Figure 5.8. MySQLConn.java

74

5.4 Test bed compilation, deployment, execution, and result collecting

Argo/MTE uses the Ant tool to automate the tedious process of test bed compilation, deployment,
execution, and result collecting (Cai et al, 2004; Cai and Grundy et al, 2004). Besides the test bed
source code, an Argo/MTE architecture model also generates Ant build files for various tasks involved
in the evaluation process. An Argo/MTE meta-model must provide the rules, scripts, and logic for Ant
build file generation. As is illustrated in Figure 5.9, each meta-model abstraction provides a textual rule
to describe which targeted concept to generate Ant files for (e.g. the concept of application server of
CORBA, server-side remote object of CORBA, client of CORBA). The abstraction provides XSLT
scripts to define how to generate functional Ant build files for the targeted concept. The meta-model
itself provides critics to coordinate individual Ant build files for the various tasks involved in the

performance evaluation process.

ArgoMTE domain-specific
meta-model

1. rules for buld file generation
" (informal textal rules)

abstraction >|abstra|:t1cln —+—>». build file generation scripts
' {zslt scripts)

3. critics for coordinating individual
— " build files

(hard-coded logie)

Figure 5.9. Argo/MTE meta-model supports build file generation scripts and logic

An abstraction’s build file generation rules and scripts are based on the used extended-UML meta-type
(refer to section 4.3.1 of chapter 4) and the used middleware technologies. For example, in the e-
commerce meta-model in Figure 5.10, abstraction AppServer (with UML meta-type ArchHost) (1) has
five properties (2). The property “Type” contains the information of the supported middleware
technologies (the targeted technologies to be evaluated) including CORBA, RMI, and EJB (3). The rule
for designing the build file generation scripts for the abstraction is “the combination of ArchHost and
CORBA middleware must target at generating Ant file for CORBA server, the combination of ArchHost
and RMI middleware must target at generating Ant file for RMI server, and the combination of
ArchHost and EJB middleware must target at generating Ant file for EJB server”. The rule then leads to

the design of the build file generation scripts including, corba server compile.xsl,

75

corba_server deploy.xsl, rmi_server compile.xsl, and rmi_server deploy.xsl. For each task involved in
the evaluation process (e.g. compilation, deploying, running, and result collecting), the individual scripts
of an abstraction need to be coordinated to synthesize the build files for the whole test bed application.
Currently, a domain-specific meta-model provides hard-coded logic to coordinate individual Ant build

files and synthesize build files for the test bed.

Client DOBaseServer "{ ————— Databasze

Reiuteﬂequestlj Table

ul:} ?equesti

Sarver = -
(1) rep | Remote Object

Remote Service)

prehitectural| Ma me: String
Farameters: Type:Middleware . Middlevare W
Crwmied Objects: String CORBA
UsingDB=server:String Rhdl
Using Database:String ElB
(3)
(2)

Figure 5.10. Sample meta-type and the middleware technologies

Figure 5.11 illustrates part of a synthesized Ant build file for the test bed compilation. The file is
consisted of the individual compiling information of each application server (highlighted in grey, e.g.
BrokerServer, RemoteEcoinManagerServer, RemoteArticleManagerServer), as well as the dependency
among them (highlighted in cyan) such as the compilation of BrokerServer depends on the compilation

of RemoteCustomerManagerServer and RemoteEcoinManagerServer.

76

<target name= "co mplle depends ="BrokerServer,EnewsServer” /=
<lam - - e
<target names= Brokers»arver
depends="RemoteCustomerManagersServer,RemoteEcoinManagerserver =
= «javac srcdir="src/BrokerServer” destdir="${build.home} /WEB-INF/classes”
debug="%${compile.debug}" deprecation="${compile.deprecation}”
optimize="%{ compile.optimize}"'>
=clazspath refid="compile.classpath™ /=
<[javac>
</target>
Ll ===== emotecoinMdManagerServe S -—T
<target name="RemoteEcoinManaaq erServer
depends="RemoteEcoinManagerServer_idlAll_compile”>
- =javac srcdir="sref/RemoteEcoinManagerServer’ destdir="${build.home} fWEB-
INF/classes” debug="${compile.debug}”
deprecation="%{compiie.deprecation}” optimize="5{compiie.optimize} =
<classpath refid="compile.classpath” />
< /javac>
< target>
ztarget name="RemoteEcoinManagerServer_idlAll_compile” depends="prepare”=
- =idlj campiler="jdk" targetDir=".fsrc/RemoteEcoinManagerServer” side="all">
- =filezet dir=". fsrc/RemoteEcoinManagerServer =
<include name="*.idl" />
</ffileset>
</idlj>
</target>
£l ===== PamstelArticleManagerSariver ===== S
<target name="R& mnteArti:IeHana qe rSer'.ru B
depends="RemoteArticleManagerServer_idlAll_compile,
RemoteTandIManagerServer,RemoteEcoinManagerServer'=
= zjavac srcdir="src/RemoteArticleManagerServer”
destdir="${build.home} /WEB-INF/classes” debug="${compile.debug}”
deprecation="§{compile.deprecation}" cptimize="%{compile.optimize}">
<clazspath refid="compile.classpath™ /=
<fjavac>
</target>
ztarget name="RemoteArticleManagerServer_idlAll_compile” depends="prepare”:
- =idly compiler="jdk" targetDir="./ src/RemoteArticleManagerServer” side="all"=
= <fileset dir=".fsrc/RemoteArticleManagerServer >
zinclude name="*idl" />
=/fileset=
<fidlj=
</target>
=l ====— BemntelTandIManaperServer =—=== -l

<tarost name="RemotaTandIManaoerServer’

depen ds="RemoteTandIManagerServer_idlAll_compile,
RemoteEcoinManagerServer’ >
- =javac srcdir="src/RemoteTandIManagerServer’ destdir="%{build.home} f WEB-
INF/classes” debug="%4{compile.debug}”
deprecation="%{compile.deprecation}" cptimize="%4 optimize}”=
<classpath refid="compile.classpath” /> (a)
=/fjavac>

wSitarnet>

Figure 5.11. Sample NetPay Ant build file compile.xml

77

Figure 5.12 illustrates how Argo/MTE automates deployment, execution, and result collecting. To get
ready for deployment, Argo/MTE uses the generated Ant build files to organize the test bed and its
support information into folders (Figure 5.12(a)) (e.g. deploy BrokerServer, deploy EnewsServer), and
package them into deployable parts (e.g. BrokerServer.jar, EnewsServer.jar). Argo/MTE then uses the
Ant tool to deploy the packaged parts on the active hosts (computers that can run the deployed test bed
parts) through the directed arrows (1) in Figure 5.12(b). After all parts are deployed, a fully functional
web application is established. The clients can access the running test bed and launch requests. The
performance evaluation results of the interested server-side operations are collected and sent back to the

performance evaluation center — the place that runs Argo/MTE through the directed arrows (2).

& deploy @@

Fie Edt Yiew Favorites = 2 g0

K) Back * | 4+ Clent

Adiress |2 Z:ArgoMTE _bkpla v | (B Go

Mame {11}
JaeDIUV_EnewsServer / \
_Jdeploy_RemotedrticleManagerServer http reduests http re-:lluests

_Jdeploy_RemoteustomerManagerServer

Jdeploy_RemoteEcoinManagerServer

_Jdeploy_RemoteTandIManager Server

| 5)] Brakerserver. jar -
r

|| BrokerServer_build, xml —————

M EnewsServer,jar (ﬂ}

12| EnewsServer_build,xml B I’SL T S e

: : TORETSEIEL. JaT WSSRIVET jat
IﬁRemotenrtlcleManagerServer.]ar o FrewsServer huild wml
= RemotedrticleManagerServer_build, =ml -
M RemoateCustomeriManagerServer . jar
|| RemoteCustomerManagerServer_build,xml

M RemoteEcainManager Server, jar

|| RemoteEcoinianagerServer _build, xml
Iﬁ RemoteTandIManagerServer jar
a3 i —;‘b -e:—
= RemoteTandIManagerServer_build,xml () (2)
£ >

Femoh i g . (S AMTE Apptn, RoCutmdltt

Remote ArticlelIanagerServer buld.xxal - '

(1
(1
2

Reraote TandIhanagerServer jaré

RemoteEcoindyT 5 Jar&
moteEcoinvanagerServer jan RemoteTandIManagerServer build xml

ReroteEcoinhdanazerServer bonild szel

Figure 5.12. Argo/MTE deploys and runs a test bed, and collects testing results

78

5.5 Sample Performance Evaluation Results

Argo/MTE can be used to compare the performance of a legacy system with that of an architecture
model. Table 5.1 and Table 5.2 present sample evaluation results towards both a legacy NetPay system
as well as a NetPay test bed. The legacy system is done by a novice CORBA java programmer with little
consideration of performance optimization. Referring to the architecture design in Figure 5.2, Table 5.1
presents the evaluation results of service “doRegister” of remote object “Ecoinlnterface”. Table 5.2
presents the evaluation results of service “doDisplay” of remote object “Articlelnterface”. When
evaluating how a remote service responds a client request, we launch multiple client threads (to simulate
multiple users) towards the targeted remote service. The targeted remote service can be repeated
multiple times (to simulate complicated business logic such as multiple database queries, refer to line 20
Figure 5.7). Then we will check that averagely how long it takes for each client to get the response of

the targeted remote service.

Table 5.1 records the results of 15 test runs. For each test, we used 20 threads to represent 20 client
requests for the remote service “doRegister” of remote object “EcoinInterface”. Through the 15 tests, the
test bed performed well and responded less than 1093 ms (occurred in test 13). The tests on the legacy
system brought interesting results. After two tests on the legacy system, the third and fourth tests saw the
sharp drop of the performance. It took unbearable 22870ms (occurred in test 3) and 22683 ms (occurred
in test 4) for a client to get response. In this situation, all the servers needed to be restarted to carry on
the following tests. After restarting all the involved servers, test 5 to test10 saw the reasonable response
from the server until the server performance dropped sharply again in tests 11 and 12 and all servers
needed to be restarted again. Figure 5.13 visualizes the Table 5.1 information in a MS Excel chart. It
shows that overall, the test bed shows stable performance through the 15 tests; and the legacy system
takes more time to respond. While it is reasonable for a real system to perform slightly poorer than a test
bed, because of more complicated business logic and large amount of real data passed around, the
reasons for the abnormal hike of the response time in tests 3, 4, 11, and 12 need to be found out. The
legacy system was then reviewed. It was found out that instead of using the same established client
server remote connection, the legacy system tried to establish a client server remote connection in
multiple places. The legacy system tried to establish much more remote connections than it really
needed, which made the legacy system very remote-connection-intensive and easily brought down the

servers. After the performance evaluation, the legacy NetPay system was then improved.

79

Test

Value of test bed(ms) | Value of real system (ms)

1 1015 4060

2 1016 3556

3 984 26870(suddenly, the performance drops steeply)

4 984 22683 (at this stage, all servers need to be restarted
including tomcat, name server, and all CORBA servers)

5 1062 4760

6 999 3970

7 859 4021

8 859 5061

9 1078 4841

10 968 3250

11 953 22573 (suddenly, the performance drops steeply)

12 984 22948 (at this stage, all servers need to be restarted
including tomcat, name server, and all CORBA servers)

13 1093 3760

14 1062 4970

15 1125 4021

Table 5.1. Evaluation results of remote service “doRegister”

30000

25000

20000

o test bed
@ legacy system

15000

10000

5000 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 5.13. Evaluation results of remote service “doRegister”

80

Test Value of test bed (ms) Value of real system (ms)

1 4972 14530

2 5967 38590 (suddenly, the performance drops steeply)

3 5185 34152

4 30890 34543

5 30906 34168

6 30890 33927(at this stage, all servers need to be restarted
including tomcat, tnameserver, and all CORBA
servers)

7 4904 13250

8 4873 38600

9 4686 34471

10 14780 33829

11 30719 34547

12 30891 34173 (at this stage, all servers need to be restarted
including tomcat, tnameserver, and all CORBA
servers)

13 5013 16445

14 6051 38990

15 5870 36540

Table 5.2 records the results of 15 tests against the test bed and the legacy system (before it was
improved). For each test, we used 20 threads to multiple 20 client requests for remote service
“doDisplay” of remote object “ArticleInterface”. Through the 15 tests, both the test bed and the legacy
system suffered abnormal performance and the servers needed to be restarted. After three tests on the

test bed, the fourth, fifth, and sixth tests saw the sharp drop of the performance. It took unbearable

Table 5.2. Evaluation results of process “doDisplay”

45000

40000

35000

30000 +

25000

20000 -

15000

10000 -

5000 ~

@ test bed
| legacy system

7 8 9 10 11 12 13 14 15

Figure 5.14. Evaluation results of “doDisplay”

81

30890ms (in test 4) and 30906 ms (in test 5) for a client to get response. In this situation, the servers did
not work appropriately at all and needed to be restarted to carry on the following tests. After restarting
all the involved servers, test 7 to test 9 saw the reasonable response until the server performance dropped
sharply again in tests 11 and 12, where all servers needed to be restarted again. The legacy system
performed even worse than the test bed. The servers could reluctantly work for one test (e.g. tests 1, 7,
and 13) after each restarting of the servers. Figure 5.14 visualizes the Table 5.2 information in a MS
Excel chart. The unstable performance of the test bed means: 1) the architecture design is not stable
itself (for example, too many inter-server communications); and 2) more robust code needs to be
generated even at architectural level. The evaluation results upon the test bed require the improvement
of both the architecture design, as well as the code generation scripts of the used meta-model. An
improved test bed can be used as benchmark to guide the improvement of the legacy system. For the
legacy system, on top of the possibly poor architecture design, the unnecessary intensive requests for
remote-connection and too many inter-server communications cause the even worse performance than

that of the test bed.

5.6 Summary

The case study introduces details of how Argo/MTE specifies and evaluates software architecture. In the
case study, the complicated NetPay system contains 6 remote application servers and two database
servers. The 6 remote application servers are heterogeneous, e.g. the “BrokerServer” and “EnewsServer”
are JSP-enabled web servers, and all others are CORBA application servers. Argo/MTE generates the
complicated and fully functional NetPay test bed including JSP pages, CORBA-related java files, and
Ant build files. The test bed is intended to encode the best-of-practice implementation of the
architectural-influenced parts of a software system, which is useful in both forward engineering and
reverse engineering. In forward engineering, architects can send designers a test bed as functional
prototypes to follow. In reverse engineering, a test bed can be a benchmark for a legacy system. In fact,
in the case study, NetPay test bed did act as a benchmark for the legacy NetPay system and helped
finding out coding problems that caused the poor performance of the legacy NetPay. The case study

demonstrates the strength of Argo/MTE to work with complicated software systems.

82

Chapter 6 - Review of Marama Meta-Tool and MaramaMTE

MaramaMTE+ is the second main project in the thesis. Projects Marama meta-tool and MaramaMTE are
two prerequisites for understanding the MaramaMTE+ project. The Marama meta-tool, developed by
John, G. et al (Marama meta-tool, 2007), is an Eclipse-based tool set that supports efficient development
of domain-specific tools. The MaramaMTE project, developed by John, G. et al (MaramaMTE, 2007)
redevelops the technology of test bed generation and performance evaluation by using the Marama
meta-tool, and supports Form Chart modeling. This chapter reviews the basic concepts of the Marama

meta-tool and the MaramaMTE project to get ready for understanding the MaramaMTE+ research.

6.1 Marama meta-tool

The Marama meta-tool is an Eclipse-based tool set to support efficient development of domain-specific
tools (Marama meta-tool, 2007). It provides a framework to catch the common issues in tool
development, including: visual notations, underlying modeling elements, events triggered by modeling
elements, users, and visual notations. The Marama meta-tool is intended to support experienced tool
developers to quickly construct the basic visual modelers of a domain-specific modeling tool within one
day, and then they can move to develop specific/advanced facilities of the tool such as specification of

backend code generators, complex editing, or behavioral constraints.

Figure 6.1 shows how the Marama meta-tool realizes domain-specific visual modeling tools. A tool
developer specifies an intended domain-specific tool (such as Argo/MTE-like tool) in an XML file
(containing modeling elements, associations, model driven events, user defined events, etc) using a text
editor or third party modeling tool (1). The Marama meta-tool Eclipse plug-ins read in the tool
specification to configure the intended visual modelers (2). The meta-tool creates a data model and one
or more graphical editors conforming to the tool specification (3). The constructed domain-specific

modeling tools use Eclipse GEF to realize the graphical editors, and use Eclipse EMF to represent model

83

and diagram state. By using the OMG XMI common exchange format (via EMF’s built-in capabilities),
the meta-tool saves or loads model and diagram state to XML files or an XML database (4) (Grundy and
Hosking et al, 2006).

The Marama meta-tool has been used to implement a wide range of domain specific tools, such as
Marama Torua (MaramaTorua, 2007) and MaramaMTE (MaramaMTE, 2007). In each case users have
been able to rapidly implement basic modelers for the complex Eclipse-based tool, with typically a
several hundred-fold increase in productivity over coding the tool with the standard GEF and EMF

frameworks.

Too Specification in

EML-encoded format
1. createfmodify/rense
tool specification in text
editor or sperial tool Tool spec. | Eclipse
T IDE
Other Editi \mand \
Maramas Ing Commands Marama
. Plug-ins
- Collaborative 2. Load tool specification
Other GEF-based | Editing into Marama plug-in
SHED | editors = c
Eclipsé"| A
plug-+ / Diagram GEF-based Marama
ins | [EMFbased | | Differencing sditors ¥ plys ins
model data | Eejipse IDE | T S
i EMF-based
XMI model data | Eclipse IDE
4. Modelling tool data 3. Marama dynamically
savedloaded a5 30ML muln- contigures GEF editors; uses
user support via plug-ins EMF-based model data

Figure 6.1. The Marama approach to realizing Eclipse-based visual language tools (Grundy and
Hosking et al, 2006)

6.2 MaramaMTE

The MaramaMTE tool, developed by John G. et al (MaramaMTE, 2007; Draheim et al, 2006), is a
domain-specific tool implemented using the Marama meta-tool. It redevelops the main features of
Argo/MTE and supports test bed generation and performance evaluation of middleware-based software

systems. The improvement of MaramaMTE from Argo/MTE lies in two aspects:

84

1) The Marama meta-tool generated a large part of the MaramaMTE tool, while Argo/MTE
required tedious programming to extend ArgoUML

Figure 6.2, Figure 6.3, and Figure 6.4 show the main activities involved in developing the

MaramaMTE tool. Firstly, as illustrated in Figure 6.2, a MaramaMTE domain-specific meta-model

(previously Argo/MTE domain-specific meta-model, refer to section 4.3.2, Chapter 4) is specified in

the fool definer of the Marama meta-tool. This contains abstraction entities such as ApplicationClent

and RemoteObject (green rectangles), and abstraction associations such as ClientServer and

ServerObject (pink rectangles).

| Service
| RemoteObject narme Skring key
niame String key remokeServer String norkey
type String nonksy remokeObject String nonkey
remokeService ink nonkey
L warmlp String nonkey
v recordTime String nonkey
|, [[Brectservics.
“m]
I ApplicationServer hppsert .
— | name String key :
i PR type Skring nonkey [Datsbase
name String key
| T s type String nonkey
name String key
type String nonkey |
Sl e
] Request i
narme String ke | DatabaseTable
remoteServer String nonkey niane String key
Lo remateObiject String nonkey
o remateService Skring nonkey
warmip String nonkey
recordTime Skring nonkey {“}

Figure 6.2. MaramaMTE meta-model

Secondly, as illustrated in Figure 6.3, visual notations for each abstraction entity and abstraction
association are specified using the shape definer of the Marama meta-tool. For example, the cyan
rectangle in Figure 6.3 is the visual notation of abstraction ApplicationClient in Figure 6.2. The grey

rectangle containing properties in Figure 6.3 is the visual notation of abstraction Request in Figure 6.2.

85

Thirdly, as illustrated in Figure 6.4, users construct view/diagram types by mapping shapes, connectors,
and event handlers to appropriate model entities and associations using view type definer of the Marama
meta-tool. Figure 6.4 only illustrates part of the mapping between meta-model abstractions and their
visual notations. The basic facilities of the MaramaMTE tool, including drawing, event triggering,
model saving and loading, are then complete. Tool developers can then experiment with and tailor the

basic tool to support its advanced features such as detailed diagram editing (such as hide or show

Iname narme
remotedbject

remokeService

warmlp [name

recordTime rernoteSeryer

([remateChject
remoteService

warmlp (b)
recordTime

Figure 6.3. visual notations for the MaramaMTE meta-model

properties of an abstraction), code generation, event handling, and model checking.

]
i
]

T
N

1
Clientshape_applicationClient

ServerShape_ApplicationServer

CObijectShape_RemoteCbiject

|I'IEII'I'IE:I'IBITIE

|I'IEII'I'IB:I'IEII'I'IE

|name:name (c)

SetviceShape_Service

|HEII'I'IE:I'IEIITIE

Requestshape_Request
|name:name

T
_
1
i i
! \
|

DatabaseShape_[Database| | TableShape_DatabaseTable

|name:name |name:name

Figure 6.4. MaramaMTE view type

86

2) The Marama meta-tool provides a good platform to integrate domain-specific models and tools
at both framework level as well as functional level, which helps to integrate MaramaMTE with
other domain-specific modeling technologies.

The MaramaMTE technology needs to leverage the strength of other modeling technologies to

improve its quality, usability, and maintainability. For example, like SoftArch/MTE and Argo/MTE,

MaramaMTE architecture models consist of components with properties, and the property values

need to be constrained in order to generate a valid functional test bed. A sample structural constraint

in an e-commerce architecture model could be that “when a client launches a RemoteRequest to a

RemoteService, the value of property ‘RemoteService’ of the RemoteRequest must be equal to the

value of property ‘Name’ of the interested RemoteService”. Those constraints are tedious to develop,

and relatively informal. Both SoftArch/MTE and Argo/MTE hardcode those constraints, and tool

users have a heavy workload of programming with the tool-API.

MaramaTatau (Liu et al, 2007) is an add-on mechanism to the Marama meta-tool set, which allows
users to specify OCL-styled structural constraints upon models (e.g. MaramaMTE domain-specific
meta-models). MaramaTatau uses the EMF OCL (MDT, 2008) framework to implement a dynamic
compiler and interpreter for OCL specifications. As all domain-specific tools built in the Marama
meta-tool-based (e.g. MaramaMTE) are EMF based, this means the EMF-based MaramaTatau can
be easily integrated with those domain-specific tools (e.g. MaramaMTE) to provide them with a

formalized approach to define and manage structural constraints.

MaramaMTE also extends its applicable scope via integration with other Marama-based domain-
specific tools. For example, the integration of MaramaMTE with service composition tools such as
BPMN and ViTABal-WS (Grundy, Hosking, and Li et al, 2006) allows users to evaluate

performance of service-oriented architectural models.

6.3 MaramaMTE supporting Form Chart modeling

MaramaMTE also extends its application scope to support Web Application Load Testing (WALT) via

integration with Form Chart modeling (Draheim et al, 2006). A form chart model is a technology-

independent bipartite state diagram used to simulate user behavior. It describes, at high level, what the

user sees as system output, and what he or she provides as input to the system (Draheim et al, 2006).

87

| Page | Action
name String key name Skring key
delavkind String nonkey httpR.equest String nonkey
delayTime String nonkey
| Transition

probability String nonkey

Figure 6.5. The simplified FormChart meta-model

Figure 6.5 shows the simplified Form Chart meta-model. The meta-model consists of abstractions Page,
Action, and Transition. Abstraction Page represents possible states of a website; abstraction Action
represents website server side information, including: components, their behavior, and their response to
requests; and abstraction Transition represents association between pages and actions. A Form Chart
model, an instance model of the Form Chart meta-model, captures the structure of the target website
from users’ perspective and can be augmented with probabilities to capture client behavioral interaction
with web (Draheim et al, 2006). The original Form Chart models have limited intentions. MaramaMTE
supports a semantically-improved version of Form Chart models, stochastic Form Chart models, to
formally model realistic user behavior. A stochastic form chart model extends a basic model with

stochastic functions to describe navigation, time delays, and user input (Draheim et al, 2006).

Considering about the java Pet Store application (PetStore, 2002), an online store where users can buy
pets on the internet. Figure 6.6(a) is the simplified MaramaMTE architecture model of the Pet Store
application. This architecture design, at a high level of abstraction, shows the main components of the
Pet Store system, including client-side components and the main server-side components (including the
application server “Pet StoreAppServer” and its objects “SignOn”, “MainServlet”, and
“RequestProcessor”). The architecture model is focused on the server side multi-tier structure, and can
be richly enhanced by providing operations for each functional component and setting up a wide variety
of component properties. However, the client side model (the “user” component in Figure 6.6(a))
contains little more than a sequence of remote requests (not shown). MaramaMTE leverages the strength
of the Form Chart modeling to provide effective, realistic user behavior model to enrich the original

MaramaMTE test beds.

88

PetSkareDE cuskorner

category

product

MainServlet
\ — ProductCatalog
RequestProcessar e i
L WebController
Zatalog

-

SeryletFiker
FrontController

Product Category

@

Clenta) Fr—logout

e
bl S
TR -~

B

—T

U;-Z—-'-.'_'.':‘“ 55

\\\H‘-\.-
-~ =Y

(b}

Figure 6.6. (a) High-level view of Pet Store software architecture; (b) sample Stochastic Form
Chart loading

Figure 6.6(b) shows a sample MaramaMTE form chart model diagram representing user behavioral

interaction with the Pet Store. The model contains: a starting state (top left rectangle: “ClientA”),

89

various Form Chart pages (ovals, including “index”, “cart”, signin”, “productdetails”), and actions
(rectangles, including “hr--signin”, “hr--cart”) allowing movement between the Form Chart pages. The
engineer captures probabilities of moving from a given web form via actions e.g. from “index” to
“signin” 0.3; from “index” to “help” 0.2. For each Form Chart page, various properties of the page are

captured, such as the URL address, request delay kind, and request delay time (Draheim et al, 2006).

6.4 Summary

The Marama meta-tool supports efficient construction of basic features of domain-specific tools such as
visual notations, underlying modeling elements, and events triggered by modeling elements, users, and
visual notations. It captures the common tasks of developing domain-specific visual modeling tools;
provides a tool definer, a shape definer, and a view type definer to support users to specify an intended
tool; and generates the basic visual modelers of the intended tool. The Marama meta-tool makes it easy
to redevelop the technology of test bed generation and performance evaluation in MaramaMTE. It also
improves the performance evaluation technology through the integration with the Form Chart modeling

technology and other software modeling technologies.

90

Chapter 7 - MaramaMTE+, Synthesizing Client Load Models for

Performance Engineering via Web Crawling

MaramaMTE+ extends MaramaMTE to support effective web load testing through web reverse
engineering. This chapter (1) presents the motivation for MaramaMTE+; (2) introduces how
MaramaMTE+ reverse engineers web applications and supports web load testing; and (3) describes the
design and implementation of the MaramaMTE+ toolset, and compares the efficiency of MaramaMTE+
with that of traditional web load testing technologies (e.g. Apache JMeter and Microsoft Web
Application Stress tool).

7.1 Introduction of MaramaMTE+

MaramaMTE+, a continuation of MaramaMTE, supports web load testing through reverse engineering a
running website. MaramaMTE+ uses a web crawler to extract structural information from a target
website to generate the structure of a Form Chart model; users manually augment the Form Chart model
with appropriate property values; the synthesized Form Chart model is then used to generate testing

plans for a third party load testing tool such as Apache. JMeter.

7.2 Motivation and related work

MaramaMTE integrates traditional architecture modeling with Form Chart modeling (MaramaMTE,
2007; Draheim et al, 2006). It prompted two interesting problems: 1) MaramaMTE users must construct
Form Chart models manually and modify them incrementally to reflect changing website structure and
user behavior; 2) In MaramaMTE, Form Chart models only generate Java client load test bed to enrich
the server-focused performance evaluation technology. As a formal analysis technology, Form Chart
modeling has the potential to generate test plans for other web load testing technologies; and the

potential needs to be explored.

91

The manual construction of a Form Chart model in MaramaMTE is both error-prone and time
consuming, especially when large websites are being re-engineered. In addition, it is desirable to use
Form Chart modeling to support more web load testing technologies. To reduce the bottleneck around
user behavior model specification and improve load test technology integration, the following
requirements for an improved tool (e.g. MaramaMTE+) are needed:
e to capture a realistic model of web application usage, an analysis model is needed to relate actual
website structure (from a user perspective) to possible form-level interactions (via e.g. a Form
Chart)
e the structure of the analysis model needs to be automatically generated from the target website
instead of manually built
e tool support must allow users to easily change client load model testing parameter values then
generate multiple testing plans and scripts automatically
e 3rd party load testing tools (e.g. JMeter) should be used leveraging their capabilities for large
web application stress testing, and their client loading plans and scripts (e.g. JMeter testing plans)
need to be generated from analytical formal models (e.g. Form Chart load models)
o the tool should be well-integrated within a generic performance engineering environment (e.g.
MaramaMTE), so a realistic client behavior model can influence the design of other parts of a

software system (e.g. the server-focused software architecture)

A number of practical load testing tools have been developed for stress-testing web and other software
applications. One example is Apache JMeter (Apache JMeter , 1999). IMeter offers both a textual and a
GUI environment for users to construct testing plans and scripts. JMeter testing plans can be reasonably
complex. They can simulate and analyze a variety of load scenarios to obtain a quantitative insight into a
website’s loading characteristics. However, JMeter does not support formal behavior analysis modeling,
so users have to construct their testing plans based on ad-hoc testing goals. Microsoft’s WebApplication
Stress Tool (WAS) (Microsoft, 2002) is a simple load and stress testing tool that can be closely
integrated with Visual Studio and other development environments. It does not support as complex
testing plans as JMeter. It provides simple load modeling capability via a test setting wizard resulting in

a testing plan with limited flexibility.

92

Several experimental web application testing tools have been developed that try to encapsulate load
models in various ways (Barford et al, 1998; Denaro et al, 2004; Elbaum et al, 2003; Smith et al, 2005).
These tools address the target system from web developer perspective; and they require web developers
to construct performance models of the system under test (usually UML or similar architectural models
or black-box services). Those models are normally part of the forward engineering, and are not directly
related to the existing web applications. Some web load testing analysis tools, such as Surge (Barford et
al, 1998), generate representative web requests that are based on analytical models of web use. Those
analysis tools (e.g. Surge) rarely provide visual notations to relate the target website to web load analysis.
Some web analysis tools try to obtain realistic testing plans by recording user behavior then replaying or
analyzing it (Sprenkle et al, 2005). The recorded user behavior may be close to reality, but the raw
behavior data needs to be abstracted to a suitable client loading model for the purpose of user behavior
analysis and data exchange. No existing web application load testing tools provide the functionality

demanded by the requirements described above.

7.3 MaramaMTE+ approach

Figure 7.1 illustrates how MaramaMTE+ uses a web crawler to automatically generate the structure of a
Form Chart model; how the basic Form Chart model is manually augmented; and how to generate load
testing plans and scripts from the Form Chart model. Initially the target website is crawled (1) by a 3rd
party web crawler adapted for the purpose. The web crawler generates http request data from the target
website (2), and this website structural data is stored in a database of possible requests to the target web
site (3). The extracted http requests are used to synthesize an initial Form Chart model which is then
imported into MaramaMTE+ (4) and a default layout applied to generate one or more Form Chart
diagrams. This initial Form Chart model is then manually augmented by the performance engineer using
the MaramaMTE+ Form Chart diagramming tools to specify probabilities and other stochastic
parameters. The complete model may be versioned to allow variations of the parameters and user
behavior to be modeled for comparison (5). Load testing plans are then generated for third party web
application stress-testing tools (e.g. Apache JMeter or Microsoft Web Stress Tool) (6). In addition,
MaramaMTE+ can generate server-side test beds of the target website. Stress-tests are run against the
target web application, and results are collected by the stress-testing tool (either the MaramaMTE+ tool
or other third party tools) (7). These test results are shown either inside MaramaMTE+ or via a third

party visualization tool (8) and may be stored for future reference and comparison (9).

93

Punming web
application .z
Tava PetSiore

2. Generate strctural
mformaton of web site

Perfonmance
3. Web site enginser

struchre 4. Synthesize form

chart & import into e
MaramaMTE+ @

1. Crawl web
site (nsing
WabSphine) a7 - e
Basic fan:YLmn 5. -"-ugl:a:?
model zkelston forth ihﬂ_-l"f ‘:‘Fltl.l
probabilites
o

i

MMaramalITE+

=

~

B _\-iI'S';BJ:i':E results in
]'.\kater or MTE~

architacnrs wiew(s)

Stochastc form
chart (& versions)

Thdeter load i -ThvIeter scripts AaramaMTE+
testing tool !] “Custom datas (Eclipse-based
- -MTE performance IDE)

test-bad

=1 N
7.4 Foum tests via e.g.
i Theter

Figure 7.1. Crawling websites to extract Form Charts and generating stress-tests with

MaramaMTE+ (Cai et al, 2007)

Web Crawlers have long been used to explore structure of websites from a user’s perspective.
MaramaMTE+ uses WebSphinx (Miller et al, 1998) to extract structural information from websites,
including: the main screens, screen content, hyper links, and http requests plus parameters and values
from a web application. The extracted information is collected into a crawler result database, which
makes the website structural data available for further use. The website structural data can be retrieved
from the database to generate the basic structure of a Form Chart model. The generated Form Chart
needs to be manually augmented by adding additional data, such as action flow transition probabilities
and MaramaMTE-specific code generation data (parameters and values). The enriched Form Chart

model is a stochastic Form Chart containing sufficient information to generate load testing plans of the

94

targeted website, including: JMeter testing plans, Microsoft Web Stress Tests, and MaramaMTE+ thick

client testing plans (Java applications).

7.4 Example usage

The Java Pet Store reference application (PetStore, 2002), a de facto benchmark application for
performance evaluation technologies, is used as an example to illustrate MaramaMTE+ approach. From
an end user (shopper) perspective, basic interactions with the Pet Store website include: users sign on;
they browse the catalog; they buy pet(s) by putting them into a shopping cart; they check out; and
receive purchase confirmation. It is obvious that the distribution of the types of user-website interactions
is not linear. For example, “browse catalog” will be the most frequent interaction, just as in a real shop,
there will always be more browsers than buyers. The “buy pet” interaction is likely to be more frequent
than “check out”, because a buyer may buy more than one pet before checking out. The stochastic Form
Chart model(s) for the Pet Store application must capture these nuances. In addition, multiple models
may be needed for different kinds of users e.g. business vs. personal shoppers or situations, e.g.

Christmas vs. February, providing even more fine-grained client load modeling for the web application.

7.4.1 HTTP request extractions

MaramaMTE+ uses WebSphinx to extract Pet Store structural information into an http requests database.
The user runs WebSphinx as a java application invoked from MaramaMTE+ (Figure 7.2(a)). The user
supplies the target website address to the crawler (Figure 7.2(b)). The crawler explores Pet Store website
to get information such as: main screens, hyper links among screens, and http requests and their
parameters and values. MaramaMTE+ collects data into a purpose-built crawler request database. The
crawler database contains tables to offer easy data access when the database is needed to generate Form
Chart model. Figure 7.2(c) shows the “http request” table that holds http requests and their requested
web pages, and Figure 7.2(d) shows the “page” table that mainly holds URL addresses of the crawled

web pages.

95

& Java - PageCreationPage.ji _

= Crawler Workbench: websphinx.Crawler

g

3 @ 49 ml ®) Advanced >>

Crawl: the server VI

Starting URLs: |http.flocalhost:8000/e storefindes htrmi

5 Package Explorer X
‘IE‘ SA%SM Jun_axsM [medusa
77 »HHreco Jun_HHreco [med
i >JohnG_MaramaDiffer Jun |
:.% >MaamaBa.5|d-lan|iEIlewar Action: m
iy »MaramaEditor Jun_Maram.
5 >MaramaESLTool Jun_Mara
% >Maramatode! Jun_Maram Start |) |
i >MaramaMTEToal JohnG_M
1= MaramaProcessDatabase Graph Iouninel Statistics]
o >MaramaTestsPlugin Jun_M|
fi53 >MaramaVMLPlusTool Jun_N
1 1= modelLib

125 TempavaFiles

59 >YMLPlus Jun_YMLPlus (med
& I

= >¥SLTProcessor Jun_XSLTPEL .

F-B-H-F-E R

F- /-

r

fcontrolican?action=removeltem&itlemld=EST-
TEw= =

http_request : Table g{
id | request (C) | 4 age_n_a;
8279 no_request http: Mocalhost:8000/estorefannot ated-index. htmi
8280 http:/localhost:B000/estore/annotation/ann_overview_j2ee. jsp http:/flocalhost:8000/e starefannot ated-index.html
8290 no_request http:flocalhost:8000/estorefannot ation/ann_ove rview

8292 no_request http:/flocalhost:8000/e starefcontrol/can
8323 no_request http:/flocalhost:8000/estorefcontrol/cart 7action=purc
8324 hitp:#ocalhost:8000/estore/controlfcart ?action=removeltem&itemld=EST-1 http: flocalhost:8000/estorefcontrol/cart Paction=purch

" sy :ocalhost:8000/estarefcontrol/cart Paction=purc
DR Tal?h (d) :flocalhost:B000/estore/contral/cart Paction=purch
page id | | TELGE h: iocalho st 8000/estorefcontral/cant Paction=purch

4 5164 http:#localhost:8000festorefannotated-index. html h: fAlocalhost 8000/estorefcontrol/cart Paction=purc
[5167 hitp:/localhost:B000/estore/annotation/ann_overview_j2ee.jsp h: /flocalho st8000/e starefcontrolfcant ?action=purch
| 5168 http-/flocalhost:8000/estore/cantralicart h:/flocalho st:8000/e storefcantral/can *action=purc

5179 http:#localhost:8000/estore/control/cart Faction=purchaseltem&itemld=EST-1 :/flocalho st8000/estorefcontrolfcan Paction=purch
5202 http:/localhost:8000/estore/controlican ?action=purchaseltem&itemld=EST-10 |, facalhost:8000/e storefcontral/can Paction=purc

5256 http:#ocalhost:B000festorefcontrolican ?action=purchaseltem&itemid=EST-11 |- Mocalhost-8000/estorefcontrol/cant Paction=purc

5258 http:/localhost:8000/estore/controlican Paction=purchaseltem&iteMId=EST-12 o tiam albon mt- 0000 20 mbsvm e mint vl s Db s win
5253 http:#/localhost:8000/estore/control/can ?action=purchaseltem&iternld=EST-13
5245 http:#localhost:8000/estore/control/can *action=purchaseltem&itemld=EST-14
5249 http://localhost:8000/estore/control/can ?action=purchaseltem&iternld=EST-15
5239 http:#localhost:8000festore/control/cart ?action=purchaseltem&itermld=EST-16
5243 http:#/localhost:8000/estore/control/cart Paction=purchaseltem&itemld=EST-17
5235 http-#flocalhost:8000festore/control/can ?action=purchaseltem&itemld=EST-18
A23R_htto-#lne a'l‘hnm'mnﬂ-'s;mﬂrnfnnmm}fmrt ?actinn=nirchasaltem&itemid=FST-19

1 99

tecord: [14] 4
Figure 7.2. MaramaMTE+ using WebSphinx to extract structural information from the Pet Store

web application

7.4.2 Form Chart extraction

MaramaMTE+ retrieves data from the database, and uses the data to generate structure of a Form Chart
model. Figure 7.3, Figure 7.4, Figure 7.5, and Figure 7.6 show the main steps of Form Chart model
generation. The user starts the generation process by opening a wizard “Import Pages” (in Figure 7.3).
The user points to the database of the interested target website, and imports available web pages. The

web pages are transformed into correspondent Form Chart Pages, and added to the Form Chart

96

diagram/model (in Figure 7.3). Note that the pages in the Form Chart model do not represent individual

web pages as seen by the user, but classes of web pages that share the similar structure and similar set of

web form parameters with possibly different values.

diagram1. pouDiagram pse SDK

NHO -0 [B8E- @ o -
= 8|8 page.pouliagram [*diagram1.poubiagram &2 = modell . pouMadel
< | BE Ty select

Import Pages

Import Pages From Legacy Syskem

category createnswa. ..

productdetails

| D:\Maramatworkspacewebsphincdweb_nfo_db.mdt Browse | Import

Avallable Pages

ChoosePages

Selected Pages

hittp:/flocalhost: B000/eskare findex, html

http:/ localhost: 8000jestore fcontroljsignin
hittp://localhost: BODDJestore/contraljcart

http:/ localhost: 8000 estare/controlfhelp
hittp:/flocalhost: B000Jestore/contraljcategory

http:/ flocalhost: 8000jestore/control/createnewaccount

AddToDiagram

‘ Mext = | Finish | Cancel

Figure 7.3. Generating Form Chart pages by importing website pages

* Java - diagram1.pouDiagram - Eclipse SDK
File Edit Mavigate Search Project Run Window Help
ti-H F-0-QU- | EHEG- @4 LEER P T

TS Mavigator 52

= | page. pouliagram

B *diagraml pouliagram X |=| modell.poutodel

Irport Actions From Legacy System
[Current legary system is: DiMaramaiworkspaceiwebsphindweh_info_dh.mdh Impart category productdetalls
Available Actions

http: fflocalhost: 5000festare/populate--http: flocalhost: 8000/ estarefcontrolicart

http: fflocalhost: 8000festore/populate--http: filocalhost: 8000/ estorefcontralfsignin

http: fflocalhost: 8000festore/populate--http: /flacalhost:8000/estarefcontralfhelp

http: fflocalhost: 8000festore/populate--http: fflacalhost:8000/estarefcontralfcategory

http: fflocalhost: 8000festore/controlfsignin--http: [localhost: 8000 estore/control/createnswaccol
http: fflocalhost: 8000festore/controlfcart--http:) flocalhost:S000/estorejcontraljcart

http: fflocalhost: 8000 estore/controlfcart--http: fflocalhost: S000/ estorefcontrolicheckout

http: flocalhost: 8000)estore/controlicategory--http: [localhost: 8000 est ore/control/product hr—categary ‘
http: fflocalhost: B000estore/control/product--htkp: flocalhost : 5000 estore/control/product det ail:

. e, bl
Import Actions

checkaut

v

hr--createne... | | hr--cart | ‘ hr—checkouk

hr-—product

i

AddToDiagram

erties &3 Maodel Instances

< Back | ezt = | Finish ‘ Cancel |

Figure 7.4. Generating Form Chart actions by importing http requests

0 [xs @ v - | 2 |

I(E *diagram1,pouliagram &3 . modell . poutiodel |

sugnln cark

Figure 7.5. Generating Form Chart transitions by importing http requests

createnswaccount

e
eg/

Figure 7.6. Manually adjusted generated Form Chart model

98

The wizard then allows tool users to add Actions to the intended Form Chart model (Figure 7.4). The
user is given a list of available actions (based on the http requests the chosen pages can launch), and can
add Action components to the Form Chart model. The wizard then allows tool users to add Transitions
between Page components and their Action components (Figure 7.5). The generated basic Form Chart
model (Figure 7.5)), a perfectly correct Form Chart model, is far from ideal aesthetically, and requires

manual rearranging to improve its readability (Figure 7.6).

7.4.3 Form Chart augmentation

MaramaMTE+ is intended to use a Form Chart model in two ways: (1) using it as an independent model
to generate testing plans and scripts for third party load testing tools (e.g. Apache JMeter); and (2) using
it together with other domain-specific models (e.g. the architecture design models, business process
models and service composition models) to generate comprehensive performance evaluation test beds.
For either purpose, a generated Form Chart model needs to be augmented by appropriate properties for
code generation. For example, MaramaMTE+ stochastic Form Chart Transitions use a property
“Probability” to model the chance of users requesting a particular web page (refer to Figure 6.3). This
property may be computed in various ways e.g. randomly within a specified range value, normal curve
distribution, or from monitored web site usage (Draheim et al, 2006). Form Chart pages also require
properties to specify such stochastic information including “delayKind”, and “delayTime” (refer to
Figure 6.3) (Draheim et al, 2006). Tool users thus need to flesh out the generated basic Form Chart
models (e.g. Figure 7.6) with suitable property values such as probabilities (currently empirical data) on
all Transition links. The basic models also need to be augmented by adding some MaramaMTE+-
specific modeling components. Figure 7.7 shows the augmented stochastic Form Chart. The Client4
component does not belong to a generic Form Chart model. It represents a client-side start-up
component for loading test code generation, as all testing plans need an entry point and various
configuration properties. The quit actions are also manually added to the generated model to describe the

real client behavior.

99

Clienta logaut

checkout

\ \ 1
‘ | @

getCark

getIndex

-t

getCaktegory [«

aq
£t

getProduct

signin

S

0L

s
0
creaktenewaccount / 5 category

0

createiewaccount

o4l

-t ’/_pr_o—duct

qgetProductDetails

o

productdetails

Figure 7.7. A synthesized Pet Store Form Chart model

7.4.4 Form Chart History-Sensitive Supplementary Model

MaramaMTE+ also extends MaramaMTE to capture user behavior history. User behavior history
(Draheim et al, 2006) is how users make decisions to take paths to visit various web pages. In a
shopping session, users’ previous visiting/behavior may influence their next move. Figure 7.7 is a
history-free model, where each page has only one state and is not influenced by users’ behavior history.
In the history-free model, page “product” (oval shape labeled with “product”) may launch three http
requests (outgoing Transitions to three square shape actions). The empirical probabilities for each of
those http requests are: 0.2 (to action getCategory), 0.1 (to action quit), and 0.7 (to action
getProductDetails) respectively. However, in reality, the probability distribution of page product to its
three connected actions varies with users’ behavior history, which is illustrated in a complementary

history-sensitive model in Figure 7.8. In the history-sensitive model, the numeric suffix of each page

100

name represents the history-sensitive state of the page. The history-sensitive model shows three decision
paths (users behavior history) related to page “product”, including, Path 1: page “cart 1” -> page
“product 1" (leading to the state of product 1); Path 2: page “cart 1" -> page “product 1’ -> page
“productdetails 1" -> page “product 2" (leading to the state of product 2); path 3: page “cart 1" —
> page “product 1’ —> page “category 1’ —> page “product 3" (leading to the state of product 3).
Three paths are three different contexts in which users make different decisions for the next move. For
example, page product has three states product 1, product 2, and product 3. Each state is identified by
a set of probability distribution of http actions leading to the form page. MaramaMTE+ supports users to
use the history-free model as the base model, and then refine it by one or more correspondent history-

sensitive model(s) to model more realistic user behavior and generate realistic load testing plans.

