

Towards User-centric Concrete
Model Transformation

By

Iman Avazpour

A thesis presented to
the Faculty of Information and Communication Technologies,

Swinburne University of Technology, Melbourne,
in fulfilment of the thesis requirement for the degree of

Doctor of Philosophy

2013

ii

Abstract
Model transformations are an important part of Model Driven Engineering (MDE). To
generate a transformation with most current MDE approaches, users are required to
specify (or provide) complex abstractions and meta-models and engage in quite low-
level coding in usually textual transformation scripting languages. These abstractions
are very different from concrete visual representation of source and target models and
low level coding is hard to specify and maintain, especially for novice users. This
specification technique provides pragmatic barriers for users of model transformations
and prevents them from adapting MDE technologies.

This thesis introduces an approach for performing model transformation on concrete
visualisations of example model elements. It allows end users to interactively specify
rich, human-centric visualisations of complex data using a visual, drag-and-drop, by-
example approach. End users can generate reusable visualisation implementations from
these high-level specifications. Using these visualisations, users specify complex model
element mappings between concrete visual notational elements using interactive drag-
and-drop and reusable, spread sheet-like mapping formulae. Complex, scalable,
efficient, accurate and reusable model transformation implementations are then
generated from these by-example visual source-to-target mappings while high-level
abstractions for transformation generation are automatically reverse engineered from
visualisation examples. As a result, this approach helps to better incorporate a user's
domain knowledge by providing familiar example concrete visualisations of models for
transformation generation.

In addition, to better aid users to find correspondences in large model visualisations, an
automatic recommender system is introduced. This provides suggestions for possible
correspondences between source and target model elements using model characteristics
and visual representations to generate guidance for large model mapping problems.
These recommendations allow users to cut corners in specification of transformation
correspondences by choosing among suggestions.

A proof of concept implementation of this approach, CONcrete Visual assistEd
Transformation framework (CONVErT) is introduced which allows generation, design
and use of varieties of notations including text, boxes and lines, shapes, etc. It integrates
the use and definition of mapping functions and conditions and enables reverse
engineering of metamodels.

The approach presented by this thesis was evaluated using set of visualisation and
transformation case studies, a comparative analysis, a quantitative study and a user
study. Case studies are chosen from a variety of domains to show the generality of the
approach. The comparison study compares the approach and its tool support against a
set of current research and industry approaches and toolsets. The quantitative study is
devised to assess quality of the automatically generated transformation code against a

iii

human expert’s code and code automatically generated by an industry standard toolset.
Finally, a user study complements the other evaluations and provides a report on typical
end users experience with the approach and its prototype tool support.

iv

Acknowledgement

I would like to thank:

• My supervisors (John Grundy and Lars Grunske) for their encouragement and
guidance.

• My wonderful wife (Farnoosh Sadeghian) and my parents (Razie Mosaddegh and
Alireza Avazpour) for their support, patience and motivations.

• My friends and colleagues for fruitful discussions.

• Participants of the user study.

• And anyone having a role during this past four years that I may not remember now.

v

Declaration

This is to certify that,

• This thesis contains no material which has been accepted for the award of any
other degree or diploma, except where due reference is made in the text of the
examinable outcome; and

• To the best of my knowledge contains no material previously published or

written by another person except where due reference is made in the text of the
thesis; and

• Where the work is based on joint research or publications, discloses the relative

contributions of the respective workers or authors.

Iman Avazpour
November 2013
Melbourne, Australia.

vi

Table of contents
1. Introduction 1

1.1. Background 1
1.2. Model visualisation 2
1.3. Model transformation 3
1.4. Thesis objective 6
1.5. Contributions 10
1.6. Thesis organisation 12
1.7. Summary 13

2. Literature review 14

2.1. Introduction 14
2.2. Modelling and MDE 14

2.2.1. Concrete versus abstract models 16
2.2.2. Model transformation and MDE 19

2.3. Model transformation 20
2.4. Transformation using concrete models 26

2.4.1. Model Transformation By-Example (MTBE) 26
2.4.2. Model Transformation By-Demonstration (MTBD) 29

2.5. Visualisations and transformation 30
2.5.1. Visual intractable schemas 31
2.5.2. Using concrete visualisations 32
2.5.3. Using concrete syntax in conjunction with abstract 34

2.6. Model transformation tools 34
2.7. Information and software visualisation 38

2.7.1. Model visualisation 38
2.7.2. Information Visualisation 40

2.8. User guidance 42
2.8.1. Metamodel matching 43

2.8.1.1. Instance-based matching approaches 43
2.8.1.2. Schema-based matching approaches 44
2.8.1.3. Hybrid approaches 46

2.8.2. Recommender systems 46
2.8.3. User guidance in transformation 48

2.9. Summary 49

3. Approach 51

3.1. Introduction 51
3.2. Approach 53

3.2.1. Visualisation 54
3.2.1.1. Visual notations 56
3.2.1.2. Mapping input data to visual notations 57
3.2.1.3. Visualisation composition 58
3.2.1.4. Visual aid for notation composition 59

3.2.2. Correspondence specification 60
3.2.2.1. Transformation rule representation 63

3.2.3. Correspondence Recommender 64
3.3. Scope 66

vii

3.4. Evaluation 67
3.5. Summary 68

4. Visualisation 69

4.1. Introduction 69
4.2. Visualisation procedure 70

4.2.1. Visual notations 71
4.2.1.1. Interaction logic 74

4.2.2. Mapping input data to visual notations 76
4.2.2.1. Transformation functions 77
4.2.2.2. Transformation conditions 84

4.2.3. Notation composition 87
4.2.3.1. Visual aid for debugging transformation composition 89

4.3. Case studies 90
4.3.1. Bar chart visualisation 90
4.3.2. Minard’s map visualisation 99
4.3.3. UML class diagram visualisation 106
4.3.4. Java code visualisation 116
4.3.5. Computer Aided Design (CAD) visualisation 124

4.4. Summary 130

5. Transformation using concrete visualisations 131
5.1. Introduction 131
5.2. Transformation approach 132

5.2.1. Transformation rule specification 132
5.2.2. Transformation rule representation 138
5.2.3. Generating transformation scripts 139

5.3. Case studies 144
5.3.1. Mapping bar chart to pie chart 144
5.3.2. Mapping Minard’s map to pie chart 149
5.3.3. Mapping UML class diagram to Java 153
5.3.4. Mapping CAD designs to alternative tree visualisation 159

5.4. Summary 164

6. Correspondence recommender 165

6.1. Introduction 165
6.2. Correspondence recommender (“Suggester”) 166

6.2.1. Calculating recommendations 168
6.2.1.1. Static similarity recommenders 170
6.2.1.2. Structural similarity recommenders 174
6.2.1.3. Propagated similarity recommender 176

6.2.2. Suggester system ensemble 179
6.2.3. Recommendation representation 184

6.3. Summary 187

7. Tool support: Concrete visual assisted transformation (CONVErT) 189

7.1. Introduction 189
7.2. Overview of CONVErT 189
7.3. CONVErT’s User Interface 192

7.3.1. Visualiser 193

viii

7.3.2. Mapper 197
7.3.3. Notation designer (Skin++) 201

7.4. Implementation 204
7.4.1. User interface design 205
7.4.2. Visual rendering 206
7.4.3. Abstraction 209
7.4.4. Suggester system 210
7.4.5. Transformation 212

7.5. Usage scenarios 215
7.6. Summary 220

8. Evaluation 221

8.1. Introduction 221
8.2. Comparative study 222
8.3. Quantitative evaluation 232

8.3.1. Suggester evaluation 233
8.3.2. Transformation code quality 239

8.4. User evaluation 246
8.4.1. Experimental setup 246
8.4.2. Experiment results 248

8.4.2.1. Visualisation 249
8.4.2.2. Transformation 254
8.4.2.3. Suggester 259

8.4.3. Threats validity 263
8.4.3.1. Threats to internal validity 263
8.4.3.2. Threats to external validity 263
8.4.3.3. Threats to construct validity 263
8.4.3.4. Threats to statistical validity 264

8.5. Summary 264

9. Conclusion and future work 266

9.1. Conclusion 266
9.2. Future work 268

9.2.1. Transformation generation and tool support 268
9.2.2. Transformation recommender system 269
9.2.3. Dynamic and enhanced visualisation 269
9.2.4. Other domains 270

References / Bibliography 272

Appendix 1 ATL transformation script example 287
Appendix 2 Ethics approval clearance 291
Appendix 3 User study tasks for first group 293
Appendix 4 User study tasks for second group 295
Appendix 5 Survey questionnaire 297
Appendix 6 Samples of citation formats used for evaluating Suggester 307

List of publications 310

ix

List of figures

Number Description Page
1.1 Examples of (A) UML class diagram meta-model, and (B)

Class diagram using concrete notation.
4

1.2 Example of (A) Java meta-model, and (B) Java source code. 7
1.3 Examples of correspondences between UML class diagram

and Java code. Dashed arrows demonstrate more fine grained
correspondences.

7

1.4 Sample correspondence relations between UML class diagram
XML example and Java code XML example.

9

2.1 Example C++ code and its corresponding AST. 16
2.2 UML class diagram example. 17
2.3 Simplified UML metamodel (from [1]). 18
2.4 Transforming PIM to PSM and revers using refinement and

abstraction transformations.
19

2.5 Sample of ATL transformation rule for transforming UML
operations to Java methods (from [1]).

21

2.6 Example XSLT script and its source and target XML. 24
2.7 Sample mapping generation using ALTOVA MapForce. 31
2.8 Sample mapping generation using Form-based mapper. 33
3.1 High level description of our approach and transformation

flow.
54

3.2 Using notation repository for generating visualisations. 55
3.3 High level structure of visual notations (left) and a concrete

example describing a chart notation (right).
56

3.4 Mapping input data to visual notation’s model data. 57
3.5 Composition of a bar chart visualisation. 59
3.6 Visual aid for notation composition. 60
3.7 Correspondence specification examples. Arrows depict drag

and drop directions.
61

3.8 Architecture of a visual notation. 62
3.9 Examples of transformation rule representations. A) UML

class diagram to Java class notation transformation rule. B)
Bar to pie piece transformation rule.

64

3.10 A sample of recommendation list recommending
correspondences between a bar chart and a pie chart.

66

4.1 Visualisation procedure. 70

x

Number Description Page
4.2 Model View Controller (MVC) set up from [2]. 71
4.3 Adaptation of Model View Controller for visual notation

design.
72

4.4 Sample bar chart visualisation. 72
4.5 a) Model, b) View, c) Annotated View, d) Controller of a bar

chart visual notation and e) Final notation.
74

4.6 a) View, b) Model, c) Controller, and d) final bar notation. 74
4.7 Notation’s MVC wrapped in interaction logic. 75
4.8 Brief architecture of system implementation. Notations will be

saved in the notation repository.
75

4.9 Mapping sales records input to notations: a) Mapping a sales
record to a bar, b) Mapping spread sheet to chart. Arrows
depict drag and drop directions

77

4.10 Transformation function’s structure. 78
4.11 A) A summation function, B) Its template. Arrow marks

reverse operation. Information of input argument is lost during
forward summation operation.

79

4.12 Mapping sales records to bar using summation function.
Arrows depict drag and drop directions.

80

4.13 The generated transformation script resulted from the function
of Figure 4.12.

81

4.14 Reverse transformation script resulted from the function of
Figure 4.12.

81

4.15 Example of defining a new function using function template. 83
4.16 Transformation condition’s structure. 84
4.17 A) A transformation condition, B) Its code template. 85
4.18 Using a condition for specification of bar’s colour. 85
4.19 Transformation code script resulted from condition of figure

4.18.
86

4.20 Composition of visual notations to create bar chart
visualisation.

87

4.21 Visualisation of a bar chart. User has right clicked on the bar
chart and the internal elements of the bar chart notation are
represented in a pop-up window

88

4.22 Visualisation composition debugging aid. The product of
composing a bar in the bar chart is shown in a pop-up.

89

4.23 Visualisation composition debugging aid for function of a
class diagram visualisation.

90

xi

Number Description Page
4.24 Example of sales records XML input. 91
4.25 Bar chart notation, a) View code, b) Model XML, c)

Annotated View, d) Controller transformation and e) Final
notation.

92

4.26 Bar notation, a) View code, b) Model XML, c) Annotated
View, d) Controller transformation and e) Final notation.

93

4.27 a) mapping sales records to bar using summation function and
b) mapping spreadsheet to bar chart notation. Arrows depict
drag and drop directions.

94

4.28 Transformation code resulting from mapping correspondences
and summation function of Figure 4.27.

94

4.29 Alternative model for bar’s notation. 95
4.30 New bar’s view annotation. 95
4.31 Mapping sales records to new bar. 96
4.32 Specifying arguments of condition. 96
4.33 Mapping colour values to condition, and mapping condition

result to Color element of bar notation.
97

4.34 Composition of notations using the new bar’s notation. 98
4.35 Resulted coloured bar chart. 98
4.36 Minard’s map (from [3]). 99
4.37 Minard’s map recreated by Humphrey [4] 100
4.38 Troops movement notation’s (a) View and (b) Model. 101
4.39 Annotated View of Troops movement notation with Model

elements.
101

4.40 Map notation’s (a) View, (b) Model. 102
4.41 Map notation’s annotated View XAML. 102
4.42 Specifying correspondences between troop movement records

and provided troop movement notation. Arrows indicate drag
and drop directions.

103

4.43 Specifying correspondences between troop movement records
and provided troop movement notation using functions (a)
correspondences with campaign data input file and (b) using
separate input file to specify colours. Arrows indicate drag and
drop directions.

104

4.44 Specifying correspondences between input data and map
notation.

105

4.45 Composing troop movement and map notations to generate
complete visualisation. Arrows are provided by framework.

105

4.46 Minard’s map resulting from our approach. 106

xii

Number Description Page
4.47 An example of UML class diagram inputs. 107
4.48 Desired visualisation for example of figure 4.47. 108
4.49 UML attribute notation’s (a) View and (b) Model. 108
4.50 Annotated view of UML attribute notation. 109
4.51 UML function parameter (a) View and (b) Model. 109
4.52 Annotated view of UML function parameter. 109
4.53 UML function notation’s (a) View and (b) Model. 110
4.54 Annotated view of UML function notation. 110
4.55 UML association notation’s (a) View and (b) Model. 110
4.56 Annotated view of UML association notation. 111
4.57 UML class notation’s (a) View and (b) Model. 111
4.58 Annotated view of UML class notation. 112
4.59 UML class diagram notation’s (a) View and (b) Model. 112
4.60 Annotated view of UML class diagram. 112
4.61 Specifying correspondences between class element and class

notation. Arrows depict drag and drop direction.
113

4.62 Specifying correspondences between function parameters and
parameter notation. Arrows depict drag and drop direction.

114

4.63 Composition of notations to generate Class diagram
visualisation.

115

4.64 Example of class diagram visualisation of XYZ airline. 115
4.65 An example of Java code input represented by XML. 117
4.66 Java property’s (a) View and (b) Model. 117
4.67 Java property View’s annotations. 118
4.68 Java class’s (a) View and (b) Model. 118
4.69 Java class view annotations. 119
4.70 Mapping Java class input elements to Java notation. 120
4.71 Mapping parameter element to Java parameter notation.

Arrows depict drag and drop.
120

4.72 Using string merge function to alter Java class’s name. Arrows
depict drag and drop.

121

4.73 Composing notations to generate Java code visualisation.
Arrows are provided by framework.

121

4.74 Resulted visualisation of the example in Figure 4.65. 122
4.75 Example Java code visualisation of airline application. 123

xiii

Number Description Page
4.76 Example input model of a CAD XML. 124
4.77 CAD room’s (a) View and (b) Model. 125
4.78 Annotated view of CAD room notation. 125
4.79 CAD floor plan’s (a) View and (b) Model. 126
4.80 Annotated view of CAD floor plan notation. 126
4.81 CAD design notation’s (a) View and (b) Model. 127
4.82 Annotated view of CAD design notation. 127
4.83 Correspondence specification between shape element and

room notation.
128

4.84 Correspondence specification between plan data and floor
notation.

128

4.85 Composition of notations for CAD visualisation. 129
4.86 Example of the generated CAD visualisation. 130
5.1 Transformation generation procedure. 132
5.2 One-to-One correspondences between elements of a bar in bar

char and elements of pie pieces in a pie chart. Arrows depict
correspondences.

133

5.3 Correspondences between elements of a troop movement
notation in Minard’s map and elements of a pie piece in pie
chart. Solid arrows depict indirect correspondences while
dashed arrow depicts direct correspondence.

134

5.4 Correspondences between a bar in bar char and a pie piece in a
pie chart. Solid arrow depicts parent correspondence while
dashed arrows depict child correspondences.

135

5.5 Correspondences between a UML attribute and a Java
property. Solid arrow depicts parent correspondence while
dashed arrows depict child correspondences.

137

5.6 Using conditions to specify correspondences. A) Before
values are specified to the condition arguments, B) after
values are provided. Arrows show drag and drop directions.

138

5.7 Examples of transformation rule representation.
Transformation rules are: A) UML class to Java class, B) A
Room in 2D visualisation to a room notation in another 2D
visualisation, C) A pie piece to bar and D) UML attributes to
Java property.

139

5.8 Steps for generating transformation rule between UML class
attribute and Java property.

140

5.9 Pseudo code representing the transformation template of step
one in Figure 5.8.

140

xiv

Number Description Page
5.10 Pseudo code representing the transformation template after

step two in Figure 5.8.
141

5.11 Transformation rule script for transforming UML attribute to
Java property in XSLT.

141

5.12 Transformation rule specification between bar chart and pie
chart. Arrows depict drag and drop.

143

5.13 Example bar chart and pie chart visualisations. 145
5.14 Mapping chart area notations. 146
5.15 Mapping a bar to a pie piece. 147
5.16 Transformation rules for transforming bar chart to pie chart. 147
5.17 Generated transformation script for transforming bar chart to

pie chart.
148

5.18 End result of the bar chart to pie chart transformation. 149
5.19 Minard’s map visualisation. 149
5.20 Specifying Minard’s map to chart area transformation rule.

Arrows depict drag and drop directions.
150

5.21 Specifying Troops movement notation to pie piece notation
transformation rule. Arrows depict drag and drop directions.

151

5.22 Specifying Troops movement notation to pie piece notation
transformation rule using subtraction and merge functions.
Arrows depict drag and drop directions.

152

5.23 Transformation script generated as a result of rule
specification of Figures 5.21 and 5.22 in XSLT.

152

5.24 Resulting pie chart visualisation. 153
5.25 Sample Visualisations of a UML class diagram (source) and

Java visualisation (target).
154

5.26 Specifying transformation rule between UML class attribute
and Java field property. Arrows depict drag and drop
directions.

155

5.27 Specifying transformation rule between UML diagram and
Java package.

156

5.28 Specifying transformation rule between UML class and Java
class.

157

5.29 Specifying transformation rule between UML association and
Java property.

158

5.30 Transformation rule script for transforming UML associations
to Java property.

158

5.31 Resulting Java code visualisation. 159

xv

Number Description Page
5.32 Defining a transformation rule for transforming a room in 2D

CAD building to a room node in tree-based layout.
160

5.33 Using conditions to map 2D room notation to room node
notation of a structure chart. Arrows depict drag and drop
direction.

161

5.34 Defining a transformation rule for transforming a floor plan in
2D CAD building to a floor node in tree-based layout.

162

5.35 Defining a transformation rule for transforming a 2D CAD
building to a tree-based layout.

163

5.36 Concrete representation of three rules required to transform a
2D CAD building to a tree-based layout.

163

5.37 Resulting tree structure chart. 164
6.1 Architecture of "Suggester" system. 167
6.2 Sample correspondences between UML class diagram

example XML and Java code XML.
168

6.3 Sample correspondences between UML class diagram
example visualisation and visualisation of Java code.

169

6.4 Example correspondences between UML class diagram
example XML and Java code XML and their calculated score
using name tag recommender.

171

6.5 Example UML class graph. 172
6.6 Abstraction graph of the UML class example in Figure 6.5. 172
6.7 Abstraction graph of a Java class. 173
6.8 Correspondences returned by value similarity suggester and

their similarity scores.
173

6.9 Correspondences returned by type similarity suggester. 174
6.10 Sample graph of UML class diagram (A) and Java code (B). 176
6.11 Calculating IsoRank similarity for sample graphs [5]. 178
6.12 Abstractions examples of two citation formats. 180
6.13 Sample recommendation list. 184
6.14 Result of accepting and rejecting recommendations. 184
6.15 Guide and Filter system for representing correspondence

recommendations.
185

6.16 Example of recommendations that result in transformation
rules for UML class diagram to Java code mapping.

186

6.17 Updated list of recommendations after selecting a parent
correspondence.

187

xvi

Number Description Page
7.1 Components of CONVErT. 190
7.2 Using CONVErT’s visualiser UI for mapping input model

elements to visual notations. 1) Input model, 2) Predefined
notation, 3) Designer canvas, 4) Recommendations, 5) Status
panel.

194

7.3 Using CONVErT’s visualiser UI for composing visual
notations. 6) Customised notations’ panel, 7) Notation
composition Canvas, 8) Usage logs.

196

7.4 CONVErT’s visual functions and conditions panel (9) and
visualiser renderer (10).

197

7.5 CONVErT’s mapper UI. 1) Source visualisation, 2) Target
visualisation, 3) Highlighting elements, 4) Functions and
conditions, 5) Recommendations and 6) Status panel.

198

7.6 CONVErT’s rule designer. 4) Functions and conditions, 7)
Rule designer canvas, 8) Panel for adding values, 9) A merge
function, 10) Updated recommendations, 11) Rule designer
status.

200

7.7 CONVErT’s UI for visual representation of transformation
rules (12) and 13) User logs.

201

7.8 Notation designer UI, 1) Name of the new notation, 2) Input
XAML view, 3) Rendering of the input XAML, 4) Model
data, 5) Status panel.

203

7.9 Using notation designer UI to annotate input view, 6)
Annotated view 7) Controller transformation, and 8)
Generated notation.

204

7.10 Components of renderer subsystem. 207
7.11 Sample visualisation file to be rendered by Renderer. 207
7.12 Example of notations retrieved from notation repository. a)

Horizontal bar, b) Horizontal bar chart, c) Horizontal bar’s
model, and d) Horizontal bar chart’s model.

208

7.13 Final rendered visualisation. 208
7.14 Components of CONVErT’s abstraction subsystem. 209
7.15 Example input model representing Sales elements. 210
7.16 Abstraction graph of input file in Figure 7.15. 210
7.17 Components of Suggester system. 211
7.18 Components of CONVErT’s transformation subsystem. 212
7.19 Transformation rule template for transforming a sales record

to bar notation.
213

xvii

Number Description Page
7.20 Defining the transformation between sales element and bar’s

notation. Arrows depict drag and drop.
214

7.21 Resulting transformation code. 215
7.22 Transformation generation between a portion of input model

and a visual notation.
216

7.23 Usage scenario for creating a transformation rule between
portion of input model and a visual notation.

217

7.24 Transformation generation between notations scenario. 218
7.25 Usage scenario for creating a transformation rule between

source and target notations.
219

8.1 Screen capture of ALTOVA MapForce. 1) Default tree-based
representations, 2) Using a NAND function.

227

8.2 Mapping class diagram example to Java code visualisation
example in CONVErT.

228

8.3 Representation of class diagram example and Java code
example in MapForce.

229

8.4 Generated transformation rules for transforming UML class
diagram to Java visualisation in CONVErT. Transformation
rules are marked by 1.

230

8.5 Correspondence specification between UML class diagram
example and Java code example in MapForce. Mapping
correspondences are marked by 1.

230

8.6 Example correspondences for bar chart in ALTOVA
MapForce. Arrows mark correspondences.

243

8.7 Example correspondences for bar chart in CONVErT. Arrows
demonstrate drag and drop directions to specify
correspondences.

243

8.8 Rendering the generated target model as a result of running
transformation scripts of (A) CONVErT’s and (B) ALTOVA
MapForce.

245

8.9 Group based responses to question Q.13. 254

xviii

List of tables
Number Description Page

2.1 Comparison of most used transformation languages. +
indicates support, (+) shows partial support and – shows no
support.

23

2.2 Comparison of model transformation tools. + indicates
support, (+) shows partial support and – shows no support.

36

4.1 List of default functions provided in proof of concept
framework.

82

4.2 List of default conditions provided in proof of concept
framework.

86

6.1 Correspondence recommenders used in Suggester system 170

8.1 Comparison of most used transformation languages and
CONVErT’s language. indicates support, (+) shows
partial support and – shows no support.

223

8.2 Comparison of model transformation tools and CONVErT.
 indicates support, (+) shows partial support and – shows

no support.

225

8.3 Summary comparison of ALTOVA MapForce and
CONVErT.

233

8.4 Categories of all possible recommendations. 234

8.5 Resulted values calculated from the evaluation metrics. 236

8.6 Metrics and quality attributes to evaluate model
transformations adopted from [6]. + indicates direct affect
while – indicates adverse effects.

241

8.7 Comparison of transformation codes generated by
CONVErT, ALTOVA MapFOrce and XSLT expert.

242

8.8 Demographic questions of the user study questionnaire and
participant’s responses.

249

8.9 User study questions for visualisation evaluation. 250

8.10 User study questions for transformation evaluation. 255

8.11 User study questions of Suggester system and user
responses.

259

1

Chapter 1

Introduction

1.1 Background

Models have been around for many years and their application in science and

engineering is evident. They describe some aspect of a System Under Study (SUS) [7].

This description varies depending on what aspects of the system are to be studied. For

example, in aviation, engineers test models of planes in wind tunnel to assess and

improve their aerodynamic efficiency. Planes here are the SUS and their aerodynamic

characteristic is the aspect of the system being studied.

Many models for software engineering have been developed. These include flow charts

and data flow models, entity-relationship models, object-oriented models, and

behavioural models. However, often these models have been used in limited ways

during software development lifecycle, e.g. for documentation.

Depending on application of software models and their modelling language, varieties of

visualisations have been used to represent software models. The level of detail in these

visualisations varies according to their targeted audience and may range from very high

level to low level technical information.

Though a number of such software models have been proposed and used, the heavy use

of models in software engineering has recently been motivated by the introduction of

Model Driven Engineering (MDE) [8]. MDE promotes models as first class software

2

artefacts and aims to develop, maintain, and evolve software by performing

transformations on these models; therefore, easing the development and maintenance of

complex and large software systems [9]. It is fair to say then that, transformations are

the “heart and soul” of MDE and Model Driven Development (MDD) [10].

A transformation, in software engineering terms, is automatic generation of a target

model from a source model according to a transformation definition [11]. In the context

of MDE, software development tasks are to be performed on models by means of

transformations. For example, transforming higher level models to lower level models

(e.g. UML models to program code) can be performed using refinement transformations

[12]. Or in a maintenance example, refactoring transformations can be used to

restructure models to improve quality of finished software product [13].

Following sections describe model visualisations and how model transformations are

specified, and problems associated with specification approaches.

1.2 Model Visualisation

Due to complexity of software systems, there is a growing demand for approaches that

incorporate visualisations in the software industry [14]. Software visualisation

approaches concentrate on variety of applications including software landscape

visualisation (e.g. Rigi [15] and software map [16]), hierarchical dataset visualisations

(e.g SHriMP [17]), visual languages (e.g. Rimu and VML [18]). These visualisation

approaches tend to reduce complexity of software development lifecycle.

With emergence of Meta-tools, generating visual languages and diagram based editors

became easier and more feasible. Meta-tools allow generation of visualisation

environments that provide facilities for users to interact with those visualisations.

Example of such meta-tools are Marama tool-suit [19] and DiaGen [20].

Although many approaches for visualising data had been previously introduced (e. g.

Skin [21] and relational visualisation notation [4]), none of these approaches have

3

successfully found their way in modelling environments and for MDE. In the context of

MDE the most famous approach is Eclipse Modelling Framework (EMF) [22]. EMF

models can be visually represented using the diagrammatic syntax of Graphical

Modelling Framework (GMF) [23]. However, EMF and GMF are mostly targeted to

technical users familiar with programming environments and IDEs and therefore have

limited support for novice and none-programmer users.

This thesis seeks to provide a user friendly visualisation approach to visualise models

and input data. It does so using by-example approach to transforming input data to

visual notations. As a result, concrete visualisations are generated for each of the

provided examples which may be very different (e.g. Charts, UML diagram and Java

code).

1.3 Model Transformation

Transformations in software engineering are mostly performed on higher level

abstraction of models, called meta-models. The primary use of these abstractions is to

allow better generalisation and reduce the amount of coding required to implement

transformation rules. Also, they provide a mechanism for evaluation, where it is

possible to check if a resulting model conforms to the intended target.

To specify transformation on model abstractions, specialised model transformation

languages such as Atlas Transformation Language (ATL) or Triple Graph Grammars

(TGG) are used [24]–[27]. These transformation languages are designed to transform

model instances that conform to source meta-models, to models conforming to target

meta-model. For example, to transform a class diagram to Java code, a transformation

script needs to be written in ATL (or other transformation languages). This

transformation script includes correspondences between source abstraction (class

diagram meta-model) and target abstraction (Java meta-model). These correspondences

define relations between elements of both sides. Having this script ready, it can be

applied on instances of source models (class diagrams), using a transformation engine,

to transform them to target instances (Java code).

4

Transformation scripts usually include multiple transformation rules that are generally

specified using textual representation of the transformation language of choice. This

approach to transformation rule specification provides pragmatic barriers for non-

software engineering users as support for development and debugging of scripts, or

visual representation of rules and correspondences are very limited [28]–[32]. Also,

correspondence relations of a transformation rule need to be specified on model

abstractions and meta-models. Often, the representation of these abstractions are far

removed from the representation of model instances they represent [33]–[35]. For

example, Figure 1.1 shows an example of UML class diagram meta-model and a class

diagram instance.

Apart from different representation, the way meta-models are represented results in

hiding certain modelling concepts. In Figure 1.1 for example, it can be easily spotted

that “orderDate” (a UML attribute) belongs to “Order” class by looking at class shape in

the class diagram. To find the same relation in the meta-model, one has to follow

“owner” association of “Attribute” element to “Classifier” and to “Class”. This

phenomena is called Concept Hiding and has been regarded as a factor in complexity of

meta-model comprehension [36]–[38]. For large meta-model and applications, spotting

these relations would become fairly hard and complex.

Figure 1.1 Example of (A) UML class diagram meta-model, and (B) Class diagram using concrete
notation.

5

For computer scientists and software developers, using complex models, meta-models

and textual coding is a routine practice; therefore, they will probably not experience

great technical difficulty adapting current transformation approaches. However, for

modellers that did not have usual education in type theory, programming, and

transformation development, the complexity of meta-models and textual transformation

representation may well be overwhelming and results in pragmatic barriers to defining

and using model transformations [18].

These issues have motivated the research community to look for alternative approaches,

namely, Model Transformation By-Example (MTBE) [30], [39]–[42] and By-

Demonstration (MTBD) [38], [43], [44] approaches. These have their roots in

programming techniques and date back to the research on innovative approaches to

develop program source code, e.g. Programming By-Example [45].

MTBE and MTBD try to express a model transformation declaratively in the domain

language of the source and target models. MTBE’s principle is to derive high level

model transformation rules from initial prototypical set of interrelated source and target

models. User has to provide multiple source and target instance pairs and specify their

correspondences. The system then uses the defined correspondences to try to derive a

generic transformation. To use these approaches, users must familiarise themselves with

the syntax of the correspondence specification language. This is problematic as no

visual approach for specifying correspondences on actual familiar notations (like UML

Class Diagrams or source code) exists [29]. Also, since the rule derivation is semi-

automatic, current approaches require multiple example pairs to exist and the user needs

to refine derived rules, which makes adaptation of these approaches even harder.

In MTBD, changes that a programmer does to the model are recorded and then

generalised to derive transformation rules. MTBD approaches incorporate a recorder

component that monitors user interaction with the models and uses that recorded

interaction as the basis of correspondence generalisation. Therefore, changes should be

mostly applied in a predefined environment so that the recording component is able to

monitor the interaction. These techniques are mostly limited to endogenous

transformations where source and target model conform to the same meta-model [29].

6

The following section describes the objective of this thesis toward more user-centric

model transformation, using a motivating example.

1.4 Thesis Objective

This thesis research addresses by example transformation approaches and tries to

improve them. It does this by providing a visual correspondence specification approach

where users use their desired graphical notations and model visualisations to specify

source and target model correspondences. Also, since source and target models can

become fairly complex even using visualisations, this thesis investigates ways to

incorporate information retrieval techniques to provide guidance to users in form of

“which elements of source and target models correspond”. To illustrate the intention of

this thesis research, this section provides an example of MDE domain, transforming

UML Class Diagrams to Java source code.

Assume John, a software developer, is working in an MDE-using team and has received

a system analysis report for an application. Being an expert in UML diagram

interpretation and a Java coder, he is familiar with concrete syntax of the diagrams and

Java code. He is interested in transforming specific parts of UML diagrams provided by

the analysis directly to his programming code, to increase team productivity, code

quality and to ease software evolution. For example, he wants to create a model to code

translator to transform specific features and parts in the analysis UML diagrams to

specific Java code templates.

As mentioned previously, with current transformation approaches, transformation

designers typically have to specify or provide meta-models for both class diagram and

the Java source code. A schematic view of UML class diagram meta-model was

previously provided in Figure 1.1. Figure 1.2 demonstrates simplified Java meta-model

and a Java code example.

7

Figure 1.2 Example of (A) Java meta-model, and (B) Java source code.

For John, as an expert in the domain, corresponding elements in the UML diagram and

in his Java code are obvious. He can clearly spot and relate classes, methods, and even

statement snippets in both program code and class diagram. Some of such

correspondences are depicted by Figure 1.3. For example, John can easily relate an

attribute in a class diagram (e.g. tailID) to a property in Java code (e.g. owner) and their

fine-grained elements e.g. name, type and identifier of an attribute (e.g. +, “tailID” and

String) to identifier, type and name of a java property (e.g. public, string and “owner”).

Figure 1.3 shows examples of these mappings with solid arrows and their internal fine

grained mappings by dashed arrows.

Figure 1.3 Examples of correspondences between UML class diagram and Java code. Dashed arrows

demonstrate more fine grained correspondences.

8

Comparing meta-models of Figures 1.1 and 1.2 and the concrete representations of

Figure 1.3 reveals that the concrete notation is much more visually appealing and

familiar than the complex notations used in meta-model specification. Given that John

may not have experience or knowledge of transformation languages and meta-

modelling, specifying correspondences is better understood by him using one or more

class diagrams and corresponding code examples, as shown in Figure 1.3. However,

using current approaches to create such a model to code transformation, he has to work

with the complex syntax of abstract UML and Java meta-models, and the low-level

textual syntax and semantics of transformation languages, such as XSLT, ALT and

QVT.

Appendix 1 provides an example of transformation script written in ATL to transform

UML class diagram to Java code. This ATL example is adopted from ATL

transformation Zoo [1]. Even though the examples have been significantly simplified,

the transformation script includes more than 150 lines of code and demonstrates many

meta-model constructs. In larger examples, this transformation can expand rapidly

resulting in more complexity for transformation designers.

Provided that a By-example approach is being used for transformation, correspondences

will be specified on examples of source and target models. Figure 1.4 shows examples

of simplified UML class diagram and Java code in XML. Sample correspondences

between these two examples are marked by red lines in the figure. This specification of

correspondences using current techniques requires the user to use a correspondence

language specific to the by-example approach being used. For instance, John would

need to specify that an operation in class diagram directly corresponds to a method in

Java code, and so does its return type, name, and its access privilege. He then has to

repeat this for other available example pairs. For John as a user familiar with concrete

visualisations of these models, it is more convenient to specify these correspondences

on concrete visualisations similar to Figure 1.3. Therefore, this thesis seeks to provide

such capable concrete visualisations so that he can simply drag and drop elements of his

generated source and target visualisations to specify a correspondence.

9

Figure 1.4 Sample correspondence relations between UML class diagram XML example and Java code
XML example.

Although using visualisations improves the cognitive descriptive power and

understandability of correspondence specifications, some software models get fairly

complex due to the number of features they are describing. Computers deal with this

complexity quite differently than humans. Therefore, in an ideal situation, an automatic

mechanism can analyse input models and provide guidance to the user to specify

correspondences [46]. For example, in the aforementioned example, an automatic

routine might analyse the UML class diagram and java code and suggest that parameters

in a function declaration of the class diagram could be matches for parameters in a java

method. John can use these suggestions as guidance or select them as his source to

target correspondences. Providing such semi-automated user support features for

transformation specification is another key goal of this thesis.

10

1.5 Contributions

We address the user friendliness of model transformation generation in this thesis. Key

contributions of this thesis are the following:

• Producing reusable model visualisation specifications using an interactive, by-

example approach.

• Using a concrete, by-example model transformation metaphor.

• Model mapping and transformation specification by drag and drop between

concrete visualisations.

• Utilising a set of recommenders using various recommender system techniques

and generating mappings from recommendations.

• Supporting fully automated model transformation script generation from

specified mappings.

• Providing scalable, easy-to-use, robust and extensive tool support for each of

these facilities.

• Carrying out a comprehensive end user evaluation of our prototype toolset and

overall approach.

In the following, these contributions are described in more details.

Target users of this thesis approach are the users that are not trained in complex

transformation languages and meta-modelling, but are familiar with specific modelling

languages and their visual notations. For these users, the correspondences between

participating source and target models are relatively clear. However, to define these

correspondences as transformation rules should not involve learning new modelling

concepts and acquisition of significant new knowledge.

To achieve this objective, we have decided to provide a mechanism to use arbitrary,

end-user-oriented visual notations in the model transformation process. This approach

allows users to define (or reuse) model visualisations for provided source and target

examples and use these specified by-example visualisations for correspondence

specification between source and target examples. We also incorporate a guidance

system that helps novice users and experts alike in the visualisation and transformation

specification process. Each of these decisions contributes to making the complex model

11

transformation specification and generation process more user-centric than it currently

is.

The adaptation of visual notations for correspondence specification requires a

representation model for visual notations that allows semantic links between elements

of a notation and the actual model data (context). These models should allow possible

extensions and flexibility for users to create them in order not to be limited to the fixed

number or type of notations. These visual notations are then mapped to input examples

and composed to generate interaction capable visualisations. As a result, users will have

the freedom to choose (or design their own) notations that are familiar to them and

define transformations using visualisations generated from the notations.

A distinctive part of this thesis concerns the way support can be provided to the users

for visualisation generation and complex model transformation specification. Part of

this support comes with providing hints on visual notation composition of the

visualisation process. To provide such support, the visualisation mechanism allows the

user to review samples of visualisation to be created as a result of composing visual

notations, before actually generating it. Therefore, if the resulting visualisation sample

is not what the user expects, it can be altered to achieve desired results.

As large model visualisations and transformations can become very complex, the

approach provides guidance on possible and likely correspondences that eventually

create transformation rules. To achieve this, an automated recommender system

analyses the interaction and input examples for recommending possible

correspondences between model sub-structures. The user can see these

recommendations as guidelines to develop transformation rules or simply use them to

create final transformation artefact.

These contributions are realised in our proof of concept tool “CONcrete Visual assistEd

Transformation” framework, or CONVErT for short. CONVErT provides a proof of

concept implementation of each of the above research contributions and plays an

important role in the validation of our design and approach. Its most important aspects

include: (i) a concrete model visualisation specification framework; (ii) a set of

proactive model correspondence suggesters; (iii) a model for model correspondence

12

rules; (iv) an XSLT code generator to implement specified model transformations; and

(v) a reverse engineering mechanism for automatic extraction of a meta-model from the

set of input models.

1.6 Thesis organisation

This thesis is organised in the following nine chapters. Chapter 1 (this chapter)

introduces the background and a motivating example for this work. It gives an overview

on the objectives and summarises our key research contributions.

Chapter 2 reviews the state of the art in model transformation specification and

generation. It provides discussions on modelling and MDE, model transformation, use

of visualisations in transformation, model transformation tools, approaches to

visualising information and models, and finally techniques to providing user support

and guidance.

Chapter 3 provides an overview of our approach and methodology. It lists research

questions being addressed in this thesis and our approach in solving them. It also depicts

the scope and boundaries of this thesis research.

Chapter 4 describes our approach for model and information visualisation. It provides

details of how intractable visual notations are defined, mapped to input data, and

composed to generate complex visualisations. These visualisations allow user

interactions in form of drag and drop and can be used for model transformation

specification. Multiple case studies are provided in the chapter to demonstrate

application of our visualisation approach for different domains.

Chapter 5 describes how visualisations can be used in transformation specification.

Transformation rules are defined by drag and dropping visual notations of source and

target model visualisations. From these visual by-example transformation rules, full

transformation scripts are generated and used to transform data provided by source

visualisation to the visualisation of target. Chapter 5 also provides multiple case studies

using visualisations defined in chapter 4 to generate transformations.

13

Chapter 6 describes our approach in providing user guidance and support for

transformation specification. A recommender system is designed to provide

recommendations based on possible and likely correspondences between source and

target models. Users can choose among recommended correspondences to generate

transformation rules.

Chapter 7 describes our tool support and proof of concept framework CONcrete Visual

assistEd Transformation (CONVErT). It provides details of CONVErT’s

implementation and user interface and expresses the technical and engineering decisions

made on the framework.

Chapter 8 contains evaluation of the CONVErT approach. This evaluation has been

divided into a comparison study, a quantitative evaluation, and user evaluation. A

detailed comparison study is provided to check the approach provided in this thesis

against a state of the art transformation and mapping tool (ALTOVA MapForce [47]).

The quantitative evaluation is targeted to the evaluation of the recommender system

being used for the user support mechanism. It also includes a quantitative evaluation of

the automatically generated transformation script using a selection of transformation

code quality attributes and metrics. Chapter 8 also includes details of our user

evaluation and its experimental setup including user tasks and questionnaires. Analysis

of the questionnaire responses by the users and a discussion are also provided.

Finally, key conclusions from this research are summarised in chapter 9 along with

some key directions for future research.

1.7 Summary

This chapter provided an introduction and background of this thesis. It described thesis

objectives using a motivating example and demonstrated its contributions on the basis

of the motivating example. This chapter also briefly described the organisation of this

thesis and provided an overview on the remaining chapters.

14

Chapter 2

Literature Review

2.1 Introduction

This chapter describes state of the art in model transformation. It describes modelling

and the importance of transformations to realisation of Model Driven Engineering

(MDE). It then investigates current transformation approaches with a focus on by-

example transformations and visual mapping techniques. It provides a comparison of

current approaches and where the approach presented in this thesis fits in that context.

Since the approach presented in this thesis includes visualisation and user guidance, this

chapter also provides a brief review of model and information visualisations approaches

and user guidance mechanisms for interactive techniques.

2.2 Modelling and MDE

We start this section by definition of a Model:

“A model is a set of statements about some system under study (SUS) ... statement

means some expression about the SUS that can be considered true or false”[7].

Based on this description, a model of, for example, a bridge describes a system under

study (SUS) - in this case is a bridge. It makes statements on the structural capability of

15

the bridge which could be true or false. With regards to software engineering domain,

for example, a UML class diagram is a model that describes an object oriented software

system. The software system here is the SUS and the classes and relations between them

can be considered its statements [7].

Models in MDE are defined in Technical Spaces (TS). Kurtev et al. define TS as:

“… a working context with a set of associated concepts, body of knowledge, tools,

required skills, and possibilities. It is often associated to a given user community with

shared know-how, educational support, common literature and even workshop and

conference meetings” [48].

Examples of technical spaces conforming to this definition are XML-based languages,

Ontology Engineering and Database Management Systems (DBMS) [27], [48]. MDE

can also be seen as a technical space itself [49].

Models in general are diverse and may represent software processes, designs, code,

configurations, performance or other data [50]. Unlike traditional software

documentation models, models in MDE are not considered as design sketches. Instead

they are the primary artefacts that drive the development process where development,

maintenance and evolution of software is performed by transformations on models [8],

[51]. In this configuration, a model transformation is performed during each design

phase to complete micro-processes or to assist the designer complete the phase [52].

Transformations are therefore an integral part in realisation of MDE [9].

Model-driven transformations are also applied in other domains, for example in data

processing to transform complex data from one form to another [53]. The most well-

known proposal for MDE is the Model Driven Architecture (MDA) by Object

Management Group (OMG) [54]. It plays a significant role in promoting MDE using

selection of technologies readily available and previously adopted by OMG. MDA

envisions higher order models, called Platform Independent Model (PIM), to be

transformed to richer and more refined models, called Platform Specific Models (PSM),

by means of refinement transformations. PIMs describe a system at a level of

abstraction that is sufficient to allow use of their entire contents for implementing the

system on different platforms [55]. A PSM in this configuration can conform to

16

multiple PIMs each focusing on different aspect of the modelled entity. Similarly,

different PSMs can be generated from a PIM using different refinement

transformations.

Depending on application domain, models can exist at different abstraction levels. For

example, a class diagram as a model is in higher abstraction level than the Java code

derived from it. Similarly, UML metamodel is in higher abstraction level than class

diagram. Following subsection describes concrete and abstract models with regards to

the level of abstraction each model is represented in and the amount of information it

presents.

2.2.1 Concrete versus abstract models

The modelling domain and programming languages domain are very similar with

regards to classification of artefacts as concrete and abstract. In the programing

language domain, abstract syntax describes the concepts of a given language

independently of the source representation of that language. These abstract syntaxes are

primarily used by tools such as compilers for internal representation [56]. Concrete

syntax, on the other hand, provides a user friendly way of writing programs and is more

familiar for programmers. For example, an Abstract Syntax Tree (AST) can be

considered a generic abstraction for arbitrary programing languages. A C++ program

code generated from that AST is a specific concrete syntax which conforms to that

abstraction. Figure 2.1 shows an example C++ method code and its AST. The same

AST may also be used to generate Java code, or other programing languages.

Figure 2.1 Example C++ code and its corresponding AST.

17

Similarly in the modelling domain, a concrete model is a model represented in the

concrete representation of the modelling language. Depending on modelling language

domain, concrete syntax can be specified using text, shapes or other means. For

example, a graph is a concrete model represented using vertexes and links, or entity

diagram is a concrete model specified using boxes and lines, UML class diagram is also

concrete model using boxes, lines and labels as shown by Figure 2.2.

Figure 2.2 UML class diagram example.

Abstract syntax of models is mostly described by metamodels. A metamodel can

essentially be considered as a model of models which includes set of concepts to create

models [50]. The abstract syntax of a modelling language can be then identified with

metamodels, while its representation can be defined in the concrete syntax [50]. For

example, the abstract syntax in UML metamodel constrains the allowable structure and

relationships between model elements represented as instances of meta classes [7]. An

example of a simplified UML metamodel is provided in Figure 2.3.

