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Abstract 
Model transformations are an important part of Model Driven Engineering (MDE). To 
generate a transformation with most current MDE approaches, users are required to 
specify (or provide) complex abstractions and meta-models and engage in quite low-
level coding in usually textual transformation scripting languages. These abstractions 
are very different from concrete visual representation of source and target models and 
low level coding is hard to specify and maintain, especially for novice users. This 
specification technique provides pragmatic barriers for users of model transformations 
and prevents them from adapting MDE technologies.  

This thesis introduces an approach for performing model transformation on concrete 
visualisations of example model elements. It allows end users to interactively specify 
rich, human-centric visualisations of complex data using a visual, drag-and-drop, by-
example approach. End users can generate reusable visualisation implementations from 
these high-level specifications. Using these visualisations, users specify complex model 
element mappings between concrete visual notational elements using interactive drag-
and-drop and reusable, spread sheet-like mapping formulae. Complex, scalable, 
efficient, accurate and reusable model transformation implementations are then 
generated from these by-example visual source-to-target mappings while high-level 
abstractions for transformation generation are automatically reverse engineered from 
visualisation examples. As a result, this approach helps to better incorporate a user's 
domain knowledge by providing familiar example concrete visualisations of models for 
transformation generation. 

In addition, to better aid users to find correspondences in large model visualisations, an 
automatic recommender system is introduced. This provides suggestions for possible 
correspondences between source and target model elements using model characteristics 
and visual representations to generate guidance for large model mapping problems. 
These recommendations allow users to cut corners in specification of transformation 
correspondences by choosing among suggestions.  

A proof of concept implementation of this approach, CONcrete Visual assistEd 
Transformation framework (CONVErT) is introduced which allows generation, design 
and use of varieties of notations including text, boxes and lines, shapes, etc. It integrates 
the use and definition of mapping functions and conditions and enables reverse 
engineering of metamodels.  

The approach presented by this thesis was evaluated using set of visualisation and 
transformation case studies, a comparative analysis, a quantitative study and a user 
study. Case studies are chosen from a variety of domains to show the generality of the 
approach. The comparison study compares the approach and its tool support against a 
set of current research and industry approaches and toolsets. The quantitative study is 
devised to assess quality of the automatically generated transformation code against a 
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human expert’s code and code automatically generated by an industry standard toolset. 
Finally, a user study complements the other evaluations and provides a report on typical 
end users experience with the approach and its prototype tool support. 
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Chapter 1 

Introduction  
 

 

 

 

 

 

1.1 Background 

Models have been around for many years and their application in science and 

engineering is evident. They describe some aspect of a System Under Study (SUS) [7]. 

This description varies depending on what aspects of the system are to be studied. For 

example, in aviation, engineers test models of planes in wind tunnel to assess and 

improve their aerodynamic efficiency. Planes here are the SUS and their aerodynamic 

characteristic is the aspect of the system being studied.  

Many models for software engineering have been developed. These include flow charts 

and data flow models, entity-relationship models, object-oriented models, and 

behavioural models. However, often these models have been used in limited ways 

during software development lifecycle, e.g. for documentation.  

Depending on application of software models and their modelling language, varieties of 

visualisations have been used to represent software models. The level of detail in these 

visualisations varies according to their targeted audience and may range from very high 

level to low level technical information.  

Though a number of such software models have been proposed and used, the heavy use 

of models in software engineering has recently been motivated by the introduction of 

Model Driven Engineering (MDE) [8]. MDE promotes models as first class software 
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artefacts and aims to develop, maintain, and evolve software by performing 

transformations on these models; therefore, easing the development and maintenance of 

complex and large software systems [9]. It is fair to say then that, transformations are 

the “heart and soul” of MDE and Model Driven Development (MDD) [10].  

A transformation, in software engineering terms, is automatic generation of a target 

model from a source model according to a transformation definition [11]. In the context 

of MDE, software development tasks are to be performed on models by means of 

transformations. For example, transforming higher level models to lower level models 

(e.g. UML models to program code) can be performed using refinement transformations 

[12]. Or in a maintenance example, refactoring transformations can be used to 

restructure models to improve quality of finished software product [13].  

Following sections describe model visualisations and how model transformations are 

specified, and problems associated with specification approaches.  

 

 

1.2 Model Visualisation  

Due to complexity of software systems, there is a growing demand for approaches that 

incorporate visualisations in the software industry [14]. Software visualisation 

approaches concentrate on variety of applications including software landscape 

visualisation (e.g. Rigi [15] and software map [16]), hierarchical dataset visualisations 

(e.g SHriMP [17]), visual languages (e.g. Rimu and VML [18]). These visualisation 

approaches tend to reduce complexity of software development lifecycle.  

With emergence of Meta-tools, generating visual languages and diagram based editors 

became easier and more feasible. Meta-tools allow generation of visualisation 

environments that provide facilities for users to interact with those visualisations. 

Example of such meta-tools are Marama tool-suit [19] and DiaGen [20].  

Although many approaches for visualising data had been previously introduced (e. g. 

Skin [21] and relational visualisation notation [4]), none of these approaches have 
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successfully found their way in modelling environments and for MDE. In the context of 

MDE the most famous approach is Eclipse Modelling Framework (EMF) [22]. EMF 

models can be visually represented using the diagrammatic syntax of Graphical 

Modelling Framework (GMF) [23]. However, EMF and GMF are mostly targeted to 

technical users familiar with programming environments and IDEs and therefore have 

limited support for novice and none-programmer users.  

This thesis seeks to provide a user friendly visualisation approach to visualise models 

and input data. It does so using by-example approach to transforming input data to 

visual notations. As a result, concrete visualisations are generated for each of the 

provided examples which may be very different (e.g. Charts, UML diagram and Java 

code).  

 

 

1.3 Model Transformation 

Transformations in software engineering are mostly performed on higher level 

abstraction of models, called meta-models. The primary use of these abstractions is to 

allow better generalisation and reduce the amount of coding required to implement 

transformation rules. Also, they provide a mechanism for evaluation, where it is 

possible to check if a resulting model conforms to the intended target.  

To specify transformation on model abstractions, specialised model transformation 

languages such as Atlas Transformation Language (ATL) or Triple Graph Grammars 

(TGG) are used [24]–[27]. These transformation languages are designed to transform 

model instances that conform to source meta-models, to models conforming to target 

meta-model. For example, to transform a class diagram to Java code, a transformation 

script needs to be written in ATL (or other transformation languages). This 

transformation script includes correspondences between source abstraction (class 

diagram meta-model) and target abstraction (Java meta-model). These correspondences 

define relations between elements of both sides. Having this script ready, it can be 

applied on instances of source models (class diagrams), using a transformation engine, 

to transform them to target instances (Java code). 



 
4 
 

Transformation scripts usually include multiple transformation rules that are generally 

specified using textual representation of the transformation language of choice. This 

approach to transformation rule specification provides pragmatic barriers for non-

software engineering users as support for development and debugging of scripts, or 

visual representation of rules and correspondences are very limited [28]–[32]. Also, 

correspondence relations of a transformation rule need to be specified on model 

abstractions and meta-models. Often, the representation of these abstractions are far 

removed from the representation of model instances they represent [33]–[35]. For 

example, Figure 1.1 shows an example of UML class diagram meta-model and a class 

diagram instance.  

Apart from different representation, the way meta-models are represented results in 

hiding certain modelling concepts. In Figure 1.1 for example, it can be easily spotted 

that “orderDate” (a UML attribute) belongs to “Order” class by looking at class shape in 

the class diagram. To find the same relation in the meta-model, one has to follow 

“owner” association of “Attribute” element to “Classifier” and to “Class”.  This 

phenomena is called Concept Hiding and has been regarded as a factor in complexity of 

meta-model comprehension [36]–[38]. For large meta-model and applications, spotting 

these relations would become fairly hard and complex. 

 

 

Figure 1.1 Example of (A) UML class diagram meta-model, and (B) Class diagram using concrete 
notation. 
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For computer scientists and software developers, using complex models, meta-models 

and textual coding is a routine practice; therefore, they will probably not experience 

great technical difficulty adapting current transformation approaches. However, for 

modellers that did not have usual education in type theory, programming, and 

transformation development, the complexity of meta-models and textual transformation 

representation may well be overwhelming and results in pragmatic barriers to defining 

and using model transformations [18].  

These issues have motivated the research community to look for alternative approaches, 

namely, Model Transformation By-Example (MTBE) [30], [39]–[42] and By-

Demonstration (MTBD) [38], [43], [44] approaches. These have their roots in 

programming techniques and date back to the research on innovative approaches to 

develop program source code, e.g. Programming By-Example [45].  

MTBE and MTBD try to express a model transformation declaratively in the domain 

language of the source and target models.  MTBE’s principle is to derive high level 

model transformation rules from initial prototypical set of interrelated source and target 

models. User has to provide multiple source and target instance pairs and specify their 

correspondences. The system then uses the defined correspondences to try to derive a 

generic transformation. To use these approaches, users must familiarise themselves with 

the syntax of the correspondence specification language. This is problematic as no 

visual approach for specifying correspondences on actual familiar notations (like UML 

Class Diagrams or source code) exists [29]. Also, since the rule derivation is semi-

automatic, current approaches require multiple example pairs to exist and the user needs 

to refine derived rules, which makes adaptation of these approaches even harder. 

In MTBD, changes that a programmer does to the model are recorded and then 

generalised to derive transformation rules. MTBD approaches incorporate a recorder 

component that monitors user interaction with the models and uses that recorded 

interaction as the basis of correspondence generalisation. Therefore, changes should be 

mostly applied in a predefined environment so that the recording component is able to 

monitor the interaction. These techniques are mostly limited to endogenous 

transformations where source and target model conform to the same meta-model [29].  
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The following section describes the objective of this thesis toward more user-centric 

model transformation, using a motivating example.  

 

 

1.4 Thesis Objective 

This thesis research addresses by example transformation approaches and tries to 

improve them. It does this by providing a visual correspondence specification approach 

where users use their desired graphical notations and model visualisations to specify 

source and target model correspondences. Also, since source and target models can 

become fairly complex even using visualisations, this thesis investigates ways to 

incorporate information retrieval techniques to provide guidance to users in form of 

“which elements of source and target models correspond”.  To illustrate the intention of 

this thesis research, this section provides an example of MDE domain, transforming 

UML Class Diagrams to Java source code.  

Assume John, a software developer, is working in an MDE-using team and has received 

a system analysis report for an application. Being an expert in UML diagram 

interpretation and a Java coder, he is familiar with concrete syntax of the diagrams and 

Java code. He is interested in transforming specific parts of UML diagrams provided by 

the analysis directly to his programming code, to increase team productivity, code 

quality and to ease software evolution. For example, he wants to create a model to code 

translator to transform specific features and parts in the analysis UML diagrams to 

specific Java code templates. 

As mentioned previously, with current transformation approaches, transformation 

designers typically have to specify or provide meta-models for both class diagram and 

the Java source code. A schematic view of UML class diagram meta-model was 

previously provided in Figure 1.1. Figure 1.2 demonstrates simplified Java meta-model 

and a Java code example.  
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Figure 1.2 Example of (A) Java meta-model, and (B) Java source code. 

 

For John, as an expert in the domain, corresponding elements in the UML diagram and 

in his Java code are obvious. He can clearly spot and relate classes, methods, and even 

statement snippets in both program code and class diagram. Some of such 

correspondences are depicted by Figure 1.3. For example, John can easily relate an 

attribute in a class diagram (e.g. tailID) to a property in Java code (e.g. owner) and their 

fine-grained elements e.g. name, type and identifier of an attribute (e.g. +, “tailID” and 

String) to identifier, type and name of a java property (e.g. public, string and “owner”). 

Figure 1.3 shows examples of these mappings with solid arrows and their internal fine 

grained mappings by dashed arrows. 

 

 
Figure 1.3 Examples of correspondences between UML class diagram and Java code. Dashed arrows 

demonstrate more fine grained correspondences. 
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Comparing meta-models of Figures 1.1 and 1.2 and the concrete representations of 

Figure 1.3 reveals that the concrete notation is much more visually appealing and 

familiar than the complex notations used in meta-model specification. Given that John 

may not have experience or knowledge of transformation languages and meta-

modelling, specifying correspondences is better understood by him using one or more 

class diagrams and corresponding code examples, as shown in Figure 1.3. However, 

using current approaches to create such a model to code transformation, he has to work 

with the complex syntax of abstract UML and Java meta-models, and the low-level 

textual syntax and semantics of transformation languages, such as XSLT, ALT and 

QVT.  

Appendix 1 provides an example of transformation script written in ATL to transform 

UML class diagram to Java code. This ATL example is adopted from ATL 

transformation Zoo  [1]. Even though the examples have been significantly simplified, 

the transformation script includes more than 150 lines of code and demonstrates many 

meta-model constructs. In larger examples, this transformation can expand rapidly 

resulting in more complexity for transformation designers.  

Provided that a By-example approach is being used for transformation, correspondences 

will be specified on examples of source and target models. Figure 1.4 shows examples 

of simplified UML class diagram and Java code in XML. Sample correspondences 

between these two examples are marked by red lines in the figure. This specification of 

correspondences using current techniques requires the user to use a correspondence 

language specific to the by-example approach being used. For instance, John would 

need to specify that an operation in class diagram directly corresponds to a method in 

Java code, and so does its return type, name, and its access privilege. He then has to 

repeat this for other available example pairs. For John as a user familiar with concrete 

visualisations of these models, it is more convenient to specify these correspondences 

on concrete visualisations similar to Figure 1.3. Therefore, this thesis seeks to provide 

such capable concrete visualisations so that he can simply drag and drop elements of his 

generated source and target visualisations to specify a correspondence.  
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Figure 1.4 Sample correspondence relations between UML class diagram XML example and Java code 
XML example. 

 

Although using visualisations improves the cognitive descriptive power and 

understandability of correspondence specifications, some software models get fairly 

complex due to the number of features they are describing. Computers deal with this 

complexity quite differently than humans. Therefore, in an ideal situation, an automatic 

mechanism can analyse input models and provide guidance to the user to specify 

correspondences [46]. For example, in the aforementioned example, an automatic 

routine might analyse the UML class diagram and java code and suggest that parameters 

in a function declaration of the class diagram could be matches for parameters in a java 

method. John can use these suggestions as guidance or select them as his source to 

target correspondences. Providing such semi-automated user support features for 

transformation specification is another key goal of this thesis.  
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1.5 Contributions 

We address the user friendliness of model transformation generation in this thesis. Key 

contributions of this thesis are the following: 

• Producing reusable model visualisation specifications using an interactive, by-

example approach. 

• Using a concrete, by-example model transformation metaphor. 

• Model mapping and transformation specification by drag and drop between 

concrete visualisations. 

• Utilising a set of recommenders using various recommender system techniques 

and generating mappings from recommendations. 

• Supporting fully automated model transformation script generation from 

specified mappings. 

• Providing scalable, easy-to-use, robust and extensive tool support for each of 

these facilities. 

• Carrying out a comprehensive end user evaluation of our prototype toolset and 

overall approach. 

In the following, these contributions are described in more details.  

Target users of this thesis approach are the users that are not trained in complex 

transformation languages and meta-modelling, but are familiar with specific modelling 

languages and their visual notations. For these users, the correspondences between 

participating source and target models are relatively clear. However, to define these 

correspondences as transformation rules should not involve learning new modelling 

concepts and acquisition of significant new knowledge.  

To achieve this objective, we have decided to provide a mechanism to use arbitrary, 

end-user-oriented visual notations in the model transformation process. This approach 

allows users to define (or reuse) model visualisations for provided source and target 

examples and use these specified by-example visualisations for correspondence 

specification between source and target examples. We also incorporate a guidance 

system that helps novice users and experts alike in the visualisation and transformation 

specification process. Each of these decisions contributes to making the complex model 
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transformation specification and generation process more user-centric than it currently 

is.  

The adaptation of visual notations for correspondence specification requires a 

representation model for visual notations that allows semantic links between elements 

of a notation and the actual model data (context). These models should allow possible 

extensions and flexibility for users to create them in order not to be limited to the fixed 

number or type of notations. These visual notations are then mapped to input examples 

and composed to generate interaction capable visualisations. As a result, users will have 

the freedom to choose (or design their own) notations that are familiar to them and 

define transformations using visualisations generated from the notations.  

A distinctive part of this thesis concerns the way support can be provided to the users 

for visualisation generation and complex model transformation specification. Part of 

this support comes with providing hints on visual notation composition of the 

visualisation process. To provide such support, the visualisation mechanism allows the 

user to review samples of visualisation to be created as a result of composing visual 

notations, before actually generating it. Therefore, if the resulting visualisation sample 

is not what the user expects, it can be altered to achieve desired results.  

As large model visualisations and transformations can become very complex, the 

approach provides guidance on possible and likely correspondences that eventually 

create transformation rules. To achieve this, an automated recommender system 

analyses the interaction and input examples for recommending possible 

correspondences between model sub-structures. The user can see these 

recommendations as guidelines to develop transformation rules or simply use them to 

create final transformation artefact.  

These contributions are realised in our proof of concept tool “CONcrete Visual assistEd 

Transformation” framework, or CONVErT for short. CONVErT provides a proof of 

concept implementation of each of the above research contributions and plays an 

important role in the validation of our design and approach. Its most important aspects 

include: (i) a concrete model visualisation specification framework; (ii) a set of 

proactive model correspondence suggesters; (iii) a model for model correspondence 
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rules; (iv) an XSLT code generator to implement specified model transformations; and 

(v) a reverse engineering mechanism for automatic extraction of a meta-model from the 

set of input models. 

 

 

1.6 Thesis organisation 

This thesis is organised in the following nine chapters. Chapter 1 (this chapter) 

introduces the background and a motivating example for this work. It gives an overview 

on the objectives and summarises our key research contributions.  

Chapter 2 reviews the state of the art in model transformation specification and 

generation. It provides discussions on modelling and MDE, model transformation, use 

of visualisations in transformation, model transformation tools, approaches to 

visualising information and models, and finally techniques to providing user support 

and guidance.  

Chapter 3 provides an overview of our approach and methodology. It lists research 

questions being addressed in this thesis and our approach in solving them. It also depicts 

the scope and boundaries of this thesis research.  

Chapter 4 describes our approach for model and information visualisation. It provides 

details of how intractable visual notations are defined, mapped to input data, and 

composed to generate complex visualisations. These visualisations allow user 

interactions in form of drag and drop and can be used for model transformation 

specification. Multiple case studies are provided in the chapter to demonstrate 

application of our visualisation approach for different domains.  

Chapter 5 describes how visualisations can be used in transformation specification. 

Transformation rules are defined by drag and dropping visual notations of source and 

target model visualisations. From these visual by-example transformation rules, full 

transformation scripts are generated and used to transform data provided by source 

visualisation to the visualisation of target. Chapter 5 also provides multiple case studies 

using visualisations defined in chapter 4 to generate transformations.  
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Chapter 6 describes our approach in providing user guidance and support for 

transformation specification. A recommender system is designed to provide 

recommendations based on possible and likely correspondences between source and 

target models. Users can choose among recommended correspondences to generate 

transformation rules.  

Chapter 7 describes our tool support and proof of concept framework CONcrete Visual 

assistEd Transformation (CONVErT). It provides details of CONVErT’s 

implementation and user interface and expresses the technical and engineering decisions 

made on the framework. 

Chapter 8 contains evaluation of the CONVErT approach. This evaluation has been 

divided into a comparison study, a quantitative evaluation, and user evaluation. A 

detailed comparison study is provided to check the approach provided in this thesis 

against a state of the art transformation and mapping tool (ALTOVA MapForce [47]). 

The quantitative evaluation is targeted to the evaluation of the recommender system 

being used for the user support mechanism. It also includes a quantitative evaluation of 

the automatically generated transformation script using a selection of transformation 

code quality attributes and metrics. Chapter 8 also includes details of our user 

evaluation and its experimental setup including user tasks and questionnaires. Analysis 

of the questionnaire responses by the users and a discussion are also provided. 

Finally, key conclusions from this research are summarised in chapter 9 along with 

some key directions for future research. 

 

 

1.7 Summary 

This chapter provided an introduction and background of this thesis. It described thesis 

objectives using a motivating example and demonstrated its contributions on the basis 

of the motivating example. This chapter also briefly described the organisation of this 

thesis and provided an overview on the remaining chapters. 
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Chapter 2 

Literature Review 
 

 

 

 

 

 

2.1 Introduction 

This chapter describes state of the art in model transformation. It describes modelling 

and the importance of transformations to realisation of Model Driven Engineering 

(MDE). It then investigates current transformation approaches with a focus on by-

example transformations and visual mapping techniques. It provides a comparison of 

current approaches and where the approach presented in this thesis fits in that context. 

Since the approach presented in this thesis includes visualisation and user guidance, this 

chapter also provides a brief review of model and information visualisations approaches 

and user guidance mechanisms for interactive techniques.  

 

 

2.2 Modelling and MDE 

We start this section by definition of a Model:  

“A model is a set of statements about some system under study (SUS) ... statement 

means some expression about the SUS that can be considered true or false”[7].  

Based on this description, a model of, for example, a bridge describes a system under 

study (SUS) - in this case is a bridge. It makes statements on the structural capability of 
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the bridge which could be true or false. With regards to software engineering domain, 

for example, a UML class diagram is a model that describes an object oriented software 

system. The software system here is the SUS and the classes and relations between them 

can be considered its statements [7].  

Models in MDE are defined in Technical Spaces (TS). Kurtev et al. define TS as:  

“… a working context with a set of associated concepts, body of knowledge, tools, 

required skills, and possibilities. It is often associated to a given user community with 

shared know-how, educational support, common literature and even workshop and 

conference meetings” [48].  

Examples of technical spaces conforming to this definition are XML-based languages, 

Ontology Engineering and Database Management Systems (DBMS) [27], [48]. MDE 

can also be seen as a technical space itself [49].  

Models in general are diverse and may represent software processes, designs, code, 

configurations, performance or other data [50]. Unlike traditional software 

documentation models, models in MDE are not considered as design sketches. Instead 

they are the primary artefacts that drive the development process where development, 

maintenance and evolution of software is performed by transformations on models [8], 

[51]. In this configuration, a model transformation is performed during each design 

phase to complete micro-processes or to assist the designer complete the phase [52]. 

Transformations are therefore an integral part in realisation of MDE [9].  

Model-driven transformations are also applied in other domains, for example in data 

processing to transform complex data from one form to another [53]. The most well-

known proposal for MDE is the Model Driven Architecture (MDA) by Object 

Management Group (OMG) [54]. It plays a significant role in promoting MDE using 

selection of technologies readily available and previously adopted by OMG. MDA 

envisions higher order models, called Platform Independent Model (PIM), to be 

transformed to richer and more refined models, called Platform Specific Models (PSM), 

by means of refinement transformations. PIMs describe a system at a level of 

abstraction that is sufficient to allow use of their entire contents for implementing the 

system on different platforms [55]. A PSM in this configuration can conform to 
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multiple PIMs each focusing on different aspect of the modelled entity. Similarly, 

different PSMs can be generated from a PIM using different refinement 

transformations.  

Depending on application domain, models can exist at different abstraction levels. For 

example, a class diagram as a model is in higher abstraction level than the Java code 

derived from it. Similarly, UML metamodel is in higher abstraction level than class 

diagram. Following subsection describes concrete and abstract models with regards to 

the level of abstraction each model is represented in and the amount of information it 

presents.  

 

2.2.1 Concrete versus abstract models 

The modelling domain and programming languages domain are very similar with 

regards to classification of artefacts as concrete and abstract. In the programing 

language domain, abstract syntax describes the concepts of a given language 

independently of the source representation of that language. These abstract syntaxes are 

primarily used by tools such as compilers for internal representation [56]. Concrete 

syntax, on the other hand, provides a user friendly way of writing programs and is more 

familiar for programmers. For example, an Abstract Syntax Tree (AST) can be 

considered a generic abstraction for arbitrary programing languages. A C++ program 

code generated from that AST is a specific concrete syntax which conforms to that 

abstraction. Figure 2.1 shows an example C++ method code and its AST. The same 

AST may also be used to generate Java code, or other programing languages. 

 

 

Figure 2.1 Example C++ code and its corresponding AST. 
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Similarly in the modelling domain, a concrete model is a model represented in the 

concrete representation of the modelling language. Depending on modelling language 

domain, concrete syntax can be specified using text, shapes or other means. For 

example, a graph is a concrete model represented using vertexes and links, or entity 

diagram is a concrete model specified using boxes and lines, UML class diagram is also 

concrete model using boxes, lines and labels as shown by Figure 2.2.    

 

 

Figure 2.2 UML class diagram example. 

 

Abstract syntax of models is mostly described by metamodels. A metamodel can 

essentially be considered as a model of models which includes set of concepts to create 

models [50]. The abstract syntax of a modelling language can be then identified with 

metamodels, while its representation can be defined in the concrete syntax  [50]. For 

example, the abstract syntax in UML metamodel constrains the allowable structure and 

relationships between model elements represented as instances of meta classes [7]. An 

example of a simplified UML metamodel is provided in Figure 2.3.  

A metamodel that captures abstract syntax of a model, describes the structure of all 

possible models derived from it. Metamodels are not however a complete definition of 

modelling languages since a language definition needs to describe also how a model is 

rendered by textual and/or graphical elements (concrete syntax) and what the intended 

meaning of each modelling concept is (semantics) [57].  
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Figure 2.3 Simplified UML metamodel (from [1]). 

 

A concrete model is usually more understandable for domain experts as it describes 

domain specific concepts which are familiar for the experts [35]. For example, it is 

much simpler for users (such as programmers) to write programs in Java, rather than 

directly using instances of Java meta-modelling concepts [56]. Or it is easier for 

business analysts to use a form-based metaphor for generating data mappings rather 

than using data schemas and mapping languages [32]. 

Abstract syntax can be used as an intermediate language such that multiple languages 

can be expressed in it [58]. It also provides a good generalisation of models which can 

reduce the amount of coding required for transformation generation between models. 

On the contrary, the abstract syntax may contain elements that cannot be expressed in 

the concrete syntax of the language [59]. Abstractions also hide certain concepts that are 

easily understandable using concrete syntax, and therefore make it harder for users to 

understand them [37]. Using abstract syntax, although helping in the reduction of efforts 

for designing model transformations, it also becomes harder and less user friendly for 

non-expert user modellers.  
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2.2.2 Model transformation and MDE 

MDE is defined around the idea that “everything is a model” [60]. With this 

assumption, software development tasks will be performed by transformations on these 

models. Given the task to be performed, different model transformation approaches can 

be used. For example, transforming a PIM to PSM can be performed using refinement 

transformations. These transformations provide domain specific information required to 

be inserted in the PIM [12], [61]. The reverse direction can be performed using 

abstraction transformations. With abstraction transformations, some domain specific 

data will be abstracted away from the PSM that results in a more generic target model 

(PIM). Figure 2.4 demonstrates these transformations. 

 

 

Figure 2.4 Transforming PIM to PSM and vice versa using refinement and abstraction transformations. 

 

Similar to refinement and abstraction, migration and refactoring transformations can 

help alter models to perform specific software development task.  Migration 

transformations for example, help transform models of one modelling language to 

another modelling language while maintaining the same level of abstraction. An 

example is transforming class diagrams to relational database diagram [25]. Refactoring 

transformations help restructuring models while keeping them at the same abstraction 

level and conforming to the same metamodel. Refactoring transformation can help 

improve quality of software models [13]. 
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Similar to transformation task mentioned above, multiple other software development 

tasks exist that can be performed by model transformations in the context of MDE. A 

collection of these tasks can be found in model transformation literature [62]–[66]. The 

following sections review a selection of most widely used approaches and languages for 

implementation of model transformations. 

 

2.3 Model transformation 

In-line with importance of model transformation for realisation of MDE, many 

approaches, tools and transformation languages have been proposed. To compare these 

approaches, a list of characteristics of model transformations is provided in this section. 

These characteristics are selected from previous literature and classification surveys of 

model transformations [62], [63], [65].  

Technical Space Transformations can be classified according to the application domain 

or technical space of source and target models they are applied to. Some transformation 

approaches are hard coded for specific tasks. These transformations are usually 

transformations written with general programming languages (e.g. C, Java) and are built 

for specific source and target models. There are a number of transformation languages 

available that are built purposefully for certain domains. For example TXL 

transformation language is designed for transformation between programming 

languages [67]. Other transformation languages may consider alternative domains and 

technical spaces with larger variety of source and target types. 

Syntax (Concrete versus Abstract) Transformations can be specified on concrete or 

abstract syntax of source and target. We refer to this as Input Artefact Syntax, i.e. 

syntax of input source and target models and their abstraction level. Most general 

purpose transformations are specified and applied on abstraction (metamodel) of source 

and target. For example to write transformations with ATL, users have to specify 

correspondences between elements of source and target metamodel. As a result, syntax 

of the input artefacts when transformation is specified by ATL is abstract. For example, 

Figure 2.5 demonstrates an ATL transformation rule for transforming UML operations 

to Java methods. Transformations on concrete syntax are generally easier to understand 
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for non-expert users due to use of familiar concrete syntax e.g. the box and line shapes 

in a class diagram. Transformations on abstract syntax, on the other hand, are more 

scalable since they allow application of transformation rules on more high level syntax 

of models and therefore there is no need to specify multiple transformation rules for 

similar lower level elements. For example, user does not need to provide a 

transformation for each UML attribute separately in a class diagram.  

For specification of transformations and writing transformation scripts, current 

transformation approaches generally use textual syntax of transformation languages or a 

fixed graph-based visualisation of source and target models. We refer to this as 

Specification Syntax. Textual and graph-based specifications, although hard for non-

experts, are generally referred to as concrete syntax [57]. For example ATL provides a 

textual syntax similar to programming languages to specify transformations. Graph 

grammars have a graphical view of the metamodels being used as source and target. 

Although they help a lot in understandability of metamodel artefacts, the 

transformations still need to be specified in textual syntax. 

 

 
Figure 2.5 Sample of ATL transformation rule for transforming UML operations to Java methods (From 

[1]). 

 
Rule application control Depending on how transformation rules are executed, their 

transformation rule application control can be imperative or declarative. Imperative rule 

applications require specific control flow to be provided to describe how (and in what 

order) the transformation rules are supposed to be executed. Declarative rules focus on 

what should be transformed to what instead of how or in what order.  
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Transformation Engineering (Exogenous versus Endogenous) Exogenous 

transformations transform models conforming to different metamodels. For example, 

transforming UML class diagram to Java code is an exogenous transformation. 

Endogenous transformations on the other hand transform models that are specified in 

the same metamodel or modelling language. A good example of endogenous 

transformations is refactoring transformations.  

Transformation Scenario (Vertical versus Horizontal) Transformations can be vertical, 

i.e. source and target are at different levels of abstractions, or horizontal, i.e. source and 

target are at the same level of abstraction. Considering this characteristic, 

transformations of PIM to PSM (and its reverse), as defined by MDA, or program 

synthesis that transforms a high level programming language to a low level or machine 

language, are examples of vertical transformations. On the other hand, transforming for 

example UML class diagram to Relational Database Management System (RDBMS) 

models is a horizontal transformation since source and target have different 

metamodels. UML class diagram metamodel is generally specified by MOF and 

RDBMS metamodel is specified by database schemas.  

Exogenous and endogenous transformations can be either horizontal or vertical. For 

example refactoring transformations can be considered as horizontal and endogenous 

transformations, refinement transformations are endogenous and vertical. While 

languages migration transformations are horizontal and exogenous, and code generation 

transformations are vertical and exogenous [65].  

Directionality (Unidirectional versus Multidirectional) Unidirectional transformations 

only specify source to target transformation, i.e. only one dimension. Bidirectional 

transformations specify source to target (forward direction) and its reverse, that is, target 

to source transformation. If multiple sources or targets are involved, multidirectional 

transformations can specify transformation in multiple directions. Bidirectional 

transformations are a special type of multidirectional transformations where a single 

source and a single target are being used in transformation. Bidirectional 

transformations can be achieved by providing separate transformations for forward and 

reverse directions.  
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Table 2.1 lists a group commonly used model transformation languages. It provides a 

comparison according to the technical spaces that the languages are designed for, 

Specification syntax of the languages, supported syntax of the artefacts being used as 

source and target, whether rule application is imperative or declarative, whether the 

language supports vertical, horizontal, exogenous or endogenous transformations and 

whether it supports transformation rules for single or multiple directions. Directionality 

here refers to implicit support for writing for example bidirectional rules rather than 

having a separate unidirectional transformation for each direction. Following paragraphs 

briefly describe the transformation languages and their characteristics. 

 

Table 2.1 Comparison of most used transformation languages. + indicates support, (+) shows partial 
support and – shows no support. 

Transformation language 
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Triple Graph Grammar (TGG) [73] is among the most used model transformation 

languages. TGG provides a means for declarative specification of transformation 

between pairs of source and target graphs which are connected using a correspondence 

graph. The correspondence graph records information and constraints on the matches 

between source and target graphs. TGG allows specification of bidirectional 

transformation rules. TGG has been extensively utilized in FUJABA and GReAT tool 

suites [74]–[76] for model transformation. Graph based approaches like TGG can 

benefit the use of visualisations for source and target in form of graphs. For example, a 

graphical representation of model transformations for TGG was provided by Grunske et 

al. [25]. 

Atlas Transformation Language (ATL) is the transformation languages of ATLAS 

Model Management Architecture (AMMA) [26], [27], [68]. It allows transformations to 

be specified for metamodels and uses a concrete textual syntax. ATL is a declarative 

language; however, there are helper functions provided which can enable limited 

imperative rule applications.  

XSLT is a transformation language for manipulating XML data [69]. It is a functional 

language that allows both imperative and declarative programming. Imperative rules 

can be generated using powerful XPath matching functionality [77]. XSLT accepts 

source and target in XML or similar formats like XHTML.  An example XSLT script is 

provided in Figure 2.6.  

 

 

Figure 2.6 Example XSLT script and its source and target XML. 
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Although models can be specified in XML, and string values can be used in XML, we 

do not categorise XSLT as a transformation language that can be used in Model or text 

technical spaces. Neither can it be classified as working on concrete syntax as XML 

needs to be parsed to represent concrete syntax in form of text, graphics, etc.  

Query Views Transformation (QVT) is the transformation language of OMG’s MDA 

[70]. Like ATL it provides model-to-model transformation defined on both XMI-based 

metamodels and textual concrete syntax. It includes three languages, QVT operational, 

QVT Relations and QVT Core. QVT operational is an imperative language for model-

to-model transformation based on EMF models. QVT Relations, on the other hand, is a 

declarative language defined as part of QVT which provides relationships between 

MOF models. Is has a textual and graphical representation for specification of relations 

between MOF models.  Operational language defines forward and backward 

transformations separately and requires consistency to be preserved manually, while 

Relations language describes how the source and target relate to each other in a 

bidirectional manner. QVT core is a lower level language which both Relations and 

Operational languages can be translated into and is inspired by the Triple Graph 

Grammars approach [78].  

MOdel transformation Language (MOLA) is a graphical language based on graph 

transformations that provides graphical constructs for specification of transformations 

[71]. It provides graphical structures, which are quite similar to UML activity diagrams, 

to define transformation rules [79].  

Epsilon Transformation Language (ETL) is the model transformation language of the 

Epsilon model management infrastructure [72]. It offers rule scheduling by specifying 

lazy rules that are only executed when they are explicitly called, and by guarded rules 

that are only executed if their guard evaluates to true. ETL provides both declarative 

and imperative style of programing. 

As can be seen in Table 2.1, the languages for specifying transformations mostly use the 

abstraction of source and target models as input artefact syntax. Use of these 

abstractions introduces high barriers for non-expert users, since they require users to 

learn and use complex meta-models which are far removed from the modelling 
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language of source and target models [29], [37], [80]. Also the need for specification of 

such transformation using textual syntax of transformation languages adds to the 

problems of model transformation specification [18]. As an alternative, approaches have 

tried to address this problem by automation of transformation rule derivation using 

concrete model examples[29], [40], [81], [82], transformation generation by 

demonstration [38], [45], or automatic alignment of models and metamodels to 

eliminate the need for learning transformation languages [83]–[85]. The following 

subsections provide an overview on these approaches. 

 

 

2.4 Transformation using concrete models 

Approaches to perform transformation on concrete models are grouped in two 

categories: Model Transformation By Example (MTBE) and Model Transformation By 

Demonstration (MTBD). They have their roots in programming techniques and date 

back to the works on alternative approaches to develop program source code, 

Programming By Example [45]. These techniques leverage user interaction and well-

formed rules to replace the text centric source code design. In line with these 

techniques, MTBE/MTBD tries to express the transformation declaratively in the 

domain language of source and target models without having to specify metamodels or 

transformation languages. Following sections describe these approaches in detail. 

 

2.4.1 Model Transformation By-Example (MTBE) 

MTBE’s principle is to derive high level model transformation rules from initial 

prototypical set of interrelated source and target models. This concept was first used by 

Varro et al. incorporating graph transformations [40]. The idea is to provide multiple 

source and target model pairs, and ask a user (domain expert) to specify source and 

target model element correspondences. The system then uses these correspondences to 

derive transformation rules. This approach was later improved by replacing user centric 

heuristics with predefined knowledge in form of Inductive logic [41]. Inductive logic 
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programming is intersection of inductive learning and logic programming and aims at 

construction of first order clausal theories from examples and background knowledge. 