,Vl)“

&
category_1
it

getCategory 0 etCategar
D g v ’
getIndex e
~ etProduct...
@ o] EPrOGUCE T @ praductdetails_L
T,

\ 5 getProductDetails
it productdetails_1 TR 2

getCategary
. category_1
., B
getIndex \ h
}\\ getCategory o

i

[ERHEELE D productdetails_1
0

Figure 7.8. A supplementary decision model

7.4.5 Generating load testing plans

MaramaMTE+ generates load testing plans, and their associated scripts or programs for a range of third
party tools. One example is the generation of Apache JMeter testing plans and associated scripts. A
JMeter testing plan consists of: one or more thread groups, logic controllers, sample generating
controllers, listeners, timers, assertions, and configuration elements (Apache JMeter, 1999). When
generating a JMeter test plan, each Form Chart Page component represents the state of the website; each
Action component represents an http request to obtain certain web page; and each Transition specifies

the possibility of the Page launching the Action. Element properties such as “Probability” and “http

101

request” are used to generate the logic controllers of the JMeter testing plan. More details of JMeter
testing scripts generation will be explained in section 7.5. Figure 7.9(a) illustrates a small piece of
JMeter testing scripts generated from the Form Chart model in Figure 7.7 and Figure 7.8. This generated
test plan can be loaded into the JMeter test tool’s GUI environment, as shown in Figure 7.9(b). A JMeter
plan does not need to be loaded into JMeter’s GUI interface but can, instead, be executed directly
through a command line in MaramaMTE+. MaramaMTE+ can also generate a test-bed-specific client
side Java application using the Pet Store Form Chart model, as illustrated in Figure 7.9(c) and Figure
7.10.

simeterTestPlan version="1 2" pr g
=hashTres=
=TedPlanguidass="Test lan(
enabled="true"s File Edit Run Options Help (b) -
=stringP rop nam e="T edPlan 2 T LA
=stirgP rop neme="TedtPlan | 9§ TestPen
<boolProp neme="TestPlanf| ¢ [paoe fow HTTP Request
=boolP rop nam e="TestPlan.s| 44#¢ HTTP Cookie Manager Name: [HTTP Request_cart
=elementP rop name="TestPl @ i While Cortroller
guiclass="ArgumentsP. @ W 1t Contraller i
o g . & _page_index
Wariables" enabled="true"= @ & 1 Cortroter can

(15| real_petstore. jmx (D:\rainbow_download\jmeteridocs\demosireal_petstore. jmx) - Apache Jb

Webh Server

Server Name or IP: [s{server) I

<cdledionProp name="2ng, gh
<elementPro[': rane:"grgv @ /‘ HTTP Request_cart Port Number: Is{pon} I
<stringProp name="Araun 7 [Reguiar Expression Extractor “HTTP Request i
=gringProp name="Argun) @) 1t Cortrolier _signin
=siringProp name="Argun © /* HITP Request_signin Pratong! farau s | PPN e =
<JlementProps # Pratoos] {default httpk | e

Regular Expression Extractor
=elementProp name="por’ 0

@ 8 1t Cortroller_help

Path: Jisstore/controlicart |

private static Random random = new Random():

public static synchronized int getRandom{int n)

{

return random.nextInt(n).;
/4 generate code for esach page in the PageFlow sre
private String page_index() { (C)
synchronized(critsect) {
num_visits_index++:

/7 wait for specified amount of time

ry{
sleep{getRandom(50)+100) ;

catch(Exc

«shringProp names"Aroun
<sringProp name="Argun @ 4 HTTP Recuest reip 1 Redirect 7 Follow (¥ L "
<atringProp name="Argun [reguiar Expression Extractor
=felementProp= @) 1t Cortroller_category Send Parameters With the Request: |
_n
<$:|i'nergf‘;ol:.;l;§:;3>d @ /7 HITP Request_category Name: I value |_Encode? [include Equ..||
o Ingp P :_ng-") Reguisr Expression Extractor random_check [${rainbow_1} | |
YingF TGP name= Frou| [} User Parameters action Ipurchaseltern (] v
«stringProp name="Argun o 2 EST1 O =8
=felementProp= N -~ [——
<fcollectionP oy }) It Cortroller_checkout 2ad || raseen |
<felementProp> () @ HTTP Request_checiout |[class ClientAThread extends Thread
‘&efglam [} Regutar Expression Extractor A1 {
<hashl ree= @
X © & 1t Controller_cart
=ThreadGroup gudass="Thr » : : & : ;
flow! enabled="true"= 9/ B:ez:ue:;can . . fﬁ??lc,,??;?':t critsect = new Object():
<stingProp name="T hread(el % ! : ; : v
e.huolgmpr:lame;rhlead& D) User Parameters public synchronized void doWait() throws Exceptio
<stingProp name="T hread(@ <& it Controller_page_signin nile(isAli
<longP rop name="ThreadGl ..~ g, HTP Request createnevacscurt while(isalive())
alan ardDran nema="T hrad X wait(5);
D Regular Expression Exiractor }

tion ex

System . out .println{("F

Figure 7.9. JMeter test plan, JMeter, and test bed client application

102

private long timeWindow = &00%1000; | One user sends request at
private long startupDuration = 1900; < ﬁfquencyofo 3T for 10 (3)

private long timePas=ed = 0; -
private int clientHumbers = 1;4?——___F_P__________ Trtnte s

private int repetition = 0

private double RandomGauss{double sigma)

double =, v, r2;
Fandom rand = new Random():

do
1
~% chooze ®.v¥ in uniform square (-1.-1) to {(+1.+1) =~) ;
x = -1 + 2 * rand.nextDouble(); Simmlate normalized
v = -1 + 2 * rand nextDouble(): - waiting time before
<% zee 1f it iz in the unit circle 7 .
v2 = x ®® + ¥ * ¥ a recuest 13 launched.
T while (r2 » 1.0 || »2 == 0);
~% Box-Muller transform #*- (4}
return sigma * v * Math . sqgrt(-2.0 * Hath logi(xr2) ~ r2):
H

...... Eetrnieve web form mnfo

private woid buildAllIndexzedPages() L — and form chart
1 stochastic info (2)

float[] probabilities cart_1 = {100,100,200,600%;

String[] urls cart_1 = {null., serverindPort+" estore-controlslanguage?language=Engli=sh".:
' estorescontrol-product 7product_id=AV-CE-01", serverindPort+" ~estore-con
page_cart_1 = nev IndexedPage(l. "cart". probabilities_cart_1.urls cart_1):
(1)

public static woid printStatistics(Llist threads) < | Collect statistic raw data
{

for{int j=0; j ¢ threads =ize(). j++) {

Figure 7.10. Generated load testing java program

Figure 7.10 specifies how Form Chart model properties are translated into the information of a java load
testing program (part of test beds). The Form Chart Page components and their properties have been
translated into http requests towards the target web application server (1); the actions and transitions
have been translated into control logic implementing a state machine (2); the client component has been
translated into the test plan configuration and properties (3); the waiting time for launching a http
request is simulated by stochastic data (4). The generated program encodes a set of load testing
parameters including “clientNumbers”, “timeWindow”, “startupDuration” (3). Parameter
“clientNumbers” represents how many customers will be simulated in the load testing plan. Parameter

“Time Window” represents how long one load testing will last. Parameter “startupDuration” represents

103

the time delay between two requests, and often interchanges with parameter “Request Launch
Frequency” representing frequency that each customer will launch http request. These three testing
parameters come form the “Client” component in the Form Chart model. Software engineers can set up

various testing parameter values to get raw results to analyze web performance.

7.4.6 Running generated load tests

Generated test plans and scripts can be run against a running J2EE Pet Store application. Table 7.1
shows a testing plan’s three testing parameters and their values. Client Number represents that a testing
plan simulates 1 user to continuously launch requests to the Java Pet Store server. Time Window
represents that the testing plan must launch requests continuously for 10 minutes. Request Launch
Frequency (RLF) represents the frequency the requests should be launched. Each test plan must choose a
RLF within the range from 0.5 to 1 HZ. The values of these testing parameters are chosen empirically.
For each test run, users need to choose a value for Client Number, Time Window, and Request Launch
Frequency. Figure 7.11 illustrates a test run’s raw evaluation data using the generated java test program
(in Figure 7.10) running against a legacy J2EE Pet Store application. It shows how many times a
particular Form Chart page has been visited (visits), how long it takes for the page to respond to all those

http requests (total time), and the average time taken to respond one request.

Client Number 1

Time Window (minute) 10 minutes

Request Launch Frequency (HZ) 0.5, 0.53, 0.56, 0.59, 0.62, 0.67, 0.71, 0.77,
0.83,0.9,1

Table 7.1. Load testing parameters

Test Running...

Statics summary:
cart: visits = 93, total time = 17590, ave time = 187
category: visits = 1420, total time = 304835, ave time = 214
checkout: visits = 61, total time = 13643, ave time = 220
createnewaccount: wisits = 286, Total Time = 49537, ave Time = 172
help: wisits = 164, total time = 29859, ave time = 181
product: wisits = 1083, total time = 197822, awe time = 182
productdetails: wisits = 807, total time = 142454, ave Time = 176
signin: wisits = 307, total time = 58508, ave Time 1559
index: wisits = 917, total time = 149188, ave Time 162

Figure 7.11. Sample load testing raw result data of java Pet Store

104

The Pet Store website responds differently when RLF is changed, and the results are shown in Figure 7.1
and Figure 7.13. Figure 7.12 shows how the response time of each page increases with the increase of
RLF. For most of the visited pages, the response time is doubled when the request frequency goes from
0.5 HZ to 1HZ. For all the tested pages, 1HZ seems to be the highest frequency the tested Pet Store
server can handle. When the frequency is increased to 1.2HZ the Pet Store server becomes extremely
unstable and is easily brought down. Figure 7.13 shows the distribution of average response time of each
page. This figure shows that all web pages have similar response time, and the performance of the Pet
Store server is well balanced. Page “category” has slightly longer response time as it responds the
request with the largest amount of data. How to analyze data and apply analysis results to improve
website performance is beyond the scope of MaramaMTE+. However, MaramaMTE+ supports formal
analysis modeling of web users’ behavior and testing plan generation, which improves the efficiency and

effectiveness of web load testing.

250 160

’g w | | —e—cart 140 o cart
< 200 — | —=—category m category
E createnewaccount 120 1 0O createnewaccount
2 150 checkout 100 +— O help
§- —x— help 80 1| m index
é 100 + —e—index @ product
% —+— product 60 17— ® productdetails
%’. 50 - —— productdetails 40 +— Osignin
¢ signin 20 1| m checkout

0 — T m Series10

NS N S A ’ 1

Request Launch Frequency (hz) Request Response Time(ms)

Figure 7.12. Request Response Time changes Figure 7.13. Distribution of average Request

with Request Launch Frequency Response Time for Web Pages

7.5 MaramaMTE+ design and implementation

MaramaMTE+ is a set of Eclipse IDE plug-ins implemented using the Marama meta-tool development
framework. The architecture of MaramaMTE+ is illustrated in Figure 7.14. The Marama meta-tool
provides framework for developing diagram editors (1). Two key diagram types are used — the Form
Chart model and the architecture model (2). Diagrammatic editors are instantiated to edit these models

using the Eclipse Graphical Editing Framework. The “WebSphinx coordinator” component starts up

105

WebSphinx crawler tool (an independent Eclipse plug-in) (3); and also works with a
“DatabaseProcessor” component to collect crawled target web application structural information and
store it in the crawler database (8). The “DatabaseProcessor” component in the
“MaramaModelGenerator” manages database connections, and accepts all crawled data from
WebSphinx and saves it in the crawler database (4). The “DiagramGenerationManager” component
retrieves website information from the web crawler database to generate Form Chart model entities,
associations and their visual icons (5). The “Algorithm” component arranges the generated visual icons
and connectors into a basic Form Chart diagram layout. A simple layout algorithm is currently used to
arrange the pages and actions one after another as illustrated previously. Other layout algorithms such as
force-directed layout algorithms provided by the CCVisu 3rd party package (Beyer, 2005) have also

been tried.

MaramahModelGenerator
Alzonthm
MarmaEditor "‘%(1}—‘lDlia\gramGenerationIa{anager I\X
(DatabaseProcessor| ()
i I S
I 4
(2) () Crawler
databasze
MaramaModel MaramaMTFE
(&)
|f°m_1 chart model pre-bult Echpse JET \
prehitecture model] scripts for gpnerating
7 Theter test plan and _|WebSphinx
I WMaramal TTE+ test bed /
MaramaBasic client application (3)
HandlerLibr d
andlerLabrary | WebSphire coordinatork/

Figure 7.14. High-level architecture of MaramaMTE+

MaramaMTE+ uses Eclipse Java Emitter Templates (JET) scripts to generate code, including test plans
and scripts from Form Chart models, as well as server-focused architectural test bed from architecture
models. JET uses a subset of the Java ServerPages (JSP) syntax making it easy to write the required

code generation templates. MaramaMTE+ traverses a Form Chart model and transforms each element

106

into a set of target load testing tool abstractions. Figure 7.15 shows a JET script generating the basic
information of a JMeter test plan from the Client component and its properties. The basic information
includes the name of the test plan, how many threads the test simulates, and the test run timing monitors
(WhileController) (1). The first page (the homepage of a website) in the Form Chart model is then
transformed into an initial http request on the target web application (IfController), which includes the
target URL and the URL parameters and example values encoded in the Form Chart model (2). An
action is translated into a HTTP sampler (3). The Transitions from Pages to Actions generate decision
logic in the JMeter test script (through JMeter’s RegexExtractor, UserParameters, and more), which
implements a state machine model of user behavior. The probabilities of transitions are realized through

JMeter’s BeanShellTimer, Gaussian Random Timer, and more.

=jmeterTestPlan version = ___ =
Client — (1) <hashTree=] .
-name _ “‘*-—_______h o1 | ____estPlan suiclass="testF
] o lient -= — 1 .. .
:mﬂ]meaﬂs T | TestPlan jet \\\hx . E-E-]'?;]L:lﬂtgr;rgl;
\ L.* HX\R%:‘I.’\;]J[]E'C ontroller _____
}’@E [—— “TfController .t
_name — Page -= -
-delayKind TestPlan.jet “HTTPSampler ..
. =<h=swingProp name=
-delayTime & smingProp name=
1.+ | T 1 (3‘)_,-# .;Eﬁ.ege‘:Em:acmr...
— + i ~UserParameiers...
Action e Action -= <“BeanShellTimer..
-h TestPlan. jet
_ TR rEquest] </jmeterTestPlan>

Figure 7.15. JMeter test plan generation from MaramaMTE+ Form Chart model.

7.6 Discussion

MaramaMTE+’s effectiveness for supporting realistic client load modeling and test plan generation has
been evaluated. MaramaMTE+ has been used to synthesize a formal model of client loading for several
web-based systems, including the Java Pet Store, NetPay, and the web site of the Department of
Computer Science of The University of Auckland. Table 7.2 presents some initial empirical evaluation
results. In Table 7.2, Work Efficiency compares the effort needed to manually construct JMeter test plans
with the effort needed to augment an extracted Form Chart model then generate JMeter test plans. The
work was undertaken by an experienced software engineer who knew each target system well. The

manually created JMeter test plans were done using the JMeter GUI editor rather than replay/capture

107

tool. Efficiency gains between 5-6 times of using MaramaMTE+ were demonstrated. The Form Chart
models developed for each targeted website also bring long-term benefit for users, because Form Chart

models are easy to understand and maintain than JMeter test plans and scripts.

System Work Efficiency
effort to manually | effort to augment an extracted Form
build test plans Chart model then generate test plans
Java Pet Store 18 hours 3 hours
NetPay 25 hours 3 hours
Department of Computer | 15 hours 2.5 hours

Science website

Table 7.2. Empirical comparison results

Most current web performance engineering tools require considerable knowledge of the system under
test to formulate and build appropriate loading test plans and scripts, which requires much effort
especially for systems under change, large systems, or systems the performance engineer is unfamiliar
with. In contrast, MaramaMTE+ provides a structured and automatic way to retrieve target system
information and allows users to build up testing plans efficiently. As shown by preliminary results with
MaramaMTE+ in Table 7.2, effort is much lower for generating a client load model with it than using

JMeter’s GUI test plan designer directly.

Key advantages to MaramaMTE+ approach include: its ability to extract model structure from a web
application via web crawling; model-based generation of 3rd party stress testing tool test plans and
scripts; and ability to run and compare web application performance under numerous different loading
models accurately and efficiently. MaramaMTE+ extracts most information of an intended Form Chart
model directly from a web application, which greatly reduces errors and time taken to develop client
behavior models. Engineers can even build different versions of stochastic Form Charts for all or part of
a web application to analyze its performance. Generating test plans and scripts for 3rd party stress
testing tools allows MaramaMTE+ to leverage their advanced features for load testing. For example,
JMeter provides sophisticated measurement, reporting, distributed test execution and test scheduling

support features that MaramaMTE+ is able to reuse directly with little effort. However 3rd party tool

108

limitations also need to be dealt with. Most web application stress testing tools have less rich client
behavioral models than MaramaMTE+ Form Charts. Thus Form Chart models may need to be
simplified when generating test scripts for target load testing environment. Sometimes implementing
Form Chart-specific behavior is quite complex in the 3rd party testing tool. For example, to implement a

probabilistic state machine in JMeter proved to be quite challenging.

The extracted Form Chart structure can be very large for large websites. This issue is mitigated in
MaramaMTE+ by allowing any number of partial Form Charts to be rendered in diagrams. Automatic
layout of the extracted Form Chart diagrams is currently rudimentary and needs to be improved. In
addition, support for semi-automatic grouping of large website structures into multiple Form Chart

diagrams is needed to manage large website load testing.

For large websites, it can be a complex process to augment the extracted Form Charts with probabilistic
information about user behavior. A key area of future work is to infer such stochastic Form Chart
parameters from profiled target web application behavior. It is planned to monitor the actual usage of
websites using tools to provide real user session histories with large numbers of http requests. These logs
can then be analyzed to infer transition probabilities improving accuracy of the client behavior model.
The example data in user session http requests also provide realistic sequences of parameter values to
invoke web server pages. This will still allow performance engineers to change these probabilities or to

specify alternative versions of the Form Chart for the same application.

The ultimate goals of MaramaMTE+ include: from developer perspective, reverse-engineering server-
side architecture of legacy web applications into MaramaMTE+ architecture designs; from end user
perspective, reverse engineering legacy web applications into Form Chart models; forward engineering
optimized intended server-side architecture models for the legacy system; and comparing the legacy
server-side software models with the optimized server-side architecture models. MaramaMTE+ would
provide a structured and automated performance engineering environment to improve the performance

of server-side architecture of legacy systems.

109

7.7 Summary

MaramaMTE+ is an innovative approach to automate the process of retrieving website structural data,
generating Form Chart model(s), and generating load testing plans. This chapter discusses the
effectiveness of the approach through a case study, where the running Pet Store website is crawled;
structural data is extracted; a Form Chart model is automatically generated and manually augmented;
JMeter testing plans are generated and executed; and load testing results are collected. MaramaMTE+
helps to reverse engineer legacy web applications; and efficiently run web loading tests. MaramaMTE+
shows potential to effectively and rigorously compare the performance of a legacy web application with

that of an optimized software architecture model of the legacy system.

110

Chapter 8 - MaramaCRelation Introduction

Model Integration and Transformation (MI&T) can extend applicable scope of domain-specific
knowledge, and combine different types of domain-specific knowledge to serve a broader problem
domain. The researches of ArgoMTE, MaramaMTE, and MaramaMTE+ are all motivated by MI&T.
ArgoMTE integrates the UML modeling technology with the technology of test bed generation and
performance evaluation. MaramaMTE and MaramaMTE+ integrate the technology of test bed
generation and performance evaluation with web user behavior analysis modeling (Form Chart
modeling). All these researches support code generation - the simplest model transformation. MI&T in
those researches are done at programming level and lack of structured high level support. This chapter
introduces the MaramaCRelation approach — a high level support for MI&T. This chapter introduces the
problem domain of the proposed MaramaCRelation approach; identifies the problems found in
traditional technologies of MI&T; discusses the requirements for the MaramaCRelation approach; and

highlights the main features of the proposed approach.

8.1 Problem statement

As is reviewed in chapter 2, Model Driven Engineering (MDE) covers a large range of research areas,
including Model Integration, Model Transformation, and Multi-View Support. Model Integration
generally falls into two categories of deep integration and functional integration. Model Integration in
Argo/MTE, MaramaMTE, and MaramaMTE+ is functional integration, because those tools leverage the
strength of different modeling technologies (without changing them) to extend their original applicable
scopes. Model Transformation is the core concept involved in MDE. Model Transformation
technologies transform one model to another at the same or different abstraction level. The researches of
ArgoMTE, MaramaMTE, and MaramaMTE+ generate code by using popular transformation
technologies such as XSLT, JET. The researches also involve many model transformation activities,

such as transforming proprietary SoftArch/MTE architecture models to ArgoMTE architecture models,

111

and transforming MaramaMTE+ architecture models to Form Chart models. Although they have
different focuses, Model Integration and Model Transformation share many similarities: 1) they both
extend the applicable scope of a model; 2) need to maintain the rational of the integration or
transformation; 3) record semantics maintained and lost during the integration or transformation; 4)

track the evolvement of modeling elements; and 5) synchronize the involved models.

8.2 Motivation

Software engineering domain-specific models are widely used to model various facets of a software
system, such as business process modeling (Li et al, 2007; BPMN, 2004), software architecture
modeling (Grundy and Cai et al, 2001; Cai et al, 2005), requirement modeling (Castell et al, 1998), and
object oriented design modeling (UML, 1996). These models differ in semantics and address issues of
the intended software system in various ways. MI&T are effective approaches to interconnect domain-
specific models to leverage their strength to build software systems, which is demonstrated by the
following two cases:

Case 1: architecture modeling and performance evaluation (e.g. MaramaMTE+ architecture

modeling) vs. web user behavior modeling (e.g. Form Chart modeling)

1. Model software architecture of a software system in a MaramaMTE+ architectural model
Model web user behavior of the same system in a Form Chart model
Interconnect the two models conceptually

Check the semantic consistency of the above two models during interconnecting

SISV

Generate client-side program from the Form Chart model, and server-side program from the
MaramaMTE+ architectural model. Combine the generated program from both models to
analyze web user behavior and evaluate the performance of the intended software architecture

design

Case 2: business process modeling (BPMN) vs. architecture modeling and performance
evaluation (MaramaMTE+) (Grundy, Hosking, and Li et al, 2006)

1. Model business processes of a service-oriented software system in a BPMN model

2. Model software architecture of the same service-oriented software system in a MaramaMTE+
architecture model

3. Interconnect the two models conceptually

112

4. Check the semantic consistency of the above two models during interconnecting
5. Generate performance evaluation program from the MaramaMTE architectural model to evaluate

the performance of the business process model

In each case, the domain-specific knowledge is self-evolved and left intact during model integration.
Coupling them together extends each model’s applicable scope; makes both models functionally

connected in a broader target domain; and consolidates self-evolved domain-specific knowledge.

The two cases above help to identify the following problems found in MI&T:
o rational of MI&T is lost in the operational code
Models can be integrated and transformed because they share common conceptual semantics. The
shared conceptual semantics is part of both the source and target models, and is the rationale and
main resource for the intended MI&T. The shared semantics leads to building up interconnections
between the source and target models, and guiding their coordination (including structural,
behavioral, and functional) over time. Shared semantics needs to be captured and well-formed to

effectively initiate and guide the intended MI&T.

In most of Model Integration projects (Cai et al, 2004; Grundy, Hosking, and Li et al, 2006), the
rationale of model integration is entangled with the operational code that implement the integration.
The same thing happens to model transformation. The rationale of transformation is entangled with
the functional code of the transformation (e.g. XSLT scripts, ATL scripts). As it is lost in operational
code, the rationale of MI&T can not provide support for the interested issues involved in MI&T,
including semantics maintenance, traceability, and behavior synchronization. Currently, those issues

are treated as isolated operational tasks of MI&T.

e no high-level guidelines for tool extension

MI&T requires tool support. In most cases, it requires extending an existing tool to support new
modeling technology. For example, Rational Rose and ArgoUML are extended continuously to
support new modeling knowledge. Tool extension is mostly done at programming level. Tool
developers set up functional requirements and then implement them. In ArgoMTE, tool developers

use programming framework (e.g. GEF, Novosoft UML) to support architectural modeling; in

113

MaramaMTE and MaramaMTE+, tool developers use Marama meta-tool API to support Form Chart
modeling. The developer-oriented programming-intensive approach of tool extension needs to be
improved. Tool users need to take part in tool extension by providing high-level guidelines for tool

extension, including semantics maintenance, traceability, and behavior synchronization.

o low level semantic consistency check

During MI&T, semantics of model elements may evolve, and semantic consistency needs to be
checked. The requirements for semantic consistency may vary in different circumstances, but
semantic consistency check is a very important task, and is supported in tools like Rational Rose,
ArgoUML, ArgoMTE, MaramaMTE, and MaramaMTE. In those tools, the support for consistency
check is done at implementation level via programming framework and mechanisms. Tool users
need to take part in the development of consistency check mechanism by supporting high-level,

structured analysis of semantic maintenance during MI&T.

o traceability is maintained through low level centralized data repositories

During MI&T, source and target model elements may look very different. They do not have to have
the same names or the same other obvious property values. Maintaining traceability among models is
a very important task. Most of comprehensive software engineering tools support traceability,
including Rational Rose, ArgoUML, ArgoMTE, MaramaMTE, and MaramaMTE+. To support
traceability, those tools use low-level centralized repositories (mainly at source code level or
database level) to hold commonly shared data structure. Their traceability maintenance mechanisms
are tool-API-dependent, and need to be updated manually when the involved models evolve or when
new domain-specific technologies need to be supported. A flexible, high level mechanism is required

to support traceability of MI&T.

e behavior synchronization across the models is maintained through coding

When models are interconnected (via either model integration or transformation), their behaviors
often need to be synchronized. Many comprehensive software engineering tools support behavior
synchronization among models, including Rational Rose, ArgoUML, ArgoMTE, MaramaMTE, and
MaramaMTE+. Again, those tools use low-level programming framework and mechanisms to

support behavior synchronization. Tool users need to take part in the development of behavior

114

synchronization mechanisms by providing high level, well-structured information of the events

triggered by MI&T.

e maintainability of transformation programs is very poor

Model transformation programs and scripts (e.g. ATL, and XSLT) are textual files. Transformation
templates and rules are tedious, error-prone, not categorized, not well designed, and hard to
understand and maintain. They are a list of ad-hoc operations to complete model transformation. The

maintainability of transformation programs and scripts needs to be improved.

e model transformation programs can serve more purposes

The main goal of model transformation programs and scripts (e.g. ATL and XSLT) is to transform
models from one format to another. Transformation programs contain well-structured information
of: model element mapping, mapping conditions, model elements involved in each mapping, and
relationships among mappings. The structured information can become good resources to study the
main concerns of MI&T, including semantics consistency, traceability, and behavior
synchronization. However, tool developers have not explored the potential of the structured
information. They use the transformation scripts to execute one-off tasks, and then treat the concerns
of MI&T as individual functional goals. It will be interesting to see how transformation programs

can help to reorganize those main MI&T concerns.

o existing MI&T lacks analysis and design support

Object Oriented (OO) software products can be produced without OO analysis and design
methodologies. But OO analysis and design methodologies allow users to make use of the best
practice OO knowledge in the intended system. Software products that are well analyzed and
designed have much better qualities than ad-hoc development. Most MI&T technologies, similar to
0O development technologies, realize MI&T at operation/implementation level without analysis and
design support. Users usually construct ad-hoc rules and templates to get the job done. Integration
and transformation rules and templates are generally hard to maintain, improve, and reuse. An
analysis and design model for MI&T is needed for software modelers to make use of the best

practice knowledge in designing good quality rules and templates for MI&T.

115

8.3 Requirements for structured, high level support for MI&T

The problems addressed above motivate the following requirements for a high-level support for MI&T:
o MI&T needs to be analyzed and designed at meta-model level
Most domain-specific models use meta-models (e.g. MOF-based meta-models (MOF, 2008), VPM-
based meta-models (Varr’o et al, 2003)). A meta-model provides abstract syntax and semantics
(including entities, associations, properties, constructs, semantic constraints, and rules). Domain-
specific models are instance models of their meta-models, and exploit surface notations that embody
the semantics defined in their meta-models. Any structured high-level solutions for MI&T need to be

done on domain-specific meta-models.

e capture semantics shared by source and target meta-models

The semantics conceptually shared by source and target domain-specific models is the rationale and
the main resource for model integration, model transformation, multi-view environments, and tool
integration. The shared semantics leads to building up interconnection relationships between the
source and target models, and guiding their coordination (including structural, behavioral, and
functional) over time. Shared semantics needs to be captured and well-formed to effectively guide

MI&T.

In most existing model transformation (ATLAS Transformation, 2006; XSLT Transformation, 2001;
Csertan et al, 2002) and integration technologies (Sanchez et al, 2008; Ramos et al, 2007), users
normally come up with an ad-hoc understanding of the shared semantics, then use it implicitly to
guide the construction of rules and templates for model integration, transformation, and multi-view
environment. Explicit, well-structured shared semantics is needed to replace the ad-hoc implicit
understanding. An effective approach to capture shared semantics must 1) capture appropriate
atomic units of the shared semantics; 2) associate atomic units and allow them to effectively
communicate with each other; 3) support efficient communication between the captured shared

semantics and the involved domain-specific models.
o create Interconnection Relationships between source and target modeling elements

Explicitly or implicitly, MI&T establishes Interconnection Relationships between source and target

models. Interconnection Relationships define what and how to interconnect models that conceptually

116

share semantics. What-to-interconnect defines the interested source model element(s) with the target
model element(s). How-to-interconnect defines the constraints that the interested model elements

must satisfy before they can be interconnected.

The Interconnection Relationships represent the same meaning in both model integration and
transformation, in terms of they both extend the applicable scope of a model; need to maintain the
rational of the integration or transformation; record semantics maintained and lost during the
integration or transformation; track the evolvement of modeling elements; and synchronize the

involved models.

e consistency and consistency check

ale - 1 — - [relationshipl] _ _ — 1 =bl

828 = 1 7~ [relationship2]- - - — 1 bl

223 b23
as b3
source model & target model B

Figure 8.1. Consistency during MI&T

Source and target meta-models have different abstract syntax and semantics. MI&T may cause
semantic inconsistencies. Figure 8.1 illustrates a sample situation where semantic inconsistencies
may occur. Here, instance models A and B have different domain-specific meta-models. The source
model A contains entities: al, a2, and a3; and one association: a23. The target model B contains
three entities: b1, b2, and b3; and two association b12 and b23. When Interconnection Relationships
are established between al and bl, and a2 and b2, the interaction between bl and b2 (through
association b12) may imply a “hidden” association between al and a2 in model A. If the interaction

(through associations) between al and a2 is not allowed by the abstract syntax of model A, the

117

“hidden” association will cause semantic inconsistency to model A after its interconnecting to model
B (via integration with or transformation). The semantic inconsistencies need to be detected and

recorded to give modelers cognitive support when making decisions during MI&T.

e maintain traceability without a low level centralized data repository
Traditional software modeling tools (e.g. Rose, ArgoUML) maintain traceability by using low level
data repositories, and programming framework and mechanisms. A high-level support must provide

a flexible mechanism to maintain traceability of MI&T of ever-changing interested models.

e behavior synchronization across the models

When models are interconnected (via either model integration or transformation), their behaviors
need to be synchronized. What and how to synchronize need to be decided. What-to-synchronize
defines what model parts and their behaviors need to be synchronized across the models. How-to-
synchronize defines the response events in order to maintain the validity of the Interconnection
Relationships over time. Behaviors triggered by MI&T need to be recorded and well-formed to

provide guidelines for behavior synchronization during MI&T.

e explore the potential of model transformation programs and improve their maintainability

Model transformation programs are well-structured information. They should be able to support the
main concerns involved in MI&T, including semantics maintenance, semantic consistency check,
traceability maintenance, and behavior synchronization. Model transformation programs are hard to
maintain. Most of them are just a list of ad-hoc operations to transform models. The readability and
maintainability of transformation programs need to be improved before they can help to solve the

main MI&T issues.

o analysis and design support for MI&T

A high level support for MI&T must allow users to analyze and design the intended MI&T
incrementally. It must separate rational from operational code; allow users to reason about if the
intended MI&T maximally match their mindset; generate code to support traceability maintenance

and behavior synchronization; and detect, record semantic consistency.

118

8.4 MaramaCRelation overview

The MaramaCRelation approach is designed to interconnect domain-specific models. The
MaramaCRelation approach treats both model integration and model transformation as the same in terms
of their: maintaining the rational of the integration or transformation; recording semantics maintained
and lost during the integration or transformation; tracking the evolvement of modeling elements; and

maintaining synchronization across the involved models.

The MaramaCRelation approach is consisted of two main contents: The CRelation (read as “crea-lation”)
model and the MaramaCRelation prototype tool. The CRelation model is the core part of the
MaramaCRelation approach, and its lifecycle is illustrated in Figure 8.2. This model captures the
semantics conceptually shared by a source and a target domain-specific meta-model (1). The Crelation
model can effectively communicate with the involved source and target meta-models (2). The CRelation
model leverages third party knowledge to define selection constraints and behaviour synchronization
information (3). The CRelation model raises MI&T to high abstraction level, permitting analysis and

design of MI&T programs, and detecting semantic inconsistency (4).

2 communicates

) _ features
third party technologies 1. Build up atomic interconnection
: relationship.
| transformation rules, e.g. XSLT, ATL o 2. Detect semantic inconsistencies of

maodel query technologies, e.g. 2 leverages T e 4 + the intended MI&T.

OCL {i 4 MaiiallnaCrelation N PPOE 13 Translate semantic constraints to

event handling technologies, e g. A kmo ¢ support acj.lvanced MI&T

K aitiaki ' i R ___V‘__,./’ . An analysis and design model for
I : MI&T
| T PO
[|
| oy
| 1. captu.}’es
{
I

target
domain-specific
meta-model

source
domain-specific
meta-model

Figure 8.2. CRelation model lifecycle

Figure 8.3 shows how a sample CRelation model interconnects the MaramaMTE meta-model and EJB-

extended UML meta-model. The MaramaMTE software architecture meta-model in Figure 8.3(a)

119

contains abstraction entities (green rectangles) and associations (pink round rectangles) modelling
software architecture of web applications. The main modelling types in the MaramaMTE meta-model
include: ApplicationClient, ApplicationServer, RemoteObject, Request, Service, Database, and
DatabaseTable. The main meta-associations are: ServerObject, ServerDatabase, ClientRequest,
ClientServer, DatabaseTables, and ObjectService. In Figure 8.3, the MaramaMTE software architecture
meta-model is used as the source meta-model to be interconnected. The target meta-model is an
extended UML meta-model for EJB (EJBUML meta-model) illustrated in Figure 8.3(b). This EIBUML
meta-model contains basic EJB concepts, including: AppServerHome representing application server
home, AppServerApp representing server application, EJBHome representing EJB home, EJBInterface
representing EJB Interface, EJBBean representing EJB Bean. The EJBUML meta-model is a proof-of-
concept UML profile, and is similar to the well-documented UML profile for EJB (Greenfield, 2001).

Service

RemoteObject name String key

e (a) Rproereerfnn [DEApplication ®
name Skring key remoteServer String nonkey = e
type String nonkey rernoteCbiect String nonkey

remoteServics int nonksy

warmUp String nonkey

AppDEAssOC
recordTime String nonkey [BE=siisrissoc
ChjectService

ServerDatabase

(ApplicationServer AppServerHome
: name String nonkey
Serverobject narne String key ‘ |

type String nonkey Database | T

name String key

=anhssoc | || HomeAssoc ‘ || Interfacedssoc
I e — Furs Shrinn men Lo
p? IE)BAndTabIeZDatabaseApp
name String key SourcePart:construct[DatabaseTable, Database]
type String nonkey E TargetPart:DEApplication (©)
threads String nonkey selectionConstraints: 1
behaviour description. ..
T lassocserverDBEZassocAppDBaAssoc -
< EourcePart:ServerDatabase reF|neAppServer.2EJ.BBeanInterFaceHome
remoteSer, TargetPart: AppDEAssoc SourcePart: ApplicationServer
ClientRequest remotechi semaritic constraints translated L TargetPart: construct[EJBBear, EJBInterface, EJBHome]
selectionConstraints: 1
remoteSer,
warrnlp St
recardTime [P A ppser var AppandAppser verHome RemoteChizEJEE=anHomelnterface

ourcePart: Applicationserver
TargetPart:construct[AppServerapp, AppServerHome]
selectionConstraints:0

SourcePart:Remoteobject
TargetPart: construct[EJBBean, EJBHome, EJBInterface]
selectionConstraints:0

behaviour description. ..

behaviour description. ..

refineTargetPartConstructAppHome [refineTargetPartConstruckBeaninterHome

construct[AppServerapp, AppServerHome” iconstruct[EJEEean, EJEINterface, EJBHome]

selectionConstraints: 1 [selectionConstraints: 1

assocServerObjzassocBeanAssocHomeAssocInterfacefAssoc

SourcePart:ServerObject
TargetPart:construct[Beanfssoc, Homedssoc, InterfaceAssoc]
|semantic constraints kranslated

Figure 8.3. (a) MaramaMTE meta-model; (b) EJBUML meta-model; (¢) MaramaMTE-EJBUML
MaramaCRelation model

120

Figure 8.3(c) is the CRelation model that interconnects the MaramaMTE and EJBUML meta-models.
The CRelation model captures the shared semantics by using four abstraction entities: StructureMapping,
StructureRefinement, SelectionRefinement and SemanticAssociation, and three abstraction associations
connecting them. The semantics of the CRelation model will be described in detail in Chapter 9. The
CRelation model (Figure 8.3(c)) consists of three StructureMappings (grey rectangles), one
StructureRefinement (green rectangle, centre top) two SelectionRefinements (cyan rectangles) and two

SemanticAssociations (purple ovals).

8.5 Main features of the MaramaCRelation approach
The main features of the MaramaCRelation approach is highlighted here, and will be explained in detail
in Chapter 9:
e The MaramaCRelation approach explicitly captures the semantics shared by the source and
target models.
e The MaramaCRelation approach can interconnect self-evolved domain-specific models, as well
as the models that are transformed from one to another.
e The MaramaCRelation approach does not define its own model query language, but uses third
party model query languages (e.g. OCL) to define interconnection selection constraints
e Most model transformation approaches treat a model as a group of individual constructs when
constructing transformation rules and templates. Associations between those rules and templates
are implicit and ignored. The MaramaCRelation approach treats a model as a model instead of a
group of individual constructs, and explicitly represents the information that is usually implied
but discarded in traditional model transformation technologies.
e The MaramaCRelation approach supports traceability through a “search and relate” mechanism.
It generates search conditions from the CRelation model to search source and target model parts
that meet the selection constraints (mapping constraints).
e MI&T may cause semantic inconsistencies between source and target models. The
MaramaCRelation approach detects semantic inconsistencies in the CRelation model.
e The MaramaCRelation approach generates high-level descriptions for the events triggered by the
MI&T. The generated behavior descriptions are guidelines for users to construct behavior

synchronization mechanisms.

121

e The MaramaCRelation approach can be used as an analysis and design model for MI&T. It
breaks down usually monolithic model integration and transformation activity, explicitly
represents the associations between usually isolated MI&T rules and templates, and separates
what to transform and integrate from sow to do transform and integrate. Although most MI&T
approaches support mechanisms for reusing and refactoring transformation scripts (ATLAS
Transformation, 2006; XSLT Transformation, 2001; Csertan et al, 2002) , they do not support

users to analyze and design integration or transformation.

8.6 Summary

MI&T have been extensively researched and become core technologies in the paradigm of Model
Driven Engineering. MI&T are closely related to research areas such as model merging, multi-view
environments, and model refinement. Technologies have been developed to solve the operational tasks
involved in MI&T, including model and tool integration, model transformation, semantic maintenance,
traceability, behaviour and model synchronization, and semantic consistency check. This chapter
reviews the problems involved in the research of MI&T caused by the operational level focuses,
generalizes the motivations for the research of the MaramaCRelation, and introduces the main features
of MaramaCRelation. The MaramaCRelation approach is intended to provide analysis and design
support for MI&T, which, in turn, helps to review the operational issues involved in MI&T and provide

better solutions.

122

Chapter 9 - The CRelation Model

As is introduced in Chapter 8, the MaramaCRelation approach consists of the CRelation model and the
supporting MaramaCRelation tool. This chapter introduces the abstract syntax of the CRelation model
and explains the semantics of its abstraction entities and associations in natural language; demonstrates
how the CRelation model entities and associations provide the features highlighted in chapter 8; and

introduces the process to construct a CRelation model.

9.1 Terms and concepts

The terms and concepts used in the CRelation model are designed to be maximally compatible with the
similar concepts in the related research areas. The terms and concepts, which are corner stones of the
model, are explained as follows:

o the CRelation model interconnects diagrammatic domain-specific meta-models

A model can mean a diagrammatic model, formal mathematical model, source code, and so on. At this

stage, the CRelation model targets diagrammatic domain-specific meta-models.

o domain-specific meta-model entities, associations, and constructs

A diagrammatic meta-model defines its abstract syntax through abstraction entities, associations, and
how they will be constructed in instance models. Instance models of a meta-model are typed by the

meta-model abstractions (also called meta-elements).

In the CRelation model, construct is a reserved concept, and represents a group of meta-elements

(including entities, associations, or both) that form a sensible subset of a domain-specific meta-model.

e diagrammatic domain-specific meta-model semantics, and semantic constraints

123

The CRelation model assumes a domain-specific meta-model consists of semantics and semantic
constraints, which are respectively similar to semantics and OCL constraints of the UML meta-model
(UML, 1996; MDT, 2008). Semantic constraints of a meta-model are represented by well-formed rules
(e.g. OCL constraints). They define a set of invariants of instances of meta-elements, which have to be
satisfied for the abstract syntax elements to be meaningful. Semantics define the meaning of abstract
syntax elements that are well formed by fulfilling their semantic constraints. Semantics are often

described in natural language.

o shared semantics, Interconnection Relationship, and selection constraints

The CRelation model captures semantics shared by two meta-models via atomic Interconnection
Relationships. An atomic Interconnection Relationship consists of an Interconnection Relationship Unit
(IRU) and selection constraints. An IRU is a 2-tuple of source and target meta-clements. Selection
constraints are conditions that the 2-tuple elements must satisfy before the Interconnection Relationship
is valid. Selection constraints must be well-formed and defined in tool-API-independent languages (e.g.

by using OCL, ATL, or tool-API-independent java).

An atomic Interconnection Relationship specifies that when its selection constraints are satisfied; the
instances of the source and target meta-elements involved in the IRU represent similar semantics with

the different representations in the different (source and target) instance models.

e behaviour description

Behaviour synchronization is the foundation of model synchronization. The source and target model
elements of an IRU need to be synchronized in behaviour to maintain the validity of the Interconnection
Relationship over time. In the CRelation model, behaviour description is a high level description of
behaviours triggered by IRUs. Behaviour description provides structured information to guide users to

implement target model response events.

9.2 Running Example: Interconnecting the Pet Store architecture model with the

Pet Store design model
The MaramaMTE-styled (MTE) software architecture meta-model and instance model have been

introduced in previous chapters. The MTE meta-model (Figure 9.1(a)) contains abstraction entities

124

(green rectangles) and associations (pink round rectangles) that will be instantiated in instance software

architecture model. In this chapter, as a running example, the MTE architecture meta-model is used as

the source meta-model to be interconnected.

] Service

| RemokeObject name String key

name String key remoteServer String nonkey

type String nonkey remateObject String nonkey
T - remoteService ink nonkey

| warmUp String nonkey
roleObs | ObjectService
| v ServerDatshase

e recardTime String nonkey
. . | ppoerierfop b DBApplication
i ApplicationServer P i narne String nonkey (&) name String nonkey
e | name String key |
type String nankey [Database o2 I
name String key

e ——
[ApplicationClient = type String nonkey | AppServerAssac
name String key — e
b L i . ’

threads String nonkey

name String nonkey

DatabaseTebles I AppServerHome

Request b TV
riame String key | DatabaseTable e i nlihie i
remabeServer String nonkey name String key r BaanAssoc J " Hetwhisstc I Elnherfu:ehssocl
[Clientriequest oo 4 remoteObject String nonkey e IBEEAN Bl
remobeService String nonkey o il bl
| EJBBean i
warmUp String nonkey I EJBHome EJBInterface
name String nonkey -
recordTime String nonkey (a) niame String nankey name String nonkey
==
rlnfo
< <AppServeripp>> < <AppServerHomes>
tStore PetStore
!
<<ERHome>> | [c<Emeean>> | <<EMinterface>> |
Fustomertianager | [CustomerManager | & Manager | pAccountManager | JaccountManager | [Accountianager |
(d) < <AppServerApp>> <<AppServerHome>> < <DBAppication> >
oreAccounting eAccounting Storeficcounting

Figure 9.1. (a) MaramaMTE architecture meta-model; (b) EJBUML meta-model; (c) Pet Store
MTE-architecture model; (d) Pet Store EJBUML model

Figure 9.1(Db) illustrates an extended UML meta-model for EJB (EJBUML meta-model). This extended

UML meta-model represents the basic concepts of EJB, including application server home, server

125

application, EJB home, EJB Interface, EJB Bean. The extended UML meta-model is similar to the
formalized UML profile for EJB (Greenfield, 2001) but only focused on a smaller range of EJB concepts.
For the running example, the extended UML meta-model is used as the target meta-model to be

interconnected.

Figure 9.1(c) illustrates a simple java Pet Store architecture model. The model shows that the
“PetStoreUser” (typed as ApplicationClientf) can access the “PetStore AppServer” (typed as
ApplicationServer) to obtain services. The “PetStore AppServer” hosts the “CustomerManager” (typed
as RemoteObject) that provides services to clients. The “PetStore AppServer” can obtain services from
the “PetStore DBServer” (typed as DatabaseServer), which, in turn, hosts database table
“CustomerInfo”. Figure 9.1(d) illustrates a simple Pet Store EJBUML design model. The stereotype of
each model entity represents the similar concept as is in the standard java EJB technology. The two
sample domain-specific meta-models and their instance models will be used to demonstrate the

CRelation model’s abstract syntax, semantics, and features through the rest of this chapter.

9.3 The CRelation model

The CRelation model is designed through meta-modelling as shown in Figure 9.2(a). The CRelation
meta-model consists of four entities (green rectangles), StructureMapping, SelectionRefinement,
StructureRefinement, and SemanticAssociation; and three associations (pink round rectangles) that
connect those entities. At this stage, the associations are simple connectors (StructureRefineAssoc
connecting StructureMapping and StructureRefinement, StructureSelectionAssoc connecting
StructureMapping and SelectionRefinement; StructureAssocAssoc connecting StructureMapping and
SemanticAssociation) and do not contain much semantics. The CRelation model semantics is carried by
the four abstraction entities. The entities and associations provide model types to be instantiated in a

CRelation instance model.

Figure 9.2(b) is a sample CRelation model that interconnects the MaramaMTE architecture meta-model
with the EJBUML meta-model. Figure 9.2(b) consists of three instances of StructureMapping (grey
rectangle), two instances of SelectionRefinement (cyan round rectangle), one instance of
StructureRefinement (green round rectangle), and two instances of SemanticAssociation (purple oval).

The meaning of the CRelation model will be introduced in detail in the rest of the chapter.

126

| StructureRefinement
StructureRefinefssoc id Strirg key
(a) id String nonkey entityMapping String key
selectionConstraints String nonkey
II StructureMapping | Semantichssociation
bd Skring key | structuredssocAssoc i Shring ey
enkityMapping String key i String norkey — assodationtapping String nonkey
selectionCaonstraints String nonkey semanticTranslation String nonkey
behaviour description String nonkey
g . | SelectionRefinement
‘ StructureSelectionds. .. id String key
i String nonkey construct String nonkey
selectionConstraints String nonkey
able2Dat: App
cePart:construct[DatabaseTable, Database]
argetPart:DBApplcation
[selectionConstraints: 1

S0 JETVET LDC.

argetPart: AppDBAssac

e el AT m&w
rcePart: Seweratabase . acetome

arnetPart mmm F'ﬂ‘l’nl—_‘e'rfgn FIEHome1

i i L4 [P S S R R e et 1 et { Beinidiaiiit
JEemantic constraints translated E s 1
erZAppServerAppAndAppServerHome Fmohizemm:mrfm
SourcePart:ApplicationServer art:RemoteObject
TargetPart:construct[AppServerfpp, AppServerHome] argetPart:construct[EJBBean, EJBHome, EJBInterface]
selectionConstraints:0 |selectionConstraints:0
description... |behaviour description. ..

fconstruct[AppServerApp, AppServerome]

ineTargetPartConstructAppHorne
|<electionConstraints: 1

/'

refineTargetPartConstructBeanInterHome

onstruct{EJBBean, EJBInterface, EJBHome]

selectionConstraints: 1

EMServerOhiZassu:BeaMSSDcl-bmeﬂssoclrterFa:eﬁssnc

ourcePart: ServerObject

! ﬂ'npl'pa'f rnl‘rd'rllrlrﬂparmmnr I-hrnP.lktnr lrl!'Prfi_l;e.ﬂ.t:ﬁ_uIT.

|semantic constraints translated

Figure 9.2. (a) CRelation meta-model; (b) a sample CRelation model

127

9.4 The CRelation model abstract syntax and semantics

A CRelation model is consisted of StructureMappings, SelectionRefinements, StructureRefinements,
SemanticAssociations, and associations connecting them. The semantics of the CRelation model is
carried by those modelling entities, associations, and their properties. This section introduces the

semantics of each modelling entity.