A metamodel that captures abstract syntax of a model, describes the structure of all

possible models derived from it. Metamodels are not however a complete definition of

modelling languages since a language definition needs to describe also how a model is

rendered by textual and/or graphical elements (concrete syntax) and what the intended

meaning of each modelling concept is (semantics) [57].

18

Figure 2.3 Simplified UML metamodel (from [1]).

A concrete model is usually more understandable for domain experts as it describes

domain specific concepts which are familiar for the experts [35]. For example, it is

much simpler for users (such as programmers) to write programs in Java, rather than

directly using instances of Java meta-modelling concepts [56]. Or it is easier for

business analysts to use a form-based metaphor for generating data mappings rather

than using data schemas and mapping languages [32].

Abstract syntax can be used as an intermediate language such that multiple languages

can be expressed in it [58]. It also provides a good generalisation of models which can

reduce the amount of coding required for transformation generation between models.

On the contrary, the abstract syntax may contain elements that cannot be expressed in

the concrete syntax of the language [59]. Abstractions also hide certain concepts that are

easily understandable using concrete syntax, and therefore make it harder for users to

understand them [37]. Using abstract syntax, although helping in the reduction of efforts

for designing model transformations, it also becomes harder and less user friendly for

non-expert user modellers.

19

2.2.2 Model transformation and MDE

MDE is defined around the idea that “everything is a model” [60]. With this

assumption, software development tasks will be performed by transformations on these

models. Given the task to be performed, different model transformation approaches can

be used. For example, transforming a PIM to PSM can be performed using refinement

transformations. These transformations provide domain specific information required to

be inserted in the PIM [12], [61]. The reverse direction can be performed using

abstraction transformations. With abstraction transformations, some domain specific

data will be abstracted away from the PSM that results in a more generic target model

(PIM). Figure 2.4 demonstrates these transformations.

Figure 2.4 Transforming PIM to PSM and vice versa using refinement and abstraction transformations.

Similar to refinement and abstraction, migration and refactoring transformations can

help alter models to perform specific software development task. Migration

transformations for example, help transform models of one modelling language to

another modelling language while maintaining the same level of abstraction. An

example is transforming class diagrams to relational database diagram [25]. Refactoring

transformations help restructuring models while keeping them at the same abstraction

level and conforming to the same metamodel. Refactoring transformation can help

improve quality of software models [13].

20

Similar to transformation task mentioned above, multiple other software development

tasks exist that can be performed by model transformations in the context of MDE. A

collection of these tasks can be found in model transformation literature [62]–[66]. The

following sections review a selection of most widely used approaches and languages for

implementation of model transformations.

2.3 Model transformation

In-line with importance of model transformation for realisation of MDE, many

approaches, tools and transformation languages have been proposed. To compare these

approaches, a list of characteristics of model transformations is provided in this section.

These characteristics are selected from previous literature and classification surveys of

model transformations [62], [63], [65].

Technical Space Transformations can be classified according to the application domain

or technical space of source and target models they are applied to. Some transformation

approaches are hard coded for specific tasks. These transformations are usually

transformations written with general programming languages (e.g. C, Java) and are built

for specific source and target models. There are a number of transformation languages

available that are built purposefully for certain domains. For example TXL

transformation language is designed for transformation between programming

languages [67]. Other transformation languages may consider alternative domains and

technical spaces with larger variety of source and target types.

Syntax (Concrete versus Abstract) Transformations can be specified on concrete or

abstract syntax of source and target. We refer to this as Input Artefact Syntax, i.e.

syntax of input source and target models and their abstraction level. Most general

purpose transformations are specified and applied on abstraction (metamodel) of source

and target. For example to write transformations with ATL, users have to specify

correspondences between elements of source and target metamodel. As a result, syntax

of the input artefacts when transformation is specified by ATL is abstract. For example,

Figure 2.5 demonstrates an ATL transformation rule for transforming UML operations

to Java methods. Transformations on concrete syntax are generally easier to understand

21

for non-expert users due to use of familiar concrete syntax e.g. the box and line shapes

in a class diagram. Transformations on abstract syntax, on the other hand, are more

scalable since they allow application of transformation rules on more high level syntax

of models and therefore there is no need to specify multiple transformation rules for

similar lower level elements. For example, user does not need to provide a

transformation for each UML attribute separately in a class diagram.

For specification of transformations and writing transformation scripts, current

transformation approaches generally use textual syntax of transformation languages or a

fixed graph-based visualisation of source and target models. We refer to this as

Specification Syntax. Textual and graph-based specifications, although hard for non-

experts, are generally referred to as concrete syntax [57]. For example ATL provides a

textual syntax similar to programming languages to specify transformations. Graph

grammars have a graphical view of the metamodels being used as source and target.

Although they help a lot in understandability of metamodel artefacts, the

transformations still need to be specified in textual syntax.

Figure 2.5 Sample of ATL transformation rule for transforming UML operations to Java methods (From

[1]).

Rule application control Depending on how transformation rules are executed, their

transformation rule application control can be imperative or declarative. Imperative rule

applications require specific control flow to be provided to describe how (and in what

order) the transformation rules are supposed to be executed. Declarative rules focus on

what should be transformed to what instead of how or in what order.

22

Transformation Engineering (Exogenous versus Endogenous) Exogenous

transformations transform models conforming to different metamodels. For example,

transforming UML class diagram to Java code is an exogenous transformation.

Endogenous transformations on the other hand transform models that are specified in

the same metamodel or modelling language. A good example of endogenous

transformations is refactoring transformations.

Transformation Scenario (Vertical versus Horizontal) Transformations can be vertical,

i.e. source and target are at different levels of abstractions, or horizontal, i.e. source and

target are at the same level of abstraction. Considering this characteristic,

transformations of PIM to PSM (and its reverse), as defined by MDA, or program

synthesis that transforms a high level programming language to a low level or machine

language, are examples of vertical transformations. On the other hand, transforming for

example UML class diagram to Relational Database Management System (RDBMS)

models is a horizontal transformation since source and target have different

metamodels. UML class diagram metamodel is generally specified by MOF and

RDBMS metamodel is specified by database schemas.

Exogenous and endogenous transformations can be either horizontal or vertical. For

example refactoring transformations can be considered as horizontal and endogenous

transformations, refinement transformations are endogenous and vertical. While

languages migration transformations are horizontal and exogenous, and code generation

transformations are vertical and exogenous [65].

Directionality (Unidirectional versus Multidirectional) Unidirectional transformations

only specify source to target transformation, i.e. only one dimension. Bidirectional

transformations specify source to target (forward direction) and its reverse, that is, target

to source transformation. If multiple sources or targets are involved, multidirectional

transformations can specify transformation in multiple directions. Bidirectional

transformations are a special type of multidirectional transformations where a single

source and a single target are being used in transformation. Bidirectional

transformations can be achieved by providing separate transformations for forward and

reverse directions.

23

Table 2.1 lists a group commonly used model transformation languages. It provides a

comparison according to the technical spaces that the languages are designed for,

Specification syntax of the languages, supported syntax of the artefacts being used as

source and target, whether rule application is imperative or declarative, whether the

language supports vertical, horizontal, exogenous or endogenous transformations and

whether it supports transformation rules for single or multiple directions. Directionality

here refers to implicit support for writing for example bidirectional rules rather than

having a separate unidirectional transformation for each direction. Following paragraphs

briefly describe the transformation languages and their characteristics.

Table 2.1 Comparison of most used transformation languages. + indicates support, (+) shows partial
support and – shows no support.

Transformation language
comparison

T
G

G
 [2

4]

A
T

L
 [6

8]

X
SL

T
 [6

9]

Q
V

T
 [7

0]

M
O

L
A

 [7
1]

E
T

L
 [7

2]

Technical Space
Model
Text
XML

+
-
+

+
+
+

-
-
+

+
+
+

+
-
+

+
-
-

Specification Syntax
Text
Graph
Visualisation

+
+
-

+
-
-

+
-
-

+
+
-

-
+
-

+
-
-

Input Artefact Syntax
Abstract
Concrete

+
-

+
-

+
-

+
-

+
-

+
-

Rule application control
Imperative
Declarative

-
+

(+)
+

+
+

+
+

+
+

+
+

Transformation Scenario
Vertical transformation
Horizontal transformation

+
+

+
+

+
+

+
+

+
+

+
+

Transformation Engineering
Exogenous
Endogenous

+
+

+

(+)

+
+

+
+

+
+

+
+

Support for directionality
Unidirectional
Bidirectional
Multidirectional

+

(+)
-

+
-
-

+
-
-

+

(+)
-

+
-
-

+
-
-

24

Triple Graph Grammar (TGG) [73] is among the most used model transformation

languages. TGG provides a means for declarative specification of transformation

between pairs of source and target graphs which are connected using a correspondence

graph. The correspondence graph records information and constraints on the matches

between source and target graphs. TGG allows specification of bidirectional

transformation rules. TGG has been extensively utilized in FUJABA and GReAT tool

suites [74]–[76] for model transformation. Graph based approaches like TGG can

benefit the use of visualisations for source and target in form of graphs. For example, a

graphical representation of model transformations for TGG was provided by Grunske et

al. [25].

Atlas Transformation Language (ATL) is the transformation languages of ATLAS

Model Management Architecture (AMMA) [26], [27], [68]. It allows transformations to

be specified for metamodels and uses a concrete textual syntax. ATL is a declarative

language; however, there are helper functions provided which can enable limited

imperative rule applications.

XSLT is a transformation language for manipulating XML data [69]. It is a functional

language that allows both imperative and declarative programming. Imperative rules

can be generated using powerful XPath matching functionality [77]. XSLT accepts

source and target in XML or similar formats like XHTML. An example XSLT script is

provided in Figure 2.6.

Figure 2.6 Example XSLT script and its source and target XML.

25

Although models can be specified in XML, and string values can be used in XML, we

do not categorise XSLT as a transformation language that can be used in Model or text

technical spaces. Neither can it be classified as working on concrete syntax as XML

needs to be parsed to represent concrete syntax in form of text, graphics, etc.

Query Views Transformation (QVT) is the transformation language of OMG’s MDA

[70]. Like ATL it provides model-to-model transformation defined on both XMI-based

metamodels and textual concrete syntax. It includes three languages, QVT operational,

QVT Relations and QVT Core. QVT operational is an imperative language for model-

to-model transformation based on EMF models. QVT Relations, on the other hand, is a

declarative language defined as part of QVT which provides relationships between

MOF models. Is has a textual and graphical representation for specification of relations

between MOF models. Operational language defines forward and backward

transformations separately and requires consistency to be preserved manually, while

Relations language describes how the source and target relate to each other in a

bidirectional manner. QVT core is a lower level language which both Relations and

Operational languages can be translated into and is inspired by the Triple Graph

Grammars approach [78].

MOdel transformation Language (MOLA) is a graphical language based on graph

transformations that provides graphical constructs for specification of transformations

[71]. It provides graphical structures, which are quite similar to UML activity diagrams,

to define transformation rules [79].

Epsilon Transformation Language (ETL) is the model transformation language of the

Epsilon model management infrastructure [72]. It offers rule scheduling by specifying

lazy rules that are only executed when they are explicitly called, and by guarded rules

that are only executed if their guard evaluates to true. ETL provides both declarative

and imperative style of programing.

As can be seen in Table 2.1, the languages for specifying transformations mostly use the

abstraction of source and target models as input artefact syntax. Use of these

abstractions introduces high barriers for non-expert users, since they require users to

learn and use complex meta-models which are far removed from the modelling

26

language of source and target models [29], [37], [80]. Also the need for specification of

such transformation using textual syntax of transformation languages adds to the

problems of model transformation specification [18]. As an alternative, approaches have

tried to address this problem by automation of transformation rule derivation using

concrete model examples[29], [40], [81], [82], transformation generation by

demonstration [38], [45], or automatic alignment of models and metamodels to

eliminate the need for learning transformation languages [83]–[85]. The following

subsections provide an overview on these approaches.

2.4 Transformation using concrete models

Approaches to perform transformation on concrete models are grouped in two

categories: Model Transformation By Example (MTBE) and Model Transformation By

Demonstration (MTBD). They have their roots in programming techniques and date

back to the works on alternative approaches to develop program source code,

Programming By Example [45]. These techniques leverage user interaction and well-

formed rules to replace the text centric source code design. In line with these

techniques, MTBE/MTBD tries to express the transformation declaratively in the

domain language of source and target models without having to specify metamodels or

transformation languages. Following sections describe these approaches in detail.

2.4.1 Model Transformation By-Example (MTBE)

MTBE’s principle is to derive high level model transformation rules from initial

prototypical set of interrelated source and target models. This concept was first used by

Varro et al. incorporating graph transformations [40]. The idea is to provide multiple

source and target model pairs, and ask a user (domain expert) to specify source and

target model element correspondences. The system then uses these correspondences to

derive transformation rules. This approach was later improved by replacing user centric

heuristics with predefined knowledge in form of Inductive logic [41]. Inductive logic

27

programming is intersection of inductive learning and logic programming and aims at

construction of first order clausal theories from examples and background knowledge.

There, the designer assembles prototype mapping models by showing how source and

target elements should be interrelated and based on this input the system should

synthesize the set of model transformation rules. Although this approach eliminated the

use of metamodels, the modeller most now focus on generating the inductive logic as

meta information for the transformation engine in a way that the system can derive

transformation rules.

These approaches can handle only one-to-one relationships between target and source

elements and while defining the inductive logic is a separated task than model

transformation itself, the transformation designer should have knowledge of logic

programming to define it. Also, these approaches are not adaptable to situations where

only a few examples are available [39].

Wimmer et al. introduced a conceptual framework for mappings generated from models

using the syntax of the modelling language [36], [86]. Their conceptual framework

allowed users to define both models inside the framework and specify mappings and

corresponding elements. Then a model transformation generator would generate

transformation code. Later, they introduced special mapping operators to give the user

more expressivity for defining model mappings [86]. It allowed the definition of

semantic correspondences on concrete syntax, from which ATL rules could be derived.

Using the examples that are provided to the system, Kessentini et al. proposed Model

transformation as optimisation by example (MOTOE). This approach views model

transformation as a problem to be solved using fragmentary knowledge [82]. They

proposed to view model transformation as an optimisation problem. Two strategies

were chosen: first, parallel exploration of different transformation possibilities on

example source and target models by means of a global search heuristic. And second,

use a hybrid global/local heuristic to improve initial transformations [39]. Since the

number of solutions becomes huge, the problem becomes optimisation of

transformation generation on the solution space of possible transformation rules. Block

constructs were introduced as a previously performed transformation trace between a set

of constructs in the source model and a set of constructs in the target model. Then,

28

finding a good transformation is based on finding the combination of constructs that

maximises the inside block coherence and between block coherence. This approach tries

to propose a transformation even when rule induction is impossible since it chooses the

closest possible rule. However, since all possibilities are considered, it will become very

complex. Moreover, rule generation is not deterministic since multiple runs might result

in different rule generation.

Kessentini et al.’s work differs to MTBE, since MTBE focuses on automatic

transformation between models containing same information in different forms. This

work allows interactive and incomplete transformation. Examples in MTBE are

complete models and therefore, generated transformation can be tested on example

models. In this approach however, since models may be partially complete they are not

immediately suited for testing.

Recently Faunes et al. used an evolutionary computation algorithm to derive model

transformation rules [81]. Their approach did not require detailed mappings between

models and could not produce executable rules. Derivation of transformation rules in

their approach is guided by the ability of generated rules to successfully transform the

provided examples, which guarantees that they are executable with the right control

sequence. Their selection process favours the rules with the highest fitness value, i.e. the

resulted target matches the intended example best [81].

Although many-to-many transformations are possible with some general model

transformation approaches, MTBE approaches are all applicable on one-to-one concrete

mappings and cannot consider many-to-many cases. Garcìa-Magariño et al. [30],

proposed an improvement to MTBE by generating M:N rules based on constraints

defined for simulating input patterns of several elements and preserving them in a

dictionary. They embed mappings in models by indicating how information should be

transformed from input to output and used metamodels to declare how a model is to be

constructed [30]. By defining generic transformation grammar in EBNF, the generated

transformation could possibly be implemented by transformation languages like QVT,

ATL, etc. Although their method provided a possibility of defining many-to-many

transformations, which is a key limitation of many transformation mechanisms, due to

29

extensive use of metamodels and metadata in the dictionary, we cannot classify it as

concrete by-example approach to model transformation.

Semi-automatic generation of transformation rules in MTBE approaches often leads to

an iterative manual refinement of generated rules. Therefore the model transformation

designers may not be isolated completely from knowing the transformation languages

and metamodel definitions [38]. The inference of transformation rules depends on given

sets of mapping examples, so one or more mapping examples must be available to set

up a precise prototype mapping. Users are required to learn and use the syntax of a

correspondence specification language to specify seeding correspondences. This is often

problematic as no visual approach for specifying correspondences on actual familiar

notations exists [87]. Seeding the process with such examples is not always an easy task

in practice [39]. Also, current MTBE approaches focus on mapping the corresponding

concepts between two different models and providing complex mappings like arithmetic

or string operations is not possible.

2.4.2 Model Transformation By-Demonstration (MTBD)

Model transformation by demonstration (MTBD) approaches are based on an expert

performing transformation tasks and recording of the process steps by a recorder [38],

[43], [44]. Robbes et al. take this approach and design a system that is capable of

capturing changes a programmer would perform to the program code [44]. This system

then generalises the changes to form abstract changes for reuse. They model their

system as an evolving Abstract Syntax Tree (AST) with nodes representing class,

package, methods, variables and statements. Each AST is accompanied by a history to

record changes. Those changes would be then generalised to form abstract changes,

allowing them to be reused. Their approach is most suited for refactoring applications of

program code.

Sun et al. proposed a similar approach for model transformation where the user does the

transformation on one instance of the model and the system records the user’s

interaction. The system then generalises the recordings and imitates the procedure on

selected portions of source model that satisfy the pre-conditions [38]. Users demonstrate

30

how model transformation should be done by editing (e.g. add, delete, comment,

update) the model instance to simulate model transformation process step by step. Then,

a recording and inference engine (MT-Scribe) captures user operations and generates a

transformation pattern using inference. This pattern specifies the precondition of

transformation and sequence of operations.

Brosch et al. introduced “Operation recorder” that is capable of recording atomic

operations on models and creating composite operations based on recordings [43].

Operation recorder is capable of creating composite operations based on recordings and

can accept input models defined in ECore. It then generates composite user defined

refactoring by subsuming multiple set of atomic changes. Operation recorder is

independent of any particular modelling language as long as it is based on ECore.

Changes to the models are not recorded on runtime, instead, they are recorded when

modifications are complete, i.e. initial model is checked against modified model.

MTBD generates transformation of models within the same metamodel [88]. Therefore,

it cannot be used for transformation applications which require exogenous model

transformation. The biggest issue with demonstration-based approaches is their high

reliance on the recording system (e.g. MT-Scribe [38]). These systems are generally

tool specific and integrating them with other transformation approaches (than the one

they were designed for) might not be always possible. Moreover, using MTBD in

exogenous model transformation is challenging since finding both source and target

models that can be monitored by recording agents does not seem feasible. Therefore,

most of these approaches address endogenous transformation tasks.

2.5 Visualisations and transformation

Textual specification of model transformation scripts, although very efficient for

software engineers, introduces pragmatic barriers for general users [80], [87], [89]. As a

result some approaches have tried using visualisations. These approaches can be

grouped into three categories. First, approaches that visualise abstractions and schemas

and leverage user interactions with the elements of these visualisations for generating

31

transformation scripts. Second, approaches that provided concrete visualisations of

source and target models. And finally approaches that tried to address transformation

using concrete syntax in conjunction with abstract syntax of the models. In the

following subsection, we briefly review these approaches.

2.5.1 Visual intractable schemas

This category of transformation generation techniques uses predefined visualisation of

schemas and user interaction with the visualisations to make transformation more user-

friendly. A good example of these approaches is ALOTVA MapForce [47]. MapForce

provides default tree-like visualisations for schemas of both source and target as shown

by Figure 2.7. To generate mappings users drag and drop schema elements and specify

mapping correspondences. From these correspondences, the transformation script is

generated. In another approach, visual representations of EDI message meta-models

were used as source and target. Similarly, users would generate transformation

specifications by drag and dropping specification of model correspondences between

these visual elements [31].

Figure 2.7 Sample mapping generation using ALTOVA MapForce.

32

Although user interaction and visualisation helps the transformation generation process,

the fact that the artefacts being used in these approaches are still abstractions makes

them targeted to more advanced users [90]. As a result, providing improved mapping

specification environments require users to think in terms of meta-models and abstract

meta-model correspondences, not leveraging their model domain knowledge in a

human-centric way. Next section describes techniques that use concrete visualisations

of models for transformation generation.

2.5.2 Using concrete visualisations

Concrete visualisations can improve understandability of mapping and transformation

generation [29], [32]. A recent study on comparison of three transformation languages

namely Concrete syntax-based Graph Transformation (CGT), ATL and Attributed

Graph Grammar (AGG) suggested that due to use of graphical concrete syntax, CGT is

more concise and requires considerably less effort from the modeller than the other two

which use textual abstract syntax [91]. CGT uses a default concrete syntax similar to

Business Process Modelling (BPM) and therefore the syntax is familiar for the

modeller’s domain knowledge.

A concrete-like representation to make models familiar to the transformation designers

was taken in form-based mapper by Li et al. [32]. It uses a concrete visual metaphor

based on the concept of business forms, to visualise complex business data and

provided an understandable data transformation mechanism for system users (in their

case, business analysts). A screen shot of this form-based mapper is shown in Figure

2.8. A closely related approach is presented by Stoeckle et al. [92], [93]. In their

approach however, they try to provide multiple views for source and target models. A

notation converter generator generates required transformations or transforming

between different views of the provided models.

33

Figure 2.8 Sample mapping generation using Form-based mapper.

Schmidt proposed using a UML2-profile to define transformations as pattern in concrete

syntax of UML2 [94]. This way, users have the ability to define model transformation

in the same visual language as models. A UML profile is a package and contains some

restrictions on the possible extensions of a reference metamodel (e.g. UML and CWM).

Stereotypes with parameters can be used to define syntax and model instances of

metamodels. The modeller defines UML2 model and patterns. A generator uses this

pattern to create a profile for the application of the pattern and some data containing

transformation and constraints for expansion of patterns. A modifier then takes

transformations and constraints to generate an expanded UML2 model. Their approach,

however, was only capable of handling in-place transformations of UML2 to UML2

models.

34

2.5.3 Using concrete syntax in conjunction with abstract

Approaches in this category involve using concrete syntax in conjunction with abstract.

For instance, since in graph transformation, patterns of the left hand side (LHS) and

right hand side (RHS) graphs are defined in abstract syntax and more readable concrete

syntax is not used in the transformation rules, Baar and Whittle proposed separation of

modelling language from pattern language [33]. Their approach was to write the graph

transformation rules directly in the concrete syntax of the modelling language and

extract the metamodel of the pattern language from that of the modelling language [33].

However, their method required alteration of concrete syntax to include labelling of

objects and optional occurrence of attributes and links.

Visser used syntax definition formalism (SDF) to incorporate existing (meta-)

programming languages with concrete syntax notation [58]. This combination was used

in transformation generation using Stratego [95]. Using concrete notations for

generating object programs helps to better understand the abstract syntax of the meta-

language elements to be mapped. Although the use of concrete syntax makes meta-

programs more readable than abstract syntax specifications, the approach requires both

meta-language and object language syntaxes to be provided as an input to the platform.

2.6 Model transformation tools

This section provides a comparison of the mostly used and available transformation

tools. This comparison is provided in Table 2.2. It compares several transformation

tools based the application domain supported by tools, specification syntax of

transformation, transformation cardinality, input artefact syntax, the way users interact

with the tool, supported directionality and user support mechanism. Some of these

categories have been described in this chapter before.

Among the categories of Table 2.2, transformation cardinality checks the type of

transformation correspondences that can be specified. The options could be one to one,

one to many or many to many correspondences.

35

User interaction category tries to capture the level of simplicity of using tools for

novice transformation developers. This interaction can be performed using textual

specification of correspondences which is hard for novice users. It could also be

interactive specification where users click on elements, or ask tool to perform certain

tasks. Some tools also allow drag and drop of visual elements to specify correspondence

which is much easier for non-expert users.

User support mechanism concerns possible support mechanism to make transformation

more user-friendly. This support could be in form of providing concrete visualisations

of input models. For concrete visualisations, the fixed tree-based visualisation of input

models is not considered as a support mechanism, as is used in most schema mapping

approaches. Other type of guidance mechanisms could include providing interactive

guidelines to users to finish the transformation task. This interactive guidance may be

provided in form of recommendations, or providing a review of the resulting mapping

target.

Majority of the transformation frameworks being discussed here are based on graph

transformations. These include ATOM3 [96], VIATRA2 [97], GReAT [76], UMLx

[98], and BOTL [99], [100]. These approaches are mostly integrated in Eclipse

framework.

VIATRA2 integrates graph transformation and abstract state machines (ASM) to

manipulate graph based models [97]. It uses a dedicated transformation language

(VIATRA2 Transformation Language or VTL) which is composed of three

sublanguages that provide support for multilevel meta-modelling, pattern and rule-based

model transformations, and template-based code generation. It uses Visual and Precise

Modelling (VPM) metamodels which provide a visual concrete syntax to represent

metamodels but the framework does not allow arbitrary concrete syntaxes.

36

Table 2.2 Comparison of model transformation tools. + indicates support, (+) shows partial support and –
shows no support.

Tool comparison

A
T

O
M

3
[9

6]

V
IA

T
R

A
2

[9
7]

A
L

T
O

V
A

 [4
7]

C
L

IO
 [1

01
]

G
R

eA
T

 [7
6]

A
T

L
 [6

8]

U
M

L
x

[9
8]

B
O

T
L

 [1
00

]

Fo
rm

-b
as

ed
 [3

2]

Application domain
Model to model
Model to text
Text to text

+
-
-

+
+
-

+
+
-

+
-
-

+
-
-

+
+
+

+
-
-

+
+
-

(+)
-
-

Specification Syntax
Text
Graph
Visualisation

+

(+)
-

+
-
-

-
-

(+)

-
-

(+)

+
+
-

+
-
-

-
+
-

-
+
-

-
-

(+)
Transformation Cardinality
1-to-1
1-to-M
N-to-M

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
-

+

(+)
(+)

+
+
+

Input Artefact Syntax
Abstract
Concrete

+
-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

-

(+)
User interaction
Textual
Interactive
Drag-and-drop

+
-
-

+
-
-

-
+
+

+
+
-

+
-
-

+
-
-

+
-
-

+
-
-

-
+
+

Support for directionality
Unidirectional
Bidirectional
Multidirectional

+
+
-

+
-
-

+
-
-

+
-
-

+
-
-

+
-
-

+

(+)
-

+
+
-

+
-
-

User support mechanism
Interactive guidance
Visualisation

-
-

-
-

-
-

+
-

-
-

-
-

-
-

-
-

-

(+)

ATOM3 provides concrete visualisation for source and target graphs and allows users to

define rules by using concrete graph-based rules [96]. It uses TGG as the transformation

language and is therefore capable of generating many-to-many rules. Similar to other

graph based approaches, if the source and target models are not graphs, concrete syntax

cannot be provided for them.

Graph Rewriting and Transformation language (GReAT) uses a combination of pattern

specification language, a graph transformation language, and a control flow language

37

[76]. Transformation rules in GReAT can be defined using Generic Modelling

Environment (GME) based graph visualisations[76].

UMLx provides a visual language for model transformation that uses standard UML

class and object diagrams to define meta models, and uses object diagram to define

inter-schema transformations [98]. As a result, it provides a graphical visualisation of

rules that is similar to UML standards. Visual transformation rules in UMLx are

transformed to XSLT and then applied on meta models.

ALTOVA MapForce is a schema mapping generation tool that provides users with tree-

based visualisation of source and target schemas [47]. It allows definition of

correspondences using drag and drop of elements from tree visualisations. Functions

can be used to generate more complex mappings and unidirectional mapping is

generated in XSLT, XQuery, Java, C# and C++.

Form-based Mapper proposed by Li et al. is a data mapping targeted for specific users,

i.e. business analysts [32]. Therefore, it is limited to a certain application domain of

transforming business data in terms of forms. Its visualisation mechanism also is

designed to consider business forms as source and target. Although form-based mapper

allows using interactive drag and drop metaphor on concrete visualisations, since the

visualisation is targeted to specific application domain and users, it has been shown to

partially support concrete input artefact syntax in Table 2.2.

Basic Object-oriented Transformation Language (BOTL) is a relational transformation

language and system that provides the ability to use graphical description techniques

and integrated algorithmic descriptions to graphically define mapping rules [99], [100].

It provides a UML-like notation for graph rewriting rules working on pairs of models or

graphs. BOTL provides bidirectional transformation for bijective relations, for non-

bijective relations however, the consistency preservation is not clearly defined [102].

Clio is the data transformation and mapping generator that was developed for

information integration applications [101], [103]. Clio provides declarative mappings to

be specified between source and target schemas. It supports XML schema and relational

schema and can generate mappings in XQuery, XSLT, SQL, and SQL/XML queries

[101]. Clio provides a fixed tree-based visualisation of source and target schemas and

38

allows users to drag and drop elements of these schemas to specify schema mapping

correspondences. Clio also provides a set of correspondence matchers to create initial

correspondences. These matches can then be incrementally updated [103]. Clio

generates mappings in form of queries and therefore N-to-M mapping can be specified.

Although ATL is not a transformation tool and comes integrated in Atlas Model

Management Architecture (AMMA), a dedicated plug-in in Eclipse framework can be

used to develop transformations in ATL. Using Eclipse IDE users can specify

transformations by writing ATL scripts.

There are a number of transformation tools and approaches that are used for program

code transformations. Examples are Tree transformation languages (TXL) [67],

Alchemist [104], ASF+SDF[105] , JTS/Jak [106], Stratego [95] and Gra2Mol [107].

Since application of these approaches is for specific domains (e.g. program

transformation, textual syntax) they are not included in this comparison.

2.7 Information and Software Visualisation

There is a growing demand for approaches that incorporate visualisations in the

software industry and beyond [14]. Accordingly, apart from using visualisations for

model transformation, a significant contribution of this thesis is on generating concrete

visualisations. This section provides a brief review on approaches for visualisations.

The review is based on visualisation techniques for models and information

visualisations.

2.7.1 Model visualisation

Among the early approaches of software visualisations are SHriMP and Rigi [15], [17].

Rigi was designed to provide a structural view of large software systems and effectively

present the information accumulated during the development process [15]. SHriMP is a

software visualisation environment specific to hierarchical datasets with non-

39

hierarchical relationships between the nodes and was integrated in Rigi framework [17].

However, these tools suffered from adaptability and flexibility in industrial settings

[14].

More recently, a framework for Model Driven Visualization using Eclipse Modelling

Framework (EMF) was introduced by Bull et a. [14]. This framework is capable of

generating flexible visualisations using meta-modelling and transformations. It has been

implemented within Eclipse [108]. The EMF models used in this approach allow

generation of code from a model.

Cerno-II is a visualisation system capable of constructing graphical views of the

execution state of object-oriented programs [109]. It has three layers: 1.Display layer

which works by Display Specification Language. 2. Abstraction that consists of

abstractors responsible for extracting running program data and map it to display layer

and 3. Program layer that consists of objects and data structures of the program being

visualised. Cerno-II uses display specification language to design new representations

for displays. Each descriptor in this language is a functional expression specifying the

general format of a type of display (boxes, lines, etc.). Alignment of descriptors is based

on horizontal and vertical lists. Skin is a visual functional language for flexible user

interface component construction using icon and connector model [21]. It can be

considered as a specialisation of Cerno-II. Skin provides icon-like graphics that once

connected using special connectors can form visualisations.

With emergence of Meta-tools, generating visual languages and diagram based editors

became easier and more feasible. Meta-tools allow generation of visualisation

environments that provide facilities for users to interact with those visualisations. An

example of such meta-tools is Marama tool-suit [19]. Marama is a set of Eclipse plug-

ins that support rapid specification and implementation of other software tools such as

Domain Specific Visual Languages (DSVL) and modelling tools. It was used to develop

other modelling environments like MaramaEML as a multi-view business process

modelling environment [110], MaramaAI for multi-lingual requirements engineering

[111], and MaramaMTE for performance engineering [19].

40

DiaGen is another example of a meta-tool for generating diagram editors [20]. DiaGen

uses hyper-graphs for language definition and describes a diagram as a set of diagram

components and the relationships between attachment areas of connected components of

the model. Like Marama, DiaGen has been used in creating diagram-based applications,

for example in an editor for graph-based languages [112].

CIDER is a tool developed for building Smart Diagramming Environments (SDE)

[113]. It uses Constraint Multi-test Grammars (CMG) for specification of diagrammatic

syntax. The Constraint Multi-set Grammar (CMG) formalism is a kind of attributed

multi-set grammar. A CMG specification has two parts: symbol definitions and

production rules. Symbols have geometric and semantic attributes. Each type is either

terminal or non-terminal. Terminal symbols correspond to the primitive graphic objects

in the diagram while non-terminal symbols are more complex objects built-up from

these.

The approach presented by Ernst et al. provides visualisations for software application

landscapes (software map) [16]. For each cluster map of the system, they have

identified a semantic model and a symbol model. The semantic model contains actual

values for the objects of the model and their attributes. They propose to use

transformations to link the gap between semantic model (the data to be visualised) and

symbolic model (visualisation). Then transformation rules like “every business

application is transformed to a rectangle with text as the name using white background

colour” are used [16].

2.7.2 Information Visualisation

The context of this thesis is on model visualisations. However, since information can be

provided in form of a model, model visualisation approaches could also be applied for

visualising information. Similarly, some approaches on information visualisation can

also be used to provide alternative visualisations for models.

A survey of information visualisation tools has been provided by Pantazos et al. [114].

They have evaluated a group of industry and academic information visualisation tools

for three types of users (Novice, Savvy, and Expert). Novice users have no

41

programming skills but have domain knowledge and basically interact with predefined

visualisations. Savvy users, have some basic skills and an understanding of the domain.

While expert users are users with very good programming skills who construct

advanced visualisations and have no domain knowledge. Five dimensions were used to

compare visualisation approaches: Who constructs the visualisation, What types of

visualisations user can develop, Does it support construction of advanced visualisations,

How are visualisations specified and created, and finally, Does it have a development

environment. The study concluded that the current information visualisation tools do

not support Savvy users in construction of advanced visualisations [114].

Relational Visualisation Notation (RVN) for generating multi-dimensional

visualisations was introduced by Humphrey [4]. RVN is a graphical notation that allows

users to specify visual designs without the use of programming. RVN is composed of

three parts: Semantic data models, which provide facilities for describing, storing and

retrieving information according to the relational model. Graphics relations that visually

represent information relations, define the information and graphical models of the

visualisation as well as the transformation between them. And finally design diagrams,

which combine multiple information and graphic relation into a visualisation design

specification. The graphics relation has a schema for graphics and a schema for

information and set of bindings between them. The graphics schema is templates made

of boxes, lines, graphics iteration and graphic selection. It defines the visualisation’s

visual structure like parameterised icons. The binding between graphics schemas and

the information schema is algebraic expressions i.e. formulae which make it easier for

users without programming skills to make visualisations. Design diagrams are directed,

acyclic graphs that combine source relations to produce output graph relations.

UVis is a tool suit that addresses visualisation creation for non-programmer end users

with advanced spread sheet knowledge and basic relational database understanding

[115]. Users can compose customisable visualisations using formulas and building

blocks such as box, line, and labels. uVis controls have three kinds of properties: control

properties (the pre-defined properties a control supports), uVis properties (additional

properties for visualizations), and user’s properties (properties created by the user)

[115]. Each formula represents an SQL statement and can refer to data in the database

42

or any of the properties. UVis studio tool is visual studio based tool which uses drag and

drop approach similar to visual studio.

Where information can be structured as graphs, graph visualisation approaches can be

used. Herman et al. provide a survey on approaches to create graph visualisations [116].

Their survey is specially focused on how to navigate large graphs reducing visual

complexity through reorganisation of the data.

The Visual Wiki is an approach for visualising information using a combination of

textual and visual representation of same body of knowledge [117]. A Visual Wiki has

four components: concept, text, visualisation, and the mapping between them. Concept

describes the purpose and content of visual components. Text and visualisation

components use a language to represent the content of the underlying knowledge base: a

visual and a natural language. Finally the mapping determines how the two

representations (visual and textual) are linked together and how they influence each

other [117]. Its application was shown in generation of ThinkFree, an IT knowledge

management system for tertiary institutions [118]. Visual wikis can be generated using

VikiBuilder which is a visual wiki meta-tool [119].

2.8 User guidance

With the scale of today’s software engineering applications, users are presented with an

ever-increasing load of information. One response from research and industry to the

problem of information overload is Recommender Systems [120]. Recommender

systems help users find information and make decisions where they lack experience or

can’t consider all the available data [120]. They have been previously used and tested in

many e-commerce applications (examples are [121]–[123]).

This thesis approach introduces a recommender system that specifically focuses on

correspondences between elements of concrete visual model representations to guide

users in specifying their transformation rules. This approach builds on model matching

techniques and recommender systems. The following sections provide a brief review of

43

approaches to model matching and recommender systems in software engineering. It is

followed by a subsection on previous approaches to provide guidance to users of model

transformations.

2.8.1 Model matching

Model (or metamodel) matching techniques try to find an alignment for relating two or

more models. This alignment can then be used to semiautomatically generate

transformations between two models. These generated transformations can then be

adopted and validated by an expert as a set of transformation rules [85]. Model

matching is therefore very similar to MTBE in terms of finding possible

correspondences between source and target models.

Matching approaches can be categorised into three categories based on the artefacts

being used as source and target to be matched and their abstraction level. These

categories include schema based, instance based and hybrid approaches. Following

subsections provide details on current approaches in each category.

2.8.1.1 Instance-based matching approaches

Instance based model matching approaches are the closest to MTBE. They use instances

of source and target models to find and explore possible alignments. QuickMig is such

an approach that uses instance-based matchers on manually created examples to

generate alignments [124]. Similar to QuickMig, SmartMatcher also uses manually

created instances [125]. However, the objective of both approaches is to create a

matching alignment between source and target schemas, not the instances. The actual

and targeted outputs of the matching algorithm in SmartMatcher are compared and the

differences are propagated back to adopt the functional relationship model in form of

the mapping between LHS and RHS models [125].

Kache et al. introduced an approach for reverse engineering of transformation rules in

data intensive systems using data mining approaches [126]. They have classified all

transformation rules into three groups, value-based correlation, aggregation, and

44

arithmetic transformations. Their approach requires source and target to be relational

datasets with logical definition for both schemas. They also consider a primary foreign

key to be present for joining source and target and to keep record of transformation rule

data. The discovery is done in three phases: 1. Pre-processing: they execute a set of tests

depending on the type of transformation rule group to be discovered. 2. Data mining:

use mining techniques on the results of phase one. 3. Post-processing: derive

transformation rule from data mining output. These steps are repeated for each of the

three groups of transformation rules.

Yeh et al. used a semantic matcher to find a mapping between two knowledge

representations encoded using same ontology [127]. When mapping two

representations, there are mismatches that occur between elements of representations.

This work tries to find instances of mismatches that encode sufficient similar content.

Then these instances are generalised into transformation rules for use in semantic

matching. Structural representation is mostly encoded as graph. Therefore semantic

matching can be considered a graph matching problem.

2.8.1.2 Schema-based matching approaches

Schema matching (or metamodel matching) approaches are generally similar to instance

based matching in terms of methods of finding correspondences. However, they intend

to search metamodels and abstractions of source and target models. As a result, the

found correspondences are already generalised and are in abstract level.

Some approaches to metamodel matching proposed using similarity heuristics on

schema labels and types, and similarity propagation. Bossung et al. used mapping

agents that look for label similarities in source and target schemas [46]. They focus on

automated mapping generation of XML schema by using analysis agents which traverse

both schemas and apply a set of heuristics to find correspondence between elements.

Heuristics such as same name, same type were used to automate data mapping. Clio by

IBM also used a similar approach [101]. Clio uses value correspondences for mapping

the schemas and interprets sets of value correspondences to compute mappings for the

most common schema heterogeneities known from the database field [101].

45

Other approaches consider structural similarities as well as label similarities. For

example SAMT4MDE+ finds structural similarity between metamodel elements using

weighted score of structural similarity to determine mapping specifications between

metamodels [128]. Voigt and Heinze proposed structural comparison focusing on

common sub-graph [84]. The approach has three stages: a planarity check, a

planarization, and graph edit distance calculation. To obtain better results, set of correct

mappings are provided by user as seeds which serve as starting points for similarity

calculation. Sequential matching systems like Similarity Flooding propagate similarities

in a graph between nodes using fixed point computation [84]. In their internal graph

representation, classes, packages and attributes are each mapped onto a vertex and

references are mapped to edges.

Similarity flooding is a graph matching algorithm that uses labelled directed graphs as

input [129]. It first converts input models to directed labelled graphs and uses iterative

fixed-point computation to find similar nodes in both graphs using string matching. It

then calculates propagation of similarity of two nodes to their neighbours. By limiting

suggestions (e.g. thresholding similarity scores) a set of matching results are prepared.

Falleri et al. used this approach to automatically find mappings between two

metamodels [83].

Dolques et al. proposed combining string similarity and schema matching to

automatically retrieve the links and corresponding elements of source and target

instances [42]. Their proposed architecture was to first generate the correspondence

links of source and target by a matching engine, and ask an expert to check and validate

the links. The matching engine would then check source and target and provide a

candidate matching model. The expert would check the model for validation. Using this

model they used anchor prompt approach in a two-step process designed for ontology

matching to find matches [42]. Their approach works on EMF therefore all models

should conform to Ecore metamodel.

A number of similar approaches are shared among ontology, schema, and metamodel

matching domains [130]. For example, ModelCVS transits ECore based metamodels of

ModelWare to OWL-based ontologies of OntoWare [37]. Using OntoWare and

ontology matching, matches are found. Then the reverse transition will result in

46

metamodel matches of the input metamodels. If metamodels have common

terminology, for example when matching UML to UML2, ModelCVS results in good

matches due to use of ontologies.

A model management operation (ModelGen) that automatically translates a source

schema expressed in one metamodel into an equivalent target schema expressed in a

different metamodel, along with mapping constraints between the two schemas is

introduced by Bernstein et al. [131]. Given a source model and schema, it is possible to

generate the given target model's schema using special ModelGen operator [132]. It is

defined in a meta-metamodel level where every metamodel conforms to. As a result,

model management tools using ModelGen are claimed to be generic.

2.8.1.3 Hybrid approaches

Schema-based approaches can be improved by using model instances. For example, in

Bossung et al. using example instances helps mapping agents relate schema elements

more accurately [46]. SmartMatcher, uses a collection of mapping operators

(predefined in the system) and tries them on schemas to find appropriate mappings

[125]. A set of initial mappings should be provided to the system to narrow the search

space, otherwise the operators of the mapping language have to be applied randomly

which take a lot of time. The mapping model is created from alignments in INRIA

alignment format [133]. It has the capability of being used to derive transformations in

multiple languages based on source and target schemas [133].

2.8.2 Recommender systems

In general, there are three types of recommender systems: content-based, collaborative

filtering and the hybrid recommender systems. Content-based recommenders learn the

preferences of their users based on historical usage data, or available information of the

items [134]. Collaborative filtering recommendations recommend items based on its

similarity to items used by other users with similar profiles to the current user [135].

These systems recommend an item to a user if users with similar interests have used that

47

item previously. Hybrid approaches tend to combine collaborative and content-based

methods [136], [137]. They leverage advantages of each approach and attempt to

mitigate the limitations of each approach as well.

Software artefacts have become very large and may include varieties of source code,

models, code, APIs and other artefacts. This provides a significant pressure on

developers and maintainers of software to carry on dedicated tasks. Accordingly,

recommender systems in software engineering have been focused on increasing

productivity of developers by providing task specific recommendations. An example of

these tasks is code reuse to reduce implementation efforts. CodeBroker is a

development environment that promotes reuse by enabling software developers to reuse

available components [138]. It analyses comments in the code and uses a combination

of text similarity and signature similarity to find suitable methods among available

library contexts.

In large software projects, locating specific portions of the project or code is a

challenging task. Robillard introduced a recommender system that helps developers find

items of interest [139]. It analyses the topology of a graph of structural dependencies of

a software system and recommend set of items that might be of interest to the

developer. Similarly, Hipikat helps new developers joining a development team in

finding source code, email discussions or bug reports related to a specific query [140]. It

provides a development environment using Eclipse IDE and records all of the artefacts

produced during the development. Rascal uses a recommender agent to track usage

histories of a group of developers and recommends components that are expected to be

needed by individual developers [141]. The components that are believed to be most

useful to current developers will appear first in the recommendation list.

Dhruv is a recommender system that provides debuggers with a list of recommended

artefacts relevant to a bug report [142]. It uses a three-layer community model based on

developers. The first layer considers users, and contributors. The second layer considers

content e.g. code, bug reports, and forum messages, and final layer includes interactions

between these. Dhruv uses a web-based environment and recommends objects

according to the similarity between a bug report and other bug reports, code, and

mailing lists on the web [142]. Similarly, DebugAdvisor helps debuggers search

48

through diverse data repositories associated with large projects to find solutions to

fixing a specific bug [143].

For some applications, developers might need to find related expertise to perform a

software engineering task. In such situations, Expertise Browser can be used to

recommend relevant expertise [144]. It recommends experts by detecting past changes

to a given code location or document and assumes previous developers that altered the

document have expertise in it.

Not all recommender provide recommendations by providing data. Mylyn is a

recommender system that helps users of an IDE by hiding irrelevant information

provided by the IDE and hence improve programmer productivity [145]. It identifies

and blurs classes in a large software project that are less relevant to the task.

2.8.3 User guidance in transformation

User guidance mechanisms have been integrated in tools for many application domains.

Examples are code completion [146]–[148], diagram completion domains [149]–[151],

Model completion [152]–[154], and Domain Specific Visual Languages (DSVL) [155].

Despite increasing attention to supporting users in labour intensive tasks of software

engineering, we are not aware of any research, techniques or approach that is

specifically generated to support users in model transformation specification. Previous

research has been mostly focused on how transformations should be generated and the

technologies to enabling it [29], [62], [63], [66], [156].

Siikarla et al. investigated how model transformations should be developed and what

are the roles involved in the design phases [157]. They claimed that different modelling

formalisms need different expertise and stakeholders need to use different notations at

different levels of abstraction. As a result and due to the fact that construction of model

transformation needs constant feedback, they proposed an iterative and incremental

application to developing model transformations which consisted of three roles:

transformation design phase expert, transformation architect and transformation

programmer. The transformation design phase expert has knowledge of specific design

phase and provides examples of correspondences in the source and target models. A

49

correspondence example captures expert’s intuitive knowledge by describing structures

in target models that should be resulted from the given source model. Transformation

definition, which defines high level structural behaviour of transformation code, will be

then generated from patterns by transformation architect and implemented by

transformation programmer.