There, the designer assembles prototype mapping models by showing how source and 

target elements should be interrelated and based on this input the system should 

synthesize the set of model transformation rules. Although this approach eliminated the 

use of metamodels, the modeller most now focus on generating the inductive logic as 

meta information for the transformation engine in a way that the system can derive 

transformation rules.  

These approaches can handle only one-to-one relationships between target and source 

elements and while defining the inductive logic is a separated task than model 

transformation itself, the transformation designer should have knowledge of logic 

programming to define it. Also, these  approaches are not adaptable to situations where 

only a few examples are available [39]. 

Wimmer et al. introduced a conceptual framework for mappings generated from models 

using the syntax of the modelling language [36], [86]. Their conceptual framework 

allowed users to define both models inside the framework and specify mappings and 

corresponding elements. Then a model transformation generator would generate 

transformation code. Later, they introduced special mapping operators to give the user 

more expressivity for defining model mappings [86]. It allowed the definition of 

semantic correspondences on concrete syntax, from which ATL rules could be derived.  

Using the examples that are provided to the system, Kessentini et al. proposed Model 

transformation as optimisation by example (MOTOE). This approach views model 

transformation as a problem to be solved using fragmentary knowledge [82]. They 

proposed to view model transformation as an optimisation problem. Two strategies 

were chosen: first, parallel exploration of different transformation possibilities on 

example source and target models by means of a global search heuristic. And second, 

use a hybrid global/local heuristic to improve initial transformations [39]. Since the 

number of solutions becomes huge, the problem becomes optimisation of 

transformation generation on the solution space of possible transformation rules. Block 

constructs were introduced as a previously performed transformation trace between a set 

of constructs in the source model and a set of constructs in the target model. Then, 
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finding a good transformation is based on finding the combination of constructs that 

maximises the inside block coherence and between block coherence. This approach tries 

to propose a transformation even when rule induction is impossible since it chooses the 

closest possible rule. However, since all possibilities are considered, it will become very 

complex. Moreover, rule generation is not deterministic since multiple runs might result 

in different rule generation.  

Kessentini et al.’s work differs to MTBE, since MTBE focuses on automatic 

transformation between models containing same information in different forms. This 

work allows interactive and incomplete transformation. Examples in MTBE are 

complete models and therefore, generated transformation can be tested on example 

models. In this approach however, since models may be partially complete they are not 

immediately suited for testing.  

Recently Faunes et al. used an evolutionary computation algorithm to derive model 

transformation rules [81]. Their approach did not require detailed mappings between 

models and could not produce executable rules. Derivation of transformation rules in 

their approach is guided by the ability of generated rules to successfully transform the 

provided examples, which guarantees that they are executable with the right control 

sequence. Their selection process favours the rules with the highest fitness value, i.e. the 

resulted target matches the intended example best [81].  

Although many-to-many transformations are possible with some general model 

transformation approaches, MTBE approaches are all applicable on one-to-one concrete 

mappings and cannot consider many-to-many cases. Garcìa-Magariño et al. [30], 

proposed an improvement to MTBE by generating  M:N rules based on constraints 

defined for simulating input patterns of several elements and preserving them in a 

dictionary. They embed mappings in models by indicating how information should be 

transformed from input to output and used metamodels to declare how a model is to be 

constructed [30]. By defining generic transformation grammar in EBNF, the generated 

transformation could possibly be implemented by transformation languages like QVT, 

ATL, etc. Although their method provided a possibility of defining many-to-many 

transformations, which is a key limitation of many transformation mechanisms, due to 
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extensive use of metamodels and metadata in the dictionary, we cannot classify it as 

concrete by-example approach to model transformation. 

Semi-automatic generation of transformation rules in MTBE approaches often leads to 

an iterative manual refinement of generated rules. Therefore the model transformation 

designers may not be isolated completely from knowing the transformation languages 

and metamodel definitions [38]. The inference of transformation rules depends on given 

sets of mapping examples, so one or more mapping examples must be available to set 

up a precise prototype mapping. Users are required to learn and use the syntax of a 

correspondence specification language to specify seeding correspondences. This is often 

problematic as no visual approach for specifying correspondences on actual familiar 

notations exists [87]. Seeding the process with such examples is not always an easy task 

in practice [39]. Also, current MTBE approaches focus on mapping the corresponding 

concepts between two different models and providing complex mappings like arithmetic 

or string operations is not possible.  

 

2.4.2 Model Transformation By-Demonstration (MTBD) 

Model transformation by demonstration (MTBD) approaches are based on an expert 

performing transformation tasks and recording of the process steps by a recorder [38], 

[43], [44]. Robbes et al. take this approach and design a system that is capable of 

capturing changes a programmer would perform to the program code [44]. This system 

then generalises the changes to form abstract changes for reuse. They model their 

system as an evolving Abstract Syntax Tree (AST) with nodes representing class, 

package, methods, variables and statements. Each AST is accompanied by a history to 

record changes. Those changes would be then generalised to form abstract changes, 

allowing them to be reused. Their approach is most suited for refactoring applications of 

program code. 

Sun et al. proposed a similar approach for model transformation where the user does the 

transformation on one instance of the model and the system records the user’s 

interaction. The system then generalises the recordings and imitates the procedure on 

selected portions of source model that satisfy the pre-conditions [38]. Users demonstrate 
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how model transformation should be done by editing (e.g. add, delete, comment, 

update) the model instance to simulate model transformation process step by step. Then, 

a recording and inference engine (MT-Scribe) captures user operations and generates a 

transformation pattern using inference. This pattern specifies the precondition of 

transformation and sequence of operations. 

Brosch et al. introduced “Operation recorder” that is capable of recording atomic 

operations on models and creating composite operations based on recordings [43]. 

Operation recorder is capable of creating composite operations based on recordings and 

can accept input models defined in ECore. It then generates composite user defined 

refactoring by subsuming multiple set of atomic changes. Operation recorder is 

independent of any particular modelling language as long as it is based on ECore. 

Changes to the models are not recorded on runtime, instead, they are recorded when 

modifications are complete, i.e. initial model is checked against modified model.  

MTBD generates transformation of models within the same metamodel [88]. Therefore, 

it cannot be used for transformation applications which require exogenous model 

transformation. The biggest issue with demonstration-based approaches is their high 

reliance on the recording system (e.g. MT-Scribe [38]). These systems are generally 

tool specific and integrating them with other transformation approaches (than the one 

they were designed for) might not be always possible. Moreover, using MTBD in 

exogenous model transformation is challenging since finding both source and target 

models that can be monitored by recording agents does not seem feasible. Therefore, 

most of these approaches address endogenous transformation tasks. 

 

 

2.5 Visualisations and transformation  

Textual specification of model transformation scripts, although very efficient for 

software engineers, introduces pragmatic barriers for general users [80], [87], [89]. As a 

result some approaches have tried using visualisations. These approaches can be 

grouped into three categories. First, approaches that visualise abstractions and schemas 

and leverage user interactions with the elements of these visualisations for generating 
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transformation scripts. Second, approaches that provided concrete visualisations of 

source and target models. And finally approaches that tried to address transformation 

using concrete syntax in conjunction with abstract syntax of the models. In the 

following subsection, we briefly review these approaches. 

 

2.5.1 Visual intractable schemas  

This category of transformation generation techniques uses predefined visualisation of 

schemas and user interaction with the visualisations to make transformation more user-

friendly. A good example of these approaches is ALOTVA MapForce [47]. MapForce 

provides default tree-like visualisations for schemas of both source and target as shown 

by Figure 2.7. To generate mappings users drag and drop schema elements and specify 

mapping correspondences. From these correspondences, the transformation script is 

generated. In another approach, visual representations of EDI message meta-models 

were used as source and target. Similarly, users would generate transformation 

specifications by drag and dropping specification of model correspondences between 

these visual elements [31].  

 

 
Figure 2.7 Sample mapping generation using ALTOVA MapForce. 
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Although user interaction and visualisation helps the transformation generation process, 

the fact that the artefacts being used in these approaches are still abstractions makes 

them targeted to more advanced users [90]. As a result, providing improved mapping 

specification environments require users to think in terms of meta-models and abstract 

meta-model correspondences, not leveraging their model domain knowledge in a 

human-centric way. Next section describes techniques that use concrete visualisations 

of models for transformation generation. 

 

2.5.2 Using concrete visualisations  

Concrete visualisations can improve understandability of mapping and transformation 

generation [29], [32]. A recent study on comparison of three transformation languages 

namely Concrete syntax-based Graph Transformation (CGT), ATL and Attributed 

Graph Grammar (AGG) suggested that due to use of graphical concrete syntax, CGT is 

more concise and requires considerably less effort from the modeller than the other two 

which use textual abstract syntax [91]. CGT uses a default concrete syntax similar to 

Business Process Modelling (BPM) and therefore the syntax is familiar for the 

modeller’s domain knowledge.  

A concrete-like representation to make models familiar to the transformation designers 

was taken in form-based mapper by Li et al. [32]. It uses a concrete visual metaphor 

based on the concept of business forms, to visualise complex business data and 

provided an understandable data transformation mechanism for system users (in their 

case, business analysts). A screen shot of this form-based mapper is shown in Figure 

2.8. A closely related approach is presented by Stoeckle et al. [92], [93]. In their 

approach however, they try to provide multiple views for source and target models. A 

notation converter generator generates required transformations or transforming 

between different views of the provided models.   
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Figure 2.8 Sample mapping generation using Form-based mapper. 

 

Schmidt proposed using a UML2-profile to define transformations as pattern in concrete 

syntax of UML2 [94]. This way, users have the ability to define model transformation 

in the same visual language as models. A UML profile is a package and contains some 

restrictions on the possible extensions of a reference metamodel (e.g. UML and CWM). 

Stereotypes with parameters can be used to define syntax and model instances of 

metamodels. The modeller defines UML2 model and patterns. A generator uses this 

pattern to create a profile for the application of the pattern and some data containing 

transformation and constraints for expansion of patterns. A modifier then takes 

transformations and constraints to generate an expanded UML2 model. Their approach, 

however, was only capable of handling in-place transformations of UML2 to UML2 

models.  
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2.5.3 Using concrete syntax in conjunction with abstract 

Approaches in this category involve using concrete syntax in conjunction with abstract. 

For instance, since in graph transformation, patterns of the left hand side (LHS) and 

right hand side (RHS) graphs are defined in abstract syntax and more readable concrete 

syntax is not used in the transformation rules, Baar and Whittle proposed separation of 

modelling language from pattern language [33]. Their approach was to write the graph 

transformation rules directly in the concrete syntax of the modelling language and 

extract the metamodel of the pattern language from that of the modelling language [33]. 

However, their method required alteration of concrete syntax to include labelling of 

objects and optional occurrence of attributes and links.  

Visser used syntax definition formalism (SDF) to incorporate existing (meta-) 

programming languages with concrete syntax notation [58].  This combination was used 

in transformation generation using Stratego [95]. Using concrete notations for 

generating object programs helps to better understand the abstract syntax of the meta-

language elements to be mapped. Although the use of concrete syntax makes meta-

programs more readable than abstract syntax specifications, the approach requires both 

meta-language and object language syntaxes to be provided as an input to the platform.  

 

 

2.6 Model transformation tools 

This section provides a comparison of the mostly used and available transformation 

tools. This comparison is provided in Table 2.2. It compares several transformation 

tools based the application domain supported by tools, specification syntax of 

transformation, transformation cardinality, input artefact syntax, the way users interact 

with the tool, supported directionality and user support mechanism. Some of these 

categories have been described in this chapter before. 

Among the categories of Table 2.2, transformation cardinality checks the type of 

transformation correspondences that can be specified. The options could be one to one, 

one to many or many to many correspondences.  
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User interaction category tries to capture the level of simplicity of using tools for 

novice transformation developers. This interaction can be performed using textual 

specification of correspondences which is hard for novice users. It could also be 

interactive specification where users click on elements, or ask tool to perform certain 

tasks. Some tools also allow drag and drop of visual elements to specify correspondence 

which is much easier for non-expert users. 

User support mechanism concerns possible support mechanism to make transformation 

more user-friendly. This support could be in form of providing concrete visualisations 

of input models. For concrete visualisations, the fixed tree-based visualisation of input 

models is not considered as a support mechanism, as is used in most schema mapping 

approaches. Other type of guidance mechanisms could include providing interactive 

guidelines to users to finish the transformation task. This interactive guidance may be 

provided in form of recommendations, or providing a review of the resulting mapping 

target. 

Majority of the transformation frameworks being discussed here are based on graph 

transformations. These include ATOM3 [96], VIATRA2 [97], GReAT [76],  UMLx 

[98], and BOTL [99], [100]. These approaches are mostly integrated in Eclipse 

framework.   

VIATRA2 integrates graph transformation and abstract state machines (ASM) to 

manipulate graph based models [97]. It uses a dedicated transformation language 

(VIATRA2 Transformation Language or VTL) which is composed of three 

sublanguages that provide support for multilevel meta-modelling, pattern and rule-based 

model transformations, and template-based code generation. It uses Visual and Precise 

Modelling (VPM) metamodels which provide a visual concrete syntax to represent 

metamodels but the framework does not allow arbitrary concrete syntaxes.  
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Table 2.2 Comparison of model transformation tools. + indicates support, (+) shows partial support and – 
shows no support. 
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- 

(+) 
 
ATOM3 provides concrete visualisation for source and target graphs and allows users to 

define rules by using concrete graph-based rules [96]. It uses TGG as the transformation 

language and is therefore capable of generating many-to-many rules. Similar to other 

graph based approaches, if the source and target models are not graphs, concrete syntax 

cannot be provided for them. 

Graph Rewriting and Transformation language (GReAT) uses a combination of pattern 

specification language, a graph transformation language, and a control flow language  
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[76]. Transformation rules in GReAT can be defined using Generic Modelling 

Environment (GME) based graph visualisations[76].  

UMLx provides a visual language for model transformation that uses standard UML 

class and object diagrams to define meta models, and uses object diagram to define 

inter-schema transformations [98]. As a result, it provides a graphical visualisation of 

rules that is similar to UML standards. Visual transformation rules in UMLx are 

transformed to XSLT and then applied on meta models.  

ALTOVA MapForce is a schema mapping generation tool that provides users with tree-

based visualisation of source and target schemas [47]. It allows definition of 

correspondences using drag and drop of elements from tree visualisations. Functions 

can be used to generate more complex mappings and unidirectional mapping is 

generated in XSLT, XQuery, Java, C# and C++.  

Form-based Mapper proposed by Li et al. is a data mapping targeted for specific users, 

i.e. business analysts [32]. Therefore, it is limited to a certain application domain of 

transforming business data in terms of forms. Its visualisation mechanism also is 

designed to consider business forms as source and target. Although form-based mapper 

allows using interactive drag and drop metaphor on concrete visualisations, since the 

visualisation is targeted to specific application domain and users, it has been shown to 

partially support concrete input artefact syntax in Table 2.2.   

Basic Object-oriented Transformation Language (BOTL) is a relational transformation 

language and system that provides the ability to use graphical description techniques 

and integrated algorithmic descriptions to graphically define mapping rules [99], [100]. 

It provides a UML-like notation for graph rewriting rules working on pairs of models or 

graphs. BOTL provides bidirectional transformation for bijective relations, for non-

bijective relations however, the consistency preservation is not clearly defined [102]. 

Clio is the data transformation and mapping generator that was developed for 

information integration applications [101], [103]. Clio provides declarative mappings to 

be specified between source and target schemas. It supports XML schema and relational 

schema and can generate mappings in XQuery, XSLT, SQL, and SQL/XML queries 

[101]. Clio provides a fixed tree-based visualisation of source and target schemas and 



 
38 
 

allows users to drag and drop elements of these schemas to specify schema mapping 

correspondences. Clio also provides a set of correspondence matchers to create initial 

correspondences. These matches can then be incrementally updated [103]. Clio 

generates mappings in form of queries and therefore N-to-M mapping can be specified.  

Although ATL is not a transformation tool and comes integrated in Atlas Model 

Management Architecture (AMMA), a dedicated plug-in in Eclipse framework can be 

used to develop transformations in ATL. Using Eclipse IDE users can specify 

transformations by writing ATL scripts. 

There are a number of transformation tools and approaches that are used for program 

code transformations. Examples are Tree transformation languages (TXL) [67], 

Alchemist [104], ASF+SDF[105] , JTS/Jak [106], Stratego [95] and Gra2Mol [107]. 

Since application of these approaches is for specific domains (e.g. program 

transformation, textual syntax) they are not included in this comparison.  

 

 

2.7 Information and Software Visualisation  

There is a growing demand for approaches that incorporate visualisations in the 

software industry and beyond [14]. Accordingly, apart from using visualisations for 

model transformation, a significant contribution of this thesis is on generating concrete 

visualisations. This section provides a brief review on approaches for visualisations. 

The review is based on visualisation techniques for models and information 

visualisations.  

 

2.7.1 Model visualisation 

Among the early approaches of software visualisations are SHriMP and Rigi [15], [17].  

Rigi was designed to provide a structural view of large software systems and effectively 

present the information accumulated during the development process [15]. SHriMP is a 

software visualisation environment specific to hierarchical datasets with non-
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hierarchical relationships between the nodes and was integrated in Rigi framework [17]. 

However, these tools suffered from adaptability and flexibility in industrial settings 

[14].  

More recently, a framework for Model Driven Visualization using Eclipse Modelling 

Framework (EMF) was introduced by Bull et a. [14]. This framework is capable of 

generating flexible visualisations using meta-modelling and transformations. It has been 

implemented within Eclipse [108]. The EMF models used in this approach allow 

generation of code from a model.  

Cerno-II is a visualisation system capable of constructing graphical views of the 

execution state of object-oriented programs [109]. It has three layers: 1.Display layer 

which works by Display Specification Language. 2. Abstraction that consists of 

abstractors responsible for extracting running program data and map it to display layer 

and 3. Program layer that consists of objects and data structures of the program being 

visualised. Cerno-II uses display specification language to design new representations 

for displays. Each descriptor in this language is a functional expression specifying the 

general format of a type of display (boxes, lines, etc.). Alignment of descriptors is based 

on horizontal and vertical lists. Skin is a visual functional language for flexible user 

interface component construction using icon and connector model [21]. It can be 

considered as a specialisation of Cerno-II. Skin provides icon-like graphics that once 

connected using special connectors can form visualisations.  

With emergence of Meta-tools, generating visual languages and diagram based editors 

became easier and more feasible. Meta-tools allow generation of visualisation 

environments that provide facilities for users to interact with those visualisations. An 

example of such meta-tools is Marama tool-suit [19]. Marama is a set of Eclipse plug-

ins that support rapid specification and implementation of other software tools such as 

Domain Specific Visual Languages (DSVL) and modelling tools. It was used to develop 

other modelling environments like MaramaEML as a multi-view business process 

modelling environment [110], MaramaAI for multi-lingual requirements engineering 

[111], and MaramaMTE for performance engineering [19].  
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DiaGen is another example of a meta-tool for generating diagram editors [20]. DiaGen 

uses hyper-graphs for language definition and describes a diagram as a set of diagram 

components and the relationships between attachment areas of connected components of 

the model. Like Marama, DiaGen has been used in creating diagram-based applications, 

for example in an editor for graph-based languages [112]. 

CIDER is a tool developed for building Smart Diagramming Environments (SDE) 

[113]. It uses Constraint Multi-test Grammars (CMG) for specification of diagrammatic 

syntax. The Constraint Multi-set Grammar (CMG) formalism is a kind of attributed 

multi-set grammar. A CMG specification has two parts: symbol definitions and 

production rules. Symbols have geometric and semantic attributes. Each type is either 

terminal or non-terminal. Terminal symbols correspond to the primitive graphic objects 

in the diagram while non-terminal symbols are more complex objects built-up from 

these.  

The approach presented by Ernst et al. provides visualisations for software application 

landscapes (software map) [16]. For each cluster map of the system, they have 

identified a semantic model and a symbol model. The semantic model contains actual 

values for the objects of the model and their attributes. They propose to use 

transformations to link the gap between semantic model (the data to be visualised) and 

symbolic model (visualisation). Then transformation rules like “every business 

application is transformed to a rectangle with text as the name using white background 

colour” are used [16]. 

 

2.7.2 Information Visualisation 

The context of this thesis is on model visualisations. However, since information can be 

provided in form of a model, model visualisation approaches could also be applied for 

visualising information. Similarly, some approaches on information visualisation can 

also be used to provide alternative visualisations for models. 

A survey of information visualisation tools has been provided by Pantazos et al. [114]. 

They have evaluated a group of industry and academic information visualisation tools 

for three types of users (Novice, Savvy, and Expert). Novice users have no 
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programming skills but have domain knowledge and basically interact with predefined 

visualisations. Savvy users, have some basic skills and an understanding of the domain. 

While expert users are users with very good programming skills who construct 

advanced visualisations and have no domain knowledge. Five dimensions were used to 

compare visualisation approaches: Who constructs the visualisation, What types of 

visualisations user can develop, Does it support construction of advanced visualisations, 

How are visualisations specified and created, and finally, Does it have a development 

environment. The study concluded that the current information visualisation tools do 

not support Savvy users in construction of advanced visualisations [114]. 

Relational Visualisation Notation (RVN) for generating multi-dimensional 

visualisations was introduced by Humphrey [4]. RVN is a graphical notation that allows 

users to specify visual designs without the use of programming. RVN is composed of 

three parts: Semantic data models, which provide facilities for describing, storing and 

retrieving information according to the relational model. Graphics relations that visually 

represent information relations, define the information and graphical models of the 

visualisation as well as the transformation between them. And finally design diagrams, 

which combine multiple information and graphic relation into a visualisation design 

specification. The graphics relation has a schema for graphics and a schema for 

information and set of bindings between them. The graphics schema is templates made 

of boxes, lines, graphics iteration and graphic selection. It defines the visualisation’s 

visual structure like parameterised icons. The binding between graphics schemas and 

the information schema is algebraic expressions i.e. formulae which make it easier for 

users without programming skills to make visualisations. Design diagrams are directed, 

acyclic graphs that combine source relations to produce output graph relations.  

UVis is a tool suit that addresses visualisation creation for non-programmer end users 

with advanced spread sheet knowledge and basic relational database understanding 

[115]. Users can compose customisable visualisations using formulas and building 

blocks such as box, line, and labels. uVis controls have three kinds of properties: control 

properties (the  pre-defined properties a control supports), uVis properties (additional 

properties for visualizations), and user’s properties (properties created by the user) 

[115]. Each formula represents an SQL statement and can refer to data in the database 
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or any of the properties. UVis studio tool is visual studio based tool which uses drag and 

drop approach similar to visual studio. 

Where information can be structured as graphs, graph visualisation approaches can be 

used. Herman et al. provide a survey on approaches to create graph visualisations [116]. 

Their survey is specially focused on how to navigate large graphs reducing visual 

complexity through reorganisation of the data.  

The Visual Wiki is an approach for visualising information using a combination of 

textual and visual representation of same body of knowledge [117]. A Visual Wiki has 

four components: concept, text, visualisation, and the mapping between them. Concept 

describes the purpose and content of visual components. Text and visualisation 

components use a language to represent the content of the underlying knowledge base: a 

visual and a natural language. Finally the mapping determines how the two 

representations (visual and textual) are linked together and how they influence each 

other [117]. Its application was shown in generation of ThinkFree, an IT knowledge 

management system for tertiary institutions [118]. Visual wikis can be generated using 

VikiBuilder which is a visual wiki meta-tool [119].  

 

 

2.8 User guidance 

With the scale of today’s software engineering applications, users are presented with an 

ever-increasing load of information. One response from research and industry to the 

problem of information overload is Recommender Systems [120]. Recommender 

systems help users find information and make decisions where they lack experience or 

can’t consider all the available data [120]. They have been previously used and tested in 

many e-commerce applications (examples are [121]–[123]). 

This thesis approach introduces a recommender system that specifically focuses on 

correspondences between elements of concrete visual model representations to guide 

users in specifying their transformation rules. This approach builds on model matching 

techniques and recommender systems. The following sections provide a brief review of 
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approaches to model matching and recommender systems in software engineering. It is 

followed by a subsection on previous approaches to provide guidance to users of model 

transformations. 

 
2.8.1 Model matching 

Model (or metamodel) matching techniques try to find an alignment for relating two or 

more models. This alignment can then be used to semiautomatically generate 

transformations between two models. These generated transformations can then be 

adopted and validated by an expert as a set of transformation rules [85]. Model 

matching is therefore very similar to MTBE in terms of finding possible 

correspondences between source and target models.   

Matching approaches can be categorised into three categories based on the artefacts 

being used as source and target to be matched and their abstraction level. These 

categories include schema based, instance based and hybrid approaches. Following 

subsections provide details on current approaches in each category. 

 

2.8.1.1 Instance-based matching approaches 

Instance based model matching approaches are the closest to MTBE. They use instances 

of source and target models to find and explore possible alignments. QuickMig is such 

an approach that uses instance-based matchers on manually created examples to 

generate alignments [124]. Similar to QuickMig, SmartMatcher also uses manually 

created instances [125]. However, the objective of both approaches is to create a 

matching alignment between source and target schemas, not the instances. The actual 

and targeted outputs of the matching algorithm in SmartMatcher are compared and the 

differences are propagated back to adopt the functional relationship model in form of 

the mapping between LHS and RHS models [125].  

Kache et al. introduced an approach for reverse engineering of transformation rules in 

data intensive systems using data mining approaches [126]. They have classified all 

transformation rules into three groups, value-based correlation, aggregation, and 
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arithmetic transformations. Their approach requires source and target to be relational 

datasets with logical definition for both schemas. They also consider a primary foreign 

key to be present for joining source and target and to keep record of transformation rule 

data. The discovery is done in three phases: 1. Pre-processing: they execute a set of tests 

depending on the type of transformation rule group to be discovered. 2. Data mining: 

use mining techniques on the results of phase one. 3. Post-processing: derive 

transformation rule from data mining output. These steps are repeated for each of the 

three groups of transformation rules.  

Yeh et al. used a semantic matcher to find a mapping between two knowledge 

representations encoded using same ontology [127]. When mapping two 

representations, there are mismatches that occur between elements of representations. 

This work tries to find instances of mismatches that encode sufficient similar content. 

Then these instances are generalised into transformation rules for use in semantic 

matching. Structural representation is mostly encoded as graph. Therefore semantic 

matching can be considered a graph matching problem.  

 

2.8.1.2 Schema-based matching approaches 

Schema matching (or metamodel matching) approaches are generally similar to instance 

based matching in terms of methods of finding correspondences. However, they intend 

to search metamodels and abstractions of source and target models. As a result, the 

found correspondences are already generalised and are in abstract level.  

Some approaches to metamodel matching proposed using similarity heuristics on 

schema labels and types, and similarity propagation. Bossung et al. used mapping 

agents that look for label similarities in source and target schemas [46]. They focus on 

automated mapping generation of XML schema by using analysis agents which traverse 

both schemas and apply a set of heuristics to find correspondence between elements. 

Heuristics such as same name, same type were used to automate data mapping. Clio by 

IBM also used a similar approach [101]. Clio uses value correspondences for mapping 

the schemas and interprets sets of value correspondences to compute mappings for the 

most common schema heterogeneities known from the database field [101].  
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Other approaches consider structural similarities as well as label similarities. For 

example SAMT4MDE+ finds structural similarity between metamodel elements using 

weighted score of structural similarity to determine mapping specifications between 

metamodels [128]. Voigt and Heinze proposed structural comparison focusing on 

common sub-graph [84]. The approach has three stages: a planarity check, a 

planarization, and graph edit distance calculation. To obtain better results, set of correct 

mappings are provided by user as seeds which serve as starting points for similarity 

calculation. Sequential matching systems like Similarity Flooding propagate similarities 

in a graph between nodes using fixed point computation [84]. In their internal graph 

representation, classes, packages and attributes are each mapped onto a vertex and 

references are mapped to edges.  

Similarity flooding is a graph matching algorithm that uses labelled directed graphs as 

input [129]. It first converts input models to directed labelled graphs and uses iterative 

fixed-point computation to find similar nodes in both graphs using string matching. It 

then calculates propagation of similarity of two nodes to their neighbours. By limiting 

suggestions (e.g. thresholding similarity scores) a set of matching results are prepared. 

Falleri et al. used this approach to automatically find mappings between two 

metamodels [83].  

Dolques et al. proposed combining string similarity and schema matching to 

automatically retrieve the links and corresponding elements of source and target 

instances [42]. Their proposed architecture was to first generate the correspondence 

links of source and target by a matching engine, and ask an expert to check and validate 

the links. The matching engine would then check source and target and provide a 

candidate matching model. The expert would check the model for validation. Using this 

model they used anchor prompt approach in a two-step process designed for ontology 

matching to find matches [42]. Their approach works on EMF therefore all models 

should conform to Ecore metamodel. 

A number of similar approaches are shared among ontology, schema, and metamodel 

matching domains [130]. For example, ModelCVS transits ECore based metamodels of 

ModelWare to OWL-based ontologies of OntoWare [37]. Using OntoWare and 

ontology matching, matches are found. Then the reverse transition will result in 



 
46 
 

metamodel matches of the input metamodels. If metamodels have common 

terminology, for example when matching UML to UML2, ModelCVS results in good 

matches due to use of ontologies.  

A model management operation (ModelGen) that automatically translates a source 

schema expressed in one metamodel into an equivalent target schema expressed in a 

different metamodel, along with mapping constraints between the two schemas is 

introduced by Bernstein et al. [131]. Given a source model and schema, it is possible to 

generate the given target model's schema using special ModelGen operator [132]. It is 

defined in a meta-metamodel level where every metamodel conforms to. As a result, 

model management tools using ModelGen are claimed to be generic. 

 

2.8.1.3 Hybrid approaches 

Schema-based approaches can be improved by using model instances. For example, in 

Bossung et al. using example instances helps mapping agents relate schema elements 

more accurately [46].  SmartMatcher, uses a collection of mapping operators 

(predefined in the system) and tries them on schemas to find appropriate mappings 

[125]. A set of initial mappings should be provided to the system to narrow the search 

space, otherwise the operators of the mapping language have to be applied randomly 

which take a lot of time. The mapping model is created from alignments in INRIA 

alignment format [133]. It has the capability of being used to derive transformations in 

multiple languages based on source and target schemas [133].   

 

2.8.2 Recommender systems  

In general, there are three types of recommender systems: content-based, collaborative 

filtering and the hybrid recommender systems. Content-based recommenders learn the 

preferences of their users based on historical usage data, or available information of the 

items [134]. Collaborative filtering recommendations recommend items based on its 

similarity to items used by other users with similar profiles to the current user [135]. 

These systems recommend an item to a user if users with similar interests have used that 
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item previously. Hybrid approaches tend to combine collaborative and content-based 

methods [136], [137]. They leverage advantages of each approach and attempt to 

mitigate the limitations of each approach as well.  

Software artefacts have become very large and may include varieties of source code, 

models, code, APIs and other artefacts. This provides a significant pressure on 

developers and maintainers of software to carry on dedicated tasks. Accordingly, 

recommender systems in software engineering have been focused on increasing 

productivity of developers by providing task specific recommendations. An example of 

these tasks is code reuse to reduce implementation efforts. CodeBroker is a 

development environment that promotes reuse by enabling software developers to reuse 

available components [138]. It analyses comments in the code and uses a combination 

of text similarity and signature similarity to find suitable methods among available 

library contexts.   

In large software projects, locating specific portions of the project or code is a 

challenging task. Robillard introduced a recommender system that helps developers find 

items of interest [139]. It analyses the topology of a graph of structural dependencies of 

a software system and recommend set of items that might be of interest to the 

developer. Similarly, Hipikat helps new developers joining a development team in 

finding source code, email discussions or bug reports related to a specific query [140]. It 

provides a development environment using Eclipse IDE and records all of the artefacts 

produced during the development. Rascal uses a recommender agent to track usage 

histories of a group of developers and recommends components that are expected to be 

needed by individual developers [141]. The components that are believed to be most 

useful to current developers will appear first in the recommendation list. 

Dhruv is a recommender system that provides debuggers with a list of recommended 

artefacts relevant to a bug report [142]. It uses a three-layer community model based on 

developers. The first layer considers users, and contributors. The second layer considers 

content e.g. code, bug reports, and forum messages, and final layer includes interactions 

between these. Dhruv uses a web-based environment and recommends objects 

according to the similarity between a bug report and other bug reports, code, and 

mailing lists on the web [142]. Similarly, DebugAdvisor helps debuggers search 
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through diverse data repositories associated with large projects to find solutions to 

fixing a specific bug [143].  

For some applications, developers might need to find related expertise to perform a 

software engineering task. In such situations, Expertise Browser can be used to 

recommend relevant expertise [144]. It recommends experts by detecting past changes 

to a given code location or document and assumes previous developers that altered the 

document have expertise in it. 

Not all recommender provide recommendations by providing data. Mylyn is a 

recommender system that helps users of an IDE by hiding irrelevant information 

provided by the IDE and hence improve programmer productivity [145]. It identifies 

and blurs classes in a large software project that are less relevant to the task.  

 

2.8.3 User guidance in transformation 

User guidance mechanisms have been integrated in tools for many application domains. 

Examples are code completion [146]–[148], diagram completion domains [149]–[151], 

Model completion [152]–[154], and Domain Specific Visual Languages (DSVL) [155]. 

Despite increasing attention to supporting users in labour intensive tasks of software 

engineering, we are not aware of any research, techniques or approach that is 

specifically generated to support users in model transformation specification. Previous 

research has been mostly focused on how transformations should be generated and the 

technologies to enabling it [29], [62], [63], [66], [156].  

Siikarla et al. investigated how model transformations should be developed and what 

are the roles involved in the design phases [157]. They claimed that different modelling 

formalisms need different expertise and stakeholders need to use different notations at 

different levels of abstraction. As a result and due to the fact that construction of model 

transformation needs constant feedback, they proposed an iterative and incremental 

application to developing model transformations which consisted of three roles: 

transformation design phase expert, transformation architect and transformation 

programmer. The transformation design phase expert has knowledge of specific design 

phase and provides examples of correspondences in the source and target models. A 
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correspondence example captures expert’s intuitive knowledge by describing structures 

in target models that should be resulted from the given source model. Transformation 

definition, which defines high level structural behaviour of transformation code, will be 

then generated from patterns by transformation architect and implemented by 

transformation programmer.  

The intelligent agents approach proposed by Bossung et al. finds possible 

correspondences between elements of source and target model schemas [46]. Although 

the user can accept or reject correspondences, it was mostly targeted at automatic 

generation of model transformation scripts rather than guidelines for model 

transformation designer and was designed for schema mapping applications. ALTOVA 

MapForce also takes a much limited approach by providing automatic correspondence 

mapping of exactly similar schema labels [47]. User can ask MapForce to map exactly 

similar name labels of the schemas automatically to save time.  Our approach to 

providing user guidance is built on Bossung’s approach. 

Among data mapping applications, Alexe et al. developed Muse as a mapping design 

wizard [158]. Muse uses two components, Muse-D and Muse-G, to guide data mapping 

designer in generating the final mapping specification for relational and nested schemas. 

Muse-D provides set of unambiguous mappings that can provide sample example 

outputs. Muse-G on the other hand, is used to guide the designer to find required 

mapping groupings semantics that can lead to designed output [158].  

 

 

2.9 Summary 

This chapter has provided an overview on some state of the art in modelling and model 

transformations. It briefly reviewed Model Driven Engineering (MDE) and different 

transformation languages and tools. In reviewing model transformation techniques, 

special attention was made to Model Transformation By-Example (MTBE) and Model 

Transformation By-Demonstration (MTBD) and transformation approaches that use 

some type of visualisation to allow user interaction for development of model 
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transformations. Approaches for providing visualisations in information and model 

visualisation domains were also discussed.  

In-line with contributions of this thesis in providing user guidance and support for 

model transformation specification, state of the art in design, use and application of 

recommender systems has also been investigate. Due to the similarity of model 

matching and metamodel matching approaches to model transformation by example, an 

overview on automatic matching techniques was also provided and their application in 

providing user support was also discussed.   
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Chapter 3 

Approach  
 

 

 

 

 

 

3.1 Introduction 

This research investigates the use of concrete representations of complex models to 

make model transformation specification and generation process more user-centric. The 

notion of “concrete” here refers to the notations that are generally used for defining 

models. These notations may include textual (e.g. source code or documents) or 

graphical notations (e.g. boxes and lines used in diagrams, graphics used in charts, etc.). 

The term “users” refers to users that are not trained in complex transformation 

languages and meta-modelling or type theory, but are familiar with specific modelling 

languages and their concrete visual notations. For these users, the correspondences 

between participating source and target models and their semantics are relatively clear.  

Also, by graphical notations, we are not referring to actual graphical notation of input 

models. Instead this approach seeks to providing users with a user friendly method of 

generating concrete visualisations. These visualisations can be similar or different to 

actual model representations and more toward visualisations that users are familiar with. 

Therefore, the first main research question is defined as:  

RQ1: Can concrete model visualisations be effectively generated in a visual and 

interactive by-example approach? 
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Our approach addresses this question by letting users define or choose notations 

provided by our framework (defined by other users or themselves previously), and map 

them to input model examples. From this interaction, a model-to-visual notation 

mapping will be generated. These specified by example model-to-visualisation notation 

mappings will then be composed to generate complete and complex visualisations. 