9.4.1 StructureMapping

A StructureMapping represents an atomic Interconnection Relationship between two meta-models. It
defines what and how to interconnect interested source and target meta-elements by using four
properties: id, entityMapping, selectionConstraints, and behaviourDescription. Sample properties and
values of a StructureMapping (“DBAndTable2DatabaseApp” in Figure 9.2(b)) are illustrated in Figure
9.3(a). The value of “selectionConstraints” is illustrated in Figure 9.3(b) and the value of

“behaviourDescription” is illustrated in Figure 9.3(c).

9.4.1.1 “id” property

The “id” property distinguishes one StructureMapping from other model elements in the CRelation
model. The “id” property value needs to be concise and meaningful. Typical value can be
“DBAndTable2DatabaseApp”, “AppServer2 AppServerAppAndAppServerHome”, and
“RemoteObj2EJBBeanHomelnterface” (refer to Figure 9.2(b)).

9.4.1.2 “entityMapping” property

The “entityMapping” property consists of two parts: source and target, representing the interested source
and target meta-clements respectively. Both source and target parts can be a single meta-model element
or a construct of meta-model elements. The term construct represents a set of meta-elements, and is of
the form of “construct [element, element, ...]°. In Figure 9.3(a), the entityMapping
“SourcePart:construct[DatabaseTable,Database] TargetPart:DBApplication” means that the software
modeller understands the conceptual semantic similarities between the source meta-model construct
(made up of “DatabaseTable” and “Database”) and the target meta-model element “DBApplication”,

and wishes to capture the similarities by establishing an Interconnection Relationship between them.

128

= Model

R (@)

behaviourDescription <7=ml version="......

o N s e o Y s s 3l N -ulx_ﬂbl—.—.ll- e
T ¥ T ISR g SOMTDEr Sl LaConsinaci ke 1 argetr & DoApRIc St
id DEBandT ablezDakabaseipp

selectionConstraints Constraintl: 1

M Property value

Walue of property:
Constraint ~
int index_1 = ((String) @0CL{conkext:Database s#if.name)).indexOf(" ")
String database_name =({String) @OCL{context:(atabase self.name)}. substring(0,index_1);
String databasefpp_name = ((String) @OCL{context: DEApplication self.name));
return (database_name .equals{databasefpp_narhe)); L
H v
I Ok IC-anl:F_'.! I
[B || ol ol

I Property value

Value of property:
= xml version="1 0" encoding="1S0-8859-1" 7= ~
<EvertDescription= P
=SourcehodelEvernts
=Events=
<Evert id="1"=
=EvertTypes=changed <EvertTypes
=EventOriginators> Database name </EventOriginators=
=<EvertOriginators_params> database_name <EventOriginators_params:=
=EvertConsumers_inSourcehodel=null=/EventConsumers_inSourcehodel= =1
<EvertConsumers_inSourceModel_params=null=EvertConsumers_inSourcelMaodel_params:=
=EvertConzumers_inTargethodet-DBApplicaion name<EventConsumers_inTargetModel=
<EvertConsumers_inTargethodel_params=dbApphcation_name<EventConsumers _inTargetModel _params:
=intendedResult-
int inclex_1 = ((String)database_name)indexOi™_");
String database_name ={(String)database_name).substring(0 index_1},
String dbApplcation_names= ((String)database_name);
return dbApplication_name;
¥
=fntendedResult=
=/Evert= M
% ' Ls
| Ok | |Camel
(c)

Figure 9.3. (a) sample property sheet of a “StructureMapping”; (b) sample “selectionConstraints”

property sheet; (c) sample “behaviourDescription” property sheet

129

9.4.1.3 “selectionConstraints” property

The “selectionConstraints” property represents conditions that need to be satisfied before the
Interconnection Relationship defined by the StructureMapping becomes valid. More specifically, when
interconnecting instance models, the constraints determine which instances of the StructureMapping
source part can be integrated with which instances of the StructureMapping target part. Figure 9.3(b)
shows that property “selectionConstraints” of the StructureMapping contains one constraint. The
instances of “construct [DatabaseTable, Database]”can be interconnected with the instances of element

“DBApplication” only when the constraint is satisfied (return result variable to be “true”).

A selection constraint is in the form of “Constraint{ constraint contents }” (refer to Figure 9.3(b)). The
constraint contents are a mixture of OCL queries and java code. The CRelation model uses OCL
expressions to query information of model elements involved in the StructureMapping, and uses java to
construct operations upon the queried information. A selection constraint returns a boolean result
through a boolean variable. In a selection constraint, the OCL expressions are in the form of
“@OCL(ordinary OCL expressions)”.The mixture of OCL and java allows users to construct tool-API-
independent complex selection constraints. If the OCL expressions are viewed as special java operations,
a selection constraint follows java language syntax. The “Compile” button in Figure 9.3(c) compiles if
the constraints are valid. In Figure 9.3(a), the property entry of “selectionConstraints” records the
number of constraints involved in the StructureMapping. “Constraints: 1” means that there is only one
constraint for this StructureMapping. The “selectionCnstraints” can only constrain elements involved in
this StructureMapping. The property represents users’ understanding of how the source and target parts
share semantics. The constraints can be built up incrementally. The more the constraints, the fewer

instances of the meta-model elements from both instance models can be integrated.

9.4.1.4 “behaviourDescription” property

The “behaviourDescription” property records the events that can be triggered by the StructureMapping
and specifies the response actions that need to be taken to maintain the validity of the Interconnection
Relationship. The value of the “behaviourDescription” property is XML-formatted. The
“behaviourDescription” property is designed to organize information of the triggered. In the
“behaviorDescription” value, the information of the triggered events is automatically generated, and the

information of the response events needs to be manually programmed.

130

1=usischema sminsiss="httpi/fwww.w30rg 2001/ EMLSchema” targetMamespace="http: /frempuri.org/po.ssd”
Zumlns="http:/frampuri.orgfpo.ssd” elementFormDefault="qualified">

3

4 <xuzielement name="BehaviorDescription” type="BehaviorDescriptionType"/=

5 <usicomplesType name="BehaviorDescriptionType"=

=] =HEISRqQUEnces

7 <szsielement name="SourceModelEvent" type="SourceModelEventType"/=

2 <uzsielement name="TargetModelEvent" type="TargetModelEventType" >

9 <frusisequencer
10 <fusicomplesTypes=
11
12 <usicomplesType name="SourceModelEventType"=
13 “HEISeqUences
14 <usielament name="Events" type="EventsType" =
15 <fusisaquencax
16 <fusicomplenType=
17
158 <usicomplesType name="TargetModelEvantTypa"=
19 “Hsisequences
z0 <ssielament name="Events" type="EventsType" >
21 “fHsisaquencer
22 =fusicomplesType=
23
24 =usicompledType name="EventsTypa">
25 =HEISRqQUEnces
25 “nzielemeant name="Event" minCccurs="0" maxSccurs="unboundad">
27 <ssicomplesTyper
28 <szielement name="EventType" type="Concernad-Events"/>
29 <usielament name="EventOriginators" type="SourceElemList"/=
20 “nsielament name="EventOriginators_params" mindccurs="0" type="SourceElemValueList" >
31 “nsielement name="EventConsumers_inSourceModel” type="SourceConsumerElemList" =
32 “usielement name="EventConsumers_inSourceModel_params" minCccurs="0" type="SrcConList"/
33 <usielament name="EventConsumers_inTargetModel" type="TargetConsumerElemList"/=
24 <usielament name="EventConsumers_inTargetModel_pararms" minQccurs="0" type="TgtConList"/=
25 <usielament namea="IntendedResult" type="us:string" >
36 <fusicomplenTypes
37 =ustattribute name="id" type="us:string"/>
38 <frusielement =
39 <frsisequencer
40 =fusicomplesType=
41
42 =usisimpleType name="Concerned-Events">
43 “usirestriction base="us:string">
44 <ssienumeration value="changad"/>
45 “xsienumeration value="removed" =
45 “frsirestriction>

47 =fuzisimpleTypes=

45 <usizimpleType name="SourceElemList"=

49 <usilist itemType="nsistring" /=

S0 =fusisimpleTypes

51 =usisimpleType name="SourceElem alueList">

52 <nstlist iternTyepe="us: string"/»

53 <fusisimpleTypas

54 =usisimpleType name="SourceConsumerElamList"=
55 <usilist itemType="ns1string" />

56 =fusisimpleTypes

57 =usisimpleType name="SrcConList"=

58 <usilist itemType="rsistring" />

59 =fusisimpleTypes

&0 =usisimpleType name="TargetConsumerElemList"=
&1 <usilist itemType="ssistring" />

62 =fusisimpleType>

£3 <=usisimpleType name="TgtCanlist">

=2 <usilist itemType="ssistring" />

&5 =fusisimpleTypa>

G5 <fusischemas

Figure 9.4. The schema of the behavior synchronization description

131

Figure 9.4 shows the complete schema of the behaviour description. This consists of
“SourceModelEvent” and “TargetModelEvent” (refer to lines 7&8), which respectively organize events
that are triggered by source and target parts of the StructureMapping. Both “SourceModelEvent” and
“TargetModelEvent” contain “Events”, which, in turn, consist of 0 or more events. Each “Event”
contains a sequence of the following elements:
e EventType: Type of the event. So far only two types are concerned in the CRelation model,
including “changed” (refer to line 44), and “removed” (refer to line 45). A “changed” event is
triggered when the property value of a model element that will influence the selection constraints is
changed. A “removed” event is triggered when the source or target part of the Interconnection
Relationship is removed.
o EventOriginators: The model elements that trigger the event.
o EventOriginators_params: This is a list of parameters matching the list of “EventOriginators”.
These parameters represent the “EventOriginators” in “IntendedResult”.
o FEventConsumers_inSourceModel: The source meta-model elements that need to respond to the
triggered events.
e FEventConsumers_inSourceModel_params: This is a list of parameters matching the list of
“EventConsumers_inSourceModel”. These parameters represent the
“EventConsumers_inSourceModel” in “IntendedResult”.
o FEventConsumers_inTargetModel: The target meta-model elements that need to respond to the
triggered events.
o EventConsumers_inTargetModel params: This is a list of parameters matching the list of
“EventConsumers_inTargetModel”. These parameters represent the “EventConsumers” in
“IntendedResults”.
o IntendedResult: IntendedResult is structured information (e.g. functional java code) that
describes the result the response event should achieve. In the CRelation model, only two types of
IntendedResult are concerned at this stage: 1) to maintain the selection constraints to be true when
property values of model elements are changed; 2) to maintain the validity of the Interconnection
Relationship when the source or target part of a StructureMapping is removed. In the first situation,
response events need to update the event consumers’ property value, and the modeller needs to
manually calculate the intended updated value. In the second situation, response events need to

either remove the event consumers or simply remove the Interconnection Relationships between the

132

event originators and event consumers. The CRelation model reserves the keyword

InterconnectionRelationship to represent the Interconnection Relationship between the source and
target parts of a StructureMapping.

Figure 9.5 and Figure 9.6 illustrate the complete behaviour description of StructureMapping
“DBAndTable2DatabaseApp” of Figure 9.2(b). The StructureMapping has only one selection constraint

illustrated in Figure 9.3(b). There are 3 events triggered by the source part of the StructureMapping
(Figure 9.5) and two events triggered by the target part of the StructureMapping (Figure 9.6).

=7xml verzion="1.0" encoding="1=0-5553-1" 7=
=EvertDescription=
=SourcebodelEvent:=
=Events=
=Event id="1"=
=EvertType=changed =EvertType=
=EvertCriginators= Databaze name <EventOriginators:=

=EvertCriginators_params:= databaze_name =EvertOriginators_params=
=EvertConsumers_inSourcetodel=null=/EventConsumer s _inSourcebodel=
=EvertConsumers_inSourcebodel_params=null=/EventConsumers_inSourcehodel_params=
=EvertConsumers_inTargetModel=DBApplication.name=EventConsumers _inTargetModel=
=EvertConsumers_inTargetModel_params=dbApplication_name=EvertConzsumers_inTargetModel_params:s)
=IntendedResult=

{

int index_1 = ({Stringdatabase _name).indexof"_";

String database_name =((String)database_name) substring(0index_17;
String dbApplication_names= ((Stringidatabase_name];

return db&pplication_name;
h

=lntendedResult=
=Event=
=Evernt id="2"=
=EvertTypes= removed =iSourceEventType=
=EvertCriginators= Databaze=/EvertOriginators=

=EvertConsumers_inSourceModel=DatabaseTable=EventConsumers _inSourceModel=

=EvertConsumers_inTargetModel= DBApplication =EventConsumers_inTargethodel=
=IntendedResult=

1InterconnectionFelationship removed;
=intendedResult=
=Event=
=Event id="3"=
=EvertTypes removed =EventType=
=EvertOriginators= DatabazeTable=EvertOriginators=

=EvertConzumers_inSourceModel=Databaze=EvertConzumers_inSourcebodel=

=EvertConsumers_inTargetModel= DBApplication =EventConzumers_inTargethodel=
=IntendedResult=

finterconnectionRelationship removed();
=intendedResult=
=/Evert=
=/Everts=

Figure 9.5. “SourceModelEvent” part of the “behaviourDescription”

133

In Figure 9.5, event_1 (line 5) describes that when the ‘“name” property value of model element
Database is changed, the response event needs to be programmed to calculate the intended updated
value of the “name” property of the “DBApplication” entity (target part of the StructureMapping). The
IntendedResult (response event) of Event 1 (between line 13 and line 20) is based on the selection
constraints of the StructureMapping (described in Figure 9.3(b)) and need to be programmed manually
by modellers. The EventType of both Event 2 (line 22) and Event 3 (line 31) is “removed”. They
represent that when Database or DatabaseTable is removed; the target part of the StructureMapping will
be influenced and should respond. The IntendedResult of both events wuse
“InterconnectionRelationship.removed()” (an expression reserved by the CRelation model) to specify
that if the event originator is removed the Interconnection Relationship between the event originators
and event consumers needs to be removed. At this stage, removing an Interconnection Relationship can

be achieved by either removing the event consumers or removing the Interconnection Relationship

between the event originators and event consumers.

=TargethodelEvent=

=Events=

=Event id="4"=
=EventType=changed </EventType=
=EventOriginators= DBApplication.name <EvertOriginators=
=EventOriginators_params=dhApplication_name <EventOriginstors_params:=
=EventConsumers_inSourcehodel-Database name=/EvertConsumers_inSourcemModel=
=EventConsumers_inSourcetodel_params=database_name=EventConsumers_inSourceiodel=
=EventConzsumers_inTargetModel=null=/EventConsumers_inTargetModel=

=EvertConzumers_inTargethodel_params=null=EvertConzsumers_inTargethodel_params=
zlntendedResult=

i

int incdex_1 = ({String)dastabase _name).indexof"_";

String database_name =((String)database_name). substring(0,index_17;
String databaze_suffix =((String)database_name). substringlindex_17;

databaze_name = db&pplication_name + database_suffix;
return database_name;

h
=irtendedrResult=
=/Evert=
=Event id="5"=
=ZourceBEventTypes=removed =fSourceEvertTypes=
=EventSource=DBApplication=EvertSource=
=EventTargets_inSourcemodel= null=/EvertTargets_inSourcemodel=

=EvertTargetz_inTargetModel=construct[DatabaseTable Database]=BEvertTargets_inTargethodel=
=lntendedResult=

{

IrterconnectionRelationship removed();
h
=intendedResult=
=/Evert=
=TargethodelEvent=

Figure 9.6. “TargetModelEvent” part of the “behaviourDescription”

134

Figure 9.6 organizes the events triggered by the target part of the StructureMapping. The “changed”
event (line 4, Figure 9.6) represents that the change of DBApplication “name” property value requires
appropriate response events from the source part of the StructureMapping. The “removed” event (line 22,
Figure 9.6) represents when the DBApplication is removed, this Interconnection Relationship also needs

to be removed.

As is shown in Figure 9.5 and Figure 9.6, the “behaviourDescription” of a StructureMapping in the
CRelation model is based on the meta-elements and the selection constraints of the StructureMapping.
The “behaviourDescription” provides bi-directional specifications for behaviour synchronization. It is a
structured high-level specification, which helps users to organize and implement bi-directional
incremental behaviour synchronization for MI&T. Chapter 10 will explain how to generate

“behaviourDescription” for a StructureMapping.

9.4.1.5 Sample use of StructureMapping

: ‘DBAndTahIeZDatal:uaseF\pp

SourcePart: construck[DatabaseTable, Database]
TargetPart: DEApplication
selectionConstrainks: 1

behaviour description. ..

[} (] (]
(PetStore_DEBEServer o
L} (]

1
: 1
1
o _I _ﬁ!c:c:DB.ﬁ.pplicatiDn}}
| 1JPetstore
1
I
1

DetStu:ure_.ﬁ.cEDuntTal:ule

Figure 9.7. Example usage of StructureMapping

The information defined in the StructureMappings in the sample CRelation model (Figure 9.2(b)) guides
the interconnection between the Pet Store architecture model (Figure 9.1(c)) and the Pet Store design
model (Figure 9.1(d)). Figure 9.7 shows StructureMapping DBAndTable2DatabaseApp interconnects
Pet Store architecture model with Pet Store design model, where the instances of MaramaMTE Database
(PetStore_DBServer) and DatabaseTable (PetStore AccountTable) are interconnected to the instance of

EJBUML DBApplication (PetStore).

135

9.4.2 SelectionRefinement

The selection constraints of a StructureMapping can be complicated. A selection constraint may apply
across source and target parts or just on either source or target part of a StructureMapping. A
SelectionRefinement is designed to specify selection constraints on a construct part (either source or
target part) of a StructureMapping. A SelectionRefinement may have one or more parent
StructureMappings in the CRelation model. Selection constraints defined in a SelectionRefinement
apply to its parent StructureMapping(s). The CRelation model allows a StructureMapping to provide its

own selection constraints as well as refine complex selection constraints to one or more

SelectionRefinements.
@ i@!r
< <AppServeripp> <<AppServerHome> <<DBfpphcation>>
PetStore Stare I='at5tmg1Jic
— =%
IE{E,BHnms» <FIBRean™> <<EJBInterface s> < <EJBHome > > = <EJBBRAn > < <EWlInterface>>
ustomerianager ustomerManager (CustomerManager countManager AccountManager countManager

(b) <<AppServerApps>> <<AppServerHome> > <<DBbpphcation > >
oreAccounting efccounting orefccounting

Figure 9.8. (a) a sample Pet Store MaramaMTE model; (b) a sample Pet Store EJBUML model

The selection constraints involved in single-model normally derive from the semantic constraints of that
model. For example, the Pet Store EJBUML model (Figure 9.8(b)) requires that a valid set of EJBHome,
EJBBean, and EJBlInterface must follow certain naming conventions, e.g. if there is a
“CustomerManager” EJBInterface, there must be a corresponding “CustomerManager” EJBBean and a

“CustomerManger” EJBHome. When software modellers want to integrate the “CustomerManager” (a

136

remote object in the Pet Store architecture model in Figure 9.8(a)) with a set of EJBHome, EJBBean,
and EJBInterface (in EJBUML design model in Figure 9.8(b)), it can only integrate with either a set of
“CustomerManager” (EJBHome), “CustomerManager” (EJBBean), and “CustomerManager”
(EJBInterface), or a set of “AccountManager”(EJBHome), “AccountManager”’(EJBBean), and
“AccountManager”(EJBInterface). A set of “CustomerManager” (EJBBean),
AccountManager”’(EJBHome), and “CustomerManager”’(EJBinterface) will not meet the naming

convention required in the EJB UML meta-model.

A SelectionRefinement uses three properties to specify its features; and they are: id, construct, and
selectionConstraints. Figure 9.9(a) is the property sheet of a SelectionRefinement, and Figure 9.9(b)

illustrates the selection constraint of the SelectionRefinement.

construct construck[AppServerApp, AppServerHome]
id refineTargetPartConstructAppHome (“}

selectionConstrainks Constraints: 1

B Property value @

Walue of property:
Constraint
Skring AppServerHome_name =({{String)i@OCL{context: AppServerHome self, name));

Skring AppServerdpp_name = {(Stringd@OCL{context:AppIerverApp self . name));
return (AppServerHome_name.equals{AppServerfpp_name)l;

(b)

(o) o)

Figure 9.9. Property sheet and sample property value of a SelectionRefinement

9.4.2.1 “id” property

The “id” property identifies a SelectionRefinement from other model elements. Value of “id” property
can be any concise and meaningful textual value. Example value can be
“refineTargetPartConstructAppHome” and “refineTargetPartConstructBeanInterHome” (the two cyan

shapes in Figure 9.2(b)).

137

9.4.2.2 “construct” property
The “construct” property value consists of only one part: either the source part or the target part of its
parent StructureMappings. The interested part can only be a construct, because only a construct need the

single-model selection constraints.

9.4.2.3 “selectionConstraints” property

The “selectionConstraints” property represents conditions that need to be satisfied during model
interconnection. The selectionConstraints of a SelectionRefinement are similar to the
selectionConstraints of a StructureMapping; but can only use information of the model elements
involved in this SelectionRefinement. Figure 9.9(b) shows one selection constraint of the
SelectionRefinement “refineTargetPartConstructAppHome” (refer to Figure 9.2(b)). The selection
refinement provides extra selection constraints for its parent
“AppServer2AppServerAppAndAppServerHome” (refer to Figure 9.2(b)). At this stage, the
selectionConstraints brought by a SelectionRefinement do not contribute to the behaviorDescription of
its parent StructureMappings®; but their influence on the behaviorDescription of the parent

StructureMappings will be researched in the future.

9.4.2.4 Sample use of SelectionRefinement

1 1
|refineT argetPartConstruck&ppHarme '
wconstructSppServerdpp, AppServerHome] =,
I I
1 1

selectionConstraints: 1

- -
: < < AppServerapp = = !{i.ﬁ.ppServerHume}-} '
| JPetstore FetStore !

= B - B I !

Figure 9.10. Example usage of SelectionRefinement

The information defined in the SelectionRefinements in the sample CRelation model (Figure 9.2(b))
guides the interconnection between the Pet Store architecture model (Figure 9.1(c)) and the Pet Store
design model (Figure 9.1(d)). Figure 9.10 shows that the SelectionRefinement

“refineTargetPartConstructAppHome” specifies the naming convention between an instance of

138

AppServerApp (PetStore) and an instance of AppServerHome (PetStore) (part of their names must be

the same).

9.4.3 StructureRefinement

The CRelation model uses a StructureRefinement to specify selection constraints between the source
part of one StructureMapping and the target part of another StructureMapping. A StructureRefinement
specifies second order selection constraints between two StructureMappings. A StructureRefinement
uses three properties, id, entityMapping, and selectionConstraints to specify its characters. Figure 9.11

shows a property sheet of a StructureRefinement.

entityMapping SourcePart: ApplicationServer TargetPart: construct[EJEBean, EJEInterface, EJBHome]
id refinedpp3erverZEJBGeanInterf aceHome
selectionConstraints Constraints:1

Figure 9.11. Properties and values of an example StructureRefinement

9.4.3.1 “id” property
The “id” property distinguishes one StructureRefinement from other model elements. Value of “id”
property can be anything concise and meaningful. Typical value can be

“refineAppServer2EJBBeanInterfaceHome” (refer to Figure 9.2(b)).

9.4.3.2 “entityMapping” property

The “entityMapping” property value consists of two parts: source meta-model elements and target meta-
model elements. The source and target parts are derived from its parent StructureMappings, and can be
either a single meta-model element or a construct. A sample “entityMapping” value is illustrated in
Figure 9.11, where the source part is “ApplicationServer”, and the target part is “construct[EJBBean,

EJBHome, EJBInterface]”.

9.4.3.3 “selectionConstraints”

The “selectionConstraints” property represents conditions that need to be satisfied. The
selectionConstraints of a StructureRefinement are similar to the selectionConstraints of a
StructureMapping; and can only use the information of the model elements involved in this

StructureRefinement. Figure 9.12 illustrates the selection constraint brought by StructureRefinement

139

“refineAppServer2EJBBeanInterfaceHome” (refer to Figure 9.2(b)). In Figure 9.12, this selection
constraint finds out the RemoteObjects associated with the ApplicationServer (via navigation to the
association end of ServerObject, refer to the MaramaMTE meta-model in Figure 9.1(a)), and requires
that the ApplicationServer is associated with the RemoteObject that is mapped to the target model
construct containing the EJBHome and has the same name value of the EJBHome. At this stage, the
selectionConstraints brought by a StructureRefinement do not contribute to the behaviorDescription of
its parent StructureMappings; but their influence on the behaviorDescription of the parent

StructureMappings will be researched in the future.

B Property value E]

Value of property:

Constraint ~

{

String EJEHome_Mame = ((String)@0CL{context:EJBHome self.name));

Boclean chject = ({Boolean)@OCL{context:ApplicationServer self.remoteObject
-=select{elemn | elem.name=EJBHome_Marne)- > notEmpty]);

return chject.booleanValue();

H

Figure 9.12. Sample value of selectionConstraints of a StructureRefinement

[

9.4.3.4 Sample use of StructureRefinement

The information defined in StructureRefinement is used to guide the interconnection between the Pet
Store architecture model and design model. Figure 9.13 shows that the
“refineAppServer2EJBeanInterfaceHome” StructureRefinement qualifies its two parent
StructureMappings by constraining the particular RemoteObject that the PetStore AppServer associates
with (in this case “CustomerManager”) to be the same as the RemoteObject (also in architecture model)

that is mapped to the EJB CustomerManager elements (in design model).

140

| refinefppServer 2EJBBeaninkerfaceHome :
| SourcePart: ApplicationServer |
|
1
1

TargetPart: construct[EJEEean, EJBInterface, EJBHomE]
selectionConstraints: 1

SIITITS ST =
. L 2 = I=<EJBHomex> >
5 -] Customerfanager

CustomerfManager

<« ElBInterface> =

1

1

1

1

:

1

< <E|BBean=> '
1

1

1

1

I

Customerfanager |
1

1

Figure 9.13. Example usage of StructureRefinement

9.4.4 Brief summary of StructureMapping, SelectionRefinement, and StructureRefinement

Until now, StructureMappings capture what semantics between two models are shared - by
entityMapping, how the semantics should be shared — by selectionConstraints, and the events that can be
triggered by the shared semantics — by behaviorDescription. SelectionRefinement and
StructureRefinement refine selection constraints of StructureMappings. The selection constraints are

categorized by the involved meta-elements.

But the StructureMappings are isolated. Two individual StructureMappings may involve other model
information, such as the associations between the source parts and the associations between the target
parts of the two StructureMappings. The involved information is implicit and normally ignored during
MI&T (think about the isolated ATL rules and queries, and the transformation information they imply
and ignore). The ignored information may relate to semantic inconsistencies caused by MI&T. The

CRelation model explicitly represents the implied information by using SemanticAssociation entities.

9.4.5 SemanticAssociation

A SemanticAssociation specifies an association between two StructureMappings. A
SemanticAssociation explicitly represents the source meta-model and target meta-model associations
that are involved and maintained during MI&T. A SemanticAssociation uses three properties to define

its semantics, including id, associationMapping, and semantic Translation.

141

AppServerZAppserverAppAndAppServerHome [FemotebizE JBEeanHomelnterface

SourcePart: ApplicationServer SourcePart: RemoteCbject
TargetPart:construct[AppServerHome, EJBBean] TargetPart:construct[EJBEean, EJBHome, EJBINterface]
selectionConstraints:0 selectionConstraints:0

[Eehaviour description. . [behaviour description...

Ty

assocServeriobjZassocBeanfAssocHomedssocinterf acefssoc

SourcePart: Serverobject .
TargetPart: construck Beandssor, HomeAssoo, Interfacefssoc] (ﬂ)

semantic constrainks translated

_"\—_________ _'_'_'_‘_'_'_'_,_:—'-'_
associationMapping SourcePart: ServerObject TargetPart:construct[Beanfssoc, HomeAssoc, Interfacefssoc]
id assocServeriobjzassocBeandssocHomedssocInterfacefssoc (]J}
semanticTranslation semantic constraints translated

Figure 9.14. (a) a SemanticAssociation associates two StructureMappings ; (b) property sheet of a

sample SemanticAssociation

9.4.5.1 “id” property
The “id” property distinguishes one AssociationMapping from other model elements. The value of the
“id” property needs to be concise and meaningful, such as assocServerDB2assocAppDBAssoc, and

assocServerObj2assocBeanAssocHomeAssocInterface (refer to Figure 9.2(b)).

9.4.5.2 “associationMapping” property

The ““associationMapping” property value consists of two parts: source and target. The source part
represents the directed path connecting source parts of the associated StructureMappings in the source
meta-model. The target part represents the directed path connecting target parts of the associated
StructureMapping in the target meta-model. Figure 9.14(b) illustrates the property sheet of the

SemanticAssociation in Figure 9.14(a).

9.4.5.2.1 The definition for deriving “associationMapping” value

In a SemanticAssociation, the value of the “associationMapping” property is automatically derived from
the associated StructureMappings according to the abstract syntax of the source and target meta-models.
Figure 9.14(b) shows the value of “associationMapping” property of SemanticAssociation
assocServerDB2assocAppDBAssoc (in Figure 9.14(a)). The source part of the SemanticAssociation is

“ServerObject”, which is a directed path between “ApplicationServer” (source part of StructureMapping

142

AppServer2 AppServerAppAndAppServerHome) and “RemoteObject” (source part of StructureMapping
RemoteObj2EJBBeanHomelnterface) in the source meta-model (refer to Figure 9.1(a)). The target part
of the SemanticAssociation is “construct[BeanAssoc, HomeAssoc, InterfaceAssoc]”, which is a directed
path between “constructAppServerApp, AppServerHome]” (target part of StructureMapping
AppServer2 AppServerAppAndAppServerHome) and “construct[EJBBean, EJBHome],
EJBInterface]”(target part of StructureMapping RemoteObj2EJBBeanHomelnterface) in the target meta-
model (refer to Figure 9.1(b)). The source (target) part of a SemanticAssociation may be a single model

element or a construct of model elements.

When constructing a SemanticAssociation, the CRelation model needs to determine the paths between
two vertices of a model. It is straightforward to determine the paths between two single model elements
within a meta-model, but it can be complex to determine paths between two construct vertices. The
CRelation model empirically defines that when the two construct vertices are the same, the paths
between the vertices become the paths within the construct vertex; as a construct vertex is a valid sub
model of a meta-model, the paths within a construct vertex are actually available paths within that sub

model.

The CRelation model defines paths between two different construct vertices in two steps:
o Step 1: Define the path between an element and a construct
The path between an element of construct vertex 1 and construct vertex 2 is a construct of the paths
between this element and the elements of construct vertex 2. Any paths within construct vertex 1
must be excluded from the construct of paths.
e Step 2: Define the paths between two constructs
The paths between two construct vertices are a list of paths between one element of one construct

and the other construct;

This definition is illustrated in Figure 9.15(a). The construct vertices 1 and 2 represent the source parts
of the two associated StructureMappings respectively. There are five entities involved in the two vertices
including v1 and v2 of construct vertex 1; and v3, v4, and v5 of construct vertex 2. V1 has two paths
between itself and the elements of construct vertex 2, so the path between vl and construct vertex 2 is

“construct[p13, p14]”. V2 has two paths between itself and the elements of construct vertex 2, so the

143

path between itself and construct vertex 2 is “construct[p24, p25]”. V3 has one path between itself and
the elements of construct vertex 1, so the path between itself and construct vertex 1 is “p13”. This
process goes on, and the situation in Figure 9.15(a) totally derives 5 paths and they are: “construct[p13,
pl4]”, “construct[p24, p25]”,”’p13”, “construct[pl4, p24]”, and “p25”. Applying the definition to the
situation in Figure 9.15(b) leads to four paths between the two construct vertices, and they are:
“construct[BeanAssoc, = HomeAssoc, InterfaceAssoc]”, “BeanAssoc”, “HomeAssoc”, and
“InterfaceAssoc”. Once all the paths are automatically derived for both the source and target parts of the
SemanticAssociation, modellers can choose a pair of paths that share the closest semantics to set up the

value of “associationMapping” property.

—_— - —_— —_

- 7 consamct vertex 1 T - - construct vertex 1 - .
. . - AppServerApp ——— AppServerHome,
. vl —pl2l 2) S el LT
. - -
_\ -
== T
(a) (b)
InterfaceAssoc
BeanAssoc
15
p2s .
- HomeAssoc
- R
I3 ‘-q .~ - - - - -
e Vi 1
h R , iFJBBEHlI EJEHome FJBInte-rfm:ﬁ'
* constiuct vertex 2 - - -
Tl - TT - — o _ _ _constimet vertex2 _ - - -7

Figure 9.15. Directed paths between source (target) parts of the associated StructureMappings

9.4.5.2.2 Using associationMapping value to analyze and design MI&T

Figure 9.16 illustrates how a SemanticAssociation helps to validate an intended MI&T. Figure 9.16(a)
shows a tentative design for MI&T between the MaramaMTE meta-model and the EJBUML meta-
model, where two StructureMappings are associated by one SemanticAssociation. According to the
definition in section 9.4.5.2.1, there is only one directed path between the source parts of the two
intended StructureMappings, and the path is “ServerDatabase” (refer to Figure 9.1(a)). There is only one
directed path between the target parts of the two intended StructureMappings, and the path is
“AppServerAssoc” (refer to Figure 9.1(b)). So, the derived associationMapping value of the

SemanticAssociation can only be “SourcePart:ServerDatabase TargetPart: AppServerAssoc”, which does

144

not match the understanding that the “ServerDatabase” of the MaramaMTE meta-model (in Figure
9.1(a)) should be mapped to the “AppDBAssoc” of the EJBUML meta-model (in Figure 9.1(b)). The
semantic inconsistency means the current CRelation model may not have captured the shared semantics

correctly and needs to be redesigned.

|Sourc ePart.construct{ Database DatabaseTable] TargetF a:t:AppServerHome|

@ErD atabase TargetPart AppServerfiasoc

(a)

[SourcePart ApplicationS erver TargetP art App ServerHome |

|Sc-ur|: ePart: Applicatonerver TargetP art:constmc:t[ﬁppSewerHome,EJBBean]|

@Ob ject TargetPart construct{Home Assoc, Interfacedissoc]

(b)

sourcePart RemoteObiect TargetP art construct{ ETEEBean ETBInterface ETBHome
[SourcePart ApplicationServer TargetPart:constructl App ServerApp. ArpServerHome]|

ourcePart S erverObiect TargetP art construct[Bean & ssoc Interface A ssoc Homedssoc AppDB Assoc]

(c)

[SourceP artRemote Obiect TaroetPart construct ETEBean ETBInterface EJEHome DR Application]|

Figure 9.16. Using SemanticAssociation to detect semantic inconsistency during MI&T

Figure 9.16(b) shows the second tentative design for MI&T between the MaramaMTE and EJBUML
meta-models. Referring to Figure 9.1(a), there is only one directed path between the source parts of the
two intended StructureMappings, and the path is “ServerObject”. Referring to Figure 9.1(b), there are
three directed paths between the target parts of the two intended StructureMappings, including

“construct[InterfaceAssoc, HomeAssoc]”, “InterfaceAssoc”, and “HomeAssoc”. The directed path

145

“BeanAssoc” is within the top StructureMapping, so it is not a path between the two construct vertices.
The derived “associationMapping” value of the SemanticAssociation can be “SourcePart:ServerObject
TargetPart:construct[InterfaceAssoc,HomeAssoc]”, or “SourcePart:ServerObject
TargetPart:InterfaceAssoc}”, or “SourcePart:ServerObject TargetPart:HomeAssoc”. None of the
mappings matches the understanding that the “ServerObject” (in Figure 9.1(a)) should be mapped to the
“construct[BeanAssoc, InterfaceAssoc, HomeAssoc]” (in Figure 9.1(b)). The semantic inconsistency
means the current CRelation model may not have captured the shared semantics correctly and needs to

be redesigned.

Figure 9.16(c) shows the third tentative design between the MaramaMTE and EJBUML meta-models.
There is only one directed path between the source parts of the two intended StructureMappings, and the
path is “ServerObject” (refer to Figure 9.1(a)). There are five directed path between the target parts of
the two intended StructureMappings, and they are: “construct|BeanAssoc, InterfaceAssoc, HomeAssoc,
AppDBAssoc]”, “BeanAssoc”, “InterfaceAssoc”, “HomeAssoc”, and “AppDBAssoc” (refer to Figure
9.1(b)). So, the derived ‘“associationMapping” value of the SemanticAssociation can be
“SourcePart:ServerObject TargetPart:construct[BeanAssoc, InterfaceAssoc, HomeAssoc,
AppDBAssoc]”, or “SourcePart:ServerObject TargetPart:BeanAssoc”, or “SourcePart:ServerObject
TargetPart:InterfaceAssoc”, or “SourcePart:ServerObject TargetPart:HomeAssoc” or
“SourcePart:ServerObject TargetPart: AppDBAssoc”. None of the mappings match the understanding
that the “ServerObject” (in Figure 9.1(a)) should be mapped to the “construct[BeanAssoc,
InterfaceAssoc, HomeAssoc]” (in Figure 9.1(b)). The semantic inconsistency means the current

CRelation model may not have captured the shared semantics correctly and needs to be redesigned.

9.4.5.3 “semanticTranslation” property

A domain-specific meta-model may contain many semantic constraints (similar to a UML model has
OCL constraints). Ideally, all the semantic constraints should be maintained during MI&T. In the
CRelation model, the selection constraints have encoded and maintained some of those semantic
constraints, where property values of model elements are involved. The CRelation model uses the
“semanticTranslation” property of SemanticAssociation to maintain Translatable Semantic Constraints.
The translatable model semantic constraints are constraints that act upon source (target) parts of the

SemanticAssociation and its parent StructureMappings without involving property values.

146

Figure 9.17 shows an OCL-formatted translatable semantic constraint of the MaramaMTE meta-model
(source meta-model). The constraint (tree root) involves two elements: “RemoteObject” (self) and
“ServerObject. “RemoteObject” is the source part of StructureMapping
RemoteObj2EJBBeanHomelnterface (in Figure 9.14(a)), and “ServerObject” is the source part of
SemanticAssociation assocServerObj2assocBeanAssocHomeAssocInterface (in Figure 9.14(a)). The
constraint does not involve the property values of the model elements, so the constraint is translatable.
The semantic constraint means “in a MaramaMTE architecture model, each remote object needs to be
hosted by one application server”. This constraint is sensible as if the application server is removed the

remote object must be deleted or re-hosted as well

Bl Translate Semantic Constraints E]

Source Conkracks Target Conkracts

[= context:RemoteCbject self,ServerObject- =size)=1
Zontexk:EJBBean self.Beanfssoc- =sizel)=1
Context:EJBHome self . HomeAssoc- =sizel)=1
Conkext:EJBInterface self . Interfacefssoc- sizel =1

< I

[Cancel] ’ Transfarm]

Figure 9.17. Sample semantic constraints and translated semantic constraints

This translatable semantic constraint needs to be translated into sensible target model semantic
constraints; and they are the three children of the root semantic constraint. Translated semantic
constraint “context:EJBBean self.BeanAssoc->size()=1" (first child of the tree) can be understood as in
a EJBUML model, each EJBBean needs to be hosted by one AppServerApp, then when the hosting
AppServerApp server is removed the EJBBean must be deleted or re-hosted as well. The translation of
semantic constraints helps to maintain more semantics during MI&T. Chapter 10 will explain how to

translate the translatable semantic constraints.

147

9.4.5.4 Sample use of SemanticAssociation

e e e MM e e e e e e e e e e e m e mmm e mm e mm— = - - -—==-

1

1
assocServerobjzassocBeandssocHomedssocInterfacefssoc :
1

Fa SourcePart: ServerCbiject \\. 1
!

1

1

1

1

i TEIrl;IE!tF'art:EDI‘IStFLICt[BEEIHF'.SSDE,HEIITIEF'.SSDE,II‘ItEFFaEEP.SSDE]/’I
semantic constraints translated

"""""""" ' | << AppServerHome> »
TN S <<ElBBean>>

. Customerfanager

< <ElBInterface> =
Customerbdanager

il
< <EJBHome:> =
CustomerManager

Figure 9.18. Example of using SemanticAssociation

The information defined in SemanticAssociation is used to guide the interconnection between the Pet
Store architecture model and the design model. In Figure 9.18, the MaramaMTE ServerObject
association (between ApplicationServer and RemoteObject) is being mapped to the BeanAssoc,

HomeAssoc and Interface Assoc associations of the Pet Store EJBUML model.

9.5 The process to construct a MaramaCRelation model

The process to construct a CRelation model such as the one illustrated in Figure 9.2(b) is as follows:
Step 1: create StructureMappings

Find conceptually similar elements from source and target meta-models and arrange them into a set of

StructureMappings.

Step 2: create SemanticAssociation
Create SemanticAssociations between pairs of StructureMappings; the value of the
“associationMapping” property of each SemanticAssociation is derived automatically from the

associated StructureMappings.

148

Step 3: create SelectionRefinements
For each StructureMapping, refine the selection constraints in the SelectionRefinement if necessary.

Connect the SelectionRefinements to their parent StructureMappings.

Step 4: create StructureRefinement

For each StructureMapping, if there are semantic constraints (from both the source and target meta-
models) constraining this StructureMapping and another StructureMapping, it may be necessary to
introduce StructureRefinements to specify the second-order selection constraints. Connect the

StructureRefinement to both of its parent StructureMappings.

9.6 Summary

The CRelation model is an interconnection model for MI&T. It uses StructureMappings to capture the
main concerns of MI&T; SelectionRefinements to refine selection constraints; and StructureRefinement
to define second-order selection constraints on StructureMappings. The CRelation model uses
SemanticAssociation to explicitly represent the information that is typically hidden and implicit in
traditional model integration and transformation technologies. The SemanticAssociation allows users to
relate isolated StructureMappings in the context of a broader model, and help users to reason about the
design of an intended MI&T. The SemanticAssociation also maintains translatable semantic constraints.
The CRelation model improves the traditional model integration and transformation to a higher analysis
and design level, which allows modellers to review and organize the existing isolated issues of MI&T,
including semantics maintenance and behaviour synchronization. Chapter 10 will show that the

CRelation model also helps to maintain flexible traceability mechanism.

149

Chapter 10 - The MaramaCRelation Tool

The MaramaCrelation tool supports CRelation modelling. The MaramaCrelation tool provides a
modelling environment for the CRelation model; supports efficient communication between the
CRelation model and the involved source and target domain-specific meta-models; enables automatic
derivation of property values; and generates search conditions to maintain traceability during MI&T.
This chapter introduces in detail the main functions of the MaramaCRelation tool and discusses the main

design and implementation issues of the tool.

10.1 Overview of the MaramaCRelation tool

The MaramaCRelation tool is a built-in Eclipse environment by using the Eclipse tool-built facilities.
Figure 10.1 shows the main interface of the tool. The MaramaCRelation tool uses the Eclipse package
explorer to organize model projects including CRelation projects, domain-specific meta-models, and
domain-specific models; users can open projects, create new projects, and import and export projects in
the package explorer (1). The MaramaCRelation tool palette provides access to model editing features
for constructing CRelation models (2). Users build a CRelation model in a CRelation model editor (3).
The MaramaCRelation tool customizes and uses Eclipse views to support CRelation modelling,
including property view and error view (4). The MaramaCRelation tool support effective

communication between the CRelation model and its source and target meta-models (5).

150

relation/MTE_UML.maramaDiagram - Eclipse SDK

File Edit Mavigate Search Project Run Window Help
- H -0 g LI £ | |E a1
: ol 100% |~ & Java
o Mavigatar 23 =l im| diagrarn,maramaliagram =08
== [Select DEAndTablezDatabasespp y
(= MTE_EJBUML_crelation ~ I:I+ IMarques SourcePart:construct[DatabaseTable, Database]
| model B L\) Sketehing TargeFPart:DBA?pllcatlon
] toal selectionConstrainks: 1
|=| .project - —
) = + behaviour description, ..
| wiewTypes [~ Shapes
=] BPMM_MTE _crelation.xml [sstructure... T
=l BPMM_MTE.mararnaliagram B Sstruckure. .,

: f i assocServerDEZassocappDBassoc —_—
= d!agraml‘ia.maramaplagram [SR o SourcePart: ServerDatabase refineAppServer JEJBE
=l dlagramlss.marar!'uaDmgram M sselection. .. TargetPart: AppDBAssoC SourcePart: Applicatior
|=] EML_BPMM_crelation. =ml > ermantic constrainte traneiated TargekPart:conskruckfl
=l EML_BPMM.maramalbiagrarm () selectionConstraints: 1
|=| MTE_PageFlow_crelation,xml
|=| MTE_PageFlow.maramabiagram
=] MTE_UML _crelation. xmil AppSErYerZapnSeryver SRS ndAppSererHome
=] MTE_UML.maramaliagram SourcePart: applicationServer B

1= Maramadrch TargetPart: construct[AppServerdpp, AppServerHome]
=% MaramaBFMH selectionConstraints: 0
=2 MaramaEML behaviour description, ..
1=F MaramaMTE (1)
=" PageFlow (3) 2
= petstare_MTEZ P o nectors < | =1
1= petStore_UMLZ
1= TravelPlanner_BPMN 3 MaramaMTE . maramaToolModel &2 = 8| O umLmaramaToolModel &2 =08
#-I=F TravelPlarner_EML L}S‘ celect A % celact A
1= TravelPlanner_MTE 1 Mar... Remotehiect 1 Mar...
1= TravelPlanner_PageFlow +) +
% Sket... | | name String key k Sket...
= UL - tool tool AppServerd|
N tvpe String nonkey PP PP
— e (== Sh.., # == 3h... # | name String nonke B
= Properties E2 | & |2 v = 0= = ? Y
— [Entit... 5 — || I Enfit... 5
Je:vl Value T C) B Atri... ®)
Aadel
. . . M mMad... OhieckService B Mod... —_—
behaviourDescription <?xml version=",..... = = AppoerverAssoc
enkityMapping SourcePart: construct[Data =cC,, * =c,., *
id DEAndTableZDatabasedpp
selectionConstrainks Constrainks: 1 l‘ lToos ¢ (REFoos
4 l‘ Subt... ServerObject ¢ Subt... o ——
() l Far... L v ¢ Far... ﬁppServerI!
< | > L 4 < | > - | >
B

Figure 10.1. The main interface of the MaramaCRelation tool

10.2 The MaramaCRelation tool supporting constructing a StructureMapping

StructureMappings are the main model elements of the CRelation model. The MaramaCRelation tool

allows users to efficiently set up values for the properties of a StructureMapping. The “id” property has

151

a simple textual value that is easy to set up. How to set up the other three properties is explained in this

section.