The intelligent agents approach proposed by Bossung et al. finds possible

correspondences between elements of source and target model schemas [46]. Although

the user can accept or reject correspondences, it was mostly targeted at automatic

generation of model transformation scripts rather than guidelines for model

transformation designer and was designed for schema mapping applications. ALTOVA

MapForce also takes a much limited approach by providing automatic correspondence

mapping of exactly similar schema labels [47]. User can ask MapForce to map exactly

similar name labels of the schemas automatically to save time. Our approach to

providing user guidance is built on Bossung’s approach.

Among data mapping applications, Alexe et al. developed Muse as a mapping design

wizard [158]. Muse uses two components, Muse-D and Muse-G, to guide data mapping

designer in generating the final mapping specification for relational and nested schemas.

Muse-D provides set of unambiguous mappings that can provide sample example

outputs. Muse-G on the other hand, is used to guide the designer to find required

mapping groupings semantics that can lead to designed output [158].

2.9 Summary

This chapter has provided an overview on some state of the art in modelling and model

transformations. It briefly reviewed Model Driven Engineering (MDE) and different

transformation languages and tools. In reviewing model transformation techniques,

special attention was made to Model Transformation By-Example (MTBE) and Model

Transformation By-Demonstration (MTBD) and transformation approaches that use

some type of visualisation to allow user interaction for development of model

50

transformations. Approaches for providing visualisations in information and model

visualisation domains were also discussed.

In-line with contributions of this thesis in providing user guidance and support for

model transformation specification, state of the art in design, use and application of

recommender systems has also been investigate. Due to the similarity of model

matching and metamodel matching approaches to model transformation by example, an

overview on automatic matching techniques was also provided and their application in

providing user support was also discussed.

51

Chapter 3

Approach

3.1 Introduction

This research investigates the use of concrete representations of complex models to

make model transformation specification and generation process more user-centric. The

notion of “concrete” here refers to the notations that are generally used for defining

models. These notations may include textual (e.g. source code or documents) or

graphical notations (e.g. boxes and lines used in diagrams, graphics used in charts, etc.).

The term “users” refers to users that are not trained in complex transformation

languages and meta-modelling or type theory, but are familiar with specific modelling

languages and their concrete visual notations. For these users, the correspondences

between participating source and target models and their semantics are relatively clear.

Also, by graphical notations, we are not referring to actual graphical notation of input

models. Instead this approach seeks to providing users with a user friendly method of

generating concrete visualisations. These visualisations can be similar or different to

actual model representations and more toward visualisations that users are familiar with.

Therefore, the first main research question is defined as:

RQ1: Can concrete model visualisations be effectively generated in a visual and

interactive by-example approach?

52

Our approach addresses this question by letting users define or choose notations

provided by our framework (defined by other users or themselves previously), and map

them to input model examples. From this interaction, a model-to-visual notation

mapping will be generated. These specified by example model-to-visualisation notation

mappings will then be composed to generate complete and complex visualisations.

Using generated concrete representations rather than abstract, our hypothesis is that

users will find it more understandable to define correspondences between source and

target model elements using their concrete notation, rather than by using meta-model

notations as with most current approaches. These correspondences will eventually lead

to transformation rules between the underlying models. Therefore our second main

research question is derived as:

RQ2: Can a model transformation be effectively generated using concrete by-example

visualisations?

Nevertheless, the models being used in software engineering today may get large and

this has direct effect on the complexity and scale of their visual representation.

Therefore, concrete visualisation alone may not contribute enough to better

comprehension of large models. This factor affects expert and novice users alike and

will frame our third main research question:

RQ3: How can interactive guidance be provided to users of model transformation

systems?

We incorporate a guidance system that helps users in using the transformation process.

This system helps by providing recommendations on source and target representations.

These recommendations indicate which elements of source and target model are likely

to match. Users can then view them as guidance or choose among them for

correspondence specification.

The approach presented in this thesis will not be acceptable, unless an appropriate tool

support is provided and users can use the tool to evaluate the approach. Such tool

support should also integrate different aspect of the approach in a useable and scalable

manner. As a result, research question four is defined to address this:

53

RQ4: Can our approach be implemented in a usable, scalable and user friendly tool?

The contributions of this thesis are implemented and validated in a proof of concept

prototype CONcrete Visual assistEd Transformation framework, or CONVErT for short

[80], [89]. CONVErT provides a proof of concept implementation of each of the

research contributions, and plays an important role in validation of our approach.

To address these separate and yet complementary questions, we have devised a

collection of research questions and motivating scenarios. Following sections are

dedicated to description of these in more details.

3.2 Approach

The high level scenario of our approach is depicted in figure 3.1. It describes the

artefacts that take part in transformation specification as source and target

interchangeably. The arrows show transformation direction. Transformations from

examples to visualisation have been depicted by arrows of the same colour and shading

to indicate that the process of transforming example data to visualisation for both source

and target is similar. As indicated, all transformations here are bidirectional, i.e. once

the forward transformation is generated, its reverse is generated automatically (where

possible, or an alternative is specified by the user if not).

The key idea is that source and target examples are first transformed to specialized

visual representations1. Visual notations in the visualisation are capable of being used

directly for correspondence specification, i.e. they can be dragged and dropped on each

other to specify correspondence links. To generate transformation between

visualisations, many such correspondences are required to be specified.

1	
 Here	
 after	
 we	
 may	
 use	
 the	
 terms	
 “visualisation	
 process”	
 and	
 “transforming	
 to	
 visual	
 notations”	

interchangeably	
 as	
 they	
 refer	
 to	
 the	
 same	
 procedures	
 in	
 our	
 approach.	

54

Figure 3.1 High level description of our approach and transformation flow.

The visualisation process and transformation between visual notations are separate tasks

and can be distributed among users. For example, a user may be responsible for

specifying visualisations for provided model data in form of charts and tables. Other

users use these charts and tables to generate transformation specifications instead of

using the underlying provided data. Since the system is responsible for the round

tripping between these two processes, they can always integrate and reuse their

transformation results to produce a round trip transformation. The following sections

review our visualisation and transformation specification approach in more detail.

3.2.1 Visualisation

Using complex information in a visual format is more acceptable and effective for

human beings because visual representations use the capabilities of our powerful human

visual system [159]. Visualisations and diagrams can reduce the amount of search

needed for finding elements and information [160]. Therefore, Our first research

question and focus point is on how we can employ this capability to our advantage to

improve user-friendliness of model transformation specification.

55

To use visual representations for model transformation (or any other field that requires

visual representations), a mechanism for generating and rendering visualisations needs

to be available. This mechanism should define how the values in data are mapped to

corresponding visual representations, and how the visual notation is to be represented to

the user. Therefore, objective of the visualisation will be to provide this mechanism, and

further for our approach, to use the mechanism for model transformation

correspondence specification. By developing the visualisation approach presented in

this thesis research, we will also contribute to “Creating complex visualisations from

arbitrary data (here input models).”

Figure 3.2 Using notation repository for generating visualisations.

The models and hence their visual notations come from variety of domains and different

data. Therefore, as is depicted by figure 3.2, a first impression is to provide a notation

repository so that the users can compose complex visualisations from existing basic

notational elements. A problem with such architecture is that to add a new visual

notation and visualisation, this approach would require low level programming for

defining and rendering visual notational shapes. This is not a desirable procedure. A

more effective procedure would allow arbitrary notations to be defined and used as

visualisation. Therefore, following questions are devised:

RQ1.1: How can a variety of visual notations be defined and integrated to the system?

RQ1.2: How can we define correspondence links between data and visual

representation?

56

Following section is dedicated to how we approach these questions.

3.2.1.1 Visual Notations

A useful visualisation mechanism should allow users to define a variety of shapes,

colours, textures and graphics as visual elements. Being inspired by the Model View

Controller (MVC) approach [2], our decision was to separate the notational visual

representations (View), from representative data (Visual Model) and provide a

Controller for updating model values in the view. However, unlike traditional MVC [2],

the Controller here is not a collection of interfaces between Models and Views. Instead,

the controller is a transformation that transforms the model data to the view and is

generated using provided semantic links. This way, each visual notation would have a

data portion and a rendered visualisation (see figure 3.3). The visualisation is depiction

of the model data to visual elements; therefore, it only provides one direction (forward

transformation).

Figure 3.3 High level structure of visual notations (left) and a concrete example describing a chart
notation (right).

The modified MVC approach allows users to create or provide model visualisations by

using already available view examples and specifying links between the data and those

visualisations. As a result the visualisation mechanism is flexible and variety of visual

57

notations can be generated in the system and users will have the freedom to choose (or

design) desired notations.

3.2.1.2 Mapping input data to visual notations

Given that visual notations are generated and available, to visualise input data, the

provided data should be mapped to the notation data. Once the data is transferred to the

notation’s model data, it can be represented by the notation’s view using the controller

transformation. As a result, next research question would be defined as:

RQ1.3: How can the mapping between model elements and visual notations be

specified?

To answer this question, our approach follows a drag and drop procedure for specifying

mappings between input data and notations. Elements of input data are provided to

users with a default representation, and users drag and drop elements on elements of the

visual notation’s model. To perform this mapping, our approach automatically generates

transformation rules for transforming (portions of) input data to the model of the desired

notations. Figure 3.4 shows an example of such interaction where the data is being

mapped to visual notation.

Figure 3.4 Mapping input data to visual notation’s model data.

58

In Figure 3.4 the input data is being mapped to a visual notation’s model data. This will

result in a model-to-visual notation transformation rule. This transformation rule is

embedded in the notation, making it a customised notation for that portion of input data.

Unlimited number of customised notations can be generated this way.

3.2.1.3 Visualisation composition

Next step to have a complete visualisation is to be able to generate visualisations using

defined customised notations. These notations need to be composed to create a complete

visualisation. This defines our next research question:

RQ1.4: Can the defined customised visual notations be composed and linked together to

generate more complex and complete visualisations?

To answer this question, our approach uses a dedicated notation composition procedure.

Each of these customised notations represents a model-to-visualisation transformation

rule. Composition of these transformation rules will result in a transformation script that

can transform a bigger portion of input data to a more complete visualisation, hence a

model-to-visualisation transformation script.

To perform this composition, the design of our notations allows specifying place

holders in the notation. These place holders specify where other notations might be

added. Figure 3.5 shows a composition of a bar chart using the chart area and a bar

notation. The bar notation in this figure has been linked to bars element placeholder of

the chart notation. This composition results in generation of a transformation script that

transforms the input model data to bar chart visualisation composed of chart area and

bars.

Multiple customised notations can be linked to a placeholder. This is to allow

alternative visual notations to be embedded inside a notation. This feature allows

specification of multiple alternative visualisations based on certain conditions. For

example in a bar chart, the bars could be specified by rectangle shapes or cylinders

depending on a shape element in host bar chart’s model. If no such condition is

59

provided and duplicate notations are linked to a placeholder, the system automatically

picks the first notation.

Figure 3.5 Composition of a bar chart visualisation.

3.2.1.4 Visual aid for notation composition

Composition of customised notations can be a complex task. When the number of

customised notations increases and visualisation becomes more complex, it might

become hard to follow the composition procedure. Given that the composition process

will provide the scheduling of model-to-visual transformation rule inside notations, it is

important that the notation composition is performed correctly. As a result following

question is raised:

RQ1.5: In what form should guidance be provided to users on composition of

notations?

To provide support for composition and hence being able to schedule transformation

rule sequencing, the rendering mechanism is designed in a way that it is capable of

rendering partial visualisations. As a result, when visual notations are being composed,

even though the resulting composition (and hence transformation) may not be complete,

the system is capable of rendering the partial result. Therefore, users can review the

60

result of so far composed notations on the spot and perform corrections as they see fit.

Figure 3.6 shows an example of this visual aid.

Figure 3.6 Visual aid for notation composition.

3.2.2 Correspondence specification

The intention of defining desired visualisations was to improve the comprehension of

input models, and hence defining correspondences between source and target models, in

a model transformation specification. With visualisations available, next step would be

to specify correspondences between source and target visualisations as the starting point

of transformation generation. Consequently we asked:

RQ2.1: Can we perform correspondence specification (and hence transformation

specification) on actual visual notation of input models?

A correspondence is a link between an element in the source model and an element in

the target. Such a link may simply imply that the value of the source element should be

copied to the target element (and vice-versa in a bidirectional case). Once visualisations

of source and target are available, correspondence links between two elements

(notations) in a visualisation are specified by drag and dropping one element onto the

61

other. This way a link can be specified between dragging element (source notation) and

the element it is being dropped on (target notation). Examples of such an interaction can

be found in Figure 3.7.

Figure 3.7 Correspondence specification examples. Arrows depict drag and drop directions.

To make arbitrary notations capable of being used in correspondence specifications,

each notation needs to be aware of the interaction logic (drag and drop events) and

transformation logic (bits and pieces required for generation of transformation code like

forward and reverse transformation templates and abstraction). These elements have

been included into our visual notation architecture along with rendering logic. Each

notation carries the elements required in our drag and drop approach as well as

rendering mechanism and transformation templates. Figure 3.8 illustrates the

architecture of each visual element. This architecture allows visual elements to be

capable of being dragged and dropped onto other visual elements. Once a visual element

is dropped onto another element, the forward and reverse transformation templates of

each will be defined according to the interaction direction.

62

Example 3.1 Dragging element E1 on element E2 will result in the abstraction of

E1 to be used as initial Reverse transformation template of E2 and abstraction of

the E2 as Forward transformation template of E1. These abstractions include the

structure and type of the input data that each element carries and is automatically

reverse engineered. The other two templates (Reverse template of E1 and

Forward template of E2) are assigned accordingly by assuming the interaction

was performed in the other direction. This way both forward and reverse

transformations follow the same routine.

Figure 3.8 Architecture of a visual notation.

A complete transformation rule will be generated using visual elements once all their

attributes are assigned to their corresponding elements on the target side (and hence

completing the forward and reverse templates). If required, functions and conditions can

be used to generate more complex rules.

Example 3.2 To transform a bar in a bar chart to a pie piece in a pie chart, its

value, colour and label could be dragged and dropped on the corresponding

attributes of the pie piece similar to example of Figure 3.7. Once correspondences

are defined, a transformation rule is formed to transform a bar to the pie piece

(and reverse when possible).

63

3.2.2.1 Transformation rule representation

Transformation rules are an integral part of any transformation system. A complete

transformation specification usually consists of a combination of multiple

transformation rules. The division of transformation specification in rules improves

reusability and helps better debugging of the specification. On the other hand, once

dealing with large models, many such rules will be defined which can affect

understandability. Given that first class artefacts of our approach are visual notations, a

textual representation of a transformation rule would be out of place and not suitable.

Therefore, transformation rules should be represented by visual notations too. Thus a

representation mechanism should be available for transformation rules as well. Thus we

define research question 2.2 and 2.3:

RQ2.2: Can a transformation rule be represented visually?

RQ2.3: How to create a visualisation for transformation rules?

Our approach for answering these research questions uses the visual notations of source

and target visualisation to present transformation rules. Each visual element embeds the

forward transformation template that creates another visual element (the target). By

applying this template on the embedded data, a visual element of the target model with

its notation is created. As a result it will be possible to access target notation from each

element. Putting each visual element and its target notation together will provide a

schematic view of the transformation rule, i.e. users can see each transformation rule by

the source and the target notation that can be generated as a result of applying the rule

and hence, a representation for transformation rules. Examples of such rule

representations are provided in figure 3.9.

Although visual notations increase the cognitive and comprehension of models

compared to textual representations, when dealing with large scale models and specially

for novice users, it is still hard to perform complex tasks like transformation

specification and finding correspondences. Next section describes our approach to

providing support to users in form of recommendations, so that they can better identify

likely correspondences.

64

Figure 3.9 Examples of transformation rule representations. A) UML class diagram to Java class notation
transformation rule. B) Bar to pie piece transformation rule.

3.2.3 Correspondence Recommender

Correspondence specification between source and target for large models can easily get

complex and time-consuming, adversely affecting transformation specification

procedure. This affects both novice and expert users alike. Therefore, users should be

supported by guidance mechanisms to help them define model transformation between

visual notations and hence our third main and subsequent research questions.

RQ3: How can interactive guidance be provided to users of model transformation

systems?

RQ3.1: In what form should guidance be provided to users of model transformation?

In this context, our approach delivers this support by providing hints on possible and

likely correspondences between source and target that can eventually create

transformation rules. To achieve this, an automated recommender system (“Suggester”)

is designed which analyses user interaction and input examples for recommending

possible correspondences between models and their sub-structures. The

recommendations provided by the Suggester mechanism can be used directly to develop

transformation rules or used as guidelines to create final transformation artefact. Note

that depending on where the Suggester is being used (for visualisation or transformation

between visual notations) source and target examples could be input data or

visualisation data.

The main task of a recommender system in general is to provide guidance to users for

choosing among multiple options. However, the accuracy of this guidance depends on

type of user (e.g. expert or novice), type of application, and their intended purpose

65

among others. Although this guidance hints do not have to be accurate all the time,

higher accuracies will result in better trust in the recommender system by users. Never

the less, producing recommendations that are already known to users will gradually

cause users to ignore it over time [161]. The trade-off between different dimensions of

the recommender system should be considered [162]. As a result research question 3.2

is designed to target design of the recommender system.

RQ3.2: What is the best technique to generate acceptable recommendations?

To design a recommender system for our correspondence recommendations that

produces accurate recommendations, and yet satisfies other dimensions to some extent,

our approach follows ensemble learning techniques [163]. It combines similarity scores

provided by a collection of recommenders to produce final list of recommendations.

Each of these recommenders uses a predefined similarity heuristic and analyses source

and target model examples and ranks element pairs by similarity scores. The

combination of these scores creates the final list of recommendation.

If recommendations are provided to users as a fixed list with no interaction, they will

not provide a helpful guidance when dealing with large models. As a result it should be

possible for users to interact with these recommendations. Considering this, research

questions 3.3 and 3.4 are raised:

RQ3.3: How can users best interact with recommendations?

RQ3.4: How can user response be used and integrated into the guidance mechanism?

The Suggester mechanism provides users with initial and seeding recommendations so

that they can start transformation generation with higher confidence. Our approach

provides recommendation in interactable list where users can accept or reject

recommendations (see Figure 3.10). By selecting a recommendation, the underlying

recommended correspondence is applied. Also, selecting a recommendation indicates

user’s interest in the recommendation. A feedback mechanism analyses user interaction

and promotes the recommender system. If user rejects a recommendation, the system

penalises the recommender system and therefore this interaction helps the learning

mechanism inside Suggester system to improve its recommendation capability.

66

Figure 3.10 A sample of recommendation list recommending correspondences between a bar chart and a
pie chart.

3.3 Scope

This thesis research tries to address concrete based model visualisation and

transformation in a generic way. It is based on the assumption that specifying model

visualisations and model transformations based on concrete instead of abstract

representations is easier for end-users, in particular those without a corresponding

education. This hypothesis has been verified by previous literature (e.g. [29], [32], [91])

and therefore is not part of this thesis. As a result, the focus of this thesis is more on

providing an approach to realise concrete and example based visualisation and

transformation.

Due to time constrains implementation of the approach has been focused on model

examples in XML and CSV. We believe these categories cover a broad spectrum of

model examples and are good samples to prove applicability of this approach. Also, for

transformations, XSLT has been chosen as transformation language of choice.

However, the templates and the transformation rule structures are generic and adaptable

to other transformation languages. Therefore, the concepts and methods can be used by

other transformation languages as well.

The transformation specification in this approach can generate bidirectional

transformation (both forward and reverse) for bijective correspondences. However,

there are situations where generation of reverse direction is not straight forward. For

example, when adding two values of the source model to produce a value in target

model, the reverse direction cannot be automatically defined since information of the

original values is lost during forward transformation. We call these transformation

67

Lossy transformations and although we have designed approaches to perform such

transformations, they are not considered in this thesis.

Similarly, when applying transformation rules using pre conditions, the reverse

transformation should consider the forward transformation condition. For example if a

colour is to be chosen based on a value in the source model, the reverse transformation

should check for applicability of the condition. This is usually done by model checking

resulted reversed source model against the condition. This model checking is not

considered in this thesis. Nevertheless, some consideration has been made and extension

points are available to provide for possible future research inclusion.

3.4 Evaluation

The evaluation strategy of this thesis is based presentation of case study examples,

comparison study, a quantitative study and a user experiment. For each contribution of

our approach, multiple case study examples are provided. These examples are provided

at the end of the chapters that describe contributions.

Our comparison study (provided in Chapter 8) compares our approach against a state of

the art transformation tool and approach. It provides examples of how users interact

with both tools and what are the procedures involved for performing transformation

tasks.

The quantitative analysis part of our evaluation is provided in Chapter 8 and examines

the correctness of the recommendations produced by the proposed recommender system

of the Suggester mechanism using Precision, Recall and F-Measure metrics. It also

provides a study of quality of the automatically generated transformation code by our

approach against transformation codes produced by a human expert and that

automatically generated by a state of the art mapping tool. It uses quality attributes and

metrics from model transformation literature and introduced by Van Amstel et al. [6].

68

Finally, our evaluation is concluded with a user study of our approach and toolset. This

user study is designed to capture user experiences with the toolset for generating

visualisations and transformations. This user study is also provided in Chapter 8.

3.5 Summary

This chapter described research questions being addressed in this thesis and brief

description of the approach taken by this thesis to address them. We seek to address two

main research questions which are 1. Visualisation of arbitrary model data into more

understandable concrete representations and use them for model transformation

specification, and 2. Provide guidance mechanism for defining correspondences in a

model transformation specification task. The subsequent questions arising from these

main research contributions were introduced in this chapter and a brief description of

how we approach them was presented. The list of research questions addressed by this

thesis is provided as follows:

Research Questions:
1. Can concrete model visualisations be effectively generated in a visual and

interactive by-example approach?
1.1. How can a variety of visual notations be defined and integrated to the system?
1.2. How can we define correspondence links between data and visual

representation?
1.3. How can the mapping between model elements and visual notations be

specified?
1.4. Can the defined customised visual notations be composed and linked together to

generate more complex and complete visualisations?
1.5. In what form should guidance be provided to users on composition of

notations?
2. Can a model transformation be effectively generated using concrete by-example

visualisations?
2.1. Can we perform correspondence specification (and hence transformation

specification) on actual visual notation of input models?
2.2. Can a transformation rule be represented visually?
2.3. How to create a visualisation for transformation rules?

3. How can interactive guidance be provided to users of model transformation
systems?
3.1. In what form should guidance be provided to users of model transformation?
3.2. What is the best technique to generate acceptable recommendations?
3.3. How can users best interact with recommendations?
3.4. How can user response be used and integrated into the guidance mechanism?

4. Can our approach be implemented in a usable, scalable and user friendly tool?

69

Chapter 4

Visualisation

4.1 Introduction

The approach presented in this thesis for model transformation uses concrete, example

model visualisations for specification of complex model transformations. Source and

target examples are first transformed to visual concrete notations. Then the defined

notations in these visualisations are used directly for interactive correspondence

specification and then for model transformation script generation. To realise this

approach, a mechanism and procedure is required to generate these model

visualisations. The notations used in the model visualisations need to enable user

interaction in the form of drag and drop to specify notation correspondences. These

correspondences are then used to generate underlying model transformation rules.

This chapter describes how interaction-capable notations and visualisations are created

using this approach. It provides examples from a variety of fields to demonstrate the

applicability of this visualisation approach. The following sections describe the steps

required to create visualisations and how elements of each step are produced. In

summary, this chapter describes our approach for addressing following research

questions:

1. Can concrete model visualisations be effectively generated in a visual and
interactive by-example approach?
1.1. How can a variety of visual notations be defined and integrated to the system?

70

1.2. How can we define correspondence links between data and visual
representation?

1.3. How can the mapping between model elements and visual notations be
specified?

1.4. Can the defined customised visual notations be composed and linked together to
generate more complex and complete visualisations?

1.5. In what form should guidance be provided to users on composition of
notations?

4.2 Visualisation Procedure

The brief procedure and steps to create a visualisation are shown in Figure 4.1. Notation

generation (step 1) involves creating a notation from provided visual contents (View)

and mapping it to a defined Model. The combination of the two results in a notation

which will be saved in a repository for reuse. The notations provided in the repository

are then mapped to elements of the input models (to be visualised) to create customised

notations for that model (step 2). Once all required customised notations are generated,

they can be composed to create complete visualisations (step 3).

Figure 4.1 Visualisation procedure.

As Figure 4.1 suggests, visual notations are the centre-part of our visualisation

approach. They represent the front line of our approach in using concrete visualisation

and capable user interaction. The next section describes notation structure and provides

examples of how they can be created and used for model visualisation. It specially

describes our approach in answering research questions 1.1 and 1.2.

71

4.2.1 Visual Notations

Let’s start this section by definition of visual notation.

Definition 4.1 A visual notation in this approach provides a visual illustration

(of a portion of whole) of model data and a means for user interaction.

Since notations are the primary components for creating transformation rules, they need

to include certain transformation related artefacts. These artefacts help realisation of

correspondences and transformation rule templates.

The architecture of notations is inspired by the Mode View Controller (MVC)

architecture [2]. Three-way division of an application in MVC entails separating (1) the

parts that represent the model of the underlying application domain, (2) the way the

model is presented to the user, and (3) the way the user interacts with it [2], as can be

seen in Figure 4.2. Therefore, in MVC programming, objects of different classes take

over the operations related to the application domain (the Model), the display of the

application's state (the view), and the user interaction with the model and the view (the

controller).

Figure 4.2 Model View Controller (MVC) set up from [2].

In our adaptation of MVC for visualisations however, a visual notation is described as

combination of a View (the visual representation), a Model (domain data represented by

the View) and a Controller which controls the links between the Model and the View

(as can be seen in Figure 4.3). In such a configuration, any updates to the Model will be

72

applied to the View by the controller, which itself is created by user-provided

annotations in the View. These annotations define correspondence relations between

Model and View.

Figure 4.3 Adaptation of Model View Controller for visual notation design.

Example 4.1 In a bar chart visualisation of Figure 4.4, bars represent values of a

certain category by visually depicting that view using their height. Since multiple

bars may exist in a bar chart for a category, each bar is also accompanied by a

name for the value it represents. Therefore a bar’s model should specify the value

and the name of the bar.

Figure 4.4 Sample bar chart visualisation.

The Controller of this MVC configuration is a transformation which inserts the domain

values defined in the Model to the View and as a result updates the View with new

73

values. To generate this Controller transformation, annotations should be provided in

the View representing correspondences between the View and the Model. These

annotations include one-to-one correspondence relationships, and one-to-many and

iterative correspondences between model and view. To specify these correspondences, a

simple annotation scripting is used in our approach consisting of linkto=“<element>”

for specifying one-to-one correspondences, and callfor=“<element>” for specifying

one-to-many correspondences.

Notations can host other notations (e.g. a bar chart will host multiple bars). To clearly

define the position which notations are to be placed in a host notation, a placeholder

should be provided in the host notation’s Model. These place holders are specified by

iterative correspondences. To define the Controller for these two notations, provided

View’s code should be annotated. Annotated Views are read by a transformation code

generator and a Controller transformation script is generated for each view. In this

transformation script linkto annotations are translated to value fetch scripts and callfor

annotations are translated to call for templates. As a result, when the Controller

transformation script is executed, it will fetch and copy the values provided to its Model

to their corresponding visual elements in the View. It will also register a declarative call

for templates to be applied on the data provided to the placeholder elements of

notation’s Model.

Example 4.2 Model, View and Controller of a bar chart and a bar are shown in

Figures 4.5 and 4.6. Each bar chart represented here has three Labels describing

the chart name, Y axis and X axis which should be defined by its Model. It also

creates two axis arrows representing the chart area. On the other hand, each bar

has a Name and a Value. A representative of these two notation Models are

marked by “b” in both Figures. A placeholder should be provided in bar chart’s

Model to specify where bar notations being inserted should copy their Model;

therefore, a “bars” element is provided in bar chart’s Model (see Figure 4.5b). In

Figure 4.6 the values provided by a bar’s Model (“Name” and “Value”)

represent 1-to-1 mapping correspondence with elements on the View therefore

they will be provided by one-to-one annotations (e.g. linkto=“Name”). Same is

true for the bar chart, the labels representing axis and chart names represent 1-

74

to-1 relations. The place holder in the Model of the bar chart is in one-to-many

relationship as multiple bars may be present in a bar chart as a result, it will be

annotated by a one-to-many correspondence annotation i.e. callfor=“Bars”.

Figure 4.5 a) View, b) Model, c) Controller and d) Final bar chart visual notation.

Figure 4.6 a) View, b) Model, c) Controller, and d) final bar notation.

4.2.1.1 Interaction Logic

To generate interaction (drag and drop) for notations, a standard interaction mechanism

is provided for all notations as in Figure 4.7. It includes handlers for drag and drop, data

structures for abstractions and transformation templates. Once notation’s MVC is

created, the system automatically wraps each notation’s MVC in this structure. As a

result, every notation in this visualisation is interaction capable. This wrapping also

provides capabilities to see internal elements of notation’s Model by right clicking on

75

the notation. If user right clicks on a notation, these elements are represented in a pop-

up window.

Figure 4.7 Notation’s MVC wrapped in interaction logic.

Once a visual notation is created, it will be saved in notation repository for reuse. Figure

4.8 depicts a brief architecture of system implementation including the notation

repository. The renderer mechanism of the system uses controller transformation in

each notation to create visualisation rendering. It uses a visitor pattern to check the parts

to be visualised and find matching controller transformations. It then creates a complete

transformation script to transform the input to be visualised to renderable visualisation.

Figure 4.8 Brief architecture of system implementation. Notations will be saved in the notation
repository.

76

Each notation in the repository can be used for mapping variety of input models to the

visualisation represented by the notation. Next section elaborates more on this mapping

from input model examples to visual notations and accordingly provides our response to

research question 1.3.

4.2.2 Mapping input data to visual notations

Step two of our model visualisation approach involves mapping example model data to

visual notations. This step creates transformation rules for transforming specific parts

of input models to the notation's Model data. Users are required to map elements of

their input model to elements of visual notations Model by defining mapping

correspondences using drag and drop. These drag and drop interaction triggers a

transformation rule template to be created from to transform the elements being dragged

to host notation's data. These templates are generated initially from the Models

embedded in dragging notation and the host notation. To enable drag and drop of input

elements a default tree-like representation of the input model data is provided for users.

Example 4.3 Assume we have an XML representation of a company’s sales

records and would like to visualise it using bar chart visualisation. Each bar in

this bar chart will be representative of a sales record. To create these bars, first

step is to drag and drop a sales element from example sales model data onto a bar

notation as shown by Figure 4.9a. This interaction triggers a transformation rule

template to be created from a sales record element to the bar notation's data.

Next, corresponding internal elements of sales record and the notation’s Model

should be linked, i.e. sales record's Region attribute should be dragged and

dropped on bar's Name and Amount should be dragged on bar's Value, as shown

by Figure 4.9a. These internal correspondences fill the transformation rule

template. Note that this tasks needs to be performed only once for all sales

records. Same procedure should be performed for chart notation and the spread

sheet element as can be seen in Figure 4.9b.

77

Figure 4.9 Mapping sales records input to notations: a) Mapping a sales record to a bar, b) Mapping
spread sheet to chart. Arrows depict drag and drop directions.

Once data mapping is complete, the new customised notations are saved. This results in

creation of a customised notation and a transformation rule that transforms a portion of

input model to the notation's Model (and its reverse where possible). In Example 4.3 for

instance, a transformation rule will be generated to transform each sales record to the

Model part of bar's notation. Note that at this point the notation can generate its View

according to the Model using the Controller defined in step one.

4.2.2.1 Transformation functions

Not all correspondences between visual notation elements are simple 1-to-1 relations.

Therefore, a variety of model transformation functions, such as summation, merging,

subtraction, and textual parsing need to be used, among others. These functions enable

the specification and generation of more complex correspondences and hence

generation of more complex model element-to-visual notation and visual notation-to-

visual notation mappings.

78

The structure of a transformation function is depicted by Figure 4.10. The model and

usage of each function follows visual notations with a difference that function’s view is

provided by an image rather than a visualisation. Similar to visual notations, a function

can be dragged and dropped and right clicking on them reveals their input and output

arguments.

Figure 4.10 Transformation function’s structure.

Functions are defined by templates that specify input and output arguments, forward

and reverse operations to be performed by the function, and a representative image that

can be provided by users. One-to-one correspondences in our approach result in reverse

transformations being generated automatically. To generate more complex one-to-many,

many-to-one, or many-to-many correspondences using functions, the reverse operation

(if possible) should be provided by the function designer. If reverse operation is not

possible, a default operation can be provided instead.

In the case of arithmetic operations, the reverse direction is not possible when a group

of values are used to calculate a final value. It is due to the fact that the information

provided by original values is lost during forward operation. These transformations are

called Lossy and while we have worked on support for them, addressing them is not

detailed in this thesis and is left for future work.

79

Figure 4.11A shows a summation function with its two inputs and an output. The

internal code template of the function is depicted by part B. As can be seen, since the

reverse operation of the two added values is not possible unless at least one of the

original values is stored, the reverse operation (marked by arrow) divides the output to

calculate two input values in reverse. An example of using functions in mapping

correspondence specification is provided by Example 4.4.

Figure 4.11 A) A summation function, B) Its template. Arrow marks reverse operation. Information of
input arguments is lost during forward summation operation.

Example 4.4 Assume sales records of example 4.3 consisted of two amounts for

representing each sales element. Since bar notation takes only one amount for its

Value, these two amounts should be added before mapping to the bar's value.

Figure 4.12 demonstrates how the summation function can be used to calculate

the bar's Value according to the sum of two input values. The arrows demonstrate

how dragging and dropping will be performed by the user in this case.

80

Figure 4.12 Mapping sales records to bar using summation function. Arrows depict drag and drop
directions.

Once data mapping is complete, the new customised notations are saved. This results in

creation of a customised notation and a transformation rule that transforms a portion of

input model to the notation's Model (and its reverse where possible). In Figure 4.12 for

instance, a transformation rule will be generated to transform each sales record to the

Model part of bar's notation. A transformation code generator reads function templates

and generates transformation code for the specified transformation language. For

example, the resulted transformation script using the summation function of Figure 4.12

in XSLT is provided by Figure 4.13. This code transforms the sales element and its

internal elements to a bar node’s data model. Note that argument numbers are

automatically updated by transformation code generator to prevent similar argument

names in the full transformation script. The reverse transformation script is also shown

by Figure 4.14.

81

Figure 4.13 The generated transformation script resulted from use of the function of Figure 4.12.

Figure 4.14 Reverse transformation script resulted from use of the function of Figure 4.12.

By default a set of simple functions are provided in our framework implementation.

Table 4.1 provides a list of these functions and the operation they perform. There has

82

been no rational behind choosing the representative images for function notations. Users

can alter these notational images according to their preference.

Table 4.1 List of default functions provided in proof of concept framework.

Function Notation Inputs Forward
Operation Outputs Reverse

Operation

Summation
Adds two arguments

Arg 1
Arg 2 Arg1 + Arg 2 Out Out div 2

Subtraction
Subtracts two
arguments

Arg 1
Arg 2 Arg1 – Arg2 Out Return Out

String Merge
Merges two strings

Arg 1
Arg 2

Merge (Arg1
,“ ”, Arg2) Out Split (output,

“ ”)

String split
Splits two strings
from first occurrence
of Space character

Arg 1 Split (Arg1,
 “ ”)

Out 1
Out 2

Merge (Arg1,
 “ ”,Arg2)

Additional functions can be defined using function’s template by providing their input

and output arguments and the required operations. These functions can be saved in a

function repository for reuse. Function templates provide dedicated spaces for

specifying the task that the function performs. This task should be provided by function

designer depending on the arguments and according to the transformation language

code that is to be generated from this function. Example 4.5 shows how an additional

functionally can be provided using function templates.

Example 4.5 This example shows a function that takes two strings as input

arguments and returns three string outputs using combination of input strings and

constant values as specified in Figure 4.15. For example, if “Sales” and

“Europe” are provided as inputs to this function, it will return “Sales Amount”,

“Europe” and “Sales of Europe” as outputs. Reverse operation calculates

original input values based on the outputs.

83

Figure 4.15 Example of defining a new function using function template.

Once used, functions are read by transformation code generator. The operation of each

function is translated to the transformation language of choice and the resulted outputs

are saved in variables inside transformation rule scripts. As a result, when defining

functions, function designer needs to have previous understanding of the transformation

language of choice. For instance in Example 4.5, concat and substring-before functions

are functions provided by XSLT language. For other transformation languages, their

dedicated functionality should be stated in the function templates.

Pointers to variables of each function will be placed inside transformation rules in

places where function outputs are to be used. For example see the resulted function

script of Figure 4.13.

84

4.2.2.2 Transformation conditions

Transformation conditions are used in a similar way to transformation functions and

control when and how correspondences are applied. Figure 4.16 shows a transformation

condition’s structure. As can be seen in the figure, a difference of conditions and

functions is the missing output arguments. This is due to the fact that the output of a

condition is not known beforehand. It depends on the values being sent to the condition.

As a result, unlike functions, conditions do not have an explicit output.

Figure 4.16 Transformation condition’s structure.

Similar to transformation functions, conditions are also defined using a template. This

template defines the arguments to base the conditions on, the condition expression(s)

and the values to be transferred as output if the condition is met. In case none of the

conditions are met, “else” statements can be provided as well.

Example 4.6 Figure 4.17a shows a condition that checks two arguments (arg1

and arg2) and if the values provided by these arguments are equal, passes the

value that has been dragged to the condition expression. If not, the value dragged

to “Otherwise” will be used as output. The internal template of this condition is

provided by Figure 4.17b.

85

Figure 4.17 A) A transformation condition, B) Its code template.

To specify a conditional correspondence, after drag and drop of required source

elements on condition’s arguments, the condition notation itself is dragged and dropped

on target element.

Example 4.7 Figure 4.18 shows using a condition for specification of a model to

visual mapping. The conditions check if the value provided with Amount element

is more than or equal to 40. If so the colour to be returned by the condition is

Blue, otherwise Red will be returned. The condition itself is then dragged and

dropped on colour element of the bar. This condition specification will result in

the code script of Figure 4.19. This script will be included in the transformation

rule script.

86

Figure 4.18 Using a condition for specification of bar’s colour.

Figure 4.19 Transformation code script resulted from condition of figure 4.18.

In case there is a requirement to have reverse operation for conditions, a possible

solution is to check whether the condition is valid for source through model checking.

For instance in Example 4.7 the reverse operation could check if the colour of a bar is

blue, the value to be copied to sales Amount is indeed more than or equal to 40. This

model checking, however, is outside the scope of this thesis. The assumption here is that

if the values generated by forward transformation rules that use conditions exist in the

target, their respective source portion of the transformation rule should be generated in

reverse. Therefore, the reverse operation creates a non-conditional transformation.

Table 4.2 lists the default conditions provided in our framework implementation.

Similar to functions, additional conditions can be added to the framework using

provided template.

Table 4.2 List of default conditions provided in proof of concept framework.

Condition pseudo code Notation Number of
Arguments

if Arg1 = Arg2 then pass Arg3
else pass Arg4

4

if Arg1 >= Arg2 then pass Arg3
else pass Arg4

4

if Arg1 = Arg2 then pass Arg3
else if Arg1 > Arg2 then pass
Arg4
else pass Arg5

5

87

4.2.3 Notation composition

Is response to research question 1.4 on composition of notations, step three allows users

to link, combine and embed customised notations. A customised notation represents a

model element-to-visual notation transformation rule. To have a complete

transformation script, the prepared collection of transformation rules should be

scheduled according to their call sequence. With traditional transformation scripting

languages this is achieved by asking users to write codes for this script, similar to

procedural programming, and by providing metamodels. In our approach however, our

assumption is that there is no metamodel available and user is not willing to code.

Therefore, by using composition of notations we infer the target visualisation’s

metamodel and call sequencing of the transformation script.

By linking a notation to a placeholder element of another, the host notation knows the

transformation rule embedded in the notation being dragged should be called in place of

the element. This is in order to affect the embedded model element-to-visual notation

mapping. This linking results in scheduling of model element-to-visual notation

transformation rules.

Example 4.8 In composing notations of Figure 4.20, by linking the bar model

element-to-visual notation visualisation component defined earlier (see Figure

4.9) to a bars element of a bar chart model element-to-visual notation

visualisation, it is specified that the bar chart contains set of bars.

88

Figure 4.20 Composition of visual notations to create bar chart visualisation.

Linking a notation to a start element will define the top-most (first to be run)

transformation rule for the completed model transformation specification. This tells the

transformation scheduler to start generating transformation code from the rule linked to

start element. For example, in Figure 4.20, the bar chart notation's transformation rule is

the first rule to be called to transform a company records model element to a bar chart

notation representation. It then calls bar’s transformation rule to generate a bar

representation for each sales record.

The composition process results in a complete transformation script that transforms the

input model to the visualisation of the composed notations. As stated previously, since

all visual notations resulting from this transformation are wrapped by interaction logic

of visual notation, the whole visualisation and its composing notations can be interacted

with in form of being dragged and also other notations can be dropped on them.

Example 4.9 Figure 4.21 shows the resulting bar chart of the transformation

generated from the composition of Figure 4.20. A user has right clicked on the

bar chart and the internal model elements are being represented as a result in the

pop-up window. Note that since no value has been provided to XAxis and YAxis

labels, default values provided by bar chart notation’s model have been used.

89

Figure 4.21 Visualisation of a bar chart. User has right clicked on the bar chart and the internal elements
of the bar chart notation are represented in a pop-up window.

Composition of multiple model element-to-notation mappings into a complete

visualisation specification also allows the system to build a meta-model from the

underlying Model of each notation element. Our approach uses this meta-model for

model validation purposes.

4.2.3.1 Visual aid for debugging transformation composition

To provide support for scheduling and being able to debug rule sequencing (and hence

answering research question 1.5), the rendering mechanism is designed in a way that it

is capable of rendering partial visualisations. As a result, when dragging a

transformation rule on a notation placeholder element, even though the resulting rule

may not be complete, the system is capable of rendering the partial result. Therefore,

users can review the result of so far completed rule on the spot and perform corrections

as they see fit.

Example 4.10 In composing a bar chart visualisation, when a bar is linked to bar

chart’s “Bars” element, the provided debugging aid depicts the result of that bar

being inserted in the bar chart. Figure 4.22 depict the provided debugging aid.

Also as another example, Figure 4.23 shows debugging aid during generation of a

90

class diagram. User has dropped parameter notation on “Parameters” element of

a function notation.

Figure 4.22 Visualisation composition debugging aid. The product of composing a bar in the bar chart is

shown in a pop-up.

Figure 4.23 Visualisation composition debugging aid for function of a class diagram visualisation.

4.3 Case studies

This section provides number of case studies to show applicability of the approach for

different visualisations and input models. It will focus also on the implementation

specific decisions taken for the proof of concept prototyping of the approach.

91

4.3.1 Bar chart visualisation

This section provides detailed visualisation of the bar chart used throughout the chapter.

The input file to be visualised is provided as an XML and contains sales records of a

company as seen in Figure 4.24.

Figure 4.24 Example of sales records XML input.

Our implementation uses Windows Presentation Foundation (WPF) and XML

Application Markup Language (XAML) for views. Models to be linked to these Views

are provided in XML. For example, for the bar chart visualisation the View, Model and

controller transformations of bar chart and the bars are provided in Figures 4.25 and

4.26.

92

Figure 4.25 Bar chart notation, a) View code, b) Model XML, c) Annotated View, d) Controller
transformation and e) Final notation.

WPF allows visualisation logic (if required) to be separately implemented in C# or

Visual Basic as accompanying classes. For instance in bar chart visualisation of Figure

4.25a, a BarChart class (derived from Canvas class) has been implemented in local

namespace which normalises the height of bars and positions them according to bar

chart’s height and width. Since possible bars are to be included inside this bar chart

class, the 1-to-many mapping correspondence is annotated in this element by callfor=

“Bars” annotation (see Figure 4.25c). The resulting Controller transformation of bar

chart calls for other transformations to transform the data being inserted in “Bars”

element to visual bars and include them in bar chart for height normalisation and

placement.

93

Figure 4.26 Bar notation’s a) View code, b) Model XML, c) Annotated View, d) Controller
transformation and e) Final notation.

That bar notation of Figure 4.26 has a value and a name as its model elements. These

elements are in one-to-one relationship with elements of the view i.e. height of the bar,

the label on top of the bar, and the label bellow each bar. These correspondences are

provided by linkto annotations in Figure 4.26c.

Once these notational elements are defined, they need to be mapped to input model

elements to specify model-to-visualisation example. Considering that the file to be

transformed to bar chart visualisation has two values to be added to represent the bar’s

value, Figure 4.27a shows how the values can be added and linked using a summation

function. The transformation rule resulting from the mapping and correspondences in

Figure 4.27a is provided in Figure 4.28.

94

It is worth mentioning here that specification of correspondences between notation

Views and Model is somewhat a complex task and requires basic understanding on

XAML graphics. However, we believe with utility of visualisations expanding over

time and as new additional visualisations are needed, this becomes less of an issue. Our

assumption here is that generating notations is not a task to be performed by end user

and end users will be provided with the prepared notations.

Figure 4.27 a) mapping sales records to bar using summation function and b) mapping Spreadsheet to bar
chart notation. Arrows depict drag and drop directions.

Figure 4.28 Transformation code resulting from mapping correspondences and summation function of
Figure 4.27.

95

Same mapping operation should be performed for bar chart notation (see Figure 4.27b).

Once model to visual notation mapping are defined their notations should be composed

to generate a full visualisation and model to visualisation transformation script. Figure

4.20 earlier showed an example of this composition with the resulting visualisation

depicted by Figure 4.21. Now let’s assume there is a need to update the visualisation

and include colour in the bar notation’s data. To perform this alteration, a new bar

notation needs to be defined. Figure 4.29 shows the model data required for the new

bar.

Figure 4.29 Alternative model for bar’s notation.

The bar’s view already accounts for bar’s colour (see Figure 4.26a). However, it was set

to Green by default. Hence, the annotation for generating the controller transformation

of the new bar should consider the one to one relationship of Color element in the data

and the colour of bar in the view. Figure 4.30 represents the new view annotation with

the added annotation for the bar colour.

Figure 4.30 New bar’s view annotation.

96

With the new bar’s notation generated, input model element to be represented with this

new bar should be mapped to its data. These model to visualisation mappings are

provided in Figure 4.31. Apart from the newly added Color element in notation’s

model, the rest of the mapping are similar to previous bar’s mapping.

Figure 4.31 Mapping sales records to new bar.