Using generated concrete representations rather than abstract, our hypothesis is that 

users will find it more understandable to define correspondences between source and 

target model elements using their concrete notation, rather than by using meta-model 

notations as with most current approaches. These correspondences will eventually lead 

to transformation rules between the underlying models. Therefore our second main 

research question is derived as: 

RQ2: Can a model transformation be effectively generated using concrete by-example 

visualisations?  

Nevertheless, the models being used in software engineering today may get large and 

this has direct effect on the complexity and scale of their visual representation. 

Therefore, concrete visualisation alone may not contribute enough to better 

comprehension of large models. This factor affects expert and novice users alike and 

will frame our third main research question: 

RQ3: How can interactive guidance be provided to users of model transformation 

systems? 

We incorporate a guidance system that helps users in using the transformation process. 

This system helps by providing recommendations on source and target representations. 

These recommendations indicate which elements of source and target model are likely 

to match. Users can then view them as guidance or choose among them for 

correspondence specification.  

The approach presented in this thesis will not be acceptable, unless an appropriate tool 

support is provided and users can use the tool to evaluate the approach. Such tool 

support should also integrate different aspect of the approach in a useable and scalable 

manner. As a result, research question four is defined to address this:  
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RQ4: Can our approach be implemented in a usable, scalable and user friendly tool?   

The contributions of this thesis are implemented and validated in a proof of concept 

prototype CONcrete Visual assistEd Transformation framework, or CONVErT for short 

[80], [89]. CONVErT provides a proof of concept implementation of each of the 

research contributions, and plays an important role in validation of our approach.  

To address these separate and yet complementary questions, we have devised a 

collection of research questions and motivating scenarios. Following sections are 

dedicated to description of these in more details. 

 

 

3.2 Approach 

The high level scenario of our approach is depicted in figure 3.1. It describes the 

artefacts that take part in transformation specification as source and target 

interchangeably. The arrows show transformation direction. Transformations from 

examples to visualisation have been depicted by arrows of the same colour and shading 

to indicate that the process of transforming example data to visualisation for both source 

and target is similar. As indicated, all transformations here are bidirectional, i.e. once 

the forward transformation is generated, its reverse is generated automatically (where 

possible, or an alternative is specified by the user if not). 

The key idea is that source and target examples are first transformed to specialized 

visual representations1. Visual notations in the visualisation are capable of being used 

directly for correspondence specification, i.e. they can be dragged and dropped on each 

other to specify correspondence links. To generate transformation between 

visualisations, many such correspondences are required to be specified.  

 

                                                
 
1	
   Here	
   after	
   we	
   may	
   use	
   the	
   terms	
   “visualisation	
   process”	
   and	
   “transforming	
   to	
   visual	
   notations”	
  
interchangeably	
  as	
  they	
  refer	
  to	
  the	
  same	
  procedures	
  in	
  our	
  approach.	
  



 
54 
 

 

Figure 3.1 High level description of our approach and transformation flow. 

 

The visualisation process and transformation between visual notations are separate tasks 

and can be distributed among users. For example, a user may be responsible for 

specifying visualisations for provided model data in form of charts and tables. Other 

users use these charts and tables to generate transformation specifications instead of 

using the underlying provided data. Since the system is responsible for the round 

tripping between these two processes, they can always integrate and reuse their 

transformation results to produce a round trip transformation. The following sections 

review our visualisation and transformation specification approach in more detail. 

 

3.2.1 Visualisation  

Using complex information in a visual format is more acceptable and effective for 

human beings because visual representations use the capabilities of our powerful human 

visual system [159]. Visualisations and diagrams can reduce the amount of search 

needed for finding elements and information [160]. Therefore, Our first research 

question and focus point is on how we can employ this capability to our advantage to 

improve user-friendliness of model transformation specification.  
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To use visual representations for model transformation (or any other field that requires 

visual representations), a mechanism for generating and rendering visualisations needs 

to be available. This mechanism should define how the values in data are mapped to 

corresponding visual representations, and how the visual notation is to be represented to 

the user. Therefore, objective of the visualisation will be to provide this mechanism, and 

further for our approach, to use the mechanism for model transformation 

correspondence specification. By developing the visualisation approach presented in 

this thesis research, we will also contribute to “Creating complex visualisations from 

arbitrary data (here input models).” 

 

 

Figure 3.2 Using notation repository for generating visualisations. 

The models and hence their visual notations come from variety of domains and different 

data. Therefore, as is depicted by figure 3.2, a first impression is to provide a notation 

repository so that the users can compose complex visualisations from existing basic 

notational elements. A problem with such architecture is that to add a new visual 

notation and visualisation, this approach would require low level programming for 

defining and rendering visual notational shapes. This is not a desirable procedure. A 

more effective procedure would allow arbitrary notations to be defined and used as 

visualisation. Therefore, following questions are devised:  

RQ1.1: How can a variety of visual notations be defined and integrated to the system? 

RQ1.2: How can we define correspondence links between data and visual 

representation?  
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Following section is dedicated to how we approach these questions.  

 

3.2.1.1 Visual Notations 

A useful visualisation mechanism should allow users to define a variety of shapes, 

colours, textures and graphics as visual elements. Being inspired by the Model View 

Controller (MVC) approach [2], our decision was to separate the notational visual 

representations (View), from representative data (Visual Model) and provide a 

Controller for updating model values in the view. However, unlike traditional MVC [2], 

the Controller here is not a collection of interfaces between Models and Views. Instead, 

the controller is a transformation that transforms the model data to the view and is 

generated using provided semantic links. This way, each visual notation would have a 

data portion and a rendered visualisation (see figure 3.3). The visualisation is depiction 

of the model data to visual elements; therefore, it only provides one direction (forward 

transformation). 

 

 

Figure 3.3 High level structure of visual notations (left) and a concrete example describing a chart 
notation (right). 

 

The modified MVC approach allows users to create or provide model visualisations by 

using already available view examples and specifying links between the data and those 

visualisations. As a result the visualisation mechanism is flexible and variety of visual 
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notations can be generated in the system and users will have the freedom to choose (or 

design) desired notations.  

 

3.2.1.2 Mapping input data to visual notations  

Given that visual notations are generated and available, to visualise input data, the 

provided data should be mapped to the notation data. Once the data is transferred to the 

notation’s model data, it can be represented by the notation’s view using the controller 

transformation. As a result, next research question would be defined as:  

RQ1.3: How can the mapping between model elements and visual notations be 

specified?  

To answer this question, our approach follows a drag and drop procedure for specifying 

mappings between input data and notations. Elements of input data are provided to 

users with a default representation, and users drag and drop elements on elements of the 

visual notation’s model. To perform this mapping, our approach automatically generates 

transformation rules for transforming (portions of) input data to the model of the desired 

notations. Figure 3.4 shows an example of such interaction where the data is being 

mapped to visual notation. 

 

 

Figure 3.4 Mapping input data to visual notation’s model data. 
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In Figure 3.4 the input data is being mapped to a visual notation’s model data. This will 

result in a model-to-visual notation transformation rule. This transformation rule is 

embedded in the notation, making it a customised notation for that portion of input data. 

Unlimited number of customised notations can be generated this way.  

 

3.2.1.3 Visualisation composition  

Next step to have a complete visualisation is to be able to generate visualisations using 

defined customised notations. These notations need to be composed to create a complete 

visualisation. This defines our next research question: 

RQ1.4: Can the defined customised visual notations be composed and linked together to 

generate more complex and complete visualisations? 

To answer this question, our approach uses a dedicated notation composition procedure. 

Each of these customised notations represents a model-to-visualisation transformation 

rule. Composition of these transformation rules will result in a transformation script that 

can transform a bigger portion of input data to a more complete visualisation, hence a 

model-to-visualisation transformation script.   

To perform this composition, the design of our notations allows specifying place 

holders in the notation. These place holders specify where other notations might be 

added. Figure 3.5 shows a composition of a bar chart using the chart area and a bar 

notation. The bar notation in this figure has been linked to bars element placeholder of 

the chart notation. This composition results in generation of a transformation script that 

transforms the input model data to bar chart visualisation composed of chart area and 

bars.  

Multiple customised notations can be linked to a placeholder. This is to allow 

alternative visual notations to be embedded inside a notation. This feature allows 

specification of multiple alternative visualisations based on certain conditions. For 

example in a bar chart, the bars could be specified by rectangle shapes or cylinders 

depending on a shape element in host bar chart’s model. If no such condition is 
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provided and duplicate notations are linked to a placeholder, the system automatically 

picks the first notation. 

 

 

Figure 3.5 Composition of a bar chart visualisation.  

 

3.2.1.4 Visual aid for notation composition  

Composition of customised notations can be a complex task. When the number of 

customised notations increases and visualisation becomes more complex, it might 

become hard to follow the composition procedure. Given that the composition process 

will provide the scheduling of model-to-visual transformation rule inside notations, it is 

important that the notation composition is performed correctly. As a result following 

question is raised:  

RQ1.5: In what form should guidance be provided to users on composition of 

notations? 

To provide support for composition and hence being able to schedule transformation 

rule sequencing, the rendering mechanism is designed in a way that it is capable of 

rendering partial visualisations. As a result, when visual notations are being composed, 

even though the resulting composition (and hence transformation) may not be complete, 

the system is capable of rendering the partial result. Therefore, users can review the 
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result of so far composed notations on the spot and perform corrections as they see fit. 

Figure 3.6 shows an example of this visual aid. 

 

Figure 3.6 Visual aid for notation composition. 

 

3.2.2 Correspondence specification 

The intention of defining desired visualisations was to improve the comprehension of 

input models, and hence defining correspondences between source and target models, in 

a model transformation specification. With visualisations available, next step would be 

to specify correspondences between source and target visualisations as the starting point 

of transformation generation. Consequently we asked:  

RQ2.1: Can we perform correspondence specification (and hence transformation 

specification) on actual visual notation of input models?  

A correspondence is a link between an element in the source model and an element in 

the target. Such a link may simply imply that the value of the source element should be 

copied to the target element (and vice-versa in a bidirectional case). Once visualisations 

of source and target are available, correspondence links between two elements 

(notations) in a visualisation are specified by drag and dropping one element onto the 
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other. This way a link can be specified between dragging element (source notation) and 

the element it is being dropped on (target notation). Examples of such an interaction can 

be found in Figure 3.7.  

 

 

Figure 3.7 Correspondence specification examples. Arrows depict drag and drop directions. 

 

To make arbitrary notations capable of being used in correspondence specifications, 

each notation needs to be aware of the interaction logic (drag and drop events) and 

transformation logic (bits and pieces required for generation of transformation code like 

forward and reverse transformation templates and abstraction). These elements have 

been included into our visual notation architecture along with rendering logic. Each 

notation carries the elements required in our drag and drop approach as well as 

rendering mechanism and transformation templates. Figure 3.8 illustrates the 

architecture of each visual element. This architecture allows visual elements to be 

capable of being dragged and dropped onto other visual elements. Once a visual element 

is dropped onto another element, the forward and reverse transformation templates of 

each will be defined according to the interaction direction.  
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Example 3.1 Dragging element E1 on element E2 will result in the abstraction of 

E1 to be used as initial Reverse transformation template of E2 and abstraction of 

the E2 as Forward transformation template of E1. These abstractions include the 

structure and type of the input data that each element carries and is automatically 

reverse engineered. The other two templates (Reverse template of E1 and 

Forward template of E2) are assigned accordingly by assuming the interaction 

was performed in the other direction. This way both forward and reverse 

transformations follow the same routine.  

 

 

Figure 3.8 Architecture of a visual notation. 

 

A complete transformation rule will be generated using visual elements once all their 

attributes are assigned to their corresponding elements on the target side (and hence 

completing the forward and reverse templates). If required, functions and conditions can 

be used to generate more complex rules. 

 

Example 3.2 To transform a bar in a bar chart to a pie piece in a pie chart, its 

value, colour and label could be dragged and dropped on the corresponding 

attributes of the pie piece similar to example of Figure 3.7. Once correspondences 

are defined, a transformation rule is formed to transform a bar to the pie piece 

(and reverse when possible).  
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3.2.2.1 Transformation rule representation 

Transformation rules are an integral part of any transformation system. A complete 

transformation specification usually consists of a combination of multiple 

transformation rules. The division of transformation specification in rules improves 

reusability and helps better debugging of the specification. On the other hand, once 

dealing with large models, many such rules will be defined which can affect 

understandability. Given that first class artefacts of our approach are visual notations, a 

textual representation of a transformation rule would be out of place and not suitable. 

Therefore, transformation rules should be represented by visual notations too. Thus a 

representation mechanism should be available for transformation rules as well. Thus we 

define research question 2.2 and 2.3:  

RQ2.2: Can a transformation rule be represented visually?  

RQ2.3: How to create a visualisation for transformation rules? 

Our approach for answering these research questions uses the visual notations of source 

and target visualisation to present transformation rules. Each visual element embeds the 

forward transformation template that creates another visual element (the target). By 

applying this template on the embedded data, a visual element of the target model with 

its notation is created. As a result it will be possible to access target notation from each 

element. Putting each visual element and its target notation together will provide a 

schematic view of the transformation rule, i.e. users can see each transformation rule by 

the source and the target notation that can be generated as a result of applying the rule 

and hence, a representation for transformation rules. Examples of such rule 

representations are provided in figure 3.9. 

Although visual notations increase the cognitive and comprehension of models 

compared to textual representations, when dealing with large scale models and specially 

for novice users, it is still hard to perform complex tasks like transformation 

specification and finding correspondences. Next section describes our approach to 

providing support to users in form of recommendations, so that they can better identify 

likely correspondences. 
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Figure 3.9 Examples of transformation rule representations. A) UML class diagram to Java class notation 
transformation rule. B) Bar to pie piece transformation rule. 

 

3.2.3 Correspondence Recommender 

Correspondence specification between source and target for large models can easily get 

complex and time-consuming, adversely affecting transformation specification 

procedure. This affects both novice and expert users alike. Therefore, users should be 

supported by guidance mechanisms to help them define model transformation between 

visual notations and hence our third main and subsequent research questions.  

RQ3: How can interactive guidance be provided to users of model transformation 

systems? 

RQ3.1: In what form should guidance be provided to users of model transformation? 

In this context, our approach delivers this support by providing hints on possible and 

likely correspondences between source and target that can eventually create 

transformation rules. To achieve this, an automated recommender system (“Suggester”) 

is designed which analyses user interaction and input examples for recommending 

possible correspondences between models and their sub-structures. The 

recommendations provided by the Suggester mechanism can be used directly to develop 

transformation rules or used as guidelines to create final transformation artefact. Note 

that depending on where the Suggester is being used (for visualisation or transformation 

between visual notations) source and target examples could be input data or 

visualisation data. 

The main task of a recommender system in general is to provide guidance to users for 

choosing among multiple options. However, the accuracy of this guidance depends on 

type of user (e.g. expert or novice), type of application, and their intended purpose 
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among others. Although this guidance hints do not have to be accurate all the time, 

higher accuracies will result in better trust in the recommender system by users. Never 

the less, producing recommendations that are already known to users will gradually 

cause users to ignore it over time [161]. The trade-off between different dimensions of 

the recommender system should be considered [162]. As a result research question 3.2 

is designed to target design of the recommender system.   

RQ3.2: What is the best technique to generate acceptable recommendations? 

To design a recommender system for our correspondence recommendations that 

produces accurate recommendations, and yet satisfies other dimensions to some extent, 

our approach follows ensemble learning techniques [163]. It combines similarity scores 

provided by a collection of recommenders to produce final list of recommendations. 

Each of these recommenders uses a predefined similarity heuristic and analyses source 

and target model examples and ranks element pairs by similarity scores. The 

combination of these scores creates the final list of recommendation.  

If recommendations are provided to users as a fixed list with no interaction, they will 

not provide a helpful guidance when dealing with large models. As a result it should be 

possible for users to interact with these recommendations. Considering this, research 

questions 3.3 and 3.4 are raised: 

RQ3.3: How can users best interact with recommendations? 

RQ3.4: How can user response be used and integrated into the guidance mechanism? 

The Suggester mechanism provides users with initial and seeding recommendations so 

that they can start transformation generation with higher confidence. Our approach 

provides recommendation in interactable list where users can accept or reject 

recommendations (see Figure 3.10). By selecting a recommendation, the underlying 

recommended correspondence is applied. Also, selecting a recommendation indicates 

user’s interest in the recommendation. A feedback mechanism analyses user interaction 

and promotes the recommender system. If user rejects a recommendation, the system 

penalises the recommender system and therefore this interaction helps the learning 

mechanism inside Suggester system to improve its recommendation capability. 
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Figure 3.10 A sample of recommendation list recommending correspondences between a bar chart and a 
pie chart. 

  

3.3 Scope 

This thesis research tries to address concrete based model visualisation and 

transformation in a generic way. It is based on the assumption that specifying model 

visualisations and model transformations based on concrete instead of abstract 

representations is easier for end-users, in particular those without a corresponding 

education. This hypothesis has been verified by previous literature (e.g. [29], [32], [91]) 

and therefore is not part of this thesis. As a result, the focus of this thesis is more on 

providing an approach to realise concrete and example based visualisation and 

transformation. 

Due to time constrains implementation of the approach has been focused on model 

examples in XML and CSV. We believe these categories cover a broad spectrum of 

model examples and are good samples to prove applicability of this approach. Also, for 

transformations, XSLT has been chosen as transformation language of choice. 

However, the templates and the transformation rule structures are generic and adaptable 

to other transformation languages. Therefore, the concepts and methods can be used by 

other transformation languages as well.  

The transformation specification in this approach can generate bidirectional 

transformation (both forward and reverse) for bijective correspondences. However, 

there are situations where generation of reverse direction is not straight forward. For 

example, when adding two values of the source model to produce a value in target 

model, the reverse direction cannot be automatically defined since information of the 

original values is lost during forward transformation. We call these transformation 
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Lossy transformations and although we have designed approaches to perform such 

transformations, they are not considered in this thesis.  

Similarly, when applying transformation rules using pre conditions, the reverse 

transformation should consider the forward transformation condition. For example if a 

colour is to be chosen based on a value in the source model, the reverse transformation 

should check for applicability of the condition. This is usually done by model checking 

resulted reversed source model against the condition. This model checking is not 

considered in this thesis. Nevertheless, some consideration has been made and extension 

points are available to provide for possible future research inclusion.  

 

 

3.4 Evaluation  

The evaluation strategy of this thesis is based presentation of case study examples, 

comparison study, a quantitative study and a user experiment. For each contribution of 

our approach, multiple case study examples are provided. These examples are provided 

at the end of the chapters that describe contributions. 

Our comparison study (provided in Chapter 8) compares our approach against a state of 

the art transformation tool and approach. It provides examples of how users interact 

with both tools and what are the procedures involved for performing transformation 

tasks. 

The quantitative analysis part of our evaluation is provided in Chapter 8 and examines 

the correctness of the recommendations produced by the proposed recommender system 

of the Suggester mechanism using Precision, Recall and F-Measure metrics. It also 

provides a study of quality of the automatically generated transformation code by our 

approach against transformation codes produced by a human expert and that 

automatically generated by a state of the art mapping tool. It uses quality attributes and 

metrics from model transformation literature and introduced by Van Amstel et al. [6]. 
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Finally, our evaluation is concluded with a user study of our approach and toolset. This 

user study is designed to capture user experiences with the toolset for generating 

visualisations and transformations. This user study is also provided in Chapter 8. 

 
 
3.5 Summary 

This chapter described research questions being addressed in this thesis and brief 

description of the approach taken by this thesis to address them. We seek to address two 

main research questions which are 1. Visualisation of arbitrary model data into more 

understandable concrete representations and use them for model transformation 

specification, and 2. Provide guidance mechanism for defining correspondences in a 

model transformation specification task. The subsequent questions arising from these 

main research contributions were introduced in this chapter and a brief description of 

how we approach them was presented. The list of research questions addressed by this 

thesis is provided as follows: 

Research Questions: 
1. Can concrete model visualisations be effectively generated in a visual and 

interactive by-example approach? 
1.1. How can a variety of visual notations be defined and integrated to the system? 
1.2. How can we define correspondence links between data and visual 

representation?   
1.3. How can the mapping between model elements and visual notations be 

specified?  
1.4. Can the defined customised visual notations be composed and linked together to 

generate more complex and complete visualisations? 
1.5. In what form should guidance be provided to users on composition of 

notations? 
2. Can a model transformation be effectively generated using concrete by-example 

visualisations?  
2.1. Can we perform correspondence specification (and hence transformation 

specification) on actual visual notation of input models? 
2.2. Can a transformation rule be represented visually?  
2.3. How to create a visualisation for transformation rules? 

3. How can interactive guidance be provided to users of model transformation 
systems? 
3.1. In what form should guidance be provided to users of model transformation? 
3.2. What is the best technique to generate acceptable recommendations? 
3.3. How can users best interact with recommendations? 
3.4. How can user response be used and integrated into the guidance mechanism? 

4. Can our approach be implemented in a usable, scalable and user friendly tool?    
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Chapter 4 

Visualisation  

 

 

 

 

 

 

4.1 Introduction 

The approach presented in this thesis for model transformation uses concrete, example 

model visualisations for specification of complex model transformations. Source and 

target examples are first transformed to visual concrete notations. Then the defined 

notations in these visualisations are used directly for interactive correspondence 

specification and then for model transformation script generation. To realise this 

approach, a mechanism and procedure is required to generate these model 

visualisations. The notations used in the model visualisations need to enable user 

interaction in the form of drag and drop to specify notation correspondences. These 

correspondences are then used to generate underlying model transformation rules.   

This chapter describes how interaction-capable notations and visualisations are created 

using this approach. It provides examples from a variety of fields to demonstrate the 

applicability of this visualisation approach. The following sections describe the steps 

required to create visualisations and how elements of each step are produced. In 

summary, this chapter describes our approach for addressing following research 

questions: 

1. Can concrete model visualisations be effectively generated in a visual and 
interactive by-example approach? 
1.1. How can a variety of visual notations be defined and integrated to the system? 
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1.2. How can we define correspondence links between data and visual 
representation?   

1.3. How can the mapping between model elements and visual notations be 
specified?  

1.4. Can the defined customised visual notations be composed and linked together to 
generate more complex and complete visualisations? 

1.5. In what form should guidance be provided to users on composition of 
notations? 

 

 

4.2 Visualisation Procedure 

The brief procedure and steps to create a visualisation are shown in Figure 4.1. Notation 

generation (step 1) involves creating a notation from provided visual contents (View) 

and mapping it to a defined Model.  The combination of the two results in a notation 

which will be saved in a repository for reuse. The notations provided in the repository 

are then mapped to elements of the input models (to be visualised) to create customised 

notations for that model (step 2). Once all required customised notations are generated, 

they can be composed to create complete visualisations (step 3). 

 

 

Figure 4.1 Visualisation procedure. 

 

As Figure 4.1 suggests, visual notations are the centre-part of our visualisation 

approach. They represent the front line of our approach in using concrete visualisation 

and capable user interaction. The next section describes notation structure and provides 

examples of how they can be created and used for model visualisation. It specially 

describes our approach in answering research questions 1.1 and 1.2. 
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4.2.1 Visual Notations 

Let’s start this section by definition of visual notation. 

Definition 4.1 A visual notation in this approach provides a visual illustration 

(of a portion of whole) of model data and a means for user interaction.  

Since notations are the primary components for creating transformation rules, they need 

to include certain transformation related artefacts. These artefacts help realisation of 

correspondences and transformation rule templates. 

The architecture of notations is inspired by the Mode View Controller (MVC) 

architecture [2]. Three-way division of an application in MVC entails separating (1) the 

parts that represent the model of the underlying application domain, (2) the way the 

model is presented to the user, and (3) the way the user interacts with it [2], as can be 

seen in Figure 4.2. Therefore, in MVC programming, objects of different classes take 

over the operations related to the application domain (the Model), the display of the 

application's state (the view), and the user interaction with the model and the view (the 

controller).  

 

Figure 4.2 Model View Controller (MVC) set up from [2]. 

 

In our adaptation of MVC for visualisations however, a visual notation is described as 

combination of a View (the visual representation), a Model (domain data represented by 

the View) and a Controller which controls the links between the Model and the View 

(as can be seen in Figure 4.3).  In such a configuration, any updates to the Model will be 
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applied to the View by the controller, which itself is created by user-provided 

annotations in the View. These annotations define correspondence relations between 

Model and View. 

 

 

Figure 4.3 Adaptation of Model View Controller for visual notation design. 

 

Example 4.1 In a bar chart visualisation of Figure 4.4, bars represent values of a 

certain category by visually depicting that view using their height. Since multiple 

bars may exist in a bar chart for a category, each bar is also accompanied by a 

name for the value it represents. Therefore a bar’s model should specify the value 

and the name of the bar.  

 

 

Figure 4.4 Sample bar chart visualisation. 

 

The Controller of this MVC configuration is a transformation which inserts the domain 

values defined in the Model to the View and as a result updates the View with new 
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values. To generate this Controller transformation, annotations should be provided in 

the View representing correspondences between the View and the Model. These 

annotations include one-to-one correspondence relationships, and one-to-many and 

iterative correspondences between model and view. To specify these correspondences, a 

simple annotation scripting is used in our approach consisting of linkto=“<element>” 

for specifying one-to-one correspondences, and callfor=“<element>” for specifying 

one-to-many correspondences. 

Notations can host other notations (e.g. a bar chart will host multiple bars). To clearly 

define the position which notations are to be placed in a host notation, a placeholder 

should be provided in the host notation’s Model. These place holders are specified by 

iterative correspondences. To define the Controller for these two notations, provided 

View’s code should be annotated. Annotated Views are read by a transformation code 

generator and a Controller transformation script is generated for each view. In this 

transformation script linkto annotations are translated to value fetch scripts and callfor 

annotations are translated to call for templates. As a result, when the Controller 

transformation script is executed, it will fetch and copy the values provided to its Model 

to their corresponding visual elements in the View. It will also register a declarative call 

for templates to be applied on the data provided to the placeholder elements of 

notation’s Model. 

 
Example 4.2 Model, View and Controller of a bar chart and a bar are shown in 

Figures 4.5 and 4.6. Each bar chart represented here has three Labels describing 

the chart name, Y axis and X axis which should be defined by its Model. It also 

creates two axis arrows representing the chart area. On the other hand, each bar 

has a Name and a Value. A representative of these two notation Models are 

marked by “b” in both Figures. A placeholder should be provided in bar chart’s 

Model to specify where bar notations being inserted should copy their Model; 

therefore, a “bars” element is provided in bar chart’s Model (see Figure 4.5b). In 

Figure 4.6 the values provided by a bar’s Model (“Name” and “Value”) 

represent 1-to-1 mapping correspondence with elements on the View therefore 

they will be provided by one-to-one annotations (e.g. linkto=“Name”). Same is 

true for the bar chart, the labels representing axis and chart names represent 1-
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to-1 relations. The place holder in the Model of the bar chart is in one-to-many 

relationship as multiple bars may be present in a bar chart as a result, it will be 

annotated by a one-to-many correspondence annotation i.e. callfor=“Bars”. 

 
 

 
Figure 4.5 a) View, b) Model, c) Controller and d) Final bar chart visual notation. 

 

 
Figure 4.6 a) View, b) Model, c) Controller, and d) final bar notation. 

 

4.2.1.1 Interaction Logic 

To generate interaction (drag and drop) for notations, a standard interaction mechanism 

is provided for all notations as in Figure 4.7. It includes handlers for drag and drop, data 

structures for abstractions and transformation templates. Once notation’s MVC is 

created, the system automatically wraps each notation’s MVC in this structure. As a 

result, every notation in this visualisation is interaction capable. This wrapping also 

provides capabilities to see internal elements of notation’s Model by right clicking on 
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the notation. If user right clicks on a notation, these elements are represented in a pop-

up window. 

 

 

Figure 4.7 Notation’s MVC wrapped in interaction logic. 

 

Once a visual notation is created, it will be saved in notation repository for reuse. Figure 

4.8 depicts a brief architecture of system implementation including the notation 

repository. The renderer mechanism of the system uses controller transformation in 

each notation to create visualisation rendering. It uses a visitor pattern to check the parts 

to be visualised and find matching controller transformations. It then creates a complete 

transformation script to transform the input to be visualised to renderable visualisation. 

 

 

Figure 4.8 Brief architecture of system implementation. Notations will be saved in the notation 
repository.  
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Each notation in the repository can be used for mapping variety of input models to the 

visualisation represented by the notation. Next section elaborates more on this mapping 

from input model examples to visual notations and accordingly provides our response to 

research question 1.3. 

 

4.2.2 Mapping input data to visual notations 

Step two of our model visualisation approach involves mapping example model data to 

visual notations.  This step creates transformation rules for transforming specific parts 

of input models to the notation's Model data. Users are required to map elements of 

their input model to elements of visual notations Model by defining mapping 

correspondences using drag and drop. These drag and drop interaction triggers a 

transformation rule template to be created from to transform the elements being dragged 

to host notation's data. These templates are generated initially from the Models 

embedded in dragging notation and the host notation. To enable drag and drop of input 

elements a default tree-like representation of the input model data is provided for users. 

  

Example 4.3 Assume we have an XML representation of a company’s sales 

records and would like to visualise it using bar chart visualisation. Each bar in 

this bar chart will be representative of a sales record. To create these bars, first 

step is to drag and drop a sales element from example sales model data onto a bar 

notation as shown by Figure 4.9a. This interaction triggers a transformation rule 

template to be created from a sales record element to the bar notation's data. 

Next, corresponding internal elements of sales record and the notation’s Model 

should be linked, i.e. sales record's Region attribute should be dragged and 

dropped on bar's Name and Amount should be dragged on bar's Value, as shown 

by Figure 4.9a. These internal correspondences fill the transformation rule 

template. Note that this tasks needs to be performed only once for all sales 

records. Same procedure should be performed for chart notation and the spread 

sheet element as can be seen in Figure 4.9b. 
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Figure 4.9 Mapping sales records input to notations: a) Mapping a sales record to a bar, b) Mapping 
spread sheet to chart. Arrows depict drag and drop directions. 

 

Once data mapping is complete, the new customised notations are saved. This results in 

creation of a customised notation and a transformation rule that transforms a portion of 

input model to the notation's Model (and its reverse where possible). In Example 4.3 for 

instance, a transformation rule will be generated to transform each sales record to the 

Model part of bar's notation. Note that at this point the notation can generate its View 

according to the Model using the Controller defined in step one. 

 

4.2.2.1 Transformation functions 

Not all correspondences between visual notation elements are simple 1-to-1 relations. 

Therefore, a variety of model transformation functions, such as summation, merging, 

subtraction, and textual parsing need to be used, among others. These functions enable 

the specification and generation of more complex correspondences and hence 

generation of more complex model element-to-visual notation and visual notation-to-

visual notation mappings.  
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The structure of a transformation function is depicted by Figure 4.10. The model and 

usage of each function follows visual notations with a difference that function’s view is 

provided by an image rather than a visualisation. Similar to visual notations, a function 

can be dragged and dropped and right clicking on them reveals their input and output 

arguments.  

 

 

Figure 4.10 Transformation function’s structure.  

 

Functions are defined by templates that specify input and output arguments, forward 

and reverse operations to be performed by the function, and a representative image that 

can be provided by users. One-to-one correspondences in our approach result in reverse 

transformations being generated automatically. To generate more complex one-to-many, 

many-to-one, or many-to-many correspondences using functions, the reverse operation 

(if possible) should be provided by the function designer. If reverse operation is not 

possible, a default operation can be provided instead.  

In the case of arithmetic operations, the reverse direction is not possible when a group 

of values are used to calculate a final value. It is due to the fact that the information 

provided by original values is lost during forward operation. These transformations are 

called Lossy and while we have worked on support for them, addressing them is not 

detailed in this thesis and is left for future work.  
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Figure 4.11A shows a summation function with its two inputs and an output. The 

internal code template of the function is depicted by part B. As can be seen, since the 

reverse operation of the two added values is not possible unless at least one of the 

original values is stored, the reverse operation (marked by arrow) divides the output to 

calculate two input values in reverse. An example of using functions in mapping 

correspondence specification is provided by Example 4.4. 

 

 

Figure 4.11 A) A summation function, B) Its template. Arrow marks reverse operation. Information of 
input arguments is lost during forward summation operation.  

 

Example 4.4 Assume sales records of example 4.3 consisted of two amounts for 

representing each sales element. Since bar notation takes only one amount for its 

Value, these two amounts should be added before mapping to the bar's value. 

Figure 4.12 demonstrates how the summation function can be used to calculate 

the bar's Value according to the sum of two input values. The arrows demonstrate 

how dragging and dropping will be performed by the user in this case.  
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Figure 4.12 Mapping sales records to bar using summation function. Arrows depict drag and drop 
directions. 

 

Once data mapping is complete, the new customised notations are saved. This results in 

creation of a customised notation and a transformation rule that transforms a portion of 

input model to the notation's Model (and its reverse where possible). In Figure 4.12 for 

instance, a transformation rule will be generated to transform each sales record to the 

Model part of bar's notation. A transformation code generator reads function templates 

and generates transformation code for the specified transformation language. For 

example, the resulted transformation script using the summation function of Figure 4.12 

in XSLT is provided by Figure 4.13. This code transforms the sales element and its 

internal elements to a bar node’s data model. Note that argument numbers are 

automatically updated by transformation code generator to prevent similar argument 

names in the full transformation script. The reverse transformation script is also shown 

by Figure 4.14. 
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Figure 4.13 The generated transformation script resulted from use of the function of Figure 4.12. 

 

 

Figure 4.14 Reverse transformation script resulted from use of the function of Figure 4.12. 

 

By default a set of simple functions are provided in our framework implementation. 

Table 4.1 provides a list of these functions and the operation they perform. There has 
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been no rational behind choosing the representative images for function notations. Users 

can alter these notational images according to their preference. 

 
Table 4.1 List of default functions provided in proof of concept framework. 

Function Notation Inputs Forward 
Operation Outputs Reverse 

Operation 

Summation 
Adds two arguments  

 

Arg 1 
Arg 2 Arg1 + Arg 2 Out Out div 2 

Subtraction 
Subtracts two 
arguments  

Arg 1 
Arg 2 Arg1 – Arg2 Out Return Out 

String Merge 
Merges two strings 

 

Arg 1 
Arg 2 

Merge (Arg1 
,“ ”, Arg2) Out Split (output, 

“ ”) 

String split 
Splits two strings 
from first occurrence 
of Space character  

Arg 1 Split (Arg1, 
 “ ”) 

Out 1 
Out 2 

Merge (Arg1, 
 “ ”,Arg2) 

 
 

Additional functions can be defined using function’s template by providing their input 

and output arguments and the required operations. These functions can be saved in a 

function repository for reuse. Function templates provide dedicated spaces for 

specifying the task that the function performs. This task should be provided by function 

designer depending on the arguments and according to the transformation language 

code that is to be generated from this function. Example 4.5 shows how an additional 

functionally can be provided using function templates. 

 
Example 4.5 This example shows a function that takes two strings as input 

arguments and returns three string outputs using combination of input strings and 

constant values as specified in Figure 4.15. For example, if “Sales” and 

“Europe” are provided as inputs to this function, it will return “Sales Amount”, 

“Europe” and “Sales of Europe” as outputs. Reverse operation calculates 

original input values based on the outputs. 
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Figure 4.15 Example of defining a new function using function template. 

 

Once used, functions are read by transformation code generator. The operation of each 

function is translated to the transformation language of choice and the resulted outputs 

are saved in variables inside transformation rule scripts. As a result, when defining 

functions, function designer needs to have previous understanding of the transformation 

language of choice. For instance in Example 4.5, concat and substring-before functions 

are functions provided by XSLT language. For other transformation languages, their 

dedicated functionality should be stated in the function templates.  

Pointers to variables of each function will be placed inside transformation rules in 

places where function outputs are to be used. For example see the resulted function 

script of Figure 4.13. 
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4.2.2.2 Transformation conditions 

Transformation conditions are used in a similar way to transformation functions and 

control when and how correspondences are applied. Figure 4.16 shows a transformation 

condition’s structure. As can be seen in the figure, a difference of conditions and 

functions is the missing output arguments. This is due to the fact that the output of a 

condition is not known beforehand. It depends on the values being sent to the condition. 

As a result, unlike functions, conditions do not have an explicit output.   

 

 

Figure 4.16 Transformation condition’s structure.  

 

Similar to transformation functions, conditions are also defined using a template. This 

template defines the arguments to base the conditions on, the condition expression(s) 

and the values to be transferred as output if the condition is met. In case none of the 

conditions are met, “else” statements can be provided as well. 

 
Example 4.6 Figure 4.17a shows a condition that checks two arguments (arg1 

and arg2) and if the values provided by these arguments are equal, passes the 

value that has been dragged to the condition expression. If not, the value dragged 

to “Otherwise” will be used as output. The internal template of this condition is 

provided by Figure 4.17b. 
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Figure 4.17 A) A transformation condition, B) Its code template.  

 

To specify a conditional correspondence, after drag and drop of required source 

elements on condition’s arguments, the condition notation itself is dragged and dropped 

on target element.  