10.2.1 Setting up the value for the entityMapping property

10.2.1.1 Bringing up the source and target meta-models

In order to set up the entityMapping value of a StructureMapping, the MaramaCRelation tool needs to
retrieve data from both source and target meta-models. Figure 10.2 shows how the MaramaCRelation
tool loads the source meta-model. In the CRelation editor (1) users use a popup menu to “Load Source
MetaModel” (2). Users select the interested source meta-model from a list of available domain-specific
meta-models (3), and the selected source meta-model is then loaded and displayed in a new
MaramaCRelation editor (4). Users then load the target meta-model in the same way ((5) (6) in Figure
10.3), and the selected target meta-model is loaded and displayed in a new MaramaCRelation editor (7)
beside the loaded source meta-model. Once both meta-models are loaded, users can choose to hide them
or leave them open. If the two meta-models are left open, the two loaded meta-models (source, target)
and the intended CRelation model are visually coordinated. Whenever a StructureMapping is
highlighted in the intended CRelation model, the related source and target meta-modelling elements will

also be highlighted in both the corresponding source and target meta-models.

152

& Selection Needed

<7 Undo Delete
Hle| = Red c {vdh?l: classes and types
| o pciete L] azp
] o - [AuthorzPerson
: ! (1 |] Crelation
1 | [] Maramagrch
' rcl |] MaramaBPMN B8
| | O MaramaEmL 1
X MaramaMTE
= Generate Model Search Conditions] pageFiow
h Load target metamodel E EJBUHtIr- :
e Load source metamodsl el
= [] emml_traveler
B ide Differences E k"":'" (3)
= ;] myriry
= Difference Diagrams , E] pet MTE2
Run As [] petStore_UMLZ
= Debug As »
= T k
Bl Joam @ | selectal || Deselect al |
Il Compare With r
lr Replace With b
' @ | ok || cancel |
i
B MaramaMTE. maramaToolods] X =]
[y Select RemoteObject Service
Marquee e name String key
Sketching bool .
[} | ST S— remoteServer Skring nonkey
=>Shapss *| remoteCbject String nonkey
[Ertityshape l i remoteService ink nonkey
M@ Attribute i 8 i = warmbp String nonkey §
B ModelEventHand... enotecis [[obiectservice recordTime String nonkey I Sen
{— Connectors + — popserver
| Attrtink 1 Stp_p'cm'”"ﬁe’ i
name Strin
1‘ Subtypelink SarverObjact [soakestiorServer— = 2
| Formulatink type String nonkey [=
I ” -
Thd ()

Figure 10.2. Loading the source meta-model

153

< Undo Delete

& Selection Needed

File ¢ Available classes and bypes
[] aer
[1 | [[] AuthorzPerson
[crelation
[] Maramasrch
E rell |] MaramaBRmn |
|:| MaramaEML
[[] MaramamTE
= Generate Maodel Search Conditions [] PageFlow
L\@ Load target metarmodel EJBUML
— , ol [] bprin_traveler
= Load source metarode D eml_traveler
= Hide Differences [karen
B o Di L] myTry
ifference Diagrams [petstare_MTEZ (6]
B runas ' [] petStore_UMLZ
= Debug As 4
il Team ’ [Select Al H Deselect Al]
| Compare wWith 5] »
l Replace With r
() | (04 | [Cancel]
N
£ MaramaMTE. maramaToolMade! &2 = B | umL.maramaToolModel &2 = OB
Select W Select W
[% e | Remotetbieck = L‘\’ = B
£, Marguee S £, Marguee (71
narne Skrin
[+ Sketching bool arey [+ Sketching bool
bvpe String nonkey
.= Shapes - .= Shapes - | AppServerspp
B Entityshape B EntitvShape name Skring nonkesy
B Attribute || I Attribute
B ModelEventHandl.. . Obie B ModelEventHandl.. .
e i | AppServerfssoc
|~ Connectors - [~ Conneckors - .
1 AttrLink 1 AttrLink
] SubbypeLink ServerObject] SubbypeLink
] FormulaLink w ||| | Formulatink —
IR < I > R < >

)

Figure 10.3. Loading the target meta-model
10.2.1.2 Retrieving available meta-elements and meta-constructs

StructureMappings can consist of not only single meta-model elements but also constructs of the meta-

model elements (meta-constructs). When setting up the entityMapping property of a StructureMapping,

154

the MaramaCRelation tool needs to calculate a complete set of constructs (the complete set of sub-
models) of the source and target meta-models, and list them together with the single meta-elements, so
users can choose a pair of interested source and target meta-elements or meta-constructs to set up the

value of entityMapping of the StructureMapping.

I Select Related Elements E]

Source Meta-Model Target Meta-Model

4

Request-applicationlient-Applic ationServer
Request-applicationClient-ApplicationServer-Dat abase
Request-applicationClient-ApplicationServer-Database-DatabaseTat
Request-applicationlient-ApplicationServer-RemoteObject
Request-applicationClient-Applicationerver-RemokeObject-Service
Service-RemoteObject

Service-RemoteObiect-Application3erver
Service-RemoteObject-ApplicationServer-Database
Service-RemoteObiect-Application3erver-Database-DatabaseTable
Service-RemaoteObject-ApplicationServer-applicationClient
RemoteCbject-ApplicationServer
RemoteCbject-ApplicationServer-Database
RemoteCbject-ApplicationServer-Database-Database Table
RemoteCbject-ApplicationServer-ppplicationClient
ApplicationServer-Database
ApplicationZerver-Database-DatabaseTable
ApplicationServer-ApplicationClient

Database-DatabaseTable
Database-ApplicationServer-applicationClient
DatabaseTable-Database-application3erver -Applicationlient

| =

ApplicationServer M =~ Entities

Database | AppServerApp

DatabaseTable AppServerHome

ApplicationClient (1) EJEEe=an (2)
Canstrucks EJEHome

Request-applicationClient EJEInterface

DEApplication

[=)- Constructs

AppServerfpp-AppServerHonme
App3erverApp-App3erverHome-DEApplication
AppServerApp-AppServerHome-EJBBean
AppServerApp-AppSeryverHomne-EJBHOME
AppServerApp-AppServerHome-EJBInterface
AppServerHome-DEApplication
AppServerHome-EJEBean
AppServerHome-EJEHome
App3erverHome-EJBInterface
EJEBean-AppServerHome-DEApplication
EJEBean-AppServerHome-EJEHome
EJEB=an-AppSetverHome-EJEInterface
EJEHome-AppServerHome-DEApplication
EJEHome-fpp3eryverHome-EJBINkerface
EJBInterface-AppServerHome-DEApplication

name

Source Elements | construct[DatabaseTable, Database] (3)

| Target Elements | DEApplication (4)

| pourcePart:construck[DatabaseTable, Database] TargetPart: DBApplication |(5}

l

Ok,] [Cancel

)

Figure 10.4. Calculating and listing available meta-model elements and constructs of the source

and target meta-models

When users click the entityMapping property entry in the MaramaCRelation tool property view (an
Eclipse property view) to edit the value, the entityMapping property sheet is opened as is illustrated in
Figure 10.4. The property editor contains two complete lists of the source and target meta-model

elements and constructs (1)(2). The user wishes to interconnect the construct [DatabaseTable, Database]

155

(source meta-construct) from the MaramaMTE meta-model (3) with the meta-element DBApplication
(target meta-element) from the EJBUML meta-model (4). The entityMapping of the StructureMapping is
then set up as “SourcePart:construct [DatabaseTable, Database] TargetPart:DBApplication” (5).

10.2.2 Setting up the value for the selectionConstraints

10.2.2.1 Defining selection constraints using OCL and java

The CRelation model defines selection constraints of a StructureMapping, SelectionRefinement, and
StructureRefinement by using a combination of OCL and tool-API-independent java code. OCL is used
to query property values of the meta-elements, and protects users from having to deal with the
MaramaCRelation tool API. The tool-API-independent java code supports complicated operations on

the retrieved model data.

'DB.ﬁ.ndTabIEZDatabaseﬁ.pp

SourcePart:construct[DatabaseTable, Database]
TargetPart: DEApplication

selectionConstrainks: 1 (1)
behaviour description. ..

T

B Property value E]

Yalue of property:

- .
—onskraint

1

[

ink indezx_1 = {{Skring) @OCL{contexk:Database self .name). indexOf"_";

String database_name =((3tring) @OCL{context:Database self,namel, substring(0,index_1);
String databasedpp_name = (({3tring) @OCL{context: DEApplication self.namel);

Appaer return {database_name .equals{databasedpp_name)); 2

Sourcer | ()
TargetH

celectio

hehawvic

Fefire T A ——————— | A A

[£

Figure 10.5. Using OCL + java to define StructureMapping selectionConstraints

Figure 10.5 shows the selection constraint of StructureMapping DBAndTable2DatabaseApp (1). Three
OCL queries are used in the selection constraint (2). The two queries of “@OCL(context:Database
self.name)” (underlined in blue) retrieve the name value of the Database in the source meta-model. The

one query of “@OCL(context:DBApplication self.name)” (underlined in red) retrieves the name value

156

of DBApplication in the target meta-model. If the OCL queries are viewed as special java expressions,
the contents of the selection constraint follow java syntax and can be viewed as a block of functional
java code. The MaramaCRelation tool can compile the selection constraints (by using the “compile”
button in Figure 10.5, Figure 10.6, and Figure 10.7) to avoid syntax errors of OCL expressions and java

code.

The same format applies to the selection constraints of SelectionRefinements and StructureRefinements.
Figure 10.6 and Figure 10.7 show the selection constraint of SelectionRefinements

refineTargetPartConstructAppHome and refineTargetPartConstructBeanInterHome respectively.

I Property value

Value aof property:

Canstraink
1
String AppServerHome_narme =({String i@OCL{context: AppServerHome self.name)); =
String AppServerApp_name = ({String@OCL{context: AppServerApp self.namel);
return (AppServerHome_name.equals{AppServerApp_name));

i
i
sk

B

CHi)

%

| refineT argetPartConskruckAppHome refineTa
construct[AppServerfpp, AppServerHome] conskruc
selectionConstraints: 1 selectior

| —

Figure 10.6. Using OCL + java to define selection constraints of a SelectionRefinement

157

hppDBAssoC

e |refinedppServer 2E JBE=anInterfaceHome

c SourcePart: ApplicationServer
Gndated TargetPart: construct[EJEBean, EJBInterface, EJBHomE]
d_——f"'f selectionConstrainks: 1

B Property value E]

Value of property:

Constraint
{
String EJBHome_Mame = ((String)@0CL(context:EJBHome self.name));
Boclean chject = ((Boclean)@OCL{context: ApplicationServer self remoteObject
-»select{elemn | elem.name=EJBHome_Marme)-»> notEmpty]);
return object.bocleanValuel);

——

Figure 10.7. Using OCL + java to define selection constraints of StructureRefinement

10.2.2.2 Defining selection constraints by using ATL

The MaramaCRelation tool tries to leverage the popular third party technologies to describe the
selection constraints; and ATL meets the requirements. At this stage, the MaramaCRelation tool uses
ATL matched rules to define selection constraints that involve both source and target meta-elements,

and uses ATL queries to define selection constraints that only involve a single model.

ATL matched rules can specify 1) for which kinds of source elements target elements must be generated,
and 2) the way the generated target elements have to be initialized. The matched rules can be used by the
MaramaCRelation tool to specify selection constraints across the source and target models in a

CRelation model.

An ATL query transforms a model to primitive type value. More specifically, ATL queries are used to
generate textual outputs (encoded into a string value) from a set of source models, or return a numerical
or a Boolean value. ATL queries are used by the MaramaCRelation tool to specify single-model

selection constraints in a CRelation model.

158

M Property value E]

Yalue of property:

Constraink

int indesx_1 = {{5tring) @OCL{context:Database self.name])).indexOf("_");

String database_name =({5tring) @OCL{conkext:Database self.name)). yuhsbring(indey 11
String databasespp_name = ((String) @OCL{context: DBApplication self name) e
return (database_name .equalsidatabasedpp_nama));

} (a)

rule Constraint 2{

from
dbServer : MM[MaramaMTE!Database
using {
index_1: int = dbServer .name.indexOf"_");
dbServer name : String = dbServer name substring(G¢
index_1);
¥
to
dbApplication : MMEJBUML DB Application
(
name <- dbServer name <
)
, (b)

Figure 10.8. Using ATL to define selection constraints

Figure 10.8 illustrates how to define selection constraints by using ATL matched rules. Figure 10.8(a)
illustrates a sample selection constraint (defined in java + OCL) of a StructureMapping with the
constraint crossing the source and the target meta-models. The ATL matched rule (in Figure 10.8(b))
defines a valid selection constraint that achieves the same result as the constraint in Figure 10.8(a). The
matched rule computes a string value “dbServer name” and uses it to initialize target model element

DBApplication (of EJBUML meta-model).

Figure 10.9 shows an example using ATL queries to define CRelation model selection constraints. The
selection constraint defined in ATL query in Figure 10.9(b) achieves the same result as the constraint

defined in Figure 10.9(a).

159

M Property value m

Yalue of property:

Canstraint

{

String AppServerHome_name ={{String@0OCL{context: AppServerHome self.name));
String AppServer App_name = ({Stringd@OCL{context: AppServer App self name));
return (AppServerHome_name, equals(AppServerApp_name));

(a)

1

query Constraint = MMEJBUML! AppServerfpp.allinstances()->
collect(asal if asa. getAppSenerAppName ().equals(asa. AppServerAssoc. AppServerHome-
getAppServerHomeMame())

then true

else false

endif),

Jhelper context: MMEJBUMUIAppServerApp def getAppSererAppMame() :
String = self name;

helper context: MMEJBUMLIAppSererHome def: getAppSererHomeName() : (b)
String = self name;

Figure 10.9. More samples of using ATL to define selection constraints

At this stage, the MaramaCRelation tool leverages ATL in defining selection constraints of the
CRelation model. The MaramaCRelation tool is yet to support generating functional ATL
transformation scripts. A CRelation model shows the potential to generate functional ATL model

transformation script, which will be discussed in the future work.

10.2.3 Setting up value for the behaviourDescription of a StructureMapping

The behaviourDescription of a StructureMapping is a structured high-level interface for behaviour
synchronization during MI&T. The MaramaCRelation tool generates the behaviourDescription for a
StructureMapping through two steps: 1) rewriting the selection constraints; 2) generating the

behaviourDescription according to the behaviour description schema (refer to section 9.4.1.4).

160

10.2.3.1 Rewriting selection constraints

wold rewriteSelectionConstraint()

for (each wariable as=szignation operation)

if (the right hand =zide of the as=zignation involwes inwvolwemnent
wariables or OCL gqueries)

templnvolvenentPart = construct the inwvolwement part for the
right hand =ide information:

if (the wariable does=n't contain the templnvolvementPart)
{

newVariable = templnvolvementVariable +the existing wariable:

replace the existing old wariable with the newVariable
all through the =zelection constraint;

¥

1fi{the as=signation i= influenced by involwvement variables
or OCL gueries)

templnvolvenentPart = construct the i1nvolwvement part for
the influential involvement wvariables or
OCZL querlies:

if (the wariable does=n't contain the templnvolvementPart)

{
newVWariable = templnvolvementPart + the existing wariable:
replace the existing old wariable with the newVariable
all through the =selection constraint:
b

i
b
I3

Figure 10.10. An empirical algorithm to rewrite an existing selection constraint

The model data (property values) involved in a selection constraint may or may not influence the
constraint result. The MaramaCRelation tool uses an empirical algorithm to rewrite the selection
constraints to find out what model data (model element property values) will truly influence the
constraint results. Figure 10.10 illustrates the empirical algorithm used to rewrite an existing selection
constraint. The involvement part and involvement variable are two important concepts in the algorithm.
The involvement part is in the form of “iv@((model element name) (property name))”” where the model
element name and property name are case insensitive. The involvement variable is in the form of

“involvement part + a valid java variable”. Note: the involvement variable is not a valid java variable,

161

but a way to record the involvement part in a valid java variable. In a selection constraint, each OCL
query has a corresponding involvement part. For example, involvement part for query
“@OCL(context:Database self.name)” is “iv(@(database name)”, and the involvement part for query
“@OCL(context:DatabaseTable self.name)” is “iv@(databaseTable name)”. Valid involvement
variables are like “iv@(database name)index 1” and “iv(@(databaseTable name)index 2” with the
involvement part “iv@(database name)” and “iv@(databaseTable name)” respectively. The algorithm
in Figure 10.10 explains how to use the involvement variables to track the model information that is
influential on the constraint result. The algorithm is explained through rewriting two sample selection

constraints.

Figure 10.11 shows a sample selection constraint with four variable assignations involved. For the
assignation on line 3, when executing the algorithm between lines 7 and 22 (refer to Figure 10.10), the
“templInvolvementPart” (refer to line 10, Figure 10.10) for the right hand side of the assignation is
“iv@(database_name)”. Because the variable “index 1” does not contain this “templnvolvementPart”
(refer to line 13, Figure 10.10), so the “newVariable” (refer to line 15, Figure 10.10) should be
“iv@(database_name)index_1”. Replace the existing variable “index 1 with the involvement variable
“iv@(database name)index 1” all through the selection constraint in the selection constraint (refer to
line 17~18, Figure 10.10). This assignation is not influenced by other involvement variables and OCL

queries, so the part of the algorithm between lines 24 and 39 (refer to Figure 10.10) is skipped.

Constraint

1
int index 1 = {((String)@0CL{context:Database

zelf name)) . index0f (" _"):

String database name = {((String)@0CL{context:Databas=e
zelf name)) . subsztring(0, index 1);

int index_2 = ((String)@)CL(context:DatabazeTable
==lf name)). inde=0fi" "3;

String databa=eTable name = ((String)@JCL{context: Databa=eTable
=zelf name)) substringi{l, index 2},

return (databa=sze name.equal=idataba=eTable names));

Figure 10.11. A valid selection constraint

For the assignation in line 6 in Figure 10.11, when executing the algorithm between lines 7 and 22 (refer

to Figure 10.10), the “templnvolvementPart” for the right hand side of the assignation is

162

“iv@(database_name)”. Because the variable “database name” of the assignation does not contain this
“tempInvolvementPart” (refer to line 13, Figure 10.10), so the “newVariable” (refer to line 15, Figure
10.10) should be “iv@(database name)database name”. Replace the existing variable “database name”
with the involvement variable “iv(@(database name)database name” all through the selection constraint
(refer to line 17~18, Figure 10.10). This assignation is not influenced by other involvement variables

and OCL queries, so the part of the algorithm between lines 24 and 39(refer to Figure 10.10) is skipped.

For assignation in line 9, when executing the algorithm between lines 7 and 22 (refer to Figure 10.10),
the “templInvolvementPart” for the right hand side of the assignation is “iv(@(databaseTable name)”.
Because the variable “index 2” does not contain this “templnvolvementPart”, so the “newVariable”
should be “iv@(databaseTable name)index 2”. Replace the existing variable “index 2” with the
involvement variable “iv(@(databaseTable name)index 2 all through the relationship constraint. This
assignation is not influenced by other involvement variables and OCL queries, so the part of the

algorithm between lines 24 and 39(refer to Figure 10.10) is skipped.

For assignation in line 12, when executing the algorithm between lines 7 and 22 (refer to Figure 10.10),
the “templnvolvementPart” for the right hand side of the assignation is “iv(@(databaseTable name)”.
Because the variable “databaseTable name” does not contain this “templnvolvementPart”, so the
“newVariable” should be “iv@(databaseTable name)databaseTable name”. Replace the existing
variable “databaseTable name” with the involvement variable “iv(@(database name)database name” all
through the selection constraint. This assignation is not influenced by other involvement variables and
OCL, so the part of the algorithm between lines 24 and 39(refer to Figure 10.10) is skipped. The
rewritten selection constraint is illustrated in Figure 10.12. The involvement parts of all the involvement
variables in the return result variable represent the model entities and their properties directly
contributing to the selection constraint result. In this case, it is the name properties of Database and

DatabaseTable that are influential on the constraint result.

163

Constraint
{
int iv@({databa=ze name)index 1 =
((String)@ICL{context :Databa=e ==lf name)) . index0fi{" "3

String iv@i{databa=ze name)databa=ze name =
((String)@0CL{context :Databa=e =elf name)) . substring(0,
iv@idatabaze name)index 1)

int iv@{databa=eTable nane)index 2 =
((String)@0CL{context Databa=eTable
zelf name)) . indexOfi"_ "1

String iv@idatabazeTable name)databa=zeTable name =
((String)@ICL{context :DatabaseTable
=2lf name)) . substring(0, 1v®{databa=eTable name)index 23 ;

return ([1v@{database name)ldataba=se name. equal=s(
1v@{databa=eTable nameidatabas=eTable name)):

Figure 10.12. The rewritten selection constraint

Figure 10.13 illustrates another sample selection constraint. Rewriting this constraint is similar to the
rewriting of the selection constraint in Figure 10.11. The variable assignation in line 19 needs more
attention. The right hand side of the assignation involves a variable “database name”. This variable
should have already been replaced by an involvement variable “iv@(database name)database name”
due to the rewriting of the assignation in line 3. So, for assignation in line 19, when executing the
algorithm between lines 7 and 22 (refer to Figure 10.10), the “tempInvolvementPart” (refer to line 10,
Figure 10.10) for the right hand side of the assignation is “iv(@(database name)”. The “result” variable
(line 19, Figure 10.13) should be rewritten as “iv@(database name)result”. Moreover, the variable
“iv@(database _name)result” is also influenced by the if statement (line 17) that has the involvement
variable “iv(@(databaseTable name)databaseTable name”. When executing the rewriting algorithm
between lines 24 and 39 (refer to Figure 10.10), the “tempInvolvementPart” (brought by the variable in
the if statement in line 17) is “iv@(databaseTable name)”, which is not contained by the existing
involvement variable “iv@(database time)result”. A new variable
“iv(@(databaseTable name”)iv@(database name)result” needs to be constructed to replace the existing
“iv@(database name)result”. The rewritten selection constraint is illustrated in Figure 10.14. In this

case, it is the name properties of Database and DatabaseTable that are influential on the constraint result.

164

Constraint
¢ String database_name=((String)@ICL{context Databaze self nams)):
int index 1={({String)@JCL{context:Databaze =elf namne)) indexOf{"_"):
databa=ze name=databa=se namne.substring{0, index 1}:
String databaseTable name={{String)@0CL{context :Databa=eTable =elf name)):
int index Z2=databa=zeTable name. index0f{"_ "):
databa=eTable name=databa=s=eTable name.substringil, index 2);
boolean result=false;
ifidataba=eTable name. lengthi <15}
result=databasze _name. equal=s("hellovorld”):
return result; (c)
L
Figure 10.13. A valid selection constraint
Constraint

String iv@idatabaze nane)databaze name =
((String)@ICL{context Databa=ze =elf name));

int iwv@{databasze nane)lindex 1 =
((String)@0CL{context :Databaze =e=lf name)) . index0fi{"_ "}

1v@{databasze name)ldatabasze name =
iv@i{databaze nane)ldataba=ze name.=substringil,iv@{databa=ze name)index 1) ;

String ivi@idataba=zeTable name)databa=zeTable namne =
((String)@CL{context DatabazeTable =elf name));

int iv@®{databa=eTable namelindex 2 =
iv@{databa=eTable nameldataba=eTable namne. inde=x0f (" _"

1v@{databa=eTable name)databa=eTable name =
iv@i{databa=zeTable name)databa=zeTable name. substringil,
iv@i{databazeTable name)lindex 2);

boolean iwv@{databaseTable namne)iwd{databasze_namneiresult =false:
1f {1v@{databa=zeTable name)databa=zeTable_name. length(1<15)

iv@idataba=eTable namne)iv@®{database namne)lresult =
iv®{database_name)database_name.equals("hellowvarld"):

(@)

return ivi@idataba=eTable name)iv®{databasze_name)lresult:

Figure 10.14. The rewritten selection constraint

165

10.2.3.2 Generating the behaviourDescription

Figure 10.15, Figure 10.16, and Figure 10.17 use pseudo java code to encode an empirical algorithm of
generating the behaviourDescription of a StructureMapping. Figure 10.15 illustrates the main method of
generating the behaviourDescription. The source model events are generated between lines 4 and 16,
and the target model events are generated between lines 19 and 31. When generating source model
events of the behaviourDescription, the MaramaCRelation tool rewrites the selection constraints to
retrieve a list of influential source model entities and their properties (line 6 in Figure 10.15). For each
influential meta-model entity and its property, a “changed” event is generated (line 9 in Figure 10.15).
After the generation of the “changed” events, the algorithm is ready to generate the “removed” events.
The MaramaCRelation tool retrieves all source model entities involved in the StructureMapping (line 12
in Figure 10.15). For each retrieved entity, a “removed” event is generated (line 15 in Figure 10.15). The
process is similar when generating target model events of the behaviourDescription (lines between 19

and 31 in Figure 10.15).

mnain i}

S0 generating source model events

for (sach =election constraint)

i
retrieve_Influential_ SourcelModel Entitie=s And Properties():
for (each retrieved model =lement and 1t= property)

generateChangedEvent {modelElenentProperty.
zelection constraint);

retrieve Sourcelodel Entities0fStructureMapping)

for each retrieved model element
generateRemovedEvent (nodelElement) ;

I

A7 generating target model events

for (sach =election constraint)

1
retrieve Influential TargetHodel Entities And Propertiesi);
for (sach retrieved model element and 1ts= property)

generateChangedEvent {modelElenentProperty.
zelection constraint)

retrieve_TargetModel_ Entities0fStructureMapping();

for sach retrieved model =lement
generatelenovedEvent (modelElenent) ;
T
I

Figure 10.15. The algorithm of generating behaviourDescription for a StructureMapping

166

Figure 10.16) shows the algorithm to generate a “changed” event. In a behaviourDescription, a
“changed” event is described by a group of parameters, including EventType, EventOriginators,
EventOriginators_params, EventConsumers_inSourceModel, EventConsumers_inSourceModel params,
EventConsumers_inTargetModel, EventConsumers_inTargetModel params, and IntendedResult. The

meaning of those parameters has been explained in section 9.4.1.

generateChangedEvent (String modelElementProperty.
String selection constraint)
1
EventOriginators = modelElementProperty;

EventOriginators Param = az=ign =en=zible =tring parameters
to EventOriginators;

EventConsumers_inSourcelodel = other source model slement
propertie=s influential on the constraint result;

EventCon=umers_inSourceModel param= = as=ign =tring parameters
to EventConsumters inSourceModel

EventConzumers_inTargetdodel = target model element properties
influential on the constraint result:

EventConzumers _inTargetModel params= = aszsign s=tring paramnseters
to EventConsumers inTargetModel ;

IntendedFe=ult = manually—construct information based on
the logizc of the =election constraint:
T

Figure 10.16. The algorithm of generating “changed” events for the behaviourDescription

Figure 10.17 shows the algorithm to generate a “removed” event. In a behaviourDescription, a
“removed” event 1is described by a group of parameters, including EventOriginators,
EventConsumers_inSourceModel, EventConsumers_inTargetModel, and IntendedResult. The meaning

of those parameters has been explained in section 9.4.1.

167

generatelemovedEvent (HodelElenent modelElemnent)
if imodelElement belongs to a construct)
EventOriginators = the construct the modelElement inwolwes;
EventConszumners_inSourcelodel = other source model involwed
in the construct;
I
else

EventOriginators = modelElement
EventOriginator=s inSourcedModel = null;

B

EventConszumers_inTargetModel = target model elements involwved
in the InterEntity;

IntendedRe=sult = InterconnectionRelationship removed():

i

Figure 10.17. The algorithm of generating “removed” events for the behaviourDescription

Figure 10.18 and Figure 10.19 show an example of how to generate “changed” events of the
behaviourDescription of a StructureMapping. In order to generate the source model “changed” events,
the selection constraint of StructureMapping DBAndTable2DatabaseApp (in Figure 10.18) is rewritten
(in Figure 10.19) to retrieve influential source meta-model entities and their properties. The
MaramaCRelation tool retrieves source meta-model influential element Database and target meta-model
influential element DBApplication whose name property change will influence the established
Interconnection Relationship. Referring to the algorithm in Figure 10.15 between lines 7 and 10, the
change of the name property of Database element triggers a “changed” event (event 1, line 5, in Figure

10.20).

The StructureMapping DBAndTable2DatabaseApp (Figure 10.18) consists of
“SourcePart:construct[Database, = DatabaseTable] TargetPart:DBApplication”. According the
behaviourDescription generation algorithm (refer to line 12 in Figure 10.15), the removal of each of the
involved source meta-model element will influence the Interconnection Relationship. The Database
element triggers one “removed” event (event 2, line 22, in Figure 10.20), and the DatabaseTable element
triggers one “removed” event (event 3, line 31, in Figure 10.11). The “changed” event and the two
“removed” events consist of the source meta-model events of the behaviourDescription of the

StructureMapping.

168

lDB.ﬁ.ndTabIEEDatabase.ﬁ.pp

SourcePart:construct[DatabaseTable, Database]
TargetPart: DEBApplication

selectionConstrainks: 1
bhehaviour description. ..
T

B Property value E]

Yalue of property:

Constraink ~
I -
ink index_1 = {{String) @O CL{context: Database self.name)).indexof"_"™;
String database_name =({5tring) @OCL{conkext:Database self.namel), substring(0,indesx_17;

String databasedpp_name = ({String) @OCL{context:DEApplication self.name));
return (database_name .equals{databasefpp_name));

—_

| &

Figure 10.18. A sample StructureMapping and its selection constraint

Constraint

int iv@i{databa=se name)index 1 =
(iString)@CL{context :Database =elf name)) index0f(" ")

String iv@i{databa=ze name)databasze name =
((String)@0CL{context :Database =elf name)) . substringil,
iv@idatabaze name)index 1)

String iv@{DBApplication name)databaszeipp hame =
((String)@0CL{context :DBApplication =elf name));

return (1v®{database_name)database _nane.equals(
1iv@{DBApplication_nameldataba=ssdpp name))

Figure 10.19. A rewritten selection constraint

169

=7l version="1.0" encoding="I50-5539-1" =
=EventDescription=

=SaurcemaodelEvert=
=Everts=
=Ewernt id="1"=
=EvertTyper-changed =EvertType=
=EvertOriginators= Database name <EventOriginatars=
=EvertCriginators_params:= databaze_name =EvertOriginators_params:=
=EvertConsumers_inSourcebodel=null=EventConzumers_inSourceiodel=
=EvertConsumers_inSourceModel_params=null=EvertConsumers_inSourcebodel_params=
=EvertConsumers_inTargetModel-DBApplication.name=EventConsumers_inTargetModel=
=EvertConsumers_inTargethodel_params=dibApplication_name=EvertConsumers_inTargethodel_paramss,
=IrtendedResult=
i
int inclex_1 = ((String)dstabaze_name)indexof™_");

String database_name =((String)database_name) substring(0index_17;
String db&pplication_names= ((Stringdatabase_name);
return dbApplication_name;

=intendedResult=

=Event=

=Event id="2"=

=EvertType= removed =iSourceEventType=
=EvertOriginators= Databaze=EvertOriginators=

=EvertConsumers_inSourceModel=DatabazeTable=EventConsumers_inSourceModel=

=EvertConsumers_inTargetModel= DBApplication =EventConzumers_inTargethodel=
=IntendedResult=-

fInterconnectionRelationship removed();
=intendedResult=
=/Evert=
=Evert id="3"=
=EvertTypes= removed =BEventType=
=EvertCriginators= DatabaseTshle=EventOriginators=
=EvertConsumers_inSourcebodel-Databasze=EventConsumers_inSourcehodel=

=EvertConzumers_inTargethodel= DBApplication <EventConsumers_inTargethodel=
=IrtendedResult=

{InterconnectionRelationship removed);
=lntendedResult=
=iEvent=
=(Events=

Figure 10.20. Generating source model events for the behaviourDescription

Figure 10.21 illustrates the target model events

triggered by the StructureMapping
DBAndTable2DatabaseApp of Figure 10.18. The target meta-model element involved in the
StructureMapping is DBApplication. In Figure 10.21, event 4 (line 3) records the “changed” event

triggered by the change of the name property of DBApplication. The DBApplication element also
triggers one “removed” event (events 5, line 21, in Figure 10.21).

170

=TargetModelEvent-

=Events=
=Event id="4"=
=EvertType=changed =EvertType=
=EventOriginators= DBApplication.name <EventOriginators=
=EventOriginators_params=dbApplication_name =EvertOriginators_params:=
=EventConsumers_inSourceidodel-Database name=/EvertConsumers_inSourcehodel=
=EventConsumers_inSourceiodel_params=database_name=EventConsumers_inSourceiodel=
=EvertConzumers_inTargethodel=nul=EvertConzumerz_inTargetModel=

=EventConsumers_inTargethodel_params=null=EvertConsumers_inTargetModel_params=
zlntendedResult=

i
int index_1 = ((String)database_name).indexof"_",
String database_name =((String)database_name). substring(0 index_17;
String databasze_suffix =((String)databaze_name) zubstringlindex_17;
databaze_name = dbipplication_name + databaze_suffix;
return database_name;
h
=irtendedResult=
=iEvent=
=Evernt id="3"=
=ZourceBEventTypes=removed =/SourceEvertTypes=
=EventSource=DBApplication=EvertSource=
=EventTargets_inSourcemodel= null=/EvertTargetzs_inSourcemodel=
=EventTargets_inTargetModel-construct[DatabaseTable Database]=Evert Targets_inTargethodel=
zlrtendedResult=
i
IrterconnectionRelstionship removed(;
h
=irtendedResult=
=iEvent=
=TargethodelEvent=

Figure 10.21. Generating target model events of the behaviourDescription

10.2.4 Brief summary

To summarize,

StructureMappings are the main model elements in the CRelation model.

MaramaCRelation tool supports all the requirements for establishing a StructureMapping. The
MaramaCRelation tool provides easy access to the involved source and target meta-models; supports
efficient retrieving of model information from the both meta-models; allows tool-API independent high-

level representation of selection constraints, leverages ATL to represent relationship constraints, and

partially automatically generates behaviourDescriptions.

10.3 The MaramaCRelation tool supporting constructing a SemanticAssociation
SemanticAssociations associate isolated StructureMappings and allow them to communicate with each
other. The MaramaCRelation tool allows users to efficiently establish values for the three properties of a

SemanticAssociation including id, associationMapping, and semanticTranslation. Setting up the id

171

property is easy, as it has a simple textual value. Establishing the other two properties is explained in

this section.

10.3.1 Setting up the value for the associationMapping property

1 (1)
calculate paths between source calculate paths between target
parts of the yet-to-be associated parts of the vet-to-be associated
Structureldappings structureMlappings

/

(2) set up valie of "associationdlapping”
property of the Semantic A ssociation

N/

validate the design of
~|the Structuredappings

(3)walidate the design of

the Structuredappings (3)vahdate the design of

4) report the Structureldappings
|Stmu:1:ureMappm 1| Structurelapping 2]

possible sernarntic

nconsistency

Figure 10.22. How to set up the associationMapping value of a SemanticAssociation

Figure 10.22 illustrates the main activities involved in constructing a SemanticAssociation. The
MaramaCrelation tool calculates the path(s) between the source parts of the yet-to-be-associated
StructureMappings in the source meta-model, as well as the path(s) between the target parts of the
StructureMappings in the target meta-model (1). The wusers then set up the value of the
associationMapping property by matching a source meta-model path with a target meta-model path (2).
The associationMapping value can be used to validate the design of the parent StructureMappings (3).
The source and target parts of the SemanticAssociation must share similar semantics conceptually;
otherwise, it may mean: 1). the parent StructureMappings may not be well designed; or 2). the source
and target models can not be interconnected without causing semantic inconsistencies. In the first
situation, users need to redesign the parent StructureMappings until the SemanticAssociation captures

the sensible semantics shared by the source and target meta-models (3). In the second situation,

172

SemanticAssociations can explicitly record the unavoidable semantic inconsistencies for the intended

MI&T (4).

Section 9.4.5.2.1 introduces the definitions of the associationMapping value for a SemanticAssociation.
The MaramaCRelation tool uses that definition to calculate the available source and target paths, and

helps users to establish the value of the associationMapping property.

Figure 10.23 shows a tentative design of StructureMappings when interconnecting the MaramaMTE
meta-model with the EJBUML meta-model. The MaramaCRelation tool derives the available source and
target paths for the users to establish the value for the associationMapping property of the highlighted
SemanticAssociation. Of all the three available target meta-model paths, none of them really matches
the source path ServerObject. In the EJBUML meta-model, a correct match for the source path
ServerObject should be the construct/BeanAssoc, InterfaceAssoc, HomeAssoc]. In Figure 10.23, the
mismatch between the source and target paths prompts users to redesign the MaramaCRelation model. If

the mismatch is unavoidable during the interconnection, the SemanticAssociation records the

inconsistency.
App3erverZfppServerAppandAppServerHome |RemDteObjEEJBBeaanmeInterFace
SourcePart: ApplicationServer SourcePart:RemoteCbject
TargetPart: construck[AppServerHome, EJBEean] TargetPart:construct[EJEEean, EJEHome, EJBINkerface]
selectionConstraints:0 selectionConstrainks:0
[Eehaviour description, .. [behaviour description, ..
assocServerObjZassocBeanfssocHomedssocinterf acefssoc
P
[] L
M Select Related Elements @
Source Meta Maodel Target Meka Model
= Available Paths =0 Available Paths
ServerObject construck[Interfacedssoc, Homedssoo]
construck[InterfaceAssoc]
construck[Homedssoc]
Source Elements | ServerObiject | Target Elements | construct[Interfacefssoc, Hu:ume.ﬁ.sscuc]|
namne | SourcePart:ServerObject TargetPart:construct] Interfacefssoc ,HomeAssoc] |
[Ok,] [Zancel]

Figure 10.23. An associationMapping with inconsistency

173

Figure 10.24 shows another tentative design of StructureMappings when interconnecting MaramaMTE
with EJBUML. Of all the four available target meta-model paths, the construct[BeanAssoc,

InterfaceAssoc, HomeAssoc] correctly matches the source path ServerObject.

AppServerZAppserverAppandappIerverHome |RemDteOijEJBBeanHumelnterFace

SourcePart: Application3erver SourcePart:RemoteCbjeck

TargetPart: construck[AppServerdpp, AppSeryverHome] TargetPart:construct[EJBEean, EJBHome, EJBInkerface]
selectionConstraints:0 selectionConstraints: 0

[behaviour description. .. |behaviour description. ..

T /

assocServerobjZassocBeanAssocHomedssocinterf acefssoc ‘

p
u L
M Select Related Elements E]
Source Meta Model Target Meka Model
= Available Paths =0 o ailable Paths
ServerObject construct[Beanfssoc, Interfacefssoc, Homefssoc)
construct[Beanfssoc]
construct[Interfacefssoc]
construct[HomeAssoc]
Source Elements | ServerObiject | Target Elements | construct[Beanfssoc, Interfacedssor, Hu:ume.'!'.ssu:u:]|
name | SourcePart: Serverobject TargetPart: construct[Beandssoc, Interfacefssoc, Homefssoc] |
[Ok] [Zancel]

Figure 10.24. An associationMapping without inconsistency

10.3.2 Setting up the value for the semanticTranslation property

Figure 10.25(a) illustrates how the MaramaCRelation tool sets up the value of the semanticTranslation
property of a SemanticAssociation. For each SemanticAssociation, the MaramaCRelation tool retrieves
the translatable semantic constraints (defined in section 9.4.5.3) from both the source and target meta-
models (1). The retrieved translatable semantic constraints are listed as tree root nodes and ready to be

translated (2). The translated semantic constraints are listed as children of the tree root nodes (3).

174

(a)

source meta-model target meta-model
selmantic constraints B semantic constraints
I I
(1) retrieve translatable (1} retrieve translatable
semantic constramts semantic constraints

Bl Translate Semantic Constraints

Source Conkracks Target Cdnkracts

Context:EJBEBean self . BeanAssoc- =sizel)
Context:EJBHome self . Homedssoc- =sizelj=1
Cantext:EIBInterface self. InterfareAssoc- =size =J\

[

Y

Cancel Transfarm
i

.,

translated semantic constraints

a translatable
semantic constrant

Figure 10.25. Setting up value for the semanticTranslation property of a SemanticAssociation

The SemanticAssociation in Figure 10.25 has a translatable semantic constraint context: RemoteObject
self.ServerObject->size()=1. This translatable semantic constraint is represented as a tree node in Figure
10.25 and needs to be translated into sensible target meta-model semantic constraint(s). The
MaramaCRelation tool uses an empirical algorithm to translate semantic constraints. The algorithm,
illustrated in Figure 10.26, goes through each source (target) meta-model element involved in a

translatable semantic constraint, and translates it into appropriate target (source) meta-model elements.

According to the pink area of the algorithm (line 17 to 24, Figure 10.26), if the source meta-model
element in the constraint belongs to a StructureMapping or a SemanticAssociation that has a single-
element source part and a single-element target part (lines 17&18, Figure 10.26), replace the source
meta-model element with the corresponding target meta-model element (lines 20&21, Figure 10.26) and

save the partially translated semantic constraint for the next loop (line 23, Figure 10.26).

175

According to the yellow area (line 25 to 35, Figure 10.26), if the source meta-model element in the
constraint belongs to a StructureMapping or a SemanticAssociation that has a single-element source part
and a construct target part (lines 25&26, Figure 10.26), for each element of the target meta-model
construct (line 28, Figure 10.26), use it to replace the source meta-model element (lines 30&31, Figure
10.26) in the constraint and save the partially translated semantic constraint for the next loop (line33,
Figure 10.26). As the target part is a construct, which means that multiple temporary translated

constraints can be generated and added to the translated result (line 33, Figure 10.26).

According to the blue area (line 36 to 43, Figure 10.26), if the source meta-model element in the
constraint belongs to a StructureMapping or a SemanticAssociation that has a construct source part and a
single- element target part (lines 36&37, Figure 10.26), replace the source meta-model element in the
constraint with the correspondent target meta-model element (lines 39&40, Figure 10.26) and save the

partially translated semantic constraint for the next loop (line 42, Figure 10.26).

According to the grey area (line 44 to 54, Figure 10.26), if the source meta-model element in the
constraint belongs to a StructureMapping or a SemanticAssociation that has a construct source part and a
construct target part (lines 44&45, Figure 10.26), for each element of the target meta-model construct
(line 47, Figure 10.26), use it to replace the source meta-model element (lines 49&50, Figure 10.26) in
the constraint and save the partially translated semantic constraint for the next loop (line 52, Figure
10.26). As the target part is a construct, which means that multiple temporary translated constraints can
be generated and added to the translated result. When all the source meta-model elements in the
translatable constraint are translated into target meta-model elements, the translation process is finished

(red area, line 8 to 12, Figure 10.26).

176

Wector tempTranslatedConstraints = new Wector();
Tector translatedConstraints = new Vector () ;
tenpTranslatedConstraint = rmall;

vwoid translateSemanticConstraints (a-semantic-constraint)

{

ifia-semantic-constraint doesn't contain any source meta-selement)

{
translatedConstraints. add{a-semnantic-constraint) ;
return;

for (each source meta-model element in the translatable
semantic constraint)

ifithe StructureMappings/Semanticlissociation consists of
single-element source part 44 single-element target part)

tenpTranslatedConstraint = replace the source meta-model element
with the target meta-model element;

tempTranslatedConstraints. additenpTranslatedConstraint | ;

;
ifithe StructureMapping/Semanticlissociation consists of
single-element =source part 44 Cconstruct target partc)

for (each element of the target meta-model construct)

{

tempTranslatedConstraint = replace the source meta-model slemeant
with the element of the target meta-model construckt;

tempTranslatedConstraints. add (tenmpTranslatedConstraint) ;

;
if{the StructureMapping/femanticlizzociation consists of
construct source part 448 single—element target part)

tempTranslatedConstraint = replace the source meta-model =lement
with the target meta-model element;

tempTranslatedConstcraints. addicenpTranslatedConstraint) 2

b

ifithe StructureMappingsSemanticlhssociation consists of

construct Source part 44 construct target part)

for {each element of the target meta-model construact)

{
tempTranslatedConstraint = replace the source slement
with the element of the target meta-model constrackt;

tenpTranslatedConstraints. add (tenpTranslatedConstraint) ;

]

while (tempTranslatedConstraints. hasMoreElementsi))

{

tenpTranslatedConstraint = translatedConstraints nextElement () ;

translatedfenanticConstraints (tempTranslatedConstraint) ;

Figure 10.26. The empirical algorithm to translate translatable semantic constraints

177

FemoteCbjZEIBEeanHomelnterface

AppServerZappServerfppAndappSererHome SourcePart:RemateObiect

SourcePart: Applicationserver TargetPart:construck[EJBBean, EJBHome, EJBINterface]
TargetPart:construct[AppServerfpp, SppServerHome] selectionConstraints: 0

celectionConstraints: 0 behaviour description. ..

|behaviour description. ..

N

assocServerobj?assorBeandssocHomeAssocInterfacefssoc

SourcePart: ServerObiject
TargetPart:construck[Beandssoc, HomeAssoc, Interfacefssoc] (z]}

semantic conskraints translated

context: Remote Object self.ServerObject-=size()=1

1. |context ETEEean se]f.BeanAssoc—:PsizeG=l‘

2. context ETBBean self HomeAssoc-=size()=1
3. context ETBBean self Interface Assoc-=size()=1

4. context ETEHome self Beandissoc-=size()=1

a. | context EIBHome self Home Assoc-=size C|=1|

&. context ETEHome self Interface Assoc-=size(j=1
7. context ETBInterface self Beandssoc-=sze(j=1

8. context ETEInterface self Home Assoc-=size()=1

9 |context:EJ'BInterface self Interfacefssoc-=size)=1 |
(D)~

Figure 10.27. Translating semantic constraints

Figure 10.27(b) shows a sample semantic constraint of the MaramaMTE meta-model (top, highlighted).
The semantic constraint is translated into 9 semantic constraints of the EJBUML meta-model according
to the translation algorithm. The MaramaCRelation tool then checks if the translated constraints are
sensible for the target meta-model, and remove the insensible ones. For example, the translated
constraint 2 in Figure 10.27(b) is insensible, because in the EJBUML meta-model, it is not allowed for
an EJBBean to have an association of HomeAssoc. In Figure 10.27(b) only constraints 1, 5, and 9 are

the sensible translated constraints for the target meta-model.

178

10.3.3 Brief summary

SemanticAssociations makes explicit information that is used to be implicit and hidden in MI&T. The
SemanticAssociation associates isolated StructureMappings, which makes it possible for isolated
StructureMappings to communicate with each other. The MaramaCRelation tool supports the modelling
of a SemanticAssociation. It automatically derives value for the associationMapping property and

translates source (target) model semantic constraints into target (source) model semantic constraints.

10.4 Supporting analysis and design of model transformation

The CRelation model can be used to analyze and design model transformation. Most existing
transformation technologies such as ATL, XSLT, are template-based. Users construct transformation
templates driven by ad-hoc goals. Although these technologies allow users to refactor the templates to
improve the structure and reduce the repetitive information, the refactoring is implementation/operation

level support, and is normally viewed as secondary to the functions of templates.

The current state of transformation is similar to the development of Object Oriented (OO) software prior
to the introduction of OO analysis and design formalisms. Without OO analysis and design, OO
developers can still develop OO software. With the support of an OO environment such as a Java virtual
machine, the OO software can achieve functional goals. However, ad-hoc OO software is largely based
on the software developers’ experience and lacks support for purposely designed performance,

adaptability, maintainability, and so on.

Figure 10.28(a) represents part of a sample ATL script to transform a MaramaMTE model to an
EJBUML model. The figure only shows the matched rules of the ATL script, and does not show the
contents of ATL queries and helpers. Figure 10.28(b) is the sample MaramaMTE — EJBUML CRelation
model. The CRelation model analyzes the ATL script and in the following aspects:

1) Decomposition of transformation scripts

The CRelation model breaks down the monolithic model transformation script into its

interconnection units—the StructureMappings. Each ATL matched rule is represented by a

StructureMapping. The from and fo elements of a matched rule respectively correspond with the

179

source part and the target part of a StructureMapping. The using section and the initialization

section of a matched rule are represented by the selectionConstraints of the StructureMapping.