Let’s assume the colour to be specified for the new bar is to be specified according to

the values in the Amount1 and Amount2 of the sales element, in a way that if Amount1

is more than Amount2 the colour of bar would be blue, if they are equal bar should be

black and red otherwise. Figure 4.32 shows how a condition can be used in this case.

The condition is dropped on designer canvas and Amount1 and Amount2 are drag and

dropped on its arguments.

Figure 4.32 Specifying arguments of condition.

97

Note that it is possible to provide consistency checks in elements for example to check

if the element that is dragged to “arg1” actually represents a numerical value. These

checks should be provided and implemented in the visual elements and are outside the

scope of our work here. If wrong elements have been dragged and dropped they can be

over written by drag and dropping the correct elements. Based on the amounts, a colour

value is to be passed by the condition. These colour values can be provided using a

separate input. Figure 4.33 shows this separate input and how colour values are linked

to condition expressions by drag and drop. Since functions do not have specific output

(the output is selected based on the condition expressions) user has to drag and drop the

function expression on the Color element of the notation as shown by arrows in Figure

4.33.

Figure 4.33 Mapping colour values to condition, and mapping condition result to Color element of bar
notation.

Now that the new bar is defined, it should be included in the composition. Note that the

new bar is the only notation that has been altered. Since other notations have not

changed (bar chart notation in this case) they can be reused in the composition. Figure

4.34 shows the composition using the new bar’s notation. The arrows in Figure 4.34 are

provided by framework for better tracking of notation composition. As mentioned

before, the bar chart notation is the previous notation and has been reused.

98

Figure 4.34 Composition of notations using the new bar’s notation.

The result of composition of Figure 4.34 will be a transformation from sales records to

bar chart visualisation with different colours for bars based on the provided values of

the amounts similar to Figure 4.35.

Figure 4.35 Resulted coloured bar chart.

99

4.3.2 Minard’s Map visualisation

This case study section provides a worked example of creating a simplified version of

Minard’s map visualisation, as can be seen in Figure 4.36. Minard’s map is a famous

visual depiction of the French Grande Army’s campaign for the invasion of Russia in

1812 by Charles Joseph Minard. It is widely considered as one of the best statistical

graphs by the visualisation community [3], depicting number of troops, locations,

campaign movements and status, and temperature information.

Figure 4.36 Minard’s map (from [3]).

To reproduce this visualisation, we follow a similar approach to that used by Humphrey

[4]; in that, at each location, a circle with its radius representing number of troops is

drawn. Connecting these circles depicts troop movement. Therefore, each troop

movement is represented by two circles depicting number of troops at starting point and

destination and the lines connecting them. The colour of these movements defines

whether troops were advancing (defined by Red) or retreating (defined by Black).

Humphrey’s recreation is depicted by Figure 4.37.

Our version of this visualisation uses two notations and we have asked a designer to

craft required notation Views. These Views are provided using Windows Presentation

100

Foundation (WPF). For simplicity in the process, temperature information of the map is

omitted and coordinate of the locations are considered relative to visualisation canvas.

Figure 4.37 Minard’s map recreated by Humphrey [4].

The first notation depicts troop movements from one position to another. Based on

coordinates and the number of troops at the starting point and the number arriving at the

destination, a shape will be drawn as specified in the notation View (Figure 4.38a). The

algebras for creating this shape and the circles at the starting point and destination, for

filling angular gaps, are provided in [4]. Our approach provides a way to specify and

reuse this in C#. This notation requires a data part that represents start and destination

location names and coordinates, number of troops starting the movement and arriving at

destination, and the colour of the shape which represents whether troops were

advancing or retreating. Therefore the data part for this notation will be similar to

Figure 4.38b. Elements of this model are all in one-to-one relation with notation

attributes. Therefore, they will all be specified for the controller transformation using

“linkto” annotations as depicted in Figure 4.39.

101

Figure 4.38 Troops movement notation’s (a) View and (b) Model.

Figure 4.39 Annotated View of Troops movement notation with Model elements.

The second notation shows the map with its description on top (Figure 4.40a). As a

result, its Data should provide the description information (Figure 4.40b). The map

notation should host troop movement notations, therefore, a placeholder for troops

notations should also be provided in map notations model. When the user is annotating

the View, “callfor” annotation is provided in the View according to Figure 4.41. The

Minard class declared in XAML in Figure 4.41 is derived from the Canvas and allows

for hosting of other visual elements. Setting the position of troop movement notations

relative to the Canvas is embedded within movement notations once the coordinates are

defined. Therefore, when placed on the hosting map (Minard Canvas), those notations

are already positioned according to their coordinates.

102

Figure 4.40 Map notation’s (a) View, (b) Model.

Figure 4.41 Map notation’s annotated View XAML.

The provided input data to be visualised is an XML data file (the input model) which

includes a map description and a list of troop movement records. These records consist

of start and destination location names and coordinates, number of troops starting and

lost during the journey, and a status string which defines whether they were advancing

or retreating.

103

To generate the transformation rule for visualising each movement record as a

movement notation, users need to drag and drop a record element from input to a troop

movement notation. Figure 4.42 shows mapping specification of records to troop

movement notation.

Correspondence specification of troop movement notation starts by linking record

element from input model to the troops notation marked by 1 in Figure 4.42. The bold

solid black arrow depicts the drag and drop direction for specifying this correspondence.

As a result, a troop movement notation will be generated for each Record element.

Considering input data and the notation’s Model data of Figure 4.42, we can conclude

that coordinates, name of locations, and number of troops at the start are in a one-to-one

relationship with their corresponding elements on the notation’s Model data. Therefore

their correspondences can be specified by direct drag and drop of input data elements on

the notation’s Model elements as shown by black dashed arrows in Figure 4.42.

However, the notation requires the number of troops at the destination, whereas the

input data record provides number of troops lost during the journey. Also the status of

the movement is declared by Advancing or Retreating strings in the input while this has

to be defined by colour in the notation. As a result, to specify these correspondences,

user of our approach has to use provided functions and conditions.

Figure 4.42 Specifying correspondences between troop movement records and provided troop movement
notation. Arrows indicate drag and drop directions.

104

Figure 4.43 Specifying correspondences between troop movement records and provided troop movement
notation using functions (a) correspondences with campaign data input file and (b) using separate input

file to specify colours. Arrows indicate drag and drop directions.

Troop movement status can be defined by using a condition which provides a colour

according to the status string. To generate this, user drops a condition on the Canvas (as

marked by 3 in Figures 4.43a and 4.43b) and links corresponding elements. The (navy)

bold dashed arrows depict drag and drop directions for correspondences of this

condition. Colour names are provided as a separate input file (See 4 in Figure 4.43b).

The required colours are then dragged and dropped on condition elements (See Figure

4.43b). Similarly, for specifying the number of troops at the destination, the user is

provided with a subtraction function which subtracts troops lost from number of troops

starting (Head Count) to calculate the required value (marked by 2 in Figure 4.43). The

user then maps its result to troops arriving at the destination element “TroopsLeft” (red

solid arrow in Figure 4.43a).

To specify correspondences for map notation, users need to drag a campaign data

element from the input model on the map and link its description to the description

element of the map notation, as shown by Figure 4.44. Note that by default space

consuming notations are shrunk to save space on the designer Canvas. The

“Movements” element is the place holder for troop movement notations which will be

linked in the notation composition step.

105

Figure 4.44 Specifying correspondences between input data and map notation.

Figure 4.45 Composing troop movement and map notations to generate complete visualisation. Arrows
are provided by the framework.

Now that both notations are designed and their correspondences to the input data are

defined, the only step remaining to have a full visualisation is to compose it by linking

the movement notation and the map notation, as shown by Figure 4.45. Once done, the

generated transformation from this composition will be applied on the input data to

produce a map visualisation and the resulting visualisation is shown by Figure 4.46.

106

Figure 4.46 Minard’s map resulting from our approach.

4.3.3 UML class diagram visualisation

This case study demonstrates how a UML class diagram can be generated for example

class diagram inputs. Figure 4.47 depicts a simplified sample of these examples

provided in XML.

107

Figure 4.47 An example of UML class diagram inputs.

As in previous example, a visual notation needs to be defined for each distinct part of

input model. For this UML class diagram example, these parts include: UML attributes,

operations and their parameters, classes, associations and the diagram itself. A desired

visualisation for such an example would be similar to Figure 4.48.

108

Figure 4.48 Desired visualisation for example of figure 4.47.

To generate notations required for this visualisation, a designer has crafted the notation

views. These views are created using a combination of XAML shapes and C# logic.

This C# logic controls how elements of these shapes are laid out on other notation

views. For each of these views a model data has to be provided. Views have to be linked

to model data to create notations. For example Figure 4.49 shows view and model of

UML attribute notation.

(a) (b)

Figure 4.49 UML attribute notation’s (a) View and (b) Model.

As shown by Figure 4.49b, the data includes attribute’s name, type and access. These

values are in one to one relation with elements of the view and should be annotated in

109

the provided view by linkto annotation so that the controller can be generated. Figure

4.50 shows the annotated view of attribute notation.

Figure 4.50 Annotated view of UML attribute notation.

The provided view for the attributes includes the required code for altering Access

values. For example if the provided value for attributes access is Public it will generate

a +, and similarly for private a – and so on. It will use blank if access value is not

provided.

Other notations should be similarity generated using model data and the provided views.

Figures 4.51 and 4.52 show view, model and annotated view of a UML function

parameter.

(a) (b)

Figure 4.51 UML function parameter (a) View and (b) Model.

Figure 4.52 Annotated view of UML function parameter.

110

Figure 4.53 shows model and view of a UML function. The parameters are to be

included inside this notation. Therefore, a place holder is provided in function model

(“OPParameters”). This place holder is accordingly annotated by “callfor” annotation in

Figure 4.54.

 (a) (b)

Figure 4.53 UML function notation’s (a) View and (b) Model.

Figure 4.54 Annotated view of UML function notation.

UML associations are composed of an arrow, cardinality, and a label for association

name. Figure 4.55 shows the view and model of UML associations. The provided

elements of association model are in one to one relationship with elements of the view.

As a result they have been annotated using “linkedto” annotation in Figure 4.56.

 (a) (b)

Figure 4.55 UML association notation’s (a) View and (b) Model.

111

Figure 4.56 Annotated view of UML association notation.

The shape for a UML class diagram designed in our example is composed of a box that

includes class’s access and name in the first compartment, class’s attributes in the

second compartment and operations in the third compartment as is shown in Figure

4.57. In our configuration of classes, associations are also included in the class they start

from.

 (a) (b)

Figure 4.57 UML class notation’s (a) View and (b) Model.

Since each class notation includes attributes, operations, and possible associations, the

place holders of these elements are provided in class model (Figure 4.57b). These

placeholders are then accordingly annotated by “callfor” annotations in the class view’s

code shown in Figure 4.58. Class’s name and access are in one to one relationship with

their corresponding elements of the view and therefore are marked by “linkto”

annotations.

112

Figure 4.58 Annotated view of UML class notation.

Figure 4.59 shows View and Model for diagram notation. This notation is essentially a

canvas which allows depiction of diagram name on top and organises class notations

using grid layout formation. Classes are place on canvas and ordered according to their

appearance order in the input file. Once all classes are placed, diagram canvas triggers

class’s association rearrangement so that they can link their associations correctly

according to position of the association’s To class. This rearrangement functionality is

provided in the class views logic code. Annotated view of this notation is shown in

Figure 4.60.

(a) (b)

Figure 4.59 UML class diagram notation’s (a) View and (b) Model.

Figure 4.60 Annotated view of UML class diagram.

113

Once required notations are generated, correspondence links between elements of the

notation and input elements should be specified. For example for defining notations for

UMLClass elements, user drops UML class notation to the designer canvas and drag

and drops class element of the input model on the notation as shown by solid arrow in

Figure 4.61. This interaction will trigger the creation of a transformation rule for

transforming that portion of the input model (UMLClass element in XML input) to the

host notation's model.

Figure 4.61 Specifying correspondences between class element and class notation. Arrows depict drag
and drop direction.

Each notation may have internal elements that correspond to elements of their model

data. They can be viewed in a popup window by right clicking on the notation. For

example, our UML class notation here has an access identifier, a name, a placeholder

for attributes, a place holder for associations and a place holder for operations as its

model. These placeholders specify where other notations are going to be included.

Figure 4.61 shows three correspondences: Correspondence between UMLClass element

and the notation, correspondence between UMLClass name and class notation’s Name,

and correspondence between UMLClass’s access and class notation’s Access. Please

114

note that since UMLClass’s name is a XML attribute and not an element, framework

has shown it differently in the default tree view. The place holders are not required to be

linked to at this stage. When user is composing notations, other notations will be linked

to these place holders. Same procedure will be repeated for other notations. For example

Figure 4.62 shows how elements of a function parameter can be linked to their

corresponding notation.

Figure 4.62 Specifying correspondences between function parameters and parameter notation. Arrows
depict drag and drop direction.

To have a complete transformation script, the prepared collection of transformation

rules in notations should be scheduled according to their call sequence. This is achieved

by using notation composition. Once all notations for a visualisation are defined, they

should be composed to create a complete visualisation. To do so, user drops all

generated customised notations on the scheduling canvas and links them according to

their specific place holders as depicted by Figure 4.63.

115

Figure 4.63 Composition of notations to generate Class diagram visualisation.

As previously seen on other case studies, notation composition will result in scheduling

of embedded transformation rules in each notation. In composition of Figure 4.63 the

transformation rule in diagram notation is the first rule to be called to transform a

UMLDiagram model element to a UML diagram notation. It then calls the UML class

transformation rule, and the scheduling continues accordingly for other linked notations.

By using the compositions specified in Figure 4.63, a complete XSLT script to generate

concrete visualisations of class models will be generated for rendering class model

examples similar to Figure 4.48. This transformation script can be reused for other

examples. For example Figure 4.64 shows the result of applying same transformation

script to an XML input representing class diagram of XYZ airline application.

Figure 4.64 Example of class diagram visualisation of XYZ airline.

116

4.3.4 Java code visualisation

Source code is a type of concrete syntax. However, to be able to benefit from drag and

drop and interaction of our approach and framework, it should be visualised using

interaction capable notations. This section provides an example of visualising Java

source code. Assume XML representations of Java code is available and is similar to

example shown in Figure 4.65.

To generate visualisation for this example, a visual notation has to be created for each

distinct part of this input model once. For example, to visualise an example Java code

XML similar to Figure 4.65, a visual notation for Java package, Classes, attributes,

methods and method parameters has to be created first. Similar to previous case studies,

we assume a designer designs the views for the required notations. The task for

generating the notation then would be to specify model data elements required for these

notations and annotate views accordingly to generate the controller transformation

between the model and the view.

117

Figure 4.65 An example of Java code input represented by XML.

For example, to generate a notation for Java properties, the provided view and the

required model data are depicted by Figure 4.66. This notation by default includes the

array indicators (“[]”). The logic behind notation controls the value to be put inside the

brackets. If no value is provided, or the multiplicity of the property is one, it will omit

the brackets.

(a) (b)

Figure 4.66 Java property’s (a) View and (b) Model.

118

Elements of the View should be linked to elements of the model. It can be done by

annotating the View according to elements provided by Java property’s model. This

annotation is depicted in Figure 4.67.

Figure 4.67 Java property View’s annotations.

Other notations can also be generated similar to Java property. For example Java class

notation’s view and model are provided in Figure 4.68 and its annotated View is

depicted in figure 4.69. Since Java class notation includes other notations like attributes

and functions, their place holders are provided in the model data and are accordingly

annotated in the View (see Figures 4.68 and 4.69).

 (a) (b)

Figure 4.68 Java class’s (a) View and (b) Model.

119

Figure 4.69 Java class view annotations.

The generated notations should be linked to example data by specifying correspondence

links between elements of the input examples and elements of notation data. For

example, to generate a visualisation for a Java class, a Java class notation has to be

placed (dropped) on the designer canvas and class element of the input model should

also be dropped on the notation as shown by arrows in Figure 4.70. This interaction will

trigger the creation of a transformation rule for transforming that portion of the input

model (class element in XML input) to the host notation's model. The internal elements

should also be mapped accordingly. For example, class notation has access, name that

should be specified. Placeholders for properties and methods will be used in notation

composition step.

120

Figure 4.70 Mapping Java class input elements to Java notation.

As another example, consider mapping elements of the input XML representing method

parameters to parameter notation. Figure 4.71 shows the interactions and

correspondences required for this mapping.

Figure 4.71 Java class View’s annotations.

A range of “mapping functions” are available to be used to manipulate content from

source to target visualisation. For example, if it is required to alter the name of Java

class by appending a “_Class” to its name, a string merging function (marked by a in

121

Figure 4.72) can be used. These mapping functions are used similar to the notations, i.e.

they can be dropped on the designer canvas, and desired input elements can be linked to

their internal elements (i.e. function's input arguments) by drag and drop. If a function

has outputs, they can be dragged to other desired elements of notation.

Figure 4.72 Using string merge function to alter Java class’s name. Arrows depicts drag and drop.

To have a complete Java visualisation (and hence a transformation script from Java

XML to visualisation), the prepared collection of notations should be composed. Once

all notations for Java visualisation are defined, they should be dropped on scheduling

canvas (provided in the framework) and linked according to their specific place holders

as depicted by Figure 4.73.

Figure 4.73 Composing notations to generate Java code visualisation. Arrows are provided by
framework.

122

According to this composition, Java package notation’s (marked by 1 in Figure 4.73)

internal transformation is the first to be called to transform a Java package model

element to a package notation. It then calls the class transformation rule, and the

scheduling continues accordingly for other linked notations. Applying the resulted

transformation on the example of Figure 4.65 will result in visualisation of Figure 4.74.

Figure 4.74 Resulted visualisation of the example in Figure 4.65.

Figure 4.75 shows an example of applying this transformation on another example

representing Java source XML of an airline application.

123

Figure 4.75 Example Java code visualisation of airline application.

124

4.3.5 Computer Aided Design (CAD) visualisation

Visualisations have been used in variety of application domains. One domain that has

benefited a lot from visualisation is Computer Aided Design (CAD). CAD

visualisations allow designers to see various parts of their designs and correct

imperfections before building them. This case study shows how CAD examples can be

provided to our framework and visualised. Here we assume these examples are provided

in XML files similar to example of Figure 4.76. It shows an example of CAD design

data of a building. It is composes of plan levels that may include rooms of different

types. For simplicity, the geometry data has been merged into one element. However, it

could have been provided in different elements or even input files.

Figure 4.76 Example input model of a CAD XML.

Three notations are required for this case study, a notation for room shapes, a notation

for floor plans and a notation for whole building. Similar to previous case studies, a

designer has provided the views for these notations. These notation views are generated

using XAML graphics that unlike other case studies do not include logic code. The

layout of the graphics used in these views is controlled by XAML controls. Figure 4.77

125

shows the view and model for room notation. Each room has geometry, name, and a

type. Therefore, the provided model should include these elements.

 (a) (b)

Figure 4.77 CAD room’s (a) View and (b) Model.

Since all the elements of this room model are in one to one relationship with the

elements of the view, they should be annotated in the view code using “linkto”

annotations. Figure 4.78 shows the annotated view.

Figure 4.78 Annotated view of CAD room notation.

Floor plans include the rooms and show how they are arranged. They also have a label

to identify each floor. The view and model of a floor plan is depicted by Figure 4.79.

126

 (a) (b)

Figure 4.79 CAD floor plan’s (a) View and (b) Model.

Since each floor plan houses multiple rooms, the annotation for rooms should reflect the

one-to-many relationship. Figure 4.80 shows the annotated view of Figure 4.79. By

default, each floor plan lists included rooms from top.

Figure 4.80 Annotated view of CAD floor plan notation.

The final notation for our CAD visualisation is the CAD design notation which embeds

other notations. Its view includes a stack panel embedded in a scroll viewer for housing

multiple floor plans. So in case the design become large, users can scroll to see the

whole design and it will not interfere with other elements of UI. The view and model of

this notation and the annotated view are depicted by Figure 4.81 and Figure 4.82.

127

 (a) (b)

Figure 4.81 CAD design notation’s (a) View and (b) Model.

Figure 4.82 Annotated view of CAD design notation.

Next step is to map input elements to generated notations. This can be done by drag and

dropping input elements on notational elements. For example, Figure 4.83 shows how

elements of a shape from input model can be linked to a room notation. When room

notation is drop on designer canvas, user drags the shape element on room notation.

This will trigger a transformation rule for transforming that portion of the input model

(Shape element in XML input) to the room notation's model. The internal elements of

the shape and room notation’s model should be linked by drag and drop too. For

example, the room notation in Figure 4.83 has a Geometry, Name and Type. These

internal elements can also be linked by drag and dropping elements as shown by arrows

in the figure. These correspondences will be included in the transformation rule

template that has been triggered.

128

Figure 4.83 Correspondence specification between shape element and room notation.

Figure 4.84 shows another example of linking input model elements to a floor plan

notation to transform each plan in input model to a floor plan notation. The Rooms

element of floor plan notation will be used in notation composition as it is a placeholder

for room’s notation.

Figure 4.84 Correspondence specification between plan data and floor notation.

To have a complete visualisation and hence a model to visualisation transformation

script, the prepared collection of defined notation rules should be scheduled according

129

to their call sequence. Composition of notations specifies how a full model visualisation

is formed from a set of sub-element visualisations and as a result, in this example,

notations are composed as depicted by Figure 4.85. This figure also shows how place

holders help identification of which element should be included in which notation.

These place holders will be replace by calls to transformation rules of linking notations.

For example in composition of Figure 4.85 since the room notation is linked to

“Rooms” element of floor notation, a call to the transformation rule embedded in the

room notation will be placed in floor notations “Rooms” element.

Figure 4.85 Composition of notations for CAD visualisation.

This composition results in the scheduling of model element-to-visual notation

transformation rules and thereby a model to visualisation transformation script will be

generated. For example, by using the compositions specified in Figure 4.85 a complete

XSLT script to generate concrete visualisations of CAD models will be generated for

rendering those model examples to visualisations similar to the visualisation of Figure

4.86. Note that the generated XSLT transformation script can be reused and applied to

all examples of the CAD input to provide an automatic concrete visual notation

renderer. These generated concrete 2D visualisations are implemented as WPF elements

and allow interaction with their composing notations. The individual elements of a

concrete visualisation can be dragged, dropped on other elements, and right clicking

them reveals their internal elements.

130

Figure 4.86 Example of the generated CAD visualisation.

4.4 Summary

This chapter described the visualisation approach provided in by this thesis. It described

how visual notations are created using designer provided views and linked to model

data using a controller transformation. The created notations are capable of being drag

and dropped and elements of input models can be linked to them and their internal

model elements using drag and drop approach. Once notations are generated and linked

to input model examples, they should be composed to generate full visualisations.

Composition of notations results in generation of model to visualisation transformation

script and can be reused and applied on similar examples to generate visualisations.

Five case studies were provided in this chapter to indicate applicability of the presented

approach for varieties of application domains. These case studies included visualisation

generation for bar charts, a recreation of Minard’s map, UML class diagrams, Java code

and CAD designs.

131

Chapter 5

Transformation using concrete visualisations

5.1 Introduction

A major motivation for this thesis research was to address complexity of model

transformation generation by providing familiar and concrete visual notations as first

class artefacts in transformation generation process. These concrete visualisations help

to better incorporate users’ domain knowledge into specifications of source and target

model correspondences and thus into generated model transformation rules.

Chapter 4 described the creation of such concrete visualisations in detail. This chapter

introduces ways in which these visualisations can be used in transformation rule

specification using drag and drop between visualisations of example models. Low level

model transformation scripts are automatically generated using these drag and drop

interactions. This chapter addresses research question 2 and its following sub-questions:

2. Can a model transformation be effectively generated using concrete by-example
visualisations?
2.1. Can we perform correspondence specification (and hence transformation

specification) on actual visual notation of input models?
2.2. Can a transformation rule be represented visually?
2.3. How to create a visualisation for transformation rules?

132

5.2 Transformation approach

Given that source and target visualisations are available, the transformation procedure

between the two visualisations, as illustrated in Figure 5.1, involves: 1) Mapping

notations of source visualisation to target visualisation to create transformation rules, 2)

automatic reverse engineering of a meta-model (abstraction) from source and target

visualisations, and 3) automatic generation of transformation script using defined rules

and the reverse engineered abstraction. The following subsections describe each of these

steps in detail.

Figure 5.1 Transformation generation procedure.

5.2.1 Transformation rule specification

Concrete and familiar visualisations provide better facilities for spotting

correspondences between source and target model visualisations. First, let us revisit

definition of correspondence in our approach:

Definition 5.1 A Correspondence is a relation between elements on both

sides of the transformation. It specifies whether element(s) of the Left Hand

Side (LHS) model play a role in deciding element(s) of the Right Hand Side

(RHS) model.

133

A correspondence can be 1-to-1, 1-to-Many or Many-to-Many depending on number of

elements participating in the relationship from both sides. These correspondences can

specify a direct relationship between LHS and RHS models or an indirect relationship.

Therefore we have:

Definition 5.2 A Direct correspondence defines a direct relationship between

LHS2 element and the RHS element. It usually results in the value of the LHS

element being copied to the RHS element.

Definition 5.3 An Indirect correspondence is the relationship between LHS

and RHS model elements that is specified through functions and conditions or

other correspondences.

Example 5.1 Consider transformation example of bar chart to pie chart

visualisation. Assume each bar has a name, a value and a colour, and each pie

has a name, value and colour accordingly. Three 1-to-1 direct correspondences

between elements of each bar and elements of each pie piece can be specified, as

shown by Figure5.2.

Figure 5.2 One-to-One correspondences between elements of a bar in bar char and elements of pie pieces
in a pie chart. Arrows depict correspondences.

2	
 From	
 this	
 point	
 forward,	
 we	
 might	
 use	
 LHS	
 model	
 and	
 source	
 model	
 interchangeably.	
 Same	
 is	
 true	
 for	

RHS	
 model	
 and	
 target	
 model.	

134

Example 5.2 Consider transformation of a troop movement notation in Minard’s

map to a pie piece in a pie chart. Assume each troop movement notation has

number of troops when the movement started in the first city, number of troops

when it ended and a colour representing the status (advancing/retreating). The

pie chart on the RHS is representative of the number of troops lost during the

movement and the status of the campaign and the name of the two cities involved

in the movement. As a result, to specify the transformation between the two

notations one can specify following three correspondences (as shown by figure

5.3): 1) Direct correspondence between troop movement colour and pie piece

colour. 2) Indirect correspondence between the number of troops in first and

second cities, and the value of the pie piece. A subtraction function has to be used

to calculate the number of troops lost during the movement. 3) Indirect

correspondence between name of the two cities and name of the pie piece. A

merging function is used to merge the two names.

Figure 5.3 Correspondences between elements of a troop movement notation in Minard’s map and
elements of a pie piece in pie chart. Solid arrows depict indirect correspondences while dashed arrow

depicts direct correspondence.

From these definitions, it can be concluded that a direct correspondence will result in a

1-to-1 mapping, but the opposite is not necessarily true. For example, an element on the

LHS might have relation to another element on the RHS through a function.

135

Defining correspondences is very similar to structural programing paradigms, i.e. some

correspondences may affect a larger portion of the source or target models or both and

therefore, might include other correspondences. As a result, two categories of

correspondences can exist. We call them Child and Parent correspondences.

Definition 5.4 A Child correspondence is a direct or indirect correspondence

that specifies a relationship by its own.

Definition 5.5 A Parent correspondence is a correspondence that includes set

of other correspondences. This set should have at least one child

correspondence.

Example 5.3 In mapping a bar chart visualisation to a pie chart of Example 5.1,

each bar on the source (bar chart) has parent correspondence relation with each

pie piece in the target (pie chart). The value of the bar, its name and colour, have

child correspondence relationships with corresponding value, name and colour of

the pie pieces. Figure 5.4 depicts these correspondences.

Figure 5.4 Correspondences between a bar in bar char and a pie piece in a pie chart. Solid arrow depicts
parent correspondence while dashed arrows depict child correspondences.

136

With these two categories, it would also be easier to reuse correspondences.

Considering these definitions, a transformation rule can be defined as follows.

Definition 5.6 A transformation rule in our approach is defined by a parent

correspondence and may include a set of child correspondences, operations

and calls to other transformation rules. It can include both direct and indirect

correspondences and may include additional operations.

Applying transformation rules on (part of) source model will result in generation or

modification of (part of) target model. A transformation rule might be called multiple

times and might be applied on multiple sources to result target(s).

Example 5.3 The parent correspondence of Figure 5.4 represents a

transformation rule that transforms a bar in bar chart to a pie piece in pie chart.

It includes three child correspondences. Another transformation rule which

transforms bar chart to pie chart will call this rule multiple times for each bar to

create pie pieces in pie chart.

Figure 5.5 shows another example from software engineering domain. A

transformation rule can be defined by the parent correspondence between UML

class diagram’s attribute and a Java class property. This parent correspondence

includes three child correspondences to correspond Name, Access and Type.

137

Figure 5.5 Correspondences between a UML attribute and a Java property. Solid arrow depicts parent
correspondence while dashed arrows depict child correspondences.

Transformation rules range from simple direct correspondences to complex set of mixed

correspondences and transformation rule calls. A variety of functions can be used to

define these correspondences depending on the transformation task at hand. Similar to

model-to-visualisation transformation generation step, varieties of functions and

conditions can be specified to define more complex correspondences and hence

transformation rules. These functions and conditions are used similar to visualisation

step. Example 5.4 demonstrates use of a condition in mapping a bar notation to pie

piece notation.

Example 5.4 Figure 5.6 demonstrates using a condition to specify colour of a pie

piece according to the values provided by bar notations in a bar chart. Value of

the bar is dragged to arg1 and the value to be checked against is provided to

arg2.Then specific colours are provided in condition statements accordingly. The

condition should then be dragged to the colour element of the pie piece.

138

Figure 5.6 Using conditions to specify correspondences. A) Before values are specified to the condition
arguments, B) after values are provided. Arrows show drag and drop directions.

5.2.2 Transformation rule representation

Transformation rules are inseparable part of any model transformation system. A

complete transformation specification usually consists of combination of multiple

transformation rules. If transformation specification involves large models, many such

rules will be defined which can affect understandability of the process and debugging.

Given that first class artefacts of our approach are visual notations, we argue that a

textual representation of a transformation rule would be out of place and not suitable.

Therefore, transformation rules are represented by visual notations too (see our research

questions 2.2 and 2.3 on visual representation of transformation rules).

Each transformation rule is represented by the source and target notations it is

representing. Putting each visual element and its target notation together will provide a

schematic view of the transformation rule, i.e. users can see each transformation rule by

the source, and the target notation that will be generated as a result of applying the rule

on source notation. This provides a good mechanism for representing transformation

rules visually. Figure 5.7 demonstrates examples of these rule representations.

139

Figure 5.7 Examples of transformation rule representation. Transformation rules are: A) UML class to
Java class, B) A Room in 2D visualisation to a room notation in another 2D visualisation, C) A pie piece

to bar and D) UML attributes to Java property.

5.2.3 Generating transformation scripts

Transformation rules are defined using visual notations and their visual representations.

Each transformation rule transforms the model underlying the source notation to the

model of target notation. The MVC embedded in each notation is responsible for

depicting elements of notation’s model to the visual view. As a result, the

transformation between notations only considers the model data.

By dragging and dropping a source notation to a target notation, their underlying

models are used as templates for transformation rules. The child correspondences that

represent the internal model elements of the two notations will be included in the

transformation templates to form a complete template. Example 5.5 elaborates more on

the procedure.

Example 5.5 Consider the transformation rule between UML attribute and Java

property. Figure 5.8 demonstrates two steps of the required interaction. Step one:

a UML attribute is dropped on a Java property. This will result in assignment of

the underlying model of Java property as target and internal elements of forward

transformation template. The pseudo code provided in Figure 5.9 shows the

resulted template. The internal elements of these notations need to be mapped as

140

well. Therefore next step (marked by 2 in Figure 5.8) specifies the correspondence

between Name of the UML attribute and Name in Java property. This

correspondence will be reflected in the triggered transformation rule as shown by

Figure 5.10. The remaining correspondences will be accordingly specified and

reflected.

Figure 5.8 Steps for generating transformation rule between UML class attribute and Java property.

Figure 5.9 Pseudo code representing the transformation template of step one in Figure 5.8.

Transform UML attribute to {
 Java Property
 Internal model:
 {
 Access

Name
Type
Multiplicity

 }
}

141

Figure 5.10 Pseudo code representing the transformation template after step two in Figure 5.8.

Once correspondence specification between two notations is complete, a transformation

code generator reads these templates and generates the transformation rule scripts

according to the transformation languages of choice. Example 5.6 demonstrates a

sample of the generated transformation code.

Example 5.6 Consider the transformation rule defined in Example 5.5. Assuming

that all elements of UML attribute (Name, Access, and Type) are mapped to their

corresponding elements in Java property, the transformation rule generated by a

code generator that generates XSLT would be similar to Figure 5.11. Note that

since there exists no correspondence for Java property’s multiplicity, its default

value is chosen from Java property’s notation data.

 Figure 5.11 Transformation rule script for transforming UML attribute to Java property in XSLT.

Transform UML attribute to {
 Java Property
 Internal model:
 {
 Access

Map UML attribute’s Name To Java Property’s Name
Type
Multiplicity

 }
}

142

In case other transformation languages are of interest, code generators for those

languages can be provided similar to the XSLT code generator used in Example 5.6. A

complete visualisation to visualisation transformation may include multiple

transformation rules. These transformation rules will be included in the transformation

script to transform source visualisation to target visualisations.

Unlike the model to visualisation transformation which follows an imperative

transformation rule control, the rule application control of visualisation to visualisation

transformation follows a declarative approach. For model-to-visualisation

transformation, the user would specify how model-to-visualisation rules are called and

scheduled through composition of notations. Here, for visualisation-to-visualisation

transformation rules are not required to be explicitly called. Instead a call to apply

possible rules will be placed and the transformation engine will choose the possible

transformation rules. This declarative approach allows transformation rules to be called

for the composing visual notations inside each notation without user needing to

explicitly specify them.

Example 5.7 In bar chart to pie chart transformation example, when mapping

chart areas, users define three correspondences as shown by Figure 5.12. First

correspondence defines the transformation rule templates for transforming bar

chart notation to pie chart notation. Second correspondence defines the internal

elements of the bar chart (its Name and Bars elements) to be transformed to

internal elements of the pie chart. The Bars element of the bar chart includes

other bars. As a result, if the bar to pie piece rule has been defined, the call for

templates that has been put inside Bars element as a result of the correspondence,

will result in calling bar-to-pie piece rule.

143

Figure 5.12 Transformation rule specification between bar chart and pie chart. Arrows depict drag and
drop.

Note that the order of defining rules is not important. Users can define rules in order

they wish. Once all rules are defined, the transformation code generator checks and uses

all available rules in repository.

Although rule application control is declarative, before generating the transformation

script, it must be clear that which transformation rule should be used first to start the

declarative rule calling procedure. Our approach here uses the reverse engineered

abstraction of both source and target visualisations to decide the starting rule.

The automatic reverse engineering mechanism uses a graph lattice as the basis for the

abstraction. It incorporates a visitor pattern that traverses input examples and inserts

new structures of the models it faces to the graph lattice. Therefore, it creates a

complete abstract structure from provided visualisation example. The defined

transformation rules are checked against source and target abstractions based on source

structures they are to be applied to and the target structure they create, to find a rule

applicable to the top most element of the abstraction. Once this rule is found, it

automatically marks it as starting rule of the transformation script. The system then

generates a full source model to target model transformation script based on the defined

rules and hence our response to research questions 2 and 2.1.

144

Having taken both imperative and declarative approach for model-to-visualisation and

visualisation-to-visualisation might imply that the transformation code generator should

use transformation languages that support both declarative and imperative rule control

mechanisms. Declarative transformations do not need explicit scheduling while

imperative transformations allow better consistency checks. Since the visualisation

approach is separated from the transformation, it is possible to use different

transformation languages for each step, i.e. an imperative transformation language for

model-to-visualisation and a declarative transformation language for the visualisation-

to-visualisation transformation step.

The generated transformation code can be applied to any source model conforming to

the example(s) used in the specification to produce a target model. Following section

provides a group of case studies to further discuss this approach.

5.3 Case Studies

This section provides series of example case studies using our proof of concept tool

implementation to specify and generate transformations using example visualisations. It

describes transformation between bar chart and pie chart visualisation, Minard’s map

and pie chart, UML class diagram to Java, and CAD to alternative tree visualisations.

The visualisation procedures of these examples are described in chapter 4.

5.3.1 Mapping bar chart to pie chart

Representing data using charts is common in many application domains. This case study

demonstrates situations where an alternative visualisation is desired for same underlying

data. It demonstrates how the data represented by a bar chart can be transformed into pie

chart visualisation and hence a case of alternative visualisation for same underlying

data. It uses the bar chart visualisations previously demonstrated in this thesis. Figure

5.13 shows examples of these visualisations.

145

Figure 5.13 Example bar chart and pie chart visualisations.

As can be seen in Figure 5.13, bar chart visualisation is consisted of chart notation and

set of bars. Pie chart is also consisted of pie area and the pie pieces. Therefore, for

transforming bar chart to pie chart, two transformation rules will be required: a

transformation rule to transform chart area in bar chart to chart area in the pie chart, and

the transformation rule to transform each bar to a pie piece.

To generate the bar area to pie area transformation rule, it is required that the bar chart

area notation be dragged and dropped on the pie chart area (as demonstrated by 1 in

Figure 5.14). This interaction will trigger the transformation rule templates for both

forward (bar chart area notation to pie chart area notation) and reverse (pie chart area to

bar chart area) transformation.

Each of these notations has internal elements that should be mapped as well. The

notations provide the internal elements in pop-ups that are displayed by right clicking

on each notation. So to map internal elements (after popups are displayed) source

elements need to be dragged and dropped on elements of target notation. This

146

interaction is marked by 2 and 3 in Figure 5.14. Here the bar chart area’s name is to be

mapped to pie chart’s name and bars will be mapped to pie pieces. Once done, saving

the rule will result in the default notations of both source and target chart areas to be

saved as visual representative of the transformation rule.

Figure 5.14 Mapping chart area notations.

To generate the second transformation rule, a bar notation needs to be dragged and

dropped on a pie piece. Internal elements of the bar (name, value and colour) also need

to be mapped to internal elements of the pie piece. Figure 5.15 demonstrates this

interaction by arrows accordingly.

147

Figure 5.15 Mapping a bar to a pie piece.

Figure 5.16 shows the generated transformation rules. Note that since the chart areas are

empty and there are no pie pieces or bars, the renderer does not show the pie boundary

or bar chart axis.

Figure 5.16 Transformation rules for transforming bar chart to pie chart.

To generate the transformation script, the reversed abstraction of bar chart is checked

against the generated rules to find the starting rule (bar chart area notation to pie chart

area notation’s rule). The transformation script is then generated by calling the starting

rule and including remaining transformation rules in the script. The remaining

148

transformation rules will be included in the script and called implicitly. Figure 5.17

shows the generated script in XSLT. Executing the generated transformation script will

result is a new pie chart visualisation that represents the data of the bar chart

visualisation as depicted by Figure 5.18.

Figure 5.17 Generated transformation script for transforming bar chart to pie chart.

149

Figure 5.18 End result of the bar chart to pie chart transformation.

5.3.2 Mapping Minard’s map to pie chart

This case study demonstrates how the data embedded in a complex visualisation

(Minard’s map) can be extracted and transformed to a model underlying a different

visualisation (pie chart).

Given Minard’s map visualisation in Figure 5.19, assume that there is a requirement for

visualising the number of troops lost during the campaign at each key movement step as

a pie chart, transformed by-example from this map visualisation.

Figure 5.19 Minard’s map visualisation.

150

To perform this transformation, we need to generate a rule for transforming the map to a

chart and a rule for creating a pie piece from each troop movement notation. To

generate the first rule, the user is required to drag and drop map notation on the chart

area. The internal elements of the map will also correspond to elements of the chart;

therefore, they should be linked as well. Figure 5.20 shows these correspondences by

green arrows. Saving these correspondences will generate a map to chart transformation

rule.

Figure 5.20 Specifying Minard’s map to chart area transformation rule. Arrows depict drag and drop
directions.

A second transformation rule is required for generating a pie piece notation from a troop

movement notation. The user drags a movement notation onto a pie piece as shown by

Figure 5.21. Each pie piece includes a value, a name and a colour. The colour element is

in a one to one relationship with the troop notation’s colour since we need to have the

information regarding advancing or retreating status in that part of the journey. As a

result, the colour element will be directly linked as shown by figure 5.21.

151

Figure 5.21 Specifying Troops movement notation to pie piece notation transformation rule. Arrows
depict drag and drop directions.

Minard's map visualisation does not include a specific data element for number of

troops lost at each movement. Therefore this value needs to be calculated from available

data in the visualisation using provided mapping functions.

Once a notation is dragged on another in our framework, their default notations are

provided in a separate window in case functions and conditions needed to be used. This

is to prevent source and target visualisation windows from getting crowded. An

example of this separate window and default notation visualisations is provided in

Figure 5.22 for our example of troop movement notation to pie piece notation

transformation rule.

To generate the value needed to be represented by each pie piece as the number of

troops lost during the movement, a subtraction function needs to be used. Each pie piece

needs to indicate that its data is representative of which troop movement notation. As a

result each pie piece must include the name of the movement using the name at starting

point of the movement and the name at the destination. A merging function is used here

to merge two city names and include a “to” between them to generate the name for each

pie piece. The required input elements to be used in these functions need to be dragged

and dropped on function arguments and the function arguments will be dragged and

dropped on the internal elements of the pie piece. These interactions are depicted by

Figure 5.22. The result of this interaction will be the transformation rule script of Figure

5.23. Note the inclusion of function variables in the transformation script. Argument

numbers have been updated by the transformation code generator.

152

Figure 5.22 Specifying Troops movement notation to pie piece notation transformation rule using
subtraction and merge functions. Arrows depict drag and drop directions.

Figure 5.23 Transformation script generated as a result of rule specification of Figures 5.21 and 5.22 in
XSLT.

Once these two transformation rules are defined, transformation script for generating

the pie chart can be generated. Using the abstraction of the source model (Minard’s

153

map), system already knows that the starting transformation rule is the Minard’s map to

pie chart area transformation rule. The rest of the transformation rules (troop movement

to pie piece in this case) will be implicitly called from starting transformation rule

onwards. The resulting full visualisation of this example is depicted in Figure 5.24.

Figure 5.24 Resulting pie chart visualisation.

5.3.3 Mapping UML class diagram to Java

This case study demonstrates a transformation example from software engineering and

MDE domain. It demonstrates how visualisation of a class diagram can be used to

transform the underlying model to the visualisation of Java code. Given that

visualisations of both UML class diagram and Java code are available, transformation

between them can be generated by drag and dropping their notations. Figure 5.25 shows

example of these source and target visualisations.

To perform this visualisation-to-visualisation transformation, transformation rules

should be defined for UML diagram to Java code notation, UML Class to Java class,

UML attributes to Java properties, UML operations to Java functions, and UML

operation parameters to Java function parameters. In this visualisation configuration,

each UML association is to be transformed into a Java property. The cardinality of this

154

association defines the multiplicity of that Java property. Therefore, a transformation

rule is also required for UML association to Java properties.

Figure 5.25 Sample Visualisations of a UML class diagram (source) and Java visualisation (target).

Figure 5.26 shows an example of creating a transformation rule for a UML attribute to a

Java code property. To create this rule, user needs to drag a UML attribute to a Java

field property, as depicted by solid black arrow, and match their internal elements, as

shown by dashed black arrows.

155

Figure 5.26 Specifying transformation rule between UML class attribute and Java field property. Arrows
depict drag and drop directions.

Note that the two visualisations do not need to represent same data, as in Figure 5.26

where the class diagram represents an organisation but the Java code is representation of

an airline package. Also, a level of consistency checking can be provided in each

visualisation. For example, package name of the Java code knows that its name should

not include white spaces, or Java attributes use default multiplicity of 1 when not

specified and when blank is provided it is assume to be N. These checks can be

provided depending on the application during notation design. An alternative is to use

functions and conditions when specifying transformations.

Figure 5.27 shows how UML diagram is mapped to Java package. As can be seen UML

diagram’s name contains spaces, these spaces will be deleted by controller of Java

package when UML diagram’s name is mapped to Java package’s name.

156

Figure 5.27 Specifying transformation rule between UML diagram and Java package.

Figure 5.28 shows how a class in class diagram is mapped to classes in Java code. As

shown by the figure, since both attributes and associations are represented by properties

in Java code, they have been mapped to properties in Java class element.

Similar to step two of specifying a concrete visualisation for a model, mapping

functions are available to create more complex transformation rules between the

concrete visual model mappings. For example, when mapping associations to a Java

property, an association might have multiplicity defined by “*”, whereas a Java field

property might have either a number or void as its multiplicity. A condition can be used

to specify such a correspondence.

157

Figure 5.28 Specifying transformation rule between UML class and Java class.

By dragging a UML association to a Java field (or any notational element to another)

their default notations will be shown on rule designer canvas to better provide space for

using functions and conditions. Figure 5.29 shows the notations and the condition. The

condition function in the figure tests whether “Multiplicity” of the association is equal

to “*”. If so, it passes a blank character as output; otherwise it copies the value provided

by “Multiplicity” to the output. Other correspondences between UML association and

Java property can be defined either in this window or on original visual notations of the

visualisation. If constant values need to be provided, (like spaces or “*”) they can be

specified using provided facilities. The resulted transformation code script for this rule

is shown by Figure 5.30. Note that since the association does not have access element,

the code generator uses the default “public” value provided by the model of Java

property.

158

Figure 5.29 Specifying transformation rule between UML association and Java property.

Figure 5.30 Transformation rule script for transforming UML associations to Java property.

Once all required rules are defined, transformation script for transforming UML

diagrams to Java code can be generated. The code generator searches for starting rule

which in this case is the UML diagram to Java package rule and generates the code

script. The generated target as a result of applying this transformation script on the

example class diagram of Figure 5.25 is shown in Figure 5.31. Note that the types are

transferred to Java visualisation with the same capitalisation as UML diagram. In case it

159

is desired to have lower case type names, such functionality can be provided by using

functions, or consistency checks inside visual notations.

Figure 5.31 Resulting Java code visualisation.

5.3.4 Mapping CAD designs to alternative tree visualisation

This case study provides an example where Computer Aided Design (CAD)

applications need to exchange complex models [164]. Consider the scenario where an

architect might want to create an organisation's building structure chart based on an

available CAD design. Assume that visualisation transformations for both models have

160

been provided beforehand, where the design model is visualised with a 2D building

layout and the structure chart model via its diagrammatic representation. This case study

shows how a transformation between elements of source design to elements of the target

structure chart can be generated.