 
Example 4.7 Figure 4.18 shows using a condition for specification of a model to 

visual mapping. The conditions check if the value provided with Amount element 

is more than or equal to 40. If so the colour to be returned by the condition is 

Blue, otherwise Red will be returned. The condition itself is then dragged and 

dropped on colour element of the bar. This condition specification will result in 

the code script of Figure 4.19. This script will be included in the transformation 

rule script. 
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Figure 4.18 Using a condition for specification of bar’s colour. 

 

Figure 4.19 Transformation code script resulted from condition of figure 4.18. 

 

In case there is a requirement to have reverse operation for conditions, a possible 

solution is to check whether the condition is valid for source through model checking. 

For instance in Example 4.7 the reverse operation could check if the colour of a bar is 

blue, the value to be copied to sales Amount is indeed more than or equal to 40. This 

model checking, however, is outside the scope of this thesis. The assumption here is that 

if the values generated by forward transformation rules that use conditions exist in the 

target, their respective source portion of the transformation rule should be generated in 

reverse. Therefore, the reverse operation creates a non-conditional transformation.  

Table 4.2 lists the default conditions provided in our framework implementation. 

Similar to functions, additional conditions can be added to the framework using 

provided template.  

 

Table 4.2 List of default conditions provided in proof of concept framework. 

Condition pseudo code Notation Number of 
Arguments 

if Arg1 = Arg2  then  pass Arg3 
else pass Arg4 

 
4 

if Arg1 >= Arg2  then  pass Arg3 
else pass Arg4 

 
4 

if Arg1 = Arg2  then  pass Arg3 
else if Arg1 > Arg2  then  pass 
Arg4 
else pass Arg5  

5 
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4.2.3 Notation composition 

Is response to research question 1.4 on composition of notations, step three allows users 

to link, combine and embed customised notations. A customised notation represents a 

model element-to-visual notation transformation rule. To have a complete 

transformation script, the prepared collection of transformation rules should be 

scheduled according to their call sequence. With traditional transformation scripting 

languages this is achieved by asking users to write codes for this script, similar to 

procedural programming, and by providing metamodels. In our approach however, our 

assumption is that there is no metamodel available and user is not willing to code. 

Therefore, by using composition of notations we infer the target visualisation’s 

metamodel and call sequencing of the transformation script. 

By linking a notation to a placeholder element of another, the host notation knows the 

transformation rule embedded in the notation being dragged should be called in place of 

the element. This is in order to affect the embedded model element-to-visual notation 

mapping. This linking results in scheduling of model element-to-visual notation 

transformation rules.  

 
Example 4.8 In composing notations of Figure 4.20, by linking the bar model 

element-to-visual notation visualisation component defined earlier (see Figure 

4.9) to a bars element of a bar chart model element-to-visual notation 

visualisation, it is specified that the bar chart contains set of bars. 
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Figure 4.20 Composition of visual notations to create bar chart visualisation. 

Linking a notation to a start element will define the top-most (first to be run) 

transformation rule for the completed model transformation specification. This tells the 

transformation scheduler to start generating transformation code from the rule linked to 

start element. For example, in Figure 4.20, the bar chart notation's transformation rule is 

the first rule to be called to transform a company records model element to a bar chart 

notation representation. It then calls bar’s transformation rule to generate a bar 

representation for each sales record. 

The composition process results in a complete transformation script that transforms the 

input model to the visualisation of the composed notations. As stated previously, since 

all visual notations resulting from this transformation are wrapped by interaction logic 

of visual notation, the whole visualisation and its composing notations can be interacted 

with in form of being dragged and also other notations can be dropped on them.  

 
Example 4.9 Figure 4.21 shows the resulting bar chart of the transformation 

generated from the composition of Figure 4.20. A user has right clicked on the 

bar chart and the internal model elements are being represented as a result in the 

pop-up window. Note that since no value has been provided to XAxis and YAxis 

labels, default values provided by bar chart notation’s model have been used. 
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Figure 4.21 Visualisation of a bar chart. User has right clicked on the bar chart and the internal elements 
of the bar chart notation are represented in a pop-up window. 

 
Composition of multiple model element-to-notation mappings into a complete 

visualisation specification also allows the system to build a meta-model from the 

underlying Model of each notation element. Our approach uses this meta-model for 

model validation purposes.  

 

4.2.3.1 Visual aid for debugging transformation composition 

To provide support for scheduling and being able to debug rule sequencing (and hence 

answering research question 1.5), the rendering mechanism is designed in a way that it 

is capable of rendering partial visualisations. As a result, when dragging a 

transformation rule on a notation placeholder element, even though the resulting rule 

may not be complete, the system is capable of rendering the partial result. Therefore, 

users can review the result of so far completed rule on the spot and perform corrections 

as they see fit.  

 
Example 4.10 In composing a bar chart visualisation, when a bar is linked to bar 

chart’s “Bars” element, the provided debugging aid depicts the result of that bar 

being inserted in the bar chart. Figure 4.22 depict the provided debugging aid. 

Also as another example, Figure 4.23 shows debugging aid during generation of a 
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class diagram. User has dropped parameter notation on “Parameters” element of 

a function notation. 

 

 
Figure 4.22 Visualisation composition debugging aid. The product of composing a bar in the bar chart is 

shown in a pop-up.  

 

Figure 4.23 Visualisation composition debugging aid for function of a class diagram visualisation.  

 
 

 

4.3 Case studies 

This section provides number of case studies to show applicability of the approach for 

different visualisations and input models. It will focus also on the implementation 

specific decisions taken for the proof of concept prototyping of the approach.  

 



 
91 

 

4.3.1 Bar chart visualisation 

This section provides detailed visualisation of the bar chart used throughout the chapter. 

The input file to be visualised is provided as an XML and contains sales records of a 

company as seen in Figure 4.24. 

 

 

Figure 4.24 Example of sales records XML input. 

 

Our implementation uses Windows Presentation Foundation (WPF) and XML 

Application Markup Language (XAML) for views. Models to be linked to these Views 

are provided in XML. For example, for the bar chart visualisation the View, Model and 

controller transformations of bar chart and the bars are provided in Figures 4.25 and 

4.26.  
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Figure 4.25 Bar chart notation, a) View code, b) Model XML, c) Annotated View, d) Controller 
transformation and e) Final notation. 

 

WPF allows visualisation logic (if required) to be separately implemented in C# or 

Visual Basic as accompanying classes. For instance in bar chart visualisation of Figure  

4.25a, a BarChart class (derived from Canvas class) has been implemented in local 

namespace which normalises the height of bars and positions them according to bar 

chart’s height and width. Since possible bars are to be included inside this bar chart 

class, the 1-to-many mapping correspondence is annotated in this element by callfor= 

“Bars” annotation (see Figure 4.25c). The resulting Controller transformation of bar 

chart calls for other transformations to transform the data being inserted in “Bars” 

element to visual bars and include them in bar chart for height normalisation and 

placement. 
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Figure 4.26 Bar notation’s a) View code, b) Model XML, c) Annotated View, d) Controller 
transformation and e) Final notation. 

 

That bar notation of Figure 4.26 has a value and a name as its model elements. These 

elements are in one-to-one relationship with elements of the view i.e. height of the bar, 

the label on top of the bar, and the label bellow each bar. These correspondences are 

provided by linkto annotations in Figure 4.26c. 

Once these notational elements are defined, they need to be mapped to input model 

elements to specify model-to-visualisation example. Considering that the file to be 

transformed to bar chart visualisation has two values to be added to represent the bar’s 

value, Figure 4.27a shows how the values can be added and linked using a summation 

function. The transformation rule resulting from the mapping and correspondences in 

Figure 4.27a is provided in Figure 4.28. 
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It is worth mentioning here that specification of correspondences between notation 

Views and Model is somewhat a complex task and requires basic understanding on 

XAML graphics. However, we believe with utility of visualisations expanding over 

time and as new additional visualisations are needed, this becomes less of an issue. Our 

assumption here is that generating notations is not a task to be performed by end user 

and end users will be provided with the prepared notations. 

 

 

Figure 4.27 a) mapping sales records to bar using summation function and b) mapping Spreadsheet to bar 
chart notation. Arrows depict drag and drop directions. 

 

 

Figure 4.28 Transformation code resulting from mapping correspondences and summation function of 
Figure 4.27. 
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Same mapping operation should be performed for bar chart notation (see Figure 4.27b). 

Once model to visual notation mapping are defined their notations should be composed 

to generate a full visualisation and model to visualisation transformation script. Figure 

4.20 earlier showed an example of this composition with the resulting visualisation 

depicted by Figure 4.21. Now let’s assume there is a need to update the visualisation 

and include colour in the bar notation’s data. To perform this alteration, a new bar 

notation needs to be defined. Figure 4.29 shows the model data required for the new 

bar. 

 

Figure 4.29 Alternative model for bar’s notation. 

 

The bar’s view already accounts for bar’s colour (see Figure 4.26a). However, it was set 

to Green by default. Hence, the annotation for generating the controller transformation 

of the new bar should consider the one to one relationship of Color element in the data 

and the colour of bar in the view. Figure 4.30 represents the new view annotation with 

the added annotation for the bar colour.  

 

 

Figure 4.30 New bar’s view annotation. 
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With the new bar’s notation generated, input model element to be represented with this 

new bar should be mapped to its data. These model to visualisation mappings are 

provided in Figure 4.31. Apart from the newly added Color element in notation’s 

model, the rest of the mapping are similar to previous bar’s mapping.  

 

Figure 4.31 Mapping sales records to new bar. 

 

Let’s assume the colour to be specified for the new bar is to be specified according to 

the values in the Amount1 and Amount2 of the sales element, in a way that if Amount1 

is more than Amount2 the colour of bar would be blue, if they are equal bar should be 

black and red otherwise. Figure 4.32 shows how a condition can be used in this case. 

The condition is dropped on designer canvas and Amount1 and Amount2 are drag and 

dropped on its arguments.  

 

 

Figure 4.32 Specifying arguments of condition. 
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Note that it is possible to provide consistency checks in elements for example to check 

if the element that is dragged to “arg1” actually represents a numerical value. These 

checks should be provided and implemented in the visual elements and are outside the 

scope of our work here. If wrong elements have been dragged and dropped they can be 

over written by drag and dropping the correct elements. Based on the amounts, a colour 

value is to be passed by the condition. These colour values can be provided using a 

separate input. Figure 4.33 shows this separate input and how colour values are linked 

to condition expressions by drag and drop. Since functions do not have specific output 

(the output is selected based on the condition expressions) user has to drag and drop the 

function expression on the Color element of the notation as shown by arrows in Figure 

4.33.  

 

 

Figure 4.33 Mapping colour values to condition, and mapping condition result to Color element of bar 
notation. 

 

Now that the new bar is defined, it should be included in the composition. Note that the 

new bar is the only notation that has been altered. Since other notations have not 

changed (bar chart notation in this case) they can be reused in the composition. Figure 

4.34 shows the composition using the new bar’s notation. The arrows in Figure 4.34 are 

provided by framework for better tracking of notation composition. As mentioned 

before, the bar chart notation is the previous notation and has been reused. 
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Figure 4.34 Composition of notations using the new bar’s notation. 

 

The result of composition of Figure 4.34 will be a transformation from sales records to 

bar chart visualisation with different colours for bars based on the provided values of 

the amounts similar to Figure 4.35.  

 

 

Figure 4.35 Resulted coloured bar chart. 
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4.3.2 Minard’s Map visualisation 

This case study section provides a worked example of creating a simplified version of 

Minard’s map visualisation, as can be seen in Figure 4.36. Minard’s map is a famous 

visual depiction of the French Grande Army’s campaign for the invasion of Russia in 

1812 by Charles Joseph Minard. It is widely considered as one of the best statistical 

graphs by the visualisation community [3], depicting number of troops, locations, 

campaign movements and status, and temperature information.  

 

 
Figure 4.36 Minard’s map (from [3]). 

 

To reproduce this visualisation, we follow a similar approach to that used by Humphrey 

[4]; in that, at each location, a circle with its radius representing number of troops is 

drawn. Connecting these circles depicts troop movement. Therefore, each troop 

movement is represented by two circles depicting number of troops at starting point and 

destination and the lines connecting them. The colour of these movements defines 

whether troops were advancing (defined by Red) or retreating (defined by Black). 

Humphrey’s recreation is depicted by Figure 4.37.  

Our version of this visualisation uses two notations and we have asked a designer to 

craft required notation Views. These Views are provided using Windows Presentation 
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Foundation (WPF). For simplicity in the process, temperature information of the map is 

omitted and coordinate of the locations are considered relative to visualisation canvas. 

 

 

Figure 4.37 Minard’s map recreated by Humphrey [4]. 

 

The first notation depicts troop movements from one position to another. Based on 

coordinates and the number of troops at the starting point and the number arriving at the 

destination, a shape will be drawn as specified in the notation View (Figure 4.38a). The 

algebras for creating this shape and the circles at the starting point and destination, for 

filling angular gaps, are provided in [4]. Our approach provides a way to specify and 

reuse this in C#. This notation requires a data part that represents start and destination 

location names and coordinates, number of troops starting the movement and arriving at 

destination, and the colour of the shape which represents whether troops were 

advancing or retreating. Therefore the data part for this notation will be similar to 

Figure 4.38b. Elements of this model are all in one-to-one relation with notation 

attributes. Therefore, they will all be specified for the controller transformation using 

“linkto” annotations as depicted in Figure 4.39.  
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Figure 4.38 Troops movement notation’s (a) View and (b) Model. 

 

 

Figure 4.39 Annotated View of Troops movement notation with Model elements. 

 

The second notation shows the map with its description on top (Figure 4.40a). As a 

result, its Data should provide the description information (Figure 4.40b). The map 

notation should host troop movement notations, therefore, a placeholder for troops 

notations should also be provided in map notations model. When the user is annotating 

the View, “callfor” annotation is provided in the View according to Figure 4.41. The 

Minard class declared in XAML in Figure 4.41 is derived from the Canvas and allows 

for hosting of other visual elements. Setting the position of troop movement notations 

relative to the Canvas is embedded within movement notations once the coordinates are 

defined. Therefore, when placed on the hosting map (Minard Canvas), those notations 

are already positioned according to their coordinates.  
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Figure 4.40 Map notation’s (a) View, (b) Model. 

 
 

 
Figure 4.41 Map notation’s annotated View XAML. 

 

The provided input data to be visualised is an XML data file (the input model) which 

includes a map description and a list of troop movement records. These records consist 

of start and destination location names and coordinates, number of troops starting and 

lost during the journey, and a status string which defines whether they were advancing 

or retreating.  
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To generate the transformation rule for visualising each movement record as a 

movement notation, users need to drag and drop a record element from input to a troop 

movement notation. Figure 4.42 shows mapping specification of records to troop 

movement notation. 

Correspondence specification of troop movement notation starts by linking record 

element from input model to the troops notation marked by 1 in Figure 4.42. The bold 

solid black arrow depicts the drag and drop direction for specifying this correspondence. 

As a result, a troop movement notation will be generated for each Record element. 

Considering input data and the notation’s Model data of Figure 4.42, we can conclude 

that coordinates, name of locations, and number of troops at the start are in a one-to-one 

relationship with their corresponding elements on the notation’s Model data. Therefore 

their correspondences can be specified by direct drag and drop of input data elements on 

the notation’s Model elements as shown by black dashed arrows in Figure 4.42. 

However, the notation requires the number of troops at the destination, whereas the 

input data record provides number of troops lost during the journey. Also the status of 

the movement is declared by Advancing or Retreating strings in the input while this has 

to be defined by colour in the notation. As a result, to specify these correspondences, 

user of our approach has to use provided functions and conditions.  

 

 

Figure 4.42 Specifying correspondences between troop movement records and provided troop movement 
notation. Arrows indicate drag and drop directions. 
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Figure 4.43 Specifying correspondences between troop movement records and provided troop movement 
notation using functions (a) correspondences with campaign data input file and (b) using separate input 

file to specify colours. Arrows indicate drag and drop directions. 

 

Troop movement status can be defined by using a condition which provides a colour 

according to the status string. To generate this, user drops a condition on the Canvas (as 

marked by 3 in Figures 4.43a and 4.43b) and links corresponding elements. The (navy) 

bold dashed arrows depict drag and drop directions for correspondences of this 

condition. Colour names are provided as a separate input file (See 4 in Figure 4.43b). 

The required colours are then dragged and dropped on condition elements (See Figure 

4.43b). Similarly, for specifying the number of troops at the destination, the user is 

provided with a subtraction function which subtracts troops lost from number of troops 

starting (Head Count) to calculate the required value (marked by 2 in Figure 4.43). The 

user then maps its result to troops arriving at the destination element “TroopsLeft” (red 

solid arrow in Figure 4.43a). 

To specify correspondences for map notation, users need to drag a campaign data 

element from the input model on the map and link its description to the description 

element of the map notation, as shown by Figure 4.44. Note that by default space 

consuming notations are shrunk to save space on the designer Canvas. The 

“Movements” element is the place holder for troop movement notations which will be 

linked in the notation composition step. 
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Figure 4.44 Specifying correspondences between input data and map notation. 

 

 

Figure 4.45 Composing troop movement and map notations to generate complete visualisation. Arrows 
are provided by the framework. 

 

Now that both notations are designed and their correspondences to the input data are 

defined, the only step remaining to have a full visualisation is to compose it by linking 

the movement notation and the map notation, as shown by Figure 4.45. Once done, the 

generated transformation from this composition will be applied on the input data to 

produce a map visualisation and the resulting visualisation is shown by Figure 4.46. 
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Figure 4.46 Minard’s map resulting from our approach. 

 

4.3.3 UML class diagram visualisation 

This case study demonstrates how a UML class diagram can be generated for example 

class diagram inputs. Figure 4.47 depicts a simplified sample of these examples 

provided in XML.  
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Figure 4.47 An example of UML class diagram inputs.  

 

As in previous example, a visual notation needs to be defined for each distinct part of 

input model. For this UML class diagram example, these parts include: UML attributes, 

operations and their parameters, classes, associations and the diagram itself. A desired 

visualisation for such an example would be similar to Figure 4.48.  
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Figure 4.48 Desired visualisation for example of figure 4.47.  

 

To generate notations required for this visualisation, a designer has crafted the notation 

views. These views are created using a combination of XAML shapes and C# logic. 

This C# logic controls how elements of these shapes are laid out on other notation 

views. For each of these views a model data has to be provided. Views have to be linked 

to model data to create notations. For example Figure 4.49 shows view and model of 

UML attribute notation.  

 

     
(a)       (b) 

Figure 4.49 UML attribute notation’s (a) View and (b) Model. 

 

As shown by Figure 4.49b, the data includes attribute’s name, type and access. These 

values are in one to one relation with elements of the view and should be annotated in 
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the provided view by linkto annotation so that the controller can be generated. Figure 

4.50 shows the annotated view of attribute notation. 

 

 

Figure 4.50 Annotated view of UML attribute notation. 

 

The provided view for the attributes includes the required code for altering Access 

values. For example if the provided value for attributes access is Public it will generate 

a +, and similarly for private a – and so on. It will use blank if access value is not 

provided.  

Other notations should be similarity generated using model data and the provided views. 

Figures 4.51 and 4.52 show view, model and annotated view of a UML function 

parameter.  

     
(a)    (b) 

Figure 4.51 UML function parameter (a) View and (b) Model. 

 

 

Figure 4.52 Annotated view of UML function parameter. 
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Figure 4.53 shows model and view of a UML function. The parameters are to be 

included inside this notation. Therefore, a place holder is provided in function model 

(“OPParameters”). This place holder is accordingly annotated by “callfor” annotation in 

Figure 4.54. 

 

    
 (a)    (b) 

Figure 4.53 UML function notation’s (a) View and (b) Model. 

 

 
Figure 4.54 Annotated view of UML function notation. 

 

UML associations are composed of an arrow, cardinality, and a label for association 

name. Figure 4.55 shows the view and model of UML associations. The provided 

elements of association model are in one to one relationship with elements of the view. 

As a result they have been annotated using “linkedto” annotation in Figure 4.56. 

 

   
             (a)         (b) 

Figure 4.55 UML association notation’s (a) View and (b) Model. 
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Figure 4.56 Annotated view of UML association notation. 

 

The shape for a UML class diagram designed in our example is composed of a box that 

includes class’s access and name in the first compartment, class’s attributes in the 

second compartment and operations in the third compartment as is shown in Figure 

4.57. In our configuration of classes, associations are also included in the class they start 

from. 

  

     
                 (a)    (b) 

Figure 4.57 UML class notation’s (a) View and (b) Model. 

 

Since each class notation includes attributes, operations, and possible associations, the 

place holders of these elements are provided in class model (Figure 4.57b). These 

placeholders are then accordingly annotated by “callfor” annotations in the class view’s 

code shown in Figure 4.58. Class’s name and access are in one to one relationship with 

their corresponding elements of the view and therefore are marked by “linkto” 

annotations. 
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Figure 4.58 Annotated view of UML class notation. 

 

Figure 4.59 shows View and Model for diagram notation. This notation is essentially a 

canvas which allows depiction of diagram name on top and organises class notations 

using grid layout formation. Classes are place on canvas and ordered according to their 

appearance order in the input file. Once all classes are placed, diagram canvas triggers 

class’s association rearrangement so that they can link their associations correctly 

according to position of the association’s To class. This rearrangement functionality is 

provided in the class views logic code. Annotated view of this notation is shown in 

Figure 4.60. 

 

 
(a)     (b) 

Figure 4.59 UML class diagram notation’s (a) View and (b) Model. 

 

 

Figure 4.60 Annotated view of UML class diagram. 
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Once required notations are generated, correspondence links between elements of the 

notation and input elements should be specified. For example for defining notations for 

UMLClass elements, user drops UML class notation to the designer canvas and drag 

and drops class element of the input model on the notation as shown by solid arrow in 

Figure 4.61. This interaction will trigger the creation of a transformation rule for 

transforming that portion of the input model (UMLClass element in XML input) to the 

host notation's model.  

 

 

Figure 4.61 Specifying correspondences between class element and class notation. Arrows depict drag 
and drop direction. 

 

Each notation may have internal elements that correspond to elements of their model 

data. They can be viewed in a popup window by right clicking on the notation. For 

example, our UML class notation here has an access identifier, a name, a placeholder 

for attributes, a place holder for associations and a place holder for operations as its 

model. These placeholders specify where other notations are going to be included.  

Figure 4.61 shows three correspondences: Correspondence between UMLClass element 

and the notation, correspondence between UMLClass name and class notation’s Name, 

and correspondence between UMLClass’s access and class notation’s Access. Please 
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note that since UMLClass’s name is a XML attribute and not an element, framework 

has shown it differently in the default tree view. The place holders are not required to be 

linked to at this stage. When user is composing notations, other notations will be linked 

to these place holders. Same procedure will be repeated for other notations. For example 

Figure 4.62 shows how elements of a function parameter can be linked to their 

corresponding notation. 

 

 

Figure 4.62 Specifying correspondences between function parameters and parameter notation. Arrows 
depict drag and drop direction. 

 

To have a complete transformation script, the prepared collection of transformation 

rules in notations should be scheduled according to their call sequence. This is achieved 

by using notation composition. Once all notations for a visualisation are defined, they 

should be composed to create a complete visualisation. To do so, user drops all 

generated customised notations on the scheduling canvas and links them according to 

their specific place holders as depicted by Figure 4.63.  
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Figure 4.63 Composition of notations to generate Class diagram visualisation. 

 

As previously seen on other case studies, notation composition will result in scheduling 

of embedded transformation rules in each notation. In composition of Figure 4.63 the 

transformation rule in diagram notation is the first rule to be called to transform a 

UMLDiagram model element to a UML diagram notation. It then calls the UML class 

transformation rule, and the scheduling continues accordingly for other linked notations. 

By using the compositions specified in Figure 4.63, a complete XSLT script to generate 

concrete visualisations of class models will be generated for rendering class model 

examples similar to Figure 4.48. This transformation script can be reused for other 

examples. For example Figure 4.64 shows the result of applying same transformation 

script to an XML input representing class diagram of XYZ airline application. 

 

 

Figure 4.64 Example of class diagram visualisation of XYZ airline. 
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4.3.4 Java code visualisation 

Source code is a type of concrete syntax. However, to be able to benefit from drag and 

drop and interaction of our approach and framework, it should be visualised using 

interaction capable notations. This section provides an example of visualising Java 

source code. Assume XML representations of Java code is available and is similar to 

example shown in Figure 4.65.  

To generate visualisation for this example, a visual notation has to be created for each 

distinct part of this input model once. For example, to visualise an example Java code 

XML similar to Figure 4.65, a visual notation for Java package, Classes, attributes, 

methods and method parameters has to be created first. Similar to previous case studies, 

we assume a designer designs the views for the required notations. The task for 

generating the notation then would be to specify model data elements required for these 

notations and annotate views accordingly to generate the controller transformation 

between the model and the view.  
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Figure 4.65 An example of Java code input represented by XML. 

 

For example, to generate a notation for Java properties, the provided view and the 

required model data are depicted by Figure 4.66. This notation by default includes the 

array indicators (“[]”). The logic behind notation controls the value to be put inside the 

brackets. If no value is provided, or the multiplicity of the property is one, it will omit 

the brackets. 

 

         
(a)      (b) 

Figure 4.66 Java property’s (a) View and (b) Model. 
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Elements of the View should be linked to elements of the model. It can be done by 

annotating the View according to elements provided by Java property’s model. This 

annotation is depicted in Figure 4.67.  

 

 
Figure 4.67 Java property View’s annotations. 

 

Other notations can also be generated similar to Java property. For example Java class 

notation’s view and model are provided in Figure 4.68 and its annotated View is 

depicted in figure 4.69. Since Java class notation includes other notations like attributes 

and functions, their place holders are provided in the model data and are accordingly 

annotated in the View (see Figures 4.68 and 4.69). 

 

                
        (a)         (b) 

Figure 4.68 Java class’s (a) View and (b) Model. 
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Figure 4.69 Java class view annotations. 

 

The generated notations should be linked to example data by specifying correspondence 

links between elements of the input examples and elements of notation data. For 

example, to generate a visualisation for a Java class, a Java class notation has to be 

placed (dropped) on the designer canvas and class element of the input model should 

also be dropped on the notation as shown by arrows in Figure 4.70. This interaction will 

trigger the creation of a transformation rule for transforming that portion of the input 

model (class element in XML input) to the host notation's model. The internal elements 

should also be mapped accordingly. For example, class notation has access, name that 

should be specified.  Placeholders for properties and methods will be used in notation 

composition step. 
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Figure 4.70 Mapping Java class input elements to Java notation. 

 

As another example, consider mapping elements of the input XML representing method 

parameters to parameter notation. Figure 4.71 shows the interactions and 

correspondences required for this mapping. 

 

 

Figure 4.71 Java class View’s annotations. 

 

A range of “mapping functions” are available to be used to manipulate content from 

source to target visualisation. For example, if it is required to alter the name of Java 

class by appending a “_Class” to its name, a string merging function (marked by a in 
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Figure 4.72) can be used. These mapping functions are used similar to the notations, i.e. 

they can be dropped on the designer canvas, and desired input elements can be linked to 

their internal elements (i.e. function's input arguments) by drag and drop. If a function 

has outputs, they can be dragged to other desired elements of notation. 

 

 

Figure 4.72 Using string merge function to alter Java class’s name. Arrows depicts drag and drop. 

 

To have a complete Java visualisation (and hence a transformation script from Java 

XML to visualisation), the prepared collection of notations should be composed. Once 

all notations for Java visualisation are defined, they should be dropped on scheduling 

canvas (provided in the framework) and linked according to their specific place holders 

as depicted by Figure 4.73.  

 

 

Figure 4.73 Composing notations to generate Java code visualisation. Arrows are provided by 
framework. 
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According to this composition, Java package notation’s (marked by 1 in Figure 4.73) 

internal transformation is the first to be called to transform a Java package model 

element to a package notation. It then calls the class transformation rule, and the 

scheduling continues accordingly for other linked notations. Applying the resulted 

transformation on the example of Figure 4.65 will result in visualisation of Figure 4.74. 

 

 

Figure 4.74 Resulted visualisation of the example in Figure 4.65. 

 

Figure 4.75 shows an example of applying this transformation on another example 

representing Java source XML of an airline application. 
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Figure 4.75 Example Java code visualisation of airline application. 
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4.3.5 Computer Aided Design (CAD) visualisation 

Visualisations have been used in variety of application domains. One domain that has 

benefited a lot from visualisation is Computer Aided Design (CAD). CAD 

visualisations allow designers to see various parts of their designs and correct 

imperfections before building them. This case study shows how CAD examples can be 

provided to our framework and visualised. Here we assume these examples are provided 

in XML files similar to example of Figure 4.76. It shows an example of CAD design 

data of a building. It is composes of plan levels that may include rooms of different 

types. For simplicity, the geometry data has been merged into one element. However, it 

could have been provided in different elements or even input files. 

 

 

Figure 4.76 Example input model of a CAD XML. 

 

Three notations are required for this case study, a notation for room shapes, a notation 

for floor plans and a notation for whole building. Similar to previous case studies, a 

designer has provided the views for these notations. These notation views are generated 

using XAML graphics that unlike other case studies do not include logic code. The 

layout of the graphics used in these views is controlled by XAML controls. Figure 4.77 
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shows the view and model for room notation. Each room has geometry, name, and a 

type. Therefore, the provided model should include these elements.  

 

            
             (a)        (b) 

Figure 4.77 CAD room’s (a) View and (b) Model. 

 
 

Since all the elements of this room model are in one to one relationship with the 

elements of the view, they should be annotated in the view code using “linkto” 

annotations. Figure 4.78 shows the annotated view. 

 

 

Figure 4.78 Annotated view of CAD room notation. 

 

Floor plans include the rooms and show how they are arranged. They also have a label 

to identify each floor. The view and model of a floor plan is depicted by Figure 4.79.  
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              (a)      (b) 

Figure 4.79 CAD floor plan’s (a) View and (b) Model. 

 
Since each floor plan houses multiple rooms, the annotation for rooms should reflect the 

one-to-many relationship. Figure 4.80 shows the annotated view of Figure 4.79.  By 

default, each floor plan lists included rooms from top.  

 

 

Figure 4.80 Annotated view of CAD floor plan notation. 

 

The final notation for our CAD visualisation is the CAD design notation which embeds 

other notations. Its view includes a stack panel embedded in a scroll viewer for housing 

multiple floor plans. So in case the design become large, users can scroll to see the 

whole design and it will not interfere with other elements of UI. The view and model of 

this notation and the annotated view are depicted by Figure 4.81 and Figure 4.82. 
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       (a)         (b) 

Figure 4.81 CAD design notation’s (a) View and (b) Model. 

 

 

Figure 4.82 Annotated view of CAD design notation. 

 
Next step is to map input elements to generated notations. This can be done by drag and 

dropping input elements on notational elements. For example, Figure 4.83 shows how 

elements of a shape from input model can be linked to a room notation. When room 

notation is drop on designer canvas, user drags the shape element on room notation. 

This will trigger a transformation rule for transforming that portion of the input model 

(Shape element in XML input) to the room notation's model. The internal elements of 

the shape and room notation’s model should be linked by drag and drop too. For 

example, the room notation in Figure 4.83 has a Geometry, Name and Type. These 

internal elements can also be linked by drag and dropping elements as shown by arrows 

in the figure. These correspondences will be included in the transformation rule 

template that has been triggered. 
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Figure 4.83 Correspondence specification between shape element and room notation. 

 

Figure 4.84 shows another example of linking input model elements to a floor plan 

notation to transform each plan in input model to a floor plan notation. The Rooms 

element of floor plan notation will be used in notation composition as it is a placeholder 

for room’s notation.  

 

 

Figure 4.84 Correspondence specification between plan data and floor notation. 

 

To have a complete visualisation and hence a model to visualisation transformation 

script, the prepared collection of defined notation rules should be scheduled according 
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to their call sequence. Composition of notations specifies how a full model visualisation 

is formed from a set of sub-element visualisations and as a result, in this example, 

notations are composed as depicted by Figure 4.85. This figure also shows how place 

holders help identification of which element should be included in which notation. 

These place holders will be replace by calls to transformation rules of linking notations. 

For example in composition of Figure 4.85 since the room notation is linked to 

“Rooms” element of floor notation, a call to the transformation rule embedded in the 

room notation will be placed in floor notations “Rooms” element. 

 

 

Figure 4.85 Composition of notations for CAD visualisation. 

 
 

This composition results in the scheduling of model element-to-visual notation 

transformation rules and thereby a model to visualisation transformation script will be 

generated. For example, by using the compositions specified in Figure 4.85 a complete 

XSLT script to generate concrete visualisations of CAD models will be generated for 

rendering those model examples to visualisations similar to the visualisation of Figure 

4.86. Note that the generated XSLT transformation script can be reused and applied to 

all examples of the CAD input to provide an automatic concrete visual notation 

renderer. These generated concrete 2D visualisations are implemented as WPF elements 

and allow interaction with their composing notations. The individual elements of a 

concrete visualisation can be dragged, dropped on other elements, and right clicking 

them reveals their internal elements. 
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Figure 4.86 Example of the generated CAD visualisation. 

 

4.4 Summary  

This chapter described the visualisation approach provided in by this thesis. It described 

how visual notations are created using designer provided views and linked to model 

data using a controller transformation. The created notations are capable of being drag 

and dropped and elements of input models can be linked to them and their internal 

model elements using drag and drop approach.  Once notations are generated and linked 

to input model examples, they should be composed to generate full visualisations. 

Composition of notations results in generation of model to visualisation transformation 

script and can be reused and applied on similar examples to generate visualisations.  

Five case studies were provided in this chapter to indicate applicability of the presented 

approach for varieties of application domains. These case studies included visualisation 

generation for bar charts, a recreation of Minard’s map, UML class diagrams, Java code 

and CAD designs. 
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Chapter 5 

Transformation using concrete visualisations 
 

 

 

 

 

 

5.1 Introduction 

A major motivation for this thesis research was to address complexity of model 

transformation generation by providing familiar and concrete visual notations as first 

class artefacts in transformation generation process. These concrete visualisations help 

to better incorporate users’ domain knowledge into specifications of source and target 

model correspondences and thus into generated model transformation rules. 

Chapter 4 described the creation of such concrete visualisations in detail. This chapter 

introduces ways in which these visualisations can be used in transformation rule 

specification using drag and drop between visualisations of example models. Low level 

model transformation scripts are automatically generated using these drag and drop 

interactions. This chapter addresses research question 2 and its following sub-questions: 

2. Can a model transformation be effectively generated using concrete by-example 
visualisations?  
2.1. Can we perform correspondence specification (and hence transformation 

specification) on actual visual notation of input models? 
2.2. Can a transformation rule be represented visually?  
2.3. How to create a visualisation for transformation rules? 
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5.2 Transformation approach 

Given that source and target visualisations are available, the transformation procedure 

between the two visualisations, as illustrated in Figure 5.1, involves: 1) Mapping 

notations of source visualisation to target visualisation to create transformation rules, 2) 

automatic reverse engineering of a meta-model (abstraction) from source and target 

visualisations, and 3) automatic generation of transformation script using defined rules 

and the reverse engineered abstraction. The following subsections describe each of these 

steps in detail. 

 

 

Figure 5.1 Transformation generation procedure. 

 

5.2.1 Transformation rule specification 

Concrete and familiar visualisations provide better facilities for spotting 

correspondences between source and target model visualisations. First, let us revisit 

definition of correspondence in our approach:  

Definition 5.1 A Correspondence is a relation between elements on both 

sides of the transformation. It specifies whether element(s) of the Left Hand 

Side (LHS) model play a role in deciding element(s) of the Right Hand Side 

(RHS) model.   
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A correspondence can be 1-to-1, 1-to-Many or Many-to-Many depending on number of 

elements participating in the relationship from both sides. These correspondences can 

specify a direct relationship between LHS and RHS models or an indirect relationship. 

Therefore we have: 

Definition 5.2 A Direct correspondence defines a direct relationship between 

LHS2 element and the RHS element. It usually results in the value of the LHS 

element being copied to the RHS element.  

Definition 5.3 An Indirect correspondence is the relationship between LHS 

and RHS model elements that is specified through functions and conditions or 

other correspondences. 

 
Example 5.1 Consider transformation example of bar chart to pie chart 

visualisation. Assume each bar has a name, a value and a colour, and each pie 

has a name, value and colour accordingly. Three 1-to-1 direct correspondences 

between elements of each bar and elements of each pie piece can be specified, as 

shown by Figure5.2.  

 

 

Figure 5.2 One-to-One correspondences between elements of a bar in bar char and elements of pie pieces 
in a pie chart. Arrows depict correspondences.  
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  From	
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Example 5.2 Consider transformation of a troop movement notation in Minard’s 

map to a pie piece in a pie chart. Assume each troop movement notation has 

number of troops when the movement started in the first city, number of troops 

when it ended and a colour representing the status (advancing/retreating). The 

pie chart on the RHS is representative of the number of troops lost during the 

movement and the status of the campaign and the name of the two cities involved 

in the movement. As a result, to specify the transformation between the two 

notations one can specify following three correspondences (as shown by figure 

5.3): 1) Direct correspondence between troop movement colour and pie piece 

colour. 2) Indirect correspondence between the number of troops in first and 

second cities, and the value of the pie piece. A subtraction function has to be used 

to calculate the number of troops lost during the movement. 3) Indirect 

correspondence between name of the two cities and name of the pie piece. A 

merging function is used to merge the two names.  