2) Association of isolated rules and templates

The CRelation model uses SemanticAssociations to explicitly represent the associations between
rules and templates. In Figure 10.28(a), the transformation is consisted of isolated matched rules, and
the associations between those rules are nowhere to see. The CRelation model associates
StructureMappings, and allows transformation rules and templates to communicate with each other

in the context of a broader model.

3) Define What and How to transform

Traditional model transformation technologies focus on operations and do not analyze an intended
transformation. For example, none of ATL, XSLT, and VARTIA explicitly analyzes what to
transform. The CRelation model explicitly identifies what to transform from how to transform. Users
can first establish the CRelation model elements to analyze: if the intended transformation matches
the users’ mindset; conforms to the semantics of the source and target meta-models; causes the least
unwanted information; and maintains the translatable semantic constraints. Once the interconnection
units and their associations are well analyzed, users can define how to realize the transformation by

establishing selection constraints, generating behaviour descriptions, and traceability.

180

create OUT

IO

using

to

¥
from
using {

to

by
from
using {

£y

¥

module MaramaMTE2EIBUML:
uses strings;
RULES

rule ApplicationServer {
£
ma - HaramaMTE ! ApplicationServer
index_1:int = ma.neme. inde=xOf {"_"):

ma_nane: String = ma.nane.substring(l.index_1):

easa: EJBUHML | AppServeripp
name <— na_name

eash : EJBUHML | AppServerHome
name <— na_name

rule RemoteObject £
mro:HaramnaMTE | RemotelObject
index_1:int = mro . namne. indexOf("_"):

mro_namne: String = mro. name.substring(0. inde=x_1):

eeb: EJEUML | EJBEBean (

name <— nro_name
e=h : EJBEUML | EJBHome
name <-— nIro_name

e=1 EJBUML | EJBInterface (
name <— Mro_name

rule DatabaseTable {
dbSexrver : MaramaMTE ! Database

index_1:int = dbServer name. indexOf{"_"):
dbServer name :String = dbServer . name substring(0. |[index 1):

(=}
dbapplication: EJBUML | DBApplication
4

name <— dbSerwver nams

EJBUML from IN @ MaramaMTE:
(a)

[oEAndT ablezDatabaseApp

[TargetPart:

SourcePart:construct{ DatabaseTable, Database]
DEApplication

selectionConstraints: 1

iour description. ..

sS0CServerUBZassocApplEassoc

(b)

argetPart : AppDBAsSSOC

ourcePart:ServerDatabase

B erfaceHome
’ :ApplicationServer
argetPart:construct[EJ8Bean, EXBInterface, EJEHome
ermankic constraints translated £ & 2 EaEBon: 1
? 'sela:tilmcwlstrﬂ*s:

art: ApplcationServer

selectionConstrainks:0

ZAppServerAppAndAppSeryerHome jZEJBBeanHomelnkterface
art:RemoteObject
TargetPart: construct[AppServerApp, AppServerHome] ‘argetParticonstruct[EJ8Bean, EJ8Home, EJBInterface]
JselectionConstraints:0

refineTargetPartConstructAppHome

refineTargetPartConstructBeaninterHome I

T e

T T —

selectionConstrainks: 1

COTISATUCLL SO e var S, nppaﬁ'v't‘n'i"‘rﬁl‘ﬁ‘}l COMSATUCE EJBDean, EIBINAeT i ace, EJoHoeS]
I \ / selectionConstraints: 1 !

ssocServerObj2assocBeanAssocHomedssocInterfacedssoc

ourcePart: ServerObject
argetParticonstruct{Beandssoc, HomeAssoc, InterfaceAssoc]

Tsemantic constraints translated

Figure 10.28. Using the Crelation model to analyze and design ATL scripts

181

4) A visual presentation of the main concerned problems of transformation

The CRelation model is different from graph-based model transformation technologies such as
VIATRA. Like text-based transformation technologies (e.g. ATL, XSLT), the existing graph-based
transformation technologies are concerned with how to create the target model (a new graph) out of
the source model (an original graph). At a higher level, the CRelation model abstracts and visually
presents the main concerned issues involved in MI&T. The CRelation model explicitly defines
things that used to be implicit, such as what and how to integrate and transform; the representation of
traditionally implied but ignored transformation information; and the maintenance of the translatable
semantic constraints. The CRelation model makes it possible to automate issues such as behaviour
description generation, flexible traceability mechanism (will be discussed in Section 10.5), and

semantic inconsistency detection.

10.5 The MaramaCRelation tool supporting traceability

The MaramaCRelation tool not only supports CRelation modelling, but also generates search conditions
from a CRelation model to establish traceability between the interconnected models. Figure 10.29
illustrates the main steps in establishing traceability between instance models of the interconnected
meta-models. The users load the source (e.g. Pet Store MaramaMTE model) and target models (e.g. Pet
Store EJBUML model) (1)(2). The users choose an appropriate CRelation model that interconnects the
meta-models of the source and target models (3). Users choose the interested part of the source model to
be interconnected with the target model (4). The MaramaCrelation tool uses the search conditions (5) to
compute what target modelling elements would meet the selection constraints and become candidates
the source elements can interconnect with (6). Each source model element obtains a set of eligible
candidates. Users assign a candidate to the source element (7). The assignation continues until values
have been assigned to all the interested source model elements (8). The source model is then
interconnected with the target model (9). The interconnected parts of the source and target models are
isomorphic, and the interconnected elements meet the selection constraints defined in the used

CRelation model.

182

load load

\|/ (2} L

"
i . select select k= to be interconnected (2)
-:E::ﬂ-?un) source model %Mterconne;ed N target model
() 7 (9) ()

(8) ilnterc onnection done

oF| " .
generates use (3} |interested source
modeling elements

search assigned to
conditions (7)

6
ff'lfll?ﬂt'? —=|eligible target
modelling candidates

W

Figure 10.29. Setting up traceability between two models using the MaramaCrelation tool

10.5.1 Search conditions and search interfaces

Search conditions are the core part of the MaramaCRelation tool traceability mechanism. The goal of
search conditions is that given a certain source model element (an element or a construct), the search
conditions help to find out valid interconnection candidates in the target model. The search conditions
are a set of java classes generated from a CRelation model, which provide isomorphic functions for the
involved source and target models. The search conditions are MaramaCRelation tool-API-dependent,
but their functions can be abstracted to three API-independent search interfaces, and they are: the
StructureMapping interface, the SemanticAssociation interface, and the StructureRefinement interface:

o the StructureMapping interface
Figure 10.30 shows the main methods of the StructureMapping search interface.

183

public interface StructureMapping

public static Vector getTargetCandidate=zi({Shape[] sourceShapes,
Diagram targetModelDiagram);

priwvate =static boolean checkConstraint{Shape[] =sourceShapes.
Shape[] targetShapes):

public =s=tatic Boolean isSourcelfThelnterElement{Object sourceElement):

I

Figure 10.30. Methods of the StructureMapping search interface

Method getTargetCandidates takes two parameters sourceShapes and targetModelDiagram. The
sourceShapes parameter represents an array of selected source model shapes, which represents the
instances of the source part of this StructureMapping. The targetModelDiagram represents the target
model diagram. This method finds out a vector of target model candidates for the source model
elements (represented by the sourceShapes). The candidates must be the instances of the target part of

the StructureMapping and meet the selection constraints upon them.

Method checkConstraint encodes one selection constraint of the StructureMapping. Parameters of the
method represent the source shapes and the possible target model candidate shapes. This method
checks if the source shapes and the possible target model candidate elements meet the selection
constraint. If the target model candidate shapes make the return result to be true, they are qualified
candidates for the source elements. If a StructureMapping contains multiple selection constraints, there
should be more methods in the form of checkConstraintl, checkConstraint2, and so on. The
checkConstraint methods are called by other methods (e.g. method getTargetCandidates) to find out

qualified target model candidates for the source model elements.

Method isSourceOfThelnterElement checks if the selected source model element is or part of an

instance of the source part of the StructureMapping.

e the SemanticAssociation interface
Figure 10.31 shows the main methods of the SemanticAssociation search interface. All the methods
have similar goals to the same-named methods in the StructureMapping search interface. As the

SemanticAssociation does not contain selection constraints, so it does not contain a checkConstraint

184

method. The method getTargetType returns the abstraction type of the target meta-model element of

the SemanticAssociation.

public interface SemantichAssociation
public =static Vector getTargetCandidates(Diagram targetModelDiagram):
public =static String getTargetTypel)

public =tatic boolean isSourcelfThelnterElement (Object sourceElement.
Object sourceModel) |

Figure 10.31. Methods of the SemanticAssociation Interface

o the StructureRefinement Interface

public interface StructureRefinement

public =static Object updatelE2TgtCandidateByIEl1TgtCandidate!
Object tgtCandidateInInterEntitv_1.
Vector tgtCandidatelnInterEntity 2)

private static boolean checklInterConstraint (Shape[] sourceShapes.
Shape[] targetShapes);

public =tatic Boolean isSourcelfThelnterElement(Object sourceElement.
Object sourceModel)

Figure 10.32. Methods of the StructureRefinement Interface

Figure 10.32 shows the main methods of the StructureRefinement search interface. All the methods have
similar goals to the same-named methods in the StructureMapping search interface. The
updatelE2TgtCandidateBylE1TgtCandidate method (shortened as update method) needs more
explanations. A StructureRefinement constrains two parent StructureMappings (for example,
StructureMapping-1 and StructureMapping-2) and puts second order constraints on the target candidate
elements that have passed the search conditions brought up by the two StructureMappings. The target
candidates of StructureMapping-1 are independent from the target candidates of StructureMapping-2.
The update method is used to find out what target candidate of StructureMapping-2 is associated to what
target candidate of StructureMapping-1, and if they meet (through method checkInterConstraint) the

second order selection constraints brought by the StructureRefinement.

185

10.5.2 Sample MaramaCRelation search conditions

In a CRelation model, each StructureMapping, SemanticAssociation, and StructureRefinement generates
a java class that implements the StructureMapping, SemanticAssociation, and StructureRefinement
search interface respectively. Figure 10.33(a) shows the package of search conditions generated from the
MaramaMTE-EJBUML CRelation model (refer to Figure 9.2(b)). Each of the three StructureMappings,
two SemanticAssociations, and one StructureRefinement generates one java class that implements its
own search interface. The SelectionRefinements in a CRelation model do not generate separated java
classes but contribute to the constraints of their parent StructureMappings. The CRelation model also
generates helper classes (e.g. “InterModel” class). The generation of the helper classes is very
implementation-focused, and is not explained here. A sample getTargetCandidates method of
StructureMapping_2.java (generating from StructureMapping
AppServer2 AppServerAppAndAppServerHome in the MaramaMTE-EJBUML CRelation model) is
displayed in Figure 10.33(b); the checkConstraint0 method is shown in detail in Figure 10.33(c); and the
isSourceOfThelnterElement method is shown in detail in Figure 10.33(d).

186

freesassnsasnnnnannen

public class StructureMapping 2

{

static Vector appServerdpp appServerHome results ;
static MaramaDiagran targetModel = null;
static MaramaEntity sowrceElement = null;

public static Vector getTargetCandidates (MaramaZhape[] sourceShapes,
MaramaDiagran target)

appServerApp appServerHome results = mew Vector();
targetModel = target:
Vector candidatelhapes = MaramaInterEntity.getTargetCandidasteShapes(target,]

Fie Edit View Favort 2 B "AppServerdpp AppServerHome"):
: "» Yector involved =null;
@Eack = J l’. :or(int i=0; i<candidateShapes,size(): i++)
i Vector eachTarget = (Vector)candidateShapes.get{i):
Address ||r ! -amad
ress | E:Mar involved = new Vector():
N"’"'B 5 for (int j=0; j<eachTarget.size(): j++)
£ SemanticAssociation_1 {
SermanticAssociation_2 involved. add(eachTarget.get(3))
StructureMapping_1 }

MaramaShape[] targetShapes = new MaramaShape[involved.size(]]:

StructureMapping_2
X' structureMapping 3 for (int j=0; j<involved.size(): J++)
E StructureRefinement_1 targetShapes[j] =({MaramaShape) (involwed.gec{j});

if(checkConstraint?®(sourceShapes,targetihapes))

L

{
< ' @ appServerlpp appServerHome results.add(eachTarget);
}

i
return eppServerdpp appServerHome results: (b]

H

private static bhoolean checkConstraintl({MaramaShape[] sourceElements, MaramaShape[] targetElements)
{

HaramafiodeiFroject appiervecHome model = targetElements{i].getlodelEntity|).getHodelfrojecti) ;
MaramaEntity appServerHone entity = targetElements[0].gecModelEncicy():

HaramalModelFroject appierverdpp model = targetElements[l].getModelEnticy().getModelProjecti]);
HaramaEntity appServerdpp entity = targetElements[l].getModelEntity():

String AppServerHome name =((String)new EvaluateConstraints("attributes.properties-—>" +
g select (name='name')->first().value.oclAsType(String)”).
evaluateForuula (appierverHome model,appierverHone encity]);
String AppServerApp name = ((String)new EvaluateConstraints("attributes.properties->" +
"select (name="name') ->first().wvalue,oclisType (String) ™).
evaluateFormula(appierverApp model,appServerdpp entity));

return (AppServerHome_ name.equals (AppServerApp name)):

(©)

public static Boolean issource(flhelnterElement (0bject sourceElement,Ubject sourcelodel
i
if (sourceElement instanceof MaramaFEntity)
{
String wodelType = (String) ((MaramaEntity)sourceElement).getModelType();
if(modelType.equals ("ApplicationServer™))
return true;
}
else if(sourceElement instanceof String)
{
String wodelType = {(3tring)sourceElement).todtring():
if (modelType.equals ("ApplicationServer™)]
return true;
)
return false;
, (@)

Figure 10.33. Sample search conditions

187

10.5.3 The algorithm of the interconnecting process

When interconnecting two models (e.g. Pet Store MaramaMTE architecture model and Pet Store EJB-
UML design model) and establishing the traceability between them, a CRelation model is, in fact, the
isomorphism between the two models; and StructureMappings, StructureRefinements, and

SemanticAssociations define the functions of the isomorphism.

The algorithm of the interconnecting process is illustrated in Figure 10.34. For each source model
element, the MaramaCRelation tool retrieves and lists all the valid target model candidates that meet the
conditions defined by the involved StructureMappings and StructureRefinements (lines between 1 and

16, in Figure 10.34).

fori{each =ource model slement)
if{the element involves in a StructureHapping)

find out all target model candidates;
remcove the target model candidatesz that does not
nest the selection constraints of
the involved StructureMapping:

if(the target model candidates involwves in a StructureRef inement)
remnove the target model candidates that does not

mneet the selection constraints of
the involved StructureRefinement

F

for{each =zource model element)

as=ilgning a target model candidate to the source model element
update the candidate list=s for the vet—to-be—assigned
zource model elements;

Figure 10.34. The algorithm of the interconnecting process

Users start to interconnect the two models by assigning a target model candidate to a source model
element. As the assigning process going, the candidate lists of the yet-to-be-interconnected source model
elements need to be updated (line 21, Figure 10.34). Each updated candidate list of a source model
element must make sure that for each candidate element (e.g. list A_element_d) in the list, there must be
at least one candidate element in the candidate list of each other yet-to-be-interconnected source model
elements (e.g. list B element w, list C element d, list D element c......), that list A element d,

list B _element w, list C element d, list D _element c , and the already interconnected target

188

model elements become isomorphic to the corresponding source model part (lines between 18 and 23 in
Figure 10.34). Once all the source model elements have been assigned values, the interconnection is

done; and the traceability between the two models is established.

10.5.4 Interconnecting source and target models

Figure 10.35 illustrates how users interconnect two self-evolved domain-specific models (the Pet Store
MaramaMTE model and the Pet Store EJBUML model) in the MaramaCRelation tool. A popup menu
item opens up the wizard for users to prepare the model interconnection (1). Users need to choose the
source and target models in a wizard page (2), and import the CRelation model that interconnects
MaramaMTE meta-model and EJBUML meta-model(3). The imported CRelation model represents the

path to the search conditions.

& ATL - petStore_UML2/diagrami.maramabDiagram - Eclipse SDK

File Edit Mawigate Search Project Run Compatibility Window Help

wifhs - 0-Q L Gk 5[4 an | AT =
it LR %’Java = |L‘@

Choose Source and Target Model

[diagrami . maramabi... & 7 =B
Choose Source and Target Model
e [} Select
= eml_traveler » EL Mar...
1= karen [y Sket... source madel
kool
>
-1 Maramadrch . * = =AppServerHome:s > = <DEApplicatic 2
= MaramaBPMN L= sh..., Petstare
PetStore | target model 2
1= MaramaEML I 5Class
= MaramaMTE e, » petStore_UMLEz %
= myTry
= PageFlow b et
= =
[» Elnterface>> <<EJBHome=> @ [wext> [_Fnsh][cancal
= erfManager AccountManager
= um -
= capy
; \L
Frobl... | = Prope.. & Delete
|7 App | |<<AppServerHUme>>
ing [Storedccounting
Property . .
£y Impart. . Import Crelation project
&4 Expart... Import Crelations From a Crelation Project (3)
&) Refresh
(_ Close Project | Z Marama Crelation Project
- ey Close Unrelated Projects , MTE_UML_crelation \
e Nl N
Debug As L3 =
s [))] < Back " Mext > 1 [Finish] [Cancel]
Team » (1)
Compare With 4
PDE Tools 4
i} CreLations

Figure 10.35. Selecting a CRelation model to interconnect Pet Store MaramaMTE model and Pet
Store EJBUML model

Once the CRelation model is imported, users start to interconnect the two models. In Figure 10.36, users

are interested in interconnecting part of the Pet Store MaramaMTE model (a) with the Pet Store

189

EJBUML model (b). Each involved source model element has a set of interconnection candidates from
the target model (c). Users need to assign a target model element or construct from the candidate list to
the source model element. Once values have been assigned to all the interested source model elements,

the interconnection process is finished.

ATL - petStore_MTE2/diagram{ maramaDiagram - Eclipse SDK HNEE

i wil - 0-Q- Y -l e e B |8 an | Ean
a’ Java
. Mavigator 57 = O || [diagrami.maramaliagram 52 =0
P =] <LT> = % 5. % Perstorelser - . . ”~
I=F MaramaEML -~ Ewm getCatalog :“:
= MaramaMTE [§ 5---I L
tool —
PageFl
= PageFlow e (CustomerManager PetStore_AccountTable
& petStore_MTE2 .. (a) sendCatalog -
1= petStore_UMLZ ., ¥ b
#
&1 TravelPlanner_BPMN [*diagram1.maramabiagram &3 =g
= TravelPlanner_EML
-~
1= TravelPlanner_MTE % Select < <AppServer AppE ;;EQFDFEEWEVHUWE>> PSS d
= TravelPlanner_PageFlow 3 Mar... PetStore PetStare
= umL w | [Sket... :
— toal <<EJBHome ==
= s = CustometManager <<EJBInterface=>
i
Proper.. | x [5h.., # ; AccountiManager
- B 5Class < <EJBEean= > < <EJBBean> 3
Source Element: Application... | Tart CustormetManager AccountiManager
PekStore_AppServer <<f || EZE. # i
= AppServerApp = =PetSkor AppServerHom are M ==
(C [« <AppServerdpp= =Storefccounting, < <AppServerHome = »Storefccounting] Snager
& |)| N
- - < <hppServerdpp = < <AppServerHome = < <DEApplication ==
Instantiate Modsl Integration] (b) IStoreAccounting StoreAccounting Storedccounting 2
=

Figure 10.36. Assigning target model element or construct to the source model element

PetStore MaramaMTE Model PetStore EJBUML Model
PetStore AppServer <<AppServerApp>>PetStore,<<AppServerHome>> PetStore
CustomerManager <<EJBHome>>CustomerManager,<<EJBBean>>

CustomerManager,<<EJBInterface>> CustomerManager

PetStore_DBServer,PetStore DBTable | <<DBApplication>>PetStore

Table 10.1. Interconnected elements between the Pet Store MaramaMTE model and the Pet Store
EJBUML model

Table 10.1 shows the results of the model interconnection. The interconnected elements meet all the

constraints defined in the chosen CRelation model. Each pair of interconnected source and target model

190

elements is the instance of the source and target parts of a StructureMapping, and meets all the selection
constraints of the StructureMapping.

10.6 Design and Implementation

10.6.1 Building the MaramaCRelation tool from the Marama meta-tool

| StructureRefinement

| StructureRefinedssoc id String key
id String nonkey | entityMapping String key

selectionConstraints String nonkey

| StructureMapping | SemanticAssodiation
3 7 id Stri
ol String key: StructuredssocAssoc i i id
entityMapping String key ——| idstringnenkey —— associationMapping String nonkey lentityMapping
selectionConstraints String nonkey icTranslation String nonkey selectionConstraints
behaviour description String nonkey behaviourDescription
-) SelectionRefinement L
E [[StructureSelectionas. . id String key a
(a) | idString nonkey | construct String nonkey entityMapping g e
selectionConstrainks Stringnonkey || - [selectionConstraints 1) |eelectionConstraints

~=--....| 5SelectionRefinement_SelectionRefine. .. . |5StructureRefinement_StructureRefinem. ..
d:id id:id

~=-ojeonstruck: construct .-odEntityapping:entityMapping
_ selectionConstraints:selectionConstraints SelectionConstraints: selectionConstraints
_ | T |
e L A

S5tructureMapping_StructureMapping

] SSemanticficcaciation Semantichecad,,,
o I -5
entutyMaDpong:erl\tltMamlng . associationMapping:associationMapping
---e=r-selectionConstraints:selectionConstraints —-Jlsemantic Translation: semantic Translation
T i
semanvcassocaton] ©
" N
e rotrraros]
s SStruckureRe. .,
SdS;;uctueSel... ¥ kutmwm[_______ _[Fetructuredss...

fsStructureselectionfssoc_con] EEM"F"‘M-“‘I i = A

Figure 10.37. Building the MaramaCRelation tool by using the Marama meta-tool

The MaramaCRelation tool is not implemented from the scratch, but built by using the Marama Meta-
tool. Users design entities and associations of the MaramaCRelation tool in the fool definer of the
Marama meta-tool (Figure 10.37(a)). The MaramaCRelation tool provides the CRelation modeller with
four entities: StructureMapping, SelectionRefinement, StructureRefinement, and SemanticAssociation;
and three associations: StructureRefineAssoc, and StructureSelectionAssoc, and StructureAssocAssoc.
Users define a visual representation (shape) for each modelling entity and association in the shape

designer of the Marama meta-tool (Figure 10.37(b)). Finally, users match each model element (defined

191

in the “tool definer”) to a visual representation (defined in the view type definer) (Figure 10.37(c)), and

the basic modeller is built up. The tool developers develop the backend functions to complete the tool.

10.6.2 Generating search conditions

CEelation

model

{1} retrieves info

Eclipse JET transformation - (2)uses— MararnaCEelation Tool () PELEN tool-dependent

scripts Code Generator helper classes
| |—(5) uzes
(3based on (G)generates
— (&)depend on———.,
Eclipse OCL
seatch interfaces "’#If?)implement_i search conditions I—(Q)depend on—3 of EMFE ATL
or EWF VIATE A

Figure 10.38. The process of generating search conditions

Figure 10.38 illustrates the process of search condition generation in the MaramaCRelation tool. The
MaramaCRelation Tool Code Generator is the core part. It retrieves modelling information from a
CRelation model (1); and uses a set of pre-built Eclipse JET transformation scripts (2), the Eclipse OCL
package (4), and tool-dependent helper classes (5) to generate search conditions (6). The Eclipse JET
transformation scripts are based on pre-designed search interfaces (3), and help to generate the concrete
java implementation of the search interfaces. The search conditions depend on tool-dependent helper

classes (8) and Eclipse OCL (9).

10.7 Summary

The MaramaCRelation tool provides highly automated and effective support for the CRelation
modelling. When establishing a StructureMapping, the tool calculates available constructs of the source
and target meta-models; visualizes the coordination between the StructureMapping and the source and

target meta-models; and automatically generates the high-level synchronization behaviour description.

192

When setting up a SemanticAssociation, the tool calculates paths between the source and target parts of
the associated StructureMappings. The tool also automatically finds out the translatable semantic
constraints and translates them into sensible target model semantic constraints. The tool generates java-

based search conditions to establish traceability between two self-evolved models.

The MaramaCRelation tool is built by using Marama meta-tool. The MaramaCRelation tool compiles
selection constraints and generates java-based search conditions. Based on the search conditions, the
MaramaCRelation tool exercises pattern search to find out valid interconnection candidates in the target
model. With the assigning of a target model candidate to the corresponding source model element, the
MaramaCRelation tool can validate the candidate lists for the yet-to-be-interconnected source model

elements. The interconnected source and target models maintain traceability.

193

Chapter 11 - Case Study - Using the CRelation Model

This chapter uses two case studies: online Pet Store web application and online Travel Planner to
demonstrate how the various domains-specific models can be interconnected by the CRelation model. In
this chapter, the Pet Store project will be modelled in MaramaMTE and FormChart; and the two models
will be interconnected through a CRelation model. The Travel Planner project will be modelled in
MaramaEML (Li et al, 2007), BPMN (BPMN, 2004), MaramaMTE, and Form Chart; and three
CRelation models will be used to interconnect the four domain-specific models. For each case study, the
interconnected domain-specific models construct a multi-view environment with the maintained

traceability, view synchronization, and behaviour synchronization across the interconnected models.

11.1 Case study 1: Interconnecting the Pet Store MaramaMTE model with the Pet
Store EJBUML model

The Pet Store case has been used as a running example through chapters 8, 9, and 10. Those chapters
introduce the features of the MaramaCRelation approach through interconnecting the Pet Store
MaramaMTE and EJBUML models. Here, the Pet Store example is used as a case study to review the

features and strength of the MaramaCRelation approach.

11.1.1 The MaramaMTE-EJBUML CRelation model and its entities

Figure 11.1 is the MaramaMTE-EJBUML CRelation model that captures the shared semantics between
the MaramaMTE meta-model (refer to section 8.4) and the EJBUML meta-model (refer to section 8.4).
The CRelation model uses StructureMappings, SelectionRefinements, and StructureRefinements to
categorize the selection constraints. The constraints of a CRelation model entity can only use the

information of the meta-model elements involved in the model entity.

194

DBAndTablezDatabasedpp
SourcePart:construct[DatabaseTable, Database]
|TargetPart: DBApplication

JselectionConstraints: 1

|behaviour description. ..

()

ssocServerDE2assocAppDBAssoc

ourcePart:ServerDatabase WW&:&W

argetPart: AppDBAssoC rApplicationServer

emantic constraints translated ;:;m O’E’hw""w’-ﬂsbml 1, EJBInterface, EJ6Home]

APpServerzhpperver AppAndAppServerioms [RemoteObj2E BBeanHomelnterface
SourcePart: ApplicationServer [SourcePart:RemoteObjeck
TargetPart:construct[AppServerdpp, AppServerHome] IiafgetParl:l:uﬂJ’lx):[EJBﬁem, EJBHome, EJBInterface]
onstrainks: 0 |selectionConstraints:0
description. .. |behaviour description. ..
refineTargetPartConstructAppHome refineTargetParkConstructBeanInterHome |
T P e | o b s bl DO mm E WO Tmbah asn £ Wdannn]
construct[AppServerfpp, AppServerHome] construct{EJ8Bean, EXInterface, EXeHome]
selectionConstrainks: \ / selectionConstrainks: 1

Esso:ServerOijassocEeaMssotHomeAssoclrkerfeceAssot

urcePart:ServerObject
argetPart:construct[Beandssoc,HomeAssoc, InterfaceAssoc)

leemantic constraints translated

Source Mata-Madal Target Mata-Maodal
ApplicationServer - = Entities
Database i AppServeripp
DatabaseTable AppServerHome
ApplicationClient EJBEean

Construcks EJEHome (b)
Request-ApplicationClient EJBInterface
Request-ApplicationClient-applicationServer CEApplication
Request-applicationClient-ApplicationServer-Database (= Constructs
Request-applicationClient-applicationServer-Database-DatabaseTat AppServerdpp-AppServerHome
Request-ApplicationClient-ApplicationServer-RemoteObject AppServerapp-AppServerHome-DBApplication
Request-applicationClient-applicationServer-RemoteObject-Service AppServerdpp-AppServerHome-EJBBean
Service-RemoteObject AppServerApp-AppServerHome-EJBHome
Service-RemoteObject-ApplicationServer AppServerdpp-App3erverHome-EJBInkerface
Service-RemoteObject-ApplicationServer-Database AppServerHome-DEApplication
Service-Remotedbject-Applicationerver-Dakabase-DatabaseTable AppServerHome-EJBBean
Service-RemoteObject-ApplicationServer-ApplicationChent AppServerHome-EJEHome
RemaoteObject-ApplicationServer AppServerHome-EJBInterface
RemoteCbiect-ApplicationServer-Database EJEBean-AppServerHome-DEApplication
RemoteObiect-ApplicationServer-Database-DatabaseTable EJBEBean-AppServerHome-EJBHome
RemoteObiect-ApplicationServer-ApplicationChient EJBBean-AppServerHome-EJBInterface
ApplicationServer-Database EJBHame-AppServerHome-DBApplication
#annlic. EJEH 13
EJBInterface-tppServerHome-DBapphcation

Database-DatabaseTable
Database-ApplicationServer-ApphcationChent
DatabaseTable-Database- ApplicationServer-ApplicationChent e

& | %

Source Elements | construct[DatabaseTable, Database] | Target Elements i_DBnppIicatian

name | Bourcepart construct[DatabaseTable, Database] TargetPart:DEApplication |

| o || Cancel |

Figure 11.1. (a) the MaramaMTE-EJBUML CRelation model; (b) the sample entityMapping
property sheet of StructureMapping DBandTable2DatabaseApp

195

In Figure 11.1(a), each of the three StructureMappings (grey rectangles) means that under certain
selection constraints the source and target parts of the StructureMapping represent the similar semantics
with the different representations in the source and target models. Interconnection Relationships can be
established between the eligible source and target meta-model elements and instance model elements.
The traceability can be established and maintained across the interconnected instance models. In Figure
11.1(b), available meta-model entities and sensible constructs are calculated automatically and listed in
the entityMapping property sheet of a StructureMapping, so users can choose a pair of semantically

similar source and target meta-model elements to set up the property value.

A SelectionRefinement (cyan rectangles in Figure 11.1(a)) specifies selection constraints on a construct.
For example, SelectionRefinement “refineTargetPartConstructAppHome” in Figure 11.2(a) specifies
constraints on the construct{AppServerApp, AppServerHome] of the parent StructureMapping
“AppServer2 AppServerAppAndAppServerHome” (refer to Figure 11.1(a)). More specifically, this
constraint requires that the “name” value of an AppServerApp and the “name” value of an
AppServerHome must meet the constraint defined in Figure 11.2(b) before the Interconnection

Relationship specified by its parent StructureMapping can be established.

M Property value

Yalue of property:

Conskraink

{
String AppaerverHome_narme = 3tring i@oCL{context: AppServerHome self . name)); e,

String AppServerdpp_name = ((String@OCL{conkext: AppServerApp self.name));
return (AppServerHome_name.equals{appIerverdpp_namel); —

EE
(b) =
sk

5

CHil

>

| refineTargetPartConskruckAppHome refineTa
construct[AppServerApp, AppServerHome] (ﬂ) conskruc
selectionConstrainks: 1 selectior

| —

Figure 11.2. The selectionConstraints property sheet of SelectionRefinement

refineTargetPartConstructAppHome

196

A StructureRefinement (green rectangles in Figure 11.1(a)) allows users to specify second order
selection constraints on its two parent StructureMappings. It puts extra selection constraints between
source part of one parent StructureMapping and the target part of the other parent StructureMapping. For
example, in Figure 11.3(a), the StructureRefinement refineAppServer2EJBBeanInterfaceHome specifies
the second order selection constraints between the source meta-model element ApplicationServer and
the target meta-model elements construct{EJBBean, EJBHome, EJBInterface]. In Figure 11.3(b), this
selection constraint finds out the RemoteObjects associated with the ApplicationServer (via navigation
to the association end of ServerObject, refer to the MaramaMTE meta-model in Figure 9.1(a)), and
requires that the ApplicationServer is associated with the RemoteObject that is mapped to the target
model construct containing the EJBHome and has the same name value of the EJBHome, before the

Interconnection Relationships specified by the two parent StructureMappings can be established.

BppDBAssoC :
| T— | refinedppaerver 2EJBGeanInkerfaceHome
c SourcePart: ApplicationSerer (ﬂ)
Tameated TargetPart:construct[EJEEean, EJBInterface, EJBHome]
d___f,.f' selectionConstraints: 1

B Property value @

Value of property:

Constraint A
; '3
String EJBHome_Mame = ((5tring) @0 CL{context:EJBHome self.name));

Boolean object = ((Boolean)@0OCL{context: ApplicationServer self remoteObject

-=select(elem | elem.narme=EJBHome_Mame)- = notEmpty]);
return chject.booleanValue(); n

[£

Figure 11.3. The selectionConstraints property sheet of StructureRefinement

refineAppServer2EJBBeanlInterfaceHome

A StructureMapping may trigger events that will influence the established Interconnection Relationship.

The typical events include the change of property value and the removal of the interconnected elements.

197

The MaramaCRelation tool retrieves possible events and lists them in the property sheet of
behaviourDescription. Figure 11.4 shows a sample StructureMapping (a), its selection constraint (b),
and part of the events triggered by the StructureMapping (c). The structure of a behaviourDescription

and how to generate a behaviourDescription have been explained in chapters 9 and 10 respectively

M Property value @
‘talue of properky:
Constraint A
int indesx_1 = ({String) @0CL{context:Database self .name)).index R ")
String database_name =((5tring) @OCL{context:Database self.name)) substring(0,index_1);
String databaseApp _name = {(String) @OCL{context:DBApplication self .name]);
return (database_name .equals{databasefpp_name)); R
} (b)
b
iEArIiT ableZDatabaseApp
Part:construct[DatabasaTable, Database]
| | TargetPart: DBAppiication L]
w lﬂj selectionConstraints:1 (ﬂ\‘
Compile ur description. . |
=7uml version="1 F encoding="1>0-85859-1" 7=
=EvertDescription=
=SourcedodelEvent=
«Eventss
=Event id="1">

<EventTypeschanged < EvertTypes

=EventCriginators= Database name </EventOriginators=
<EverdOriginators_params> dalabase_name <EventOriginators_params>
«EventConsumers_inSourcemModel=null<EventConsumers_inSourceModel=
<EverdConsumers_inSourceiode|_params=null</EventConswumers_inSourcedodel_pa
«EverdConsumers_inTargetModel=DBA pplication name<EventConsumers _inTargetMoc

<EventConsumers_inTargetModel_params=dbApplication_name-=/EventConsumers_inT
dintendedResull=

{
int index_1 = ((String)database_name) indexO”_");
String database_name =({String)database_name) substring(0 index_17;
String dbApplication_names ((String)dalabase_name’);
retumn dbApplication_name;
H
<intendedResull=
=Event>
=Event id="2"=
<EventTypes removed =fSourceEventTypes=
<EventOriginators= Database<EventOrignators>

=EverdConsumers_inSourceMode=DatabazeTable<EvertConsumer s _inSourcehodel-

=EventConsumers_inTargetModel> DB Application rfvmconwmers__m arcethiodels
<interedResult=

{interconnectionRelstionship removed(), }

=fintendedResull=
=Event> ()
<Event id="3"=

<EverdTypes removed <EvertTypes

-%Evarlﬁrlg'tatmk DatabaseTahle«:Eva‘lOrlmatursr

ST e B

T e b s

Figure 11.4. The behaviourDescription property sheet of StructureMapping
DBAndTable2DatabaseApp

198

erverZAppServerAppandappServerHome |RemoteObjZEJBBeanHomeInterface

SourcePart; ApplicationServer ourcePart:RemoteObject

TarqetPart constructl AnnSeryardnn, AnnServerHome] TargetPart:construct[EIBBean, EIBHome, EIRInterface]
[selectionConstraints:0 lectionConstraints:0

[behaviour descriptian. .. |behaviour description. ..

as ncServerOijassochmﬂsmHmest:lntsrfacshssuc
£ 5ourcePart:ServerObject

argetPart:mn;tru:t[BeaMsso:,Homekssu:,lnterfa:eﬁssnt] (ﬂ}
lsemanttic constraints translated
———
Bl Select Related Elements @
Source Meta Model Target Meta Model
= Available Paths =] - silable Paths
ServerObject construct[Beandssoc, Interfacedssoc, Homedssoc)
construck[Beandssoc)
construck[Interfacefssoc) th)
construct HomeAssac]
Source Elements ServerObject Target Elements [cnnstruct[ﬁeajmssuc, 'Iri;erlface.llssoc, Hnrruenssuc]|
name Sawcepa}t-:ﬁévarébjé& Ta’gétﬁarfrwnsimcftﬂeanlissoc,.'Ihtérfacén.ssuc, Fhmenssofj |
I Ok | [Cancel]
B Translate Semantic Constraints @
Source Contracts Target Conkracts
= context R.ﬁl'mu]}etl‘ self . ServerObject- =size()=1 (=0 context:EJBInterfac F-jF'"' Interfacefssoc-=si

[Context:EJBBean self Beandssoc- >size{)=1
Context:EJBHome self, HomeAssoc- =size()=1
& Context:EBInterface self, Interfacedssoc- =size{)=1

< | |

l Cancel | ’Transforml

Figure 11.5. The associationMapping and semantic Transformation property sheets of

SemanticAssociation assocServerObj2assocBeanAssocHomeAssocInterfaceAssoc

A SemanticAssociation represents what source and target meta-model associations can be maintained
during interconnecting. In Figure 11.5(a), when the two StructureMappings are established, it is implied
that there are source and target meta-model associations involved, and their mapping should be detected
and explicitly represented. Figure 11.5(a) illustrates a sample SemanticAssociation associating two

StructureMappings. Figure 11.5(b) illustrates that the available source and target meta-model paths are

199

automatically calculated and listed to allow users to set up the value of associationMapping. The source
part is ServerObject — a path between the source parts of the two associated StructureMappings in the
source meta-model. The target part is construct [BeanAssoc, InterfaceAssoc, HomeAssoc] — a path

between the target parts of the two associated StructureMappings in the target meta-model.

Figure 11.5(c) illustrates that a source meta-model translatable semantic constraints is retrieved,
translated, and listed in the property sheet of the semanticTranslation of the SemanticAssociation. The
source meta-model semantic constraint in Figure 11.5(c) is sensible as if an ApplicationServer is
removed its RemoteObjects must be deleted or re-hosted as well. This semantic constraint is translated
into sensible EJBUML meta-model semantic constraints, which specify that each of EJBBean,
EJBHome, and EJBInterface needs to be hosted by one AppServerApp, i.e. when the hosting
AppServerApp server is removed the EJBBean, EJBHome, and EJBInterface must be deleted or re-
hosted as well. Similarly, a target meta-model translatable semantic constraint (tree root, right column)
can be translated into a sensible source meta-model semantic constraint (the child of the root, right

column).

11.1.2 Generating search conditions and behavior synchronization coordinator

The MaramaMTE-EJBUML CRelation model not only records the rational behind the interconnection
of the MaramaMTE and EJBUM meta-models, but also generates search conditions to establish
traceability and synchronize views and behaviors across architecture models and EJBUML design

models.

Each StructureMapping, StructureRefinement, and SemanticAssociation of a CRelation model generates
one java class. The generated java classes are search conditions, which help to find out qualified target
elements for each interested source model element by using the selection constraints specified in the
CRelation model. Figure 11.6(a) shows the package of java files generated from the MaramaMTE-
EJBUML CRelation model, including three StructureMapping classes, and two SemanticAssociation
classes, and one StructureRefinement class. Figure 11.6(b) shows part of the java file (generated from
the StructureMapping DBAndTable2DBApplication (refer to Figure 11.4(a)). The java file implements
methods getTargetCandidates, getTargetType, isSourceModelElements (refer to section 10.5.1), and so

on. Figure 11.6(c) illustrates the implementation of a sample selection constraint of the

200

StructureMapping. When generating the java files, the OCL queries are translated into tool-API-
dependent (Marama meta-tool) code with the help of the Eclipse OCL framework.

public class StructureMapping 1
{

static Vector DBApplication results:
static MaramaDiagram targetModel = null;
static MaramaEntity sowrceElement = null;

public static Vector getTargetCandidates(MaramaShape[] sourceShapes,
HaramaDiagram target)
{ DBApplication_results =
targetModel = target;
Vector candidateShapes = MaramaInterEntity. getTargetCandidateShapes(target,

s
o NEhemlicationTy s
DEAipplication™):

new Vector():

Vector involved =null:;
for (int i=0; i<candidateShapes.size():; i++)

i

@Back' >

Address ,__] E:\Mar "'| &
Name =
BehaviourMTE_UML Java

Vector eachTarget = (Vector)candidateShapes.getii):
involved = new Vector();
for (int j=0; j<eachTarget.size(): J++)
{
involved, add (eachTarget, get{j));:

StructureMapping_3.java
SemanticAssociation_1,java
SemanticAssociation_2. java

}
HaramaShape[] targetShapes = new HaramaShape[involved.size()]:
for (int j=0; j<involved.size(); j++)

Eﬁl:ﬂ.xb.lr&ﬁeﬁnment_l Java
E‘S!:tuclwal‘ﬂaﬂping_l.java
E‘Stfuttweﬁapping 2.java if (checkConstraint (| sourceShapes,targetShapes))
EL interModel java (a) {

< | >

targetShapes[i] =(MaramaShape) (involved.get(j)):

DBApplication results.add(eachTarget):

}
) (D)

return DBApplication results:

}

private static boolean checkConstraint(MaramaShape[] =ourceElements, Maramafhape[] targetElements)

{

MaramalModelProject Database_model =
MaramaEntity Database entity =

sourceElements[0]. getModelEntity () . getModelProject()
sourceElements[0]. getModelEntity() ;

HaramaModelProject DEApplication model = targetElements[0].getModelEnticy().getModelProject():

MaramaEntity DEApplication _entity = targetElements[0].getModelEntity():

int index_ = ((Jtring) new EvaluateConstraints("attributes.properties->" +
“seiect{name=‘name’ j->firscij.vaiue.ociiasType(String)™).
evaluateFormula(Databage model,Database_encity)) .index0£("_"):

String database nawe =((5tring) new EvaluateConstraints("attributes.properties->" +
"selectinames'name’)->firsc().value.ocldsType (Sceing)"™).
evaluateFornmula(Database model ,Database_entity)).substring(0,index_);

String databasehpp_name = ((3tting) new EvaluateConstraints{“attributes.properties-»>" +
"select (name="'name’'}=>first().value.ocliasType (String)").
evaluateFormula (DBApplication_model DBApplication_entity)):

return (database_name.equalsidatabasedpp name));

-
=
—

Figure 11.6. Java search conditions generated from the MaramaMTE-EJBUML CRelation model

201

Building full-blown behaviour synchronization mechanisms is not intended in the MaramaCRelation
approach. The well-structured behaviour descriptions of the CRelation model are planned to feed third
party technologies (e.g. event modelling technologies such as Kaitiaki (Liu et al, 2007)). However, the
MaramaCRelation tool still provides a simple java behavior synchronizer to showcase the use of the
behaviour description information. The java synchronizer is a java class generated from the CRelation
model. It helps to maintain behavior synchronization across models by passing around simple
synchronization messages. Figure 11.7 shows part of the generated BehaviorMTE UML.java. This
synchronizer processes the events triggered by the three StructureMappings of the MaramaMTE-
EJBUML CRelation model (refer to Figure 11.1(a)). For example, lines 7, 9, and 11 process three events
recorded in the behaviorDescription of Figure 11.4(c). The synchronizer generates messages based on
the intended results of the behaviorDescription; and passes the synchronization messages to the target

model.

public class BehawviourMTE ML inplements Adapter
1

public woid notifvChangediHotification notification)

processEvent 1 StructureMapping linotification):
prrocessEvent 2 StructuredMapping linotification):
processEvent 3 StructureMapping linotification):
rrocessEvent 1 StructureMapping 2inotification):

proceszsEvent_1_StructureMapping 3 (notification):

Figure 11.7. The synchronizer generated from the MaramaMTE-EJBUML CRelation model

11.1.3 Interconnecting process

Figure 11.8 and Figure 11.9 show how to interconnect the Pet Store MaramaMTE model with the Pet
Store EJBUML model. Figure 11.8 shows how to assign a target model candidate to a source model
element. Two constructs of target model elements (2) are qualified candidates for the source model
element CustomerManager (1). Users can assign a target model candidate to the source model element.

The assignation must be done on other interested source model elements. Once the interconnecting

202

process (refer to section 10.5) is completed, the traceability and behaviour synchronisation between the
two models are established. If the change of property values or the removal of model elements happens
to the source model, the interconnected target model element(s) will receive suggestive messages to take

actions to maintain the validity of the Interconnection Relationships.

£ ATL - petStore_UML2/diagram1.maramaDiagram - Eclipse SDK N =13
P ag ag P =]y
File Edit Mavigate Search Project Run Window Help
N IR > R N o TS E | m an | B an
¥ i LEILC RN &1 Java
BT Mavigator £3 = O || 3 diagram1.maramabiagram &2 = O
o R Y O d:p = [}3 Select
#-1=% Crelation 3 Mar...
1= Maramadrch L‘\) Sket...
1= MaramaBPMM toal
1= MaramaEML [==5h... #| | |PetStorellser
1= MaramaMTE M clien... | |lgetCatalog
1= PageFlow B chie. ..
1= petstare_MTEZ =
1= petStare_UMLZ [=C.. * iCustamerManager |Pet5tnre_AccountTable |
1= TravelPlanner_BPMN § Clien.., (1) sendCatalog
1= TravelPlanner_EML 1 gerv... =
= TravelPlanner_MTE 3 - +
1= TravelPlanner_PageFlow I diagram1 maramabiagrarn 52 =8
15 ML
[,,.\5 Select
Fropert, ., = g || & Mar...
[% Sket...
kool
Source Elerment:... | Target Element: ADDS H
< < AppIerverApp s < SAPpIEryerHome > =
CustornerManager <<EJBEean. v [=5h... # | & PetStore <=<DBA

(]
< <EJBEEan = storneriananer, < <EJRInkerface ustarnerianager, = <F JBHame = =Custormerianader] RESEOY

C,.. *
(2) = = «EJEHome == <<Ell
} asso.. ustomerManager accod
< <EJBEean=> < <EJBEean =
CustamerManager coountManager
= <FIRInterface = = <EJEHome ==
CustomerManager AccountManager
¢ | 2 <:<App5&rver_.°.pp:b> < <AppIerverHome = <
b) toreAccounting toredccounting I
Instantiate Model Integration
< | >
=4
u

Figure 11.8. Interconnecting the Pet Store MaramaMTE model with the Pet Store EJBUML

model

203

In Figure 11.9, the removal of the CustomerManager in the source model (disappeared from (1)) will
definitely influence the validity of its Interconnection Relationship with its correspondent target model
elements. When the CustomerManager is removed, the interconnected target model elements receive
synchronization message “<<EJBBean>> CustomerManager, <<EJBHome>> CustomerManager,
<<EJBInterface>> CustomerManager’s Intercon relationship should be removed” (2). So far, the

MaramaCRelation approach has shown the potential in providing structured support for maintaining

behaviour synchronization across different domain-specific models, which will be explored in the future.

wl B0 Q- i F i@ il oo =R =R
aJ Java
TS Mavigator B2 = O || 3 *diagram1.maramabiagram &3 =0
2 BS (ks & ~
1=F Crelation ~ om. e
& MaramaBPHN tool EtCatalo
1= MaramaEML = *
S MaramaMTE W — (1) |PetStu:-re_P.-:countTal:-le —
T=F PageFlow hd v
B = petStore_MTEZ =, A2 £
e ||| B diagram1 .maramabiagram &2 =8
project
= wiewTypes [:S Select 4
|Z diagram!1.maramabiagram 3 Mar.. < <AppServerAppz ;:eigﬂnrgerverHome:s} -
PetStore
= 1=F petStore_IUMLZ Sket. ..
= model tool
= ; v
1 orofect | = Eillil < <EJEHome ==
Properties m = 0 || B 5Class CustamerManagat
=C.. =&
Synchronization msgs: < <EJBBzanz = = <EJE
= } asso.. CustomerManager Accoun
< <EJBBean >CustomerManager, < <EJBInterface > >CustomerManaaer, < <EJBHome = >CustomerManaager|'s Intercon relationship should be removed]
2 <<EJBINLErrace == SACJDnaiieg 225
2) CustomerManager | AccountManager |
(3)
I<€AppServer-ﬂpp>>| : I<<npp5erv.—
Storef i -
[Instantiate Model Inkeqration a are Cco"i” ing StDFE-“-CCD;IF_
=4

Figure 11.9. Using java synchronizer to synchronize model behaviours

204

11.1.4 Brief Summary

The interconnection of the Pet Store MaramaMTE model and Pet Store EJBUML design model has been
used as example usage to introduce the CRelation model and the MaramaCRelation tool in chapters 8§, 9,
and 10. Here, this case study reviews the main features of the CRelation model and the
MaramaCRelation tool. It demonstrates how the StructureMappings capture the main concerns of an
intended interconnection, and how the SemanticAssociations explicitly represent the association
information that is often implied but ignored in the traditional model transformation technologies. The
case study shows how the MaramaMTE-EJBUML CRelation model can generate search conditions and
synchronizer to maintain the traceability and behaviour synchronization across the interconnected

models.