Figure 5.32 shows an example of mapping part of a detailed building design to a

detailed structure chart. Elements of the chart structure should be created based on

elements in the design. For example, drag and dropping a room on a corresponding

room node in the tree and specifying their internal elements defines a transformation

between their notations accordingly. Figure 5.32 shows this example for creating a

transformation rule for mapping a 2D room shape (from source model visual notation)

to a building structure node (in target model notation). To create this rule, user needs to

drag a room notation element to a building node notation element, as depicted by solid

black arrow, and match their internal elements, as shown by dashed black arrow.

Figure 5.32 Defining a transformation rule for transforming a room in 2D CAD building to a room node
in tree-based layout.

161

The nodes in the building tree structure are colour coded depending on room types.

Room types in CAD visualisation however, are defined by their type string. To generate

these colours, users can use conditions and specify colours based on room types. By

dragging a room notation to a room node (or any notational element to another) their

default notation representations will be shown in rule design view to better provide

space for using functions. Users can navigate to that canvas and specify conditions as

depicted by Figure 5.33.

The condition function in Figure 5.33 tests whether room's “Type” is equal to for

example “Kitchen”. Note than in general, arguments of functions and conditions are

depicted by “arg” and a number (e.g. arg1, arg2). Once values are dragged and dropped

on these arguments, they are replaced by the dragged value. Figure 5.33 captures the

screen shot after ‘Kitchen’ element has been dragged and dropped on second argument

of the function and hence the argument has been replaced by ‘Kitchen’. Different

colours (in this case Green) can be specified according to user’s preference through the

provided UI and dragged to the condition expression. Similarly, a colour can be defined

if the condition expression was not satisfied by dragging the colour to “Otherwise”

element. The value provided by the condition will be then assigned to the element of the

target (in this case tree node's colour) as depicted by arrows in Figure 5.33.

Figure 5.33 Using conditions to map 2D room notation to room node notation of a structure chart.
Arrows depict drag and drop direction.

162

To have complete transformation, two more rules need to be specified. First, the rule to

transform floor plans in CAD design to floor nodes in the tree structure, and second, the

rule to transform the CAD design to tree building. Elements inside notations for these

rules are in one to one relation with each other. These rules can be specified by dragging

and dropping their notations and their internal elements. Figures 5.34 and 5.35 show the

creation of these rules accordingly.

The defined rules are depicted by the frame work using the concrete representation of

the respective source and target notations that they transform. Figure 5.36 presents the

concrete representation of these three rules. As stated before, since our approach uses

the reverse engineered abstraction of the source and target visualisations, the two

visualisations do not have to represent same data. For example in this case study, CAD

design is representing a Green Building design while the tree structure is for a city

council building.

Figure 5.34 Defining a transformation rule for transforming a floor plan in 2D CAD building to a floor
node in tree-based layout.

163

Figure 5.35 Defining a transformation rule for transforming a 2D CAD building to a tree-based layout.

Figure 5.36 Concrete representation of three rules required to transform a 2D CAD building to a tree-
based layout.

164

Once the required rules are defined, transformation script for this transformation can be

generated. Applying this script to source CAD visualisations will transform the data

represented by them to visualisation of the tree-based layout target. For example,

applying the full transformation script on the source in this case study, will result in the

visualisation of Figure 5.37.

Figure 5.37 Resulting tree structure chart.

5.4 Summary

This chapter provided our approach in using concrete visualisations for model

transformation specification. Concrete visual notations and their internal elements are

dragged and dropped to generate transformation rules. From these visually specified

transformation rules, transformation scripts are generated to transform source

visualisation to target visualisations. Where possible the reverse direction is also

generated automatically.

This chapter provided series of case studies to show applicability of our transformation

approach for multiple domains. These case studies mostly used the visualisations

generated in chapter 4 as source or target model visualisations.

165

Chapter 6

Correspondence Recommender

6.1 Introduction

Finding correspondences between source and target model elements for specification of

transformation rules can be a challenging task. This can especially affect novice users

more than experts. Even with incorporation of concrete visualisations, finding model

element correspondences can get hard in large scale and more complex models.

This chapter describes our approach to providing guidance and support to

transformation users in the form of correspondence recommendations. These

recommendations are targeted to both novice and expert users. It helps novices explore

possible correspondences and learn how source and target models can be linked. On the

other hand, it supports experts in spotting correspondences for large models and

visualisations, and helps them save time by selecting correspondences from suggested

recommendations instead of drag and dropping visual notations. In summary, research

question RQ3 and its following sub-questions are being addressed in this chapter:

3. How can interactive guidance be provided to users of model transformation
systems?
3.1. In what form should guidance be provided to users of model transformation?
3.2. What is the best technique to generate acceptable recommendations?
3.3. How can users best interact with recommendations?
3.4. How can user response be used and integrated into the guidance mechanism?

166

6.2 Correspondence recommender (“Suggester”)

Our approach to support users provides recommendations on possible and likely

correspondences between source and target that can help create transformation rules. To

achieve automated support for correspondences, an automated recommender system (a

“Suggester”) is designed that analyses input examples and user interaction in order to

recommend possible correspondences between models and their sub-structures.

The main task of a recommender system in general is to provide guidance to users for

choosing among multiple options [123]. Although this guidance hints do not have to be

correct all the time, better correctness will result in more user trust in the recommender

system [165]. Correctness is commonly measured with precision and recall metrics.

These metrics consider the proportion of correct or incorrect metrics over a set of

recommendations [161]. However, due to multi-dimension nature of recommender

systems their accuracy should be measured according to application domain and their

intended tasks [162].

For example, consider a recommender system that recommends set of commands to

users of an Integrated Development Environment (IDE) to improve their efficiency

[166]. If the recommended commands are the ones that the user is already aware of,

although very accurate according to precision and recall, they will not improve user’s

productivity. As a result, producing correct recommendations that are already known to

users will gradually cause users to ignore it over time [167]. This factor (referred to as

novelty) is usually measured by what proportion of the recommendations the user has

already used or selected before, against the newly recommended items, and as a result

directly affects accuracy. According to the application of recommender system, other

dimensions to consider for their evaluation may include diversity, coverage, utility,

serendipity, trustworthiness, learning rate, and robustness [162].

Among the three types of recommender systems (content-based, collaborative filtering

and the hybrid) we have adopted the content-based approach for the design of our

recommender system. Content-based recommenders prepare recommendations based on

available data and information of items [134]. Content based recommenders would

provide better applicability in off-line applications and would adapt to new models and

contents faster than collaborative filtering approaches [168].

167

Previous research on design of recommender systems has shown how combination of

recommendations resulting from different approaches can benefit the overall accuracy

and acceptance of the recommendations [169]. Over thirteen thousand teams

participated in Netflix competition to design a movie recommender that could improve

an existing system [170]. The winner however, was the approach that combined the

results returned by a group of recommender models that were not good-enough as

stand-alone recommenders. It was shown that this combination allows recommenders to

complement each other and produce better results [169].

The Suggester system introduced in this thesis, uses a mixture of content based

recommenders and ensemble learning techniques [163]. The architecture of this system

is outlined in Figure 6.1. The recommendations provided by the Suggester system

include parent or child correspondences and can be used directly to develop

transformation rules or used as guidelines to create final transformation artefacts.

Figure 6.1 Architecture of "Suggester" system.

The content-based approach of this system allows a combination of information

retrieval techniques to be used for analysing input model contents and identify

similarities. Similarity scores provided by a collection of recommenders are used to

produce final list of recommendations. Each of these recommenders uses a predefined

similarity heuristic and analyses source and target model examples and ranks element

168

pairs by similarity scores. Next section describes how these scores are calculated

individually and combined to achieve final recommendation list and hence our approach

to answering research question 3.2 on generation of acceptable recommendations.

6.2.1 Calculating recommendations

To better demonstrate the application of correspondence recommender, Figures 6.2 and

6.3 show a simplified UML class diagram example and XML representation of Java

code, and examples of their visualisations. Correspondences between these examples

are shown by red lines in figures. As can be seen from figures, given that these example

models were larger, finding correspondences would become a very hard task even for

experts.

Figure 6.2 Sample correspondences between UML class diagram example XML and Java code XML.

169

Figure 6.3 Sample correspondences between UML class diagram example visualisation and visualisation
of Java code.

The ensemble learning adopted in this thesis research uses a set of similarity heuristics.

These heuristics analyse source and target model examples according to a predefined

similarity function. Table 6.1 provides a list of correspondence recommenders used in

Suggester system. These similarity functions range from static analysis of name tags

and values to structural and propagated similarities. The result of these heuristics’

analyses is returned to the system as a set of similarity matrices. These matrices are then

used in an ensemble learning to finalise the similarity and calculate the

recommendations.

Design of the Suggester system allows adding more recommenders using provided

component interfaces. Therefore, if need be to have other recommenders with different

similarity function, they can be added to the system as extensions.

170

Table 6.1 Correspondence recommenders used in Suggester system

Correspondence
recommender Similarity heuristic

Static similarity

Value similarity: Similarity of the element values
Name similarity: String matching similarity of element
name tags
Type similarity: Similarity of element types

Structural similarity

Neighbourhood similarity: Based on similarity of
Neighbours of an element
Graph similarity: Based on similarity of graph structure
at element

Propagated similarity IsoRank similarity: Similarity based on recursive
analysis of neighbouring elements.

Early experiments with Suggester system revealed that due to the range of similarity

heuristics and their similarity calculation overhead, the analysis of the actual source and

target model examples would become costly and not efficient for large models.

Therefore, instead of analysing actual source and target model examples, similarity

functions are applied on the reverse engineered abstraction. This abstraction already

preserves the structural constructs and name tags, and presents a good candidate for

similarity calculation. With regards to smaller examples however, applying similarity

recommenders on actual examples or their abstraction does not provide significant

difference in terms of calculation time or recommender accuracy.

The similarity recommenders used in our Suggester system are described in following

sections.

6.2.1.1 Static similarity recommenders

Static similarity recommenders judge similarity of source and target model constructs

by comparing pairwise similarity of their elements. These recommenders are name tag

similarity, value similarity and type similarity. The adaptation of these similarity

functions is inspired by previous research [42], [46], [126].

171

Name tag similarity checks pairs of name tags of elements in source and target model

examples. It incorporates a string matching technique that gives higher scores to

“exactly similar” items than “somehow similar” items. It checks whether the name tags

of both source and target match and assigns one score to each value being embedded in

the other and one score if the values are exact matches.

Example 6.1 Consider UML class diagram and Java source code XML examples

of Figure 6.4. Classes in the class diagram are defined by “CDClass” name tag

and classes in the Java code are defined by “class” tag, since the tag of UML

class includes Java class tag, name tag similarity suggester assigns score of one

to the pair. UML class has an “access” element construct and Java class also has

an “access”, the suggester gives this pair a score of three since the name tag of

UML class’s “access” tag is included in the Java class’s “access” and vice versa

(which accounts for two). Also since the values are the same, it adds another

score. This will result in the cumulative score of three for “exactly similar” name

tag pair “access”. Figure 6.4 shows a selection of these correspondences and

their scores based on name tag similarity heuristic.

Figure 6.4 Example correspondences between UML class diagram example XML and Java code XML
and their calculated score using name tag recommender.

172

Value similarity recommender checks values of model elements in both source and

target model examples. To enable value similarity checks on reverse engineered

abstraction, each construct in the abstraction was altered to accommodate the values

seen in that construct throughout the model examples. Although this alteration had

effects on size of the abstractions, it allowed more efficient analysis of model values for

value similarity recommender and thus providing more usable recommendations. Value

similarity recommender checks all the values that are represented in each construct and

adds a score for each similar pair it finds. It then applies the total score to the construct

pairs that possessed these values.

Example 6.2 Assume a UML class diagram’s class example is given as the graph

of Figure 6.5. This class has two attributes and two operations. One operation of

this class also includes a parameter. Given this example XML the abstraction

graph would look like the graph of Figure 6.6.

Figure 6.5 Example UML class graph.

Figure 6.6 Abstraction graph of the UML class example in Figure 6.5.

173

Example 6.3 Consider a Java code class example’s abstract graph is given as

Figure 6.7. Assuming value similarity recommender is checking elements inside

attribute of Java abstraction graph and UML class diagram graph of Figure 6.6

against each other (see Figure 6.8). Since type element of Java graph has a string

value, and type element of UML class graph has two string values, it will retune

with the score of 2 for the two pairs. Similarly, since access elements of both have

two “public” values there would be four similar pairs and hence score of 4. Note

that value similarity is not case-sensitive. The rest of elements will return 0.

Figure 6.7 Abstraction graph of a Java class.

Figure 6.8 Correspondences returned by value similarity suggester and their similarity scores.

The reverse engineered abstraction also provides an estimate of value types for each

construct. A type similarity recommender analyses these types and accordingly provides

possible type matches as correspondences. It analyses value types for numerical, string

and date types and returns score of one if the type of the values inside construct pairs

are similar and zero otherwise.

174

Example 6.4 Figure 6.9 shows the sub-graphs of Figure 6.8 and the

correspondences return by type similarity. As is shown in the figure all similar

types are returned as possible correspondences.

Figure 6.9 Correspondences returned by type similarity suggester.

6.2.1.2 Structural similarity recommenders

Structural similarity recommenders judge similarity according to the structure of

construct pairs being analysed. These recommenders consider abstractions as graphs

and include neighbourhood similarity and graph similarity.

Neighbourhood similarity recommender checks neighbours of each node pairs to see if

they are similar. If the neighbours of a node 𝑛! are similar to neighbours of another

node 𝑛! , then the two nodes are probably similar. To calculate similarity of the

neighbours, neighbourhood similarity recommender checks the similarity scores

returned by name tag similarity. It calculates the similarity score by cumulative

similarity scores of the neighbour pairs as follows:

𝑆𝑐𝑜𝑟𝑒 (!!,!!) = 𝑆𝑖𝑚(
! ∈!(!!) 𝑖, 𝑗)

! ∈!(!!) 6.1

175

Where 𝑁(𝑛!) is the set of neighbours of node 𝑛! and 𝑁(𝑛!) is the set of neighbours of

node 𝑛! . 𝑆𝑖𝑚 (𝑖 , 𝑗) indicates the normalised name tag similarity of nodes i and j.

Higher values of these scores represent higher similarity.

Graph similarity considers outgoing and incoming links of node pairs in both source and

target graphs. Considering 𝑛! to be a node in source graph 𝐺! and 𝑛! to be a node in

target graph 𝐺!, graph similarity recommender calculates similarity score for node pair

(𝑛!,𝑛!) using following formula:

𝐼𝑛𝑏𝑜𝑢𝑛𝑑 (!!,!!) =
!"# !!!" , !!!"
!"# !!!" , !!!"

 6.2

𝑂𝑢𝑡𝑏𝑜𝑢𝑛𝑑 (!!,!!) =
!"# !!!"# , !!!"#
!"# !!!"# , !!!"#

 6.3

𝑆𝑐𝑜𝑟𝑒 (!!! !!) =
!"#$%"&' ! !"#$%"&

!
 6.4

Where 𝑛!!" is the number of in-links and 𝑛!!"# is the number of out-links of node 𝑛! .

Same is true for node 𝑛!. This graph similarity returns 1 if the number of in-link and

out-links of the two nodes in the node pair are similar.

Example 6.2 Consider a UML class diagram and Java code example to have

graph structures similar to Figure 6.10. Assume the pair to be analysed is the

UML Attribute – Java Attribute. Analysing this pair using neighbourhood

similarity recommender, results in similarity score of 10. It is calculated based on

three exactly similar neighbour pairs (name, type and access) and a neighbour

pair (class-UMLClass) that is somehow similar. Therefore, the score returned by

neighbourhood similarity for this pair is 3+3+3+1 = 10. For graph similarity

recommender, using equations 6.2 and 6.3 we have inbound = 1 and outbound =
!
!
 = 0.75. Given these values, the score for graph similarity will be calculated as

!!!.!"
!

 which equals 0.875.

176

Figure 6.10 Sample graph of UML class diagram (A) and Java code (B).

Example 6.3 Using same input as Example 6.2, assume the pair to be analysed is

the UML Class – Java Class node pair. Neighbourhood similarity recommender

in this case would return 7 based on two exactly similar neighbour pairs (type-

type, access-access) and a somehow similar neighbourhood pair (name-@name).

Note that since the name in UML class is an attribute, framework prepends an

‘@’ character in front of its name to differentiate it from other elements. Graph

similarity recommender, will return 1 since the number of inbound and outbound

edges are the same, inbound = 1 and outbound = !
!
 = 1 and score = !!!

!
 which

equals 1.

6.2.1.3 Propagated similarity recommender

Propagated similarity also considers input models to be graphs and calculates similarity

of elements according to recursive analysis of their neighbouring elements. With this

similarity function, similarity of two nodes in a graph is defined by similarity of their

neighbourhood topology. As a result, using propagated similarity, two nodes are similar

if their neighbours are similar and the neighbours of their neighbours are similar and so

on.

To calculate correspondence using this similarity, our Suggester system adopts IsoRank

approach used in biology for alignment of Protein-Protein Interaction (PPI) networks

[5]. A PPI network is a graph in which each node corresponds to a protein and an edge

indicates a direct physical interaction between proteins. PPI network alignment is a

177

required step to analyse and understand sequencing of genomes. IsoRank considers a

protein in a PPI network to be a good match for a protein in another network if their

respective sequences and neighbourhood topologies are a good match. It seeks two

objectives to satisfy best network (graph) alignment: 1) maximising the size of common

graph implied by linking similar proteins, and 2) aggregate sequence similarity between

nodes linked to each other.

IsoRank uses similar approach to Google’s PageRank by encoding propagated

alignment similarity as an eigenvalue problem [171]. To achieve the two objectives,

IsoRank works in two stages. It first associates a similarity score with each node pair of

the two graphs using Basic Local Alignment Search Tool (BLAST) similarity [172].

Then it constructs the mapping for global network alignment by extracting a set of high

scoring and mutually consistent matches.

Our adoption of IsoRank associates similarity scores return by name tag similarity with

node pairs of the source and target model graphs. It is possible to alter the approach to

adopt any or combination of other similarity recommenders.

Let 𝑅!" be the IsoRank similarity score for node pair (𝑖, 𝑗), where 𝑖 is from source graph

𝐺! and 𝑗 is from target graph 𝐺!. Given the name tag similarity score 𝑆𝑖𝑚 (𝑖 , 𝑗) and the

source and target graphs 𝐺! and 𝐺!, an eigenvalue problem is constructed and solved to

calculate the vector 𝑅 of all 𝑅!" as follows. For all possible node pairs (𝑖, 𝑗) a similarity

score of their respective neighbours should be computed recursively. Therefore,

Equation 6.5 should hold for all possible node pairs. Where 𝑁(𝑖) is the set of

neighbours of node 𝑖, 𝑁(𝑗) is the set of neighbours of node 𝑗, 𝑉! is the set of vertexes of

graph 𝐺! and 𝑉! is vertexes of target graph 𝐺!. Considering edge weights, the score

propagated to each node is in proportion to edge weights in Equation 6.6 where 𝑤 𝑖, 𝑗

is the weight of the edge between vertices i and j. Equation 6.5 is special version of 6.6

where are weights are equal to one.

𝑅!" =
!

! ! | ! ! |
 𝑅!" 𝑖 ∈ 𝑉! , 𝑗 ∈ 𝑉!!∈!(!)!∈!(!) 6.5

𝑅!" =
! !,! !(!,!)
!(!,!)!∈!(!) !(!,!)!∈!(!)

 𝑅!" 𝑖 ∈ 𝑉! , 𝑗 ∈ 𝑉!!∈!(!)!∈!(!) 6.6

178

Example 6.4 This example demonstrates how vector R can be calculated for

sample graph of Figure 6.11 (this example is adopted from [5]). For example, for

calculating 𝑅!!′ for node pair (𝑎 ,𝑎!) , since node b is neighbour of a, and node

b’ is neighbour of b, 𝑅!!′ should be considered. Since b and b’ each have 2

neighbours, 𝑅!!′ will be calculate according to !
!∗!

 proportion of 𝑅!!′ which

equals !
!
 . Calculation of R for other pairs will continue accordingly.

Figure 6.11 Calculating IsoRank similarity for sample graphs [5].

To calculate 𝑅 a doubly indexed matrix 𝐴 is adopted from Equation 6.5 using the

matrix form provided by Equation 6.7. 𝐴 is a 𝑉! 𝑉! × 𝑉! |𝑉!| matrix and can get large

depending on the size of input model abstraction graph.

𝑅 = 𝐴𝑅 , where 6.7

𝐴 𝑖, 𝑗 𝑢, 𝑣 =
1

𝑁 𝑢 |𝑁 𝑣 | 𝑖𝑓 𝑖,𝑢 ∈ 𝐸!, (𝑗, 𝑣) ∈ 𝐸!

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝐸! is the neighbourhood matrix of graph 𝐺! and 𝐸! is the neighbourhood matrix

of target graph 𝐺!. 𝐴 is a stochastic matrix (i.e. each of its columns sum to 1), therefore

179

its principal eigenvalue is 1. The principal eigenvector of 𝐴 is the vector 𝑅 and its values

define possible source model to target model correspondences. This vector is then

analysed and returned to m*n matrix format to be considered as a similarity matrix for

source and target model abstractions.

6.2.2 Suggester system ensemble

Each recommender returns a similarity matrix containing normalised calculated scores

of the source-target pairs. Size of these matrices depends on the size of input model

abstractions and is identical for all recommenders. To generate final list of

recommendations, the returned similarity scores of recommenders need to be analysed

and summed up.

Using classifier ensembles and composing a final data classification based on a

collection of weak classifiers has been previously practiced in machine learning and

data mining applications [163], [173], [174]. Classifier ensembles and boosting

application are based on a collection of weak classifiers that are rated using a training

set. This rating is then used when preparing final classifier. These approaches have been

practiced for recommender systems as well [121], [175], [176].

The approach adopted here to calculate final recommendation list is inspired by

classifier ensembles. Each recommender calculates a similarity matrix. Similarity

matrices are normalised and sent to Suggester system. Suggester calculates final

similarity based on the confidence scores assigned to each recommender. Similarity

scores returned by recommenders are multiplied by their confidence score. The resulted

scores are summed up in a final similarity matrix. The final similarity matrix is the basis

for calculation of recommended correspondences.

Unlike most classifier ensembles, the rating or confidence scores are not calculated

using predefined training sets. Instead, the scores are assigned (and updated) by

continuous user evaluation of the recommender system. If a user accepts a

recommendation, the recommender(s) that came-up with that recommendation get

promoted. This promotion is achieved by increasing the confidence associated to those

recommenders. The feedback analyser subsystem of the Suggester looks in similarity

180

matrices returned by recommenders to identify awarding recommender(s). If otherwise

the user rejects a suggested correspondence, the feedback system penalises responsible

recommender(s) accordingly by reducing the associated confidence weight.

Figure 6.12 Abstraction graph examples of two citation formats.

Example 6.4 Assume abstractions of two citation index formats are given as

Figure 6.12.Format A is the source and is to be transformed to format B. Given

that format A has five elements and format B has seven elements, their similarity

matrix would be a 5×7 matrix. The normalized similarity scores returned by

recommenders for this example source and target are calculated as matrices M1

to M6.

181

Format B

re
co

rd

au
th

or
s

au
th

or

tit
le

pe
rio

di
ca

l

da
te

s

ye
ar

Fo
rm

at
 A

bibtex:article 0 0 0 0 0 0 0

bibtex:author 0 0 0.51 0 0 0 0

bibtex:title 0 0 0 0.17 0 0 0

bibtex:year 0 0 0 0 0 0 0.17

bibtex:journal 0 0 0 0 0.17 0 0
M1: Value similarity suggester results

Format B
re

co
rd

au

th
or

s

au
th

or

tit
le

pe
rio

di
ca

l
da

te
s

ye
ar

Fo
rm

at
 A

bibtex:article 0 0 0 0 0 0 0

bibtex:author 0 0 0.333 0 0 0 0

bibtex:title 0 0 0 0.333 0 0 0

bibtex:year 0 0 0 0 0 0 0.333

bibtex:journal 0 0 0 0 0 0 0
M2: Name similarity Suggester results

Format B

re
co

rd

au
th

or
s

au
th

or

tit
le

pe

rio
di

ca
l

da
te

s

ye
ar

Fo
rm

at
 A

bibtex:article 0.333 0.333 0 0 0 0.333 0

bibtex:author 0 0 0 0 0 0 0

bibtex:title 0 0 0 0 0 0 0

bibtex:year 0 0 0 0 0 0 0

bibtex:journal 0 0 0 0 0 0 0
M3: Neighbourhood similarity Suggester results

182

Format B

re
co

rd

au
th

or
s

au
th

or

tit
le

pe
rio

di
ca

l

da
te

s

ye
ar

Fo
rm

at
 A

bibtex:article 0.038 0.023 0.019 0.019 0.019 0.023 0.019

bibtex:author 0.019 0.019 0.038 0.038 0.038 0.019 0.038

bibtex:title 0.019 0.019 0.038 0.038 0.038 0.019 0.038

bibtex:year 0.019 0.019 0.038 0.038 0.038 0.019 0.038

bibtex:journal 0.019 0.019 0.038 0.038 0.038 0.019 0.038
M4: Graph similarity Suggester results

Format B

re
co

rd

au
th

or
s

au
th

or

tit
le

pe
rio

di
ca

l
da

te
s

ye
ar

Fo
rm

at
 A

bibtex:article 0 0 0 0 0 0 0

bibtex:author 0 0 0.1 0.1 0.1 0 0

bibtex:title 0 0 0.1 0.1 0.1 0 0

bibtex:year 0 0 0 0 0 0 0.1

bibtex:journal 0 0 0.1 0.1 0.1 0 0
M5: Type similarity Suggester results

Format B

re
co

rd

au
th

or
s

au
th

or

tit
le

pe
rio

di
ca

l

da
te

s

ye
ar

Fo
rm

at
 A

bibtex:article 0.103 0.103 0.003 0.007 0.007 0.103 0.003

bibtex:author 0.014 0.003 0.173 0.003 0.003 0.003 0.006

bibtex:title 0.014 0.003 0.006 0.169 0.003 0.003 0.006

bibtex:year 0.014 0.003 0.006 0.003 0.003 0.003 0.173

bibtex:journal 0.014 0.003 0.006 0.003 0.003 0.003 0.006
M6: IsoRank similarity Suggester results

183

Assuming all confidence scores are one, the final similarity matrix will be

calculated based on sum of the values similar to matrix MF. Returned

correspondence recommendations are highlighted in the matrix.

Format B

re
co

rd

au
th

or
s

au
th

or

tit
le

pe
rio

di
ca

l

da
te

s

ye
ar

Fo
rm

at
 A

bibtex:article 0.474 0.459 0.022 0.026 0.026 0.459 0.022

bibtex:author 0.033 0.022 1.154 0.141 0.141 0.022 0.044

bibtex:title 0.033 0.022 0.144 0.81 0.141 0.022 0.044

bibtex:year 0.033 0.022 0.044 0.041 0.041 0.022 0.814

bibtex:journal 0.033 0.022 0.144 0.141 0.311 0.022 0.044
MF: Value similarity suggester results

Depending on the application and user preference, it is possible to select how many

recommendations to be presented to users per pair in the suggestion list. By default only

one recommendation per pair is provided. These are calculated using stable marriage

algorithm and are optimised to provide best overall recommendation list [177]. For

instance in Example 6.4, bibtex:article-authors pair with score of 0.459 has not been

selected while the pair bibtex:journal-periodical with score of 0.311 has been selected as

a recommended correspondence. This is due to the fact that stable marriage algorithm

assigns bibtex:article to record which shows the highest score for bibtex:article element

and ignores the rest of the pairs involving this element. In case more than one

recommendation per pair is desired, users can alter Suggester system preferences

accordingly.

The following section provides our approach to representing these recommendations to

users and hence our response to research question 3.3.

184

6.2.3 Recommendation representation

The recommendations provided by our Suggester system are presented to users by

default using a list of recommendations that can be accepted or rejected. A sample of

this list is provided by Figure 6.13. These recommendations are provided for both

model-to-visualisation and visualisation-to-visualisation steps and are considered as an

alternative for drag and drop of notations.

Figure 6.13 Sample recommendation list.

A recommendation session is started by each recommendation list update. For example

loading a source and a target visualisation triggers a recommendation list update. Or

dropping a notation on the designer canvas in the visualisation procedure also triggers a

recommendation list update.

Accepting or rejecting recommendations will disable their selection button to prevent

users from selecting a recommendation multiple times in a recommendation sessions.

Figure 6.14 shows the result of accepting and rejecting some recommendations of

Figure 6.13. In this example the recommendation for class diagram’s Access has been

rejected and the recommendation for UML attribute has been accepted.

Figure 6.14 Result of accepting and rejecting recommendations.

185

To provide users with more useful recommenders, we have adopted the Guide and Filter

mechanism proposed by Hernández del Olmo and Gaudioso [178]. In their proposal, a

Guide provides answer to when and how each recommendation must be shown to the

user, while the Filter must answer which of the items are useful/interesting candidates to

become recommended items. A schematic view of this approach is shown in Figure

6.15.

Figure 6.15 Guide and Filter system for representing correspondence recommendations.

Once all recommendations are available, our ensemble configuration filters the

recommendation list by the stable marriage algorithm [177]. This will result in a

selection of recommendations that possess the highest overall recommendation score

per pair. The filtered results are then sent to guide system for representation. The Guide

system chooses among recommendations according to the task that the user is about to

perform, e.g. when user provides source and target visualisation to perform mappings,

the Guide system first represents the recommendations that will result in transformation

rules (i.e. parent correspondences) . That is because a rule must be defined first, and its

internal rule correspondences are to be defined later (i.e. child correspondences). Figure

6.16 provides an example where the parent correspondence recommendations are

represented for a Class diagram to Java code example.

186

Figure 6.16 Example of recommendations that result in transformation rules for UML class diagram to
Java code mapping.

If user accepts a recommendation from these recommendations (or alternatively

performs a drag and drop of notations), the Guide system will update the list of

recommendations to represent possible child correspondences which can be specified

according to source and target model constructs of the selected parent correspondence.

For example Figure 6.17 shows the result of accepting recommendation for UML

attribute to Java field. As can be seen, the recommendation list has been updated to

reflect internal correspondences of the two visual notations.

187

Figure 6.17 Updated list of recommendations after selecting a parent correspondence.

The guide and filter configuration will help users find targeted recommendations and

reduce the amount of time spent on exploring long recommendation lists.

6.3 Summary

This chapter described our Suggester system which is designed to guide users in finding

possible and likely correspondences between source and target models. A group of

similarity recommenders check source and target examples and prepare a list of

recommendations. The similarity heuristics used in these recommenders range from

static value similarity to structural similarity. Each recommender provides a similarity

matrix to the suggester system and the system uses an ensemble mechanism to calculate

final recommendation list.

188

Users can use the provided recommendations as guidance or select them to define

model transformation correspondences. It is possible to select or reject any

recommendation provided in the list. By selecting or rejecting these recommendations a

feedback analyser updates the Suggester system to improve its learning and

recommendation capability.

189

Chapter 7

Tool support: Concrete visual assisted transformation
(CONVErT)

7.1 Introduction

This chapter describes tool support and a proof of concept prototype of our approach,

called Concrete visual assisted transformation (CONVErT). CONVErT provides

facilities for specification and use of familiar concrete visualisations of source and

target models. With CONVErT, users can specify complex model element mappings

between concrete visual notational elements using interactive drag-and-drop and

reusable, spread sheet-like mapping formulae.

This chapter specifically provides our answer to the fourth research question on whether

the approach presented by this thesis can be implemented in a usable, scalable and user

friendly tool. The following sections describe CONVErT’s Architecture,

Implementation, User Interface (UI), and key design features.

7.2 Overview of CONVErT

This section provides an overview on key components of CONVErT. These

components are Reverse engineering, Transformation code generator, Correspondence

recommender (Suggester), Visual notations, and Renderer. Figure 7.1 shows these

components and how they are inter-related.

190

Reverse engineering component provides automatic generation of abstractions from

model examples. These abstractions are then used for calculation of recommendations

in the Suggester system and as transformation templates. Transformation code generator

uses these abstractions and set of correspondences to generate transformation scripts.

The Suggester component uses the abstractions and model data to recommend possible

correspondences between source and target model examples to users. It uses set of

similarity heuristics to calculate the similarity of elements in source and target model

examples.

Visual notations are the centre piece of visualisations and enable user interaction (drag

and drop). Each visual notation embeds a model data and a controller transformation.

Using this model data and the controller the notation’s view can be generated. The

Renderer component provides a mechanism for rendering visualisations using the

controller transformation of notations. It can also render full visualisations by checking

the visualisation input files against available notations in the notation repository. The

following paragraphs are dedicated to describing these components in more details.

Figure 7.1 Components of CONVErT.

191

The reverse engineering and model abstraction mechanism of CONVErT (Figure 7.1

(1)) uses a graph lattice as meta-model and for transformation rule templates. The

abstraction graph is also used for transformation rule scheduling. Once source and target

examples are provided, a visitor pattern creates an empty graph lattice. It then traverses

the examples and fills the lattice with new element structures that it faces. This way the

structure of source and target are known to the system. Each transformation rule

template (Figure 7.1 (2)) will be initially created from such structure retrieved from the

data part of the element being dragged or dropped. During transformation script

generation for transforming source visualisation to target visualisation, the

transformation code generator checks for the position of each rule's source structure in

the abstraction to identify transformation rules to be called first.

Concrete model representation in CONVErT uses Model View Controller architecture

[2]. Each notation has a view created and provided by XAML. A model data is provided

as an XML that describes internal elements of that notation. The controller in this

configuration is a transformation that transforms notation's model XML to the view's

XAML.

Since the generated concrete visual notations need to provide interaction (drag and

drop) capabilities and host transformation templates, the Renderer mechanism of

CONVErT (Figure 7.1 (4)) wraps each notation in interaction logic provided by an

instance of a Visual Element (VE) class. A VE provides a container for the notations

and other VEs and is implemented using XAML and C#. This architecture allows our

framework to let users interact with composing elements of a model visualisation

regardless of the embedding hierarchy of the notation.

Analysing large input models and visualisations is costly for the Suggester system.

Therefore, it uses abstract lattices as input to calculate similarities. Suggester uses a

group of mapping correspondence recommenders (Figure 7.1 (3)) that analyse these

abstractions according to a similarity heuristic. Then the resulting similar source and

target elements of each recommender are returned to the Suggester as possible

correspondences. A confidence score is associated with each correspondence

recommender. Based on the scores given to the recommended correspondences and the

confidence weight of the recommenders, a final score is calculated for each

192

recommended correspondence. Suggester selects from the recommendations and

prepares a recommendation list. If users select from the recommended correspondences

or reject them, a feedback analyser updates the confidence weights associated with the

recommenders and thus improves Suggester’s learning mechanism.

The transformation code generator in CONVErT (Figure 7.1 (5)) works with the

transformation templates embedded in each notation. These templates are initially

defined by reverse engineering notation’s model data. Code generator uses

correspondences defined by dragging and dropping of elements to this notation and its

internal elements, and forms correspondence snippets that will be inserted in the

template. Then once the template is filled with these snippets, the transformation code

generator creates a full XSLT template and transformation rule. Using these

transformation rules, the transformation code generator generates a complete model

transformation specification in XSLT.

Since the transformation code generator is based on the templates, it is possible to

generate transformation code for alternative transformation languages. To do so,

additional transformation code generator components can be integrated to CONVErT to

parse these templates to desired transformation scripts.

In the following sections we describe elements of CONVErT in more detail including

its User Interface, how transformations and recommendations are generated, and details

of the visualisation and rendering.

7.3 CONVErT’s User Interface

This section provides an overview of CONVErT’s UI. This has been divided into three

parts: 1) Visualiser, for specifying correspondences between model elements and

predefined visual notations. 2) Mapper, which provides facilities for transformation

generation between visualisations, and 3) Notation designer (Skin++), which allows

users to define and add new visual notations. In the following sub sections, these parts

are described in more detail.

193

7.3.1 Visualiser

The approach presented in this thesis for model transformation uses concrete

visualisations of source and target models. The specification of these concrete

visualisations needs to be done in the framework and can be reused for multiple model

examples. This visualisation specification requires users to drag and drop elements of

their model examples to provided visual notation in the frame work to generate model-

to-visualisation mappings. These model-to-visualisation mapping notations are then

composed to generate full visualisation specifications and the model to visualisation

transformations. Examples of this procedure are provided and discussed previously in

Chapter 4. This section describes the facilities provided in CONVErT framework

(Visualiser) to enable this visualisation approach.

Visualiser in CONVErT allows users to view multiple input models in a default tree-

like representation (Figure 7.2(1)). These inputs could be CSV or XML files. Once

these models are loaded, CONVErT generates their tree view representation. This is to

allow use of interaction with each element or value of the input examples.

The predefined visual notations are provided in a separate panel (Figure 7.2(2)). These

notations can be dragged and dropped on the designer canvas (Figure 7.2(3)). The

required elements of the input model can then be dragged and dropped on them or onto

their internal elements. Notations’ model elements are accessible via a popup window

which list internal elements according to notation’s model. This popup provides

elements by showing the name of corresponding model element. This is somewhat a

limitation as these names may not be unique or not provide an easy to understand

specifier. In an ideal implementation, element would be dropped on actual graphics of

notations. For example in bar chart visualisation, one could drag the name of their input

model to the actual label representing the name of a bar chart. The popup approach

however was chosen due to simpler implementation.

Mapping functions are available to be used at this stage for specifying more complex

model-to-visual notation correspondences and are provided in a separate panel (see

Figure 7.4(9)). These functions and conditions can also be dropped on visualisation

designer canvas and are used similar to notations. In example of Figure 7.2, a visual

notation for a building tree structure and an “IF” condition are dropped on visual

194

notation designer canvas. Elements of input model can be dragged and dropped on the

notation to start a transformation rule template. Internal elements of notations, functions

and conditions can be accessed by right clicking on them. Elements of input model can

then be mapped to these internal elements by drag and drop. In example of Figure 7.2(3)

a right click has been performed on the condition and its internal elements are provided

as a result (“arg1”, “arg2”, “arg1 = arg2”, and “otherwise”). These internal elements

constitute arguments and condition expressions of the condition. Elements of input

model can be dragged and dropped on these values and expression to specify the values

that should be passed when this condition is true or otherwise false.

Figure 7.2 Using CONVErT’s visualiser UI for mapping input model elements to visual notations. 1)
Input model, 2) Predefined notation, 3) Designer canvas, 4) Recommendations, 5) Status panel.

Once a notation is dropped on the designer canvas, CONVErT’s suggester analyses its

underlying model and the input model being selected by user and provides a list of

recommended correspondences (Figure 7.2(4)). Users can interact with these

recommendations using accept and reject buttons provided beside each recommendation

item. For example, to define a customised notation for input models and thus a model-

195

to-visual notation transformation rule, users can drag and drop elements from input

model tree to the notation on the designer canvas, or select from suggested

correspondences.

An alternative to this recommendation representation would be to highlight

recommendations on the notations as the user hovers mouse pointer on model elements

in the tree visualisation. However, the intractable list metaphor was preferred since it

provided better separation of concerns between recommendation mechanism of the

approach (Suggester) and the visualisation. This way to represent recommendations, the

framework does not need to traverse visual notations’ visual tree to find corresponding

elements of the recommended items in their visual representation.

An interactive status bar has been designed in CONVErT that shows the status of the

system and provides feedback to users if the tasks are being performed correctly or if an

error is made (Figure 7.2(5)). These status reports are provided with appropriate icons to

report or alert users of any problems associated with the task being performed.

Similarly, interactions of users with visualiser are recorded by the Logs panel in Figure

7.3(8). These logs can be used to keep track of user interaction and system automated

tasks. For example if an element is dropped on model element of a notation, the status

bar shows whether the task has been accomplished and an event will be logged. To keep

track of these drag and drops, users can check the provided logs. These logs provide a

history of user performed and automated tasks and work similarly for all notations,

functions and conditions. When requesting to generate transformation code for the

composition, if any errors or exception is occurred, they will be shown in the working

status bar and logged. Upon completion of transformation code generation, the

completion of the task will be logged as well.

Once the user defines correspondences between input model elements and the notation,

saving the customised notation will result in the notation being added to notation

repository. CONVErT monitors this repository and provides its containing notations in

“Designed Visual Elements” panel (Figure 7.3(6)) for later (re)use. For example

customised visual notations previously generated for bar chart area, bars, troops

movement, map, Java code and UML class diagram can be seen in Figure 7.3(6).

196

Figure 7.3 Using CONVErT’s visualiser UI for composing visual notations. 6) Customised notations’
panel, 7) Notation composition Canvas, 8) Usage logs.

To compose notations, a specialised composition canvas is provided (Figure 7.3(7)).

The defined customised notations can be dragged and dropped on this canvas and linked

according to their placeholder elements to create a complete visualisation and model-to-

visualisation transformation. In example of Figure 7.3, required customised visual

notations for generating a tree visualisation of building structure example are being

composed. This composition will result in scheduling of the transformation rules

embedded in the notations and a complete transformation script to transform the input

model used in defining customised notation to the tree structure visualisation. Examples

of these compositions and their visualisation results were provided in Chapter 4.

197

Figure 7.4 CONVErT’s visual functions and conditions panel (9) and visualiser renderer (10).

The resulted model-to-visual transformation will be applied on the input model. The

resulting visualisation will be automatically rendered in the visualisation rendering

panel. Figure 7.4(10) demonstrates the rendering panel and the resulted visualisation of

the composition of Figure 7.3. Users can also use this panel to view previously

generated visualisations.

7.3.2 Mapper

A significant contribution of this thesis is on using concrete visualisations to generate

transformation between source and target models. This way, users can view and specify

correspondences using the more familiar concrete visualisations of their example

models.

As discussed previously in Chapter 5, our approach enables generation of forward and

(if possible) reverse transformation rules by drag and dropping visual elements of

source and target visualisations. Low level model transformation scripts are then

198

generated from these drag and drop interactions. This section describes use of

CONVErT’s Mapper for generating these transformations.

Mapper window in CONVErT provides facilities for generating transformations

between visualisations. It embeds two visualisation renderer panels that allow viewing

source and target visualisations side by side (Figure 7.5 (1) and (2)). Once source and

target model visualisations are loaded, their notations and internal notation elements can

be dragged and dropped to create visual notation-to-visual notation transformation rules.

For example, in Figure 7.5 UML class diagram is loaded as source and the target is Java

code visualisation. Elements of this UML class diagram can be dragged and dropped on

visual notations of the Java code.

Figure 7.5 CONVErT’s mapper UI. 1) Source visualisation, 2) Target visualisation, 3) Highlighting
elements, 4) Functions and conditions, 5) Recommendations and 6) Status panel.

CONVErT facilitates a highlighting mechanism to guide users on choosing the intended

notation to drop on. When a source notation is being dragged on top of target

visualisation, this highlighting mechanism highlights the element under mouse cursor.

199

An example of highlighting a Java class is provided in Figure 7.5(3). In this example a

UML class diagram notation is being dragged (dragging element is not shown) on top of

a Java class notation. As a result, the Java class notation is highlighted in red.

Having source and target visualisations loaded, CONVErT’s suggester provides the list

of recommended correspondences. In example of Figure 7.5 the suggester is

recommending mapping correspondences between UML class diagram and Java code

(Figure 7.5(5)). When a source notation is dropped on a target notation, this

recommendation list is automatically updated to represent the correspondence

recommendation related to those notations. For example, when a UML class is dropped

on a Java class, the list will be updated to show the internal correspondences of UML

class and Java class (see Figure 7.6(10)).

Similar to visualiser, mapping functions and conditions are also available in mapper

window (Figure 7.5(4) and 7.6(4)). These functions are dragged and dropped on the

provided canvas to be used for specifying more complex model transformation

correspondences. In case more complex rules are to be specified, the default notation

views of both source and target notations will be automatically rendered in rule designer

panel when source notation is dropped on target notation (see Figure 7.6(7))). This rule

designer canvas allows definition and use of constant values, strings, functions and

conditions. For example if name of an UML class is to be altered by adding a “_Class”

string to its name, a merging function can be used (Figure 7.6(9)). The name of the

UML class will be dropped on first argument of the function and the “_Class” can be

provided using the available value specification UI (Figure 7.6(8)). The defined

“_Class” can be dragged and dropped on second argument of the function and the

function output will be dragged and dropped on name element of Java code.

200

Figure 7.6 CONVErT’s rule designer. 4) Functions and conditions, 7) Rule designer canvas, 8) Panel for
adding values, 9) A merge function, 10) Updated recommendations, 11) Rule designer status.

Mapper also features a status bar for reflecting system status (see Figure 7.5(6)) and

logs panel to log user interaction (see Figure 7.7(13)). This log works similar to

visualiser’s log and records users’ interaction with the system and automated tasks.

A dedicated panel has been provided in Mapper UI to display the transformation rule

currently being created (Figure 7.6(11)). This panel helps users identify the source to

target rule being created and whether the rule has been saved or not. For example in

Figure 7.6, the rule being created is for transforming a UML class to Java class notation

(Figure 7.6(11)). Once the rule is saved, this status bar will be cleared.

If user drag and drops a notation of source visualisation to a notation in target

visualisation, underlying model of the notations are used for generation of a visual

representation for the resulting rule. Since notations in our approach include the

controller transformation for transforming their model to their view representation, it is

possible to regenerate their view at any time using the embedded controller

transformation. As a result, once a transformation rule is saved, a visual representation

of the rule can be generated using underlying model of source and target notations and

201

their controller transformations. These visual rules will be placed on “Mapping Rules”

panel and will depict the source and target notations corresponding to that rule. For

example, Figure 7.7(12) demonstrates a transformation rule for transforming UML class

to Java class. Note that the values provided to these rule notation representations are

provided by their default models, therefore regardless of which UML class or Java class

notation is used for rule generation, the representation is always the same. For example

in Figure 7.7(12) the default UML class diagram notation has “name” for its class name

and is a public class. Similarly Java class notation is a public class and has “className”

as its default name.

Figure 7.7 CONVErT’s UI for visual representation of transformation rules (12) and 13) User logs.

7.3.3 Notation designer (Skin++)

To increase applicability of our approach, it should be possible to define new notations

depending on application domain of the models being used for transformation and the

required visualisations. As a result, notation designer or Skin++ provides facilities to

define, alter and add notations to CONVErT.

202

As previously described (Chapter 4) notations in CONVErT provide a model, a view

and a controller transformation to generate view from the model. Views in our

implementation are generated using Extensible Application Markup Language (XAML)

[179]. XAML is a declarative mark-up language based on XML and is used for

designing UIs and visual applications. Since XAML is XML-based, it is a suitable

option for integrating visualisations in various tools and to be used in model

transformations generated by XSLT. Visualisations generated by XAML are renderable

in most browsers like Internet Explorer and Mozilla Firefox. This gives CONVErT the

capability of exporting generated visualisations across different platforms.