 

 

Figure 5.3 Correspondences between elements of a troop movement notation in Minard’s map and 
elements of a pie piece in pie chart. Solid arrows depict indirect correspondences while dashed arrow 

depicts direct correspondence.  

 

From these definitions, it can be concluded that a direct correspondence will result in a 

1-to-1 mapping, but the opposite is not necessarily true. For example, an element on the 

LHS might have relation to another element on the RHS through a function.  



 
135 

 

Defining correspondences is very similar to structural programing paradigms, i.e. some 

correspondences may affect a larger portion of the source or target models or both and 

therefore, might include other correspondences. As a result, two categories of 

correspondences can exist. We call them Child and Parent correspondences.  

Definition 5.4 A Child correspondence is a direct or indirect correspondence 

that specifies a relationship by its own. 

Definition 5.5 A Parent correspondence is a correspondence that includes set 

of other correspondences. This set should have at least one child 

correspondence.  

 
Example 5.3 In mapping a bar chart visualisation to a pie chart of Example 5.1, 

each bar on the source (bar chart) has parent correspondence relation with each 

pie piece in the target (pie chart). The value of the bar, its name and colour, have 

child correspondence relationships with corresponding value, name and colour of 

the pie pieces. Figure 5.4 depicts these correspondences.  

 

 

Figure 5.4 Correspondences between a bar in bar char and a pie piece in a pie chart. Solid arrow depicts 
parent correspondence while dashed arrows depict child correspondences.  
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With these two categories, it would also be easier to reuse correspondences. 

Considering these definitions, a transformation rule can be defined as follows. 

Definition 5.6 A transformation rule in our approach is defined by a parent 

correspondence and may include a set of child correspondences, operations 

and calls to other transformation rules. It can include both direct and indirect 

correspondences and may include additional operations. 

Applying transformation rules on (part of) source model will result in generation or 

modification of (part of) target model. A transformation rule might be called multiple 

times and might be applied on multiple sources to result target(s). 

 

Example 5.3 The parent correspondence of Figure 5.4 represents a 

transformation rule that transforms a bar in bar chart to a pie piece in pie chart. 

It includes three child correspondences. Another transformation rule which 

transforms bar chart to pie chart will call this rule multiple times for each bar to 

create pie pieces in pie chart. 

Figure 5.5 shows another example from software engineering domain. A 

transformation rule can be defined by the parent correspondence between UML 

class diagram’s attribute and a Java class property. This parent correspondence 

includes three child correspondences to correspond Name, Access and Type. 
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Figure 5.5 Correspondences between a UML attribute and a Java property. Solid arrow depicts parent 
correspondence while dashed arrows depict child correspondences. 

 

Transformation rules range from simple direct correspondences to complex set of mixed 

correspondences and transformation rule calls. A variety of functions can be used to 

define these correspondences depending on the transformation task at hand. Similar to 

model-to-visualisation transformation generation step, varieties of functions and 

conditions can be specified to define more complex correspondences and hence 

transformation rules. These functions and conditions are used similar to visualisation 

step. Example 5.4 demonstrates use of a condition in mapping a bar notation to pie 

piece notation.  

 

Example 5.4 Figure 5.6 demonstrates using a condition to specify colour of a pie 

piece according to the values provided by bar notations in a bar chart. Value of 

the bar is dragged to arg1 and the value to be checked against is provided to 

arg2.Then specific colours are provided in condition statements accordingly. The 

condition should then be dragged to the colour element of the pie piece. 
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Figure 5.6 Using conditions to specify correspondences. A) Before values are specified to the condition 
arguments, B) after values are provided. Arrows show drag and drop directions.  

 

5.2.2 Transformation rule representation 

Transformation rules are inseparable part of any model transformation system. A 

complete transformation specification usually consists of combination of multiple 

transformation rules. If transformation specification involves large models, many such 

rules will be defined which can affect understandability of the process and debugging. 

Given that first class artefacts of our approach are visual notations, we argue that a 

textual representation of a transformation rule would be out of place and not suitable. 

Therefore, transformation rules are represented by visual notations too (see our research 

questions 2.2 and 2.3 on visual representation of transformation rules). 

Each transformation rule is represented by the source and target notations it is 

representing. Putting each visual element and its target notation together will provide a 

schematic view of the transformation rule, i.e. users can see each transformation rule by 

the source, and the target notation that will be generated as a result of applying the rule 

on source notation. This provides a good mechanism for representing transformation 

rules visually. Figure 5.7 demonstrates examples of these rule representations.  
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Figure 5.7 Examples of transformation rule representation. Transformation rules are: A) UML class to 
Java class, B) A Room in 2D visualisation to a room notation in another 2D visualisation, C) A pie piece 

to bar and D) UML attributes to Java property. 

 

5.2.3 Generating transformation scripts 

Transformation rules are defined using visual notations and their visual representations.  

Each transformation rule transforms the model underlying the source notation to the 

model of target notation. The MVC embedded in each notation is responsible for 

depicting elements of notation’s model to the visual view.  As a result, the 

transformation between notations only considers the model data.  

By dragging and dropping a source notation to a target notation, their underlying 

models are used as templates for transformation rules. The child correspondences that 

represent the internal model elements of the two notations will be included in the 

transformation templates to form a complete template. Example 5.5 elaborates more on 

the procedure. 

 
Example 5.5 Consider the transformation rule between UML attribute and Java 

property. Figure 5.8 demonstrates two steps of the required interaction. Step one: 

a UML attribute is dropped on a Java property. This will result in assignment of 

the underlying model of Java property as target and internal elements of forward 

transformation template. The pseudo code provided in Figure 5.9 shows the 

resulted template. The internal elements of these notations need to be mapped as 
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well. Therefore next step (marked by 2 in Figure 5.8) specifies the correspondence 

between Name of the UML attribute and Name in Java property. This 

correspondence will be reflected in the triggered transformation rule as shown by 

Figure 5.10. The remaining correspondences will be accordingly specified and 

reflected. 

 

 

Figure 5.8 Steps for generating transformation rule between UML class attribute and Java property. 

 

 

Figure 5.9 Pseudo code representing the transformation template of step one in Figure 5.8. 

 

Transform UML attribute to { 
   Java Property 
   Internal model: 
  { 
 Access 

Name 
Type 
Multiplicity 

   } 
} 
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Figure 5.10 Pseudo code representing the transformation template after step two in Figure 5.8. 

 

Once correspondence specification between two notations is complete, a transformation 

code generator reads these templates and generates the transformation rule scripts 

according to the transformation languages of choice. Example 5.6 demonstrates a 

sample of the generated transformation code. 

 
Example 5.6 Consider the transformation rule defined in Example 5.5. Assuming 

that all elements of UML attribute (Name, Access, and Type) are mapped to their 

corresponding elements in Java property, the transformation rule generated by a 

code generator that generates XSLT would be similar to Figure 5.11. Note that 

since there exists no correspondence for Java property’s multiplicity, its default 

value is chosen from Java property’s notation data.  

 

 

 Figure 5.11 Transformation rule script for transforming UML attribute to Java property in XSLT.  

Transform UML attribute to { 
   Java Property 
   Internal model: 
   { 
 Access 

Map UML attribute’s Name To Java Property’s Name 
Type 
Multiplicity 

   } 
} 
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In case other transformation languages are of interest, code generators for those 

languages can be provided similar to the XSLT code generator used in Example 5.6. A 

complete visualisation to visualisation transformation may include multiple 

transformation rules. These transformation rules will be included in the transformation 

script to transform source visualisation to target visualisations.  

Unlike the model to visualisation transformation which follows an imperative 

transformation rule control, the rule application control of visualisation to visualisation 

transformation follows a declarative approach. For model-to-visualisation 

transformation, the user would specify how model-to-visualisation rules are called and 

scheduled through composition of notations. Here, for visualisation-to-visualisation 

transformation rules are not required to be explicitly called. Instead a call to apply 

possible rules will be placed and the transformation engine will choose the possible 

transformation rules. This declarative approach allows transformation rules to be called 

for the composing visual notations inside each notation without user needing to 

explicitly specify them.  

 

Example 5.7 In bar chart to pie chart transformation example, when mapping 

chart areas, users define three correspondences as shown by Figure 5.12. First 

correspondence defines the transformation rule templates for transforming bar 

chart notation to pie chart notation. Second correspondence defines the internal 

elements of the bar chart (its Name and Bars elements) to be transformed to 

internal elements of the pie chart. The Bars element of the bar chart includes 

other bars. As a result, if the bar to pie piece rule has been defined, the call for 

templates that has been put inside Bars element as a result of the correspondence, 

will result in calling bar-to-pie piece rule.  
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Figure 5.12 Transformation rule specification between bar chart and pie chart. Arrows depict drag and 
drop. 

 

Note that the order of defining rules is not important. Users can define rules in order 

they wish. Once all rules are defined, the transformation code generator checks and uses 

all available rules in repository. 

Although rule application control is declarative, before generating the transformation 

script, it must be clear that which transformation rule should be used first to start the 

declarative rule calling procedure. Our approach here uses the reverse engineered 

abstraction of both source and target visualisations to decide the starting rule.  

The automatic reverse engineering mechanism uses a graph lattice as the basis for the 

abstraction. It incorporates a visitor pattern that traverses input examples and inserts 

new structures of the models it faces to the graph lattice. Therefore, it creates a 

complete abstract structure from provided visualisation example. The defined 

transformation rules are checked against source and target abstractions based on source 

structures they are to be applied to and the target structure they create, to find a rule 

applicable to the top most element of the abstraction. Once this rule is found, it 

automatically marks it as starting rule of the transformation script. The system then 

generates a full source model to target model transformation script based on the defined 

rules and hence our response to research questions 2 and 2.1. 
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Having taken both imperative and declarative approach for model-to-visualisation and 

visualisation-to-visualisation might imply that the transformation code generator should 

use transformation languages that support both declarative and imperative rule control 

mechanisms. Declarative transformations do not need explicit scheduling while 

imperative transformations allow better consistency checks. Since the visualisation 

approach is separated from the transformation, it is possible to use different 

transformation languages for each step, i.e. an imperative transformation language for 

model-to-visualisation and a declarative transformation language for the visualisation-

to-visualisation transformation step.  

The generated transformation code can be applied to any source model conforming to 

the example(s) used in the specification to produce a target model. Following section 

provides a group of case studies to further discuss this approach.  

 

 

5.3 Case Studies 

This section provides series of example case studies using our proof of concept tool 

implementation to specify and generate transformations using example visualisations. It 

describes transformation between bar chart and pie chart visualisation, Minard’s map 

and pie chart, UML class diagram to Java, and CAD to alternative tree visualisations. 

The visualisation procedures of these examples are described in chapter 4. 

 

5.3.1 Mapping bar chart to pie chart 

Representing data using charts is common in many application domains. This case study 

demonstrates situations where an alternative visualisation is desired for same underlying 

data. It demonstrates how the data represented by a bar chart can be transformed into pie 

chart visualisation and hence a case of alternative visualisation for same underlying 

data. It uses the bar chart visualisations previously demonstrated in this thesis. Figure 

5.13 shows examples of these visualisations.  
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Figure 5.13 Example bar chart and pie chart visualisations. 

 

As can be seen in Figure 5.13, bar chart visualisation is consisted of chart notation and 

set of bars. Pie chart is also consisted of pie area and the pie pieces. Therefore, for 

transforming bar chart to pie chart, two transformation rules will be required: a 

transformation rule to transform chart area in bar chart to chart area in the pie chart, and 

the transformation rule to transform each bar to a pie piece.  

To generate the bar area to pie area transformation rule, it is required that the bar chart 

area notation be dragged and dropped on the pie chart area (as demonstrated by 1 in 

Figure 5.14). This interaction will trigger the transformation rule templates for both 

forward (bar chart area notation to pie chart area notation) and reverse (pie chart area to 

bar chart area) transformation.  

Each of these notations has internal elements that should be mapped as well. The 

notations provide the internal elements in pop-ups that are displayed by right clicking 

on each notation. So to map internal elements (after popups are displayed) source 

elements need to be dragged and dropped on elements of target notation. This 
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interaction is marked by 2 and 3 in Figure 5.14. Here the bar chart area’s name is to be 

mapped to pie chart’s name and bars will be mapped to pie pieces. Once done, saving 

the rule will result in the default notations of both source and target chart areas to be 

saved as visual representative of the transformation rule. 

 
 

 

Figure 5.14 Mapping chart area notations. 

 

To generate the second transformation rule, a bar notation needs to be dragged and 

dropped on a pie piece. Internal elements of the bar (name, value and colour) also need 

to be mapped to internal elements of the pie piece. Figure 5.15 demonstrates this 

interaction by arrows accordingly.  
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Figure 5.15 Mapping a bar to a pie piece. 

 

Figure 5.16 shows the generated transformation rules. Note that since the chart areas are 

empty and there are no pie pieces or bars, the renderer does not show the pie boundary 

or bar chart axis.  

 

 

Figure 5.16 Transformation rules for transforming bar chart to pie chart. 

 

To generate the transformation script, the reversed abstraction of bar chart is checked 

against the generated rules to find the starting rule (bar chart area notation to pie chart 

area notation’s rule). The transformation script is then generated by calling the starting 

rule and including remaining transformation rules in the script. The remaining 
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transformation rules will be included in the script and called implicitly. Figure 5.17 

shows the generated script in XSLT. Executing the generated transformation script will 

result is a new pie chart visualisation that represents the data of the bar chart 

visualisation as depicted by Figure 5.18. 

 

 

Figure 5.17 Generated transformation script for transforming bar chart to pie chart. 
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Figure 5.18 End result of the bar chart to pie chart transformation. 

 

5.3.2 Mapping Minard’s map to pie chart 

This case study demonstrates how the data embedded in a complex visualisation 

(Minard’s map) can be extracted and transformed to a model underlying a different 

visualisation (pie chart).  

Given Minard’s map visualisation in Figure 5.19, assume that there is a requirement for 

visualising the number of troops lost during the campaign at each key movement step as 

a pie chart, transformed by-example from this map visualisation.  

 

 
Figure 5.19 Minard’s map visualisation. 
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To perform this transformation, we need to generate a rule for transforming the map to a 

chart and a rule for creating a pie piece from each troop movement notation. To 

generate the first rule, the user is required to drag and drop map notation on the chart 

area. The internal elements of the map will also correspond to elements of the chart; 

therefore, they should be linked as well. Figure 5.20 shows these correspondences by 

green arrows. Saving these correspondences will generate a map to chart transformation 

rule.   

 

 

Figure 5.20 Specifying Minard’s map to chart area transformation rule. Arrows depict drag and drop 
directions. 

 

A second transformation rule is required for generating a pie piece notation from a troop 

movement notation. The user drags a movement notation onto a pie piece as shown by 

Figure 5.21. Each pie piece includes a value, a name and a colour. The colour element is 

in a one to one relationship with the troop notation’s colour since we need to have the 

information regarding advancing or retreating status in that part of the journey. As a 

result, the colour element will be directly linked as shown by figure 5.21.  
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Figure 5.21 Specifying Troops movement notation to pie piece notation transformation rule. Arrows 
depict drag and drop directions. 

 

Minard's map visualisation does not include a specific data element for number of 

troops lost at each movement. Therefore this value needs to be calculated from available 

data in the visualisation using provided mapping functions.  

Once a notation is dragged on another in our framework, their default notations are 

provided in a separate window in case functions and conditions needed to be used. This 

is to prevent source and target visualisation windows from getting crowded. An 

example of this separate window and default notation visualisations is provided in 

Figure 5.22 for our example of troop movement notation to pie piece notation 

transformation rule. 

To generate the value needed to be represented by each pie piece as the number of 

troops lost during the movement, a subtraction function needs to be used. Each pie piece 

needs to indicate that its data is representative of which troop movement notation. As a 

result each pie piece must include the name of the movement using the name at starting 

point of the movement and the name at the destination. A merging function is used here 

to merge two city names and include a “to” between them to generate the name for each 

pie piece. The required input elements to be used in these functions need to be dragged 

and dropped on function arguments and the function arguments will be dragged and 

dropped on the internal elements of the pie piece. These interactions are depicted by 

Figure 5.22. The result of this interaction will be the transformation rule script of Figure 

5.23. Note the inclusion of function variables in the transformation script. Argument 

numbers have been updated by the transformation code generator. 
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Figure 5.22 Specifying Troops movement notation to pie piece notation transformation rule using 
subtraction and merge functions. Arrows depict drag and drop directions. 

 

 

Figure 5.23 Transformation script generated as a result of rule specification of Figures 5.21 and 5.22 in 
XSLT. 

 

Once these two transformation rules are defined, transformation script for generating 

the pie chart can be generated. Using the abstraction of the source model (Minard’s 
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map), system already knows that the starting transformation rule is the Minard’s map to 

pie chart area transformation rule. The rest of the transformation rules (troop movement 

to pie piece in this case) will be implicitly called from starting transformation rule 

onwards. The resulting full visualisation of this example is depicted in Figure 5.24. 

 

 

Figure 5.24 Resulting pie chart visualisation. 

 

5.3.3 Mapping UML class diagram to Java 

This case study demonstrates a transformation example from software engineering and 

MDE domain. It demonstrates how visualisation of a class diagram can be used to 

transform the underlying model to the visualisation of Java code. Given that 

visualisations of both UML class diagram and Java code are available, transformation 

between them can be generated by drag and dropping their notations. Figure 5.25 shows 

example of these source and target visualisations.  

To perform this visualisation-to-visualisation transformation, transformation rules 

should be defined for UML diagram to Java code notation, UML Class to Java class, 

UML attributes to Java properties, UML operations to Java functions, and UML 

operation parameters to Java function parameters. In this visualisation configuration, 

each UML association is to be transformed into a Java property. The cardinality of this 
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association defines the multiplicity of that Java property. Therefore, a transformation 

rule is also required for UML association to Java properties.  

 

 

Figure 5.25 Sample Visualisations of a UML class diagram (source) and Java visualisation (target). 

 
Figure 5.26 shows an example of creating a transformation rule for a UML attribute to a 

Java code property. To create this rule, user needs to drag a UML attribute to a Java 

field property, as depicted by solid black arrow, and match their internal elements, as 

shown by dashed black arrows.  
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Figure 5.26 Specifying transformation rule between UML class attribute and Java field property. Arrows 
depict drag and drop directions. 

 

Note that the two visualisations do not need to represent same data, as in Figure 5.26 

where the class diagram represents an organisation but the Java code is representation of 

an airline package. Also, a level of consistency checking can be provided in each 

visualisation. For example, package name of the Java code knows that its name should 

not include white spaces, or Java attributes use default multiplicity of 1 when not 

specified and when blank is provided it is assume to be N. These checks can be 

provided depending on the application during notation design. An alternative is to use 

functions and conditions when specifying transformations. 

Figure 5.27 shows how UML diagram is mapped to Java package. As can be seen UML 

diagram’s name contains spaces, these spaces will be deleted by controller of Java 

package when UML diagram’s name is mapped to Java package’s name. 
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Figure 5.27 Specifying transformation rule between UML diagram and Java package. 

 

Figure 5.28 shows how a class in class diagram is mapped to classes in Java code. As 

shown by the figure, since both attributes and associations are represented by properties 

in Java code, they have been mapped to properties in Java class element.  

Similar to step two of specifying a concrete visualisation for a model, mapping 

functions are available to create more complex transformation rules between the 

concrete visual model mappings. For example, when mapping associations to a Java 

property, an association might have multiplicity defined by “*”, whereas a Java field 

property might have either a number or void as its multiplicity. A condition can be used 

to specify such a correspondence.  
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Figure 5.28 Specifying transformation rule between UML class and Java class. 

 

By dragging a UML association to a Java field (or any notational element to another) 

their default notations will be shown on rule designer canvas to better provide space for 

using functions and conditions. Figure 5.29 shows the notations and the condition. The 

condition function in the figure tests whether “Multiplicity” of the association is equal 

to “*”. If so, it passes a blank character as output; otherwise it copies the value provided 

by “Multiplicity” to the output. Other correspondences between UML association and 

Java property can be defined either in this window or on original visual notations of the 

visualisation. If constant values need to be provided, (like spaces or “*”) they can be 

specified using provided facilities. The resulted transformation code script for this rule 

is shown by Figure 5.30. Note that since the association does not have access element, 

the code generator uses the default “public” value provided by the model of Java 

property. 
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Figure 5.29 Specifying transformation rule between UML association and Java property. 

 

 

Figure 5.30 Transformation rule script for transforming UML associations to Java property.  

 

Once all required rules are defined, transformation script for transforming UML 

diagrams to Java code can be generated. The code generator searches for starting rule 

which in this case is the UML diagram to Java package rule and generates the code 

script. The generated target as a result of applying this transformation script on the 

example class diagram of Figure 5.25 is shown in Figure 5.31. Note that the types are 

transferred to Java visualisation with the same capitalisation as UML diagram. In case it 
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is desired to have lower case type names, such functionality can be provided by using 

functions, or consistency checks inside visual notations. 

 

 

Figure 5.31 Resulting Java code visualisation. 

 

5.3.4 Mapping CAD designs to alternative tree visualisation 

This case study provides an example where Computer Aided Design (CAD) 

applications need to exchange complex models [164]. Consider the scenario where an 

architect might want to create an organisation's building structure chart based on an 

available CAD design. Assume that visualisation transformations for both models have 
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been provided beforehand, where the design model is visualised with a 2D building 

layout and the structure chart model via its diagrammatic representation. This case study 

shows how a transformation between elements of source design to elements of the target 

structure chart can be generated.  

Figure 5.32 shows an example of mapping part of a detailed building design to a 

detailed structure chart. Elements of the chart structure should be created based on 

elements in the design. For example, drag and dropping a room on a corresponding 

room node in the tree and specifying their internal elements defines a transformation 

between their notations accordingly. Figure 5.32 shows this example for creating a 

transformation rule for mapping a 2D room shape (from source model visual notation) 

to a building structure node (in target model notation). To create this rule, user needs to 

drag a room notation element to a building node notation element, as depicted by solid 

black arrow, and match their internal elements, as shown by dashed black arrow.  

 

 

Figure 5.32 Defining a transformation rule for transforming a room in 2D CAD building to a room node 
in tree-based layout. 
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The nodes in the building tree structure are colour coded depending on room types. 

Room types in CAD visualisation however, are defined by their type string. To generate 

these colours, users can use conditions and specify colours based on room types. By 

dragging a room notation to a room node (or any notational element to another) their 

default notation representations will be shown in rule design view to better provide 

space for using functions. Users can navigate to that canvas and specify conditions as 

depicted by Figure 5.33.  

The condition function in Figure 5.33 tests whether room's “Type” is equal to for 

example “Kitchen”. Note than in general, arguments of functions and conditions are 

depicted by “arg” and a number (e.g. arg1, arg2). Once values are dragged and dropped 

on these arguments, they are replaced by the dragged value. Figure 5.33 captures the 

screen shot after ‘Kitchen’ element has been dragged and dropped on second argument 

of the function and hence the argument has been replaced by ‘Kitchen’. Different 

colours (in this case Green) can be specified according to user’s preference through the 

provided UI and dragged to the condition expression. Similarly, a colour can be defined 

if the condition expression was not satisfied by dragging the colour to “Otherwise” 

element. The value provided by the condition will be then assigned to the element of the 

target (in this case tree node's colour) as depicted by arrows in Figure 5.33.  

 

 

Figure 5.33 Using conditions to map 2D room notation to room node notation of a structure chart. 
Arrows depict drag and drop direction. 
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To have complete transformation, two more rules need to be specified. First, the rule to 

transform floor plans in CAD design to floor nodes in the tree structure, and second, the 

rule to transform the CAD design to tree building. Elements inside notations for these 

rules are in one to one relation with each other. These rules can be specified by dragging 

and dropping their notations and their internal elements. Figures 5.34 and 5.35 show the 

creation of these rules accordingly.   

The defined rules are depicted by the frame work using the concrete representation of 

the respective source and target notations that they transform. Figure 5.36 presents the 

concrete representation of these three rules. As stated before, since our approach uses 

the reverse engineered abstraction of the source and target visualisations, the two 

visualisations do not have to represent same data. For example in this case study, CAD 

design is representing a Green Building design while the tree structure is for a city 

council building. 

 

 

Figure 5.34 Defining a transformation rule for transforming a floor plan in 2D CAD building to a floor 
node in tree-based layout. 
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Figure 5.35 Defining a transformation rule for transforming a 2D CAD building to a tree-based layout. 

 

 

Figure 5.36 Concrete representation of three rules required to transform a 2D CAD building to a tree-
based layout. 
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Once the required rules are defined, transformation script for this transformation can be 

generated. Applying this script to source CAD visualisations will transform the data 

represented by them to visualisation of the tree-based layout target. For example, 

applying the full transformation script on the source in this case study, will result in the 

visualisation of Figure 5.37. 

 

 

Figure 5.37 Resulting tree structure chart. 

 

 

5.4 Summary 

This chapter provided our approach in using concrete visualisations for model 

transformation specification. Concrete visual notations and their internal elements are 

dragged and dropped to generate transformation rules. From these visually specified 

transformation rules, transformation scripts are generated to transform source 

visualisation to target visualisations. Where possible the reverse direction is also 

generated automatically.  

This chapter provided series of case studies to show applicability of our transformation 

approach for multiple domains. These case studies mostly used the visualisations 

generated in chapter 4 as source or target model visualisations.  
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Chapter 6 

Correspondence Recommender 
 

 

 

 

 

 

6.1 Introduction 

Finding correspondences between source and target model elements for specification of 

transformation rules can be a challenging task. This can especially affect novice users 

more than experts. Even with incorporation of concrete visualisations, finding model 

element correspondences can get hard in large scale and more complex models.  

This chapter describes our approach to providing guidance and support to 

transformation users in the form of correspondence recommendations. These 

recommendations are targeted to both novice and expert users. It helps novices explore 

possible correspondences and learn how source and target models can be linked. On the 

other hand, it supports experts in spotting correspondences for large models and 

visualisations, and helps them save time by selecting correspondences from suggested 

recommendations instead of drag and dropping visual notations. In summary, research 

question RQ3 and its following sub-questions are being addressed in this chapter:  

3. How can interactive guidance be provided to users of model transformation 
systems? 
3.1. In what form should guidance be provided to users of model transformation? 
3.2. What is the best technique to generate acceptable recommendations? 
3.3. How can users best interact with recommendations? 
3.4. How can user response be used and integrated into the guidance mechanism? 
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6.2 Correspondence recommender (“Suggester”) 

Our approach to support users provides recommendations on possible and likely 

correspondences between source and target that can help create transformation rules. To 

achieve automated support for correspondences, an automated recommender system (a 

“Suggester”) is designed that analyses input examples and user interaction in order to 

recommend possible correspondences between models and their sub-structures.  

The main task of a recommender system in general is to provide guidance to users for 

choosing among multiple options [123]. Although this guidance hints do not have to be 

correct all the time, better correctness will result in more user trust in the recommender 

system [165]. Correctness is commonly measured with precision and recall metrics. 

These metrics consider the proportion of correct or incorrect metrics over a set of 

recommendations [161]. However, due to multi-dimension nature of recommender 

systems their accuracy should be measured according to application domain and their 

intended tasks [162].  

For example, consider a recommender system that recommends set of commands to 

users of an Integrated Development Environment (IDE) to improve their efficiency 

[166]. If the recommended commands are the ones that the user is already aware of, 

although very accurate according to precision and recall, they will not improve user’s 

productivity. As a result, producing correct recommendations that are already known to 

users will gradually cause users to ignore it over time [167]. This factor (referred to as 

novelty) is usually measured by what proportion of the recommendations the user has 

already used or selected before, against the newly recommended items, and as a result 

directly affects accuracy. According to the application of recommender system, other 

dimensions to consider for their evaluation may include diversity, coverage, utility, 

serendipity, trustworthiness, learning rate, and robustness [162]. 

Among the three types of recommender systems (content-based, collaborative filtering 

and the hybrid) we have adopted the content-based approach for the design of our 

recommender system. Content-based recommenders prepare recommendations based on 

available data and information of items [134]. Content based recommenders would 

provide better applicability in off-line applications and would adapt to new models and 

contents faster than collaborative filtering approaches [168].  
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Previous research on design of recommender systems has shown how combination of 

recommendations resulting from different approaches can benefit the overall accuracy 

and acceptance of the recommendations [169]. Over thirteen thousand teams 

participated in Netflix competition to design a movie recommender that could improve 

an existing system [170]. The winner however, was the approach that combined the 

results returned by a group of recommender models that were not good-enough as 

stand-alone recommenders. It was shown that this combination allows recommenders to 

complement each other and produce better results [169]. 

The Suggester system introduced in this thesis, uses a mixture of content based 

recommenders and ensemble learning techniques [163]. The architecture of this system 

is outlined in Figure 6.1. The recommendations provided by the Suggester system 

include parent or child correspondences and can be used directly to develop 

transformation rules or used as guidelines to create final transformation artefacts.  

 

 

Figure 6.1 Architecture of "Suggester" system. 

 

The content-based approach of this system allows a combination of information 

retrieval techniques to be used for analysing input model contents and identify 

similarities. Similarity scores provided by a collection of recommenders are used to 

produce final list of recommendations. Each of these recommenders uses a predefined 

similarity heuristic and analyses source and target model examples and ranks element 
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pairs by similarity scores. Next section describes how these scores are calculated 

individually and combined to achieve final recommendation list and hence our approach 

to answering research question 3.2 on generation of acceptable recommendations. 

 

6.2.1 Calculating recommendations  

To better demonstrate the application of correspondence recommender, Figures 6.2 and 

6.3 show a simplified UML class diagram example and XML representation of Java 

code, and examples of their visualisations. Correspondences between these examples 

are shown by red lines in figures. As can be seen from figures, given that these example 

models were larger, finding correspondences would become a very hard task even for 

experts. 

 

 

Figure 6.2 Sample correspondences between UML class diagram example XML and Java code XML. 
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Figure 6.3 Sample correspondences between UML class diagram example visualisation and visualisation 
of Java code. 

 

The ensemble learning adopted in this thesis research uses a set of similarity heuristics. 

These heuristics analyse source and target model examples according to a predefined 

similarity function. Table 6.1 provides a list of correspondence recommenders used in 

Suggester system. These similarity functions range from static analysis of name tags 

and values to structural and propagated similarities. The result of these heuristics’ 

analyses is returned to the system as a set of similarity matrices. These matrices are then 

used in an ensemble learning to finalise the similarity and calculate the 

recommendations. 

Design of the Suggester system allows adding more recommenders using provided 

component interfaces. Therefore, if need be to have other recommenders with different 

similarity function, they can be added to the system as extensions.  
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Table 6.1 Correspondence recommenders used in Suggester system 

Correspondence 
recommender Similarity heuristic 

Static similarity 
 

Value similarity: Similarity of the element values 
Name similarity: String matching similarity of element 
name tags 
Type similarity: Similarity of element types 

Structural similarity 
 
 

Neighbourhood similarity: Based on similarity of 
Neighbours of an element 
Graph similarity: Based on similarity of graph structure 
at element 

Propagated similarity IsoRank similarity: Similarity based on recursive 
analysis of neighbouring elements. 

 
 

Early experiments with Suggester system revealed that due to the range of similarity 

heuristics and their similarity calculation overhead, the analysis of the actual source and 

target model examples would become costly and not efficient for large models. 

Therefore, instead of analysing actual source and target model examples, similarity 

functions are applied on the reverse engineered abstraction. This abstraction already 

preserves the structural constructs and name tags, and presents a good candidate for 

similarity calculation. With regards to smaller examples however, applying similarity 

recommenders on actual examples or their abstraction does not provide significant 

difference in terms of calculation time or recommender accuracy.  

The similarity recommenders used in our Suggester system are described in following 

sections. 

 

6.2.1.1 Static similarity recommenders 

Static similarity recommenders judge similarity of source and target model constructs 

by comparing pairwise similarity of their elements. These recommenders are name tag 

similarity, value similarity and type similarity. The adaptation of these similarity 

functions is inspired by previous research [42], [46], [126].  
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Name tag similarity checks pairs of name tags of elements in source and target model 

examples. It incorporates a string matching technique that gives higher scores to 

“exactly similar” items than “somehow similar” items. It checks whether the name tags 

of both source and target match and assigns one score to each value being embedded in 

the other and one score if the values are exact matches. 

 

Example 6.1 Consider UML class diagram and Java source code XML examples 

of Figure 6.4. Classes in the class diagram are defined by “CDClass” name tag 

and classes in the Java code are defined by “class” tag, since the tag of UML 

class includes Java class tag, name tag similarity suggester assigns score of one 

to the pair. UML class has an “access” element construct and Java class also has 

an “access”, the suggester gives this pair a score of three since the name tag of 

UML class’s “access” tag is included in the Java class’s “access” and vice versa 

(which accounts for two). Also since the values are the same, it adds another 

score. This will result in the cumulative score of three for “exactly similar” name 

tag pair “access”. Figure 6.4 shows a selection of these correspondences and 

their scores based on name tag similarity heuristic. 

 

 

  

Figure 6.4 Example correspondences between UML class diagram example XML and Java code XML 
and their calculated score using name tag recommender. 
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Value similarity recommender checks values of model elements in both source and 

target model examples. To enable value similarity checks on reverse engineered 

abstraction, each construct in the abstraction was altered to accommodate the values 

seen in that construct throughout the model examples. Although this alteration had 

effects on size of the abstractions, it allowed more efficient analysis of model values for 

value similarity recommender and thus providing more usable recommendations. Value 

similarity recommender checks all the values that are represented in each construct and 

adds a score for each similar pair it finds. It then applies the total score to the construct 

pairs that possessed these values.  

 

Example 6.2 Assume a UML class diagram’s class example is given as the graph 

of Figure 6.5. This class has two attributes and two operations. One operation of 

this class also includes a parameter. Given this example XML the abstraction 

graph would look like the graph of Figure 6.6.  

 

 

Figure 6.5 Example UML class graph. 

 

 

Figure 6.6 Abstraction graph of the UML class example in Figure 6.5. 
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Example 6.3 Consider a Java code class example’s abstract graph is given as 

Figure 6.7. Assuming value similarity recommender is checking elements inside 

attribute of Java abstraction graph and UML class diagram graph of Figure 6.6 

against each other (see Figure 6.8). Since type element of Java graph has a string 

value, and type element of UML class graph has two string values, it will retune 

with the score of 2 for the two pairs. Similarly, since access elements of both have 

two “public” values there would be four similar pairs and hence score of 4. Note 

that value similarity is not case-sensitive. The rest of elements will return 0. 

 

 

Figure 6.7 Abstraction graph of a Java class. 

 

 

Figure 6.8 Correspondences returned by value similarity suggester and their similarity scores. 

 

The reverse engineered abstraction also provides an estimate of value types for each 

construct. A type similarity recommender analyses these types and accordingly provides 

possible type matches as correspondences. It analyses value types for numerical, string 

and date types and returns score of one if the type of the values inside construct pairs 

are similar and zero otherwise. 
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Example 6.4 Figure 6.9 shows the sub-graphs of Figure 6.8 and the 

correspondences return by type similarity. As is shown in the figure all similar 

types are returned as possible correspondences. 

 

 

Figure 6.9 Correspondences returned by type similarity suggester. 

 

6.2.1.2 Structural similarity recommenders 

Structural similarity recommenders judge similarity according to the structure of 

construct pairs being analysed. These recommenders consider abstractions as graphs 

and include neighbourhood similarity and graph similarity.  

Neighbourhood similarity recommender checks neighbours of each node pairs to see if 

they are similar. If the neighbours of a node 𝑛!  are similar to neighbours of another 

node  𝑛! , then the two nodes are probably similar. To calculate similarity of the 

neighbours, neighbourhood similarity recommender checks the similarity scores 

returned by name tag similarity. It calculates the similarity score by cumulative 

similarity scores of the neighbour pairs as follows:  

 

𝑆𝑐𝑜𝑟𝑒  (!!,!!) =    𝑆𝑖𝑚(  
!  ∈!(!!) 𝑖, 𝑗)  

!  ∈!(!!)      6.1  
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Where 𝑁(𝑛!) is the set of neighbours of node 𝑛! and 𝑁(𝑛!) is the set of neighbours of 

node  𝑛!  . 𝑆𝑖𝑚  (𝑖  , 𝑗) indicates the normalised name tag similarity of nodes i and j. 

Higher values of these scores represent higher similarity.  

Graph similarity considers outgoing and incoming links of node pairs in both source and 

target graphs. Considering 𝑛! to be a node in source graph 𝐺! and 𝑛! to be a node in 

target graph  𝐺!, graph similarity recommender calculates similarity score for node pair 

(𝑛!,𝑛!) using following formula:  

 

𝐼𝑛𝑏𝑜𝑢𝑛𝑑  (!!,!!) =
!"# !!!"   ,      !!!"
!"# !!!"   ,      !!!"

   6.2  

𝑂𝑢𝑡𝑏𝑜𝑢𝑛𝑑  (!!,!!) =
!"# !!!"#   ,      !!!"#
!"# !!!"#   ,      !!!"#

   6.3  

𝑆𝑐𝑜𝑟𝑒  (!!!  !!) =
!"#$%"&'  !  !"#$%"&

!
   6.4  

 

Where 𝑛!!" is the number of in-links and 𝑛!!"# is the number of out-links of node  𝑛!  . 