11.2 Case study 2: Interconnecting the Travel Planner EML model, the Travel
Planner BPMN model, the Travel MaramaMTE model, and the Travel Planner

Form Chart model
An online Travel Planner is a travel planning application that provides travel item search (flights, cars,
hotel rooms etc), booking, payment, event scheduling and itinerary management. Various domain-
specific models may be used to address concerns for different purposes at different stages of the
development of the Travel Planner system. Users may use BPMN (BPMN, 2004) to model business
processes, EML (Li et al, 2007) to model business service trees; MaramaMTE to model tiered software
architecture; and Form Chart to model client behavior. Users use certain domain knowledge to address
specific issues individually, but also want to combine the strength of all models. In this case study, three
CRelation models are used to combine the strength of four different domain-specific modeling

technologies when modeling the complicated Travel Planner project.

11.2.1 Interconnecting the Travel Planner EML model with the Travel Planner BPMN model
Enterprise Modeling Language (EML) (Li et al, 2007) specification provides a graphical notation for

expressing business processes in a Tree Overlay based diagram.

BPMN specification creates graphical models of business process operations. BPMN graphical notations
are based on a flowcharting technique. A Business Process Model is a network of graphical objects

consisting of activities (i.e., work) and the flow controls that define their order of performance (BPMN,

205

2004). EML and BPMN are two different models to specify business processes with different modeling
angles, but they share a lot of similarities. An EML-BPMN CRelation model is needed to capture the

similarities and specify the rational for the interconnection of the two meta-models.

11.2.1.1 The EML meta-model

Firmation |

I e EMLService
CperServiceAssoc id String nonl
Service String nonkey e) ng kgy
. narme String nonkey A operations String nonkey
name String nonkey s ;
idString nonke id String nonkey nare String nonkey
I ¥
parent-service String nonkey
r
OperProStartAssoc ProcessFlow OperProEndissac
from String nonkey id String nonkey from String nonkey
name String nonkey name String nonkey naame String nonkey
id String nonkey From String nonkey id String nonkey
to String nonkey ko String nonkey to String nonkey
E |
EMLProcessStark [EMLProcessEnd
id String nonkey name String nonkey
name String nonkey parent-process String nonkey
parent-process String nonkey id String nonkey
rprusssswtnsso-c J Fro-cessOp-emssocJ
4
] EMLBusinessProcess
id String nonkey (a}
name String nonkey
operations String nonkey
processFlows String nonkey
ravelBookingP. ..
SendBookRequest heckEnquires

ookingProcessEnd

Figure 11.10. (a): the MOF-based EML meta-model (b): the EML Travel Planner model

206

The main features of EML include: 1) modeling complex business architectures as service trees; 2)
modeling business processes as process overlay sequences on the service trees (Li et al, 2007). EML
does not have a diagrammatic meta-model, but it is easy to generalize one from the explicit description
of the EML syntax. Figure 11.10(a) presents a part of the generalized MOF-based EML meta-model.
This part of EML meta-model is focused on the business process overlay in the EML service tree, but

ignores the abstractions for the service tree itself.

In the EML meta-model, the five entities (green rectangles) are used to model an EML business process,
and they are: EMLProcessStart, Operation, EMLProcessEnd, EMLService, and EMLBusinessProcess.
To simplify issues, each of the entities contains only small part of the properties in the original EML

specification.

A simple EML model in Figure 11.10(b) explains how the meta-model elements are used to model a
simple travel planning business process. Figure 11.10(b) does not show the original EML business
service tree, but focuses on the EML business process overlay. The “TravelBookingProcess” (blue
rectangle, typed as EMLProcessStart) starts the business process and goes through a sequential
Operations of SendBookRequest, CheckEnquires, Requestltineraries, Considersltineraries, and
SendConfirmInformation. The Operation MakeBooking requires two concurrent Operations of
BookTickets and BookRoom. The process ends with the BookingProcessEnd (red rectangle, typed as
EMLProcessEnd).

11.2.1.2 The BPMN meta-model

Alternative BPMN meta-models have been generalized from the explicit description of BPMN syntax
((BPMN, 2004)). Figure 11.11(a) illustrates a partial MOF-based BPMN meta-model. The five entities
(green rectangles) are used to model a complete BPMN business process, including EventStart, Activity,
EventEnd, Pool, and BPMNProcess. To simplify issues, in Figure 11.11(a), each of the entities contains

only small part of the properties in the original BPMN specification.

A simple BPMN model in Figure 11.11(b) explains how the meta-model elements are used to model a

simple travel planning business process. The “TravelBookingProcess” (typed as EventStart) starts the

207

business process and goes through sequential Activities of Send BookRequest, CheckEnquires,
Requestltineraries, Considersltineraries, and SendConfirmInformation”. The Activity “MakesBooking”
requires two concurrent Activities of BookTickets and BookRoom. The process ends with

“BookingProcessEnd” (typed as EventEnd).

[EvenkEnd
id String nonkey | " ProcessEventEndAssoc
namne String nonkey

| EventEndhctivity Assoc I

| Activity BPMMProcess

[Sequence Flow }- : | id String key g P ProcessActivityAssoc } id String nonkey
| mamne String nonkey namme String nonkey
Pool

|EventStartActivityAssoc I
id String nonkey .
name String nonkey | EwentStart I (ﬂ)
id String nonkey _I| ProcessEventStartissoc I
name String nonkey
EO_.""'"T_!"_ = =
@ngm;g s4SendBookRequest § nsiderltineraries [5endConfirminformation

[[checkenquires | —>{Requestitineraries | —>{enditineraries |

e
P

(b] okingProcessEnd

Figure 11.11. (a): the MOF-based BPMN meta-model; (b): the BPMN Travel Planner model

208

11.2.1.3 The EML-BPMN CRelation model

The EML-BPMN CRelation model (Figure 11.12(a)) is developed to capture the semantics shared by the
EML meta-model (specifically the part of business process overlay of EML) and the interested part of
BPMN meta-model. The five StructureMappings specify the main similarities between EML and BPMN.
The highlighted StructureMapping “processEnd2eventEnd” represents the EML’s EMLProcessEnd
abstraction type is similar to the BPMN’s EventEnd abstraction type, and the source and target elements
can be interconnected and viewed as the same semantics represented differently in the different models.
The SemanticAssociations explicitly represent the source and target model associations that are implied

when the associated StructureMappings are set up.

emlProcessZbpmnProcess

\\' SourcePart:EMLBusinessProcess
TargetPart:EPMMProcess

selectionConstraints: 1
behaviour description. ..

JprocessEnd2eventEnd

SourcePart:EMLProcessEnd
TargetPart:EventEnd

selectionConstraints: 1
behaviour description. .. e

assocOperProEnd2assocEventEndact

assocProcessEnd2assocEventEnd

SourcePart:ProcessEndassoc
TargetPart: ProcessEventEndAssoc /"
semantic constraints translated

SourcePart; OperProEndAssoc
TargetPart EventEndActivibyAssoc

semantic constraints translaked

operationZackivity
SourcePart:Operation
TargetPart: Ackivity
selectionConstraints: 1

behaviour description. ..

T

assocOperserviceZ assocPoolActivity

SourcePart: OperServicefssoc
TargetPart: PoolActivibyAssoc

semantic conskraints translaked

\\"»-v_ﬂ-—'/

SourcePart:ProcessOperAssoc
TargetPart:Processackivityassoc

semantic conskraints translaked

""u._______'_‘_'__'_,_,_"'

assocProQper2assocProfckiviey >

assocOperProstart2assocEventStarkack

SourcePart: OperProStarbbssoc
TargetPark:EventStartactivibyAssoc

semantic constraints translated

-\-"\-_________'_'_'_'_'_‘_'_,_ﬂ'ﬂ-

serviceZ2pool
SourcePart:EMLService
TargetPart:Pool
selectionConstraints: 1

behaviour description. ..

assocProStart2assocProEventStart

SourcePart:ProcessStartAssoc
TargetPart:ProcessEventStartfssoc

semantic conskraints translaked

processatarkZeventstart

SourcePart:EMLProcessStark
TargetPart:EventStark
celectionConstraints: 1

behaviour description. ..

(a)

Figure 11.12. The EML-BPMN CRelation model

The selectionConstraints property of StructureMapping “processEnd2eventEnd” (the highlighted
element in Figure 11.12(a)) is illustrated in Figure 11.13(b). The constraint requires that an
EMLProcessEnd (in an EML model, e.g. the Travel Planner EML model) and an EventEnd (in a BPMN

model, e.g. the Travel Planner BPMN model) must have the same name value before they can be

209

interconnected. Figure 11.13(c) shows the behaviorDescription property triggered by the
StructureMapping “processEnd2eventEnd”. The StructureMapping triggers two source model events: 1)
the change of the name value of the EMLProcessEnd; 2) the removal of the EMLProcessEnd. The

information of the triggered events is organized in the behaviorDescription and will help to generate a

java behavi

or synchronizer.

M Property value (h) J
Yalue of property:
| “onstraint

1
String EMLProcessEnd_name = (String @O CL{context:EMLProcessEnd self.name);
String EventEnd_name = (String)@OCL{context:EventEnd self name);
return EventEnd_name.equalsiEMLFrocessEnd_name]; |

|}

M Property value

Yalue of property:
<rurm version="1,0" encoding="150-8359-1" ¥>

L4

Figure 11.13. The selectionConstraints and the partially generated behaviorDescription property

<EventDescripkion>
<SourceModelEvent >
<Events>
<Event id="1">»
<EventType=changed </EventTypes
<EventCriginators > EMLProcessEnd . name <jEventOriginatorsz
<EwventOriginators_params> eMLProcessEnd_name </EventOriginators _params >
<EventConsumers_inSourceModel =null < fEventConsumers_inSourceiodel =
<EventConsumers_inSourceModel_params >null<fEventConsumers_inSourceModel_params
<EventConsumers_inTargetModel >EventEnd. name </EventConsumers_inTargetMadel>

<EventConsumers_inTargetModel_params »eventEnd_name </EventConsumers_inTargetModel_params:
<IntendedResult =

1
String EMLProcessEnd_name = eMLProcessEnd_name;
String EventEnd_name = EMLProcessEnd_name;
return EventEnd_name;

X
<fIntendedresult =
<fEvent >
<Event id="2"=>
<EventType > removed <fSourceEventType>
<EventOriginators =EMUProcessEnd </EventOriginators =
<EventConsumers_inSourceModel >EMLProcessEnd «</EventConsumers_inSourceModel>

<EventConsumers_inTargetModel > EventEnd <fEventConsumers_inTargetModel
<IntendedRasult =

1
InterconnectionRelationship removed(),

¥

<fIntendedresult >

<fEvent > {c)
<fEvents=
<fSourceModelEvent >

| >

sheets of StructureMapping “processEnd2eventEnd"

210

W,

Figure 11.14 illustrates the semanticTranslation property sheet of SemanticAssociation
“assocOperProEnd2asswocEventEndAct”. The source model semantic constraint in Figure 11.14 (tree
root, left column) means an EMLProcessEnd must be connected to an Operation. This semantic
constraint is translated into the sensible BPMN model semantic constraint (child of the tree root, left
column), which specifies that, in a BPMN model, an EventEnd must be connected to an Activity.
Similarly, a target meta-model translatable semantic constraint (tree root, right column) can be translated

into a sensible source meta-model semantic constraint (the child of the root, right column).

processEndzZeventEnd emlProcessZbprinProcess
assocProcessEndZassocEventEnd

SourcePart:EMLProcessEnd SourcePart:EMLEusinessProcess
TargetPart:EventEnd e | SourcePart:ProcessEndfssoc TargetPart;EPMMProcess
TargetPart:ProcessEventEndfssoc

selectionConstraints: 1 - - selectionConstraints: 1
semnantic constrainks translated

behaviour description. .. R behawviour description. .
assocOperProEnd2assocEventEndact / T
SourcePart: OperProEndAssoc assocPro0perzassocProfckivicy lassocProStartZassocProEventstart

TargetPart:EventEndActivity Assoc
semantic conskraints translated

SourcePartiProcessOperdssoc SourcePart: ProcessStartAssoc
TargetPart: Processfckivibyfssoc TargetPart:ProcessEventStartAssoc

semantic constraints translated semantic constraints translated

B Translate Semantic Constraints @
Source Contracks Target Conkracts
End self OperProEndfs = [= context:EventEnd self . EventEndactivitvAssoc- =sizel)=1
Context:EventEnd self . EventEndActivitvissor - =sizeli=1 ContextiEMLProcessEnd self . OperProEndassoc- =sizeli=1
[Cancel] [Trananrm]

Figure 11.14. The semanticTranslation property sheet of SemanticAssociation

“assocOperProEnd2assocEventEndAct”

11.2.1.4 Generating search conditions and the behavior synchronizer
The EML-BPMN CRelation model records the rational behind the interconnection of the EML and the
BPMN meta-models. The model can also generate search conditions to help to establish traceability, and

synchronize views and behaviors across the models.
Figure 11.15(a) shows the folder of java files generated from the EML-BPMN CRelation model,

including 5 StructureMapping classes and 6 SemanticAssociation classes. Figure 11.15(b) shows part of

the generated StructureMapping l.java file (generated from the StructureMapping

211

“processEnd2eventEnd” in Figure 11.12(a)). The java file implements methods getTargetCandidates,
getTargetType, isSourceModelElements (refer to section 10.5.1), and so on. The selection constraints of
the StructureMappings go to the checkConstraint methods in their respective classes. Figure 11.15(c)
illustrates the implementation of a sample selection constraint (refer to Figure 11.13(b)). When
generating the java files, the OCL queries are translated into tool-API-dependent (Marama meta-tool-

dependent) code with the help of the Eclipse OCL framework.

package nz.ac.auckland.cs.nparana.maramaArch.intermediatelodel. generateﬁMLuﬁﬁmN;
import nz.ac.auckland.cs.marama.model.diagram.HaramaDiagram;

public class Jtructurefapping 1L
{
static Vector EventEnd results :
static MaramaDiagram targetModel = null;
static MaramafFntity sowrceElement = null:

® generatedEML_BPMN r;J @@ public static Vector getTargetCandidates(MaramaShape[] sourceShapes,MaramaDis
— {

; » -
Fle Edt View Favorites i EventEnd results = mew Vector():

. » targatModel = target:
@Wk 7 .? Vector candidateShapes = MaramalnterEnticy.getTergetCandideteShapes(taryge

r . Vector involved =null;
Address |0 E-\Maramatrchle v | (£ Go

Name -~ for (int i=0; i<candidateShapes.size(); i++)
B BehaviowEML_EPMN.java {
E‘fmnarmssu:iaﬁm__l.jeva Vector eachTarget = (Vector)candidateShapes.get(i);
ES tich iation_2.java involved = new Vector():
ES ticAssociati _3.jaua for{int j=0; j<eachTarget.size(); j++)
[SemanticAssociation_4.java b .
E 2 ko 55 involved. add (eachTarget.gec{j])):
3 T }
SemanticAssociation_6.
E - l_'6 Lyzhec) NaramaShape[] targetShapes = {(MaramaShape)involved.get(0)}:
StructureMapping_1. . 5
E 3 !,ava if (checkConstraint 0{sourceShapes, targetShapes))
StructureMapping_2.java
o (a) (
StructureMapping_3.java EventEnd results.add(eachTarget):
StructureMapping_4.java)
StructureMapping 5.1ava i (b)
InterModel. iava return EventEnd results:
< > }
private static boolean CheckLonStLrainty(NAramachape|] SOULCeLlements, Naramashape|] GALgetLlEmeEnts)
{

(€)
HaramaShape EventEnd_shape = targetElements[0]:
HaramalodelProject EventEnd model = EwventEnd_shape.getModelEntity().getModelProject():
HaramaEntity EventEnd entity = EventEnd shape.getModelEntity():

HaramaShape EMLProcessEnd_shape = sourceElementsz[0]:
HaramaModelProject EMLProcessEnd model = EMLProcessEnd_shape.getModelEntity().getModelProject();
MaramaEntity EMLProcessEnd entity = EMLProcessEnd shape.getModelEntity():

String namel = [(String) new EvaluateConstraints("attributes,properties->selectinamne="name')->firsc()”™ +
".walue.oclAsType (String)”).evaluateFormula (EMLProcessEnd model ,EMLProcessEnd_entity):

String name2 = (String) new EvaluateConstraints("attributes.properties-»selectinames'name'}->first()™ +
".walue.oclhsType (String)). evaluateFormula (EventEnd_model,EventEnd_entity):

return namel.equals (name2);

Figure 11.15. Java search conditions generated from the EML-BPMN CRelation model

212

A java behavior synchronizer (the BehaviourEML BPMN java in Figure 11.15(a)) is also generated.
Figure 11.16 shows part of the generated BehaviorEML BPMN java. This synchronizer processes the
events of 5 StructureMappings of the EML-BPMN CRelation model (refer to Figure 11.12(a)). For
example, lines 9 and 11 process two events recorded in the behaviorDescription of Figure 11.13(b). The
synchronization messages are generated based on the intended results the tool users manually program

inside the behaviorDescription.

.ﬁﬁﬁiié.éiééé.ﬂéhaviuurEHI_BPHN inplement=s Adapter
1

public woid notifwChanged{Hotification notification)

processEvent_1 StructureMapping linotification):
processkEvent 2 StructureMapping linotification):

procezsEvent 1 StructureMapping 2inotification):
procezskEvent 2 StructureMapping Z2inotification):

processEvent 1 StructureMapping 3inotificationd;
processkEvent_ 2 StructureMapping 3inotificationd:

processkEvent_1 StructureMapping dinotification):
processEvent_ 2 StructureMapping dinotification):

processEvent_1 StructureMapping Sinotification):
procezsEvent 2 StructureMapping Sinotification):

Figure 11.16. The synchronizer generated from the EML-BPMN CRelation model

11.2.1.5 Interconnecting process

Figure 11.17 shows how to interconnect the Travel Booking Process EMLmodel (Figure 11.10(b)) and
the Travel Booking Process BPMN model (Figure 11.11(b)). In Figure 11.17, the “SendBookRequest”
(1) (typed as Operation of EML) has only one qualified target model candidate (2) and is then
interconnected with the candidate “SendBookRequest” (3) (typed as Activity of BPMN). Once the
interconnecting process is completed, the traceability and behaviour synchronisation between the two
models are established. If the change of property values or the removal of model elements happens to
the source model, the interconnected target model elements will receive suggestive messages to take

actions to maintain the validity of the Interconnection Relationships

213

= ATL - TravelPlanner_EML/travelPlanner.maramaDiagram - Eclipse SDK

File Edit Mavigate Search Project Fun ‘Window Help

Wiy Ry R R T R R || an | B an
R SRR SRRV . & 1ava
T Mavigator 23 = O 8 travelPlanner maramaliagram &3 = B8
R P R - [Gelect W
[F-[=* Crelation £ Mar..., |TravelBookingProcess I—':":SEI'IdBDDkREEIUESt E—%-'CheckEnq
#-1=% Maramadrch [y Skelt--- (1)
1= MaramaBPMN —too —
£-1=F MaramaEML L= 5h.., # LRSIl
-T2 MaramaMTE [SEM... |Considerltineraries |
B PageFlow B SEM...
g petstore_MTEZ M sop...
1= petStare_LMLZ iy
; - - endltinerar
E TravelPlanner_BPMM @
[+l TravelPlanner_EML ¥ SPro... SendConfirmInformation Ii_
1= TravelPlanner_MTE } sop...
B TravelPlanner_PageFlow } 5op... M
-1 UML A | *
1 #travelPlannsr.maramabiagram &3 = B

[% Select N
£, Mar... |TravelBookingProcess SendBookRequest

. = Sket...

Properties 8 [:E tool & (3)

Source Element: ... | Target Element =5h... # .
SendBookR.equest [SAct... ||'Che':kE”q'-"r35 Hhequestltinerari:

Wﬁf/:

© | »

< |

lInstantiate Maodel Integration]

=5
u

Figure 11.17. Interconnecting the EML Travel Planner model with the BPMN Travel Planner

model

Figure 11.18 shows the change of source model element “SendBookRequest” will influence the validity
of the Interconnection Relationship between the two models. When the name of “SendBookRequest” is
changed to “SendBookRequest 2 (1), the interconnected target model element receives synchronization

message “SendBookRequest.name changed to SendBookRequest 2” (2). In order to maintain the

214

validity of the Interconnection Relationship, the name of the “SendBookRequest” Activity in the target
model should also be changed to “SendBookRequest 2 (3). This example has again shown the potential
in providing structured support for maintaining behaviour synchronization across different domain-

specific models.

== ATL - TravelPlanner_EML firavelPlanner.maramaDiagram - Eclipse SDK £|[E|[5|
File Edit Mavigake Seatch Project Runm Window Help
- HE %-0-Q- 4 i B-E-@- 5| E an | B at
Do T R = I . &) 1ava
TS Mavigator &3 = 8|8 *travelPlanner . maramaDiagram & =8
@ BR Y [Select M-
1= Crelation 7 Mar... JTravelBookingProcess |—%':58I'IC|BDDKRBCIUES'2_2E—
- Maramadrch [y Sket... (1)
B Mar amaBPMMN —tcn:nl
-5 MaramaEML = 5h... #
H-1== MaramaMTE W sEM... [ConsiderTtineraries |
! =5 PageFlow B SEM... R‘\-k
g petStore_MTEZ | sop...
[+ 1=F pet3tore_IMLZ
F-= TravelFlanner BPMN M
1= TravelPlanner_EML 4 SPro... [5endCanfirmInformation L
= TravelPlanner_MTE } sop...
: == TravelPlanner_PageFlow } sop.. b
- umL % | 2
[*travelPlanner maramabiagram &3 = B
[:S Select M
i, Mar... |TravelBookingProcess SendBonokRequest
A=l W [Marama Crelation Instank... [}’3 tS;{Delt... (3)
Source Element:d... | Target Element: Synchraoniz L= 5h... # W
SendBookRequest_z [SendBookRegquest, SendBor M Sact. . EERENQUINES
nged kosendBookReque
2) W sEv...
... #
} 5se.. EaakTickets -
} SEv.. —
< > l' SEV... ’—T'/
E v
[Instantiate Model Integration] BT —
< | >
=4
u

Figure 11.18. Behaviour synchronization between the interconnected models

215

11.2.2 Interconnecting the Travel Planner BPMN model with the Travel Planner MaramaMTE
model

The CRelation model can not only interconnect two similar domain-specific meta-models like EML and

BPMN, but also work for meta-models that are not seemingly similar. For example, the BPMN model

works at business analysis level, while the MaramaMTE architecture model works at a lower level and

closer to software system design and implementation. For these not seemingly close meta-models, it is

especially important to use the CRelation model to specify the rational behind the intended

interconnection.

11.2.2.1 The BPMN-MaramaMTE CRelation model and its entities

Both the MaramaMTE and BPMN meta-models have been introduced before (refer to section 8.4 and
section 11.2.1.2). Figure 11.19(a) illustrates the BPMN-MaramaMTE CRelation model. The
StructureMapping “eventStart2appClientRequest” (3) specifies that the EventStart of BPMN can be
interconnected with the construct of ApplicationClient and Request of MaramaMTE. The Activity of
BPMN can either be interconnected to the construct of ApplicationServer, RemoteObject, and Service of
MaramaMTE (via StructureMapping “activity2serverObjService” (7)), or the construct of
ApplicationClient and Request of MaramaMTE (via StructureMapping “activity2appClientRequest” (4)).
The EventEnd of BPMN shares the similar semantics with the construct of ApplicationServer,
RemoteObject, and Service of MaramaMTE (via StructureMapping “eventEnd2ServerObjService” (5)).
SemanticAssociations “assocSeqFlow2clientRequest” (1) and “assocSeqFlow2assocObjService” (2) are
slightly different from other “ordinary” SemanticAssociations, because they associate the same
StructureMappings respectively. For example, SemanticAssociation “assocSeqFlow2clientRequest” (1)

associates StructureMapping “activity2appClientRequest” with itself.

Figure 11.19(b) presents the selectionConstraints property of StructureMapping
“eventStart2appClientRequest” ((3), Figure 11.19(a)). The constraint specifies that the name of an
EventStart and the name of a Request must be the same before the EventStart and the Request can be
interconnected. This StructureMapping also gets a selection constraint from its SelectionRefinement
“refineAppclientRequest” ((6), Figure 11.19(a)) whose selection constraint is shown in Figure 11.19(c).

The constraint of the SelectionRefinement means that in the construct of ApplicationClient and Request,

216

the two elements must be associated through a ClientRequest association (refer to the MaramaMTE

meta-model in Figure 9.1(a)).

L)
P : assocSeqFlowZassocObjservice
leventstartzappClientR equesl -
- assocEventStart2assocClisntServer SourcePart: SequenceFlow i))
SourcePart:EventStart = reeP At Ever St Ackivriane TargetPart: construct[ServerObiect, OhjectSarvice]
TargetParticonstruct[ApplicationClient, Request] a——— - TargetPart:ICIientServer o eemantic constraints branslated

selectionConstrainks: 1 - - Tated
behaviour description... {3\ semW \y (2)
) \

activiby2serverObjservice

refineAppclient&Request SourcePart: Activity o))
—— TargetPart:construct[ApplicationServer, RemoteObject, Service]
construct[ApplicationClient, Request] = -
assocEventStartact2elientRequest celectionConstraints: 1 selectionConstrainks: 1
SourcePartiEventStartActivityfssoc (6) behawour description...

TargetPart: ClisnkRequest
sernantic constraints translated
assocseqFlowzClientServer
\T/ SourcePart:SequenceFlow >
TargetPart:ClisntServer

assocEventEndactZclientServer

activityZappClientRequest Femariic copstraits franslated SourcePart :EventEndackivitydssoc
SourcePart:Ackivity TaraetPart:ClientServer
TargetPart:construct[ApplicationClient, Request] semanticTranslation
selectionConstrainks: 1
behaviour description. .. e refineAppServerésService

\4/ construct[ApplicationServer, Remotedbject, Service]

selectionConstraints:1

assocseqFlowZclisntRequest Eon b {5}
- leventEnd2ServerObjService
SourcePart:SequenceFlow jassacEventEndActzclientServer 5 Fart EventEnd
TargetPart: CientRequest — OUrCerart EVenitn S : :
T SourcePart:EventEndActivicyAssoc TargetPart:construct[ApplicationServer, RemoteObject, Service]
SEMmantic Iranslation TargetPark:Clientserver eelectionConstraints: 1
(1) semantic constraints translated behaviour description

B ' Property value &J
Value of property:

Eunstraint (‘h} -

String EventStart_name =({String) @OCL{context Eventstart self . name));
String Reguest_name = ((String) @OCL{conkext:Request self.name));
return EventStart_name,equals{Request_name):

B’ Property value li_?’J
Yalue of property:

Constraint +
{
Object appClient = @OCL{contextApplicationClient self);
Boclean object = ((Boolean)@0CL{context:Request self.applicationClient
-»select(elem | elem=appClient }-= notEmpty]);
= return chject.booleanValue(); (C)

Figure 11.19. (a): the BPMN-MaramaMTE CRelation model; (b) the selectionConstraints of
StructureMapping “eventStart2appClientRequest”; (c) the selectionConstraints of

SelectionRefinement “refineAppclient&Request”

217

The events triggered by StructureMapping “eventStart2appClientRequest” ((3), Figure 11.19(a))) are
organized in the behaviorDescription illustrated in Figure 11.20. In the behaviorDescription, the
StructureMapping triggers two source model events that will influence the established Interconnection

Relationship: 1) the change of the name of the EventStart element; 2) the removal of the EventStart

element. At this stage, the selectionConstraints brought by the

SelectionRefinement
“refineAppclient&Request” do not

contribute to the behaviorDescription of the parent
StructureMapping “eventStart2appClientRequest”; but their influence on the behaviorDescription of the
parent StructureMappings will be researched in the future. The information of the triggered events is

organized in the behaviorDescription and will help to generate a java behavior synchronizer.

B Property value E]
Yalue of property:

< vuml version="1.0" encoding="130-8859-1" 7=
<EventDescripkion =

<SourceModelEvent =

<Events=

<Event id="1"=

<EventTvpe=changed </EventTvpe:=

<Eventoriginators = Eventatart.name <fEventOriginators =

<EventOriginators_params > eventStart_name <EventOriginators_params =
<EventConsurners_insourceModel =null < EventConsumers_inSourceModel =
<EventConsumers_inSourceModel_params =null</EventConsumers_inSourceModel_params =
<EventiZonsumers_inTargetModel =Request.name </Eventaonsumers_inTargetModel =
<EventZonsurners_inTargetModel_params =request_name </EventConsumers_inTargetModel_params =

E

<IntendedResult =

String EventStark_name = eventSkart_name;
String Request_name = EventStark_name;
return Request_name;

<[IntendedResult =
</Event =
<Event id="z"=
<EventType > removed =fSourceEventType =
<Eventidriginators =EventStart < EventOriginators =
<EventiConsurmers_inSourceMadel =null</EventConsumers_inSourceMadel =

<EventiZonsumers_inTargetModel= construct[ApplicationClient, Request] </EventConsumers_inTargetModel =
<IntendedResult =
1

IrterconnectionRelationship removed(;

<[IntendedResult =
</Event =
</Events>
< f5ourceModelEvent =

£

| £

Figure 11.20. The behaviorDescription of StructureMapping “eventStart2appClientRequest”

218

Figure 11.21 illustrates the semanticTranslation property sheet of SemanticAssociation
“assocEventStart2assocClientServer”. The source meta-model semantic constraint (tree root, left column)
means that in a BPMN model, an EventStart must be connected to an Activity. This semantic constraint
is translated into a sensible MaramaMTE meta-model semantic constraint that specifies that, in a
MaramaMTE model, an ApplicationClient must be connected to an ApplicationServer (child, left
column). Similarly, a target meta-model translatable semantic constraint (tree root, right column) can be

translated into a sensible source meta-model semantic constraint (the child of the root, right column).

p— - laszocseqFlowz assocObiseryvice
FappClientRequesl -
——— assocEventstartZassocClientServer SourcePart: SequenceFlow))
wentskar e i = ourcePart EveniStartActivityssar TargetParticonstruct[ServerObject, DbjectSe
construck[ApplicationClisnt, Request] et Part ClisEoemror Eermantic constraints trarsiated
nistraints: 1 g — - T
e semantic conskraints translated \ >
activityZserver ObiService
refineappclient&Request SourceRart: Ackivity o
construct ApplicationCient, Request] TargetPart: construct[Applicationerver, Remote b
4 - -
EventStartactZclientRequest selectionConstraints: 1 SEIBEtI_DnCDHSt@mFS' !
ePart:EventStartActivityfssoc \\ behaviour description...

B Translate Semantic Constraints

Source Contracts Target Contracts

=) context:EventStart self, EventStartActivibyAssoc- =sizel =1
Contexk: ApplicationClient self, ClientServer- =sized)=1

=R context: ApplicationZlient self, ClientSery ize(i=1

Context:EventStart self, EventStartActivibyAssoc- =size)=1

[Cancel l [Transform]

Figure 11.21. The semanticTranslation property sheet of SemanticAssociation

“assocEventStart2assocClientServer”

11.2.2.2 Generating search conditions and the behavior synchronizer

The BPMN-MaramaMTE CRelation model generates a package of java search conditions to maintain
traceability between BPMN and MaramaMTE models. Figure 11.22(a) illustrates the generated search
conditions. The four StructureMappings and eight SemanticAssociations in the BPMN-MaramaMTE
CRelation model generate 12 java classes. The generated java classes are search conditions to help to

establish the traceability, and synchronize views and behaviors across the models.

219

package nz.ac.auckland.cs.marana.paransidrch. interpediatelodel. generatedBPHN_NTE:

import nz.ac.auckland.cs.marama,model. diagram.MaramaDiagran;[]

public class StructureMapping 1

{
static Vector Client RemoteRequest results :
static MaramaDiagram térgetModel = null:
static MaramaFntity sowrceflement = null;

= £
Q= - ©
- = public static Vector getTargetCandidates (MaramaZShape[] sourceihapes,MaramaDi
Address |) EfMar: Vl Go ¢ !
Mame = Client RemoteRequest results = mew Vector():
EEB"IBVEI.I’EM‘J_MTE.;&V& System, out.println();

SemanticAssociation_1.java targeiModel = target;
Semantichssociation_2.java Vector candidateShapes = MaramaInterEntity. getTargetCandidateShapes (targs

SemanticAssociation_3.java Vector imvolwved =null:

SemanticAssociation_S.java
SemanbicAssociation_6.java {
SemanticAssociation_7.java
Semantichssociation_5.java

Vector eachTarget = (Vector)candidateShapes.get(i);
involved = new Vector(): (b)
for (int j=0; j<eachTarget.=zize():; J++)

SemanticAssociation_4.java
for (int i=0; i<candidateShapes.size(); i++)

StructureMapping _1 java {

StnuctureMapping_2.java involved, add (eachTarget.get(i));

Fnuchreloppion 3 Java) ¥
EiStructureMapping 4. java | '
B Irtermodel. iava (@) HaramaShape[] targetShapes = new MaramaShape[involved.size{)]:
< > foriint A=M: d<invnlved. aizell = 3441

private static boolean checkConstraintl (HaramaShape[] sourceElements, HaramaShape([] tacr
{

HaramaShape Client shape = targetElemencs([0]:
HaramalodelProject Client _model = Client_shape.getModelEntity() .getHodelProject():
HaramaEntity Client entity = Client shape.getModelEnticy():

HaramaShape Request _shape = targetElements[1]:
Haramalode lFroject Request_mndcl = quuest_shape.ggt.Hnde].Entity(J .gecMode lProjectc() ;
HaramaEntity Request entity = Reguest_shape.getModelEntity():

HaramaShape EventStarc shape = sourceElements([0]:
HaramalodelProject EventStart_model = EventStart_shape.getModelEntity() .gectHodelProj
HaramaEntity EventStart_entity = Event3tart_shape.getModelEncity():

String event3tart_neame = (String) new EvaluateConstraints("attributes.properties->»ge
".value.oclisType (String) ") .evaluateFormula (EventStart_n

String reguest name = (String) new EvaluateConstraints("attributes.properciss->selec

".value.oclisType (String) ") .evaluateFormula (Request_model, Request_entity)

return (request name.equals(eventStart_neame))

¥
private statiec boolean checkConstraintO (MaramaShape([] sourceElements, MaramaShape[] ctar

{
HaramaShape Client shape = targetElements([0]:
HaramalodelProject Client model = Client shape.getModelEntity().gecModelProject():
HaramaEntity Client_entity = Client shape.getModelEntity();

HaramaShape Reguest shape = targetElements(1]:
HaramalodelProject Request_model = Request_shape.getNodelEntity() .getHodelProject():
HaramaEntity Request_entity = Reguest_shape.getModelEntity():

(©)
HaramaShape EventStart_shape = sourceElements[0]:
Maramalndes 1| Proisent FuentStart mnde]l = FvenrStart sharne.oertMode IEntitw il oetMode 1 Proi

Figure 11.22. Java search conditions generated from the BPMN-MaramaMTE CRelation model

220

Figure 11.22(b) shows part of the generated StructureMapping 1.java (corresponding with
StructureMapping “eventStart2appClientRequest” in Figure 11.19(a)). The important part of the java file
is the checkConstraint0 and checkConstraintl methods (Figure 11.22(c)). The method checkConstraintO
implements the selection constraint of Figure 11.19(c); and the method checkConstraintl implements the
selection constraint of Figure 11.19(b). The two selection constraints help to find out the source and

target model elements that can be interconnected.

A java behavior synchronizer (the BehaviourBPMN_ MTE . java in Figure 11.22(a)) is also generated.
Figure 11.23 shows part of the generated BehaviorBPMN MTE.java. This synchronizer processes the
events of the four StructureMappings of the BPMN-MaramaMTE CRelation model (refer to Figure
11.19(a)). Lines 10 and 11 process two events recorded in the behaviorDescription of Figure 11.20. The
synchronization messages are generated based on the intended results the tool users manually program

inside the behaviorDescription.

public cla==s BehaviourBPHH HTE inplements Adapter
1

public woid notifyChanged(Hotification notification)

processkEvent_1 StructureMapping linotification):
processEvent_ 2 StructureMapping linotification):

processEvent_1 StructureMapping 2inotification):
proceszsEvent 2 StructureMapping 2inotification):

rrocessEvent_1_StructureMapping 3(notification):
processEvent 2 StructureMapping 3inotificationd;

processkEvent_1 StructureMapping 4inotification):
processkEvent 2 StructureMapping 4inotification):

Figure 11.23. The synchronizer generated from the BPMN-MaramaMTE CRelation model

11.2.2.3 Interconnecting process
Figure 11.24 shows how to interconnect the Travel Planner BPMN model with the Travel Planner
MaramaMTE model. In Figure 11.24, Activity “SendBookRequest” (1) has only one qualified target

model candidate (2) and is then interconnected with the candidate “construct[Client,

221

SendBookRequest]” (3). Once each interested source model element is assigned a target model
candidate, the traceability and behaviour synchronisation between the models are established. If the
change of property values or the removal of model elements happens to the source model, the
interconnected target model element(s) will receive suggestive messages to take actions to maintain the

validity of the Interconnection Relationships

il - Q- QG || ean |[Ear
Y f "{:3) : aJ Java
T Mavigator &3 =B | travelPlanner . maramaliagram &3 = O
= e
EPU I = [y Select N
ZonsiderIti
=2 Crelation £, Mar.. [TravelBockingProcess i!SE”dBDDl:RBqUESti @
1= Maramadrch % Sket.. (1)
T=F MaramaBPMN ool
1= MaramaEML [==3h... &
=% MaramaMTE M sSAct... ||CheckEan|res s{RequestItineraries H‘"Sendltiner
1= PageFlow M SEv...
1= petStore_MTEZ W sEv...
1= pekStore_LIMLZ
P - [EE1 P
1= TravelPlanner_BPMM :)
1=F TravelPlanner_EML § 35 BiookTickets
1= TravelPlanner_MTE 4 SEv...
l=F TravelPlanner_PageFlow J, SEv...)
T= UML v
% =]
[travelPlanner. maramabiagram &3 = B8
[Select ~
I, Mar..,
[Sket... Client (3)
e Cnn5|derIt|nerar|es -_@
=
Pra... m =] = B SendCorfirmation
M Clien...
Source Elemen... Target Elem B chie. .. pendBookRequest
SendBookRequest [Clent,5 + TravelBookingProcess
I k. Sel S00kRe
i Product CustometService
|MakeBoolqn | [BookingPracessEnd
RequestItineraries
i Sendltineraries
% | 21| | oec.
. Airline
[Instantiate Model Integrationl 4 Clien. —
v < | 24
=4

Figure 11.24. Interconnecting the Travel Planner BPMN model with the Travel Planner
MaramaMTE model

222

= ATL - TravelPlanner_BPMN/travelPlanner.maramaDiagram - Eclipse SDK E|@|IX|

File Edit Mawigate Search Project Run Window Help
. o . . . i = oa |
:rJ'E‘Eﬂ :ﬁ'ﬁv%' :f&:l-—t\avl-—[\é"-&'l' ﬁ|EATL|EF\TL
 H -Gl oo PP & Javs
T Mavigator 52 ; SR | <}===»> ~ = 0O | B *ravelPlanner.maramabiagram &3 =0
E Crelation [:E Select ~
E Maramatrch o, mar.. [TravelBaokingProcess i!SendBnokRequ... i
[#-1=5 MaramaBPMN [y Sket.. = . 1 =
B MaramaEML toal ()
E MaramalTE (= Sh... #
1= PageFlow B sact.. CheckEnguires
: B 3Ack...
1= petStore_MTEZ —
[petStore_UMLZ e
E TrawvelPlanner_EPMM M sEv..
E TrawvelPlanner_EML =C.. *
B TravelPlanner_MTE) sse.. EQDkTickets .
E TrawvelPlanner_PageFlom l SEv. ..
B2 LML | sEv.. _ o
N
S | o
[travelPlanner . maramabiagram 52 =d
[} Select ‘4
I:I+ Mar...
Sket Client: T
kool T 3)-
| ConsiderItineraries
0 W [Marama Crelation Instantiation X = ESh_"' * SendConfirmation
B clien... =
Source Elemen... Target Element: Synchronization | SETElTs e T
SendBookRequ... [Client,SendBookRequest] SendBookReq (+ TravelBookingProcess
THinerary Product
akeBoskn i
RequestItiner aries
SendItineraries
A
w
Inskantiate Model Integration T
=
U

Figure 11.25. Synchronization between the Travel Planner BPMN and the Travel Planner
MaramaMTE models

In Figure 11.25, when the “SendBookRequest” in BPMN is changed to “SendBookRequest 27 (1), the

behaviour synchronizer sends a message to the target model “SendBookRequest” (2) to remind it that

223

the source model element is changed, which will influence the Interconnection Relationships between
the models, and requires the appropriate response in the target model. More specifically, the

“SendBookRequest” in the target model should be changed to “SendBookRequest 27 (3).

11.2.3 Interconnecting the Travel Planner MaramaMTE model with the Travel Planner Form
Chart model

Both the MaramaMTE and Form Chart meta-models can be found in chapter 6. The MaramMTE

architecture model is focused on the server side architecture design of web applications, while the Form

Chart model analyzes the behaviour of web users. The shared semantics of the two meta-models is hard

to capture, and needs to be specified clearly.

11.2.3.1 The MaramaMTE-FormChart CRelation model and its entities

appClientRequestZpage appServerRemCbiServiceZaction

SourcePart:canstruct[ApplicationClient, Request] SourcePart:construct[ApplicationServer, RemoteObject, Service]
TargekPart:Page TargekPark: Action

selectionConstraints: 1,2 selectionConskraints: 1

behaviour description. .. behaviour description. ..

(1) ™ T (Q2)

assocClient ServerZtransition

SDurcePart:CIient_S_erver > (ﬂ)

TargekPart: Transition

semantic Translation

w

refineappClientRequest (3) refinefpp3erverF.emObjService
construct ApplicationClient, Request] construct[Application3erver, Remokedbject, Service]
selectionConstraints: 1 selectionConstraints: 1

Canskraint

Object Request_remoteObject = @OCL{context: Request self . remaoteCbiect));
return { Request_remoteObject!=null};

T

Canstraint
String Page_name =({5tring) @OCL{context:Page self .name));
String Request_name = ({String) @OCL{context: Request self.name));
return Page_name.equals{Reguest_name);

}

®

Figure 11.26. (a) the MaramaMTE-FormChart CRelation model; (b) the selectionConstraints
property sheet of StructureMapping “appClientRequest2page”

224

Figure 11.26(a) illustrates the MaramaMTE-FormChart CRelation model. The StructureMapping
“appClientRequest2page” (1) represents that the construct of ApplicationClient and Request of
MaramaMTE can be interconnected with the Page of Form Chart. The StructureMapping
“appServerRemObjService2action” (2) defines that a construct of ApplicationServer, RemoteObject,
and Service of MaramaMTE can be interconnected with the Action of Form Chart. The
SemanticAssociation “assocClientServer2transition” (3) explicitly specifies the associations that are
involved in the interconnection. Figure 11.26(b) shows two selection constraints of StructureMapping
“appClientRequest2page”. The first constraint specifies that the remoteObject property value of the
Request in the MaramaMTE model must not be null. The second constraint specifies the name value of

the Request in the MaramaMTE model and the name value of the Action in the Form Chart model must

be the same.

M Property value @

‘Value of properky:

<vwml version="1.0" encading="130-5353-1" 7=
“EventDescription = 1
<SourceModelEvent =
<Ewents=
<Event id="1"=
<EventType=changed </EventType=
<EventOriginators = Reguast, remote0bject </EventOriginators >
<EventOriginatars_params = request_remoteCbject < /EventOriginatars_params >
<EventConsumers_inourceModel =null</EventConsumers_inSourceModel =
<EventConsumers_inJourceModel_params =null</EventConsumers_inJourceModel_params =
<EventConsumers_inTargetModel=null</EventConsumers_inTargetModel =

<EventConsurmers_inTargetModel_params =null</EventConsumers_inTargetModel_params =
<IntendedResult =

{

return {request_remoteObject!=null};

Z[TntendedR esult =
<[Event=
<Event id="2"»

<EventType=changed </EventType =

<EventOriginators = Request.name = /EventOriginators =
<EventOriginatars_params =request_name </EventOriginators_params =
<EventConsumers_inourceModel =null</EventConsumers_inSourceModel =
<EventConsumers_inSourceModel_params =null</EventConsumers_inSourceModel =
<EventConsumers_inTargetModel =Page.name </EventConsumers_inTargetModel=
<EventConsurmers_inTargetModel_params =page_name < EventConsumers_inTargetModel_params =
ZIntendedResult =

1

String page_name = request_name;

return page_nare;

</IntendedResult =
<[Event =

<Event id="3"> W

%

E:

Figure 11.27. The behaviorDescription of StructureMapping “appClientRequest2page”

225

The behaviorDescription in Figure 11.27 organizes the events triggered by the StructureMapping
“appClientRequest2page” ((1), Figure 11.26(a)). The StructureMapping triggers four source model
events: 1) the change of the remoteObject property value of the Request (event 1 in Figure 11.27); 2) the
change of the name property value of the Request (event 2 in Figure 11.27); 3) the removal of the
ApplicationClient (not shown in Figure 11.27); 4) the removal of the Request (not shown in Figure
11.27). The information of the triggered events is organized in the behaviorDescription and will help to

generate the java behavior synchronizer.

Figure 11.28 illustrates the semanticTranslation property sheet of SemanticAssociation
“assocClientServer2transition”. The source model semantic constraint (tree root, left column) means in a
MaramaMTE model, an ApplicationClient must be connected to at least one ApplicationServer. This
semantic constraint is translated into sensible Form Chart model semantic constraint, which specifies
that, in a Form Chart model, a Page must be connected to at least one Transition (child, left column).
Similarly, a target meta-model translatable semantic constraint (tree root, right column) can be translated

into a sensible source meta-model semantic constraint (the child of the root, right column).

appClientRequestZpage appSeryerRemObjService2 ackion
SourcePart:construct[ApplicationClient, Request] SourcePart:construct[ApplicationServer, RemoteObject, Service]
TargekPark:Page TargetPark: Ackion

selectionConstraints: 1,2 selectionConstrainks; 1

|pehaviour description. .. |pehaviour description. ..