To generate notations, CONVErT provides a separate UI for users to define new visual

notations and save them in notation repository for reuse. This UI (called Skin Designer)

allows importing graphical XAML views and provides facilities to render and edit them.

Figure 7.8 shows an example where a XAML view for a bar to be used in bar chart

visualisation is imported to Skin designer (Figure 7.8(2)). The designer provides

rendering of the imported View in a separate UI compartment (Figure 7.8(3)). Users can

alter the imported XAML view and see the results accordingly.

According to the desired visualisation, provided visual notation views are linked to

model data to generate complete notations. A data XML should be specified to

represent the data part of the visual notation. For example, Figure 7.8(4) shows the data

provided for a bar’s notation. It includes a name, a value and a colour. The data XML

can be imported or generated from scratch in the provided section of the UI.

203

Figure 7.8 Notation designer user interface, 1) Name of the new notation, 2) Input XAML view, 3)
Rendering of the input XAML, 4) Model data, 5) Status panel.

The provided data is mapped to the view using a controller transformation. To link data

to the view, an annotation script is designed to specify one-to-one and one-to-many

mapping correspondences between data and the view. These mapping correspondences

are specified by “linkto” and “callfor” annotations accordingly. The same panel used to

load and edit XAML, is used to annotate the view. Figure 7.9(6) shows an example

where a user is specifying annotations for linking elements of a bar’s data model to the

provided bar’s view.

Once annotations are specified, a controller transformation code is generated that

transforms the values provided by the data to the XAML view (Figure 7.9(7)). Using

this controller transformation, the resulting notation is generated and rendered in

notation panel (Figure 7.9(8)). Saving a notation generated here will automatically

insert it to the notation repository. For example, in Figure 7.9 the new bar’s notation

204

will be inserted in the notation repository and can be used to generate bar chart

visualisation.

Figure 7.9 Using notation designer UI to annotate input view, 6) Annotated view 7) Controller
transformation, and 8) Generated notation.

7.4 Implementation

To implement CONVErT, Microsoft Visual Studio was chosen as the implementation

framework and IDE since it provides seamless integration of XAML graphics. As a

result, the graphics used for notation design and visualisations could be natively

designed, rendered and altered. Also, Visual Studio generally provides good backward

compatibility which helps the implementations and the project to still be runnable and

maintainable over the course of time.

205

Given that visual studio is not a freely available IDE, our decision was to implement

CONVErT as a standalone application rather than an IDE integrated application. This

would allow users to use CONVErT as a desktop application without the need to have

visual studio installed.

CONVErT’s code has been implemented using C# and latest available versions of .Net

framework (version 4.5). This decision was partly due to availability of the required

expertise, and partly due to use of XAML graphics. XAML graphics can be controlled

nicely with the code behind written in C# or Visual Basic (VB). As a result, the layout

controls of the graphics could be easily implemented using the programming language

of the framework.

The technologies used for implementation of CONVErT are focused on Microsoft

Windows operating system and there are certain concerns with regards to cross platform

execution of the toolset, i.e. the tool cannot be executed on Macintosh or Linux based

operating systems. Although it is possible to use CONVErT using virtual application

environments, we are investigating possibilities for implementing a lighter version of

the toolset as web based application where users can work with the tool using their

browsers. Web based and possible mobile versions of the tool are parts of our future

work.

Following sections briefly describe implementation of user interfaces, visual rendering

mechanism, abstraction, Suggester and transformation subsystems.

7.4.1 User interface design

Components of CONVErT’s UI are implemented in Microsoft Visual Studio and are

designed in Windows Presentation Foundation (WPF). WPF allows implementation of

UI using the simple XML-based representation of XAML and is natively available as

part of the visual studio. Using WPF the logic behind each element of the UI like

windows, menus, or interactions is separately implemented by C# code. Therefore, it

provides a good separation of concerns between elements of the UI and the subsystems

and components of the tool.

206

For example, when users request transformation code to be generated, the implemented

C# code behind the pressed menu button will call the appropriate code generation

components. Or when users drop a visual notation on a visual designer, the code behind

the UI will call the Suggester system and passes the notation’s model and the loaded

input model to the Suggester.

Special considerations were made to make different windows of CONVErT’s UI

consistent. For example the menus of all three parts of CONVErT provide only two

categories designated by File and Tools. Tasks like loading models and visualisations,

or importing XAML are grouped under File menu. Specific tasks related to each

window is grouped under Tools menu. For example, saving a customised notation or

generating a transformation code based on a set of composed notations are provided in

Tools menu of visualiser, while the tools menu of Mapper has dedicated buttons for

saving a mapping rule, generating transformation between visualisations or clearing

defined rules.

7.4.2 Visual Rendering

The rendering of visual elements in CONVErT reuses the controller transformation of

notations available in notation repository. Its components are depicted in Figure 7.10.

When a visualisation is to be rendered, convert checks the visualisation file against the

controllers of the notations in the notation repository. It uses a visitor pattern to search

the visualisation file for constructs similar to data part of notations’ MVC where those

controller transformations could be applied. Controller of the matching notations will be

returned by this visitor.

From retrieved controller transformations, the renderer generates a transformation script

to transform the file to be visualised to XAML representations. Transformation engine

of CONVErT then executes this transformation code on input file and renders the result

on visualisation canvas.

207

Figure 7.10 Components of renderer subsystem.

Example 7.3 Assume a file to be visualised is given similar to Figure 7.11.

Renderer’s visitor checks the notations available in the repository and finds two

notations with similar models as Figure 7.12a and 7.12b. Figures 7.12c and 7.12d

show the model parts of these notations accordingly.

 Figure 7.11 Sample visualisation file to be rendered by Renderer.

208

Figure 7.12 Example of notations retrieved from notation repository. a) Horizontal bar, b) Horizontal bar

chart, c) Horizontal bar’s model, and d) Horizontal bar chart’s model.

Once the visitor completes checking of the input visualisations file, the returned

controller transformations are treated as transformation rules and a

transformation script is generated from those rules. These notation controllers

are called declaratively since appropriate call to other rules are already specified

in the controllers during notation design phase (recall Chapter 4 where the

“linkto” and “callFor” annotations were used to generate controller

transformations for notations). The result of the final transformation script would

be the rendered visualisation similar to Figure 7.13.

 Figure 7.13 Final rendered visualisation.

Renderer’s visualisation capability is limited to the notations available in the notation

repository. Also, if duplicated notations with different controllers are available in

repository, the rendering might not result in the desired visualisations. As a result,

CONVErT provides facilities for importing and exporting notations into notation

209

repository. The generated notations available in the repository can be exported in an

importable format, i.e. the defined new notations will be saved in XML files and can be

imported at later time. This will allow users to be able to expand and control visual

rendering capability. The exported XML files include model data and the controller

transformation of each notation. Once imported, CONVErT uses the controller

transformation on provided default model data to generate the default visual

representation of the notation in repository.

7.4.3 Abstraction

The Abstraction subsystem of CONVErT uses a graph lattice to keep structural

information of input models and data. Its components are depicted in Figure 7.14. It

uses a visitor which traverses input model or data and sends graph constructs (nodes,

links) to the abstraction system. The abstraction checks these constructs in a graph

lattice. The elements returned by the visitor get added to the lattice if constructs similar

to them has not been added previously. Each graph node of this lattice has a collection

for keeping values seen in that element position of the model. These collections are used

by value similarity recommender of the Suggester subsystem for calculating value

similarity score. Also, through use of a type checker, Abstraction updates the type of the

visited graph nodes of the input file. These types will be used in type similarity

recommender.

Figure 7.14 Components of CONVErT’s abstraction subsystem.

Example 7.2 Assume the input model is similar to Figure 7.15. The visitor of

abstraction subsystem traverses the input file and records every structural

210

construct it faces. These constructs will look like the graph of Figure 7.16. Note

that the first “Sales” element in the example does not include an “Amount”

element, but since the visitor checks all elements of the input file it has provided

the structure in its position in the abstraction. Also the reverse engineered types

and the values retrieved from the input are provided in the abstraction graph.

Figure 7.15 Example input model representing Sales elements.

Figure 7.16 Abstraction graph of input file in Figure 7.15.

7.4.4 Suggester System

The implementation of Suggester system follows an ensemble learning strategy. Figure

7.17 shows the components of this system. Each correspondence recommender

considers source and target inputs as graphs and calculates the similarities of pairwise

elements using defined similarity heuristics. The results of these calculations are then

normalised and returned to Suggester as a similarity matrix.

211

Figure 7.17 Components of Suggester system.

Suggester maintains a set of confidence values for the recommenders. These confidence

values are initially set to 1. Based on the feedback collected from users in terms of

accepting or rejecting recommended correspondences, the Suggester updates these

weights to increase or decrease confidence. These confidence values are then multiplied

to the similarity matrices. The resulting similarity values are summed up to calculate the

final similarity matrix of pairwise element correspondences.

An option is provided to users to limit or increase the number of suggestions presented

to users per pair. By default Suggester returns only one recommendation per pair. It

considers the stable marriage approach to return only the one option that results in better

overall recommendation list [177]. Users can modify this option to return the desired

number of recommendations per pair.

Each suggestion is presented to users with a reject or accept button. Hitting accept

button not only updates the weights of the recommenders that came up with the

recommendation, it also sends the correspondence to the control unit of the active

window. This control unit checks the task that was being performed and the returned

recommendation. If for instance the task is to map input model to visual notations in the

212

Visualiser, the control unit looks to see whether it can find the source and target

elements of the selected correspondence in the source input and target visual notation’s

model. It then applies the correspondence accordingly.

Spotting correspondences in the visualisations for mapping from a source visualisation

to a target visualisation was a challenging task due to complexity of some visualisations

in XAML. As a result, we have modified the Renderer to always return a list of visual

elements that are available in each visualisation as well. With this list the controller unit

in mapper can simply look for the source and target of a correspondence in the list

rather that the visual tree of the visualisation, and apply the correspondence accordingly.

7.4.5 Transformation

The transformation subsystem of CONVErT is depicted by Figure 7.18. Transformation

engine used in CONVErT is the embedded transformation engine of Microsoft Visual

Studio. It is currently limited to XSLT version 1.0. However, this limitation has not

affected the applicability of the approach since the transformation code generator is

tuned for generating XSLT 1.0 transformation scripts.

Figure 7.18 Components of CONVErT’s transformation subsystem.

The transformation code generator uses the transformation templates embedded and

defined in notations to generate XSLT code scripts. Once defined, these templates are

available in template repository (Figure 7.18(3)). Depending on where the

213

transformation code is being generated (in visualiser or mapper), this template

repository could be provided by customised notations, or mapping rules. Code generator

reads these templates and depending on correspondences specified inside each template,

generates required value fetches or function codes.

Example 7.3 Assume the transformation template specified in a customised

notation is similar to Figure 7.19. It describes a transformation template for

transforming sales elements to bar’s visual notation.

Figure 7.19 Transformation rule template for transforming a sales record to bar notation.

Once users drag and drop elements, system inserts the address of the elements

being dragged and dropped into forward and reverse templates accordingly. The

transformation template of Figure 7.19 is the result of interactions shown in

Figure 7.20.

Transform Sales to {
 BarNode
 Internal model:
 {
 Map @Region To BarNode.Name
 Function1 Add Amount1 and Amount2 -> put results in
Output1
 Map Output To BarNode.Value
 }
}

214

Figure 7.20 Defining the transformation between sales element and bar’s notation. Arrows depict drag
and drop.

By requesting to generate transformation scripts, the code generator reads the

templates and generates the transformation script. For example the

transformation script generated from template of Figure 7.19 is shown in Figure

7.21. A collection of these transformation scripts are used to generate final

transformation code. The transformation code will be used in the transformation

engine. In this case, the XSLT transformation engine of Visual Studio runs the

generated XSLT transformation code.

215

Figure 7.21 Resulting transformation code.

Since templates are the bases for transformation code generation, it is possible to

provide alternative transformation language support, for example ATL. To do so, code

generator components can be integrated to CONVErT to generate scripts from

transformation templates similar to our XSLT code generator.

7.5 Usage scenarios

This section provides two usage scenarios in the form of Sequence Diagrams to show

how user interaction with CONVErT’s UI affects the internal components. Two major

scenarios are described. The First scenario is where a user is generating a transformation

rule to transform portion of input model to a visual notation. The Second scenario is

when a user is defining a transformation rule between notations of two visualisations.

The first scenario is depicted by Figure 7.22. In this figure, Lars (as a MDE user) has

loaded an input file representing a class diagram and has dropped a UML class notation

216

on the designer canvas. Given this situation, the visualisation window creates an

instance of the notation and initiates Suggester system to provide list of correspondence

recommendations. The corresponding sequence diagram for this scenario is depicted in

Figure 7.23. This sequence diagram shows how visualiser window creates an instance

of the visual notation and triggers Suggester for recommendations.

Figure 7.22 Transformation generation between a portion of input model and a visual notation.

Lars’s first task is to drag and drop an element of the input model to be visualised on the

notation to define which portion of the input model is to be transformed. An alternative

is to select the same element from provided recommendation list. Lars can accept or

reject recommendations. If he chooses from recommendations, the visualiser triggers

Suggester to promote correspondence recommenders. Optional rejection of

recommendations at each point will also trigger Suggester to update confidence weights

of correspondence recommenders.

217

Visualiser
: Window

VisEl :
VisualElement Suggester

Customised
Notation

Repository

Drag	
 and	
 drop
Notation	
 on	
 Canvas <<Create>>

Create	
 Customise	
 Notations

Prepare	
 Suggestions

Suggestion	
 list

[guard]

OR

Loop

[guard]

OR

Drag	
 and	
 drop	
 element
on	
 Notation

Select	
 from	
 Suggestions

Update	
 Suggestions

Suggestion	
 list

Update	
 Suggestion	
 Weights

Drag	
 and	
 drop	
 elements	
 on	
 internal	
 notation	
 elements

Select	
 from	
 Suggestions Update	
 Suggestion	
 Weights

Save	
 visual	
 element	
 to	
 the	
 repository

Opt

Reject	
 Suggestions Update	
 Suggestion	
 Weights

Save	
 notation Save

<<Create>>	
 Forward	
 and	
 Reverse	
 Templates

Update	
 templates

Figure 7.23 Usage scenario of creating a transformation rule between portion of input model and a visual
notation.

Once the element to be visualised is specified to the system (by drag and drop or

selecting from recommendations), transformation templates inside each visual element

are created based on abstraction of the dragging element and the abstraction of the

notation’s data. The Suggester also updates the recommendation list accordingly to

provide element specific recommendations.

At this point, Lars would select and define internal element correspondences with drag

and drop or selecting from recommendations. Once all internal correspondences are

defined, saving the notation will put the customised notation in notation repository for

218

future (re)use. This customised notation carries the required transformation templates to

perform this model to visual notation transformation task. The transformation script

from this notation however will be generated once Lars requests the transformation

code to be generated. Note that if he makes a mistake during drag and drops, he can

perform the drag and drop again to overwrite the previously specified correspondence.

Once notation is saved, editing the customised notation is not possible that is a

limitation of current version of the framework.

Figure 7.24 depicts the second scenario for specifying a transformation rule between

notations of source and target visualisations. For this scenario, Lars has loaded source

and target visualisations in Mapper window. Figure 7.24 shows the UML class diagram

as source visualisation and Java code as the target.

Loading source and target visualisations will trigger the Suggester to provide a list of

likely correspondences. The corresponding sequence diagram of this scenario is

depicted in Figure 7.25.

Figure 7.24 Transformation generation between notations scenario.

219

Loading source and target Visualisations results in the mapper window requesting

Suggester system to update (or provide) recommendation list according to the source

and target visualisations. Similar to the first scenario, Lars can choose the notation to be

transformed from recommendations list or drag and drop the notations on each other.

This will trigger initiation of transformation templates inside both notations and a

request will be sent to Suggester to update recommendation list accordingly if a

recommendation has been selected. Both forward and reverse transformation templates

are triggered as a result of this interaction.

Mapper :
Window

DragElement:
VisualElement Suggester

Transformation
Rule repository

Create	
 transformation	
 rules	
 between	
 notations

Prepare	
 Suggestions

Suggestion	
 list

[guard]

OR

Loop

[guard]

OR

Drag	
 and	
 drop	
 notations

Select	
 from	
 Suggestions

Update	
 Suggestions

Suggestion	
 list

Update	
 Suggestion	
 Weights

Drag	
 and	
 drop	
 internal	
 elements	
 of	
 notations

Select	
 from	
 Suggestions Update	
 Suggestion	
 Weights

Opt
Reject	
 Suggestions

Save	
 notation

Update	
 templates

HostElement:
VisualElement

Load	
 Source	
 and	

Target	
 Visualisations

<<Create>>

<<Create>>	
 Forward	
 Template <<Create>>	
 Reverse	
 Template

Drag	
 and	
 drop	
 internal	
 elements	
 of	
 notations

Update	
 Suggestion	
 Weights

<<Create>>

Save	
 rule	
 in	
 repository

Update	
 templates

Figure 7.25 Usage scenario of creating a transformation rule between source and target notations.

Similar to previous scenario, Lars specifies internal correspondences by drag and

dropping internal elements or selecting from recommendation list. Selecting or optional

220

rejecting of recommendations in the list will send a request to the Suggester to update

confidence weights.

Once Lars has finished defining internal correspondences, he can save the

transformation rule generated as a result of his interactions. Saving the rule will put the

generated rule in the transformation rule repository. Visual representation of this

transformation rule will be provided in the Mapping Rules section which is the

reflection of this transformation rule in repository. Again a complete transformation

script from these templates will be generated upon receiving a request for generating the

transformation script.

7.6 Summary

This chapter described concrete visual assisted transformation (CONVErT) framework.

CONVErT is the proof of concept tool for realisation of our approach presented by this

thesis. It provides facilities for specifying correspondences on concrete and familiar

visualisations of source and target models. It reverse engineers required abstraction

from model examples and provides recommendations for possible source and target

correspondences.

CONVErT is implemented in Microsoft Visual Studio and with C#. The visualisations

and notation views benefit WPF and XAML, natively available in Visual Studio.

Although current version facilitates XML and CSV as default formats for input models

and examples, and uses XSLT as the transformation language of choice, the

implementation can be extended to use alternative formats and transformation

languages.

221

Chapter 8

Evaluation

8.1 Introduction

This chapter describes several evaluations of our CONVErT approach and toolset. The

evaluation strategies adopted for this research consist of:

• A comparative study of tool support features;

• Quantitative evaluation of the Suggester mechanism and transformation code
quality; and

• A user study of the tool’s usability and functionality.

Comparative analysis was chosen in order to compare features and capability of the

approach against other available approaches and toolsets, both research and commercial.

It involves analysis of user modelling and interaction issues, and feature sets of the

various toolsets. The comparison study also provides a list of features available in

current approaches and toolsets, and that available in our approach and realised in our

CONVErT prototype toolset. Among available toolsets, the approach provided in

ALTOVA MapForce was the most comparable to the work embodied in this thesis [47].

Therefore, our detailed comparison uses MapForce as an alternative toolset to our

CONVErT.

The use of quantitative analysis was targeted to evaluate the recommenders of

CONVErT’s Suggester system, by using a group of quantitative measures (e.g.

222

precision, recall and f-measure). This quantitative analysis also includes analysis of the

quality of the generated transformation code using a set of code quality attributes and

metrics.

The user study was designed to assesses a typical user’s experience with the proof of

concept tool implementation of CONVErT. It captures the users’ perspective of the

approach, the design and detailed visualisation and model mapping specification, and

tool interaction issues. The following sections provide details of these three separate yet

complimentary evaluations.

8.2 Comparative Study

This section provides a comparative study of our approach against a set of available

transformation approaches discussed previously in Chapter 2. This comparison is

divided into three parts. First, the most commonly used transformation languages are

compared against the transformation specification language embodied in CONVErT.

Second, available transformation tools are briefly compared to our CONVErT toolset.

And finally, a discussion is provided to compare CONVErT and the commercial

ALTOVA MapForce tool, which provides the most comprehensive comparison of

current state-of-the-art commercial data mapping approaches and our novel approach.

Table 8.1 summarises how the transformation language of CONVErT compares to the

most commonly used model transformation languages. In terms of technical space and

the visualisation capability, CONVErT is not limited to a specific technical space.

Instead, a variety of technical spaces can be visualised in CONVErT and used for

transformation generation. However, since their visualisations need to be generated

first, we have shown this option as partial support. Indeed if the visualisations are

generated once, they can be reused many times.

Transformations in CONVErT are performed on visual notations. These visual notations

may represent any technical space or be represented in a wide variety of shapes and

formats. Correspondences are specified using drag and drop of these notational

223

elements and therefore no textual or graph-based coding is required. In terms of

specification syntax, CONVErT is the only approach that provides visual specification

for transformation generation that is not limited to textual coding or specific

visualisations. Mapping functions, also expressed visually and added and linked by

drag-and-drop metaphor, provide higher level complex model mapping and

transformation constructs.

Table 8.1 Comparison of most used transformation languages and CONVErT’s language. indicates
support, (+) shows partial support and – shows no support.

Transformation
language

comparison

T
G

G
 [2

4]

A
T

L
 [6

8]

X
SL

T
 [6

9]

Q
V

T
 [7

0]

M
O

L
A

 [7
1]

E
T

L
 [7

2]

C
O

N
V

E
rT

 [8
0]

Technical Space
Model
Text
XML

-

-
-

-

-
-

(+)
(+)
(+)

Specification Syntax
Text
Graph
Visualisation

-

-
-

-
-

-

-

-

-
-

-
-

Input Artefact Syntax
Abstract
Concrete

-

-

-

-

-

-

-

Rule application control
Imperative
Declarative

-

(+)

(+)
(+)

Transformation Scenario
Vertical transformation
Horizontal transformation

Transformation Engineering
Exogenous
Endogenous

Support for directionality
Unidirectional
Bidirectional
Multidirectional

(+)
-

-
-

-
-

(+)
-

-
-

-
-

(+)
-

224

Input models in CONVErT are at the concrete representation level. No abstraction is

required for input examples and users can generate visualisations and transformations

using their example models. Consequently, CONVErT is the only approach that allows

input artefacts to be at concrete visual representation level. All other approaches require

some form of meta-model or abstracted meta-model from model instance elements.

Similar to most approaches, CONVErT provides both imperative and declarative rule

application control. The transformation of models to visualisations follows an

imperative approach while transformation between visualisations uses a declarative

approach. However, since the user has no control over which approach to choose at each

step, we have indicated support for Imperative and declarative rule application control

as partial in Table 8.1. We should note here that in design of CONVErT, out intentions

were to provide a proof of concept prototype and therefore we have not included

alternatives. Inclusion of alternative rule application controls or technical space is

therefore part of our future work.

Visualisations of source and target models can be at any abstraction level. For example,

source and target could be UML class diagram and Java code, or a UML 1.0 compatible

and a UML 2.0 compatible class diagrams. As a result our CONVErT approach

supports both vertical and horizontal transformations.

Similar to transformation scenarios, exogenous and endogenous transformations can be

both implemented in CONVErT with regards to transformation engineering. For

example, if there is a need to refactor a class diagram to remove a construct, it can be

easily done using source and target visualisations. If the resulting target does not

introduce new visualisation constructs, the exact same visualisation specification can be

used for both source and target inputs.

Bijective correspondences, i.e. when elements of source and target represent one-to-one

correspondence relations, are defined bidirectionally in CONVErT. As a result

CONVErT tends to support bidirectional transformations. For non-bijective

transformation correspondences (for example one-to-many, many-to-one and many-to-

many correspondences), the reverse direction is not guaranteed. An example is vertical

transformation in which information may need to be added or removed. As a result,

225

CONVErT provides partial support for bidirectionality. Given that a capable

transformation language is used in the transformation code generator, it is also possible

to generate multidirectional transformations.

For the second part of our comparison, Table 8.2 provides a comparison of the tooling

aspect of CONVErT against other available transformation tools. It summarises how

this tooling aspect of CONVErT compares with previously realised transformation

tools.

Table 8.2 Comparison of model transformation tools and CONVErT. indicates support, (+) shows
partial support and – shows no support.

Tool comparison

A
T

O
M

3
[9

6]

V
IA

T
R

A
2

[9
7]

A
L

T
O

V
A

 [4
7]

C
L

IO
 [1

01
]

G
R

eA
T

 [7
6]

A
T

L
 [6

8]

U
M

L
x

[9
8]

B
O

T
L

 [1
00

]

Fo
rm

-b
as

ed
 [3

2]

C
O

N
V

E
rT

 [8
0]

Application domain
Model to model
Model to text
Text to text

-
-

-

(+)
-

-
-

-
-

-
-

-

(+)
-
-

(+)
(+)
(+)

Specification Syntax
Text
Graph
Visualisation

(+)
-

-
-

-
-

(+)

-
-

(+)

-

-
-

-

-

-

-

-
-

(+)

-
-

Transformation Cardinality
1-to-1
1-to-M
N-to-M

-

(+)
(+)

Input Artefact Syntax
Abstract
Concrete

-

-

-

-

-

-

-

-

-

(+)

-

User interaction
Textual
Interactive
Drag-and-drop

-
-

-
-

-

-

-
-

-
-

-
-

-
-

-

-

Support for directionality
Unidirectional
Bidirectional
Multidirectional

-

-
-

-
-

-
-

-
-

-
-

(+)
-

-

-
-

(+)
-

User support mechanism
Interactive guidance
Visualisation

-
-

-
-

-
-

-

-
-

-
-

-
-

-
-

-

(+)

226

CONVErT’s application domain is not limited to a specific domain, instead it can be

used for varieties of domains provided that the visualisations for those domains are

specified in CONVErT. Therefore, Table 8.2 demonstrates all application domains to be

partially supported by CONVErT. Similar to the languages aspect of CONVErT in

Table 8.1, Specification syntax is based on model visualisations and the input artefact

syntax is a concrete representation.

In terms of transformation cardinality, one-to-one transformations are specified by

simple drag and drop. One-to-many and many-to-many transformations can be specified

using transformation functions. Functions can be added, removed, altered according to

the desired transformation specific tasks, again using drag-and-drop. New, complex

transformation functions can be defined visually from simpler functions and

parameterised, then reused by drag-and-drop.

CONVErT provides a very high level, highly interactive transformation specification

approach through use of visualisations and drag and drop. It also helps users decide and

explore which correspondences are possible. For example, when a notation is dropped

on another notation, CONVErT tries to recommend correspondences according to

internal elements of those notations. As a result, it provides an interactive approach for

transformation specification.

User support in CONVErT provides both an interactive guidance mechanism

(implemented as “Suggester”) and use of familiar, concrete model visualisations.

Accordingly, these options have been selected as having full support in Table 8.2.

To provide a more in-depth comparison of our approach’s features, we have selected

ALTOVA MapForce as the most comparable tool to CONVErT. This selection has been

based on the availability of the toolsets and the fact that MapForce is the only toolset

that also fully provides correspondence specification using an interactive, drag and drop

approach.

Figure 8.1 provides a screen capture of MapForce. It shows an example of EDI message

mapping being implemented. Elements of the source and target are visualised by default

using a tree-based representation (marked by 1 in Figure 8.1). To generate mapping,

227

these elements can be mapped using drag and drop. Similar to CONVErT, functions can

be used and defined. For example a NAND function is marked by 2 in Figure 8.1.

To be able to generate a mapping between source and target input files, users need to

provide these files to the toolset. If schemas are available, they should be provided.

Otherwise, MapForce will try and reverse engineer a suitable schema from provided

input examples.

Figure 8.1 Screen capture of ALTOVA MapForce. 1) Default tree-based representations, 2) Using a
NAND function.

Given that MapForce is an industry standard tool, it provides data importers from a

wide variety of sources, e.g. database and Excel files. Also it generates mapping

specification code in XSLT, XQuery, C#, C++ and Java to make it a more widely

acceptable transformation and mapping tool for its target users.

MapForce allows text files to be used as source or target of the transformation.

However, text support is limited to structured files, e.g. Comma Separated, and does not

provide mapping between models and source code. It also provides mappings only in

one direction. Although mappings of a reverse direction can be generated as a separate

228

transformation, our CONVErT approach does provide limited support for generating the

reverse directions, where possible, while the forward transformation is being specified.

The biggest difference between MapForce and CONVErT’s approach is in the way

source and target are visually represented. Figures 8.2 and 8.3 show example of class

diagram and Java XML input being used for transformation specification in CONVErT

and MapForce respectively. As can be seen in these figures, our CONVErT approach is

very flexible in terms of its use of visualisations and can provide drag and drop

capabilities on notational elements as opposed to the fixed tree-based visualisation of

MapForce.

Figure 8.2 Mapping class diagram example to Java code visualisation example in CONVErT.

229

Figure 8.3 Representation of class diagram example and Java code example in MapForce.

Since mapping generation is done on schema elements rather than actual example

elements, MapForce provides the reverse engineered schema as the source and target

elements. The elements of the reverse engineered schema of both source and target are

represented in the tree-based visualisation as depicted in Figure 8.3. Thus while

CONVErT uses provided model instance example data in its visualisation, MapForce

uses the provided or reverse-engineered schema elements.

Another distinctive difference between MapForce and CONVErT is in their

representation of transformation rules and mappings. For example, the generated

mapping rules for transforming UML class diagram to Java visualisation in CONVErT

are marked by 1 in Figure 8.4. Similarly, the correspondences specified on examples of

Figure 8.3 in MapForce are depicted in Figure 8.5.

230

Figure 8.4 Generated transformation rules for transforming UML class diagram to Java visualisation in
CONVErT. Transformation rules are marked by 1.

Figure 8.5 Correspondence specification between UML class diagram example and Java code example in
MapForce. Mapping correspondences are marked by 1.

As can be seen in the figures, CONVErT follows a more procedural approach to

specifying transformation rules and correspondences, i.e. a transformation script is

231

generated from a set of related transformation rules. These transformation rules are

individually visualised and represented using source and target notation visualisations.

Therefore, we claim that it is easier to define, explore and maintain transformations (this

is tested in our user evaluation described below). In MapForce however, all

correspondences are represented on the schemas using mapping lines. For larger

examples, finding correspondences and maintenance becomes a challenging task. If

functions are to be used, then the situation becomes even more complex. In CONVErT

however, correspondences using functions and conditions are specified in a separate

window and therefore will not be shown on source and target visualisations. As a result,

using multiple functions or conditions will not complicate the visualisations.

CONVErT’s approach will not be so affected by the number of transformation rules or

correspondences since the defined transformation rules are saved in a separate UI

compartment (marked by 1 in Figure 8.4). Considering the familiarity of users with the

models being transformed, the source and target notations used to visualise

transformation rules provide a good reference to track recently created rules. However,

there are possible shortcomings for scalability, i.e. if the number of transformation rules

increases, the list will be longer and users have to scroll down to find already generated

rules. Also, during our test trials, it was suggested that it would be beneficial to provide

facilities to highlight notations in the source and target visualisations which represent

transformation rules, as the user hovers over the defined transformation rules in the list.

This has been assigned to our future work.

 When large examples are being used, the Suggester mechanism will also help users

define and explore various possible correspondences. It recommends correspondences

that can form both transformation rules and internal rule correspondences. MapForce

provides a very basic help in this regard, i.e. when an element of source schema is

mapped to an element on the target, it can automatically map their internal elements that

represent same name and type. However, it is not capable of providing mappings for

more complex situations.

MapForce’s approach to defining correspondences has an advantage over CONVErT’s

in editing transformations. For example if users mistakenly link a source and target

element and notice it at the end, they can alter the correspondence by unlinking and

232

linking the correspondence to the correct target element. In CONVErT’s approach

however, once the rules are defined and saved, they cannot be altered. To alter the

transformation, new transformation rule should be defined and added and the faulty rule

should be removed.

Both tools allow model checking of the resulting targets. MapForce uses the provided

schema to check the target. CONVErT by default uses the reverse engineered

abstraction to check the results. If schemas are available, they can be imported to

CONVErT for model checking.

MapForce always generates the transformation script as a whole for transforming the

whole source file to target at once. In CONVErT however, the transformation code is

generated using the individually defined transformation rule scripts providing a more

procedural and structured transformation script.

Table 8.3 summarises the above mentioned comparison between CONVErT and

ALTOVA MapForce.

8.3 Quantitative evaluation

This section provides a quantitative evaluation of the Suggester system using selection

of recommender system evaluation metrics, namely precision, recall and F-measure.

These metrics are calculated based on correspondence recommendations generated for

transformation examples of bar chart to pie chart, Minard map to pie chart, UML class

diagram to Java code, CAD visualisation to alternative tree visualisation, and two

transformation examples of academic citations.

This section also provides an evaluation of the transformation code generated from our

approach against the transformation codes of an XSLT expert and that generated by

ALTOVA MapForce. A set of transformation code quality attributes and metrics are

used from the literature to examine code quality for two example transformations of

UML class diagram to Java code and bar chart to pie chart.

233

Table 8.3 Summary comparison of ALTOVA MapForce and CONVErT

Comparison Summary MapForce [47] CONVErT [80]

Source and target
representation Default tree based Visualisations of both

models

Transformation
specification Using drag and drop

Using drag and drop,
Selecting from
recommendations

Correspondence
specification Using drag and drop

Using drag and drop,
Selecting from
recommendations

Use of functions
Drag and drop
functions and link
corresponding elements

Drag and drop
functions and link
corresponding elements

Transformation rule
representation

Correspondence lines
connecting source and
target elements

Visual representation
using source and target
notations

User guidance
Limited, automatically
mapping same name
and typed elements

Recommendations
provide guidance for
transformation rules
and their internal
correspondences

Editing transformation Possible Limited, rule has to be
defined again

Model checking results Possible Possible

Transformation script
design

As a whole for
transforming source to
target

Procedural, generated
using collection of
individual
transformation rules

Possible transformation
scripts

XSLT, XQuery, C#,
C++, Java

XSLT, other languages
need additional code
generator component

8.3.1 Suggester evaluation

This section evaluates the recommender system of CONVErT’s Suggester mechanism

to partially address research question RQ3.2, on whether acceptable recommendations

are produced. It should be noted here that the acceptability of recommendations are not

purely based on their correctness. However, it is customary in research community to

234

evaluate correctness of recommendation systems using series of metrics and against a

benchmark [162], [167], [180].

To perform this evaluation, the recommender system of Suggester was separately

applied on multiple examples. The Suggester was configured to use all available

recommenders and a set of evaluation metrics was considered. Selected metrics include

precision, recall, and f-measure. These metrics are calculated using categorisation of

recommendations into four distinctive groups. This categorisation is based on relevant

or irrelevant correspondences being recommended or not recommended. This

categorisation is depicted by Table 8.4.

Table 8.4 Categories of all possible recommendations.

 Recommended Not recommended
Relevant True-Positive (TP) False-Negative (FN)
Irrelevant False-Positive (FP) True-Negative (TN)

Being relevant in this context means that there is a relation between source and target

item element and therefore, a correspondence exists. An irrelevant recommendation on

the other hand, is a false correspondence relation. A brief description of each metric is

provided bellow.

Precision is defined as the proportion of true positive recommendations against all

recommended correspondences and is calculated using the following formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Given this formula, precision is seen as the measure of purity in retrieval performance

or the measure of effectiveness of the recommender in excluding non-relevant items

[181]. Recall on the other hand is defined as the proportion of the true positive

recommendations against all relevant (assumed correct) recommendations and is

calculated using following formula:

235

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Recall is therefore the number of retrieved relevant items as a proportion of all relevant

items. In general, higher precision and recall are desirable [181].

It is often the case that precision and recall are inversely related, i.e. improving

precision will result in worse recall, and improving recall will also result in worse

precision. As a result, F-Measure is introduced to capture harmonic mean of the both

metrics [162], [182]. F-Measure is calculated using following formula:

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

F-Measure tries to capture the behaviour of precision and recall metrics in a single value

[178]. Accordingly, higher F-Measure indicates higher quality of recommendations. In

the following, we describe how these metrics are used to evaluate correctness of the

recommender used in our Suggester system.

To evaluate Suggester mechanism, a set of transformation examples was selected. These

examples include the mapping examples of chapter 5 (bar chart to pie chart, Minard

map to pie chart, UML class diagram to Java code, and CAD visualisation to alternative

tree visualisation) and a more complex mapping example of academic citations. For the

academic citation example, 420 citations were used in two different formats (EndNote

XML, and DocBook XML) and the suggester was applied on both directions.

For evaluation purposes, a user-defined benchmark was produced to evaluate the

recommended correspondences against it. This benchmark included a list of correct

correspondences between source and target model abstractions. For example, if

transformation task is to transform a class diagram to Java XML, the benchmark list

includes class diagram’s class element to Java class’s class element, class diagram’s

class name to Java class’s name and so on. All correct correspondences between source

and target elements are considered for the benchmark and the resulting correspondences

of recommender system in Suggester are compared against this benchmark.

236

Since the motivation of using the Suggester system was to guide users in exploration of

possible correspondences, certain considerations have been made to allow more

possibilities to be included in the benchmark. For example, in calculation of relevant

recommendations in our benchmarks, correct correspondences have been considered

regardless of being direct or indirect. For instance, consider the example where the type

of a CAD design’s room defines colour of a tree node element in a tree visualisation.

Although this correspondence is not a direct correspondence and needs to be performed

using a condition, recommending room type and node colour as a correspondence does

represent a correct recommendation. Also if multiple elements of source or target are

possible to be matched, all possibilities are considered in the benchmark. For example, a

bar chart’s name, YAxis label, or XAxis label could correctly define the name of a pie

chart depending on user’s interest. These considerations have impacted the selected

metrics. For example the former adversely affects precision since Name recommender

does not consider type and colour to be correct correspondences. The later however,

allows more possibilities in the benchmark and therefore affects recall accordingly.

Table 8.5 shows the results calculated for the suggester mechanism using the examples.

It also provides the time consumed by Suggester to produce the suggestion list (in

milliseconds) and provides the size of source and target examples being used (in kilo

bytes).

Table 8.5 Resulted values calculated from the evaluation metrics.

Example

Metric

Example
size

(KB)

Pr
ec

is
io

n

R
ec

al
l

F-
M

ea
su

re

C
al

cu
la

tio
n

T
im

e
(m

. s
ec

.)

Bar chart – Pie chart 1 0.77 0.87 < 1 1 - 1
Minard – Pie chart 0.85 0.66 0.75 1.01 9 - 1
CAD design – Tree 0.77 0.77 0.77 < 1 2 - 2

Class diagram – Java 1 0.84 0.91 < 1 3 - 3
DocBook – EndNote 0.46 0.5 0.48 37.52 313 - 661
EndNote – DocBook 0.38 0.55 0.45 43.83 661 - 313

237

Based on Table 8.5, apart from citation mapping example, our Suggester has performed

acceptable (more than 0.85) for the majority of first four examples with regards to

precision (1, 0.85, 0.77 and 1 respectively). This indicates that the majority of true

recommendations have been produced. With regards to recall, the calculated results for

the four examples are less acceptable (0.77, 0.66, 0.77, 0.84). However, the calculated

F-Measure indicates good overall acceptance range (0.87, 0.75, 0.77 and 0.91).

The models used for this evaluation each have example-specific naming convention,

typing, structure and sizes. As a consequence, the returned recommendations of the

system have resulted in different evaluation results for the examples. Given that the

Suggester was used for a prolonged period on similar examples, its learning mechanism

would improve its recommendation accuracy. However, as mentioned before, this was

not the intention of this evaluation and the first encounter of the Suggester with the

testing examples was considered.

The resulted precision, recall and F-Measure for the two larger examples are

significantly less than other examples (0.46, 0.38 and 0.5, 0.55 and 0.48, 0.45

accordingly). As a result, we conclude that our research question 3.2 on generating

acceptable recommendations is satisfied partially. However, continues use of

recommender on similar examples improved the recommender performance, but as

stated above, the purpose of this evaluation was to check recommender’s performance

on its first encounter with the examples. We have put evaluation of possible

performance tuning approaches and experimenting with large examples as part of our

future work.

The relatively poor performance of the Suggester for citation mapping problem is due to

extensively different structural and name conventions used for both citation formats.

This structural difference is also reflected in the size of two formats given the same

amount of citations (313KB vs. 661KB). For example, the “authors” field of the

DocBook format has separate fields for first name and last name of the authors. The

EndNote format however, uses a single field for author names. Our specified

benchmark uses author name to first name, author name to last name, and author name

to author field as possible accepted correspondences. Samples of these examples can be

seen in Appendix 6. Given that the Suggester system provides only one suggestion per

238

pair by default, lots of such multi possibilities are not considered. This has resulted in

lower number of true-positive choices and higher number of false-negatives and

consecutively lower precision and recall.

In terms of calculation time, for smaller examples (like bar chart to pie chart example)

full recommendation list is prepared almost real time. For larger examples (like the

citation examples) the calculation time increases as example size is becoming larger.

For example in citation mapping example, it took Suggester system 37.52 milliseconds

to produce recommendation list for DocBook format to EndNote and 43.83

milliseconds for the reverse. These times were measured based on using a PC with dual

core CPU and 3 gigabytes of RAM.

The combination of recommenders being used in our Suggester mechanism is very

much dependant on the accuracy of name similarity recommender since it has been used

in neighbourhood similarity and IsoRank as the seeding similarity measure. It has a

direct effect on accuracy of recommendations when source and target examples do not

represent similar element names. An example is the citation mapping example above.

Also, the combination of recommenders can be altered according to the examples being

used. For example if the examples do not represent the same underlying data, the value

recommender can be disabled to prevent it from producing a large number of outlier

recommendations. It is possible to alter value similarity recommender to look for non-

trivial values only like Boolean, dates, IDs, etc. Another alternative is to use filtering or

chain of recommenders, i.e. use the recommendations returned by a set of

recommenders (e.g. name and structure) and apply other recommenders (e.g. value

similarity recommender) on the results returned by these recommenders.

If prior knowledge or a benchmark for the examples is available, users can alter the

seeding similarity or the combination of recommendations to match their needs. It is

also possible to train Suggester mechanism for certain examples by using optimisation

techniques. For example, it is easy to calculate which combination of recommenders

provides better results for certain examples if their respective benchmark is available.

It is worth mentioning here that the Suggester system updates its recommendations

according to the tasks that user is performing to produce a more interactive mapping

239

support environment. For example when user is mapping a bar to a pie piece of the pie

chart, it updates the recommendations list to reflect recommendations according to the

internal elements of bar and the pie piece. This evaluation was based on the

recommendations list produced for the whole visualisation examples and smaller

samples are not considered. Also if the suggester is being used continuously by users for

similar examples, it updates it weights to produce more acceptable recommendations.

For this evaluation, we have tried to reflect the case where the Suggester is being used

for the first time for examples and have reset the weights to defaults for each calculation

(default weight is 1). Indeed given more time and use this would increase the accuracy

of recommended correspondences.

8.3.2 Transformation code quality

To have an assessment of quality of the automatically generated transformation code in

CONVErT, this section provides a quantitative comparison of CONVErT’s

transformation script against transformation scripts generated by an XSLT expert and

ALTOVA MapForce. From the six transformation examples of previous section, two

examples of transforming UML class to Java and bar chart to pie chart were selected for

this comparison. This selection is based on similarity of the source and target model

examples in terms of their structural complexity to other examples and availability of

their visualisations in CONVErT.

We asked an XSLT expert with more than three years experience using XSLT

transformations to write two XSLT scripts for transforming example UML class

diagrams to Java and example bar charts to pie chart. These transformation scripts were

then compared with the automated XSLT transformation code generated by CONVErT

and ALTOVA MapForce.

To evaluate the generated transformation codes, we have adopted a set of quality

attributes and metrics proposed by van Amstel et al. [6]. In total, they introduced eight

quality attributes. A brief description of these quality attributes and metrics is provided

bellow:

240

• Understandability: The amount of effort required to understand a model
transformation.

• Modifiability: Whether a model transformation can be adopted to possess
different or additional functionality.

• Reusability: Whether (a part of) model transformation can be reused as-is by
other model transformations.

• Reuse: Whether a model transformation reuses parts of other model
transformations.

• Modularity: Is a model transformation systematically structured?
• Completeness: Is a model transformation fully developed and does it result in a

complete target?
• Consistency: Does model transformation include conflicting information?
• Conciseness: Whether a model transformation does not include superfluous

information like code clones.

The metrics provided by van Amstel et al. for evaluating these quality attributes are

grouped into four categories of Size, Function, Module and Consistency [6]. However,

those metrics were designed primarily for ASF+SDF transformation language and had

functional languages in mind. Although XSLT can be considered as a functional

transformation language, certain metrics proposed by van Amstel et al. do not apply to

our context here and we had to make adjustments for the metrics. For example,

transformations in ASF+SDF are defined in form of functions and modules. The

functions refer to algebraic function in the context of ASF+SDF and not transformations

functions as defined in this thesis; whereas the transformations in our context are

defined in form of correspondences and rules. As a result, function metrics defined in

van Amstel et al. are not applicable to our context. Also, due to nature of our tested

transformation examples, certain metrics were not applicable. For example, size of

domain specific and domain independent parts, or number of code clones. As a

consequence, the metrics evaluating consistency and conciseness quality attributes were

not included in our comparison.

Similarly, the metrics we have included in our comparison do not have effects on

completeness of model transformations. This is due to the fact that ASF+SDF

guarantees syntax-safety, i.e. every syntactically correct source model is transformed

into a syntactically correct target model. Van Amstel et al. had defined metrics to ensure

this quality attribute is satisfied. In our comparison, to check completeness of

transformation is satisfied, we check the resulted target of each model transformation

241

script individually and imported them to CONVErT’s renderer to see how they are

being rendered. Table 8.6 shows the list of metrics and how they affect the quality

attributes.

Table 8.6 Metrics and quality attributes to evaluate model transformations adopted from [6]. + indicates

direct affect while – indicates adverse effects.

Metric

Quality Attribute

U
nd

er
st

an
da

bi
lit

y

M
od

ifi
ab

ili
ty

R
eu

sa
bi

lit
y

R
eu

se

M
od

ul
ar

ity

1 Lines of code - -
2 Number of correspondences - -
3 Number of transformation rules +
4 Number of equations - -
5 Rule fan-in +
6 Rule fan-out +
7 Rule information flow complexity -

Metrics of Table 8.6 include lines of code of the transformation, number of

correspondences per transformation script, number of individual transformation rules,

and number of equations used in the transformation script. Transformation rules can be

used by other rules. Accordingly, fan-in defines the number of times a transformation

rule is used in other rules and fan-out defines the number of times a transformation rule

uses other rules. Rule information flow complexity is measure of complexity which is

calculated by squared product of fan-in and fan-out of a transformation rule:

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑓𝑙𝑜𝑤 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (𝑓𝑎𝑛. 𝑖𝑛 ×𝑓𝑎𝑛. 𝑜𝑢𝑡)!