Same is true for node  𝑛!. This graph similarity returns 1 if the number of in-link and 

out-links of the two nodes in the node pair are similar. 

 

Example 6.2 Consider a UML class diagram and Java code example to have 

graph structures similar to Figure 6.10. Assume the pair to be analysed is the 

UML Attribute – Java Attribute. Analysing this pair using neighbourhood 

similarity recommender, results in similarity score of 10. It is calculated based on 

three exactly similar neighbour pairs (name, type and access) and a neighbour 

pair (class-UMLClass) that is somehow similar. Therefore, the score returned by 

neighbourhood similarity for this pair is 3+3+3+1 = 10. For graph similarity 

recommender, using equations 6.2 and 6.3 we have inbound = 1 and outbound = 
!
!
  = 0.75. Given these values, the score for graph similarity will be calculated as  

!!!.!"
!

  which equals 0.875. 
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Figure 6.10 Sample graph of UML class diagram (A) and Java code (B).  

 

Example 6.3 Using same input as Example 6.2, assume the pair to be analysed is 

the UML Class – Java Class node pair. Neighbourhood similarity recommender 

in this case would return 7 based on two exactly similar neighbour pairs (type-

type, access-access) and a somehow similar neighbourhood pair (name-@name). 

Note that since the name in UML class is an attribute, framework prepends an 

‘@’ character in front of its name to differentiate it from other elements. Graph 

similarity recommender, will return 1 since the number of inbound and outbound 

edges are the same, inbound = 1 and outbound = !
!
  = 1 and score = !!!

!
  which 

equals 1. 

 

6.2.1.3 Propagated similarity recommender 

Propagated similarity also considers input models to be graphs and calculates similarity 

of elements according to recursive analysis of their neighbouring elements. With this 

similarity function, similarity of two nodes in a graph is defined by similarity of their 

neighbourhood topology. As a result, using propagated similarity, two nodes are similar 

if their neighbours are similar and the neighbours of their neighbours are similar and so 

on. 

To calculate correspondence using this similarity, our Suggester system adopts IsoRank 

approach used in biology for alignment of Protein-Protein Interaction (PPI) networks 

[5]. A PPI network is a graph in which each node corresponds to a protein and an edge 

indicates a direct physical interaction between proteins. PPI network alignment is a 
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required step to analyse and understand sequencing of genomes. IsoRank considers a 

protein in a PPI network to be a good match for a protein in another network if their 

respective sequences and neighbourhood topologies are a good match. It seeks two 

objectives to satisfy best network (graph) alignment: 1) maximising the size of common 

graph implied by linking similar proteins, and 2) aggregate sequence similarity between 

nodes linked to each other.  

IsoRank uses similar approach to Google’s PageRank by encoding propagated 

alignment similarity as an eigenvalue problem [171]. To achieve the two objectives, 

IsoRank works in two stages. It first associates a similarity score with each node pair of 

the two graphs using Basic Local Alignment Search Tool (BLAST) similarity [172]. 

Then it constructs the mapping for global network alignment by extracting a set of high 

scoring and mutually consistent matches. 

Our adoption of IsoRank associates similarity scores return by name tag similarity with 

node pairs of the source and target model graphs. It is possible to alter the approach to 

adopt any or combination of other similarity recommenders.  

Let 𝑅!" be the IsoRank similarity score for node pair  (𝑖, 𝑗), where 𝑖 is from source graph 

𝐺! and 𝑗 is from target graph  𝐺!. Given the name tag similarity score 𝑆𝑖𝑚  (𝑖  , 𝑗) and the 

source and target graphs 𝐺! and 𝐺!, an eigenvalue problem is constructed and solved to 

calculate the vector 𝑅    of all 𝑅!"    as follows. For all possible node pairs   (𝑖, 𝑗) a similarity 

score of their respective neighbours should be computed recursively. Therefore, 

Equation 6.5 should hold for all possible node pairs. Where 𝑁(𝑖) is the set of 

neighbours of node 𝑖, 𝑁(𝑗) is the set of neighbours of node 𝑗, 𝑉! is the set of vertexes of 

graph 𝐺! and  𝑉! is vertexes of target graph  𝐺!. Considering edge weights, the score 

propagated to each node is in proportion to edge weights in Equation 6.6 where 𝑤 𝑖, 𝑗  

is the weight of the edge between vertices i and j. Equation 6.5 is special version of 6.6 

where are weights are equal to one. 

𝑅!" =   
!

! ! |  ! ! |
  𝑅!"                      𝑖 ∈ 𝑉!  , 𝑗 ∈   𝑉!!∈!(!)!∈!(!)    6.5  

𝑅!" =   
! !,! !(!,!)
!(!,!)!∈!(!) !(!,!)!∈!(!)

  𝑅!"        𝑖 ∈ 𝑉!  , 𝑗 ∈   𝑉!!∈!(!)!∈!(!)    6.6  
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Example 6.4 This example demonstrates how vector R can be calculated for 

sample graph of Figure 6.11 (this example is adopted from [5]). For example, for 

calculating 𝑅!!′ for node pair (𝑎  ,𝑎!)    , since node b is neighbour of a, and node 

b’ is neighbour of b, 𝑅!!′ should be considered. Since b and b’ each have 2 

neighbours, 𝑅!!′ will be calculate according to !
!∗!

 proportion of 𝑅!!′ which 

equals  !
!
 . Calculation of R for other pairs will continue accordingly. 

 

 

Figure 6.11 Calculating IsoRank similarity for sample graphs [5].  

 

To calculate 𝑅   a doubly indexed matrix 𝐴   is adopted from Equation 6.5 using the 

matrix form provided by Equation 6.7.  𝐴  is a 𝑉! 𝑉! × 𝑉! |𝑉!|    matrix and can get large 

depending on the size of input model abstraction graph.  

 

𝑅 = 𝐴𝑅  ,        where   6.7  

𝐴 𝑖, 𝑗 𝑢, 𝑣 =   
1

𝑁 𝑢 |𝑁 𝑣 |     𝑖𝑓   𝑖,𝑢 ∈ 𝐸!, (𝑗, 𝑣) ∈ 𝐸!

0                                                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

Where 𝐸! is the neighbourhood matrix of graph 𝐺! and  𝐸! is the neighbourhood matrix 

of target graph  𝐺!. 𝐴  is a stochastic matrix (i.e. each of its columns sum to 1), therefore 
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its principal eigenvalue is 1. The principal eigenvector of 𝐴  is the vector 𝑅  and its values 

define possible source model to target model correspondences. This vector is then 

analysed and returned to m*n matrix format to be considered as a similarity matrix for 

source and target model abstractions. 

 

6.2.2 Suggester system ensemble  

Each recommender returns a similarity matrix containing normalised calculated scores 

of the source-target pairs. Size of these matrices depends on the size of input model 

abstractions and is identical for all recommenders. To generate final list of 

recommendations, the returned similarity scores of recommenders need to be analysed 

and summed up.  

Using classifier ensembles and composing a final data classification based on a 

collection of weak classifiers has been previously practiced in machine learning and 

data mining applications [163], [173], [174]. Classifier ensembles and boosting 

application are based on a collection of weak classifiers that are rated using a training 

set. This rating is then used when preparing final classifier. These approaches have been 

practiced for recommender systems as well [121], [175], [176].  

The approach adopted here to calculate final recommendation list is inspired by 

classifier ensembles. Each recommender calculates a similarity matrix. Similarity 

matrices are normalised and sent to Suggester system. Suggester calculates final 

similarity based on the confidence scores assigned to each recommender. Similarity 

scores returned by recommenders are multiplied by their confidence score. The resulted 

scores are summed up in a final similarity matrix. The final similarity matrix is the basis 

for calculation of recommended correspondences.  

Unlike most classifier ensembles, the rating or confidence scores are not calculated 

using predefined training sets. Instead, the scores are assigned (and updated) by 

continuous user evaluation of the recommender system. If a user accepts a 

recommendation, the recommender(s) that came-up with that recommendation get 

promoted. This promotion is achieved by increasing the confidence associated to those 

recommenders. The feedback analyser subsystem of the Suggester looks in similarity 
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matrices returned by recommenders to identify awarding recommender(s). If otherwise 

the user rejects a suggested correspondence, the feedback system penalises responsible 

recommender(s) accordingly by reducing the associated confidence weight.  

 

 

Figure 6.12 Abstraction graph examples of two citation formats. 

 

 

Example 6.4 Assume abstractions of two citation index formats are given as 

Figure 6.12.Format A is the source and is to be transformed to format B. Given 

that format A has five elements and format B has seven elements, their similarity 

matrix would be a 5×7 matrix. The normalized similarity scores returned by 

recommenders for this example source and target are calculated as matrices M1 

to M6.  
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bibtex:article 0 0 0 0 0 0 0 

bibtex:author 0 0 0.51 0 0 0 0 

bibtex:title 0 0 0 0.17 0 0 0 

bibtex:year 0 0 0 0 0 0 0.17 

bibtex:journal 0 0 0 0 0.17 0 0 
M1: Value similarity suggester results 
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bibtex:article 0 0 0 0 0 0 0 

bibtex:author 0 0 0.333 0 0 0 0 

bibtex:title 0 0 0 0.333 0 0 0 

bibtex:year 0 0 0 0 0 0 0.333 

bibtex:journal 0 0 0 0 0 0 0 
M2: Name similarity Suggester results 
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bibtex:article 0.333 0.333 0 0 0 0.333 0 

bibtex:author 0 0 0 0 0 0 0 

bibtex:title 0 0 0 0 0 0 0 

bibtex:year 0 0 0 0 0 0 0 

bibtex:journal 0 0 0 0 0 0 0 
M3: Neighbourhood similarity Suggester results 
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bibtex:article 0.038 0.023 0.019 0.019 0.019 0.023 0.019 

bibtex:author 0.019 0.019 0.038 0.038 0.038 0.019 0.038 

bibtex:title 0.019 0.019 0.038 0.038 0.038 0.019 0.038 

bibtex:year 0.019 0.019 0.038 0.038 0.038 0.019 0.038 

bibtex:journal 0.019 0.019 0.038 0.038 0.038 0.019 0.038 
M4: Graph similarity Suggester results 
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bibtex:article 0 0 0 0 0 0 0 

bibtex:author 0 0 0.1 0.1 0.1 0 0 

bibtex:title 0 0 0.1 0.1 0.1 0 0 

bibtex:year 0 0 0 0 0 0 0.1 

bibtex:journal 0 0 0.1 0.1 0.1 0 0 
M5: Type similarity Suggester results 
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bibtex:article 0.103 0.103 0.003 0.007 0.007 0.103 0.003 

bibtex:author 0.014 0.003 0.173 0.003 0.003 0.003 0.006 

bibtex:title 0.014 0.003 0.006 0.169 0.003 0.003 0.006 

bibtex:year 0.014 0.003 0.006 0.003 0.003 0.003 0.173 

bibtex:journal 0.014 0.003 0.006 0.003 0.003 0.003 0.006 
M6: IsoRank similarity Suggester results 

 



 
183 

 

Assuming all confidence scores are one, the final similarity matrix will be 

calculated based on sum of the values similar to matrix MF. Returned 

correspondence recommendations are highlighted in the matrix.  
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bibtex:article 0.474 0.459 0.022 0.026 0.026 0.459 0.022 

bibtex:author 0.033 0.022 1.154 0.141 0.141 0.022 0.044 

bibtex:title 0.033 0.022 0.144 0.81 0.141 0.022 0.044 

bibtex:year 0.033 0.022 0.044 0.041 0.041 0.022 0.814 

bibtex:journal 0.033 0.022 0.144 0.141 0.311 0.022 0.044 
MF: Value similarity suggester results 

 

Depending on the application and user preference, it is possible to select how many 

recommendations to be presented to users per pair in the suggestion list. By default only 

one recommendation per pair is provided. These are calculated using stable marriage 

algorithm and are optimised to provide best overall recommendation list [177]. For 

instance in Example 6.4, bibtex:article-authors pair with score of 0.459 has not been 

selected while the pair bibtex:journal-periodical with score of 0.311 has been selected as 

a recommended correspondence. This is due to the fact that stable marriage algorithm 

assigns bibtex:article to record which shows the highest score for bibtex:article element 

and ignores the rest of the pairs involving this element. In case more than one 

recommendation per pair is desired, users can alter Suggester system preferences 

accordingly.  

The following section provides our approach to representing these recommendations to 

users and hence our response to research question 3.3. 
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6.2.3 Recommendation representation 

The recommendations provided by our Suggester system are presented to users by 

default using a list of recommendations that can be accepted or rejected. A sample of 

this list is provided by Figure 6.13. These recommendations are provided for both 

model-to-visualisation and visualisation-to-visualisation steps and are considered as an 

alternative for drag and drop of notations.  

 

 

Figure 6.13 Sample recommendation list.  

 

A recommendation session is started by each recommendation list update. For example 

loading a source and a target visualisation triggers a recommendation list update. Or 

dropping a notation on the designer canvas in the visualisation procedure also triggers a 

recommendation list update.  

Accepting or rejecting recommendations will disable their selection button to prevent 

users from selecting a recommendation multiple times in a recommendation sessions. 

Figure 6.14 shows the result of accepting and rejecting some recommendations of 

Figure 6.13. In this example the recommendation for class diagram’s Access has been 

rejected and the recommendation for UML attribute has been accepted. 

 

 

Figure 6.14 Result of accepting and rejecting recommendations.  
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To provide users with more useful recommenders, we have adopted the Guide and Filter 

mechanism proposed by Hernández del Olmo and Gaudioso [178]. In their proposal, a 

Guide provides answer to when and how each recommendation must be shown to the 

user, while the Filter must answer which of the items are useful/interesting candidates to 

become recommended items. A schematic view of this approach is shown in Figure 

6.15.  

 

 

Figure 6.15 Guide and Filter system for representing correspondence recommendations.  

 

Once all recommendations are available, our ensemble configuration filters the 

recommendation list by the stable marriage algorithm [177]. This will result in a 

selection of recommendations that possess the highest overall recommendation score 

per pair. The filtered results are then sent to guide system for representation. The Guide 

system chooses among recommendations according to the task that the user is about to 

perform, e.g. when user provides source and target visualisation to perform mappings, 

the Guide system first represents the recommendations that will result in transformation 

rules (i.e. parent correspondences) . That is because a rule must be defined first, and its 

internal rule correspondences are to be defined later (i.e. child correspondences). Figure 

6.16 provides an example where the parent correspondence recommendations are 

represented for a Class diagram to Java code example.  
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Figure 6.16 Example of recommendations that result in transformation rules for UML class diagram to 
Java code mapping. 

 

If user accepts a recommendation from these recommendations (or alternatively 

performs a drag and drop of notations), the Guide system will update the list of 

recommendations to represent possible child correspondences which can be specified 

according to source and target model constructs of the selected parent correspondence. 

For example Figure 6.17 shows the result of accepting recommendation for UML 

attribute to Java field. As can be seen, the recommendation list has been updated to 

reflect internal correspondences of the two visual notations. 
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Figure 6.17 Updated list of recommendations after selecting a parent correspondence.  

 

The guide and filter configuration will help users find targeted recommendations and 

reduce the amount of time spent on exploring long recommendation lists. 

 

 

6.3 Summary 

This chapter described our Suggester system which is designed to guide users in finding 

possible and likely correspondences between source and target models. A group of 

similarity recommenders check source and target examples and prepare a list of 

recommendations. The similarity heuristics used in these recommenders range from 

static value similarity to structural similarity. Each recommender provides a similarity 

matrix to the suggester system and the system uses an ensemble mechanism to calculate 

final recommendation list. 
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Users can use the provided recommendations as guidance or select them to define 

model transformation correspondences. It is possible to select or reject any 

recommendation provided in the list. By selecting or rejecting these recommendations a 

feedback analyser updates the Suggester system to improve its learning and 

recommendation capability.  
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Chapter 7 

Tool support: Concrete visual assisted transformation 
(CONVErT)  
 

 

 

 

 

7.1 Introduction 

This chapter describes tool support and a proof of concept prototype of our approach, 

called Concrete visual assisted transformation (CONVErT). CONVErT provides 

facilities for specification and use of familiar concrete visualisations of source and 

target models. With CONVErT, users can specify complex model element mappings 

between concrete visual notational elements using interactive drag-and-drop and 

reusable, spread sheet-like mapping formulae.  

This chapter specifically provides our answer to the fourth research question on whether 

the approach presented by this thesis can be implemented in a usable, scalable and user 

friendly tool. The following sections describe CONVErT’s Architecture, 

Implementation, User Interface (UI), and key design features.  

 

7.2 Overview of CONVErT 

This section provides an overview on key components of CONVErT. These 

components are Reverse engineering, Transformation code generator, Correspondence 

recommender (Suggester), Visual notations, and Renderer. Figure 7.1 shows these 

components and how they are inter-related.  
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Reverse engineering component provides automatic generation of abstractions from 

model examples. These abstractions are then used for calculation of recommendations 

in the Suggester system and as transformation templates. Transformation code generator 

uses these abstractions and set of correspondences to generate transformation scripts.  

The Suggester component uses the abstractions and model data to recommend possible 

correspondences between source and target model examples to users. It uses set of 

similarity heuristics to calculate the similarity of elements in source and target model 

examples.   

Visual notations are the centre piece of visualisations and enable user interaction (drag 

and drop). Each visual notation embeds a model data and a controller transformation. 

Using this model data and the controller the notation’s view can be generated. The 

Renderer component provides a mechanism for rendering visualisations using the 

controller transformation of notations. It can also render full visualisations by checking 

the visualisation input files against available notations in the notation repository. The 

following paragraphs are dedicated to describing these components in more details.  

 

 

Figure 7.1 Components of CONVErT. 
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The reverse engineering and model abstraction mechanism of CONVErT (Figure 7.1 

(1)) uses a graph lattice as meta-model and for transformation rule templates. The 

abstraction graph is also used for transformation rule scheduling. Once source and target 

examples are provided, a visitor pattern creates an empty graph lattice. It then traverses 

the examples and fills the lattice with new element structures that it faces. This way the 

structure of source and target are known to the system. Each transformation rule 

template (Figure 7.1 (2)) will be initially created from such structure retrieved from the 

data part of the element being dragged or dropped. During transformation script 

generation for transforming source visualisation to target visualisation, the 

transformation code generator checks for the position of each rule's source structure in 

the abstraction to identify transformation rules to be called first. 

Concrete model representation in CONVErT uses Model View Controller architecture 

[2]. Each notation has a view created and provided by XAML. A model data is provided 

as an XML that describes internal elements of that notation. The controller in this 

configuration is a transformation that transforms notation's model XML to the view's 

XAML.  

Since the generated concrete visual notations need to provide interaction (drag and 

drop) capabilities and host transformation templates, the Renderer mechanism of 

CONVErT (Figure 7.1 (4)) wraps each notation in interaction logic provided by an 

instance of a Visual Element (VE) class. A VE provides a container for the notations 

and other VEs and is implemented using XAML and C#. This architecture allows our 

framework to let users interact with composing elements of a model visualisation 

regardless of the embedding hierarchy of the notation. 

Analysing large input models and visualisations is costly for the Suggester system. 

Therefore, it uses abstract lattices as input to calculate similarities. Suggester uses a 

group of mapping correspondence recommenders (Figure 7.1 (3)) that analyse these 

abstractions according to a similarity heuristic. Then the resulting similar source and 

target elements of each recommender are returned to the Suggester as possible 

correspondences. A confidence score is associated with each correspondence 

recommender. Based on the scores given to the recommended correspondences and the 

confidence weight of the recommenders, a final score is calculated for each 



 
192 
 

recommended correspondence. Suggester selects from the recommendations and 

prepares a recommendation list. If users select from the recommended correspondences 

or reject them, a feedback analyser updates the confidence weights associated with the 

recommenders and thus improves Suggester’s learning mechanism. 

The transformation code generator in CONVErT (Figure 7.1 (5)) works with the 

transformation templates embedded in each notation. These templates are initially 

defined by reverse engineering notation’s model data. Code generator uses 

correspondences defined by dragging and dropping of elements to this notation and its 

internal elements, and forms correspondence snippets that will be inserted in the 

template. Then once the template is filled with these snippets, the transformation code 

generator creates a full XSLT template and transformation rule. Using these 

transformation rules, the transformation code generator generates a complete model 

transformation specification in XSLT. 

Since the transformation code generator is based on the templates, it is possible to 

generate transformation code for alternative transformation languages. To do so, 

additional transformation code generator components can be integrated to CONVErT to 

parse these templates to desired transformation scripts. 

In the following sections we describe elements of CONVErT in more detail including 

its User Interface, how transformations and recommendations are generated, and details 

of the visualisation and rendering. 

 

 

7.3 CONVErT’s User Interface   

This section provides an overview of CONVErT’s UI. This has been divided into three 

parts: 1) Visualiser, for specifying correspondences between model elements and 

predefined visual notations. 2) Mapper, which provides facilities for transformation 

generation between visualisations, and 3) Notation designer (Skin++), which allows 

users to define and add new visual notations. In the following sub sections, these parts 

are described in more detail. 
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7.3.1 Visualiser 

The approach presented in this thesis for model transformation uses concrete 

visualisations of source and target models. The specification of these concrete 

visualisations needs to be done in the framework and can be reused for multiple model 

examples. This visualisation specification requires users to drag and drop elements of 

their model examples to provided visual notation in the frame work to generate model-

to-visualisation mappings. These model-to-visualisation mapping notations are then 

composed to generate full visualisation specifications and the model to visualisation 

transformations. Examples of this procedure are provided and discussed previously in 

Chapter 4. This section describes the facilities provided in CONVErT framework 

(Visualiser) to enable this visualisation approach.  

Visualiser in CONVErT allows users to view multiple input models in a default tree-

like representation (Figure 7.2(1)). These inputs could be CSV or XML files. Once 

these models are loaded, CONVErT generates their tree view representation. This is to 

allow use of interaction with each element or value of the input examples. 

The predefined visual notations are provided in a separate panel (Figure 7.2(2)). These 

notations can be dragged and dropped on the designer canvas (Figure 7.2(3)). The 

required elements of the input model can then be dragged and dropped on them or onto 

their internal elements. Notations’ model elements are accessible via a popup window 

which list internal elements according to notation’s model. This popup provides 

elements by showing the name of corresponding model element. This is somewhat a 

limitation as these names may not be unique or not provide an easy to understand 

specifier. In an ideal implementation, element would be dropped on actual graphics of 

notations. For example in bar chart visualisation, one could drag the name of their input 

model to the actual label representing the name of a bar chart. The popup approach 

however was chosen due to simpler implementation.  

Mapping functions are available to be used at this stage for specifying more complex 

model-to-visual notation correspondences and are provided in a separate panel (see 

Figure 7.4(9)). These functions and conditions can also be dropped on visualisation 

designer canvas and are used similar to notations. In example of Figure 7.2, a visual 

notation for a building tree structure and an “IF” condition are dropped on visual 
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notation designer canvas. Elements of input model can be dragged and dropped on the 

notation to start a transformation rule template. Internal elements of notations, functions 

and conditions can be accessed by right clicking on them. Elements of input model can 

then be mapped to these internal elements by drag and drop. In example of Figure 7.2(3) 

a right click has been performed on the condition and its internal elements are provided 

as a result (“arg1”, “arg2”, “arg1 = arg2”, and “otherwise”). These internal elements 

constitute arguments and condition expressions of the condition. Elements of input 

model can be dragged and dropped on these values and expression to specify the values 

that should be passed when this condition is true or otherwise false.  

 

 

Figure 7.2 Using CONVErT’s visualiser UI for mapping input model elements to visual notations. 1) 
Input model, 2) Predefined notation, 3) Designer canvas, 4) Recommendations, 5) Status panel. 

 

Once a notation is dropped on the designer canvas, CONVErT’s suggester analyses its 

underlying model and the input model being selected by user and provides a list of 

recommended correspondences (Figure 7.2(4)). Users can interact with these 

recommendations using accept and reject buttons provided beside each recommendation 

item. For example, to define a customised notation for input models and thus a model-
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to-visual notation transformation rule, users can drag and drop elements from input 

model tree to the notation on the designer canvas, or select from suggested 

correspondences.  

An alternative to this recommendation representation would be to highlight 

recommendations on the notations as the user hovers mouse pointer on model elements 

in the tree visualisation. However, the intractable list metaphor was preferred since it 

provided better separation of concerns between recommendation mechanism of the 

approach (Suggester) and the visualisation. This way to represent recommendations, the 

framework does not need to traverse visual notations’ visual tree to find corresponding 

elements of the recommended items in their visual representation. 

An interactive status bar has been designed in CONVErT that shows the status of the 

system and provides feedback to users if the tasks are being performed correctly or if an 

error is made (Figure 7.2(5)). These status reports are provided with appropriate icons to 

report or alert users of any problems associated with the task being performed.  

Similarly, interactions of users with visualiser are recorded by the Logs panel in Figure 

7.3(8). These logs can be used to keep track of user interaction and system automated 

tasks. For example if an element is dropped on model element of a notation, the status 

bar shows whether the task has been accomplished and an event will be logged. To keep 

track of these drag and drops, users can check the provided logs. These logs provide a 

history of user performed and automated tasks and work similarly for all notations, 

functions and conditions. When requesting to generate transformation code for the 

composition, if any errors or exception is occurred, they will be shown in the working 

status bar and logged. Upon completion of transformation code generation, the 

completion of the task will be logged as well.  

Once the user defines correspondences between input model elements and the notation, 

saving the customised notation will result in the notation being added to notation 

repository. CONVErT monitors this repository and provides its containing notations in 

“Designed Visual Elements” panel (Figure 7.3(6)) for later (re)use. For example 

customised visual notations previously generated for bar chart area, bars, troops 

movement, map, Java code and UML class diagram can be seen in Figure 7.3(6).   
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Figure 7.3 Using CONVErT’s visualiser UI for composing visual notations. 6) Customised notations’ 
panel, 7) Notation composition Canvas, 8) Usage logs. 

 

To compose notations, a specialised composition canvas is provided (Figure 7.3(7)). 

The defined customised notations can be dragged and dropped on this canvas and linked 

according to their placeholder elements to create a complete visualisation and model-to-

visualisation transformation. In example of Figure 7.3, required customised visual 

notations for generating a tree visualisation of building structure example are being 

composed. This composition will result in scheduling of the transformation rules 

embedded in the notations and a complete transformation script to transform the input 

model used in defining customised notation to the tree structure visualisation. Examples 

of these compositions and their visualisation results were provided in Chapter 4.   
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Figure 7.4 CONVErT’s visual functions and conditions panel (9) and visualiser renderer (10). 

 

The resulted model-to-visual transformation will be applied on the input model. The 

resulting visualisation will be automatically rendered in the visualisation rendering 

panel. Figure 7.4(10) demonstrates the rendering panel and the resulted visualisation of 

the composition of Figure 7.3. Users can also use this panel to view previously 

generated visualisations. 

 

 

7.3.2 Mapper  

A significant contribution of this thesis is on using concrete visualisations to generate 

transformation between source and target models. This way, users can view and specify 

correspondences using the more familiar concrete visualisations of their example 

models.  

As discussed previously in Chapter 5, our approach enables generation of forward and 

(if possible) reverse transformation rules by drag and dropping visual elements of 

source and target visualisations. Low level model transformation scripts are then 
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generated from these drag and drop interactions. This section describes use of 

CONVErT’s Mapper for generating these transformations.  

Mapper window in CONVErT provides facilities for generating transformations 

between visualisations. It embeds two visualisation renderer panels that allow viewing 

source and target visualisations side by side (Figure 7.5 (1) and (2)). Once source and 

target model visualisations are loaded, their notations and internal notation elements can 

be dragged and dropped to create visual notation-to-visual notation transformation rules. 

For example, in Figure 7.5 UML class diagram is loaded as source and the target is Java 

code visualisation. Elements of this UML class diagram can be dragged and dropped on 

visual notations of the Java code. 

 

 

Figure 7.5 CONVErT’s mapper UI. 1) Source visualisation, 2) Target visualisation, 3) Highlighting 
elements, 4) Functions and conditions, 5) Recommendations and 6) Status panel. 

 

CONVErT facilitates a highlighting mechanism to guide users on choosing the intended 

notation to drop on. When a source notation is being dragged on top of target 

visualisation, this highlighting mechanism highlights the element under mouse cursor. 



 
199 

 

An example of highlighting a Java class is provided in Figure 7.5(3). In this example a 

UML class diagram notation is being dragged (dragging element is not shown) on top of 

a Java class notation. As a result, the Java class notation is highlighted in red.   

Having source and target visualisations loaded, CONVErT’s suggester provides the list 

of recommended correspondences. In example of Figure 7.5 the suggester is 

recommending mapping correspondences between UML class diagram and Java code 

(Figure 7.5(5)). When a source notation is dropped on a target notation, this 

recommendation list is automatically updated to represent the correspondence 

recommendation related to those notations. For example, when a UML class is dropped 

on a Java class, the list will be updated to show the internal correspondences of UML 

class and Java class (see Figure 7.6(10)).  

Similar to visualiser, mapping functions and conditions are also available in mapper 

window (Figure 7.5(4) and 7.6(4)). These functions are dragged and dropped on the 

provided canvas to be used for specifying more complex model transformation 

correspondences. In case more complex rules are to be specified, the default notation 

views of both source and target notations will be automatically rendered in rule designer 

panel when source notation is dropped on target notation (see Figure 7.6(7))). This rule 

designer canvas allows definition and use of constant values, strings, functions and 

conditions. For example if name of an UML class is to be altered by adding a “_Class” 

string to its name, a merging function can be used (Figure 7.6(9)). The name of the 

UML class will be dropped on first argument of the function and the “_Class” can be 

provided using the available value specification UI (Figure 7.6(8)). The defined 

“_Class” can be dragged and dropped on second argument of the function and the 

function output will be dragged and dropped on name element of Java code. 
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Figure 7.6 CONVErT’s rule designer. 4) Functions and conditions, 7) Rule designer canvas, 8) Panel for 
adding values, 9) A merge function, 10) Updated recommendations, 11) Rule designer status. 

 

Mapper also features a status bar for reflecting system status (see Figure 7.5(6)) and 

logs panel to log user interaction (see Figure 7.7(13)). This log works similar to 

visualiser’s log and records users’ interaction with the system and automated tasks.  

A dedicated panel has been provided in Mapper UI to display the transformation rule 

currently being created (Figure 7.6(11)). This panel helps users identify the source to 

target rule being created and whether the rule has been saved or not. For example in 

Figure 7.6, the rule being created is for transforming a UML class to Java class notation 

(Figure 7.6(11)). Once the rule is saved, this status bar will be cleared.  

If user drag and drops a notation of source visualisation to a notation in target 

visualisation, underlying model of the notations are used for generation of a visual 

representation for the resulting rule. Since notations in our approach include the 

controller transformation for transforming their model to their view representation, it is 

possible to regenerate their view at any time using the embedded controller 

transformation. As a result, once a transformation rule is saved, a visual representation 

of the rule can be generated using underlying model of source and target notations and 
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their controller transformations. These visual rules will be placed on “Mapping Rules” 

panel and will depict the source and target notations corresponding to that rule. For 

example, Figure 7.7(12) demonstrates a transformation rule for transforming UML class 

to Java class. Note that the values provided to these rule notation representations are 

provided by their default models, therefore regardless of which UML class or Java class 

notation is used for rule generation, the representation is always the same. For example 

in Figure 7.7(12) the default UML class diagram notation has “name” for its class name 

and is a public class. Similarly Java class notation is a public class and has “className” 

as its default name.  

 

 

Figure 7.7 CONVErT’s UI for visual representation of transformation rules (12) and 13) User logs. 

 

7.3.3 Notation designer (Skin++) 

To increase applicability of our approach, it should be possible to define new notations 

depending on application domain of the models being used for transformation and the 

required visualisations. As a result, notation designer or Skin++ provides facilities to 

define, alter and add notations to CONVErT.  
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As previously described (Chapter 4) notations in CONVErT provide a model, a view 

and a controller transformation to generate view from the model. Views in our 

implementation are generated using Extensible Application Markup Language (XAML) 

[179]. XAML is a declarative mark-up language based on XML and is used for 

designing UIs and visual applications. Since XAML is XML-based, it is a suitable 

option for integrating visualisations in various tools and to be used in model 

transformations generated by XSLT. Visualisations generated by XAML are renderable 

in most browsers like Internet Explorer and Mozilla Firefox. This gives CONVErT the 

capability of exporting generated visualisations across different platforms.  

To generate notations, CONVErT provides a separate UI for users to define new visual 

notations and save them in notation repository for reuse. This UI (called Skin Designer) 

allows importing graphical XAML views and provides facilities to render and edit them. 

Figure 7.8 shows an example where a XAML view for a bar to be used in bar chart 

visualisation is imported to Skin designer (Figure 7.8(2)). The designer provides 

rendering of the imported View in a separate UI compartment (Figure 7.8(3)). Users can 

alter the imported XAML view and see the results accordingly. 

According to the desired visualisation, provided visual notation views are linked to 

model data to generate complete notations. A data XML should be specified to 

represent the data part of the visual notation. For example, Figure 7.8(4) shows the data 

provided for a bar’s notation. It includes a name, a value and a colour. The data XML 

can be imported or generated from scratch in the provided section of the UI.  
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Figure 7.8 Notation designer user interface, 1) Name of the new notation, 2) Input XAML view, 3) 
Rendering of the input XAML, 4) Model data, 5) Status panel. 

 

The provided data is mapped to the view using a controller transformation. To link data 

to the view, an annotation script is designed to specify one-to-one and one-to-many 

mapping correspondences between data and the view. These mapping correspondences 

are specified by “linkto” and “callfor” annotations accordingly. The same panel used to 

load and edit XAML, is used to annotate the view. Figure 7.9(6) shows an example 

where a user is specifying annotations for linking elements of a bar’s data model to the 

provided bar’s view. 

Once annotations are specified, a controller transformation code is generated that 

transforms the values provided by the data to the XAML view (Figure 7.9(7)). Using 

this controller transformation, the resulting notation is generated and rendered in 

notation panel (Figure 7.9(8)). Saving a notation generated here will automatically 

insert it to the notation repository. For example, in Figure 7.9 the new bar’s notation 
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will be inserted in the notation repository and can be used to generate bar chart 

visualisation. 

 

 

Figure 7.9 Using notation designer UI to annotate input view, 6) Annotated view 7) Controller 
transformation, and 8) Generated notation. 

 

 

7.4 Implementation  

To implement CONVErT, Microsoft Visual Studio was chosen as the implementation 

framework and IDE since it provides seamless integration of XAML graphics. As a 

result, the graphics used for notation design and visualisations could be natively 

designed, rendered and altered. Also, Visual Studio generally provides good backward 

compatibility which helps the implementations and the project to still be runnable and 

maintainable over the course of time. 
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Given that visual studio is not a freely available IDE, our decision was to implement 

CONVErT as a standalone application rather than an IDE integrated application. This 

would allow users to use CONVErT as a desktop application without the need to have 

visual studio installed.  

CONVErT’s code has been implemented using C# and latest available versions of .Net 

framework (version 4.5). This decision was partly due to availability of the required 

expertise, and partly due to use of XAML graphics. XAML graphics can be controlled 

nicely with the code behind written in C# or Visual Basic (VB). As a result, the layout 

controls of the graphics could be easily implemented using the programming language 

of the framework.  

The technologies used for implementation of CONVErT are focused on Microsoft 

Windows operating system and there are certain concerns with regards to cross platform 

execution of the toolset, i.e. the tool cannot be executed on Macintosh or Linux based 

operating systems. Although it is possible to use CONVErT using virtual application 

environments, we are investigating possibilities for implementing a lighter version of 

the toolset as web based application where users can work with the tool using their 

browsers. Web based and possible mobile versions of the tool are parts of our future 

work.   

Following sections briefly describe implementation of user interfaces, visual rendering 

mechanism, abstraction, Suggester and transformation subsystems. 

 

7.4.1 User interface design 

Components of CONVErT’s UI are implemented in Microsoft Visual Studio and are 

designed in Windows Presentation Foundation (WPF). WPF allows implementation of 

UI using the simple XML-based representation of XAML and is natively available as 

part of the visual studio. Using WPF the logic behind each element of the UI like 

windows, menus, or interactions is separately implemented by C# code. Therefore, it 

provides a good separation of concerns between elements of the UI and the subsystems 

and components of the tool.  
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For example, when users request transformation code to be generated, the implemented 

C# code behind the pressed menu button will call the appropriate code generation 

components. Or when users drop a visual notation on a visual designer, the code behind 

the UI will call the Suggester system and passes the notation’s model and the loaded 

input model to the Suggester.  

Special considerations were made to make different windows of CONVErT’s UI 

consistent. For example the menus of all three parts of CONVErT provide only two 

categories designated by File and Tools. Tasks like loading models and visualisations, 

or importing XAML are grouped under File menu. Specific tasks related to each 

window is grouped under Tools menu. For example, saving a customised notation or 

generating a transformation code based on a set of composed notations are provided in 

Tools menu of visualiser, while the tools menu of Mapper has dedicated buttons for 

saving a mapping rule, generating transformation between visualisations or clearing 

defined rules.  