>y <

assocClientServer2transition

SourcePart: ClientServer \'.
TargetPart: Transition J

semantic conskrainks translate

B Translate Semantic Constraints

Source Conkracks Targek Conkracks

= context:ApplicationClient self, ClientServer- =sizel) =0 =W contexk:Page self, Transition- =5 =[]
Contexk:Page self. Transition- =size() =0 Contexk: ApplicationClient self, ClientServer- »sizel) =0

[Cancel l [TransFurm]

Figure 11.28. The semanticConstraints property sheet of SemanticAssociation

“assocClientServer2transition”

226

11.2.3.2 Generating search conditions and the behavior synchronizer

package nz.ac.auckland.cs.marawa.mparamadrch. intermediateModel.gen
import nz.ac.auckland.cs.mwarama.model.diagram. Har amal iagram:E

™ generatedM... 1pu.b.1.ir: class $tructureMapping 1
=1

" » ‘i
Fle Edt Vew Fe ¥ static Vector Page results ;
5 ’, static MaramaDiagram targetModel = mull:
- | 3

@Ba{k J A static MaramaEntity sourceElement = null:

Address :_’] E:\Maral VI Go

Mame public static Vector getTargetCandidates (MaramaShape[] source
L eehaviourMTE_FormChart.java ¢

StructureMapping_L.java Page results = new Vector():
mﬁemarﬁc.ﬂ.ssuciathn_l.java targetModel = target:
ks Structureiiapping_2.java Vector candidateShapes = HaramaInterEntity.getTargetCandi
L intertodel java Vector involved =null;
(a)
foriint i=0; i<candidateShapes.size();: i++)

2 {

Vector eachTarget = (Vector)candidateShapes.get(i):;
involved = new Vector():
for (imt j=0; j<eachTarget.size(): j++)

{ (b)

involved.add{eachTarget.get(3)):

_____ e P h L oo L L M ek 4o 3oy
naLaamaiiape | g LRALYSLanuapes T ne HNRALARoLApE | AnvulveEl
for (int j=0; j<involved.size(): Jj++)

e Iy Ry | S— O L e

private static boolean checkConstraintl (HaramaShape[] sourceElements)

{
HaramaShape Client shape = sourceElements[0]:
HarsmalodelProject Client model = Client_shape.getModelEntity().getHModelProjec
MaramaEncicy Client enticty = Client shape.getModelEnticy():

HaramaShape Recquest_shape = sourceElements[1]:
MaramaModelProject Reguest model = Request_shape.getMode
4

Encity () .getModelProjec

1
it
Yyl

String remotedbject = Reguest_entity.getAttribucteValuelsString("remoteCbjecc™);
{remoteCbject !=null}
return true;
else (c)
return false:
}
private static boolean checkConstraintl (HaramaShape[] sourceElements,MaramaShape[]
{
HaramaShape Client_shape = sourceElements[0];
HaramaModelProject Client model = Client_shape.getHodelEncity().getHodelProjec
MaramwaEncity Client entity = Client shape.getHodelEncity():

MaramaShape Request_shape = sourceElements[1];
HaramalodelProject Reguest model = Regquest shape.getModelEntity().gecHodelProjec
HaramaEntity Request_entity = Regquest_shape.getModelEntity():

HarsmwaShape Page shape = targetElement=[0]:
HaramalodelProject Page_model = Page_shape.getModelEnticy() .getHodelProject():
MaramaFnrtity Pange entitwy = Panme shane.ortMode I Enfitwil

Figure 11.29. Java search conditions generated from the MaramaMTE-FormChart CRelation

model

227

The MaramaMTE-FormChart CRelation model generates a package of java search conditions to
maintain traceability during interconnection between the MaramaMTE and FormChart models. Figure
11.29(a) illustrates the generated search conditions. The two StructureMappings and one
SemanticAssociation in the MaramaMTE-FormChart CRelation model generate three java classes.
Figure 11.29(b) shows part of the StructureMapping 1.java (encoding the StructureMapping
“appClientRequest2page” in Figure 11.26(a)). The important parts of the java file are the
checkConstraint0 and checkConstraint] methods (Figure 11.29(c)). Method checkConstraint0 translates
the first selection constraint of Figure 11.26(b), and method checkConstraintl translates the second
selection constraint of Figure 11.26(b). The two selection constraints help to find out the qualified

source and target model elements to interconnect.

public zlas=s BehaviourMTE _PageFlow implement=s Adapter

public woid notifvyChanged{Hotification notification)

processEvent 1 StructureMapping linotification):
processEvent 2 StructureMapping linotification):
processEvent 3 StructureMapping linotification’:
processEvent 4 StructureMapping linotification):
processEvent 1 StructureMapping 2inotification):
processEvent 2 StructureMapping 2i{notification):

processEvent 3 StructureMapping 2inotification):

Figure 11.30. The synchronizer generated from the MaramaMTE-FormChart CRelation model

A java behavior synchronizer (the BehaviourMTE FormChart.java in Figure 11.29(a)) is also generated
from the CRelation model. Figure 11.30 shows part of the synchronizer. When source model events
happen, this synchronizer processes the events of the two StructureMappings (refer to Figure 11.26(a))

of the CRelation model. For example, lines 9, 11, process two events recorded in the

228

behaviorDescription of Figure 11.27. The synchronization messages are generated based on the intended

results the tool users manually program inside the behaviorDescription.

11.2.3.3 Interconnecting process

= ATL - TravelPlanner_PageF low/diagram1.maramaDiagram - Eclipse SDK £|E|I£|
File Edit Mavigate Search Project RPun Window Help
i~ -0 L g 5 | E e |3 an
RN SRR PR &' eva
o Mavigator &2 =0 B travelPlanner.maramabiagram &3 =8
- @ | B %5 |||k gtk ~
E Crelation EL Mar...
E Maramatrch % Sket, .. Client:
#-1=F MaramaBPMN | beal Considerltineraries
L * [ENEISAANEEIES
I MaramaEML | = £ R SendConfirmation
[-l= MaramaMTE B Clien... SendBookRequest
[Obie. .. -
= petstare_MTEZ ——— TravelBookingProcess
= petStore_UMLZ ——
1= TravelPlanner _EPMM - (1) /
== TravelPlanner_EML e, # Thinerary Product [Customer Service
= TravelPlanner_MTE . . . 2 -
} clien... #~heckEnguires & [MakeEBooking | [BockingPracessEnc
== TravelPlanner_PageFlow e e .
‘E 1L ¢ SEFY..,
} Tabl.
| DBC... v
- < E
| diagram1.maramaliagram 23 = d
% Select
3, Mar.., ;
[:S ket
S0 B [Marama Crelation I, Lol (3)
Sh.., #
Source Element: Service Tarcg L
construct{Agency, ltinerary, CheckEnquires] [Ched || B SPage
(2) Sc.. EendBonkRequest EenannFir
< | >
lInstantiate tModel Integrakion] a >
=4
U

Figure 11.31. Interconnecting the Travel Planner MaramaMTE model with the Travel Planner

Form Chart model

Figure 11.31 shows how to interconnect the Travel Planner MaramaMTE model with the Travel Planner

Form Chart model. In Figure 11.31, the source model construct of “Agency” (typed as

229

ApplicationServer), “Itinerary” (typed as RemoteObject), and “CheckEnquires” (typed as Service) (1)
has only one qualified target model candidate “CheckEnquires” (typed as Action) (2) and is then
interconnected with the candidate “checkEnquires” (3). Once each interested source model element is
assigned a target model candidate, the traceability and behaviour synchronisation between the two
models are established. If the change of property values or the removal of model elements happens to
the source model, the interconnected target model element(s) will receive suggestive messages to take

actions to maintain the validity of the Interconnection Relationships

I HrEHS 0 e B | g an | Ean
. T SRR i & 1ava
T Mavigator 23 = 8|8 *travelPlanner.maramabiagram &3 =0
@ | B 5 7|k st i
=5 Crelation £, Mar...
l=F Maramasrch [,}3 Sket. . Client
T=F MaramaBPMi fod ZonsiderIkineraties .
= MaramaEML - * SendConfirmation
.
1=+ MaramaMTE M Clien... I =—
= PageFlawm B ohije. .. £ Er—
= petstore_MTEZ e ravelBookingProcess
=F petStare_UMLZ B Tabl

T=F TravelPlanner _BPMN
= TravelPlanner _EML

. w

- = [(==C... * Lrinerary Produck CuskomerSers,
TravelPlanner _MTE " [" - -
- ien... i ir,,, ® rakeBookin EookingProce
T=F TravelPlanner_PageFlow 4 dlien EcheckEpaurr. 2 | | | d)
= umL 4 serv...
} Tabl
} DEC -
- < &
| diagrami.maramalbiagram 5 =g
[% Select
&, Mar...
Sket. ..
rropertes [CT IR =) [3
.
Source Element:Service Target El... | Synchrc =3
construct[Agency, Itinerary, ... [CheckEn... CheckEr [SPage
CheckEnguires, name changed koCheckEnguir
(2-) =T Sen
< E
Instantiate Madel Ink Li
nstantiate Model negralonl - a

i

Figure 11.32. Interconnecting the Travel Planner MaramaMTE model and the Travel Planner

Form Chart model

230

In Figure 11.32, when the “CheckEnquires” in MaramaMTE is changed to “CheckEnquires 2”(1), the
behaviour synchronizer sends a message to the target model “CheckEnquires” (2) to remind it that the
source model element is changed, which will influence the Interconnection Relationship and requires the
correspondent action in the target model. More specifically, the “CheckEnquires” Action in the target

model should also be changed to “CheckEnquires 2 (3).

11.2.4 The interconnected Travel Planner models

& ATL - TravelPlanner_PageFlow/diagram1.maramaDiagram - Eclipse SDK

File Edit Mavigate Search Project Run Window Help
s RNy R RO e R R T [E an | E AT
: ¥o o] k] 100% % &) 1ava
1 *ravelPlanner. maramaliagram &3 =N travelPlanner . maramaliagram &2 =0
[Select [y Select s
{0, Mar... a_eESendBookRequest f—=Check || I, Mar.., o .
Sket... [y Sket... Client
= : 53 (ConsiderItiner aties
— Request || —_— e
= sh.. # p—— = = sh... # |SendConfirmation
onsiderItineraries i
e | B s3endBookRequest
SEM... Ohije. ..
= B Obie TravelBookingProcess
M s0p... M Data...
u!
.. * [Tabl...
<Pro... - - M =erv...
4 [SendConfirmInformation |——— - Cnerary
} sop... =
| o =c
4 Clien... Requestltineraries
} Serv... Sendlkineraties
} Tahbl...
DEC..
(1) b (3) 2
} dlien, b
< | 2w e | >
T travelPlanner.maramabiagram &3 =g x =8
[Select 2 | [Select
[, Mar... | kingProcess s5endBookRequest & 00 Mar...
> ? i .] +
[Sket... [Gket...
kool kool
=5h... # = 5h... #
I 5act.. ||CheckEnquires H|Requ35 B SPace
W SEv.. W sact, SendBookRequast
I =Ev... =C... # Sendd
[==C.. * } asso...
} 558 BookTickets § —
b SEv.., (2) (4
| sEv.. —
< | ¥ < | »

Figure 11.33. Interconnecting the Travel Planner’s EML model, BPMN model, MaramaMTE

model, and Form Chart model

231

Figure 11.33 illustrates the Travel Planner EML model (1), Travel Planner BPMN model (2), Travel
Planner MaramaMTE model (3), and Travel Planner Form Chart model. The four models are
interconnected through three CRelation models. The four models can be synchronized visually and
behaviourally, which allows users to specify, refine, integrate, and transform various concerns of a
software project. Figure 11.33 shows that the “SendBookRequest” operation in the EML model shares
the similar semantics with 1) the “SendBookRequest” in the BPMN model; 2) the construct of “Client”
and “SendBookRequest” in the MaramaMTE model; and 3) the “SendBookRequest” page in the Form
Chart model. The interconnected models represent how a model can be refined into, integrated with and

transformed to other models.

The interconnection of the four models demonstrates the features of the CRelation model and the
MaramaCRelation tool. The involved CRelation models can not only be used to analyze and design
MI&T, but also provide high level support for the essential tasks of MI&T including traceability,

consistency management, and behaviour synchronization.

11.3 Discussion

In the two case studies, the CRelation models increase the abstraction level of the concerned tasks of
MI&T. The used CRelation models provide a structured way to analyze and design important but
usually neglected issues, including capturing the shared semantics, and explicitly modeling the
associations involved in the intended MI&T. The used CRelation models also organize the usually
isolated operational tasks of MI&T, including semantic consistency, traceability, view and behavior

synchronization, and traceability.

The CRelation models are correspondence models for various software engineering domain-specific
models. The CRelation models specify the rational for the intended MI&T, support incremental
construction of selection constraints, and visually categorize the selection constraints by the involved

model elements.

The two case studies show that the MaramaCRelation approach has the strength and potential to

smoothly interconnect any domain-specific models in terms of analysis and design support, maintenance

232

of semantic constraints, flexible traceability mechanism, and structured support for maintaining

behaviour synchronization.

11.4 Summary

The two case studies demonstrate the strength of the MaramaCRelation approach. The CRelation models
capture the rational of an intended MI&T. The CRelation model entities specify Interconnection
Relationships between two models; and the Interconnection Relationships can represent transformation
relationships, integration relationships, and refinement relationships. The constraints of the intended
MI&T are categorized by StructureMappings, SelectionRefinements, and StructureRefinements.
SemanticAssociations capture the usually implicit information of associations involved in the intended
MI&T. SemanticAssociations also help to maintain translatable semantic constraints. The CRelation
models can generate well structured search conditions and behaviour synchronization coordinators to
maintain traceability and behaviour synchronization among the interconnected models. Although at its
initial stage, the MaramaCRelation research has shown its strength as a structure, high-level support for
model integration, model transformation, model refinement, tool integration, and multi-view support

environment.

233

Chapter 12 - The Evaluation of the MaramaCRelation Approach

The MaramaCRelation research identifies a set of problems related to Model Integration and
Transformation (MI&T); and provides solutions for those problems. The quality of the
MaramaCRelation research depends on: how well the identified problems are understood and accepted;
and how efficient and effective the MaramaCRelation approach is to solve the problems. This chapter
reports the evaluation of the MaramaCRelation research by the Cognitive Dimension framework (Green
et al, 1996); as well as by interviewing a group of experienced Software Engineering tool developers and
designers using a questionnaire. The questionnaire contains questions designed against the problems that
motivate the research of the MaramaCRelation. The feedback given by the interviewees is analyzed and

used to improve the quality of the MaramaCRelation approach.

12.1 Cognitive Dimensions
Cognitive Dimension (Green et al, 1996) investigations have been conducted repetitively during the
development of the MaramaCRelation approach. This section reports how the MaramaCRelation

approach performs in the main cognitive dimensions.

Abstraction gradient: Figure 12.1 shows the abstraction levels involved in the MaramaCRelation
approach. The CRelation model is designed through meta-modeling; and it interconnects domain-
specific meta-models. The CRelation model is supported by the MaramaCRelation tool that is
constructed using the Marama meta-tools. Thus the MaramaCRelation approach has a high abstraction
gradient, which may be difficult for tool users that have not much knowledge of meta-modeling. But the
MaramaCRelation approach follows the style of the UML meta-modeling, which makes it easy for the
experienced tool users to learn the MaramaCRelation approach. We once ran a 45 minute demonstration
to a group of experienced tool developers and users. They had no problems to understand the abstraction

gradient, and understood the relationships between abstraction levels very well.

234

abstraction level high Larama meta-tool

g
|T11-3- CRelation metﬂ—mmlel|

iy
domam-specific somece meta- L~ |The CRelation model = domain-specific target meta-
moidel moidel
- :
! I
¥ |[lumz1i11—spe-cifin: source mmle-l| |[lumz1i11—spe-cifin: target mmlna-l|

Figure 12.1. The abstraction gradient of the MaramaCRelation approach

Closeness of mapping: The CRelation model notations are close to the problem world — analysis and
design of MI&T. A notation of StructureMapping represents: 1) an Interconnection Relationship
between the two domain-specific meta-models; 2) the constraints that make the Interconnection
Relationship valid; as well as 3) the events triggered by the Interconnection Relationship. The notation
of SemanticAssociation represents the association between two Interconnection Relationships. When we
ran a demonstration to software modelers, it took some time (around 1 hour) for them to understand the
target problems (refer to Section 8.2) of the MaramaCRelation approach. Once they understood the
problems, they found that the CRelation model notations are very close to the problem world and very

easy to use.

Consistency: The CRelation model is designed for the maximum consistency. After learning the first
several notations, software modellers can successfully guess the rest ones. The two main modelling
concepts in the CRelation model are the StructureMapping and the SemanticAssociation. Once these
two concepts are understood, the SelectionMapping and the StructureRefinement are easy to guess
because they have similar properties as the StructureMapping, and they both refine the
StructureMapping.

Diffuseness / terseness: The CRelation model is terse. A basic CRelation model can be set up without
much manual effort. For example, the entityMapping and behaviorDescription properties of a

StructureMapping can be automatically or partially automatically generated. The associationMapping

235

and semanticTranslation properties of a SemanticAssociation can also be automatically generated. The
CRelation model can also be verbose. For example, it is a complicated job to set up the
selectionConstraint property of a StructureMapping, a SelectionRefinement, and a StructureRefinement.
The CRelation model does not support effective visual context within the Crelation model at this stage.
It is expected that the improved visual context within the CRelation model will mitigate the verbosity of

the CRelation model.

Error-proneness: The CRelation model is not error-prone. All the essential modeling information comes
from the involved source and target meta-models; and users can not change it. For example, the
entityMapping property value of a StructureMapping can only be consisted of the source and target
meta-model entities and constructs involved in the StructureMapping. For the modeling information that
users need to construct manually, such as the selectionConstraints of a StructureMapping, the

MaramaCRelation tool compiles them to validate the constraints.

Hard mental operations: The MaramaCRelation approach is aimed for solving hard mental operations
involved in traditional MI&T technologies, including: recording the rationale of an intended MI&T;
capturing the shared semantics; categorizing selection constraints; organizing events triggered by the
MI&T; and maintaining traceability by using the shared semantics. The MaramaCRelation approach
itself does not involve hard mental operations. Once the users correctly understand the semantics of the

CRelation model, they will not need to bear extra mental load to be able to construct a CRelation model.

Hidden dependencies: The CRelation model explicitly represents the dependencies between model
entities. For example, the source (target) part of a SemanticAssociation must be a path connecting the
source (target) parts of the associated StructureMappings. A SelectionRefinement must refine a
construct of its parent StructureMapping(s). The generation of search conditions from the CRelation
model is also straightforward, and does not use hidden dependencies that are not shown in the CRelation

model.

Juxtaposability: It is essential for the MaramaCRelation tool to support effective communication
between the CRelation model and the involved source and target meta-models. The MaramaCRelation
tool can juxtapose the CRelation model and the source and target domain-specific meta-models in

different editors to help users to understand how the CRelation model communicates with the domain-

236

specific meta-models. In the future, the Juxtaposability needs to be realized within the CRelation model

to provide better visual context of the model.

Premature commitment: The MaramaCRelation approach tries to reduce the premature commitment to
the minimum level. When constructing a CRelation model, users must make sure of the correctness and
validity of StructureMappings first. Setting up the SemanticAssociations between appropriate
StructureMappings gives users a second chance to validate the intended StructureMappings. After the
StructureMappings and SemanticAssociations are well designed, users can then design
SelectionRefinements and StructureRefinements. Users can modify a CRelation model easily with the
automatic support of the MaramaCRelation tool, as most of the properties of the modeling entities are

automatically generated.

Progressive evaluation: 1t is easy to evaluate the progress of a CRelation model. Users can check if the
CRelation model can interconnect the interested parts of the source and target models. If not, users can
modify or extend the existing CRelation model. As for the generation of search conditions from the
CRelation model, users can tighten or loosen the search conditions by putting stronger or weaker

selection constraints in the CRelation model.

Role-expressiveness: The CRelation model itself is a simple model containing only 4 entity types and 3
association types. The roles of the four entity types are obvious. The StructureMappings specify the
main concerned mappings; the SelectionRefinements and StructureRefinements refine the selection

constraints of the StructureMappings; and the SemanticAssociations associate the StructureMappings.

Secondary notation and escape from formalism: The CRelation model notations do not carry extra
information by means not related to the CRelation model syntax. The syntax and semantics of the
Crelation model are those of StructureMappings, SelectionRefinements, StructureRefinements,
SemanticAssociations, and the CRelation associations. The CRelation modeling is supported by the
MaramaCRelation tool with well-designed empirical algorithms and mechanisms, which allows software

modelers to escape from the formalism.

Viscosity: The CRelation model is at initial stage, and suffers viscosity when interconnecting
complicated domain-specific meta-models. The CRelation model is aimed for interconnecting any

MOF-based domain-specific meta-models in the environment of the Marama meta-tools; and generating

237

search conditions for the establishment of traceability. The case studies in Chapter 11 proved the
strength of the MaramaCRelation approach; it also prompted viscosity of using the CRelation model to
interconnect complicated domain-specific meta-models where the relationships among the entities can
be hard to visualize. The simple design of the CRelation model entities is far from enough to capture the
complexity of various domain-specific models. The CRelation model needs to be extended to support

interconnecting reasonably complicated domain-specific meta-models.

Visibility: The MaramaCRelation tool is an Eclipse plug-in, which provides the tool with good
mechanisms to support visibility and juxtaposability. 1t juxtaposes the CRelation model and the source
and target meta-models side-by-side to allow simultaneous visualisations of the involved models.
However, the visibility within the CRelation model needs to be improved. The textual information (e.g.
constructs, the relationship between the selectionConstraints and the behaviorDescription of a
StructureMapping, the relationship between the CRelation model and its generated search conditions)
involved in the CRelation model needs to be visualized in the future to improve the visibility of the

CRelation model and its related activities.

12.2 Evaluation against the requirements

We have also conducted an informal survey of a small number of experienced Software Engineering
meta-modellers to obtain qualitative feedback for the MaramaCRelation approach. A questionnaire is
designed to evaluate the MaramaCRelation approach against the problems identified in Section 8.2; and

the questions fall into five categories as follows:

Category 1: Do you often come across the problems identified by the MaramaCRelation approach?

Are those problems sensible and need to be solved?

Q1: How do you normally capture the rationale of your Model Integration and Transformation (MI&T)

designs?
Evaluation feedback: Coding and mapping tools with the help of natural language. Rationale is usually

captured in low-level code/formulae that specify target model values in terms of source model values.

The rationale is usually implicit in the formulae and structure/ordering of the transformation script or

238

consistency management code. Some mapping tools, such as MaramaTorua (MaramaTorua, 2007), are

also used to record the rationale of an intended MI&T.

Evaluation feedback analysis: The evaluation feedback shows that the rationale of an intended MI&T is
easy to be lost in the operational code; and there are no well-accepted models and tools to help to
explicitly record the rationale of the intended MI&T. The available mapping tools, such as
MaramaTorua (MaramaTorua, 2007), visualize the mappings between two domain-specific meta-models;
but they are more like visual transformation languages focusing on the operational goals of MI&T
without much analysis and design support. In fact, not enough attention has been paid to analyze and
design MI&T. The MaramaCRelation approach explicitly records and visualizes the rationale of an
intended MI&T; and uses the well-structured rationale (the CRelation model) to provide better solutions
for the concerned issues involved in MI&T, including semantic consistency, traceability, and behavior

synchronization.

Q2: Have you ever experienced the need to maintain semantics and semantic constraints when doing

MI&T?

Evaluation feedback: Very often. One of the expert reviewers said: “Yes, as this is the whole point in
my mind of model integration and/or transformation. Semantically incorrect target models or related

models make the integration/transformation of very limited use”.

Evaluation feedback analysis: 1t is important to maintain semantics and semantic constraints during
MI&T. The more loss of semantics and semantic constraints, the weaker the bonding between the two
models becomes. Most of the existing MI&T technologies (e.g. ATL, XSLT, and Coding) do not help
users to analyze and design how to maintain semantics and semantic constraints during MI&T; and users
normally treat the maintenance of semantics and semantic constraints as separate operational tasks from
the MI&T. The CRelation model explicitly maintains semantics that is conceptually shared by two
models. It also maintains translatable semantic constraints. The CRelation model is intended to
maintain as much semantics and semantic constraints as possible to give tool users and developers
chances to control the degree of the bonding between the two models. The CRelation model is a place

where users can design the intended MI&T via maintaining semantics and semantic constraints.

239

Q3: How easy do you find maintaining model transformation scripts, especially after a long time since

you wrote them?

Evaluation Feedback: Hard. Because they are usually low level code, it is hard to read, understand them
after a short time. Also the scripts/code do not lend themselves to easy maintenance due to the mix of
constructs in the code i.e. mix of formulae doing transformation./linking vs. extraction of source./target

elements esp. in XML based transformations.

Evaluation feedback analysis: 1t is very hard to maintain, extend, and reuse transformation scripts. The
rationale for the scripts is lost in the code; the templates and rules are not well structured; the
relationships between the templates and rules are implicit; and the scripts and programs are monolithic.
The CRelation model has succeeded in categorizing and visualizing the ATL transformation scripts in
Section 10.2.2.2. The CRelation model shows the potential of improving the maintainability of
transformation scripts by: explicitly recording the rationale of the transformation; categorizing the
templates and rules; explicitly representing the relationships between the templates and rules; and

constructing the intended transformation incrementally.

Q4: How do you currently solve issues such as traceability establishment and view synchronization

during MI&T?

Evaluation feedback: Mainly coding. The implementation of traceability and model synchronization
mechanisms are usually based on low-level data repositories, reusable event handlers, and programming

framework.

Evaluation feedback analysis: Traceability and behavior synchronization are two main concerned issues
during MI&T. The establishment and maintenance of traceability and behavior synchronization is
programming-intensive (e.g. Rational Rose, MaramaMTE, MaramaEML). The MaramaCRelation tool
generates search conditions from the CRelation model, finds out appropriate target model candidates for
interconnection, and establishes traceability between models. Although the MaramaCRelation tool does

not provide full-blown behavior synchronization mechanisms, it has shown how the behavior

240

information of the CRelation model together with the established traceability can support behavior
synchronization (case studies, Chapter 11). The MaramaCRelation approach can export the behavior and
traceability information to the third party event-modeling environment (e.g. Kaitiaki (Liu et al, 2007)) to

construct model-based full-blown behavior synchronization mechanisms.

Category 2: Is the CRelation model easy to understand?

Q5: How hard is it to understand StructureMapping and its properties?

Evaluation feedback: Reasonable. This is the basic relationship between model elements/constructs. An
interviewee pointed out that the concept of construct is not easy to understand as it is represented
textually in the CRelation model. He suggested improving the understandability of the concept of
construct by using a visual meta-model snippet within the CRelation model to visually link the construct

to the involved source and target meta-model elements.

Evaluation feedback analysis: The MaramaCRelation tool is at its initial stage. At now, it coordinates
the CRelation model with its source and target meta-models. When a StructureMapping is
highlighted/chosen in the CRelation model, the involved source and target meta-model elements are
highlighted/chosen in the source and target meta-models respectively. Based on the evaluation feedback,
the MaramaCRelation tool needs to provide effective visual context within the CRelation model to help
users to effectively link the CRelation model elements to the involved source and target meta-model

elements.

06: How hard is it to understand SelectionRefinement and its properties?

Evaluation feedback: Easy.

Evaluation feedback analysis: The SelectionRefinement refines the selection constraints of
StructureMappings. The properties of the SelectionRefinement are similar to the same-named properties
of the StructureMapping. The SelectionRefinement helps to maintain the semantic constraints of a

domain-specific meta-model (e.g. the naming convention among EJBBean, EJBHome, and EJBInterface

in EJBUML meta-model).

241

Q7: How hard is it to understand StructureRefinement and its properties?

Evaluation feedback: Reasonable.

Evaluation feedback analysis: The StructureRefinement allows users to model selection constraints
between the source part of one StructureMapping and the target part of another StructureMapping. In the
CRelation model, the StructureRefinement, together with the StructureMapping and
SelectionRefinement, explicitly categorizes selection constraints by the involved model elements. One
of the future projects of the MaramaCRelation approach is to visualize ATL and XSLT transformation
scripts in the CRelation model where the StructureRefinement, together with the StructureMapping and

SelectionRefinement, will be used to categorize transformation templates and rules.

08: How hard is it to understand SemanticAssociation and its properties?

Evaluation feedback: Hard. Most of the interviewees found this concept one of the harder ones to

understand.

Evaluation feedback analysis: When people construct transformation programs and scripts to transform
a model from one format to another, they pick up a set of interested source model elements, construct
the transformation scripts towards the set of elements, and complete the transformation. In this way, the
associations between the templates and rules are implicit. As the associations may indicate the possible
semantic inconsistency caused by the transformation, it is important to explicitly represent the implicit
but usually ignored associations. The CRelation model uses the SemanticAssociation to explicitly
represent the associations between StructureMappings. The SemanticAssociation detects the possible
semantic inconsistency brought by the intended StructureMappings, and helps to validate the intended

MI&T specified in the StructureMappings (refer to Figure 9.16).

09: How do you rate the understandability of the visual notations of the CRelation modeling elements?

Evaluation feedback: Hard to understand. One of the interviewees pointed out that the visual language

of the CRelation model is hard to understand at first. He suggested giving a visual indication of the

242

context of CRelation elements within the CRelation model, so that users can effectively link the

CRelation model elements with the corresponding information of the source and target meta-models.

Evaluation feedback analysis: The MaramaCRelation tool coordinates the CRelation model with its
source and target meta-models. When a StructureMapping is chosen/highlighted in the CRelation model,
the involved source and target meta-model elements are highlighted/chosen in the source and target
meta-models respectively. Based on the feedback, the MaramaCRelation tool needs to support visual
context within the CRelation model to help users to effectively retrieve the information of the involved

source and target meta-model.

There are also other reasons for people to find it hard to understand the visual notations of the CRelation
model. The MaramaCRelation approach identifies a set of problems that are normally treated as separate
operational tasks related to MI&T. The MaramaCRelation approach tries to provide a central, high-level
solution for those separate tasks. It is hard to promote the importance of the identified problems towards
the research of MI&T; and it is harder to introduce the solutions (the MaramaCRelation approach) to
those problems. After its initial success, the MaramaCRelation approach is now ready to solve well
aware problems, including: using the CRelation model to visualize and categorize ATL scripts; using the
visualized ATL scripts to construct selection constraints and generate behavior information; and
collaborating with third party event modeling environments to construct full-blown behavior
synchronization mechanisms. The strength of the MaramaCRelation research will be improved and

better demonstraded by solving those well aware problems.

Category 3: Can the CRelation model solve the identified problems? What is the potential?

Q10: How do you rate the usefulness of the CRelation model for capturing the rationale of MI&T?
Evaluation feedback: Very useful. The CRelation model provides a model-to-model mapping language
with support for capturing not just element correspondences — which visual data mapping tools (e.g

MaramaTorua) focus on, but complex constructs, constraints, traceability establishment, and behavior

synchronization.

243

Evaluation feedback analysis: As the rationale of MI&T is the main source of the solutions for all other
issues involved in MI&T, it is very useful to have a model like CRelation dedicated to capture the shared
semantics (the rationale) during MI&T. The CRelation model is an analysis and design model for MI&T;
and is intended to support MI&T the similar way the UML supports Object Oriented Analysis and
Object Oriented Design.

Q11: How do you rate the potential of the MaramaCRelation approach for improving maintainability

and readability of model transformation scripts?

Evaluation feedback: Promising. This would give a quite different way to structure the scripts vs.

current approaches in e.g. ATL, XSLT etc.

Evaluation feedback analysis: As the CRelation model visually categorizes the selection constraints, it
has the potential to categorize transformation templates and rules. In Section 10.2.2.2, the CRelation
model uses ATL scripts to construct selection constraints. The initial success of leveraging the strength
of ATL shows huge potential of using the CRelation model to improve the maintainability of
transformation scripts by visualizing and categorizing them.

Q12: Do you think the explicit representation of associations of StructureMappings is helpful to

correctly capture shared semantics during MI&T?

Evaluation feedback: Very useful.

Evaluation feedback analysis: The SemanticAssociation is an unobtrusive checking mechanism to
analyze the intended MI&T specified by the StructureMappings. The SemanticAssociation explicitly
represents the associations between StructureMappings; helps to validate the intended MI&T specified
in StructureMappings; and records possible semantic inconsistency. So far, the similar support has rarely
been reported in the existing MI&T technologies. The use of the SemanticAssociation will be better
demonstrated by using the MaramaCRelation approach to solve well aware problems such as
constructing multi-view environment, generating transformation scripts, extending tools, and refining

models.

244

Q13: Do you think the explicit representation of associations helpful to record the inconsistent

semantics during model integration and transformation?

Evaluation feedback: Helpful.

Evaluation feedback analysis: The SemanticAssociation makes it possible to detect and record the
semantic inconsistencies brought by the StructureMappings. The SemanticAssociation detects
inconsistency before the MI&T is realized, and relates the maintenance of semantic consistency with the
intended MI&T. For example, in the future, when the CRelation model is extended to be able to generate
transformation scripts, the SemanticAssociations will be able to detect and record semantic

inconsistencies brought by the transformation scripts.

Q14: How do you rate the usefulness of visually categorizing selection constraints?

Evaluation feedback: Useful.

Evaluation feedback analysis: The CRelation model provides a well-structured central place to organize
the selection constraints, behavior descriptions, and other important issues involved in MI&T. The
CRelation model has used ATL scripts to construct selection constraints. It puts ATL scripts into
appropriate CRelation StructureMappings; represents the associations between the ATL snippets via
SemanticAssociations; and explicitly visualizes what modeling elements are involved in a template or a
rule (because a selection constraint can only use the information of the modeling elements of the
StructureMapping, or SelectionRefinement, or StructureRefinement). Instead of digging in the spaghetti
of ATL scripts, people will be able to quickly understand the rationale and the structure of the ATL

scripts.

Q15: How do you rate the usefulness of separating what from how when interconnecting models?

Evaluation feedback: Very useful. This is the thing most lacking in current script/code-based
approaches — they get completely mixed up.

245

Evaluation feedback analysis: The MaramaCRelation approach allows people to analyze and design the
intended MI&T before putting much effort to realize them. Separating what from how to interconnect
models clarifies hard mental operations of software modelers, and improves the maintainability,

manageability of the intended MI&T.

Category 4: Is the MaramaCRelation tool easy to use?

Q16: How do you rate the automatic support that the MaramaCRelation tool provides?

Evaluation feedback: Good. All the interviewee suggested that supporting visual context within the

CRelation model would further improve the quality of the MaramaCRelation tool.

Evaluation feedback analysis: The MaramaCRelation approach is intended to analyze and design
MI&T effectively and efficiently. The MaramaCRelation tool automatically calculates a list of available
meta-model elements and constructs; calculates the available paths between two constructs of a meta-
model; partially automatically generates behavior descriptions; automatically generates traceability
search conditions; and finds out eligible target model candidates for a source model element. More
automatic support is wanted to provide visual context within the CRelation model to reduce the learning

curve and improve the productivity of the CRelation modeling.

Q17: How do you rate the traceability mechanism of the MaramaCRelation approach?

Evaluation feedback: Good. This looks a good advance and uses the inter-model relationships well.

Evaluation feedback analysis: The CRelation model is a high level central place to review usually
isolated tasks in MI&T. The model specifies the Interconnection Relationships between two domain-
specific meta-models; and uses the Interconnection Relationships to guide the maintenance of
traceability. The MaramaCRelation approach can establish traceability between any domain-specific
models. Instead of turning to coding, people can: create a CRelation model; generate search conditions
from it; and find out eligible target model elements for the interested source model elements. The

CRelation model relates traceability mechanism with other operational tasks of MI&T. For example,

246

when the CRelation model uses ATL transformation scripts as selection constraints, it can use the ATL

scripts to generate search conditions and establish traceability between the source and target models.

Q18: How do you rate the usefulness of the behavior information of StructureMappings?

Evaluation feedback: Useful. All interviewees suggested exporting the well-structured behavior
information to the third party event-modeling environments to visually construct behavior

synchronization mechanisms for MI&T.

Evaluation feedback analysis: The CRelation model is a high level model. The MaramaCRelation
approach is aimed for leveraging third party technologies to solve problems involved in MI&T.
Behavior synchronization is an important issue involved in MI&T. The behavior descriptions generated
from the CRelation model can be used as well-structured functional requirements to feed the existing
visual event-handling environment to visually construct behavior synchronization mechanisms for

MI&T.

Category 5: How to use the MaramaCRelation approach to improve software engineering?

Q19: How do you rate the potential of using the MaramaCRelation approach to decompose the

monolithic, programming-intensive approach of constructing multi-view environments?

Evaluation feedback: Very promising.

Evaluation feedback analysis: Traditionally, the construction of multi-view environments is based on
programming framework and very programming intensive (e.g. Rational Rose, ArgoUML). The main
tasks in constructing a multi-view environment include traceability maintenance, and model and
behavior synchronization. The traditional multi-view environments use low-level data repositories to
maintain traceability and model synchronization. The CRelation model can be viewed as a high-level
repository that holds the data shared by the interconnected models. The case studies in Chapter 11
demonstrate how to use CRelation models to construct basic multi-view environments. An interesting

future project will be using a well-established multi-view environment e.g. Rational Rose as a

247

benchmark to test to which extent that the MaramaCRelation approach can help to construct multi-view

environments.

020: Rate the potential for MaramaCRelation to provide structured, high level, and visual support for

tool extension

Evaluation feedback: Very promising

Evaluation feedback analysis: Tool extension is normally done at implementation level to achieve a set
of functional goals. The CRelation model helps to extend tools by addressing the rationale and
functional requirements (e.g. mapping sets, behavior descriptions, selection constraints) at high level.
For experienced tool developers, the CRelation model can be used as structured functional requirements,
so people can understand the rationale, the selection constraints, and the behavior information of the
intended tool extension. For inexperienced tool developers, an existing CRelation model can be an
effective guideline for the implementation of the intended tool extension, so they can follow the

structured instructions to implement the functional requirements.

Q21: Rate the potential for MaramaCRelation to provide structured behavior descriptions to feed third

party event-handling technologies

Evaluation feedback: Promising.

Evaluation feedback analysis: Visual event modeling environments have been researched extensively
(Liu et al, 2007). Feeding the visual event modeling environments with the behavior information of the
CRelation model makes it possible to visually construct full-blown behavior synchronization

mechanisms for MI&T, model refinement, and multi-view support.

12.3 Summary

The initial feedback of the MaramaCRelation approach has been very positive. It takes some time for the
users to understand and accept the motivations of the MaramaCRelation approach. They agree that the

MaramaCRelation is an innovative technology to provide useful high level support for MI&T; and they

248

are interested in using the CRelation model to reorganize the issues that are currently treated as separate
operational tasks, such as semantic consistency maintenance, traceability maintenance, and model and
behavior synchronization. The interviewees give positive feedback to the features including: well-
structured rationale; well categorized selection constrains; explicit representation of the associations
involved in the intended MI&T; well-structured behavior descriptions; the generation of search
conditions; and the easy traceability establishment. They have given valuable suggestions for the future
work, including: improving the support for visual context in the CRelation model; using well-accepted
transformation technologies to define selection constraints; and feeding third party event modeling
environments to visually construct behavior synchronization mechanisms for MI&T. The feedback of
the evaluation confirms the contributions of the MaramaCRelation research, and also prompts the future

work for the research.

249

Chapter 13 - The Future Work of the MaramaCRelation Research

The MaramaCRelation approach provides high abstraction level solutions to the usually separated
operational tasks involved in MI&T. Its strength and potential will be improved and better demonstrated
when solving more concrete tasks such as visualizing and generating transformation scripts, supporting
model refinement, and supporting multi-view environment. This chapter introduces the viable future

projects that will explore the potential of the MaramaCRelation research.

13.1 Using the CRelation model to generate model transformation scripts

This will be the first natural move from the current status of the MaramaCRelation research. Section
10.2.2 has achieved positive results in using ATL to construct selection constraints for the CRelation
model. The success shows the potential of the CRelation model visualizing and categorizing ATL scripts,
as well as generating ATL transformation scripts. It is expected that the CRelation model’s generating
ATL scripts would be similar to the UML class diagram’s generating Java classes. XSLT is also a very
popular transformation language. Compared with ATL scripts, XSLT scripts are even harder to read and
maintain. The initial success of using ATL in the CRelation model foresees the high chance of success
of generating XSLT scripts from the CRelation model. VIATRA uses a graph-based transformation
language. It will be interesting to explore how the diagrammatic CRelation model supports analysis and

design of graph-based model transformation.

13.2 Formalizing the used algorithms and definitions

The MaramaCRelation tool uses empirical definitions and algorithms when supporting the CRelation
modelling, including: the empirical definition of the paths between two construct vertices (refer to
Section 9.4.5.2.1); the empirical algorithm to find out the model elements that are truly influential on the

selection constraint results (refer to Section 10.2.3.1); the empirical definition of behaviour information

250

XML schema (refer to Section 9.4.1.4); and the empirical algorithm to translate translatable semantic
constraints (refer to Section 10.3.2). For example, in Chapter 10, the MaramaCRelation tool rewrites the
selection constraints by using an empirical algorithm. The algorithm has been successful in all of the
sample cases, but there is no proof of how generic it is to retrieve the influential modelling information
from any valid selection constraint. The empirical solutions need to be formalized to improve the
accuracy of the CRelation modelling technology and provide more generic solutions for the problems

encountered in the development of the CRelation modelling.

Another example is that the CRelation model uses an empirical definition to specify the paths between
two construct vertices of a domain-specific meta-model (refer to Section 9.4.5.2.1). The empirical
definition needs to be formalized by the knowledge of graph theory. The formalized definitions will
improve the accuracy of the semantics of the SemanticAssociation and the effectiveness of the algorithm

that calculates the available paths for the associationMapping property of the SemanticAssociation.

13.3 Providing visual context within the CRelation model

The CRelation model intensively communicates with the involved source and target meta-models.
Currently, the CRelation model provides the limited visual context support across the models that are
displayed in different Eclipse editors. As some of the CRelation model entities are not straightforward to
understand, such as the entityMapping and selectionConstraints properties of the StructureMapping, and
the associationMapping and semanticTranslation properties of the SemanticAssociation, it is very
important to provide effective visual context within the CRelation model. The effective visual context
within the CRelation model will allow users to access every piece of source and target meta-model
information from within a CRelation model element. The context support within the Eclipse java
programming environment (e.g. access to Java API, display method call hierarchy) will be the good

benchmark for building up visual context support within the CRelation model.

13.4 Developing comprehensive running case studies

Model Integration and Transformation (MI&T) have been researched extensively. But it is hard to find
the substantial running case studies of MI&T involving multiple models with various domains and
abstraction-levels. Comprehensive case studies engage users instantly and can explain research concepts

effectively. The Travel Planner case study in Chapter 11 of interconnecting four domain-specific models

251

via three CRelation models is a good beginning, but the models involved in the Travel Planner case
study are too simplified. It is planned to develop large, real, complicated projects such as the Travel

Planner to demonstrate the strength and explores the potential of the MaramaCRelation research.

13.5 Extending the CRelation model to support functional integration

The CRelation model is at its initial stage, and ready to extend to analyze and design more issues
involved in MI&T. Supporting functional integration among domain-specific models will be a strong
motivation for extending the CRelation model. A sample functional integration is to support the
integration of the code generated from different domain-specific models. More specifically, in the
MaramaMTE+ project, the Form Chart model generates client side program of web applications; and the
architecture model generates server side program of web applications. The code is integrated manually
in MaramaMTE+ in order to function conforming to users’ mindset. It will be interesting to see if the
CRelation model can be extended to provide structured, automatic support for this kind of functional

integration.

13.6 Using the third party environments to construct behaviour synchronization
mechanisms

In Chapter 11, the MaramaCRelation tool uses a very simple mechanism to maintain behaviour and view
synchronization between the interconnected models. This mechanism is based on the behaviour
descriptions of the CRelation StructureMappings, and simply passes the synchronization messages
across the models. By leveraging the third party event-modelling technologies, the behaviour
descriptions can be used to construct much advanced behaviour synchronization mechanisms. Katiaki
(Liu et al, 2007), for example, is an advanced technology of event modelling. Katiaki provides visual
notations for users to construct complicated events that may happen in a model. The CRelation
behaviour descriptions provide the structured event information to feed Kaitiaki, and users can then
design Katiaki models to process the events, such as passing around the information across the models;
deleting the target model elements; or changing the property values of the target modelling elements.
Combining the CRelation modelling with the Katiaki modelling will establish view and behaviour

synchronization visually, structurally, and systematically.

252

13.7 Layered software architecture for multi-view environments

Many traditional multi-view environments are built on the low-level programming framework. The
MaramaCRelation research motivates layered software architecture for building up flexible and
adaptable multi-view environments. The layered software architecture would be consisted of: 1)
MaramaCRelation users use a CRelation model to capture the requirements (through shared semantics)
for a multi-view environment; 2) MaramaCRelation tool developers develop code generation scripts to
generate MaramaCRelation search conditions; 3) MaramaCRelation wusers model behaviour
synchronization mechanisms by using third party environments (e.g. Kaitiaki); and 4) the
MaramaCRelation tool developers develop code generation scripts to generate behaviour
synchronization program. When the multi-view environment needs to support a new domain-specific
modelling technology, the tool users construct new CRelation models, and the tool developers develop
new code generation scripts. The MaramaCRelation search conditions (java classes) are well-structured,

and it is easy to adapt the existing code generation scripts to support new domain-specific knowledge.

The layered software architecture breaks down the monolithic task of multi-view environment
development; and the workload between MaramaCRelation tool users and tool developers is balanced.
The CRelation model is a high abstraction level presentation of the requirements and rationale of the
multi-view environment. The layered architecture will be well modularized, loosely connected, and

more flexible and adaptable than the traditional multi-view environments.

13.8 Supporting model refinement using the MaramaCRelation approach

One of the main goals of Model Driven Engineering (MDE) is to bridge the gap between informal,
business-focused tasks (e.g. business analysis, requirement analysis) and low-level application design
activities (e.g. design and implementation). A typical model-driven development process of the Travel
Planner system may consist of: using the BPMN model to specify business processes (high level model,
close to the business end); using the MaramaMTE+ models to specify software architecture and client
behavior (high level model, in the software development domain); using the Web Service model to
specify web services (high level model, in the software development domain); and using the UML OOD
class diagrams to specify detailed Object Oriented classes (e.g. java classes). It is important to enable
correct and consistent refinement of informal tasks into executable systems, and maintain the traceability

of models across levels of refinement. At this stage, the support for refinement and traceability among

253

models is limited. It is difficult to refine a BPMN model to a MaramaMTE+ architecture model; to
refine a Web service model to a MaramaMTE+ model; and to show the refining process from

MaramaMTE+ to the java test bed.

The MaramaCRelation approach provides a high-level support to interconnect any models by capturing
the shared semantics, recording the behavior synchronization information, and establishing traceability.
The Interconnection Relationships among various models can be understood as the refinement
relationships among the models. It is planned to draw a list of requirements from a benchmark refining
mechanism, and then compare the MaramaCRelation-based refinement mechanism with the benchmark
one. It will be interesting to see to which extent the MaramaCRelation approach can support a sound and

flexible refinement mechanism.