These metrics are calculated individually for each transformation script and the results

are provided in table 8.7.

242

Table 8.7 Comparison of transformation codes generated by CONVErT, ALTOVA MapFOrce and XSLT

expert.

Metric

Experiments

UML to Java Bar chart to Pie

C
O

N
V

E
rT

M
ap

Fo
rc

e

E
xp

er
t

C
O

N
V

E
rT

M
ap

Fo
rc

e

E
xp

er
t

1 Lines of code 98 93 86 29 22 27
2 Number of correspondences 25 25 20 7 7 6
3 Number of transformation rules 7 1 1 3 1 1
4 Number of equations or conditions 1 1 1 0 0 0
5 Rule fan-in 7 0 0 3 0 0
6 Rule fan-out 6 0 0 2 0 0
7 Rule information flow complexity 1764 0 0 36 0 0
8 Execution time (milliseconds) 0.7 0.8 0.6 0.2 0.3 0.2

The results of Table 8.7 demonstrate higher number of lines of code for the generated

transformation script of CONVErT. This is due to the fact that CONVErT’s code

generates a procedural transformation script and uses the individual transformation rules

which have significant effects on number of lines of code. Although this decreases the

understandability of the code, it increased the modularity and hence the possibility of

reusing certain parts of the code.

The transformation script used by our expert used fewer correspondences. This is due

use of XPath addressing strings. For example when multiple bars are available in a

“bars” element of a bar chart, two separate correspondences should be specified for

“bars” to “Pieces” and bar node to pie piece. Figure 8.6 demonstrates these

correspondences for ALTOVA MapForce and Figure 8.7 show similar correspondences

in CONVErT. However, the expert used XPath constructs similar to

"Bars/BarNode"and as a result used fewer correspondences. It is noteworthy here that

when using low level coding in model transformation languages, transformation

designers can use powerful constraint languages like OCL to define more complex

transformations. Our approach in CONVErT uses local notation to notation

transformation specifications and relies on facilities provided by the transformation

243

language and the user defined functions in XSLT. If for alternative transformation

languages (e.g. ATL) are used in toolset, these constraint specification languages (e.g.

OCL) can be provided in functions.

Figure 8.6 Example correspondences for bar chart in ALTOVA MapForce. Arrows mark
correspondences.

Figure 8.7 Example correspondences for bar chart in CONVErT. Arrows demonstrate drag and drop
directions to specify correspondences.

244

Given that CONVErT’s code was the only code that included individual transformation

rules, fan-in, fan-out and rule information flow complexity was only calculated for

CONVErT’s scripts. These numbers were calculated based on the number of rule calls

and arrangement of the rules available in the script. For example, class rule in

CONVErT’s transformation code calls three other rules (for creating associations,

attributes, and operations) while transformation rule for creating attributes does not call

any other rules.

It should be noted here that the generated transformation code of CONVErT is not

meant to be edited. Although users save the transformation in a separate XSLT file and

can edit them, our intention was otherwise in separating users from interacting with the

code. Also, given the power of coding transformation by an expert, there are certain

cases were CONVErT does not provide similar capabilities to its users. One such

limited capability is in the way correspondences are specified. Correspondences in

CONVErT are specified between a pair of visual notations. As a result, modularity of

the generated transformation code depends on the pair of notations being mapped to

each other. For example, when mapping a bar chart to pie chart of Figure 8.7, once user

drags bar chart area to pie chart area, he cannot specify correspondences between their

embedded notations i.e. elements of bars and pie pieces. Correspondences between bars

and pie pieces need to be specified when a bar is dragged to a pie piece. Similarly,

correspondences involving more than one notation as source or target cannot be easily

specified with current version of CONVErT’s Mapper. These more complex

transformation specifications are part of our future work.

Table 8.7 also provides execution time of each transformation script using a PC with

dual core CPU and three gigabytes of RAM. To measure execution time, all

transformation scripts were used in the XSLT parser and engine of Microsoft Visual

Studio and applied on two different examples of source model for each transformation

script. Class diagram XML examples were 3kb and 4kb while bar chart examples were

1kb and 2kb in size. We repeated the transformation execution five times on each

example and recorded execution time. Repeating the experiments did not alter average

times. The measured time does not demonstrate significant differences between

transformation scripts.

245

All transformation scripts of this comparison produced renderable target models.

However, the generated target of CONVErT was more complete with regards to the

missing values in UML class diagram to Java code visualisation transformation as

Figure 8.8 demonstrates. This is because the transformation code generator of convert

uses the reverse engineered abstraction of the notations in each transformation rule and

automatically fills in the missing values by default values. For example, when mapping

UML associations to Java properties, since associations do not possess access value,

CONVErT’s code generator assigns “public” as their default value from the abstraction

of Java property notation. ALTOVA MapForce uses the reverse engineered abstraction

of the full source and target and did not produce any default value in case any value is

missing. To have similar capability in MapForce, such default values should be

indicated in the schema and provided to the tool.

Figure 8.8 Rendering the generated target model as a result of running transformation scripts of (A)
CONVErT’s and (B) ALTOVA MapForce.

Although we did not ask our expert to generate transformation code for transforming the

other examples of previous section (CAD to tree visualisation, and Minard’s map to Pie

chart), our experiments with ALTOVA MapForce and CONVErT on those examples

showed similar results to the two examples being discussed here and in Table 8.7. As a

result, we conclude that the evaluation results of table 8.7 are generalizable to other

examples as well.

246

8.4 User evaluation

A user evaluation of our CONVErT tool and its approach focuses on the user’s

perception of the approach and associated toolset for generating visualisations and using

them for a transformation task. This user study has been approved by Swinburne

University Human Research Ethics Committee (SUHREC Project 2013/010). A copy of

ethics clearance letter is provided in Appendix 2. The following subsections provide

details of this user evaluation and experiments.

8.4.1 Experimental setup

Our experimental setup comprised a laptop with an attached mouse. Prior to starting the

experiment, participants were asked to sign a consent form. They were then introduced

to the toolset (CONVErT) through a ten-minute screencast. This screencast described

the purpose of the toolset, its user interface, visualisation, and transformation generation

procedures. The screencast also described basic functionalities of the toolset like where

and how to drag and drop, how to use functions, how to compose visual elements and

how to view visualisations. Using a screen cast would limit bias compare to

presentation and ensure repeatability for multiple participants.

Participants were asked to perform a set of model visualisation and mapping tasks

following think-aloud approach. They could ask questions and an instructor was

available during the experiment. They were reminded that there was no time limit for

performing tasks and that they could leave at any point during the experiment. Given

these reminders, all our participants were able to finish assigned tasks.

Two sets of tasks were defined for participants to carry out, each consisting of a

visualisation specification and a transformation specification. The first task used a

visualisation and transformation from a business domain and the second task used

software engineering domain examples. The rationale behind having two sets was to test

our approach for different application domains. We hoped that it would help us to

investigate if interactive concrete visualisations better support using users' domain

knowledge in general. It was designed to investigate if concrete visualisations have

similar effects on users of different domains (software engineering and business

247

analysis in this case). Using this strategy, we are in a stronger position to generalize that

our concrete interactive visualisations can help wider domains of model transformation

specification and therefore we can make assertions about our answers to research

questions RQ1 and RQ2.

To record participant’s interactions, screencasts were captured during the process and

each participant’s voice was recorded. Upon completion of each task, a matching

questionnaire was given to each participant. The survey questionnaire was designed in

four sections (the questionnaire is provided in Appendix 5). Section one was targeted to

visualisation approach and included questions evaluating usefulness, cognitive

dimensions, ease of use of the tool, ease of learning the tool and finally questions to

capture user satisfaction. Section two was targeted at transformation generation using

concrete visualisations and included questions for evaluating usefulness of the

approach, cognitive dimensions, ease of use of the tool, ease of learning, and

satisfaction. Section three of the questionnaire was designed to evaluate the guidance

and recommender system integrated to the toolset. It included questions capturing

usefulness, presentation and user satisfaction. The final section of the questionnaire was

dedicated to the participant demographic questions.

The first three sections of the questionnaire featured 5-point Likert scale responses and

dedicated spaces to leave optional comments and feedback for each Likert item. The

Likert scale parameters range from Strongly disagree, Disagree, Undecided, Agree, and

Strongly agree. Additional comments section was also provided at the end of each

questionnaire section in case users would like to leave further comments.

The tasks assigned to each group were to create a visualisation with CONVErT and then

use it as source and generate a transformation from the model to another model with a

provided CONVErT visualisation as target model visualisation. Input models and

visualisations were the same for participants of each group.

The first group were given a model representing business sales data and were asked to

create a bar chart visualisation of their sales data (task 1). They were then asked to alter

the bar chart visualisation for a different input model (task 2) and finally transform that

bar chart visualisation to a pie chart visualisation (task 3). The second group were given

248

a class diagram data (XML) and asked to generate a UML class diagram visualisation

(task 1). For Task 2 they were asked to transform that class diagram visualisation to a

provided Java code visualisation.

Each participant was handed a hard copy of task descriptions. These task descriptions

did not describe instructional steps. Instead, they included the input file names and their

locations, and a snapshot of the desired final visualisation and the transformation result.

Task descriptions are available in Appendix 3 and Appendix 4. Users had to come up

with steps required to get similar results. They were allowed to ask questions from the

instructor if they had trouble understanding those steps. The following subsection

provides the results gathered from this study.

8.4.2 Experiment results

For this user study, 19 users (including 4 controls for instrument testing) were recruited

from staff and students at Swinburne University of Technology. No age or restrictions

were applied for recruiting participants. To capture user demographics, participants

were required to complete a demographic questionnaire. The summary of demographic

data of participants is provided in Table 8.8.

Ten participants (8 male, 2 female) chose to use the business analysis domain tasks and

five participants (3 male, 2 female) used the tasks from software engineering domain.

Participants of both groups had basic understanding of domain models used for

experiments but with very little or no experience in model transformation.

The demographics information of Table 8.8 demonstrates that only 17 precent of users

had experience with at least one modelling and transformation approach and 47 precents

were aware of them. 13 precent of users had experience with at least one visualisation

approach, and 60 precents were somewhat familiar with visualisations. It can be

concluded that about two third of the users were familiar with visualisations to some

degree and around two third were also familiar with modelling and transformations.

249

Table 8.8 Demographic questions of the user study questionnaire and participant’s responses.

 Question Options Participants
(%)

D.1 Gender?
Male
Female
Prefer not to say

67
33
0

D.2 Age rang?

23-30
31-40
41-50
51-60
61+

60
40
0
0
0

D.3
How familiar are you with
model transformation and
modelling in general?

Very familiar
Somewhat familiar
I had heard about it
Not familiar at all

17
47
33
13

D.4 How familiar are you with
data visualisation?

Very familiar
Somewhat familiar
I had heard about it
Not familiar at all

13
60
13
13

D.5 What best describes your
area?

Software engineering
Computer Science/IT
Economics
Management
Other

47
40
0
0
13

To analyse participants’ responses, Likert scale scores were collected from

questionnaires. We have assigned scores of 1 (for perfect negative) to 5 (perfect

positive) to each Likert item response. Based on the scores, Median, Mode and

frequency of responses for each Likert item is calculated for comparison. Results are

separately presented for visualisation, transformation, and evaluation of the Suggester in

the following subsections.

8.4.2.1 Visualisation

Tasks 1 and 2 for first group and task 1 for the second group were designed to check the

efficiency of our approach and the tool for visualising input model data. After the tasks

were completed by participants, first part of the questionnaire was handed to each

250

participant. The questions for the evaluation of these tasks and the results collected from

it are provided in Table 8.9. Note that the frequency charts in the table demonstrate

rounded values of the frequencies and are generated using CONVErT.

Table 8.9 User study questions for visualisation evaluation.

 Question
Participant Responses

Median Mode Frequency (%)
Usefulness

Q.1 It is useful to have a drag and
drop approach for visualisation. 5 5

Q.2 Visualisations help me better
understand complex data. 5 5

Q.3 It is useful to be able to
visualise data tailored to users 5 5

Cognitive dimensions

Q.4
It is easy to see various parts of
the tool such as drawings,
functions, etc.

4 4

Q.5 It is easy to make changes to
visualisations. 4 5

Q.6 Some things do require a lot of
thought. 4 4

251

Q.7 It is easy to make errors or
mistakes 3 3

Q.8

Couple of drawings were
provided on the right side of the
tool panel to assist you with
your task. Did you find they
were helpful?

5 5

Q.9

It was easy to recognise which
element on the left hand side
was related to which
visualisation element on the
right hand side.

4 5

Q.10 Provided Logs of your previous
actions was useful 5 5

Q.11 I can work in any order I like
when working with the tool. 3 3

Ease of use

Q.12
I found it easy to visualise the
given data as a Bar chart/Class
diagram

5 5

Q.13 I found it easy to modify the
visualisations 4 4

Q.14
In general I found the tool to be
easy to use for visualisation
activities

4 5

Ease of learning

Q.15 I learned to use the tool quickly 5 5

252

Q.16

I would like to have received
further instruction to be able to
understand the procedure and
perform the task.

3 4

Q.17
I had to redo some parts to be
able to understand the
procedure

3 5

Satisfaction

Q.18 I easily remember how to use
the tool 4 4

Q.19
It is likely that I use the tool for
visualisation in my future
projects

4 5

Q.20 I had fun using the tool 5 5

Q.21 I would recommend it to a
friend 5 5

As can be seen in the table, the results collected for the usefulness and satisfaction of

the approach (Q.1 to Q.3 and Q.18 to Q.21) conveys that participants agree on the fact

that the drag and drop approach was useful for visualisation tasks. These parts of the

questionnaire were designed to capture user experiences on effectiveness of our

approach and hence our first main research question on effectiveness of visual by

example approach for generating visualisations. Specifically, participants’ answer to

question Q.1 demonstrates that all our participants have agreed on usefulness of our

drag and drop approach for visualisation (87% strongly agree and 13% agree). Similarly

their responses to questions Q.2 and Q.3 show general acceptance of the usefulness of

253

the visualisations. However, the phrasing of these questions might convey that they are

generic questions and not targeted to the approach and toolset. We did not notice this in

our pilot studies and therefore some participants may have considered questions Q.1 to

Q.3 as generic.

Questions Q.4 to Q.17 were primarily focused on tooling aspect of the approach. For

example, various cognitive dimension characteristics are being examined like visibility

(Q4), viscosity (Q5), hard operation (Q7), and premature commitment (Q11). The

results in Table 8.9 indicate that specific parts of the tool need to be improved or

redesigned. For example, the version of the tool being used in evaluation (revision 320)

did not allow repositioning of notations. If users wanted to reposition the notations, it

would copy it to the new location and as a result they had to clear the canvas and redo

the drag and drop. This has been reflected in user responses to questions Q.7 and Q.17.

Also, some users could not differentiate model elements and placeholders as they were

represented similarly for each visual notation by the framework. This resulted in

confusion, and a user had to ask the instructor after a mistake was made in notation

composition. This confusion by some participants is reflected in responses to questions

Q.6 and Q.16. Note that while there was no rational behind using negative questions,

the responses to these questions have been reversed to keep the scales consistent and

avoid confusion. For example, for question Q.6, 7% of the participants have strongly

agreed and 20% have agreed that some things did require lots of though; while 47%

have disagreed and 7% have strongly disagreed to that statement.

Given the responses to questions Q.16 and Q.17 were less than what we expected, the

majority of participants (60% strongly agree and 27% agree) agree that learning the tool

was easy. This has been reflected in their response to question Q.15. We believe that if

the implementation problems with the tested version of the tool are fixed in future

releases, the difficulties raised from them will be solved and would provide even higher

acceptance.

Although the tool had some imperfections, all users agree on ease of use of the tool for

generating visualisations. This is reflected in their responses to questions Q.12 and

Q.14. The response to question Q.13 in Table 8.9 is calculated using the total responses.

It is noteworthy to consider that the second group did not perform the visualisation

254

alteration task. We have asked them to respond to this question based on their

understanding of the tool. Responses to this question for each group are depicted in

Figure 8.9. As can be seen in the figure, all participants of the first group agree that the

modification of visualisation was easy. However, the participants of the second group

have mixed feelings about it. Also, users were provided with predefined notations.

Given that users were required to annotate views to generate notations, we would

anticipate having slightly different results, since users would have to have basic

understanding of XAML representations to understand the elements of visual Views.

Figure 8.9 Group based responses to question Q.13.

8.4.2.2 Transformation

Final task of our user study included asking users to use the generated visualisation as

source model visualisation example and use a provided target model visualisation

example to generate a transformation between the two. Users were required to drag and

drop elements of both visualisations to create transformation rules and execute them to

generate a target visualisation. Alternatively, similar to the visualisation step, they could

use the provided recommendations.

Second section of user study questionnaire was dedicated to capturing user experiences

with transformation generation using concrete visualised examples. The questions of

this user study and analysis of user responses are provided in Table 8.10. Similar to user

evaluation of the visualisation step, scores of 1 to 5 were given to responses (from most

255

negative to most positive) and median, mode and frequency of the scores were

calculated accordingly.

 Table 8.10 User study questions for transformation evaluation.

 Question
Participant Responses

Median Mode Frequency (%)
Usefulness

Q.1
The familiar diagrams and visual
elements used to show the different
views of the data were useful

5 5

Q.2
Visual diagrams help me better
understand the relationships between
source and target drawings.

5 5

Q.3

It is useful to specify relationships
between different elements in the left
hand side and the right hand side
visualisations by using the drag and
drop of each element

5 5

Cognitive dimensions

Q.4 It is easy to see various parts of the
tool such as drawings, functions, etc. 5 5

Q.5 Some things do require a lot of
thought 3 3

Q.6 It is easy to make errors or mistakes 3 2

256

Q.7

It was easy to recognise which visual
element on the left hand side was
related to which visual element on the
right hand side

4 4

Q.8 Provided Logs of my previous
actions was useful 5 5

Q.9 I can work in any order I like when
working with the tool 4 4

Ease of use

Q.10
I found it easy to specify the relations
between left hand side and right hand
side visualisations

5 5

Q.11 The user interface is very consistent 5 5

Q.12
In general I found the tool to be easy
for transformation between
visualisations

5 5

Ease of learning

Q.13 I learned to use the tool quickly 4 5

Q.14
I would like to have received further
instruction to be able to understand
the procedure and perform the task

3 2

257

Q.15 I had to redo some parts to be able to
understand the procedure 4 4

Q.16 I easily remember how to use the tool 4 5

Satisfaction

Q.17 It is likely that I use the tool for
transformation in my future projects 4 4

Q.18 I had fun using the tool 5 5

Q.19 I would recommend it to a friend 4 5

As can be seen from results of Table 8.10, users positively responded to having

visualisations and drag and drop of notations to generate mappings (Q.1 to Q3, and

Q.17 to Q.19). These responses demonstrate users’ perception of the approach in

accordance to our second main research question on usefulness of concrete visual by

example approach for generation of mappings. For example, in the responses of Table

8.10, all users agree (80% strongly agree and 20% agree) that the visualisations helped

them better understand the relationships between source and target models. Or for

example in question Q.3 the majority of participants (93% agree, 7% disagree) agree

that the drag and drop method of specifying correspondences between source and target

is useful.

In terms of the tooling aspect of the approach, there is a need for further improvements

to the tool. For example in response to question Q.5 “Some things do require a lot of

258

thought” participants have responded with 13% strongly agree, 20% agree, 33%

undecided, 27% disagree and 7% strongly disagree. Similarly responses to question Q.6

where 47% of the users have agreed that it is easy to make mistakes, indicate rooms for

improvements. Please note that due to negative nature of the statements in question 5

and 6 the responses have been reversed to keep scales consistent. Some users did not

use the logs and this has been reflected in their response to question Q.8 “Provided Logs

of my previous actions was useful”.

It should be noted here that although recommendations were provided, our user

evaluation of the recommender system (provided bellow) indicates that users did not

use the recommendations or did not found the recommended correspondences useful

enough. Given that users had used them or the representation of the guidance system

was improved, it would have helped users with the tasks and particularly in response to

question Q.5.

In terms of ease of use, the responses are fairly consistent and indicate general

acceptance of the approach and toolset (see responses to questions Q.10 to Q.12). 87%

of the users have agreed that it was “easy to specify the relations between left hand side

and right hand side visualisations” which complements responses to question Q.3 on

usefulness of drag and drop specification of source and target correspondences.

Similarly 93% of the users have agreed that the approach provided by the tool for

specifying transformation using visualisations was easy.

In terms of ease of learning, although 73% of the users have agreed on quick learning of

the tool, the majority of them were reluctant to drag and drop elements of the

visualisations on each other. This is where they asked the instructor for some

instructions for performing the task. This has been reflected in their responses to

questions Q.14 and Q.15. We believe this is due to the fact that the approach taken for

transformation and by the tool was very different to users’ expectations. For example in

occasions they were reminded by the instructor that they “can” drag and drop notations

on each other and once reminded, were able to perform the given tasks.

Questions Q.17 to Q19 were designed to see users’ satisfaction of the approach and

toolset. The responses to these questions suggest that the majority of users perceived the

259

approach positively. For example, 77% of the users agreed that they might use the

approach in their future project and some users mentioned that due to the nature of their

work, they do not see any need to use transformations in general.

8.4.2.3 Suggester

To have a user evaluation of our Suggester system, third section of questionnaire was

dedicated to questions regarding Suggester system and how satisfied users were by the

system. The questions of this section and the results collected from this user evaluation

are provided in Table 8.11. It should be noted that users were not asked specifically by

the tasks to use or follow any of the recommendations. They were however, introduced

to the Suggester system in the introduction video and were free to use provided

recommendations as they see fit.

Similar to visualisation and transformation steps, the analysis of the collected

participant responses are provided in Table8.11 using median, mode and frequency of

the responses.

Table 8.11 User study questions of Suggester system and user responses.

 Question
Participant Responses

Median Mode Frequency (%)
Usefulness

Q.1
It is useful to have
recommendations during the
process

4 5

Q.2

Recommendations helped me
better understand relations
between source and target
visualisations

4 5

260

Q.3 Recommendations help me
discover other possible relations 3 3

Q.4 Recommendations seemed to
offer a good (correct) solution 4 4

Q.5 I was able to trust the
recommendations 4 4

Q.6 I used recommendations at least
once 4 5

Q.7 I already knew most of the
recommendations 2 3

Presentation

Q.8 I was satisfied with the way
recommendations were presented 4 5

Q.9

When a recommendation said for
example “Bar/Name” I was easily
able to spot “Name” in source or
target visualisations

4 5

Q.10 I was able to use
recommendations 4 4

Q.11 It is likely that I use provided
recommendation system in future 4 5

261

Q.12 I found some recommendation to
be surprising in a good way 3 3

Q.13 I had fun using the
recommendations 3 3

The questions and responses of Table 8.11 are grouped into two categories of usefulness

and presentation of the recommended correspondences. More specifically, question Q.1

checks the usefulness of having a recommendation system in general. As can be seen

form the responses in the table, 74% of participants agree on the usefulness of

recommendations. However, when asked whether provided recommendations helped

users understand relations between source and target visualisations (Q.2) only 60% of

the users have responded agree and strongly agree. This indicates that although majority

of users did agree on usefulness of such recommendations, fewer number of them have

found it actually helpful. Multiple reasons might have contributed to these results. First,

since the users had their first experience with the recommendation system, it is valuable

for the recommender to provide higher precision recommendations to spark users’ trust

[162], [183]. However, user responses to question Q.5 indicate that only 67% of them

were able to trust the recommended correspondences.

Second, due to lack of available data in notation’s model, the Suggester system is not

100% accurate at visualisation step. Also since few recommendations are provided at

that stage, it is easier to notice incorrect recommendations. Given that users’ first

encounter with the recommendations were at the visualisation step, incorrect

recommendations at that stage might have contributed to this loss of trust. This is

reflected in users’ response to question Q.4 on correctness of the recommendations as

well. Only 67% of the users found recommendations to be correct. However, with

regards to question Q.6, 60% of participants have agreed that they have used

recommendations at least once.

262

Our observation also indicates that users did not consider the role of recommendations

as guidance or means for simplifying the task. This could be due to focus of task

handouts on the visualisation and transformation rather than recommendations. For

example, only 40% of the participants have acknowledged that recommendations helped

them discover new possibilities (Q.3) which indicates that 60% of them were not

looking for other possibilities in the recommendations.

The results of Table 8.11 also show interesting findings. Only 7% of the users indicate

(in question Q.7) that they did not already know most of the recommendations (note that

this is a negative statement). This is in accordance to the calculated precision of one for

the tested examples of the tasks (see Table 8.5). Also, the responses to question Q.12

show that less than half of the participants (46%) agree that recommendations were

novel and surprising. This indicates the importance of novelty in recommender systems.

In terms of recommendations representation, we have received 60% satisfaction (in

response to Q.8) which could be a clue to why users did not use the recommendations

and preferred drag and drop to specify correspondences. For example a participant did

not realise that by selecting from suggestions, it is possible to specify correspondences

and therefore did not use them at all. Similarly only 60% agreed that they could find the

correspondences been mentioned by the recommendations in the source and target

visualisations (in response to question Q.9). This indicates the inefficiency of

representing recommendations as lists. Improved representations could use the

augmentation in the visualisations to help users explore possible correspondences.

Overall, the Suggester mechanism achieved lower acceptance than the visualisation and

transformation and therefore parts of our third main research question on acceptable

recommendations and ways to guide users are not fully satisfied. We believe this is due

to the fact that the given examples were simple and the users already new most of the

correspondences, thus did not realise the potential of having a recommendation system

for guidance. For example a participant stated that the mapping correspondences were

“easy to find and specify” and therefore felt no need to use recommendations. Low level

and basic representation of recommendations might have played another role in lower

acceptance of the Suggester system. Provided that the visualisations were more

complex, it would have evaluated effects of the Suggester system much better.

263

8.4.3 Threats to validity

We have taken strong considerations to minimise threats to validity and their effects.

However, there are set of threats that may have affected the validity of this experiment.

In the following, we list these threats according to internal, external, construct and

statistical validity classification.

8.4.3.1 Threats to internal validity

Testing: four of our participants mentioned the effect of learning during the

experiments. They admitted that since the drag and drop tasks ware being repeated for

tasks one and two, they could perform second task easier. This might have had effects

on better acceptance of the approach for tasks two and three.

Questionnaire: Although the questions of the questionnaire were simplified and an

instructor was available during the experiment and when participants were asked to fill

out the questionnaire, it is possible that some participants were reluctant to ask

questions regarding the items being asked in the questionnaire and therefore responded

based on their understanding of the questions.

8.4.3.2 Threats to external validity

Participant affiliation: The users whom participated in the evaluation were mostly

chosen among staff and students of Swinburne University of Technology (18 out of 19).

This potentially represents a bias and will affect generalisation of our claims.

Participant background: 47 precent of the participants shared common background in

Software Engineering and 40 precent shared background in computer science. As a

result, their background could have introduced bias in terms of their familiarity with

software tools.

8.4.3.3 Threats to construct validity

Task: Due to simplicity of the experiment for one group, performing bar chart to pie

chart transformation, five participants did not use the recommendations. These have had

264

effects on evaluation of the recommendation system. Also, participants that were

assigned to second group, did not use the visualisation modification task and their

responses to question Q.5 of the visualisation task on making changes to the

visualisations was based on their understanding of the ability of the tool and approach.

Experimenter effects: Some instructions made to the participants by the instructor

during experiment may have affected the participants’ experience. The instructor was

asked not to give any instructions unless asked by the participants. However, our

observation of the responses and the recordings, demonstrated that the participants who

requested more instructions had accordingly mentioned this need in their responses.

8.4.3.4 Threats to statistical validity

Statistical calculations: We have checked and double checked the statistics used for our

user study evaluation to confirm their accuracy. As a result and to the best of our

knowledge, there is no statistical calculation problem threating the validity of the

results.

Sample size: It is possible that the inferences we have made from our results are due to

limited number of participants. The statistics we have used are calculated having non-

parametric characteristics of the responses in mind. We do not reject the possibility of

changes in the inferences given the number of users increases. The evaluation is

therefore an ongoing process and we seek to provide incremental updates to the

approach and evaluate accordingly.

8.5 Summary

This chapter provided evaluation of our approach in creating visualisations and

transformations. This evaluation was performed using a comparative study of our

approach and toolset, a quantitative evaluation of our recommender system and a

complimentary user evaluation.

265

A comparative study of the toolset and approach with other available transformation

approaches was provided and a more detailed comparison was discussed with ALTOVA

MapForce which is a state of the art mapping tool. This comparison demonstrates how

our approach and its tool support (CONVErT) sets apart from state of the art

transformation and mapping tools being used today.

The quantitative evaluation was designed to capture correctness of the recommendation

system designed in the Suggester. It evaluated the recommendations using a benchmark

and couple of examples against quantitative measures of precision, recall, and f-

measure. The results demonstrate that for more complex examples the suggester system

cannot produce high correctness with regards to precision and recall. It was concluded

that given that information on examples being transformed are available, the Suggester

can be optimised to perform better recommendations.

Our quantitative evaluation also included a discussion of the quality of the generated

code of CONVErT and compared it to the transformation code generated by ALTOVA

MapForce and transformation code written by an XSLT expert using set of quantitative

metrics. This comparison demonstrated that the automatically generated transformation

script of CONVErT is equally effective in comparison to the transformation script

written by an expert and generated automatically by ALTOVA MapForce.

A user evaluation was carried out and we described experiment setup, questionnaires

and the tasks to be performed by participants. The collected responses of this study were

discussed in details. The collective evaluation results demonstrated that the visualisation

and transformation approach was perceived positively by users; while the Suggester

system did not receive high acceptance. It was concluded that the correctness of

recommendations and our approach for their representation might have played key roles

in lower acceptance of the Suggester.

266

Chapter 9

Conclusion and future work

9.1 Conclusion

This thesis introduced an approach and method for performing model transformation on

concrete visualisations of models. This approach helps to better incorporate user's

domain knowledge by providing familiar example concrete visualisations for

transformation generation. Users specify complex model element mappings between

concrete visual notational elements using interactive drag-and-drop and reusable, spread

sheet-like mapping formulae. Complex, scalable, efficient, accurate and reusable model

transformation implementations are then generated from these by-example visual

source-to-target mappings. The use of this concrete source-to-target mapping metaphor

can be generalised to a wide range of model transformation problems.

This new approach provides support for visualising example models to enable a more

user-centric specification of transformation rules using their concrete notations. It

allows end users to interactively specify rich, human-centric visualisations of complex

data using a visual, drag-and-drop, by-example approach. End users can generate

reusable visualisation implementations from these high-level specifications, and use

their generated, reusable model visualisations to visualise two (or more) complex data

sets (i.e. example models). Model element mappings between their data sets are then

generated via drag-and-drop of concrete visualisation elements.

267

To enable efficient model transformations, the approach automatically creates high-

level abstractions for transformation generation from the concrete visualisations.

Metamodels of the underlying model of visualisations are reverse engineered to

automatically create abstractions from user-provided model examples.

In addition, to better aid users to find correspondences in large model visualisations, an

automatic recommender system was introduced which provides suggestions for possible

correspondences between source and target model elements. This recommender system

uses model characteristics and visual representations to generate guidance for large

model mapping problems. These recommendations allow users to cut corners in

specification of transformation correspondences by choosing among suggestions.

Complex model transformation code is automatically generated from the user's

interaction with concrete notations and suggested recommendations.

A proof of concept implementation of this approach, CONcrete Visual assistEd

Transformation framework (CONVErT), was introduced to help realisation and

evaluation of the approach. It allows generation, design and use of varieties of notations

including text, boxes and lines, shapes, etc. It integrates the use and definition of

mapping functions and conditions and enables reverse engineering of metamodels.

CONVErT generates reverse transformations automatically (when possible) for

bijective transformations. It also provides a visual representation of transformation rules

using rule’s source and target notation visualisations. CONVErT framework is not

limited to specific domain and is suitable for a range of large-scale model to model

transformation problems, including software tool integration, EDI message

transformation, and CAD tool integration among others. In summary, key novel

contributions of this thesis research are:

• Producing reusable model visualisation specifications using an interactive, by-
example approach.

• Using a concrete, by-example model transformation metaphor.
• Model mapping and transformation specification by drag and drop between

concrete visualisations.
• Utilising a set of recommenders using various recommender system techniques and

generating mappings from recommendations.
• Supporting fully automated model transformation script generation from specified

mappings.

268

• Providing scalable, easy-to-use, robust and extensive tool support for each of these
facilities.

• Carrying out an end user evaluation of our prototype toolset and overall approach.

Next section summarises key future work and research directions derived from this

thesis.

9.2 Future work

Indeed a major future work is to perform a structured quantitative experiment from

which statistically significant statements can be made for example to mitigate against

learning effects. Additionally, four key directions have been identified for future work,

1) improved transformation generation and tool support, 2) improved transformation

recommender system, 3) dynamic visualisation, and 4) application to other domains.

The following subsections describe these future directions in detail.

9.2.1 Transformation generation and tool support

To further expand the score of the work presented by this thesis, support for complete

automatic reverse transformation generation, handling of lossy transformations,

composition of transformation rules and model checking for conditional transformations

can be also integrated.

The tool support provided in this thesis (CONVErT), was intended as a proof of concept

prototype and therefore has number of implementation specific shortcomings to be

addressed. For example, it can be improved to accommodate alternative transformation

languages like ATL or TGG.

CONVErT uses set of predefined functions to generate more complex transformation

rules. Although it is possible to add to the list of functions by using the function

template, it is not fully targeted for novice users as it involves understanding of

269

functions provided by the transformation language. Tool support can be further

improved by providing more reusable functions and better function designer interfaces.

Although values to take part in model transformation can be imported from multiple

input files, a multi-model to multi-model source to target transformation is not allowed

by the framework. Further improvements can cover this limitation.

9.2.2 Transformation recommender system

The Suggester system introduced by this thesis was designed to recommend model

element correspondences. It can be further improved to consider links between model

and visualisation and suggest correspondences by analysing visual similarity of model

elements. For example, if two notations have a box shape, they may probably

correspond to each other.

The Suggester system of CONVErT is limited to recommending one to one

correspondences and cannot recommend transformation rules. The recommended

correspondences (if accepted) will help generating transformation rule templates or

internal rule correspondences. It can be extended to provide transformation rules by

grouping set of related correspondences. Additionally, the framework can be altered to

automatically accept high scoring recommendations. This way it will help further

improve efficiency of transformation designers.

Representation of recommendations in our approach is based on list-wise arrangement

of suggested recommendations. More advanced visual representations can be included

in the framework to augment recommendations in visualisations. Also, further user

studies can be conducted to assess the utility of drag and drop actions on the

visualisations independently and subsequently examine the additional benefit of the

recommendations.

9.2.3 Dynamic and enhanced visualisation

Visualisation examples provided in this thesis were mostly proof of concepts and were

provided to show capabilities of our approach. Consequently, very large scale and more

270

complex examples were not provided. We seek to apply the approach on larger example

visualisations including 3D visualisations (e.g. X3D, GXL) or interactive visualisation

for web and mobile devices. These visualisations could explore temporal influence on

data to show potential multiple linked views of an underlying data set.

Additionally, the approach presented by this thesis is currently limited to visualisations

that exhibit clear notation separations. For example, in a class diagram, each class is

composed of set of attributes and operations which exhibit clear separation in terms of

visual view and their model with the class itself. A visualisation example that does not

exhibit this separation is Euler diagrams. In Euler diagrams, each set’s notation may

contain other sets. With our approach, since the model representing sets are the same

(with regards to their abstraction), this will result in an ambiguity for the transformation

engine to produce the final visualisations as the transformation rules will have to call

themselves recursively. We have not tested these visualisations thoroughly with our

approach, and therefore have assigned their support as part of our future work.

The visual notation generation approach (Skin++) introduced in this thesis can be

altered to accommodate definition of interaction tasks as well. Currently the interaction

embedded in notations is defined for transformation code generation. This can be

specified according to users’ needs. For example, to show elements of the source model

that the target notations are sourced from, by right clicking on target elements; or

provide drill-down or hide/show visual elements; or to embed further data relations in

the visualisations. An example is where a pie chart has been visualised representing

percentage of people who voted for certain product. By clicking on a pie piece in this

visualisation, it would be possible to show what percentage of them were male and what

percentage were female.

9.2.4 Other Domains

We are investigating possible application domains for our visualisation and

transformation approach other than those mentioned in this thesis. These domains can

benefit our approach in both areas of visualisation by example and transformation using

concrete visualisations by example.

271

The visualisation by example approach can benefit users that are not expert in

visualisations techniques and software engineering in general. Examples of such

domains are genealogy and urban traffic monitoring. Users of these domains have the

required knowledge to process and understand their data and therefore, can use

examples of such data as the basis for visualisation and data to visualisation mapping.

Data and tool integration is among possible domains that can benefit from our concrete

visual transformation approach. For example, consider Electronic Data Interchange

(EDI) messages that have become standard in e-commerce applications. When a parent

company’s system is to send or receive data from non-EDI based third parties, a data

transformation should be used. Given that users of such e-commerce applications might

not be experts in transformation generation, an approach that uses familiar visualisation

of both source and target messages and generates transformers by drag and drop can be

very helpful.

272

References / Bibliography

[1] “ATL Transformation Zoo, A Collection of ATL Transformation Examples,”
2012. [Online]. Available: http://www.eclipse.org/m2m/atl/atlTransformations/.

[2] G. E. Krasner and S. T. Pope, “A Cookbook for Using the Model- View-
Controller User Interface Paradigm in Smalltalk-80,” J. Object Oriented
Program., vol. 1, no. 3, pp. 26–49, 1988.

[3] E. R. Tufte, Beautiful Evidence, 1St Editio. Cheshire, Connecticut: Graphics
Press, 2006.

[4] M. Humphrey, “Creating reusable visualizations with the relational visualization
notation,” in Proceedings of the conference on Visualization’00, 2000, pp. 53–60.

[5] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple protein interaction
networks with application to functional orthology detection,” Proc. Natl. Acad.
Sci. U. S. A., vol. 105, no. 35, pp. 12763–12768, Sep. 2008.

[6] M. F. van Amstel, C. F. J. Lange, and M. G. J. van den Brand, “Metrics for
analyzing the quality of model transformations,” in 12th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE
2008), 2008, pp. 41–51.

[7] E. Seidewitz, “What models mean,” IEEE Softw., vol. 20, no. 5, pp. 26–32, Sep.
2003.

[8] S. Kent, “Model driven engineering,” in Integrated Formal Methods, 2002, pp.
286–298.

[9] R. France and B. Rumpe, “Model-driven Development of Complex Software  : A
Research Roadmap,” in Future of Software Engineering (FOSE), 2007, pp. 37–
54.

[10] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and Soul of
Model-Driven Software Development,” IEEE Softw., vol. 20, no. 5, pp. 42–45,
Sep. 2003.

[11] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[12] L. Kapova, T. Goldschmidt, J. Happe, and R. H. Reussner, “Domain-specific
templates for refinement transformations,” in Proceedings of the First
International Workshop on Model-Driven Interoperability, 2010, pp. 69–78.

[13] T. Mens, G. Taentzer, and D. Müller, “Challenges in model refactoring,” in Proc.
1st Workshop on Refactoring Tools, University of Berlin, 2007, vol. 98, pp. 1–5.

273

[14] R. Bull and J. Favre, “Visualization in the Context of Model Driven
Engineering,” in Proceedings of the MoDELS’05 Workshop on Model Driven
Development of Advanced User Interfaces, 2005.

[15] H. A. Muller and K. Klashinsky, “Rigi: a system for programming-in-the-large,”
in Software Engineering, 1988., Proceedings of the 10th International
Conference on, 1988, pp. 80–86.

[16] A. M. Ernst, J. Lankes, C. M. Schweda, and E. Denert-stiftungslehrstuhl, “Using
Model Transformation for Generating Visualizations from Repository Contents,
An Application to Software Cartography,” Munchen, Germany, 2006.

[17] M.-A. D. Storey and H. A. Muller, “Manipulating and documenting software
structures using SHriMP views,” in Software Maintenance, 1995. Proceedings.,
International Conference on, 1995, pp. 275–284.

[18] J. C. Grundy, J. G. Hosking, R. W. Amor, W. B. Mugridge, and Y. Li, “Domain-
specific visual languages for specifying and generating data mapping systems,” J.
Vis. Lang. Comput., vol. 15, no. 3–4, pp. 243–263, Jun. 2004.

[19] J. Grundy, J. Hosking, J. Huh, and K. Li, “Marama  : an Eclipse meta-toolset for
generating multi-view environments,” in Proceedings of the 30th international
conference on Software engineering ICSE 2008, 2008, pp. 819–822.

[20] M. Minas, “Concepts and realization of a diagram editor generator based on
hypergraph transformation,” Sci. Comput. Program., vol. 44, no. 2, pp. 157–180,
2002.

[21] J. Hosking, S. Fenwick, W. Mugridge, and J. Grundy, “Cover yourself with
Skin,” Queensland 4072 Australia, 1994.

[22] D. Steinberg, F. Budinsky, P. Marcelo, and E. Merks, Eclipse Modeling
Framework (The Eclipse Series), 2nd ed. Addison-Wesley Professional, 2009,
pp. 1–744.

[23] “Eclipse GMF website.,” http://www.eclipse.org/modeling/gmp/. [Online].
Available: http://www.eclipse.org/modeling/gmp/.

[24] A. Königs, “Model Transformation with Triple Graph Grammars,” in Model
Transformations in Practice Satellite Workshop of MODELS, 2005, pp. 1–16.

[25] L. Grunske, L. Geiger, and M. Lawley, “A graphical specification of model
transformations with triple graph grammars,” in Model Driven Architecture–
Foundations and Applications, 2005, pp. 284–298.

[26] J. Bézivin, F. Jouault, and D. Touzet, “An introduction to the ATLAS Model
Management Architecture,” 2005.

274

[27] J. Bézivin, G. Dupé, F. Jouault, G. Pitette, and J. E. Rougui, “First experiments
with the ATL model transformation language: Transforming XSLT into
XQuery,” in 2nd OOPSLA Workshop on Generative Techniques in the context of
Model Driven Architecture, 2003, p. 50.

[28] J. Bettin, “Ideas for a concrete visual syntax for model-to-model
transformations,” in Proceedings of the 18th International Conference, OOPSLA
2003, Workshop on Generative Techniques in the context of Model Driven
Architecture, 2003.

[29] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wimmer,
“Model Transformation By-Example: A Survey of the First Wave,” Concept.
Model. Its Theor. Found., vol. 7260, pp. 197–215, 2012.

[30] I. Garcìa-Magariño, J. Gómez-Sanz, and R. Fuentes-Fernández, “Model
transformation by-example: an algorithm for generating many-to-many
transformation rules in several model transformation languages,” in Proceedings
of the 2nd International Conference on Theory and Practice of Model
Transformations (ICMT ’09), 2009, pp. 52–66.

[31] J. Grundy, R. Mugridge, J. Hosking, and P. Kendall, “Generating EDI message
translations from visual specifications,” in Proceedings. 16th Annual
International Conference onAutomated Software Engineering, (ASE 2001).,
2001, pp. 35–42.

[32] Y. Li, J. Grundy, R. Amor, and J. Hosking, “A data mapping specification
environment using a concrete business form-based metaphor,” in Proceedings
IEEE 2002 Symposia on Human Centric Computing Languages and
Environments, 2002, pp. 158–166.

[33] T. Baar and J. Whittle, “On the Usage of Concrete Syntax in Model
Transformation Rules,” in Proceedings of the 6th international Andrei Ershov
memorial conference on Perspectives of systems informatics (PSI’ 2006), 2006,
vol. 20, no. 1, pp. 84–97.

[34] X. Dolques, M. Huchard, C. Nebut, and P. Reitz, “Learning Transformation
Rules from Transformation Examples: An Approach Based on Relational
Concept Analysis,” in 14th IEEE International Enterprise Distributed Object
Computing Conference Workshops, 2010, pp. 27–32.

[35] R. Grønmo, “Using Concrete Syntax in Graph-based Model Transformations,”
University of Oslo, 2009.

[36] M. Wimmer, M. Strommer, H. Kargl, and G. Kramler, “Towards Model
Transformation Generation By-Example,” in 2007 40th Annual Hawaii
International Conference on System Sciences (HICSS’07), 2007, pp. 285–295.

[37] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger,
W. Schwinger, and M. Wimmer, “Lifting metamodels to ontologies: A step to the

275

semantic integration of modeling languages,” in Model Driven Engineering
Languages and Systems, 2006, pp. 528–542.

[38] Y. Sun, J. White, and J. Gray, “Model transformation by demonstration,” in
Model Driven Engineering Languages and Systems, 2009, pp. 712–726.

[39] M. Kessentini, H. Sahraoui, M. Boukadoum, and O. Ben Omar, “Search-based
model transformation by example,” Softw. Syst. Model., pp. 1–18, Sep. 2010.

[40] D. Varró, “Model transformation by example,” in Model Driven Engineering
Languages and Systems, 2006, pp. 410–424.

[41] D. Varró and Z. Balogh, “Automating model transformation by example using
inductive logic programming,” Proc. 2007 ACM Symp. Appl. Comput. -
SAC ’07, p. 978, 2007.

[42] X. Dolques, A. Dogui, J. Falleri, M. Huchard, C. Nebut, and F. Pfister, “Easing
model transformation learning with automatically aligned examples,” in 7th
European Conference on Modelling Foundations and Applications, 2011, pp.
189–204.

[43] P. Brosch, P. Langer, M. Seidl, K. Wieland, M. Wimmer, G. Kappel, W.
Retschitzegger, and W. Schwinger, “An example is worth a thousand words:
Composite operation modeling by-example,” in Model Driven Engineering
Languages and Systems, 2009, pp. 271–285.

[44] R. Robbes and M. Lanza, “Example-based program transformation,” in Model
Driven Engineering Languages and Systems, 2008, pp. 174–188.

[45] H. Lieberman, Your wish is my command: programming by example. Morgan
Kaufmann Publishers, 2001, pp. 1–416.

[46] S. Bossung, H. Stoeckle, J. Grundy, R. Amor, and J. Hosking, “Automated data
mapping specification via schema heuristics and user interaction,” in
Proceedings. 19th International Conference on Automated Software Engineering,
2004., 2004, no. c, pp. 208–217.

[47] Altova, “MapForce,” 2013. [Online]. Available:
http://www.altova.com/mapforce.html.

[48] I. Kurtev, J. Bézivin, and M. Akcsit, “Technological Spaces: An Initial
Appraisal,” in International Conference on Cooperative Information Systems
(CoopIS), DOA’2002 Federated Conferences, Industrial Track, Irvine, USA,
2002, pp. 1–6.

[49] J. Bézivin, “Model driven engineering: an emerging technical space,” in
Proceedings of the 2005 international conference on Generative and
Transformational Techniques in Software Engineering, 2006, pp. 36–64.