 

7.4.2 Visual Rendering  

The rendering of visual elements in CONVErT reuses the controller transformation of 

notations available in notation repository. Its components are depicted in Figure 7.10. 

When a visualisation is to be rendered, convert checks the visualisation file against the 

controllers of the notations in the notation repository. It uses a visitor pattern to search 

the visualisation file for constructs similar to data part of notations’ MVC where those 

controller transformations could be applied. Controller of the matching notations will be 

returned by this visitor.  

From retrieved controller transformations, the renderer generates a transformation script 

to transform the file to be visualised to XAML representations. Transformation engine 

of CONVErT then executes this transformation code on input file and renders the result 

on visualisation canvas.  
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Figure 7.10 Components of renderer subsystem. 

 
Example 7.3 Assume a file to be visualised is given similar to Figure 7.11. 

Renderer’s visitor checks the notations available in the repository and finds two 

notations with similar models as Figure 7.12a and 7.12b. Figures 7.12c and 7.12d 

show the model parts of these notations accordingly. 

 

 

  Figure 7.11 Sample visualisation file to be rendered by Renderer. 
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Figure 7.12 Example of notations retrieved from notation repository. a) Horizontal bar, b) Horizontal bar 

chart, c) Horizontal bar’s model, and d) Horizontal bar chart’s model. 

 
Once the visitor completes checking of the input visualisations file, the returned 

controller transformations are treated as transformation rules and a 

transformation script is generated from those rules. These notation controllers 

are called declaratively since appropriate call to other rules are already specified 

in the controllers during notation design phase (recall Chapter 4 where the 

“linkto” and “callFor” annotations were used to generate controller 

transformations for notations). The result of the final transformation script would 

be the rendered visualisation similar to Figure 7.13.  

 

 

  Figure 7.13 Final rendered visualisation.  

 

Renderer’s visualisation capability is limited to the notations available in the notation 

repository. Also, if duplicated notations with different controllers are available in 

repository, the rendering might not result in the desired visualisations. As a result, 

CONVErT provides facilities for importing and exporting notations into notation 
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repository. The generated notations available in the repository can be exported in an 

importable format, i.e. the defined new notations will be saved in XML files and can be 

imported at later time. This will allow users to be able to expand and control visual 

rendering capability. The exported XML files include model data and the controller 

transformation of each notation. Once imported, CONVErT uses the controller 

transformation on provided default model data to generate the default visual 

representation of the notation in repository.   

 

7.4.3 Abstraction 

The Abstraction subsystem of CONVErT uses a graph lattice to keep structural 

information of input models and data. Its components are depicted in Figure 7.14. It 

uses a visitor which traverses input model or data and sends graph constructs (nodes, 

links) to the abstraction system. The abstraction checks these constructs in a graph 

lattice. The elements returned by the visitor get added to the lattice if constructs similar 

to them has not been added previously. Each graph node of this lattice has a collection 

for keeping values seen in that element position of the model. These collections are used 

by value similarity recommender of the Suggester subsystem for calculating value 

similarity score. Also, through use of a type checker, Abstraction updates the type of the 

visited graph nodes of the input file. These types will be used in type similarity 

recommender. 

 

 

Figure 7.14 Components of CONVErT’s abstraction subsystem. 

 
Example 7.2 Assume the input model is similar to Figure 7.15. The visitor of 

abstraction subsystem traverses the input file and records every structural 
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construct it faces. These constructs will look like the graph of Figure 7.16. Note 

that the first “Sales” element in the example does not include an “Amount” 

element, but since the visitor checks all elements of the input file it has provided 

the structure in its position in the abstraction. Also the reverse engineered types 

and the values retrieved from the input are provided in the abstraction graph. 

 

 

Figure 7.15 Example input model representing Sales elements. 

 

 

Figure 7.16 Abstraction graph of input file in Figure 7.15. 

 

7.4.4 Suggester System  

The implementation of Suggester system follows an ensemble learning strategy. Figure 

7.17 shows the components of this system. Each correspondence recommender 

considers source and target inputs as graphs and calculates the similarities of pairwise 

elements using defined similarity heuristics. The results of these calculations are then 

normalised and returned to Suggester as a similarity matrix.  
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Figure 7.17 Components of Suggester system. 

 

Suggester maintains a set of confidence values for the recommenders. These confidence 

values are initially set to 1. Based on the feedback collected from users in terms of 

accepting or rejecting recommended correspondences, the Suggester updates these 

weights to increase or decrease confidence. These confidence values are then multiplied 

to the similarity matrices. The resulting similarity values are summed up to calculate the 

final similarity matrix of pairwise element correspondences.   

An option is provided to users to limit or increase the number of suggestions presented 

to users per pair. By default Suggester returns only one recommendation per pair. It 

considers the stable marriage approach to return only the one option that results in better 

overall recommendation list [177]. Users can modify this option to return the desired 

number of recommendations per pair.  

Each suggestion is presented to users with a reject or accept button. Hitting accept 

button not only updates the weights of the recommenders that came up with the 

recommendation, it also sends the correspondence to the control unit of the active 

window. This control unit checks the task that was being performed and the returned 

recommendation. If for instance the task is to map input model to visual notations in the 
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Visualiser, the control unit looks to see whether it can find the source and target 

elements of the selected correspondence in the source input and target visual notation’s 

model. It then applies the correspondence accordingly.  

Spotting correspondences in the visualisations for mapping from a source visualisation 

to a target visualisation was a challenging task due to complexity of some visualisations 

in XAML. As a result, we have modified the Renderer to always return a list of visual 

elements that are available in each visualisation as well. With this list the controller unit 

in mapper can simply look for the source and target of a correspondence in the list 

rather that the visual tree of the visualisation, and apply the correspondence accordingly.  

 

7.4.5 Transformation  

The transformation subsystem of CONVErT is depicted by Figure 7.18. Transformation 

engine used in CONVErT is the embedded transformation engine of Microsoft Visual 

Studio. It is currently limited to XSLT version 1.0. However, this limitation has not 

affected the applicability of the approach since the transformation code generator is 

tuned for generating XSLT 1.0 transformation scripts. 

 

 

Figure 7.18 Components of CONVErT’s transformation subsystem. 

 

The transformation code generator uses the transformation templates embedded and 

defined in notations to generate XSLT code scripts. Once defined, these templates are 

available in template repository (Figure 7.18(3)). Depending on where the 
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transformation code is being generated (in visualiser or mapper), this template 

repository could be provided by customised notations, or mapping rules. Code generator 

reads these templates and depending on correspondences specified inside each template, 

generates required value fetches or function codes.  

 

Example 7.3 Assume the transformation template specified in a customised 

notation is similar to Figure 7.19. It describes a transformation template for 

transforming sales elements to bar’s visual notation.   

  

 

Figure 7.19 Transformation rule template for transforming a sales record to bar notation. 

 

Once users drag and drop elements, system inserts the address of the elements 

being dragged and dropped into forward and reverse templates accordingly. The 

transformation template of Figure 7.19 is the result of interactions shown in 

Figure 7.20. 

 

Transform Sales to { 
    BarNode 
    Internal model: 
    { 
        Map @Region To BarNode.Name 
        Function1 Add  Amount1  and  Amount2  -> put results in 
Output1 
        Map Output To BarNode.Value 
    } 
} 
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Figure 7.20 Defining the transformation between sales element and bar’s notation. Arrows depict drag 
and drop. 

 
By requesting to generate transformation scripts, the code generator reads the 

templates and generates the transformation script. For example the 

transformation script generated from template of Figure 7.19 is shown in Figure 

7.21.  A collection of these transformation scripts are used to generate final 

transformation code. The transformation code will be used in the transformation 

engine. In this case, the XSLT transformation engine of Visual Studio runs the 

generated XSLT transformation code. 
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Figure 7.21 Resulting transformation code. 

 

Since templates are the bases for transformation code generation, it is possible to 

provide alternative transformation language support, for example ATL. To do so, code 

generator components can be integrated to CONVErT to generate scripts from 

transformation templates similar to our XSLT code generator.  

 

 

7.5 Usage scenarios 

This section provides two usage scenarios in the form of Sequence Diagrams to show 

how user interaction with CONVErT’s UI affects the internal components. Two major 

scenarios are described. The First scenario is where a user is generating a transformation 

rule to transform portion of input model to a visual notation. The Second scenario is 

when a user is defining a transformation rule between notations of two visualisations. 

The first scenario is depicted by Figure 7.22. In this figure, Lars (as a MDE user) has 

loaded an input file representing a class diagram and has dropped a UML class notation 
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on the designer canvas. Given this situation, the visualisation window creates an 

instance of the notation and initiates Suggester system to provide list of correspondence 

recommendations. The corresponding sequence diagram for this scenario is depicted in 

Figure 7.23. This sequence diagram shows how visualiser window creates an instance 

of the visual notation and triggers Suggester for recommendations.  

 

 

Figure 7.22 Transformation generation between a portion of input model and a visual notation. 

 

Lars’s first task is to drag and drop an element of the input model to be visualised on the 

notation to define which portion of the input model is to be transformed. An alternative 

is to select the same element from provided recommendation list. Lars can accept or 

reject recommendations. If he chooses from recommendations, the visualiser triggers 

Suggester to promote correspondence recommenders. Optional rejection of 

recommendations at each point will also trigger Suggester to update confidence weights 

of correspondence recommenders. 
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Figure 7.23 Usage scenario of creating a transformation rule between portion of input model and a visual 
notation. 

 

Once the element to be visualised is specified to the system (by drag and drop or 

selecting from recommendations), transformation templates inside each visual element 

are created based on abstraction of the dragging element and the abstraction of the 

notation’s data. The Suggester also updates the recommendation list accordingly to 

provide element specific recommendations.  

At this point, Lars would select and define internal element correspondences with drag 

and drop or selecting from recommendations. Once all internal correspondences are 

defined, saving the notation will put the customised notation in notation repository for 
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future (re)use. This customised notation carries the required transformation templates to 

perform this model to visual notation transformation task. The transformation script 

from this notation however will be generated once Lars requests the transformation 

code to be generated. Note that if he makes a mistake during drag and drops, he can 

perform the drag and drop again to overwrite the previously specified correspondence. 

Once notation is saved, editing the customised notation is not possible that is a 

limitation of current version of the framework. 

Figure 7.24 depicts the second scenario for specifying a transformation rule between 

notations of source and target visualisations. For this scenario, Lars has loaded source 

and target visualisations in Mapper window. Figure 7.24 shows the UML class diagram 

as source visualisation and Java code as the target.  

Loading source and target visualisations will trigger the Suggester to provide a list of 

likely correspondences. The corresponding sequence diagram of this scenario is 

depicted in Figure 7.25.  

 

 

Figure 7.24 Transformation generation between notations scenario. 
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Loading source and target Visualisations results in the mapper window requesting 

Suggester system to update (or provide) recommendation list according to the source 

and target visualisations. Similar to the first scenario, Lars can choose the notation to be 

transformed from recommendations list or drag and drop the notations on each other. 

This will trigger initiation of transformation templates inside both notations and a 

request will be sent to Suggester to update recommendation list accordingly if a 

recommendation has been selected. Both forward and reverse transformation templates 

are triggered as a result of this interaction.  
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Figure 7.25 Usage scenario of creating a transformation rule between source and target notations. 

 

Similar to previous scenario, Lars specifies internal correspondences by drag and 

dropping internal elements or selecting from recommendation list. Selecting or optional 
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rejecting of recommendations in the list will send a request to the Suggester to update 

confidence weights.  

Once Lars has finished defining internal correspondences, he can save the 

transformation rule generated as a result of his interactions. Saving the rule will put the 

generated rule in the transformation rule repository. Visual representation of this 

transformation rule will be provided in the Mapping Rules section which is the 

reflection of this transformation rule in repository. Again a complete transformation 

script from these templates will be generated upon receiving a request for generating the 

transformation script. 

 

 

7.6 Summary 

This chapter described concrete visual assisted transformation (CONVErT) framework. 

CONVErT is the proof of concept tool for realisation of our approach presented by this 

thesis. It provides facilities for specifying correspondences on concrete and familiar 

visualisations of source and target models. It reverse engineers required abstraction 

from model examples and provides recommendations for possible source and target 

correspondences.  

CONVErT is implemented in Microsoft Visual Studio and with C#. The visualisations 

and notation views benefit WPF and XAML, natively available in Visual Studio. 

Although current version facilitates XML and CSV as default formats for input models 

and examples, and uses XSLT as the transformation language of choice, the 

implementation can be extended to use alternative formats and transformation 

languages.  
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Chapter 8 

Evaluation 
 

 

 

 

 

 

8.1 Introduction 

This chapter describes several evaluations of our CONVErT approach and toolset. The 

evaluation strategies adopted for this research consist of: 

• A comparative study of tool support features; 

• Quantitative evaluation of the Suggester mechanism and transformation code 
quality; and 

• A user study of the tool’s usability and functionality.  

Comparative analysis was chosen in order to compare features and capability of the 

approach against other available approaches and toolsets, both research and commercial. 

It involves analysis of user modelling and interaction issues, and feature sets of the 

various toolsets. The comparison study also provides a list of features available in 

current approaches and toolsets, and that available in our approach and realised in our 

CONVErT prototype toolset. Among available toolsets, the approach provided in 

ALTOVA MapForce was the most comparable to the work embodied in this thesis [47]. 

Therefore, our detailed comparison uses MapForce as an alternative toolset to our 

CONVErT.  

The use of quantitative analysis was targeted to evaluate the recommenders of 

CONVErT’s Suggester system, by using a group of quantitative measures (e.g. 
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precision, recall and f-measure). This quantitative analysis also includes analysis of the 

quality of the generated transformation code using a set of code quality attributes and 

metrics.  

The user study was designed to assesses a typical user’s experience with the proof of 

concept tool implementation of CONVErT. It captures the users’ perspective of the 

approach, the design and detailed visualisation and model mapping specification, and 

tool interaction issues. The following sections provide details of these three separate yet 

complimentary evaluations. 

 

 

8.2 Comparative Study 

This section provides a comparative study of our approach against a set of available 

transformation approaches discussed previously in Chapter 2. This comparison is 

divided into three parts. First, the most commonly used transformation languages are 

compared against the transformation specification language embodied in CONVErT. 

Second, available transformation tools are briefly compared to our CONVErT toolset. 

And finally, a discussion is provided to compare CONVErT and the commercial 

ALTOVA MapForce tool, which provides the most comprehensive comparison of 

current state-of-the-art commercial data mapping approaches and our novel approach.  

Table 8.1 summarises how the transformation language of CONVErT compares to the 

most commonly used model transformation languages. In terms of technical space and 

the visualisation capability, CONVErT is not limited to a specific technical space. 

Instead, a variety of technical spaces can be visualised in CONVErT and used for 

transformation generation. However, since their visualisations need to be generated 

first, we have shown this option as partial support. Indeed if the visualisations are 

generated once, they can be reused many times. 

Transformations in CONVErT are performed on visual notations. These visual notations 

may represent any technical space or be represented in a wide variety of shapes and 

formats. Correspondences are specified using drag and drop of these notational 
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elements and therefore no textual or graph-based coding is required. In terms of 

specification syntax, CONVErT is the only approach that provides visual specification 

for transformation generation that is not limited to textual coding or specific 

visualisations. Mapping functions, also expressed visually and added and linked by 

drag-and-drop metaphor, provide higher level complex model mapping and 

transformation constructs. 

 

Table 8.1 Comparison of most used transformation languages and CONVErT’s language.  indicates 
support, (+) shows partial support and – shows no support. 

Transformation 
language 

comparison 
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Specification Syntax 
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Graph 
Visualisation 
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Input Artefact Syntax 
Abstract  
Concrete 
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- 

 
 

- 
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Rule application control   
Imperative 
Declarative 
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Transformation Scenario 
Vertical transformation 
Horizontal transformation 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Transformation Engineering 
Exogenous  
Endogenous 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Support for directionality 
Unidirectional 
Bidirectional 
Multidirectional 
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- 

 
 

- 
- 

 
 

- 
- 

 
 

(+) 
- 

 
 

- 
- 

 
 

- 
- 

 
 

(+) 
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Input models in CONVErT are at the concrete representation level. No abstraction is 

required for input examples and users can generate visualisations and transformations 

using their example models. Consequently, CONVErT is the only approach that allows 

input artefacts to be at concrete visual representation level. All other approaches require 

some form of meta-model or abstracted meta-model from model instance elements. 

Similar to most approaches, CONVErT provides both imperative and declarative rule 

application control. The transformation of models to visualisations follows an 

imperative approach while transformation between visualisations uses a declarative 

approach. However, since the user has no control over which approach to choose at each 

step, we have indicated support for Imperative and declarative rule application control 

as partial in Table 8.1. We should note here that in design of CONVErT, out intentions 

were to provide a proof of concept prototype and therefore we have not included 

alternatives. Inclusion of alternative rule application controls or technical space is 

therefore part of our future work.  

Visualisations of source and target models can be at any abstraction level. For example, 

source and target could be UML class diagram and Java code, or a UML 1.0 compatible 

and a UML 2.0 compatible class diagrams. As a result our CONVErT approach 

supports both vertical and horizontal transformations. 

Similar to transformation scenarios, exogenous and endogenous transformations can be 

both implemented in CONVErT with regards to transformation engineering. For 

example, if there is a need to refactor a class diagram to remove a construct, it can be 

easily done using source and target visualisations. If the resulting target does not 

introduce new visualisation constructs, the exact same visualisation specification can be 

used for both source and target inputs. 

Bijective correspondences, i.e. when elements of source and target represent one-to-one 

correspondence relations, are defined bidirectionally in CONVErT. As a result 

CONVErT tends to support bidirectional transformations. For non-bijective 

transformation correspondences (for example one-to-many, many-to-one and many-to-

many correspondences), the reverse direction is not guaranteed. An example is vertical 

transformation in which information may need to be added or removed. As a result, 



 
225 

 

CONVErT provides partial support for bidirectionality. Given that a capable 

transformation language is used in the transformation code generator, it is also possible 

to generate multidirectional transformations.  

For the second part of our comparison, Table 8.2 provides a comparison of the tooling 

aspect of CONVErT against other available transformation tools. It summarises how 

this tooling aspect of CONVErT compares with previously realised transformation 

tools.  

Table 8.2 Comparison of model transformation tools and CONVErT.  indicates support, (+) shows 
partial support and – shows no support. 

Tool comparison 
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CONVErT’s application domain is not limited to a specific domain, instead it can be 

used for varieties of domains provided that the visualisations for those domains are 

specified in CONVErT. Therefore, Table 8.2 demonstrates all application domains to be 

partially supported by CONVErT. Similar to the languages aspect of CONVErT in 

Table 8.1, Specification syntax is based on model visualisations and the input artefact 

syntax is a concrete representation.  

In terms of transformation cardinality, one-to-one transformations are specified by 

simple drag and drop. One-to-many and many-to-many transformations can be specified 

using transformation functions. Functions can be added, removed, altered according to 

the desired transformation specific tasks, again using drag-and-drop. New, complex 

transformation functions can be defined visually from simpler functions and 

parameterised, then reused by drag-and-drop.  

CONVErT provides a very high level, highly interactive transformation specification 

approach through use of visualisations and drag and drop. It also helps users decide and 

explore which correspondences are possible. For example, when a notation is dropped 

on another notation, CONVErT tries to recommend correspondences according to 

internal elements of those notations. As a result, it provides an interactive approach for 

transformation specification. 

User support in CONVErT provides both an interactive guidance mechanism 

(implemented as “Suggester”) and use of familiar, concrete model visualisations. 

Accordingly, these options have been selected as having full support in Table 8.2. 

To provide a more in-depth comparison of our approach’s features, we have selected 

ALTOVA MapForce as the most comparable tool to CONVErT. This selection has been 

based on the availability of the toolsets and the fact that MapForce is the only toolset 

that also fully provides correspondence specification using an interactive, drag and drop 

approach. 

Figure 8.1 provides a screen capture of MapForce. It shows an example of EDI message 

mapping being implemented. Elements of the source and target are visualised by default 

using a tree-based representation (marked by 1 in Figure 8.1). To generate mapping, 
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these elements can be mapped using drag and drop. Similar to CONVErT, functions can 

be used and defined. For example a NAND function is marked by 2 in Figure 8.1. 

To be able to generate a mapping between source and target input files, users need to 

provide these files to the toolset. If schemas are available, they should be provided. 

Otherwise, MapForce will try and reverse engineer a suitable schema from provided 

input examples. 

 

 

Figure 8.1 Screen capture of ALTOVA MapForce. 1) Default tree-based representations, 2) Using a 
NAND function. 

 

Given that MapForce is an industry standard tool, it provides data importers from a 

wide variety of sources, e.g. database and Excel files. Also it generates mapping 

specification code in XSLT, XQuery, C#, C++ and Java to make it a more widely 

acceptable transformation and mapping tool for its target users.  

MapForce allows text files to be used as source or target of the transformation. 

However, text support is limited to structured files, e.g. Comma Separated, and does not 

provide mapping between models and source code. It also provides mappings only in 

one direction. Although mappings of a reverse direction can be generated as a separate 
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transformation, our CONVErT approach does provide limited support for generating the 

reverse directions, where possible, while the forward transformation is being specified. 

The biggest difference between MapForce and CONVErT’s approach is in the way 

source and target are visually represented. Figures 8.2 and 8.3 show example of class 

diagram and Java XML input being used for transformation specification in CONVErT 

and MapForce respectively. As can be seen in these figures, our CONVErT approach is 

very flexible in terms of its use of visualisations and can provide drag and drop 

capabilities on notational elements as opposed to the fixed tree-based visualisation of 

MapForce. 

 

 

Figure 8.2 Mapping class diagram example to Java code visualisation example in CONVErT. 
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Figure 8.3 Representation of class diagram example and Java code example in MapForce. 

 
Since mapping generation is done on schema elements rather than actual example 

elements, MapForce provides the reverse engineered schema as the source and target 

elements. The elements of the reverse engineered schema of both source and target are 

represented in the tree-based visualisation as depicted in Figure 8.3. Thus while 

CONVErT uses provided model instance example data in its visualisation, MapForce 

uses the provided or reverse-engineered schema elements. 

Another distinctive difference between MapForce and CONVErT is in their 

representation of transformation rules and mappings. For example, the generated 

mapping rules for transforming UML class diagram to Java visualisation in CONVErT 

are marked by 1 in Figure 8.4. Similarly, the correspondences specified on examples of 

Figure 8.3 in MapForce are depicted in Figure 8.5. 
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Figure 8.4 Generated transformation rules for transforming UML class diagram to Java visualisation in 
CONVErT. Transformation rules are marked by 1. 

 

 

Figure 8.5 Correspondence specification between UML class diagram example and Java code example in 
MapForce. Mapping correspondences are marked by 1. 

 

As can be seen in the figures, CONVErT follows a more procedural approach to 

specifying transformation rules and correspondences, i.e. a transformation script is 
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generated from a set of related transformation rules. These transformation rules are 

individually visualised and represented using source and target notation visualisations. 

Therefore, we claim that it is easier to define, explore and maintain transformations (this 

is tested in our user evaluation described below). In MapForce however, all 

correspondences are represented on the schemas using mapping lines. For larger 

examples, finding correspondences and maintenance becomes a challenging task. If 

functions are to be used, then the situation becomes even more complex. In CONVErT 

however, correspondences using functions and conditions are specified in a separate 

window and therefore will not be shown on source and target visualisations. As a result, 

using multiple functions or conditions will not complicate the visualisations.  

CONVErT’s approach will not be so affected by the number of transformation rules or 

correspondences since the defined transformation rules are saved in a separate UI 

compartment (marked by 1 in Figure 8.4). Considering the familiarity of users with the 

models being transformed, the source and target notations used to visualise 

transformation rules provide a good reference to track recently created rules. However, 

there are possible shortcomings for scalability, i.e. if the number of transformation rules 

increases, the list will be longer and users have to scroll down to find already generated 

rules. Also, during our test trials, it was suggested that it would be beneficial to provide 

facilities to highlight notations in the source and target visualisations which represent 

transformation rules, as the user hovers over the defined transformation rules in the list. 

This has been assigned to our future work. 

 When large examples are being used, the Suggester mechanism will also help users 

define and explore various possible correspondences. It recommends correspondences 

that can form both transformation rules and internal rule correspondences. MapForce 

provides a very basic help in this regard, i.e. when an element of source schema is 

mapped to an element on the target, it can automatically map their internal elements that 

represent same name and type. However, it is not capable of providing mappings for 

more complex situations.  

MapForce’s approach to defining correspondences has an advantage over CONVErT’s 

in editing transformations. For example if users mistakenly link a source and target 

element and notice it at the end, they can alter the correspondence by unlinking and 
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linking the correspondence to the correct target element. In CONVErT’s approach 

however, once the rules are defined and saved, they cannot be altered. To alter the 

transformation, new transformation rule should be defined and added and the faulty rule 

should be removed.  

Both tools allow model checking of the resulting targets. MapForce uses the provided 

schema to check the target. CONVErT by default uses the reverse engineered 

abstraction to check the results. If schemas are available, they can be imported to 

CONVErT for model checking. 

MapForce always generates the transformation script as a whole for transforming the 

whole source file to target at once. In CONVErT however, the transformation code is 

generated using the individually defined transformation rule scripts providing a more 

procedural and structured transformation script.   

Table 8.3 summarises the above mentioned comparison between CONVErT and 

ALTOVA MapForce.  

 

 

8.3 Quantitative evaluation 

This section provides a quantitative evaluation of the Suggester system using selection 

of recommender system evaluation metrics, namely precision, recall and F-measure. 

These metrics are calculated based on correspondence recommendations generated for 

transformation examples of bar chart to pie chart, Minard map to pie chart, UML class 

diagram to Java code, CAD visualisation to alternative tree visualisation, and two 

transformation examples of academic citations.    

This section also provides an evaluation of the transformation code generated from our 

approach against the transformation codes of an XSLT expert and that generated by 

ALTOVA MapForce. A set of transformation code quality attributes and metrics are 

used from the literature to examine code quality for two example transformations of 

UML class diagram to Java code and bar chart to pie chart. 
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Table 8.3 Summary comparison of ALTOVA MapForce and CONVErT 

Comparison Summary MapForce [47] CONVErT [80] 

Source and target 
representation Default tree based  Visualisations of both 

models 

Transformation 
specification Using drag and drop 

Using drag and drop, 
Selecting from 
recommendations 

Correspondence 
specification  Using drag and drop 

Using drag and drop, 
Selecting from 
recommendations 

Use of functions 
Drag and drop 
functions and link 
corresponding elements  

Drag and drop 
functions and link 
corresponding elements  

Transformation rule 
representation 

Correspondence lines 
connecting source and 
target elements 

Visual representation 
using source and target 
notations 

User guidance 
Limited, automatically 
mapping same name 
and typed elements 

Recommendations 
provide guidance for 
transformation rules 
and their internal 
correspondences 

Editing transformation Possible Limited, rule has to be 
defined again 

Model checking results Possible Possible 

Transformation script 
design 

As a whole for 
transforming source to 
target 

Procedural, generated 
using collection of 
individual 
transformation rules 

Possible transformation 
scripts  

XSLT, XQuery, C#, 
C++,  Java 

XSLT, other languages 
need additional code 
generator component 

 
 

8.3.1 Suggester evaluation 

This section evaluates the recommender system of CONVErT’s Suggester mechanism 

to partially address research question RQ3.2, on whether acceptable recommendations 

are produced. It should be noted here that the acceptability of recommendations are not 

purely based on their correctness. However, it is customary in research community to 
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evaluate correctness of recommendation systems using series of metrics and against a 

benchmark [162], [167], [180]. 

To perform this evaluation, the recommender system of Suggester was separately 

applied on multiple examples. The Suggester was configured to use all available 

recommenders and a set of evaluation metrics was considered. Selected metrics include 

precision, recall, and f-measure. These metrics are calculated using categorisation of 

recommendations into four distinctive groups. This categorisation is based on relevant 

or irrelevant correspondences being recommended or not recommended. This 

categorisation is depicted by Table 8.4.  

 

Table 8.4 Categories of all possible recommendations. 

 Recommended Not recommended 
Relevant True-Positive (TP) False-Negative (FN) 
Irrelevant False-Positive (FP) True-Negative (TN) 

 
 

Being relevant in this context means that there is a relation between source and target 

item element and therefore, a correspondence exists. An irrelevant recommendation on 

the other hand, is a false correspondence relation. A brief description of each metric is 

provided bellow.  

Precision is defined as the proportion of true positive recommendations against all 

recommended correspondences and is calculated using the following formula:   

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
 

Given this formula, precision is seen as the measure of purity in retrieval performance 

or the measure of effectiveness of the recommender in excluding non-relevant items 

[181]. Recall on the other hand is defined as the proportion of the true positive 

recommendations against all relevant (assumed correct) recommendations and is 

calculated using following formula: 
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𝑅𝑒𝑐𝑎𝑙𝑙 =   
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 

Recall is therefore the number of retrieved relevant items as a proportion of all relevant 

items. In general, higher precision and recall are desirable [181].  

It is often the case that precision and recall are inversely related, i.e. improving 

precision will result in worse recall, and improving recall will also result in worse 

precision. As a result, F-Measure is introduced to capture harmonic mean of the both 

metrics [162], [182]. F-Measure is calculated using following formula:  

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =   2 ∗   
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 

F-Measure tries to capture the behaviour of precision and recall metrics in a single value 

[178]. Accordingly, higher F-Measure indicates higher quality of recommendations.  In 

the following, we describe how these metrics are used to evaluate correctness of the 

recommender used in our Suggester system. 

To evaluate Suggester mechanism, a set of transformation examples was selected. These 

examples include the mapping examples of chapter 5 (bar chart to pie chart, Minard 

map to pie chart, UML class diagram to Java code, and CAD visualisation to alternative 

tree visualisation) and a more complex mapping example of academic citations. For the 

academic citation example, 420 citations were used in two different formats (EndNote 

XML, and DocBook XML) and the suggester was applied on both directions.  

For evaluation purposes, a user-defined benchmark was produced to evaluate the 

recommended correspondences against it. This benchmark included a list of correct 

correspondences between source and target model abstractions. For example, if 

transformation task is to transform a class diagram to Java XML, the benchmark list 

includes class diagram’s class element to Java class’s class element, class diagram’s 

class name to Java class’s name and so on. All correct correspondences between source 

and target elements are considered for the benchmark and the resulting correspondences 

of recommender system in Suggester are compared against this benchmark.    
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Since the motivation of using the Suggester system was to guide users in exploration of 

possible correspondences, certain considerations have been made to allow more 

possibilities to be included in the benchmark. For example, in calculation of relevant 

recommendations in our benchmarks, correct correspondences have been considered 

regardless of being direct or indirect. For instance, consider the example where the type 

of a CAD design’s room defines colour of a tree node element in a tree visualisation. 

Although this correspondence is not a direct correspondence and needs to be performed 

using a condition, recommending room type and node colour as a correspondence does 

represent a correct recommendation. Also if multiple elements of source or target are 

possible to be matched, all possibilities are considered in the benchmark. For example, a 

bar chart’s name, YAxis label, or XAxis label could correctly define the name of a pie 

chart depending on user’s interest. These considerations have impacted the selected 

metrics. For example the former adversely affects precision since Name recommender 

does not consider type and colour to be correct correspondences. The later however, 

allows more possibilities in the benchmark and therefore affects recall accordingly.  

Table 8.5 shows the results calculated for the suggester mechanism using the examples. 

It also provides the time consumed by Suggester to produce the suggestion list (in 

milliseconds) and provides the size of source and target examples being used (in kilo 

bytes).  

 

Table 8.5 Resulted values calculated from the evaluation metrics. 

Example 

Metric 

Example 
size 

(KB) 

Pr
ec

is
io

n 

R
ec

al
l 

F-
M

ea
su

re
 

C
al

cu
la

tio
n 

T
im

e 
(m

. s
ec

.) 

Bar chart – Pie chart 1 0.77 0.87 < 1 1 - 1 
Minard – Pie chart 0.85 0.66 0.75 1.01 9 - 1 
CAD design – Tree 0.77 0.77 0.77 < 1 2 - 2 

Class diagram – Java 1 0.84 0.91 < 1 3 - 3 
DocBook – EndNote 0.46 0.5 0.48 37.52 313 - 661 
EndNote – DocBook 0.38 0.55 0.45 43.83 661 - 313 
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Based on Table 8.5, apart from citation mapping example, our Suggester has performed 

acceptable (more than 0.85) for the majority of first four examples with regards to 

precision (1, 0.85, 0.77 and 1 respectively).  This indicates that the majority of true 

recommendations have been produced. With regards to recall, the calculated results for 

the four examples are less acceptable (0.77, 0.66, 0.77, 0.84). However, the calculated 

F-Measure indicates good overall acceptance range (0.87, 0.75, 0.77 and 0.91).  

The models used for this evaluation each have example-specific naming convention, 

typing, structure and sizes. As a consequence, the returned recommendations of the 

system have resulted in different evaluation results for the examples. Given that the 

Suggester was used for a prolonged period on similar examples, its learning mechanism 

would improve its recommendation accuracy. However, as mentioned before, this was 

not the intention of this evaluation and the first encounter of the Suggester with the 

testing examples was considered. 

The resulted precision, recall and F-Measure for the two larger examples are 

significantly less than other examples (0.46, 0.38 and 0.5, 0.55 and 0.48, 0.45 

accordingly). As a result, we conclude that our research question 3.2 on generating 

acceptable recommendations is satisfied partially. However, continues use of 

recommender on similar examples improved the recommender performance, but as 

stated above, the purpose of this evaluation was to check recommender’s performance 

on its first encounter with the examples. We have put evaluation of possible 

performance tuning approaches and experimenting with large examples as part of our 

future work. 

The relatively poor performance of the Suggester for citation mapping problem is due to 

extensively different structural and name conventions used for both citation formats. 

This structural difference is also reflected in the size of two formats given the same 

amount of citations (313KB vs. 661KB). For example, the “authors” field of the 

DocBook format has separate fields for first name and last name of the authors. The 

EndNote format however, uses a single field for author names. Our specified 

benchmark uses author name to first name, author name to last name, and author name 

to author field as possible accepted correspondences. Samples of these examples can be 

seen in Appendix 6. Given that the Suggester system provides only one suggestion per 
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pair by default, lots of such multi possibilities are not considered. This has resulted in 

lower number of true-positive choices and higher number of false-negatives and 

consecutively lower precision and recall.  

In terms of calculation time, for smaller examples (like bar chart to pie chart example) 

full recommendation list is prepared almost real time. For larger examples (like the 

citation examples) the calculation time increases as example size is becoming larger. 

For example in citation mapping example, it took Suggester system 37.52 milliseconds 

to produce recommendation list for DocBook format to EndNote and 43.83 

milliseconds for the reverse. These times were measured based on using a PC with dual 

core CPU and 3 gigabytes of RAM. 

The combination of recommenders being used in our Suggester mechanism is very 

much dependant on the accuracy of name similarity recommender since it has been used 

in neighbourhood similarity and IsoRank as the seeding similarity measure. It has a 

direct effect on accuracy of recommendations when source and target examples do not 

represent similar element names. An example is the citation mapping example above.  

Also, the combination of recommenders can be altered according to the examples being 

used. For example if the examples do not represent the same underlying data, the value 

recommender can be disabled to prevent it from producing a large number of outlier 

recommendations. It is possible to alter value similarity recommender to look for non-

trivial values only like Boolean, dates, IDs, etc. Another alternative is to use filtering or 

chain of recommenders, i.e. use the recommendations returned by a set of 

recommenders (e.g. name and structure) and apply other recommenders (e.g. value 

similarity recommender) on the results returned by these recommenders.  

If prior knowledge or a benchmark for the examples is available, users can alter the 

seeding similarity or the combination of recommendations to match their needs. It is 

also possible to train Suggester mechanism for certain examples by using optimisation 

techniques. For example, it is easy to calculate which combination of recommenders 

provides better results for certain examples if their respective benchmark is available.   

It is worth mentioning here that the Suggester system updates its recommendations 

according to the tasks that user is performing to produce a more interactive mapping 
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support environment. For example when user is mapping a bar to a pie piece of the pie 

chart, it updates the recommendations list to reflect recommendations according to the 

internal elements of bar and the pie piece. This evaluation was based on the 

recommendations list produced for the whole visualisation examples and smaller 

samples are not considered. Also if the suggester is being used continuously by users for 

similar examples, it updates it weights to produce more acceptable recommendations. 

For this evaluation, we have tried to reflect the case where the Suggester is being used 

for the first time for examples and have reset the weights to defaults for each calculation 

(default weight is 1). Indeed given more time and use this would increase the accuracy 

of recommended correspondences.  

 

 

8.3.2 Transformation code quality 

To have an assessment of quality of the automatically generated transformation code in 

CONVErT, this section provides a quantitative comparison of CONVErT’s 

transformation script against transformation scripts generated by an XSLT expert and 

ALTOVA MapForce. From the six transformation examples of previous section, two 

examples of transforming UML class to Java and bar chart to pie chart were selected for 

this comparison. This selection is based on similarity of the source and target model 

examples in terms of their structural complexity to other examples and availability of 

their visualisations in CONVErT.  