13.9 Summary

All the future projects listed in the chapter are based on the initial success of the MaramaCRelation
research. They are viable and will improve the strength of the MaramaCRelation research. It will be very
interesting to see: how to use the MaramaCRelation approach to visualize and generate transformation
scripts; to which extent the MaramaCRelation approach can support modelling refinement; to which
extent the MaramaCRelation approach can support the construction of multi-view environments; and
how to feed third party event-modelling environments with the behaviour information to visually
construct behaviour synchronization mechanisms. These immediate future projects, in turn, will

motivate more interesting further research.

254

Chapter 14 - Conclusions

Software architecture modelling and architecture performance evaluation have become very important in
Software Development Life Cycle. The author’s previous SoftArch/MTE research evaluates the
performance of software architecture by generating test beds from software architecture models. The
initial success of SoftArch/MTE technology prompted problems that need further research, including:
how to support the test bed generation and performance evaluation using well-established CASE tools;
how to analyze web user behaviour and use the analysis to improve the accuracy of software architecture
performance evaluation; and how to provide high level support for model integration, transformation,
and refinement. The three projects in this thesis are aimed for solving those problems. The ArgoMTE
project improves the usability of the SoftArch/MTE technology by integrating it with the well-
established ArgoUML tool. The MaramaMTE+ project automatically generates basic structure of the
Form Chart model via web reverse engineering. The MaramaMTE+ generates third party load testing
scripts from the Form Chart model and uses the Form Chart model to improve the accuracy of software
architecture performance evaluation. The MaramaCRelation approach provides high level support to
interconnect any domain-specific models, which can be used to support the model integration,
transformation, and refinement. The three projects fall in the paradigm of Model Driven Engineering;
and have made contributions to the research areas of: software architecture modelling and performance
evaluation; realistic web user behaviour analysis and web load testing; and analysis and design of model

integration and transformation. This chapter reports the conclusions drawn from the three projects.

14.1 The ArgoMTE project

The ArgoMTE project extends the well established ArgoUML tool to support software architecture
modelling, test bed generation, and performance evaluation. ArgoMTE has significantly improved the
SoftArch/MTE technology and shown the strength to deal with complicated, large cases. The

conclusions drawn from the ArgoMTE research are as follows:

255

o Usability of the SoftArch/MTE technology has been hugely improved

The main incentive for the ArgoMTE research is to integrate the technology of test bed based
performance evaluation with a well-established UML-based CASE tool. The ArgoMTE tool provides a
much more appealing and effective environment than the previous stand-alone SoftArch/MTE tool. The
ArgoMTE tool extends the UML meta-model, and uses UML class diagram look-like visual notations to
model software architecture and generate test bed, which hugely reduces the learning load of the tool
users. The ArgoMTE tool allows the software architecture modeling to leverage the existing UML OOA

and OOD modeling via model and tool integration.

o Using standard data format to achieve better data exchange

The ArgoMTE tool extends XMI standard to save software architecture meta-models and models, which
has increased the chance of data exchange between the ArgoMTE-styled software architecture models
and UML OO models. The extended-XMI format can not use the standard XMI writer and reader to
exchange data with other UML models, and still need its own writer, reader, and other support facilities.
But the standard XMI paradigm provides the perfect guidelines for the extended-XMI to follow, which
makes the standard XMI and the extended XMI very similar and easy to exchange data.

o Leveraging third party tools to improve the maintainability and flexibility of complicated
performance evaluation processes

The ArgoMTE-styled performance evaluation process is tedious and error-prone. The process involves:
test bed generation, test bed compilation and deployment, test bed execution, and result collecting and
visualization. ArgoMTE uses the Ant build manager tool to automate the process, which greatly eased
this complicated process. The use of third party tools to coordinate the test bed generation and execution
process (Ant), deployment (SFTP), and web based client tests (Microsoft ACT) has proved much more
scalable and flexible than using DOS batch files to perform these tasks in SoftArch/MTE.

o Using a conceptual framework to improve the evolvability of test bed generation and performance
evaluation
The ArgoMTE approach uses a domain-specific meta-model to specify domain-specific knowledge. The

meta-model manages essential information for test bed generation, including: rules for test bed

256

generation, test bed generation scripts, critics for validity of the architecture design and test bed, and test
bed generation logic (refer to Section 5.3.1). An ArgoMTE domain-specific meta-model may evolve
with new architectural concerns coming up. When a domain-specific meta-model evolves, its code
generation scripts and logic need to evolve. The ArgoMTE approach provides a conceptual framework
to support the evolvement of a domain-specific meta-model, and its code generation scripts and logic.
This structured conceptual framework helps users to develop, modify, and reuse domain-specific meta-

model in the ArgoMTE’s meta-model specification tool.

The ArgoMTE research shows how commonly used Components Off The Shelf (COTS) or Open Source
Off The Shelf (OSOTS) tools can improve the usability and maintainability of an in-house technology,
and how the use of standard model representations can improve the tool integration. The ArgoMTE

research motivated the MaramMTE+ to provide better model and tool integration.

14.2 The MaramaMTE+ project

The MaramaMTE tool, constructed using the Marama meta-tool, rebuilds the technology of test bed
generation and performance evaluation of ArgoMTE. The Marama meta-tool supports efficient tool
construction, and theoretically can build complicated tools like ArgoUML. The Marama meta-tool
makes it easy for the MaramaMTE tool to integrate the software architecture modelling with broad range
of other software modelling technologies (e.g. the UML modelling, the BPMN modelling, and the Form
Chart modelling). The MaramaMTE approach leverages the strength of the Form Chart modelling to
improve software architecture performance evaluation and support web load testing. The MaramaMTE+
improves the research of MaramaMTE by automatically generating the basic structure of Form Chart
models, and generating well-analyzed test scripts for third party web load testing tools. The conclusions

drawn from the MaramaMTE+ research are as follows:

o The basic structure of the Form Chart model can be automatically generated via web crawling

The Form Chart model formally analyzes the behavior of web application users. Manually constructing a
Form Chart model can be tedious and error-prone, especially when the target website has complicated
structure. The MaramaMTE+ approach retrieves target website information via web crawling, records

the retrieved website structural data in the purpose-built database, and automatically generates the basic

257

structure of Form Chart models. The MaramaMTE+ has used automatic web reverse engineering to

improve the efficiency of Form Chart model construction.

o The Form Chart model can generate well-analyzed test plans for 3rd party stress testing tools

Constructing web load testing plans and scripts has always been tedious and error-prone. The
MaramaMTE+ approach has successfully used Form Chart models to generate JMeter-formatted and
test-bed-formatted test plans. The Form Chart model has the potential to generate test plans for other
third party testing tools. The test plans generated from the Form Chart model are not ordinary test plans,

but the well analyzed ones that capture the realistic behavior of web users.

o The MaramaMTE+ approach supports effective performance-oriented reverse-engineering

The MaramaMTE+ approach has shown potential in performance-focused web application reverse
engineering. It efficiently generates the basic Form Chart models from legacy web applications, which
provides well-analyzed testing plans to evaluate the server-side software architecture designs. The
MaramaMTE+ approach makes it efficient to compare the legacy server-side software architecture (may

also be retrieved via reverse engineering) with intended, optimized server-side architecture designs.

MaramaMTE and MaramaMTE+ have integrated the traditional software architecture modelling with
the web user behaviour modelling. They have shown how model integration can extend the applicable
domain of a specific software engineering model (e.g. the MaramaMTE+ architecture model, the Form
Chart model); and how the Marama meta-tool supports efficient tool extension. But the model
integration and tool extension in both the MaramaMTE and MaramaMTE+ projects are done at
implementation level and requires hard mental operations. The MaramaCRelation research was then

proposed to provide high level support for model integration and tool extension.

14.3 The MaramaCRelation project

The MaramaCRelation project is designed to provide a structured approach to interconnect domain-
specific models. The CRelation model maintains the rational of the interconnection of domain-specific
models; records semantics maintained and lost across the interconnected models; tracks the evolvement

of modeling elements through the traceability across the interconnected models; and maintains behavior

258

synchronization across the interconnected models. The conclusions drawn from the MaramaCRelation

research are as follows:

o It is useful and important to use an analysis and design abstraction level to guide the operational
tasks of Model Integration and Transformation.

The importance of UML models in software engineering is still arguable, but it does not stop people

from using them to analyze and design Object Oriented (OO) Development. UML models specify

isolated OO development tasks from a high abstraction level, which makes UML models the central

places for software analysis and design, code generation, performance evaluation, and so on.

The current status of Model Integration and Transformation (MI&T) is like OO development without the
support of UML models. Most of MI&T technologies are developed to achieve operational goals
including: transforming models from one format to another, setting up traceability among models,
combining and coordinating source code generated from various models, and synchronizing view and
behaviour of the integrated and transformed models. An analysis and design level of MI&T would
benefit MI&T research as UML models benefit OO development. The CRelation model of the
MaramaCRelation approach has achieved positive results to be a central place for the important issues
related to MI&T, including: capturing the semantics conceptually shared by two models, recording the
rationale for an intended MI&T, detecting semantic inconsistencies during the intended MI&T, and

establishing traceability and behaviour synchronization across models.

o The maintainability of MI&T can be hugely improved by visually categorizing selection constraints

The CRelation model uses StructureMappings, SelectionMappings, and StructureRefinements to
visually categorize the selection constraints of an intended MI&T. The CRelation model has
successfully used ATL scripts to construct selection constraints, which shows huge potential for the

CRelation model to visualize and manage other third party transformation scripts.

o The semantic inconsistency during MI&T can be detected and recorded.
The CRelation model establishes associations between two StructureMappings, and explicitly represents
the association information that is implied but ignored in the traditional model transformation

technologies. The CRelation model uses a SemanticAssociation to explicitly represent the information

259

implied by two StructureMappings, which allows tool users to check if the intended StructureMappings
are correctly designed, or what semantic inconsistencies have to be tolerated. The CRelation model
detects semantic inconsistency, which is different from the traditional consistent transformation and

consistency comparison

o Traceability can be maintained from high level diagrammatic models.

The traceability mechanism of the MaramaCRelation is flexible and adaptable. It consists of two layers:
the CRelation model layer and the search condition generation layer. When interconnecting two domain-
specific meta-models, tool users design the CRelation model and the MaramaCRelation tool developers
develop the code generation scripts (Eclipse JET scripts). The layered architecture breaks down the
monolithic programming-intensive traceability mechanism, and allows tool users to manage traceability

of MI&T through a high level model (the CRelation model).

o The events triggered by an MI&T can be automatically retrieved.
The CRelation model automatically retrieves all the possible “removed” and “changed” events triggered
by the interconnected models. The event information of the CRelation model represents well structured

functional requirements for a behaviour synchronization mechanism.

o The MaramaCRelation approach supports a flexible and adaptable multi-view environment structure

One of the main goals of the MaramaCRelation research is to build up flexible and adaptable multi-view
environment. The layered software architecture of the multi-view system would consist of : 1)
MaramaCRelation users use a MaramaCRelation model to capture the requirements (through shared
semantics) for the multi-view environment; 2) MaramaCRelation tool developers develop code
generation scripts to generate MaramaCRelation search conditions; 3) MaramaCRelation users model
behaviour synchronization mechanisms by using third party mechanisms (e.g. Kaitiaki); and 4) the
MaramaCRelation tool developers develop code generation scripts to generate behaviour
synchronization code for the used third party model. The high abstraction level of the MaramaCRelation
approach improves the flexibility and adaptability of the MaramaCRelation-based layered multi-view

system.

o The MaramaCRelation approach supports a flexible and adaptable model refinement mechanism

260

One of the main goals of Model Driven Engineering (MDE) is to bridge the gap between informal,
business-focused tasks (e.g. business analysis, requirement analysis) and low-level application design
activities (e.g. design and implementation). It is important to enable correct and consistent refinement of
informal tasks into executable systems, and maintain the traceability of changes across levels of
refinement. The MaramaCRelation approach provides a high-level support to interconnect any models
by capturing the shared semantics, recording the behavior synchronization information, and establishing
traceability. It is a well-structured place to record essential information involved in model refinement.
The MaramaCRelation approach has the huge potential to support sound and flexible refinement

mechanisms.

14.4 Summary

The thesis has made contributions in software architecture design, software architecture performance
evaluation, web load testing, and model integration and transformation. The research results have been
demonstrated and evaluated in the thesis. The main aims of the projects are to improve the automatic
support, analysis and design support, and systematic and structured support for the interested software

engineering modelling technologies.

The three projects presented in the thesis, bring innovative technologies, find new use for the existing
technologies, and abstract problem domains at various levels. All three projects, especially the
MaramaCRelation project, motivate interesting and promising future projects, which will lead more

useful contributions towards Model Driven Engineering.

261

References

[Allen, 1997]
R. Allen, “4 Formal Approach to Software Architecture.”, Ph.D. Thesis, Carnegie Mellon University,
CMU Technical Report CMUCS-97-144, May 1997.

[Amar et al, 2008]
Bastien Amar, Hervé Leblanc, Bernard Coulette, A Traceability FEngine Dedicated to Model
Transformation for Software Engineering, ECMDA'08 - Traceability Workshop, June, 2008

[Apache Ant, 2004]
Apache Ant, http://ant.apache.org/

[Apache JMeter, 1999]

Apache Jmeter, http://jakarta.apache.org/jmeter/

[Apache Xalan, 2004]
Apache Xalan, http://xml.apache.org/xalan-j/

[ArgoUML, 2003]
ArgoUML, http://argouml.tigris.org/

[ATLAS Transformation, 2006]
ATLAS, www.eclipse.org/m2m/atl

[Bakken, 2003]

262

David E. Bakken, Encyclopedia of Distributed Computing, Kluwer Academic Press, 2003.

[Balasubramanian et al, 2006]

Krishnakumar Balasubramanian, Jaiganesh Balasubramanian, Jeff Parsons, Aniruddha Gokhale,
Douglas C. Schmidt, A Platform-Independent Component Modeling Language for Distributed Real-
Time and Embedded Systems, Proceedings of the 11th IEEE Real Time on Embedded Technology and
Applications Symposium, Pages: 190 - 199, Year of Publication: 2005, ISBN ~ ISSN:1080-18120-7695-
2302-1

[Balsamo et al, 2002]
Balsamo, S., Simeoni, M., Bernado, M. Combining Stochastic Process Algebras and Queuing Networks
for Software Architecture analysis, Proc 3rd Intl Workshop Software & Performance, 2002, ACM Press

[Balzer, 1985]
Balzer, B. A 15 year perspective on automatic programming, IEEE Transactions on Software

Engineering, vol. 11 no. 11, Nov 1985, pp.1257-1268.

[Barford et al, 1998]

Barford, P. and Crovella, M. Generating representative Web workloads for network and server
performance evaluation, Proc 1998 ACM SIGMETRICS Joint Intnl Conference on Measurement and
Modeling of Computer Systems, Madison, Wisconsin, 1998, pp. 151-160.

[Bachmann et al, 2000]
Bachmann, F., Bass, L., Carriere, J., Clements, P., Garlan, D., Ivers, J., Nord, R., Little, R., Software
Architecture Documentation in Practice: Documenting Architectural Layers, available,

http://www.sei.cmu.edu/publications/documents/00.reports/00sr004.html
[Beyer, 2005]

Beyer, D. CCVisu - A Tool for General Force-Directed Graph Layout and Co-Change Visualization,
See http://directory.fsf.org/ccvisu.html

263

[Binns et al, 1996]
P. Binns, M. Engelhart, M. Jackson, and S. Vestal. “Domain-Specific Software Architectures for
Guidance, Navigation, and Control.”, International Journal of Software Engineering and Knowledge

Engineering, vol. 6, no. 2, 1996

[Booch, 1994]
‘Object-Oriented Analysis and Design with Applications’, Booch G. — 2" ed., Addison Wesley
Publishing Company, 1994

[BPMN, 2004]
Object Management Group, BPMN and Business Process Management, available,

http://www.omg.org/Documents

[Briand, 1998]
Lionel C. Briand, Khaled El Emam Bernd G. Freimut 4 Comparison and Integration of Capture-
Recapture Models and the Detection Profile Method, Proceedings of The Ninth International

Symposium on Software Reliability Engineering, Page: 32, Year of Publication: 1998

[Cai and Grundy et al, 2004]

Cai, Y., Grundy, J.C., Hosking, J.G., Dai, X. Software Architecture Modeling and Performance Analysis
with Argo/MTE, In Proceedings of the 2004 Conference on Software Engineering and Knowledge
Engineering, Banff, Canada, June 20-24 2004

[Cai et al, 2004]
Cai, Y., Grundy, J.C. and Hosking, J.G. Experiences Integrating and Scaling a Performance Test Bed
Generator with an Open Source CASE Tool, In Proc 2004 IEEE Intnl Conference on Automated

Software Engineering, Linz, Austria, September 20-24, IEEE CS Press, pp. 36-45.

[Cai et al, 2007]

264

Cai, R., Grundy, J., Hosking, J., Synthesizing client load models for performance engineering via web
crawling, Proceedings of the twenty-second IEEE/ACM international conference on Automated

software engineering, Atlanta, Georgia, USA, SESSION: Model-based development 2, Pages 353-362

[Castell et al, 1998]

N. Castell and A. Hernandez. The Sofiware Requirements Modelling in SAREL, Fourth International
Workshop on Requirements Engineering: Foundations of Software Quality (REFSQ'98) , pages 49-56,
ISBN 2-87037-272-8, Pisa, Italy, June 1998. (in English)

[Chen et al, 2004]

Kai Chen, Janos Sztipanovits, Sandeep Neema, Towards Formalizing Domain-specific Modeling
Languages, Model-Integrated Computing Workshop, Exploring the Synergy between MIC and MDA®
Arlington, 2004

[Cheng et al, 1994]
Cheng, B. H. C., Wang, E. Y., and Bourdeau, R. H., "4 Graphical Environment for Formally
Developing Object-Oriented Software", Proceedings of International Conference on Tools with Al, Nov.

1994.

[Chikofsky et al, 1990]
EJ Chikofsky, EJ Chikofsky, JH Cross, Software, IEEE, Vol. 7, No. 1. (1990), pp. 13-17

[Clements, 1997]
P. C. Clements. “Working Paper for the Constraints Sub-Group.”, EDCS Architecture and Generation
Cluster (http://www.sei.cmu.edu/~edcs/CLUSTERS/ARCH/index.html), April 1997.

[Csertan et al, 2002]

Gyorgy Csertan, Gabor Huszerl, Istvan Majzik, Zsigmond Pap, Andras Pataricza, Daniel Varro, VIATRA
— Visual Automated Transformations for Formal Verification and Validation of UML Models, in
Proceedings of the 17th ASE, page267

265

[CSIRO, 2000]
CSIRO, http://www.csiro.au/files/mediaRelease/mr2000/Prmiddleware.htm

[Dai et al, 2002]
Dai, S. and Grundy, J.C. Architecture of a Micro-Payment System for Thin-Client Web Applications, In

Proceedings of the 2002 International Conference on Internet Computing, Las Vegas, June 24-27 2002,
CSREA Press.

[Dai et al, 2007]
Dai, X. and Grundy, J.C. NetPay: An off-line, decentralized micro-payment system for thin-client
applications, Commerce Research and Applications, Elsevier, vol. 6, no. Electronicl, March 2007,

Elsevier, pp. 91-101

[Denaro et al, 2004]

Denaro et al, Denaro, G., Polini, A., Emmerich, W. Early performance testing of distributed software
applications, In Proceedings of the 4th Intnl Workshop on Software and Performance, Jan 14-18 2004,
Redwood City, California, pp. 94-103

[Deng et al, 2003]

Gan Deng, Tao Lu, Emre Turkay, Aniruddha Gokhale, Andrey Nechypurenko, Model Driven
Development of Inventory Tracking System, available,
http://www.cs.wustl.edu/~schmidt/PDF/ITS Modeling.pdf

[Sanches et al, 2008]
Sanchez, M., Villalobos, J., Deridder, D., “Co-Evolution and Consistency in Workflow-based
Applications” in 1st International Workshop on Model Co-Evolution and Consistency Management,

Toulouse, France, 2008

[Di Lucca et al, 2001]

266

Di Lucca, G.A., Di Penta, M., Antonniol, G. and Casazza, G. (2001), An Approach for Reverse
Engineering of Web-Based Applications, Proc. 8th Working Conference on Reverse Engineering,
WCRE'01, IEEE, pp231-240.

[Draheim et al, 2003]
Draheim, D. and Weber, G., Modeling Submit/Response Style Systems with Form Charts and Dialogue
Constraints, LNCS Volume 2889/2003, Springer.

[Draheim et al, 2005]
Draheim, D., Lutteroth, C. and Weber, G. (2005), 4 Source Code Independent Reverse Engineering Tool
for Dynamic Web Sites, Proc. 9th European Conference on Software Maintenance and Reengineering

(CSMR’05), pp168-177.

[Draheim et al, 2006]
Draheim, D., Grundy, J.C., Hosking, J.G., Lutteroth, C. and Weber, G. Realistic Load Testing of Web
Applications, In Proceedings of the 10th European Conference on Software Maintenance and Re-

engineering, Berlin, 22-24 March 2006

[Eclipse 2001]

Eclipse, www.eclipse.org/

[ECPerf&JDBC Benchmark, 2002]
ECPerf&JDBC Benchmark, http://www.datadirect.com/products/jdbc/ecperfan dspecj/index.ssp

[ECPerf, 2002]
ECPerf Performance Benchmarks, August 2002, available, http://ecperf.theserverside.com/ecperf

[Egyed, 2001]

Egyed, A., “Transformation, Ambiguity, and Trivialization,” Proceedings of the 2nd International
Workshop on Living with Inconsistencies (IWLWI), co-located with ICSE 2001, Toronto, Canada, May
2001

267

[Egyed, 2001 2]
Egyed, A., Scalable Consistency Checking between Diagrams — The VIEWINTEGRA Approach,
Automated Software Engineering archive. Proceedings of the 16th IEEE international conference on

Automated software engineering, Page: 387, Year of Publication: 2001

[Elbaum et al, 2003]
Elbaum, S., Karre, S., Rothermel, G. Improving Web Application Testing with User Session Data, In
Proceedings of the 2003 International Conference on Software Engineering, IEEE CS Press, 2003.

[Engels et al, 2002]

Gregor Engels, Reiko Heckel, Jochen M. Kiister, Luuk Groenewegen, Consistency-Preserving Model
Evolution through Transformations (2002), Lecture Notes In Computer Science; Vol. 2460 archive
Proceedings of the 5th International Conference on The Unified Modeling Language, Pages: 212 - 226,
Year of Publication: 2002

[Falleri et al, 2006]

JR Falleri, M Huchard, and C Nebut (2006), Towards a Traceability Framework for Model
Transformations in Kermeta. In: ECMDA-TW'06: ECMDA Traceability Workshop, Sintef ICT,
Norway, pages31-40.

[Feast, 2002]
Alan Feast, Using middleware for inter-enterprise integration across the UK electricity supply chain,

available, http://www.middlewarespectra.com/abstracts/5 99 02.htm

[Feldman et al, 2007]
Steve Feldman, Tim Moore, Ryan O’Neil, Introduction to Software Performance Engineering, available,

http.//www.edugarage.com/download/attachments/14551531/b2conference performance 2004.pdf?ver

sion=1

[Fujaba, 2007]

268

Fujaba, http://wwwecs.uni-paderborn.de/cs/fujaba/

[Garcia, 2008]
M. Garcia. Bidirectional synchronization of multiple views of software models, In Proceedings of

DSML-2008, volume 324 of CEUR-WS, pages 719, 2008.

[Garlan et al, 1997]
D. Garlan, R. Monroe, and D. Wile. “ACME: An ArchitectureDescription Interchange Language.” In
Proceedings of CASC ON’97, November 1997

[Garlan, 1995]
Garlan, D., “dAn Introduction to the Aesop System.” July 1995. http://

www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesopoverview.ps

[Geoffrion, 1996]
Geoffrion, Arthur M., STRUCTURED MODELING: SURVEY AND F UTURE RESEARCH
DIRECTIONS, 1996, available, http: //www.anderson.ucla.edu/faculty/art.geoffrion/home/csts/csts3.htm

[Gorton et al, 2000]
Gorton, I. and Liu, A. Evaluating Enterprise Java Bean Technology, In Proc Software - Methods and
Tools, Wollongong, Australia, Nov 6-9 2000, IEEE

[Graaf et al, 2007]

Bas Graaf, Arie van Deursen, Model-Driven Consistency Checking of Behavioral Specifications,
Proceedings of the Fourth International Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, Pages 115-126, Year of Publication: 2007

[Green et al, 1996]

T. R. G. Green and M. Petre. Usability analysis of visual programming environments: A ‘cognitive

dimensions' framework, Journal of Visual Languages and Computing, 7:131--174, 1996.

269

[Greenfield, 2001]
Greenfield, 1., UML profile for EJB, 2001, available,
http://www.jeckle.de/files/UMLProfileForEJBPublicDraft.pdf

[Grundy and Cai et al, 2001]

Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed System Test-beds from High-level Software
Architecture Descriptions, Proc 2001 IEEE Intl Conf on Automated Software Engineering, San Diego,
CA, Nov 26-29 2001

[Grundy and Bai et al, 2003]

Grundy, J.C., Bai, J., Blackham, J., Hosking, J.G. and Amor, R. An Architecture for Efficient, Flexible
Enterprise System Integration, Proc 2003 Intl Conf on Internet Computing, Las Vegas, June 23-26 2003,
CSREA Press, pp. 350-356

[Grundy and Cai et al, 2005]
Grundy, J.C., Cai, Y. and Liu, A. SoftArch/MTE: Generating Distribute d System Test-beds from High-
level Software Architecture Descriptions, Automated Software Engineering, Kluwer Academic

Publishers, vol. 12, no. 1, January 2005, pp. 5-39. PDF

[Grundy and Hosking et al, 2000]
Grundy, J.C. and Hosking, J.G., High-level Static and Dynamic Visualization of Software Architectures,
In Proceedings of 2000 IEEE Symposium on Visual Languages, IEEE CS Press.

[Grundy and Hosking et al, 2006]
Gundy, J.C., Hosking, J.G., Zhu, N. and Liu, N., Generating Domain-Specific Visual Language Editors
from High-level Tool Specifications, In Proceedings of the 2006 IEEE/ACM International Conference on

Automated Software Engineering, Tokyo, 24-28 Sept 2006, IEEE

[Grundy et al, 1996]

270

Grundy, J.C. and Hosking, J.G. Constructing Integrated Software Development Environments with
MView s, International Journal of Applied Software Technology, Vol. 2, No. 3/4, International
Academic Publishing Company, pp. 133-160

[Grundy et al, 1998]
Grundy, J.C., Hosking, J.G., and Mugridge, W.B. (1998). Inconsistency Management for Multiple-View
Software Development Environments, IEEE Transactions on Software Engineering, 24(11), 960-981

[Grundy, Hosking, and Li et al, 2006]
Grundy, J.C., Hosking, J.G., Li, L. And Liu, N. Performance engineering of service compositions, ICSE
2006 Workshop on Service-oriented Software Engineering, Shanghai, May 2006.

[Hann, 2008]
Johan den Haan, DSL and MDE, necessary assets for Model-Driven approaches, available,
http://www.theenterprisearchitect.eu/archive/2008/08/11/dsl-and-m-model-driven-approaches de-

necessary-assets-for

[Hu et al, 1997]
Hu, L., Gorton, 1., 4 performance prototyping approach to designing concurrent software architectures,

In Proc of the 2nd International Workshop on Software Engineering for Parallel and Distributed Systems,

IEEE, pp. 270 — 276.

[IBM Rational, 2008]

Rational Architect, available, http://www-01.ibm.com/software/awdtools/architect/swarchitect/

[IBM, 2001]

Rational Rose, available, http://www-01.ibm.com/software/awdtools/developer/ rose/

[IBM, 2005]
Kim Letkeman, Comparing and merging UML models in IBM Rational Software Architect: Part 3, 2005,

available, http://www.ibm.com/developerworks/rational/library/05/802 comp3/

271

[Jackson et al, 2005]
Robert Jackson, Security and Cost Considerations of Using Middleware to Facilitate SAS Integration,
2005, available, http://www2.sas.com/proceedings/sugi31/013-31.pdf

[Java EE, 2007]
J2EE, http://java.sun.com/javaee/

[Java RMI, 1999]

Java RMI, http://java.sun.com/javase/technologies/core/basic/rmi/ index.jsp

[Khare et al, 2001]

Rohit Khare, Michael Guntersdorfer, Nenad Medvidovic, Peyman Oreizy, and Richard N. Taylor, xADL:
Enabling Architecture-Centric Tool Integration With XML, In Proceedings of the 34th Annual Hawaii
International Conference on System Sciences (HICSS-34), 2001

[Kirwan et al, 2008]
Pat Kirwan, Jeannine Siviy, Lisa Marino, and John Morley, Implementation Challenges in a Multimodal
Environment, 2008, available,

http://www.sei.cmu.edu/prime/documents/multimodelSeries wp5 implementation 052008 v1.pdf

[Kocsis et al, 2006]
VIATRA?2 Framework, An Eclipse GMT Subproject, see, http://www.eclipse.org/gmt/

[Kruchten, 1995]
P. B. Kruchten. The 4+ 1 view model of architecture, IEEE software, pages 42-50, Nov., 1995

[Kuster, 2004]

J. M. Kiister, Systematic Validation of Model Workshop in Software Model Transformations,
Proceedings 3rd UML Engineering (WiSME2004), Lisbon, Portugal, October2004.

272

[Len Bass et al, 2003]
Len Bass, Paul Clements, Rick Kazman, Software Architecture In Practice, Addison-Wesley
Professional; 2 edition (April 19, 2003)

[Li et al, 2007]

Li, L., Hosking, J.G., Grundy, J. C., Visual Modeling of Complex Business Processes with Trees,
Overlays and Distortion-Based Displays, In Proceedings of the 2007 IEEE Symposium on Visual
Languages and Human-Centric Computing, USA, IEEE CS Press

[Liu et al, 2005]

Yan Liu, Alan Fekete, Ian Gorton, "Design-Level Performance Prediction of Component-Based
Applications," 1EEE Transactions on Software Engineering, vol. 31, no.11, pp. 928-941, November,
2005. http://doi.ieeecomputersociety.org/10.1109/TSE.2005.127

[Liu et al, 2007]
Liu, N., Hosking, J.G. and Grundy, J.C., MaramaTatau: extending a domain specific visual language
meta tool with a declarative constraint mechanism, In Proceedings of the 2007 IEEE Symposium on

Visual Languages and Human-Centric Computing, USA, Sept 23-27 2007, IEEE CS Press

[Liu et al, 2007]
Na Liu , John Hosking ,John Grundy , A4 Visual Language and Environment for Specifying User
Interface Event Handling in Design Tools, Proceedings of the eight Australasian conference on User

interface - Volume 64, Ballarat, Victoria, Australia, Pages: 87 - 94, Year of Publication: 2007

[Luckham et al, 1995]

D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann. “Specification and
Analysis of System Architecture Using Rapide.”, IEEE Transactions on Software Engineering, vol. 21,

no. 4, pages 336-355, April 1995.

[MacKenzie, 2002]

273

G. MacKenzie, G. Schulmeyer, and L. Yilmaz, "Verification Technology Potential with Different
Modeling and Simulation Development and Implementation Paradigms”, V&V State of the Art: Proc. of
Foundations '02, a Workshop on Modeling and Simulation Verification and Validation for the2lst
Century (CD), The Society for Modeling and Simulation International (SCS), 2002.

[Magee et al, 1995]

Magee, N. Dulay, S. Eisenbach, and J. Kramer. “Specifying Distributed Software Architectures”, In
Proceedings of the Fifth European Software Engineering Conference (ESEC’95), Barcelona,
September1995.

[Marama meta-tool, 2007]

Marama meta-tool, https://wiki.auckland.ac.nz/display/csidst/Marama+Meta-tools

[MaramaMTE, 2007]
MaramaMTE, https://wiki.auckland.ac.nz/display/csidst/MaramaMTE

[MaramaTorua, 2007]

MaramaTorua, https://wiki.auckland.ac.nz/display/csidst/Marama+Torua

[Markovian, 1986]
Ibrahim H. Onyiiksel, Keki B. Irani, Markovian Queueing Network Models for Performance Analysis of
a Single-Bus Multiprocessor System, IEEE Transactions on Computers archive, Volume 39 , Issue 7

(July 1990), Pages: 975 - 980, Year of Publication: 1990

[MDT, 2008]
MDT, http://www.eclipse.org/modeling/mdt/?project=ocl

[Medvidovic et al, 1996]

N. Medvidovic, P. Oreizy, J.E. Robbins, and R. N. Taylor. Using Object-Oriented Typing to Support
Architectural Design in the C2 Style, In Proceedings of FSE4, pages 24-32, San Francisco, CA, Octorber,
1996

274

[Medvidovic et al, 2000]
Nenad Medvidovic, Richard N. Taylor, A4 Classification and Comparison Framework for Software
Architecture Description Languages, IEEE Transactions on Software Engineering archive, Volume 26 ,

Issue 1 (January 2000), Pages: 70- 93, Year of Publication: 2000

[Mensace et al, 2002]
Menasce, D.A., Load testing of web sites, IEEE Internet Computing, Jul/Aug 2002, vol. 6, no. 4, pp. 70-
74.

[Microsoft, 2002]

Web Application Stress Tool, See:
http://www.microsoft.com/downloads/details.aspx?familyid=e2c0585a-062a-
439ea67d75a89aa36495&displaylang=en

[Miller et al, 1998]
Miller, R.C. and Bharat, K. SPHINX: 4 Framework for Creating Personal, Site-Specific Web Crawlers.

In Proceedings of WW?7, Brisbane Australia, April 1998, See: http://www.cs.cmu.edu/~rcm/websphinx/

[Model Driven Engineering]

http://en.wikipedia.org/wiki/Model_Driven_Engineering

[MOF, 2008]

MOF, http://www.omg.org/technology/documents/formal/mof.htm

[Moriconi et al, 1997]
M. Moriconi and R. A. Riemenschneider. “Introduction toSADL 1.0: A L anguage for Specifying
Software Architecture Hierarchies.” Technical Report SRI-CSL-97-01, SRI International, March1997

[MS .NET, 2007]

275

MS.NET, http://www.microsoft.com/NET/

[MS COM/DCOM, 2007]
MS COM/DCOM, http://www.microsoft.com/com/default.mspx

[MSDN, 2002]
Microsoft, Using .NET to implement Sun Microsystem’s Java Pet Store J2EE BluePrint application,
October 2002, http://msdn.microsoft.com/library/default.asp? url=/library/en-us/dnbda/html/psimp.asp.

[Nimmagadda et al, 1999]

Nimmagadda, S., Liyanaarachchi, C., Gopinath, A., Niehaus, D. and Kaushal, A. Performance patterns:
automated scenario based ORB performance evaluation, Proc 5th USENIX Conf on OO Technologies
& Systems, USENIX, 1999, 15-28.

[OMG MDA, 2001]
OMG MDA, http:// www.omg.org/mda/

[OMG QVT, 2001]
MOF QVT, Final Adopted Specification, 2001, available, www.omg.org/docs/ptc/05-11-01.pdf

[OMG, 1995]
CORBA, Common Object Request Broker Architecture, OMG, July, 1995, see www.corba.org/

[Oracle, 2006]

The state of middleware 2006, available, www.oracle.com/products/middleware/docs/state-of-

middleware-part2.pdf

[Patel et al, 2007]

276

Reshma Patel, Frans Coenen, Russell Martin, Lawson Archer, Reverse Engineering of Web Applications:

A Technical Review, 2007, available, http://www.csc.liv.ac.uk/research/techreports/tr2007/ulcs-07-

017.pdf

[Petriu et al, 2000]
Petriu, D., Amer, H., Majumdar, S., Abdull-Fatah, 1., Using analytic models for predicting middleware
performance, In Proc 2nd Intl Wkshop on Softwareand Performance, A CM 2000, pp.189-94.

[PetStore, 2002]

Java Pet Store, http://java.sun.com/developer/releases/petstore/

[Pieter Van et al, 2005]
Pieter Van Gorp, Dirk Janssens: CAViT: a Consistency Maintenance Framework based on

Transformation Contracts. Transformation Techniques in Software Engineering2005

[PrismTech, 2008]
Optimizing Development and Delivery of SCA-Compliant SDR Applications Using An Integrated Tool

Chain, 2008, available, www.lynuxworks.com/products/webinar/sdr-prismtech-telelogic.pdf

[Proxy-Sniffer, 2008]

Proxy Sniffer, 2008, available, http:// www.proxy-sniffer.com/

[Ramos et al, 2007]

Ramos, R., Barais, O. and Jézéquel, J.M. Matching Model-Snippets, ACM/IEEE 10th International
Conference on Model Driven, Engineering Languages and Systems, Nashville, USA, September30-
October 3, 2007

[Robbings et al, 1998]

Robbins, J. Hilbert, D.M. and Redmiles, D.F. Extending design environments to software architecture
design, Automated Software Engineering, vol. 5, No. 3, July 1998, 261-390.

277

[Robbings et al, 1999]
Robbins, J.E. and Redmiles, D.F. Cognitive Support, UML Adherence, and XMI Interchange in
Argo/UML, In Proc CoSET 99, Los Angeles, May 1999, pp. 61-70.

[Sabetzadeh et al, 2006]
M. Sabetzadeh and S. Nejati. TReMer: A4 tool for relationship-driven model merging. In FM, 2006.

Demo.

[Sanchez et al, 2008]

Sanchez, P., Fuentes, L., Stein, D., Hanenberg, S. and Unland, R. Aspect-Oriented Model Weaving
Beyond Model Composition and Model Transformation, ACM/IEEE 11th International Conference on
Model Driven, Engineering Languages and Systems, Toulouse, France, 28 September - 3 October 2008.

[Schmidt, 2006]
Douglas C. Schmidt, Model Driven Engineering, 2006, available,
http://www.cs.wustl.edu/~schmidt/GELpdf

[Sendall, 2004]
Shane Sendall, Rainer Hauser, Jana Koehler, Jochen Kiister, Michael Wahler, Understanding Model
Transformation by Classification and Formalization, 2004, available,

www.zurich.ibm.com/pdf/csc/position-paper-sts04 sendall.pdf

[Shaw et al, 1995]
M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik. “Abstractions for Software
Architecture and Tools to Support Them.” IEEE Transactions on Software Engineering, vol. 21, no. 4,

pages 314-335, April 1995.
[Shaw et al, 1996]

M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice-Hall,

1996

278

[Smith et al, 2005]

Smith, C.U., Llado, C.M., Cortellessa, V., Di Marco, A.,Williams, L.G. From UML models to software
performance results: an SPE process based on XML interchange formats, In Proceedings of the Fifth
International Workshop on Software and Performance, Palma, Spain, July 12-14, 2005, ACM Press, pp.
87-98

[Software Architecture, 2008]
Software Architecture, 2008,
http://www.softwarearchitectures.com/go/Discipline/Designing Architecture/Quality Attributes/tabid/64/

Default.aspx

[Soto, 2008]
Martin Soto, Jirgen Miinch, Using model comparison to maintain model-to-standard compliance, May
2008 CVSM '08: Proceedings of the 2008 international workshop on Comparison and versioning of

software models

[SPEC]
SPEC, available, http://www.spec.org/

[SPEC benchmarks, 2002]
SPEC Java Benchmarks, 2002, available, http://www.spec.org/benchmarks.html#java

[Sprenkle et al, 2005]
Sprenkle, S., Gibson, E., Sampath, S., Pollock, L. Automated Replay and Failure Detection in Web
Applications, In Proceedings of the 2005 International Conference on Automated Software Engineering,

Long Beach, California, November 7-11, IEEE CS Press, 2005.
[Subraya et al, 2000]

Subraya, B.M., Subrahmanya, S.V., Object Driven Performance Testing in Web Applications, In
Proceedings of the 1st Asia-Pacific Conference on Quality Software (APAQS'00), IEEE CS Press, 2000.

279

[Taylor et al, 2008]
Nenad Medvidovic, Richard N. Taylor: Exploiting architectural style to develop a family of applications.
IEE Proceedings - Software 144(5-6): 237-248 (1997)

[Tolvanen, 2008]
Juha-Pekka Tolvanen, Domain-Specific Modeling in Practice, 2008, available, http://tfs.cs.tu-
berlin.de/gtvmt08/Program/DSMinPractice Tolvanen 29March2008.pdf

[Tramontana et al, 2002]

Tramontana, P., Reverse engineering Web applications, Software Maintenance, 2005. ICSMapos; 05.
Proceedings of the 21st IEEE International Conference on Volume, Issue , 26-29 Sept. 2005 Page(s):
705 —708

[Ulrike Becker-Kornstaedt et al, 1999]

Ulrike Becker-Kornstaedt , Dirk Hamann, Ralf Kempkens, Peter Rosch, Martin Verlage, Richard
Webby, Jorg Zettel
Support for the Process Engineer: The Spearmint Approach to Software Process Definition and Process
Guidance, Lecture Notes In Computer Science; Vol. 1626 archive, Proceedings of the 11th International

Conference on Advanced Information Systems Engineering, Pages: 119 - 133, Year of Publication: 1999

[UML, 1996]
UML Metamodel version 1.1 1 September 1997, available,

http://www.omg.org/technology/documents/modeling spec catalog.htm

[Varr’o et al, 2003]

Varr'o, D. and A. Pataricza, VPM: A visual, precise and multilevel metamodeling framework for
describing mathematical domains and UML, Journal of Software and Systems Modeling 2 (2003), pp.
187-210.

[W3C, 2004]
OWL Web Ontology Language, www.w3.org/TR/owl-features/

280

[W3C, 2005]
Web Service Modeling Language (WSML), www.wsmo.org/wsml/

[WebLOAD, 2003]
webLOAD, http://www.radview.com/

[White et al, 1997]
Sharon A. White, Cuauhtémoc Lemus-Olalde, THE SOFTWARE ARCHITECTURE PROCESS, 1997,
available, http./nas.cl.uh.edu/whites/webpapers.dit/ETCE97pap.pdf

[Xiong et al, 2007]

Yingfei Xiong, Dongxi Liu,Zhenjiang Hu,Haiyan Zhao, Masato Takeichi, Hong Mei, Towards
Automatic Model Synchronization from Model Transformations, Automated Software Engineering
archive, Proceedings of the twenty-second IEEE/ACM international conference on Automated software

engineering, Atlanta, Georgia, USA, Pages 164-173, Year of Publication: 2007

[XSLT Transformation, 2001]
XSLT, available, http://www.w3.org/TR/xslt.html

281

Appendix - Questionnaire

Category 1: Do you often come across the problems identified by the MaramaCRelation approach?

Are those problems sensible and need to be solved?

Q. How do you normally capture the rationale of your Model Integration and Transformation (MI&T)
designs?

A: Coding

More explanation: Rationale is usually captured in low-level code/formulae that specify target values in
terms of source values. Is usually implicit in the formulae and structure/ordering of the transformation

script or consistency management code.

Q: Have you ever experienced the need to maintain semantics and semantic constraints when doing
MI&T?

A: Very often

More explanation: Yes — as this is the whole point in my mind of model integration and/or
transformation. Semantically incorrect target models or related models make the

integration/transformation of very limited use.

Q: How easy do you find maintaining model transformation scripts, especially after a long time since
you wrote them?

A: Hard

More explanation: Because they are usually low level code, it’s hard after a short time. Also the
scripts/code don’t lend themselves to easy maintenance due to the mix of constructs in the code i.e. mix
of formulae doing transformation./linking vs. extraction of source./target elements esp. in XML based

transformations.

282

Q: How do you currently solve issues such as traceability establishment and view synchronization
during MI&T?

A: Both tool and coding

More explanation: Simple stuff: e.g. Marama OCL, Marama model/view view type mapping

specifications, reusable event handlers. Complex stuff: code, transformations scripts

Q: Do you know any available solutions for the identified problems? Please list them.

A: Visual mapping languages help to abstract from the low-level representational structures.

Category 2: Is the CRelation model easy to understand?

Q. How hard is it to understand StructureMapping and its properties?
A: Reasonable
More explanation: This is the basic relationship between model elements/constructs. I am not sure the
“construct” is so easy to understand as it is presented textually — a visual meta-model snippet might help

to demonstrate these for the user if they ask for one of them.

Q: How hard is it to understand SelectionRefinement and its properties?

A: Easy

Q: How hard is it to understand StructureReifnement and its properties?

A: Reasonable

More explanation: This is somewhat more challenging — I do think a concrete example illustrating either
meta-model elements/constructs in source/target would greatly help — or even better INSTANCE
example (like in the ICSE paper — a small snippet showing example instances in source/target being

linked by the structure refinement, structureMapping, etc.

Q: How hard is it to understand SemanticAssociation and its properties?

A: Hard

283

More explanation: 1 found this construct one of the harder ones to understand. However, again this

perhaps could be helped in future version of MaramaCRelation tool by illustration

Q: How do you rate the understandability of the visual notations of the CRelation modelling elements?
A: Hard to understand

More explanation: The visual language is hard to understand at first. An interesting extension would be
to show the source/target meta-model elements/constructs in the view — like Karen did with Kaitiaki — to

give a visual indication of the context of the CRelation element.

Category 3: Can the CRelation model solve the identified problems? What is their potential?

Q: How do you rate the usefulness of CRelation model for capturing the rationale of MI&T?

A: Very useful

More explanation: This is the major contribution — a model-to-model mapping language with support
for capturing not just element correspondences — which visual data mapping tools like MaramaTorua

focus on - but complex constructs and constraints.

Q: How do you rate the potential of the MaramaCRelation approach for improving maintainability and
readability of model transformation scripts?

A: Promising

More explanation: 1 am not 100% sure about the transformation scripts — as discussed, would be good to
see how adding them to the CRelation elements goes, This would then give a quite different way to

structure the scripts vs. current approaches in e.g. ATL, XSLT etc.

Q: Do you think the explicit representation of associations is helpful to correctly capture shared
semantics during MI&T?
A: Very useful

More explanation: Yes I think so.

Q: Do you think the explicit representation of associations is helpful to highlight inconsistent semantics

during MI&T?

284

A: Helpful

More explanation: 1 think so.

Q: How do you rate the usefulness of visually categorizing selection constraints?
A: Useful
More explanation: Current approach OK — but concrete illustration, even PBE, might work well in the

future?

Q: How do you rate the usefulness of separating what from how when interconnecting models?
A: Very useful
More explanation: This is the thing most lacking in current script/code-based approaches — they get

completely mixed up.

Q: What are the strength and weakness of the CRelation model?
A: Visual language is a bit obscure. Use text to represent source/target elements and constructs. Could
use instance/examples vs. abstract representations in future to make easier for user to think about

source/target model elements

Category 4: Is the MaramaCRelation tool easy to use?

Q: How do you rate the automatic support that the MaramaCRelation tool provides?
A: Good
More explanation: Good. As above, some usability enhancements around representing elements

Of source/target in the visual specifications I think would help.
Q: How do you rate the traceability mechanism of the MaramaCRelation approach?
A: Good

More explanation. This looks a good advance and uses the inter-model relationships well.

Q: How do you rate the usefulness of the behaviour descriptions of the StructureMappings?
A: Useful

285

More explanation: As discussed, these are good but augmenting with e.g. Kaitiaki would be very

interesting.

Category 5: How to use the MaramaCRelation approach to improve software engineering?

Q: How do you rate the potential of using the MaramaCRelation approach to decompose monolithic,
programming-intensive multi-view support?

A: Very promising

Q: Rate the potential for MaramaCRelation to provide structured, high level, and visual support for
tool extension

A: Very promising

Q: Rate the potential for MaramaCRelation to provide structured behaviour descriptions to feed third
party event-handling technologies

A: Promising

More explanation: There would seem to be good potential here. I also think very good potential in
adding transformation scripting snippets/code to the inter-model constraints as discussed. This would

make a nice follow-on project and be very interesting to compare to e.g. MaramaTorua approach.

286