276

[50] E. Rodriguez-Priego, F. J. García-Izquierdo, and Á. L. Rubio, “Modeling issues:
a survival guide for a non-expert modeler,” in Model Driven Engineering
Languages and Systems, 2010, pp. 361–375.

[51] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez, “Model-based DSL
frameworks,” in Companion to the 21st ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications - OOPSLA ’06,
2006, pp. 602–615.

[52] M. Siikarla, “A Light-weight Approach to Developing Interactive Model
Transformations,” Tempere University of Technology, 2011.

[53] R. Lämmel and E. Meijer, “Mappings make data processing go’round,” in
Generative and Transformational Techniques in Software Engineering, 2006, pp.
169–218.

[54] C. Burt, D. Dsouza, K. Duddy, W. El Kaim, W. Frank, S. Iyengar, J. Miller, J.
Mischkinsky, J. Mukerji, J. Siegel, R. Soley, S. Tyndal-, A. Uhl, A. Watson, and
B. Wood, “Model Driven Architecture (MDA) Document number ormsc / 2001-
07-01,” 2001.

[55] G. Miller, S. Ambler, S. Cook, S. Mellor, K. Frank, and J. Kern, “Model driven
architecture,” in Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications -
OOPSLA ’04, 2004, p. 138.

[56] F. Fondement, “CONCRETE SYNTAX DEFINITION FOR MODELING
LANGUAGES,” Ecole Polytechnique Fédérale de Lausanne, 2007.

[57] T. Baar, “Correctly defined concrete syntax,” Softw. Syst. Model., vol. 7, no. 4,
pp. 383–398, Jul. 2008.

[58] E. Visser, “Meta-programming with concrete object syntax,” in Generative
Programming and Component Engineering ACM SIGPLAN/SIGSOFT
Conference, GPCE, 2002, pp. 299–315.

[59] H. Krahn, B. Rumpe, and S. Völkel, “Integrated definition of abstract and
concrete syntax for textual languages,” in Proceedings of the 10th international
conference on Model Driven Engineering Languages and Systems, 2007, pp.
286–300.

[60] J. Bézivin, “In search of a basic principle for model driven engineering,”
Novatica Journal, Spec. Issue, vol. V, no. 2, pp. 21–24, 2004.

[61] B. Selic, “The pragmatics of model-driven development,” IEEE Softw., vol. 20,
no. 5, pp. 19–25, Sep. 2003.

277

[62] K. Czarnecki and S. Helsen, “Classification of model transformation
approaches,” in Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven Architecture, 2003, pp. 1–17.

[63] K. Czarnecki, “Feature-based survey of model transformation approaches,” IBM
Syst. J., vol. 45, no. 3, pp. 621–645, 2006.

[64] M. Amrani, J. Dingel, L. Lambers, L. Lúcio, R. Salay, G. Selim, E. Syriani, and
M. Wimmer, “Towards a model transformation intent catalog,” in Proceedings of
the First Workshop on the Analysis of Model Transformations, 2012, pp. 3–8.

[65] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electron.
Notes Theor. Comput. Sci., vol. 152, pp. 125–142, Mar. 2006.

[66] R. Schaefer, “A survey on transformation tools for model based user interface
development,” in HCI’07 Proceedings of the 12th international conference on
Human-computer interaction: interaction design and usability, 2007, pp. 1178–
1187.

[67] J. Cordy, “The TXL source transformation language,” Sci. Comput. Program.,
vol. 61, no. 3, pp. 190–210, Aug. 2006.

[68] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Satellite Events at
the MoDELS 2005 Conference, 2006, pp. 128–138.

[69] J. Clark, “XSL Transformations (XSLT) W3C Recommendation,” 1999.

[70] T. Gardner, C. Griffin, J. Koehler, and R. Hauser, “A review of OMG MOF 2 . 0
Query / Views / Transformations Submissions and Recommendations towards
the final Standard.” OMG Document, 2003.

[71] A. Kalnins, J. Barzdins, and E. Celms, “The model transformation language
MOLA,” in Model Driven Architecture European MDA Workshops: Foundations
and Applications, MDAFA 2003 and MDAFA 2004,, 2005, vol. 68, no. 3, pp. 62–
76.

[72] D. Kolovos, R. Paige, and F. Polack, “The epsilon transformation language,” in
Proceedings of the 1st international conference on Theory and Practice of Model
Transformations, 2008, pp. 46–60.

[73] A. Schürr, “Specification of graph translators with triple graph grammars,” in
Graph-Theoretic Concepts in Computer Science 20th International Workshop,
WG ’94 June 16–18, 1994 Proceedings, 1995, pp. 151–163.

[74] U. Nickel, J. Niere, and A. Zündorf, “The FUJABA Environment,” in
Proceedings of the 22nd international conference on Software engineering, 2000,
pp. 742–745.

278

[75] R. Wagner, “Developing Model Transformations with Fujaba,” in Proceedings of
the 4th International Fujaba Days, 2006, 2006, pp. 79–82.

[76] A. Agrawal, “GReAT: a metamodel based model transformation language,” in
18th IEEE International Conference on Automated Software Engineering, 2003.

[77] “XML path language (XPath) 2.0,” World Wide Web Consortium, 2005. .

[78] P. Stevens, “Bidirectional model transformations in QVT: semantic issues and
open questions,” Softw. Syst. Model., vol. 9, no. 1, pp. 7–20, Dec. 2008.

[79] A. Kalnins, E. Celms, and A. Sostaks, “Tool support for MOLA,” Electron.
Notes Theor. Comput. Sci., vol. 152, pp. 83–96, Mar. 2006.

[80] I. Avazpour and J. Grundy, “CONVErT: A framework for complex model
visualisation and transformation,” in 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2012, pp. 237–238.

[81] M. Faunes, H. Sahraoui, and M. Boukadoum, “Generating model transformation
rules from examples using an evolutionary algorithm,” in 27th IEEE/ACM
International Conference on Automated software Engineering, 2012, pp. 250–
253.

[82] M. Kessentini, H. Sahraoui, and M. Boukadoum, “Model Transformation as an
Optimization Problem,” in Proceedings of the 11th international conference on
Model Driven Engineering Languages and Systems, 2008, pp. 159–173.

[83] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut, “Metamodel matching
for automatic model transformation generation,” in Model Driven Engineering
Languages and Systems, 2008, no. Cpre 5326, pp. 326–340.

[84] K. Voigt and T. Heinze, “Metamodel matching based on planar graph edit
distance,” in Third International Conference on Theory and Practice of Model
Transformations, ICMT 2010, 2010, pp. 245–259.

[85] L. Lafi, S. Hammoudi, and J. Feki, “Metamodel matching techniques in MDA:
challenge, issues and comparison,” in Model and Data Engineering, 2011, pp.
278–286.

[86] M. Strommer, M. Murzek, and M. Wimmer, “Applying model transformation by-
example on business process modeling languages,” in Proceedings of the 2007
conference on Advances in conceptual modeling: foundations and applications,
2007, pp. 116–125.

[87] I. Avazpour and J. Grundy, “Using Concrete Visual Notations as First Class
Citizens for Model Transformation Specification,” in IEEE Symposium on Visual
Languages and Human-Centric Computing, 2013, pp. 87–90.

279

[88] H. Cho, J. Gray, Y. Sun, and J. White, “Modeling Language Creation by
Demonstration,” 2010.

[89] I. Avazpour, J. Grundy, and L. Grunske, “Tool Support for Automatic Model
Transformation Specification using Concrete Visualisations,” in IEEE/ACM
International Conference on Automated Software Engineering, 2013.

[90] G. G. Robertson, M. P. Czerwinski, and J. E. Churchill, “Visualization of
mappings between schemas,” in Proceedings of the SIGCHI conference on
Human factors in computing systems - CHI ’05, 2005, p. 431.

[91] R. Grønmo, B. Møller-Pedersen, and G. K. Olsen, “Comparison of three model
transformation languages,” in ECMDA-FA ’09 Proceedings of the 5th European
Conference on Model Driven Architecture - Foundations and Applications, 2009,
pp. 2–17.

[92] H. Stoeckle, J. Grundy, and J. Hosking, “A framework for visual notation
exchange,” J. Vis. Lang. Comput., vol. 16, no. 3, pp. 187–212, Jun. 2005.

[93] H. Stoeckle, J. Grundy, and J. Hosking, “Approaches to supporting software
visual notation exchange,” in IEEE Symposium on Human Centric Computing
Languages and Environments, Proceedings. 2003, 2003, no. October, pp. 59–66.

[94] M. Schmidt, “Transformations of UML 2 models using concrete syntax patterns,”
in Rapid Integration of Software Engineering Techniques, 2006, pp. 130–143.

[95] E. Visser, “Stratego: A language for program transformation based on rewriting
strategies system description of stratego 0.5,” in Rewriting Techniques and
Applications, 2001, pp. 357–361.

[96] J. de Lara and H. Vangheluwe, “AToM3: A Tool for Multi-formalism and Meta-
modelling,” in Proceedings of the 5th International Conference on Fundamental
Approaches to Software Engineering, 2002, pp. 174–188.

[97] A. Balogh and D. Varró, “Advanced model transformation language constructs in
the VIATRA2 framework,” in Proceedings of the 2006 ACM symposium on
Applied computing - SAC ’06, 2006, pp. 1280–1287.

[98] E. Willink, “UMLX: A graphical transformation language for MDA,” in
Proceedings of the Workshop on Model Driven Architecture: Foundations and
Applications, 2003, pp. 13–24.

[99] P. Braun and F. Marschall, “Transforming Object Oriented Models with BOTL,”
Electr. Notes Theor. Comput. Sci., vol. 72, no. 3, pp. 103–117, 2003.

[100] P. Braun and F. Marschall, “Botl–the bidirectional object oriented transformation
language,” 2003.

280

[101] L. Haas and H. Ho, “Clio grows up: from research prototype to industrial tool,”
in Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, 2005, pp. 805–810.

[102] P. Stevens, “A Landscape of Bidirectional Model Transformation,” in in
Generative and Transformational Techniques in Software Engineering II, R.
Lämmel, V. Joost, and J. Saraiva, Eds. Springer-Verlag, 2008, pp. 408–424.

[103] R. Fagin, L. Haas, M. Hernández, R. Miller, L. Popa, and Y. Velegrakis, “Clio:
Schema Mapping Creation and Data Exchange,” in in Conceptual Modeling:
Foundations and Applications, vol. 5600, A. Borgida, V. Chaudhri, P. Giorgini,
and E. Yu, Eds. Springer Berlin Heidelberg, 2009, pp. 198–236.

[104] G. Lindén, H. Tirri, and A. I. Verkamo, “ALCHEMIST: a general purpose
transformation generator,” Softw. Pr. Exper., vol. 26, no. 6, pp. 653–675, Jun.
1996.

[105] A. Van Deursen, J. Heering, and P. Klint, Language Prototyping: An Algebraic
Specification Approach. World Scientific Publishing Co., Inc., 1996.

[106] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for Implementing
Domain-Specific Languages,” in Proceedings of the 5th International
Conference on Software Reuse, 1998, p. 143–.

[107] J. Izquierdo, J. Cuadrado, and J. G. Molina, “Gra2MoL: A domain specific
transformation language for bridging grammarware to modelware in software
modernization,” in Workshop on Model-Driven Software Evolution, 2008, pp. 1–
8.

[108] “Eclipse.” [Online]. Available: http://www.eclipse.org/.

[109] S. Fenwick, J. Hosking, and M. Warwick, “A Visualisation System for Object-
Oriented Programs,” in Technology of object-oriented languages and systems
TOOLS 15, 1994, pp. 93–103.

[110] L. Li, J. Hosking, and J. Grundy, “MaramaEML: An Integrated Multi-View
Business Process Modelling Environment with Tree-Overlays, Zoomable
Interfaces and Code Generation,” 2008 23rd IEEE/ACM Int. Conf. Autom. Softw.
Eng., pp. 477–478, Sep. 2008.

[111] M. Kamalrudin, J. Grundy, and J. Hosking, “MaramaAI: tool support for
capturing and managing consistency of multi-lingual requirements,” in
Proceedings of the 27th IEEE/ACM Conference on Automated Software
Engineering, 2012, pp. 1–4.

[112] M. Minas, “Specifying Graph-like Diagrams with DiaGen,” Electron. Notes
Theor. Comput. Sci., vol. 72, no. 2, pp. 102–111, 2002.

281

[113] A. R. Jansen, K. Marriott, and B. Meyer, “CIDER  : A Component-Based Toolkit
for Creating Smart Diagram Environments,” in Proceedings of the Ninth
International Conference on Distributed and Multimedia Systems, 2003, pp. 353–
359.

[114] K. Pantazos and S. Lauesen, “Constructing Visualizations with InfoVis Tools -
An Evaluation from a user Perspective,” in Proceedings of the International
Conference on Information Visualization Theory and Applications, 2012, pp.
731–736.

[115] K. Pantazos, S. Xu, M. Kuhail, and S. Lauesen, “uVis: A Formula-Based
Visualization Tool,” in IEEE VisWeek 2010 Posters, 2010.

[116] I. Herman, G. Melançon, and M. S. Marshall, “Graph Visualization and
Navigation in Information Visualization: A Survey,” IEEE Trans. Vis. Comput.
Graph., vol. 6, no. 1, pp. 24–43, Jan. 2000.

[117] C. Hirsch, J. Hosking, J. Grundy, T. Chaffe, D. Macdonald, and Y. Halytskyy,
“The Visual Wiki: A New Metaphor for Knowledge Access and Management,”
in System Sciences, 2009. HICSS ’09. 42nd Hawaii International Conference on,
2009, pp. 1–10.

[118] C. Hirsch, J. Hosking, J. Grundy, and T. Chaffe, “ThinkFree: using a visual Wiki
for IT knowledge management in a tertiary institution,” in Proceedings of the 6th
International Symposium on Wikis and Open Collaboration, 2010, pp. 7:1–7:10.

[119] C. Hirsch, J. Hosking, and J. Grundy, “VikiBuilder: end-user specification and
generation of visual wikis,” in Proceedings of the IEEE/ACM international
conference on Automated software engineering, 2010, pp. 13–22.

[120] M. P. Robillard, R. J. Walker, and T. Zimmermann, “Recommendation Systems
for Software Engineering,” Software, IEEE, vol. 27, no. 4, pp. 80–86, 2010.

[121] G. Adomavicius and a. Tuzhilin, “Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions,” IEEE Trans.
Knowl. Data Eng., vol. 17, no. 6, pp. 734–749, Jun. 2005.

[122] P. Resnick and H. R. Varian, “Recommender systems,” Commun. ACM, vol. 40,
no. 3, pp. 56–58, 1997.

[123] A. Felfernig, G. Friedrich, and L. Schmidt-Thieme, “Recommender systems,”
IEEE Intell. Syst., vol. 22, pp. 18–21, 2007.

[124] C. Drumm, M. Schmitt, H.-H. Do, and E. Rahm, “Quickmig: automatic schema
matching for data migration projects,” in Proceedings of the sixteenth ACM
conference on Conference on information and knowledge management, 2007, pp.
107–116.

282

[125] H. Kargl and M. Wimmer, “SmartMatcher-How Examples and a Dedicated
Mapping Language can Improve the Quality of Automatic Matching
Approaches,” in Proceedings of the 2008 International Conference on Complex,
Intelligent and Software Intensive Systems CISIS ’08, 2008, pp. 879–885.

[126] H. Kache, Y. Saillet, and M. Roth, “Transformation rule discovery through data
mining,” in International Workshop on New Trends in Information Integration
(NTII), 2008, pp. 24–27.

[127] P. Yeh, B. Porter, and K. Barker, “Mining transformation rules for semantic
matching,” in ECML/PKDD 2nd International Workshop on Mining Graphs,
Trees, and Sequences, 2004, pp. 1–12.

[128] J. Sousa José, D. Lopes, D. Claro, and Z. Abdelouahab, “A Step Forward in
Semi-automatic Metamodel Matching: Algorithms and Tool,” in in Enterprise
Information Systems, vol. 24, J. Filipe and J. Cordeiro, Eds. Springer Berlin
Heidelberg, 2009, pp. 137–148.

[129] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity flooding: a versatile
graph matching algorithm and its application to schema matching,” in
Proceedings 18th International Conference on Data Engineering, 2002, pp. 117–
128.

[130] P. Ivanov and K. Voigt, “Schema, ontology and metamodel matching-different,
but indeed the same?,” in Model and Data Engineering, First Internationa
Conference, 2011, pp. 18–30.

[131] P. A. Bernstein and S. Melnik, “Model management 2.0: manipulating richer
mappings,” in Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, 2007, pp. 1–12.

[132] P. Atzeni, P. Cappellari, and P. A. Bernstein, “Modelgen: Model independent
schema translation,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, 2005, no. 3, pp. 1111–1112.

[133] J. Euzenat, “An API for Ontology Alignment,” in in The Semantic Web – ISWC
2004, vol. 3298, S. McIlraith, D. Plexousakis, and F. Harmelen, Eds. Springer
Berlin Heidelberg, 2004, pp. 698–712.

[134] D. Mladenic, “Text-learning and related intelligent agents: a survey,” Intell. Syst.
their Appl. IEEE, vol. 14, no. 4, pp. 44–54, 1999.

[135] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, “Collaborative Filtering
Recommender Systems,” in in The Adaptive Web, vol. 4321, P. Brusilovsky, A.
Kobsa, and W. Nejdl, Eds. Springer Berlin Heidelberg, 2007, pp. 291–324.

[136] R. Burke, “Hybrid Recommender Systems: Survey and Experiments,” User
Model. User-adapt. Interact., vol. 12, no. 4, pp. 331–370, 2002.

283

[137] R. Burke, “Hybrid Web Recommender Systems,” pp. 377–408, 2007.

[138] Y. Ye and G. Fischer, “Reuse-Conducive Development Environments,” Autom.
Softw. Engg., vol. 12, no. 2, pp. 199–235, Apr. 2005.

[139] M. P. Robillard, “Topology analysis of software dependencies,” ACM Trans.
Softw. Eng. Methodol., vol. 17, no. 4, pp. 1–36, Aug. 2008.

[140] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth, “Hipikat: a project
memory for software development,” Softw. Eng. IEEE Trans., vol. 31, no. 6, pp.
446–465, 2005.

[141] F. Mccarey, M. Ó. Cinnéide, and N. Kushmerick, “Rascal: A Recommender
Agent for Agile Reuse,” Artif. Intell. Rev., vol. 24, no. 3–4, pp. 253–276, Nov.
2005.

[142] A. Ankolekar, K. Sycara, J. Herbsleb, R. Kraut, and C. Welty, “Supporting
online problem-solving communities with the semantic web,” in Proceedings of
the 15th international conference on World Wide Web, 2006, pp. 575–584.

[143] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa, and V. Vangala,
“DebugAdvisor: a recommender system for debugging,” in Proceedings of the
the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, 2009,
pp. 373–382.

[144] A. Mockus and J. D. Herbsleb, “Expertise browser: a quantitative approach to
identifying expertise,” in Proceedings of the 24th International Conference on
Software Engineering, 2002, pp. 503–512.

[145] M. Kersten and G. C. Murphy, “Using task context to improve programmer
productivity,” in Proceedings of the 14th ACM SIGSOFT international
symposium on Foundations of software engineering, 2006, pp. 1–11.

[146] C. Omar, Y. Yoon, T. D. LaToza, and B. A. Myers, “Active code completion,” in
Proceedings of the 2012 International Conference on Software Engineering,
2012, pp. 859–869.

[147] R. Robbes and M. Lanza, “Improving code completion with program history,”
Autom. Softw. Eng., vol. 17, no. 2, pp. 181–212, 2010.

[148] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to improve
code completion systems,” in Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium
on The foundations of software engineering, 2009, pp. 213–222.

[149] S. Mazanek, C. Rutetzki, and M. Minas, “Sketch-based Diagram Editors with
User Assistance based on Graph Transformation and Graph Drawing

284

Techniques,” in Electronic Communications of the EASST Fourth International
Workshop on Graph-Based Tools (GraBaTs 2010), 2010, vol. 32.

[150] G. Costagliola, V. Deufemia, and M. Risi, “Using Grammar-Based Recognizers
for Symbol Completion in Diagrammatic Sketches,” in Proceedings of the Ninth
International Conference on Document Analysis and Recognition - Volume 02,
2007, pp. 1078–1082.

[151] S. Mazanek and M. Minas, “Business Process Models as a Showcase for Syntax-
Based Assistance in Diagram Editors,” in in Model Driven Engineering
Languages and Systems, vol. 5795, A. Schürr and B. Selic, Eds. Springer Berlin
Heidelberg, 2009, pp. 322–336.

[152] S. Sen, B. Baudry, and H. Vangheluwe, “Domain-Specific Model Editors with
Model Completion,” in in Models in Software Engineering, H. Giese, Ed. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 259–270.

[153] S. Sen, B. Baudry, and H. Vangheluwe, “Towards Domain-specific Model
Editors with Automatic Model Completion,” Simul. J., vol. 3, no. 12, pp. 109–
126, 2009.

[154] M. Born, C. Brelage, I. Markovic, D. Pfeiffer, and I. Weber, “Auto-completion
for Executable Business Process Models,” in in Business Process Management
Workshops, vol. 17, D. Ardagna, M. Mecella, and J. Yang, Eds. Springer Berlin
Heidelberg, 2009, pp. 510–515.

[155] N. Mohd Ali, J. Hosking, J. Grundy, and J. Huh, “End-user oriented critic
specification for domain-specific visual language tools,” in Proceedings of the
IEEE/ACM international conference on Automated software engineering, 2010,
pp. 297–300.

[156] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger,
“Bidirectional Transformations: A Cross-Discipline Perspective GRACE meeting
notes, state of the art, and outlook,” Theory Pract. Model Transform., vol. 5563,
pp. 260–283, 2009.

[157] M. Siikarla, M. Laitkorpi, P. Selonen, and T. Systä, “Transformations have to be
developed ReST assured,” in First International Conference on Theory and
Practice of Model Transformations, ICMT 2008, 2008, pp. 1–15.

[158] B. Alexe, L. Chiticariu, R. J. Miller, and W.-C. Tan, “Muse: Mapping
Understanding and deSign by Example,” in Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on, 2008, pp. 10–19.

[159] D. L. Moody, “The ‘Physics’ of Notations: Towards a Scientific Basis for
Constructing Visual Notations in Software Engineering,” IEEE Trans. Softw.
Eng., vol. 35, no. 6, pp. 756–779, 2009.

285

[160] M. Hicks, “Perceptual and design principles for effective interactive
visualisations,” in in Trends in Interactive Visualization, R. Liere, T. Adriaansen,
and E. Zudilova-Seinstra, Eds. London: Springer London, 2009, pp. 155–174.

[161] J. L. Herlocker, J. a. Konstan, L. G. Terveen, and J. T. Riedl, “Evaluating
collaborative filtering recommender systems,” ACM Trans. Inf. Syst., vol. 22, no.
1, pp. 5–53, Jan. 2004.

[162] I. Avazpour, T. Pitakrat, L. Grunske, and J. Grundy, “Dimensions and Metrics
for Evaluating Recommendation Systems,” in in Recommendation Systems in
Software Engineering, M. P. Robillard, W. Maalej, R. J. Walker, and T.
Zimmermann, Eds. Springer, pp. 1–29.

[163] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J. Hand, and
D. Steinberg, “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, no.
1, pp. 1–37, Dec. 2008.

[164] R. Amor, G. Augenbroe, J. Hosking, and W. Rombouts, “Directions in modelling
environments,” Autom. Constr., vol. 4, no. 3, pp. 173–187, Oct. 1995.

[165] K. Swearingen and R. Sinha, “Beyond algorithms: An HCI perspective on
recommender systems,” in ACM SIGIR 2001 Workshop on Recommender
Systems, 2001, pp. 1–11.

[166] E. Murphy-Hill, R. Jiresal, and G. C. Murphy, “Improving software developers’
fluency by recommending development environment commands,” in
Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, 2012, pp. 42:1–42:11.

[167] S. McNee, J. Riedl, and J. Konstan, “Being accurate is not enough: how accuracy
metrics have hurt recommender systems,” in Human factors in computing
systems, 2006, pp. 1097–1101.

[168] Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization Techniques for
Recommender Systems,” Computer (Long. Beach. Calif)., vol. 42, no. 8, pp. 30–
37, Aug. 2009.

[169] R. M. Bell and Y. Koren, “Lessons from the Netflix Prize Challenge,” SIGKDD
Explor. Newsl., vol. 9, no. 2, pp. 75–79, 2007.

[170] J. Bennett and S. Lanning, “The Netflix Prize,” in Proc. KDD-Cup and
Workshop at the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2007.

[171] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web search
engine,” Comput. networks ISDN Syst., vol. 30, pp. 107–117, 1998.

286

[172] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local
alignment search tool.,” J. Mol. Biol., vol. 215, no. 3, pp. 403–410, Oct. 1990.

[173] R. E. Schapire, “Theoretical Views of Boosting and Applications,” in
Proceedings of the 10th International Conference on Algorithmic Learning
Theory, 1999, pp. 13–25.

[174] E. Bauer and R. Kohavi, “An Empirical Comparison of Voting Classification
Algorithms: Bagging, Boosting, and Variants,” Mach. Learn., vol. 36, no. 1–2,
pp. 105–139, Jul. 1999.

[175] B. Kille and S. Albayrak, “Modeling Difficulty in Recommender Systems,” in
Workshop on Recommendation Utitlity Evaluation: Beyond RMSE (RUE 2012),
2012, pp. 30–32.

[176] L. Kuncheva and C. Whitaker, “Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy,” Mach. Learn., no. 51, pp. 181–
207, 2003.

[177] D. Gusfield and R. W. Irving, The stable marriage problem: structure and
algorithms, vol. 54. MIT press Cambridge, 1989.

[178] F. Hernández del Olmo and E. Gaudioso, “Evaluation of recommender systems:
A new approach,” Expert Syst. Appl., vol. 35, no. 3, pp. 790–804, Oct. 2008.

[179] L. A. MacVittie, XAML in a nutshell. O’Reilly, 2006.

[180] M. Ge, C. Delgado-Battenfeld, and D. Jannach, “Beyond accuracy: evaluating
recommender systems by coverage and serendipity,” in Proceedings of the fourth
ACM conference on Recommender systems, RecSys ’10, 2010, pp. 257–260.

[181] M. Buckland, “The relationship between recall and precision,” J. Am. Soc., vol.
45, no. 1, pp. 12–19, Jan. 1994.

[182] C. J. Van Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA:
Butterworth-Heinemann, 1979.

[183] G. Shani and A. Gunawardana, “Evaluating recommendation systems,” in in
Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, and P. B.
Kantor, Eds. Springer US, 2011, pp. 257–297.

287

Appendix 1

ATL transformation script example

module UML2JAVA;
create OUT : JAVA from IN : UML;

helper context UML!ModelElement def: isPublic() : Boolean = self.visibility =
#vk_public;

helper context UML!Feature def: isStatic() : Boolean = self.ownerScope = #sk_static;

helper context UML!Attribute def: isFinal() : Boolean = self.changeability =
#ck_frozen;

helper context UML!Namespace def: getExtendedName() : String = if
self.namespace.oclIsUndefined() then
 ''
 else if self.namespace.oclIsKindOf(UML!Model) then
 ''
 else
 self.namespace.getExtendedName() + '.'
 endif endif + self.name;

rule P2P {
 from e : UML!Package (e.oclIsTypeOf(UML!Package))
 to out : JAVA!Package (
 name <- e.getExtendedName()
)
}

rule C2C {
 from e : UML!Class
 to out : JAVA!JavaClass (
 name <- e.name,
 isAbstract <- e.isAbstract,
 isPublic <- e.isPublic(),
 package <- e.namespace
)
}

rule D2P {
 from e : UML!DataType
 to out : JAVA!PrimitiveType (
 name <- e.name,
 package <- e.namespace)
}

288

rule A2F {
 from e : UML!Attribute
 to out : JAVA!Field (
 name <- e.name,
 isStatic <- e.isStatic(),
 isPublic <- e.isPublic(),
 isFinal <- e.isFinal(),
 owner <- e.owner,
 type <- e.type
)
}

rule O2M {
 from e : UML!Operation
 to out : JAVA!Method (
 name <- e.name,
 isStatic <- e.isStatic(),
 isPublic <- e.isPublic(),
 owner <- e.owner,
 type <- e.parameter->select(x|x.kind=#pdk_return)->asSequence()-
>first().type,
 parameters <- e.parameter->select(x|x.kind<>#pdk_return)-
>asSequence()
)
}

rule P2F {
 from e : UML!Parameter (e.kind <> #pdk_return)
 to out : JAVA!FeatureParameter (
 name <- e.name,
 type <- e.type
)
}

query JAVA2String_query = JAVA!JavaClass.allInstances()->
 select(e | e.oclIsTypeOf(JAVA!JavaClass))->
 collect(x | x.toString().writeTo('C:/test/' + x.package.name.replaceAll('.', '/') + '/'
+ x.name + '.java'));

uses JAVA2String;

library JAVA2String;

helper context JAVA!ClassFeature def: modifierFinal() : String = if self.isFinal then
 'final '

289

 else
 ''
 endif;

helper context JAVA!ClassMember def: visibility() : String = if self.isPublic then
 'public '
 else
 'private '
 endif;

helper context JAVA!JavaClass def: visibility() : String = if self.isPublic then
 'public '
 else
 'private '
 endif;

helper context JAVA!ClassMember def: scope() : String = if self.isStatic then
 'static '
 else
 ''
 endif;

helper context JAVA!JavaClass def: scope() : String = if self.isStatic then
 'static '
 else
 ''
 endif;

helper context JAVA!JavaClass def: modifierAbstract() : String = if self.isAbstract
then
 'abstract '
 else
 ''
 endif;

helper context JAVA!Package def: toString() : String = 'package ' + self.name + ';\n\n';

helper context JAVA!JavaClass def: toString() : String =
 self.package.toString() + self.visibility() +
 self.scope() + self.modifierAbstract() +
 self.modifierFinal() + 'class ' + self.name + ' {\n' +
 self.members->iterate(i; acc : String = '' |
 acc + i.toString()
) +
 '\n}\n\n';

helper context JAVA!PrimitiveType def: toString() : String = if self.name = 'Integer'
then
 'int '

290

 else if self.name = 'Boolean' then
 'boolean '
 else if self.name = 'String' then
 'java.lang.String '
 else if self.name = 'Long' then
 'long '
 else
 'void '
 endif endif endif endif;

helper context JAVA!Field def: toString() : String = '\t' + self.visibility() + self.scope()
+ self.modifierFinal() + self.type.name + ' ' + self.name + ';\n';

helper context JAVA!Method def: toString() : String = '\t' + self.visibility() +
self.scope() + self.modifierFinal() + self.type.name + ' ' + self.name + '(' +
 self.parameters->iterate(i; acc : String = '' | acc +
 if acc = '' then
 ''
 else
 ', '
 endif +
 i.toString()
) +
 ') {\n\t\t//Your code here\n\t}\n';

helper context JAVA!FeatureParameter def: toString() : String = self.type.name + ' ' +
self.name;

291

Appendix 2

Ethics approval clearance

To: Prof John Grundy, FICT/ Mr Iman Avazpour

Dear Prof Grundy,

SUHREC Project 2013/010 Evaluation of a model visualisation and transformation tool
(CONVErT)
Prof John Grundy, FICT/ Mr Iman Avazpour
Approved Duration: 01/03/2013 To 01/03/2014 [Adjusted]

I refer to the ethical review of the above project protocol undertaken on behalf of
Swinburne's Human Research Ethics Committee (SUHREC) by SUHREC
Subcommittee (SHESC2) at a meeting held on 8 February 2013. Your response to the
review as e-mailed on 22 February was reviewed by a SHESC2 delegate. 	
 Further
revision to the protocol was requested by separate e-mail of today's date and the subsequent
response from Researcher was approved.

I am pleased to advise that, as submitted to date, the project may proceed in line with
standard on-going ethics clearance conditions here outlined.

- All human research activity undertaken under Swinburne auspices must conform to
Swinburne and external regulatory standards, including the National Statement on
Ethical Conduct in Human Research and with respect to secure data use, retention and
disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any
personnel appointed to or associated with the project being made aware of ethics
clearance conditions, including research and consent procedures or instruments
approved. Any change in chief investigator/supervisor requires timely notification and
SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf
of SUHREC. Amendments to approved procedures or instruments ordinarily require
prior ethical appraisal/ clearance. SUHREC must be notified immediately or as soon as
possible thereafter of (a) any serious or unexpected adverse effects on participants and
any redress measures; (b) proposed changes in protocols; and (c) unforeseen events
which might affect continued ethical acceptability of the project.

- At a minimum, an annual report on the progress of the project is required as well as at
the conclusion (or abandonment) of the project.

- A duly authorised external or internal audit of the project may be undertaken at any
time.

292

Please contact the Research Ethics Office if you have any queries about on-going ethics
clearance or you need a signed ethics clearance certificate, citing the SUHREC project
number. A copy of this clearance email should be retained as part of project record-
keeping.

Best wishes for the project.

Yours sincerely
Kaye Goldenberg
Secretary, SHESC2

Kaye Goldenberg
Administrative Officer (Research Ethics)
Swinburne Research (H68)
Swinburne University of Technology
P O Box 218
HAWTHORN VIC 3122
Tel +61 3 9214 8468

293

Appendix 3

User study tasks for first group

Task 1

This task is designed to study the user friendliness of CONVErT in generating
visualisations from input data. You are required to generate a bar chart visualisation for
provided input data “salesfile.xml” from available drawings. The drawings (Chart area
and Bar) are available in the predefined shapes section of the tool.

Task 2

This task is designed to check CONVErT in modification of visualisations. You are
required to modify the bar chart visualisation by providing a new bar element for
provided input data “salesfile2.xml”. We are planning to use provided functions in this
task. The required functions can be found in the “Mapping Functions” section.

294

Task 3

This task is designed to study CONVErT in generation of mappings. You are required
to create a mapping from a bar chart visualisation to a pie chart visualisation (see figure
below). You will be using the bar chart you created in Task 2 and the pie chart provided
(“Piechart.xml”).

The final visualisation should look like following figure.

295

Appendix 4

User study tasks for second group

Task 1

This task is designed to study the user friendliness of CONVErT in generating
visualisations from input data. You are required to generate a UML class diagram
visualisation for provided input data “umldata.xml” from available drawings. The
drawings (Diagram, Class, Attribute, Operation, Association and function parameters)
are available in the predefined shapes section of the tool.

296

Task 2

This task is designed to study CONVErT in generation of mappings. You are required
to create a mapping from a UML class diagram visualisation to Java code visualisation
(see figure below). You will be using the UML class diagram you just created in task 1
and the Java example (“Javavisual.xml”).

The final visualisation should look like following figure.

297

Appendix 5

Survey Questionnaire
	

Research	
 Supervisor	

Prof.	
 John	
 Grundy	

Professor	
 in	
 Software	
 Engineering	
 and	
 Head	
 of	
 Academic	
 Group,	
 Computer	
 Science	
 &	

Software	
 Engineering	

FICT,	
 Swinburne	
 University	
 of	
 Technology	

Phone:	
 +61	
 3	
 9214	
 8731	

Email:	
 jgrundy@swin.edu.au	

	

PhD	
 Student	
 Researcher	

Mr.	
 Iman	
 Avazpour	

PhD	
 Student	

FICT,	
 Swinburne	
 University	
 of	
 Technology	

Phone:	
 	
 +61	
 3	
 9214	
 8786	

Email:	
 iavazpour@swin.edu.au	

Dear	
 Participant,	

	

This questionnaire aims to capture your experience with CONcrete Visual assistEd
Transformation framework (CONVErT). CONVErT is proposed as part of PhD research by
Iman Avazpour under the supervision of Professor John Grundy. The project 2013/010 is
approved by Swinburne University Human Research Ethics Sub Committee (SHESC3) and
conducted under the privacy policy followed by Swinburne University of Technology.

This questionnaire has three sections. Section one consists of questions regarding your
experience with visualisation and is designed to capture how efficient our visualisation
approach was for users. Section two evaluates your experience with CONVErT for generating
transformations between two visualisations. Section three is design to capture the effectiveness
of CONVErT's recommender system. And finally section four contains some demographic
question about you. Please read the questions in each section carefully and put a cross in the box
that is closer to your feeling.

Please Note: Individual responses will not be released or shared and individuals will not be
identified. The information provided will be kept secure and will be accessible to the
researchers only. Aggregate results from analysis of survey responses will be published in peer-
reviewed academic journals and conferences.

If you have any complaints or question regarding the approval of the project you can contact
Research Ethics Officer, Swinburne Research (H68), Swinburne University of Technology, P O
Box 218, HAWTHORN VIC 3122. Tel (03) 9214 5218 or +61 3 9214 5218 or
resethics@swin.edu.au

298

Part 1. Visualisation

Usefulness

1. It is useful to have a drag and drop approach for visualisation.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

2. Visualisations help me better understand complex data.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

3. It is useful to be able to visualise data tailored to users.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Cognitive dimensions

4. It is easy to see various parts of the tool such as drawings, functions, etc.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

5. It is easy to make changes to visualisations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

6. Some things do require a lot of thought.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

7. It is easy to make errors or mistakes.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

299

8. Couple of drawings were provided on the right side of the tool panel to assist
you with your task. Did you find they were helpful?

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

9. It was easy to recognise which element on the left hand side was related to
which visualisation element on the right hand side.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

10. Provided Logs of your previous actions was useful.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

11. I can work in any order I like when working with the tool.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Ease of use

12. I found it easy to visualise the given data as a Barchart/Class diagram.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

13. I found it easy to modify the visualisations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

14. In general I found the tool to be easy to use for visualisation activities.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Ease of learning

15. I learned to use the tool quickly.

300

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

16. I would like to have received further instruction to be able to understand the

procedure and perform the task.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

17. I had to redo some parts to be able to understand the procedure.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

18. I easily remember how to use the tool.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Satisfaction

19. It is likely that I use the tool for visualisation in my future projects.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

20. I had fun using the tool.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

21. I would recommend it to a friend.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Please put any comments regarding visualisation procedure in the box bellow

301

Part 2. Transformation

Usefulness

1. The familiar diagrams and visual elements used to show the different views of
the data were useful.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

2. Visual diagrams help me better understand the relationships between source and
target drawings.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

3. It is useful to specify relationships between different elements in the left hand
side and the right hand side visualisations by using the drag and drop of each
element.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Cognitive dimensions

4. It is easy to see various parts of the tool such as drawings, functions, etc.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

5. Some things do require a lot of thought.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

6. It is easy to make errors or mistakes.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

7. It was easy to recognise which visual element on the left hand side was related
to which visual element on the right hand side.

302

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

8. Provided Logs of my previous actions was useful.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

9. I can work in any order I like when working with the tool.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Ease of use

10. I found it easy to specify the relations between left hand side and right hand side
visualisations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

11. The user interface is very consistent.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

12. In general I found the tool to be easy for transformation between visualisations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Ease of learning

13. I learned to use the tool quickly.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

14. I would like to have received further instruction to be able to understand the
procedure and perform the task.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

303

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

15. I had to redo some parts to be able to understand the procedure

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

16. I easily remember how to use the tool

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Satisfaction

17. It is likely that I use the tool for transformation in my future projects.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

18. I had fun using the tool.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

19. I would recommend it to a friend.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Please put further comments regarding transformation procedure in the box bellow

304

Part 3. Recommendation System

Usefulness

1. It is useful to have recommendations during the process.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

2. Recommendations helped me better understand relations between source and
target visualisations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

3. Recommendations help me discover other possible relations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

4. Recommendations seemed to offer a good (correct) solution.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

5. I was able to trust the recommendations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

6. I used recommendations at least once.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

7. I already knew most of the recommendations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

305

Presentation

8. I was satisfied with the way recommendations were presented.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

9. When a recommendation said for example “Bar/Name” I was easily able to spot “Name” in
source or target visualisations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

10. I was able to use recommendations.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Satisfaction

11. It is likely that I use provided recommendation system in future.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

12. I found some recommendation to be surprising in a good way.

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

13. I had fun using the recommendations

Strongly	
 Disagree	
 	
 	
 	
 	
 	
 Strongly	
 Agree	

	
 	
 	
 	
 	
 	
 	

Comments	
 	
 	
 	
 	
 	
 	

Please put any comments regarding recommendation system in the box bellow

306

Part 4. Demographic Information

	

Please	
 circle	
 the	
 option	
 that	
 is	
 most	
 applicable	
 to	
 you.	
 	

	

Gender	
 o Male	

o Female	

o Prefer	
 not	
 to	
 say	

	

Age	
 range	
 o 25-­‐30	

o 31-­‐40	

o 41-­‐50	

o 51-­‐60	

o 61+	

	

How	
 familiar	
 are	
 you	
 with	

model	
 transformation	
 and	

modelling	
 in	
 general?	
 	

o Very	
 familiar	

o Somewhat	
 familiar	

o I	
 had	
 heard	
 about	
 it	

o Not	
 familiar	
 at	
 all	

	

How	
 familiar	
 are	
 you	
 with	

data	
 visualisation?	

o Very	
 familiar	

o Somewhat	
 familiar	

o I	
 had	
 heard	
 about	
 it	

o Not	
 familiar	
 at	
 all	

	

What	
 best	
 describes	
 your	

area?	

o Software	
 engineering	
 	

o Computer	
 Science	
 /	
 IT	

o Economics	

o Management	

o Other	

307

Appendix 6

Samples of citation formats used for evaluating Suggester

EndNote format

<records>
 <record>
 <database name="My Collection.enl" path="My Collection.enl">My
Collection.enl</database>
 <ref-type name="Conference Proceedings">3</ref-type>
 <contributors>
 <authors>
 <author>Abramov, Sergei</author>
 <author>Gluck, Robert</author>
 </authors>
 <secondary-authors>
 <author>Mogensen, Torben</author>
 <author>Schmidt, David</author>
 <author>Sudborough, I.</author>
 </secondary-authors>
 </contributors>
 <titles>
 <title>Principles of Inverse Computation and the Universal Resolving
 Algorithm</title>
 <secondary-title>The Essence of Computation Complexity, Analysis,
 Transformation</secondary-title>
 </titles>
 <periodical>
 <full-title>The Essence of Computation Complexity, Analysis,
 Transformation</full-title>
 </periodical>
 <pages>269-295</pages>
 <keywords/>
 <dates>
 <year>2002</year>
 </dates>
 <publisher>Springer Berlin / Heidelberg</publisher>
 <electronic-resource-num>10.1007/3-540-36377-7</electronic-resource-num>
 <urls>
 <pdf-urls>
 <url>internal-pdf://Abramov, Gluck - 2002 - Principles of Inverse
Computation and the Universal Resolving Algorithm.pdf</url>
 </pdf-urls>
 </urls>
 </record>
 <record>

308

 <database name="My Collection.enl" path="My Collection.enl">My
Collection.enl</database>
 <ref-type name="Journal Article">0</ref-type>
 <contributors>
 <authors>
 <author>Adomavicius, G.</author>
 <author>Tuzhilin, a.</author>
 </authors>
 </contributors>
 <titles>
 <title>Toward the next generation of recommender systems: a survey of the
 state-of-the-art and possible extensions</title>
 <secondary-title>IEEE Transactions on Knowledge and Data
 Engineering</secondary-title>
 </titles>
 <periodical>
 <full-title>IEEE Transactions on Knowledge and Data Engineering</full-
title>
 </periodical>
 <pages>734-749</pages>
 <volume>17</volume>
 <issue>6</issue>
 <keywords/>
 <dates>
 <year>2005</year>
 </dates>
 <electronic-resource-num>10.1109/TKDE.2005.99</electronic-resource-num>
 <urls>
 <pdf-urls>
 <url>internal-pdf://Adomavicius, Tuzhilin - 2005 - Toward the next
generation of recommender systems a survey of the state-of-the-art and possible
 extensions.pdf</url>
 </pdf-urls>
 <web-urls>

<url>http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=14
23975</url>

 </web-urls>
 </urls>
 </record>
</records>

309

DocBook format

<bibliography>
<biblioentry xreflabel="Abramov2002" id="Abramov2002">
 <authorgroup>
 <author><firstname>Sergei</firstname><surname>Abramov</surname></author>
 <author><firstname>Robert</firstname><surname>Gluck</surname></author>
 <editor><firstname>Torben</firstname><surname>Mogensen</surname></editor>
 <editor><firstname>David</firstname><surname>Schmidt</surname></editor>
 <editor><firstname>I.</firstname><surname>Sudborough</surname></editor>
 </authorgroup>
 <citetitle pubwork="article">Principles of Inverse Computation and the Universal
Resolving Algorithm</citetitle>
 <publisher>
 <publishername>Springer Berlin / Heidelberg</publishername>
 </publisher>
 <artpagenums>269–295</artpagenums>
 <pubdate>2002</pubdate>
</biblioentry>
<biblioentry xreflabel="Adomavicius" id="Adomavicius">
 <authorgroup>
 <author><firstname>Gediminas</firstname><surname>Adomavicius</surname>
 </author>
 </authorgroup>
 <citetitle pubwork="article">Towards More Confident Recommendations : Improving
Recommender Systems Using Filtering Approach Based on Rating Variance
Department of Computer Science and Engineering , University of
Minnesota</citetitle>
 <artpagenums>1–6</artpagenums>
</biblioentry>

310

List of publications

Iman Avazpour, Teerat Pitakrat, Lars Grunske, John C. Grundy, Evaluating

Recommendation Systems: Quantitative Measures and Features to Consider,

Recommendation Systems in Software Engineering, Springer, 2014 (in Press).

Iman Avazpour, John C. Grundy, Lars Grunske, “Tool Support for Automatic Model

Transformation Specification Using Concrete Visualisations”, 2013 IEEE/ACM

International Conference on Automated Software Engineering, Palo Alto, CA, USA,

11-15 Nov 2013, pp.718-721, IEEE CPS.

Iman Avazpour, John Grundy, “Using Concrete Visual Notations as First Class

Citizens for Model Transformation Specification”, 2013 IEEE International Symposium

on Visual Languages and Human-Centric Computing, San Jose, CA, USA, Sept 15-19

2013, pp.87-90, IEEE CPS.

Iman Avazpour, John Grundy, “CONVErT: A Framework for Complex Model

Visualisation and Transformation”, 2012 IEEE International Symposium on Visual

Languages and Human-Centric Computing, Innsbruck, Austria, Sept 30-Oct 4 2012,

pp.237-238, IEEE CPS.

Iman Avazpour, “Towards User-Centric Concrete Model Transformation”, 2012 IEEE

International Symposium on Visual Languages and Human-Centric Computing

(Graduate Consortium), Innsbruck, Austria, Sept 30-Oct 4 2012, pp.215-216, IEEE

CPS.