We asked an XSLT expert with more than three years experience using XSLT 

transformations to write two XSLT scripts for transforming example UML class 

diagrams to Java and example bar charts to pie chart. These transformation scripts were 

then compared with the automated XSLT transformation code generated by CONVErT 

and ALTOVA MapForce.   

To evaluate the generated transformation codes, we have adopted a set of quality 

attributes and metrics proposed by van Amstel et al. [6]. In total, they introduced eight 

quality attributes. A brief description of these quality attributes and metrics is provided 

bellow: 
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• Understandability: The amount of effort required to understand a model 
transformation. 

• Modifiability: Whether a model transformation can be adopted to possess 
different or additional functionality. 

• Reusability: Whether (a part of) model transformation can be reused as-is by 
other model transformations. 

• Reuse: Whether a model transformation reuses parts of other model 
transformations. 

• Modularity: Is a model transformation systematically structured? 
• Completeness: Is a model transformation fully developed and does it result in a 

complete target? 
• Consistency: Does model transformation include conflicting information? 
• Conciseness: Whether a model transformation does not include superfluous 

information like code clones. 
 

The metrics provided by van Amstel et al. for evaluating these quality attributes are 

grouped into four categories of Size, Function, Module and Consistency [6]. However, 

those metrics were designed primarily for ASF+SDF transformation language and had 

functional languages in mind. Although XSLT can be considered as a functional 

transformation language, certain metrics proposed by van Amstel et al. do not apply to 

our context here and we had to make adjustments for the metrics. For example, 

transformations in ASF+SDF are defined in form of functions and modules. The 

functions refer to algebraic function in the context of ASF+SDF and not transformations 

functions as defined in this thesis; whereas the transformations in our context are 

defined in form of correspondences and rules. As a result, function metrics defined in 

van Amstel et al. are not applicable to our context. Also, due to nature of our tested 

transformation examples, certain metrics were not applicable. For example, size of 

domain specific and domain independent parts, or number of code clones. As a 

consequence, the metrics evaluating consistency and conciseness quality attributes were 

not included in our comparison.  

Similarly, the metrics we have included in our comparison do not have effects on 

completeness of model transformations. This is due to the fact that ASF+SDF 

guarantees syntax-safety, i.e. every syntactically correct source model is transformed 

into a syntactically correct target model. Van Amstel et al. had defined metrics to ensure 

this quality attribute is satisfied. In our comparison, to check completeness of 

transformation is satisfied, we check the resulted target of each model transformation 
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script individually and imported them to CONVErT’s renderer to see how they are 

being rendered. Table 8.6 shows the list of metrics and how they affect the quality 

attributes.   

 
Table 8.6 Metrics and quality attributes to evaluate model transformations adopted from [6]. + indicates 

direct affect while – indicates adverse effects. 

# Metric 

Quality Attribute 

U
nd

er
st

an
da

bi
lit

y 

M
od
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R
eu

sa
bi

lit
y 

R
eu

se
 

M
od

ul
ar

ity
 

1 Lines of code - -    
2 Number of correspondences - -    
3 Number of transformation rules     + 
4 Number of equations - -    
5 Rule fan-in    +   
6 Rule fan-out     +  
7 Rule information flow complexity -     

 
 
Metrics of Table 8.6 include lines of code of the transformation, number of 

correspondences per transformation script, number of individual transformation rules, 

and number of equations used in the transformation script. Transformation rules can be 

used by other rules. Accordingly, fan-in defines the number of times a transformation 

rule is used in other rules and fan-out defines the number of times a transformation rule 

uses other rules. Rule information flow complexity is measure of complexity which is 

calculated by squared product of fan-in and fan-out of a transformation rule:  

 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛  𝑓𝑙𝑜𝑤  𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = (𝑓𝑎𝑛. 𝑖𝑛  ×𝑓𝑎𝑛. 𝑜𝑢𝑡)! 

 

These metrics are calculated individually for each transformation script and the results 

are provided in table 8.7.  
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Table 8.7 Comparison of transformation codes generated by CONVErT, ALTOVA MapFOrce and XSLT 

expert. 

# Metric 

Experiments 

UML to Java Bar chart to Pie 

C
O

N
V

E
rT

 

M
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e 

E
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t 

C
O

N
V

E
rT

 

M
ap
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e 

E
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er
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1 Lines of code 98 93 86 29 22 27 
2 Number of correspondences 25 25 20 7 7 6 
3 Number of transformation rules 7 1 1 3 1 1 
4 Number of equations or conditions 1 1 1 0 0 0 
5 Rule fan-in  7 0 0 3 0 0 
6 Rule fan-out  6 0 0 2 0 0 
7 Rule information flow complexity 1764 0 0 36 0 0 
8 Execution time (milliseconds) 0.7 0.8 0.6 0.2 0.3 0.2 

 

The results of Table 8.7 demonstrate higher number of lines of code for the generated 

transformation script of CONVErT. This is due to the fact that CONVErT’s code 

generates a procedural transformation script and uses the individual transformation rules 

which have significant effects on number of lines of code. Although this decreases the 

understandability of the code, it increased the modularity and hence the possibility of 

reusing certain parts of the code.   

The transformation script used by our expert used fewer correspondences. This is due 

use of XPath addressing strings. For example when multiple bars are available in a 

“bars” element of a bar chart, two separate correspondences should be specified for 

“bars” to “Pieces” and bar node to pie piece. Figure 8.6 demonstrates these 

correspondences for ALTOVA MapForce and Figure 8.7 show similar correspondences 

in CONVErT. However, the expert used XPath constructs similar to 

"Bars/BarNode"and as a result used fewer correspondences.  It is noteworthy here that 

when using low level coding in model transformation languages, transformation 

designers can use powerful constraint languages like OCL to define more complex 

transformations. Our approach in CONVErT uses local notation to notation 

transformation specifications and relies on facilities provided by the transformation 
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language and the user defined functions in XSLT. If for alternative transformation 

languages (e.g. ATL) are used in toolset, these constraint specification languages (e.g. 

OCL) can be provided in functions.    

 

 

Figure 8.6 Example correspondences for bar chart in ALTOVA MapForce. Arrows mark 
correspondences. 

 

 

Figure 8.7 Example correspondences for bar chart in CONVErT. Arrows demonstrate drag and drop 
directions to specify correspondences. 
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Given that CONVErT’s code was the only code that included individual transformation 

rules, fan-in, fan-out and rule information flow complexity was only calculated for 

CONVErT’s scripts. These numbers were calculated based on the number of rule calls 

and arrangement of the rules available in the script. For example, class rule in 

CONVErT’s transformation code calls three other rules (for creating associations, 

attributes, and operations) while transformation rule for creating attributes does not call 

any other rules. 

It should be noted here that the generated transformation code of CONVErT is not 

meant to be edited. Although users save the transformation in a separate XSLT file and 

can edit them, our intention was otherwise in separating users from interacting with the 

code. Also, given the power of coding transformation by an expert, there are certain 

cases were CONVErT does not provide similar capabilities to its users. One such 

limited capability is in the way correspondences are specified. Correspondences in 

CONVErT are specified between a pair of visual notations. As a result, modularity of 

the generated transformation code depends on the pair of notations being mapped to 

each other. For example, when mapping a bar chart to pie chart of Figure 8.7, once user 

drags bar chart area to pie chart area, he cannot specify correspondences between their 

embedded notations i.e. elements of bars and pie pieces. Correspondences between bars 

and pie pieces need to be specified when a bar is dragged to a pie piece. Similarly, 

correspondences involving more than one notation as source or target cannot be easily 

specified with current version of CONVErT’s Mapper. These more complex 

transformation specifications are part of our future work. 

Table 8.7 also provides execution time of each transformation script using a PC with 

dual core CPU and three gigabytes of RAM. To measure execution time, all 

transformation scripts were used in the XSLT parser and engine of Microsoft Visual 

Studio and applied on two different examples of source model for each transformation 

script. Class diagram XML examples were 3kb and 4kb while bar chart examples were 

1kb and 2kb in size.  We repeated the transformation execution five times on each 

example and recorded execution time. Repeating the experiments did not alter average 

times. The measured time does not demonstrate significant differences between 

transformation scripts.  
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All transformation scripts of this comparison produced renderable target models. 

However, the generated target of CONVErT was more complete with regards to the 

missing values in UML class diagram to Java code visualisation transformation as 

Figure 8.8 demonstrates. This is because the transformation code generator of convert 

uses the reverse engineered abstraction of the notations in each transformation rule and 

automatically fills in the missing values by default values. For example, when mapping 

UML associations to Java properties, since associations do not possess access value, 

CONVErT’s code generator assigns “public” as their default value from the abstraction 

of Java property notation. ALTOVA MapForce uses the reverse engineered abstraction 

of the full source and target and did not produce any default value in case any value is 

missing. To have similar capability in MapForce, such default values should be 

indicated in the schema and provided to the tool.  

 

 

Figure 8.8 Rendering the generated target model as a result of running transformation scripts of (A)   
CONVErT’s and (B) ALTOVA MapForce. 

 

Although we did not ask our expert to generate transformation code for transforming the 

other examples of previous section (CAD to tree visualisation, and Minard’s map to Pie 

chart), our experiments with ALTOVA MapForce and CONVErT on those examples 

showed similar results to the two examples being discussed here and in Table 8.7. As a 

result, we conclude that the evaluation results of table 8.7 are generalizable to other 

examples as well. 
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8.4 User evaluation 

A user evaluation of our CONVErT tool and its approach focuses on the user’s 

perception of the approach and associated toolset for generating visualisations and using 

them for a transformation task. This user study has been approved by Swinburne 

University Human Research Ethics Committee (SUHREC Project 2013/010). A copy of 

ethics clearance letter is provided in Appendix 2. The following subsections provide 

details of this user evaluation and experiments. 

 

8.4.1 Experimental setup 

Our experimental setup comprised a laptop with an attached mouse. Prior to starting the 

experiment, participants were asked to sign a consent form. They were then introduced 

to the toolset (CONVErT) through a ten-minute screencast. This screencast described 

the purpose of the toolset, its user interface, visualisation, and transformation generation 

procedures. The screencast also described basic functionalities of the toolset like where 

and how to drag and drop, how to use functions, how to compose visual elements and 

how to view visualisations. Using a screen cast would limit bias compare to 

presentation and ensure repeatability for multiple participants.  

Participants were asked to perform a set of model visualisation and mapping tasks 

following think-aloud approach. They could ask questions and an instructor was 

available during the experiment. They were reminded that there was no time limit for 

performing tasks and that they could leave at any point during the experiment. Given 

these reminders, all our participants were able to finish assigned tasks. 

Two sets of tasks were defined for participants to carry out, each consisting of a 

visualisation specification and a transformation specification. The first task used a 

visualisation and transformation from a business domain and the second task used 

software engineering domain examples. The rationale behind having two sets was to test 

our approach for different application domains. We hoped that it would help us to 

investigate if interactive concrete visualisations better support using users' domain 

knowledge in general. It was designed to investigate if concrete visualisations have 

similar effects on users of different domains (software engineering and business 
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analysis in this case). Using this strategy, we are in a stronger position to generalize that 

our concrete interactive visualisations can help wider domains of model transformation 

specification and therefore we can make assertions about our answers to research 

questions RQ1 and RQ2. 

To record participant’s interactions, screencasts were captured during the process and 

each participant’s voice was recorded. Upon completion of each task, a matching 

questionnaire was given to each participant. The survey questionnaire was designed in 

four sections (the questionnaire is provided in Appendix 5). Section one was targeted to 

visualisation approach and included questions evaluating usefulness, cognitive 

dimensions, ease of use of the tool, ease of learning the tool and finally questions to 

capture user satisfaction. Section two was targeted at transformation generation using 

concrete visualisations and included questions for evaluating usefulness of the 

approach, cognitive dimensions, ease of use of the tool, ease of learning, and 

satisfaction. Section three of the questionnaire was designed to evaluate the guidance 

and recommender system integrated to the toolset. It included questions capturing 

usefulness, presentation and user satisfaction. The final section of the questionnaire was 

dedicated to the participant demographic questions.   

The first three sections of the questionnaire featured 5-point Likert scale responses and 

dedicated spaces to leave optional comments and feedback for each Likert item. The 

Likert scale parameters range from Strongly disagree, Disagree, Undecided, Agree, and 

Strongly agree. Additional comments section was also provided at the end of each 

questionnaire section in case users would like to leave further comments. 

The tasks assigned to each group were to create a visualisation with CONVErT and then 

use it as source and generate a transformation from the model to another model with a 

provided CONVErT visualisation as target model visualisation. Input models and 

visualisations were the same for participants of each group.  

The first group were given a model representing business sales data and were asked to 

create a bar chart visualisation of their sales data (task 1). They were then asked to alter 

the bar chart visualisation for a different input model (task 2) and finally transform that 

bar chart visualisation to a pie chart visualisation (task 3). The second group were given 
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a class diagram data (XML) and asked to generate a UML class diagram visualisation 

(task 1). For Task 2 they were asked to transform that class diagram visualisation to a 

provided Java code visualisation.  

Each participant was handed a hard copy of task descriptions. These task descriptions 

did not describe instructional steps. Instead, they included the input file names and their 

locations, and a snapshot of the desired final visualisation and the transformation result. 

Task descriptions are available in Appendix 3 and Appendix 4. Users had to come up 

with steps required to get similar results. They were allowed to ask questions from the 

instructor if they had trouble understanding those steps. The following subsection 

provides the results gathered from this study.  

 

8.4.2 Experiment results  

For this user study, 19 users (including 4 controls for instrument testing) were recruited 

from staff and students at Swinburne University of Technology. No age or restrictions 

were applied for recruiting participants. To capture user demographics, participants 

were required to complete a demographic questionnaire. The summary of demographic 

data of participants is provided in Table 8.8.  

Ten participants (8 male, 2 female) chose to use the business analysis domain tasks and 

five participants (3 male, 2 female) used the tasks from software engineering domain. 

Participants of both groups had basic understanding of domain models used for 

experiments but with very little or no experience in model transformation.  

The demographics information of Table 8.8 demonstrates that only 17 precent of users 

had experience with at least one modelling and transformation approach and 47 precents 

were aware of them. 13 precent of users had experience with at least one visualisation 

approach, and 60 precents were somewhat familiar with visualisations. It can be 

concluded that about two third of the users were familiar with visualisations to some 

degree and around two third were also familiar with modelling and transformations.  
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Table 8.8 Demographic questions of the user study questionnaire and participant’s responses. 

 Question Options Participants 
(%) 

D.1 Gender? 
Male 
Female 
Prefer not to say 

67 
33 
0 

D.2 Age rang? 

23-30 
31-40 
41-50 
51-60 
61+ 

60 
40 
0 
0 
0 

D.3 
How familiar are you with 
model transformation and 
modelling in general? 

Very familiar 
Somewhat familiar 
I had heard about it 
Not familiar at all 

17 
47 
33 
13 

D.4 How familiar are you with 
data visualisation? 

Very familiar 
Somewhat familiar 
I had heard about it 
Not familiar at all 

13 
60 
13 
13 

D.5 What best describes your 
area? 

Software engineering  
Computer Science/IT 
Economics 
Management 
Other 

47 
40 
0 
0 
13 

 

To analyse participants’ responses, Likert scale scores were collected from 

questionnaires. We have assigned scores of 1 (for perfect negative) to 5 (perfect 

positive) to each Likert item response. Based on the scores, Median, Mode and 

frequency of responses for each Likert item is calculated for comparison. Results are 

separately presented for visualisation, transformation, and evaluation of the Suggester in 

the following subsections.  

 

8.4.2.1 Visualisation  

Tasks 1 and 2 for first group and task 1 for the second group were designed to check the 

efficiency of our approach and the tool for visualising input model data. After the tasks 

were completed by participants, first part of the questionnaire was handed to each 
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participant. The questions for the evaluation of these tasks and the results collected from 

it are provided in Table 8.9. Note that the frequency charts in the table demonstrate 

rounded values of the frequencies and are generated using CONVErT. 

 

Table 8.9 User study questions for visualisation evaluation. 

 Question 
Participant Responses 

Median Mode Frequency (%) 
Usefulness 

Q.1 It is useful to have a drag and 
drop approach for visualisation. 5 5 

 

Q.2 Visualisations help me better 
understand complex data. 5 5 

 

Q.3 It is useful to be able to 
visualise data tailored to users 5 5 

 
Cognitive dimensions 

Q.4 
It is easy to see various parts of 
the tool such as drawings, 
functions, etc. 

4 4 

 

Q.5 It is easy to make changes to 
visualisations. 4 5 

 

Q.6 Some things do require a lot of 
thought. 4 4 
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Q.7 It is easy to make errors or 
mistakes 3 3 

 

Q.8 

Couple of drawings were 
provided on the right side of the 
tool panel to assist you with 
your task. Did you find they 
were helpful?  

5 5 

 

Q.9 

It was easy to recognise which 
element on the left hand side 
was related to which 
visualisation element on the 
right hand side.  

4 5 

 

Q.10 Provided Logs of your previous 
actions was useful 5 5 

 

Q.11 I can work in any order I like 
when working with the tool. 3 3 

 
Ease of use 

Q.12 
I found it easy to visualise the 
given data as a Bar chart/Class 
diagram 

5 5 

 

Q.13 I found it easy to modify the 
visualisations 4 4 

 

Q.14 
In general I found the tool to be 
easy to use for visualisation 
activities 

4 5 

 
Ease of learning 

Q.15 I learned to use the tool quickly 5 5 
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Q.16 

I would like to have received 
further instruction to be able to 
understand the procedure and 
perform the task. 

3 4 

 

Q.17 
I had to redo some parts to be 
able to understand the 
procedure 

3 5 

 
Satisfaction 

Q.18 I easily remember how to use 
the tool 4 4 

 

Q.19 
It is likely that I use the tool for 
visualisation in my future 
projects 

4 5 

 

Q.20 I had fun using the tool 5 5 

 

Q.21 I would recommend it to a 
friend 5 5 

 
 
 

As can be seen in the table, the results collected for the usefulness and satisfaction of 

the approach (Q.1 to Q.3 and Q.18 to Q.21) conveys that participants agree on the fact 

that the drag and drop approach was useful for visualisation tasks. These parts of the 

questionnaire were designed to capture user experiences on effectiveness of our 

approach and hence our first main research question on effectiveness of visual by 

example approach for generating visualisations. Specifically, participants’ answer to 

question Q.1 demonstrates that all our participants have agreed on usefulness of our 

drag and drop approach for visualisation (87% strongly agree and 13% agree). Similarly 

their responses to questions Q.2 and Q.3 show general acceptance of the usefulness of 
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the visualisations. However, the phrasing of these questions might convey that they are 

generic questions and not targeted to the approach and toolset. We did not notice this in 

our pilot studies and therefore some participants may have considered questions Q.1 to 

Q.3 as generic.    

Questions Q.4 to Q.17 were primarily focused on tooling aspect of the approach. For 

example, various cognitive dimension characteristics are being examined like visibility 

(Q4), viscosity (Q5), hard operation (Q7), and premature commitment (Q11). The 

results in Table 8.9 indicate that specific parts of the tool need to be improved or 

redesigned.  For example, the version of the tool being used in evaluation (revision 320) 

did not allow repositioning of notations. If users wanted to reposition the notations, it 

would copy it to the new location and as a result they had to clear the canvas and redo 

the drag and drop. This has been reflected in user responses to questions Q.7 and Q.17. 

Also, some users could not differentiate model elements and placeholders as they were 

represented similarly for each visual notation by the framework. This resulted in 

confusion, and a user had to ask the instructor after a mistake was made in notation 

composition. This confusion by some participants is reflected in responses to questions 

Q.6 and Q.16. Note that while there was no rational behind using negative questions, 

the responses to these questions have been reversed to keep the scales consistent and 

avoid confusion. For example, for question Q.6, 7% of the participants have strongly 

agreed and 20% have agreed that some things did require lots of though; while 47% 

have disagreed and 7% have strongly disagreed to that statement. 

Given the responses to questions Q.16 and Q.17 were less than what we expected, the 

majority of participants (60% strongly agree and 27% agree) agree that learning the tool 

was easy. This has been reflected in their response to question Q.15. We believe that if 

the implementation problems with the tested version of the tool are fixed in future 

releases, the difficulties raised from them will be solved and would provide even higher 

acceptance.   

Although the tool had some imperfections, all users agree on ease of use of the tool for 

generating visualisations. This is reflected in their responses to questions Q.12 and 

Q.14. The response to question Q.13 in Table 8.9 is calculated using the total responses. 

It is noteworthy to consider that the second group did not perform the visualisation 
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alteration task. We have asked them to respond to this question based on their 

understanding of the tool. Responses to this question for each group are depicted in 

Figure 8.9. As can be seen in the figure, all participants of the first group agree that the 

modification of visualisation was easy. However, the participants of the second group 

have mixed feelings about it. Also, users were provided with predefined notations. 

Given that users were required to annotate views to generate notations, we would 

anticipate having slightly different results, since users would have to have basic 

understanding of XAML representations to understand the elements of visual Views. 

 

Figure 8.9 Group based responses to question Q.13. 

 

 

8.4.2.2 Transformation 

Final task of our user study included asking users to use the generated visualisation as 

source model visualisation example and use a provided target model visualisation 

example to generate a transformation between the two. Users were required to drag and 

drop elements of both visualisations to create transformation rules and execute them to 

generate a target visualisation. Alternatively, similar to the visualisation step, they could 

use the provided recommendations.  

Second section of user study questionnaire was dedicated to capturing user experiences 

with transformation generation using concrete visualised examples. The questions of 

this user study and analysis of user responses are provided in Table 8.10. Similar to user 

evaluation of the visualisation step, scores of 1 to 5 were given to responses (from most 
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negative to most positive) and median, mode and frequency of the scores were 

calculated accordingly. 

 

 Table 8.10 User study questions for transformation evaluation.  

 Question 
Participant Responses 

Median Mode Frequency (%) 
Usefulness 

Q.1 
The familiar diagrams and visual 
elements used to show the different 
views of the data were useful 

5 5 

 

Q.2 
Visual diagrams help me better 
understand the relationships between 
source and target drawings. 

5 5 

 

Q.3 

It is useful to specify relationships 
between different elements in the left 
hand side and the right hand side 
visualisations by using the drag and 
drop of each element 

5 5 

 
Cognitive dimensions 

Q.4 It is easy to see various parts of the 
tool such as drawings, functions, etc. 5 5 

 

Q.5 Some things do require a lot of 
thought 3 3 

 

Q.6 It is easy to make errors or mistakes 3 2 
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Q.7 

It was easy to recognise which visual 
element on the left hand side was 
related to which visual element on the 
right hand side 

4 4 

 

Q.8 Provided Logs of my previous 
actions was useful 5 5 

 

Q.9 I can work in any order I like when 
working with the tool 4 4 

 
Ease of use 

Q.10 
I found it easy to specify the relations 
between left hand side and right hand 
side visualisations 

5 5 

 

Q.11 The user interface is very consistent 5 5 

 

Q.12 
In general I found the tool to be easy 
for transformation between 
visualisations 

5 5 

 
Ease of learning 

Q.13 I learned to use the tool quickly 4 5 

 

Q.14 
I would like to have received further 
instruction to be able to understand 
the procedure and perform the task 

3 2 
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Q.15 I had to redo some parts to be able to 
understand the procedure 4 4 

 

Q.16 I easily remember how to use the tool 4 5 

 
Satisfaction 

Q.17 It is likely that I use the tool for 
transformation in my future projects 4 4 

 

Q.18 I had fun using the tool 5 5 

 

Q.19 I would recommend it to a friend 4 5 

 
 
 

As can be seen from results of Table 8.10, users positively responded to having 

visualisations and drag and drop of notations to generate mappings (Q.1 to Q3, and 

Q.17 to Q.19). These responses demonstrate users’ perception of the approach in 

accordance to our second main research question on usefulness of concrete visual by 

example approach for generation of mappings. For example, in the responses of Table 

8.10, all users agree (80% strongly agree and 20% agree) that the visualisations helped 

them better understand the relationships between source and target models. Or for 

example in question Q.3 the majority of participants (93% agree, 7% disagree) agree 

that the drag and drop method of specifying correspondences between source and target 

is useful.  

In terms of the tooling aspect of the approach, there is a need for further improvements 

to the tool. For example in response to question Q.5 “Some things do require a lot of 
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thought” participants have responded with 13% strongly agree, 20% agree, 33% 

undecided, 27% disagree and 7% strongly disagree. Similarly responses to question Q.6 

where 47% of the users have agreed that it is easy to make mistakes, indicate rooms for 

improvements. Please note that due to negative nature of the statements in question 5 

and 6 the responses have been reversed to keep scales consistent. Some users did not 

use the logs and this has been reflected in their response to question Q.8 “Provided Logs 

of my previous actions was useful”.  

It should be noted here that although recommendations were provided, our user 

evaluation of the recommender system (provided bellow) indicates that users did not 

use the recommendations or did not found the recommended correspondences useful 

enough. Given that users had used them or the representation of the guidance system 

was improved, it would have helped users with the tasks and particularly in response to 

question Q.5.  

In terms of ease of use, the responses are fairly consistent and indicate general 

acceptance of the approach and toolset (see responses to questions Q.10 to Q.12). 87% 

of the users have agreed that it was “easy to specify the relations between left hand side 

and right hand side visualisations” which complements responses to question Q.3 on 

usefulness of drag and drop specification of source and target correspondences. 

Similarly 93% of the users have agreed that the approach provided by the tool for 

specifying transformation using visualisations was easy. 

In terms of ease of learning, although 73% of the users have agreed on quick learning of 

the tool, the majority of them were reluctant to drag and drop elements of the 

visualisations on each other. This is where they asked the instructor for some 

instructions for performing the task. This has been reflected in their responses to 

questions Q.14 and Q.15. We believe this is due to the fact that the approach taken for 

transformation and by the tool was very different to users’ expectations. For example in 

occasions they were reminded by the instructor that they “can” drag and drop notations 

on each other and once reminded, were able to perform the given tasks.  

Questions Q.17 to Q19 were designed to see users’ satisfaction of the approach and 

toolset. The responses to these questions suggest that the majority of users perceived the 
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approach positively. For example, 77% of the users agreed that they might use the 

approach in their future project and some users mentioned that due to the nature of their 

work, they do not see any need to use transformations in general.  

 

8.4.2.3 Suggester  

To have a user evaluation of our Suggester system, third section of questionnaire was 

dedicated to questions regarding Suggester system and how satisfied users were by the 

system. The questions of this section and the results collected from this user evaluation 

are provided in Table 8.11. It should be noted that users were not asked specifically by 

the tasks to use or follow any of the recommendations. They were however, introduced 

to the Suggester system in the introduction video and were free to use provided 

recommendations as they see fit. 

Similar to visualisation and transformation steps, the analysis of the collected 

participant responses are provided in Table8.11 using median, mode and frequency of 

the responses. 

 

Table 8.11 User study questions of Suggester system and user responses.  

 Question 
Participant Responses 

Median Mode Frequency (%) 
Usefulness 

Q.1 
It is useful to have 
recommendations during the 
process 

4 5 

 

Q.2 

Recommendations helped me 
better understand relations 
between source and target 
visualisations 

4 5 
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Q.3 Recommendations help me 
discover other possible relations 3 3 

 

Q.4 Recommendations seemed to 
offer a good (correct) solution 4 4 

 

Q.5 I was able to trust the 
recommendations 4 4 

 

Q.6 I used recommendations at least 
once 4 5 

 

Q.7 I already knew most of the 
recommendations 2 3 

 
Presentation 

Q.8 I was satisfied with the way 
recommendations were presented 4 5 

 

Q.9 

When a recommendation said for 
example “Bar/Name” I was easily 
able to spot “Name” in source or 
target visualisations 

4 5 

 

Q.10 I was able to use 
recommendations 4 4 

 

Q.11 It is likely that I use provided 
recommendation system in future 4 5 
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Q.12 I found some recommendation to 
be surprising in a good way 3 3 

 

Q.13 I had fun using the 
recommendations 3 3 

 
 

The questions and responses of Table 8.11 are grouped into two categories of usefulness 

and presentation of the recommended correspondences. More specifically, question Q.1 

checks the usefulness of having a recommendation system in general. As can be seen 

form the responses in the table, 74% of participants agree on the usefulness of 

recommendations. However, when asked whether provided recommendations helped 

users understand relations between source and target visualisations (Q.2) only 60% of 

the users have responded agree and strongly agree. This indicates that although majority 

of users did agree on usefulness of such recommendations, fewer number of them have 

found it actually helpful. Multiple reasons might have contributed to these results. First, 

since the users had their first experience with the recommendation system, it is valuable 

for the recommender to provide higher precision recommendations to spark users’ trust 

[162], [183]. However, user responses to question Q.5 indicate that only 67% of them 

were able to trust the recommended correspondences.  

Second, due to lack of available data in notation’s model, the Suggester system is not 

100% accurate at visualisation step. Also since few recommendations are provided at 

that stage, it is easier to notice incorrect recommendations. Given that users’ first 

encounter with the recommendations were at the visualisation step, incorrect 

recommendations at that stage might have contributed to this loss of trust. This is 

reflected in users’ response to question Q.4 on correctness of the recommendations as 

well. Only 67% of the users found recommendations to be correct. However, with 

regards to question Q.6, 60% of participants have agreed that they have used 

recommendations at least once.  
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Our observation also indicates that users did not consider the role of recommendations 

as guidance or means for simplifying the task. This could be due to focus of task 

handouts on the visualisation and transformation rather than recommendations. For 

example, only 40% of the participants have acknowledged that recommendations helped 

them discover new possibilities (Q.3) which indicates that 60% of them were not 

looking for other possibilities in the recommendations. 

The results of Table 8.11 also show interesting findings. Only 7% of the users indicate 

(in question Q.7) that they did not already know most of the recommendations (note that 

this is a negative statement). This is in accordance to the calculated precision of one for 

the tested examples of the tasks (see Table 8.5). Also, the responses to question Q.12 

show that less than half of the participants (46%) agree that recommendations were 

novel and surprising. This indicates the importance of novelty in recommender systems. 

In terms of recommendations representation, we have received 60% satisfaction (in 

response to Q.8) which could be a clue to why users did not use the recommendations 

and preferred drag and drop to specify correspondences. For example a participant did 

not realise that by selecting from suggestions, it is possible to specify correspondences 

and therefore did not use them at all. Similarly only 60% agreed that they could find the 

correspondences been mentioned by the recommendations in the source and target 

visualisations (in response to question Q.9). This indicates the inefficiency of 

representing recommendations as lists. Improved representations could use the 

augmentation in the visualisations to help users explore possible correspondences. 

Overall, the Suggester mechanism achieved lower acceptance than the visualisation and 

transformation and therefore parts of our third main research question on acceptable 

recommendations and ways to guide users are not fully satisfied. We believe this is due 

to the fact that the given examples were simple and the users already new most of the 

correspondences, thus did not realise the potential of having a recommendation system 

for guidance. For example a participant stated that the mapping correspondences were 

“easy to find and specify” and therefore felt no need to use recommendations. Low level 

and basic representation of recommendations might have played another role in lower 

acceptance of the Suggester system. Provided that the visualisations were more 

complex, it would have evaluated effects of the Suggester system much better. 
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8.4.3 Threats to validity 

We have taken strong considerations to minimise threats to validity and their effects. 

However, there are set of threats that may have affected the validity of this experiment. 

In the following, we list these threats according to internal, external, construct and 

statistical validity classification. 

 

8.4.3.1 Threats to internal validity 

Testing: four of our participants mentioned the effect of learning during the 

experiments. They admitted that since the drag and drop tasks ware being repeated for 

tasks one and two, they could perform second task easier. This might have had effects 

on better acceptance of the approach for tasks two and three. 

Questionnaire: Although the questions of the questionnaire were simplified and an 

instructor was available during the experiment and when participants were asked to fill 

out the questionnaire, it is possible that some participants were reluctant to ask 

questions regarding the items being asked in the questionnaire and therefore responded 

based on their understanding of the questions.  

 

8.4.3.2 Threats to external validity 

Participant affiliation: The users whom participated in the evaluation were mostly 

chosen among staff and students of Swinburne University of Technology (18 out of 19). 

This potentially represents a bias and will affect generalisation of our claims. 

Participant background:  47 precent of the participants shared common background in 

Software Engineering and 40 precent shared background in computer science. As a 

result, their background could have introduced bias in terms of their familiarity with 

software tools.  

 

8.4.3.3 Threats to construct validity 

Task: Due to simplicity of the experiment for one group, performing bar chart to pie 

chart transformation, five participants did not use the recommendations. These have had 
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effects on evaluation of the recommendation system. Also, participants that were 

assigned to second group, did not use the visualisation modification task and their 

responses to question Q.5 of the visualisation task on making changes to the 

visualisations was based on their understanding of the ability of the tool and approach. 

Experimenter effects: Some instructions made to the participants by the instructor 

during experiment may have affected the participants’ experience. The instructor was 

asked not to give any instructions unless asked by the participants. However, our 

observation of the responses and the recordings, demonstrated that the participants who 

requested more instructions had accordingly mentioned this need in their responses. 

 

8.4.3.4 Threats to statistical validity 

Statistical calculations: We have checked and double checked the statistics used for our 

user study evaluation to confirm their accuracy. As a result and to the best of our 

knowledge, there is no statistical calculation problem threating the validity of the 

results.  

Sample size: It is possible that the inferences we have made from our results are due to 

limited number of participants. The statistics we have used are calculated having non-

parametric characteristics of the responses in mind. We do not reject the possibility of 

changes in the inferences given the number of users increases. The evaluation is 

therefore an ongoing process and we seek to provide incremental updates to the 

approach and evaluate accordingly. 

 

 

8.5 Summary 

This chapter provided evaluation of our approach in creating visualisations and 

transformations. This evaluation was performed using a comparative study of our 

approach and toolset, a quantitative evaluation of our recommender system and a 

complimentary user evaluation.  
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A comparative study of the toolset and approach with other available transformation 

approaches was provided and a more detailed comparison was discussed with ALTOVA 

MapForce which is a state of the art mapping tool. This comparison demonstrates how 

our approach and its tool support (CONVErT) sets apart from state of the art 

transformation and mapping tools being used today. 

The quantitative evaluation was designed to capture correctness of the recommendation 

system designed in the Suggester. It evaluated the recommendations using a benchmark 

and couple of examples against quantitative measures of precision, recall, and f-

measure. The results demonstrate that for more complex examples the suggester system 

cannot produce high correctness with regards to precision and recall. It was concluded 

that given that information on examples being transformed are available, the Suggester 

can be optimised to perform better recommendations.  

Our quantitative evaluation also included a discussion of the quality of the generated 

code of CONVErT and compared it to the transformation code generated by ALTOVA 

MapForce and transformation code written by an XSLT expert using set of quantitative 

metrics. This comparison demonstrated that the automatically generated transformation 

script of CONVErT is equally effective in comparison to the transformation script 

written by an expert and generated automatically by ALTOVA MapForce. 

A user evaluation was carried out and we described experiment setup, questionnaires 

and the tasks to be performed by participants. The collected responses of this study were 

discussed in details. The collective evaluation results demonstrated that the visualisation 

and transformation approach was perceived positively by users; while the Suggester 

system did not receive high acceptance. It was concluded that the correctness of 

recommendations and our approach for their representation might have played key roles 

in lower acceptance of the Suggester. 
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Chapter 9 

Conclusion and future work 
 

 

 

 

 

 

9.1 Conclusion 

This thesis introduced an approach and method for performing model transformation on 

concrete visualisations of models. This approach helps to better incorporate user's 

domain knowledge by providing familiar example concrete visualisations for 

transformation generation. Users specify complex model element mappings between 

concrete visual notational elements using interactive drag-and-drop and reusable, spread 

sheet-like mapping formulae. Complex, scalable, efficient, accurate and reusable model 

transformation implementations are then generated from these by-example visual 

source-to-target mappings. The use of this concrete source-to-target mapping metaphor 

can be generalised to a wide range of model transformation problems. 

This new approach provides support for visualising example models to enable a more 

user-centric specification of transformation rules using their concrete notations. It 

allows end users to interactively specify rich, human-centric visualisations of complex 

data using a visual, drag-and-drop, by-example approach. End users can generate 

reusable visualisation implementations from these high-level specifications, and use 

their generated, reusable model visualisations to visualise two (or more) complex data 

sets (i.e. example models). Model element mappings between their data sets are then 

generated via drag-and-drop of concrete visualisation elements.  
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To enable efficient model transformations, the approach automatically creates high-

level abstractions for transformation generation from the concrete visualisations. 

Metamodels of the underlying model of visualisations are reverse engineered to 

automatically create abstractions from user-provided model examples.  

In addition, to better aid users to find correspondences in large model visualisations, an 

automatic recommender system was introduced which provides suggestions for possible 

correspondences between source and target model elements. This recommender system 

uses model characteristics and visual representations to generate guidance for large 

model mapping problems. These recommendations allow users to cut corners in 

specification of transformation correspondences by choosing among suggestions. 

Complex model transformation code is automatically generated from the user's 

interaction with concrete notations and suggested recommendations.  

A proof of concept implementation of this approach, CONcrete Visual assistEd 

Transformation framework (CONVErT), was introduced to help realisation and 

evaluation of the approach. It allows generation, design and use of varieties of notations 

including text, boxes and lines, shapes, etc. It integrates the use and definition of 

mapping functions and conditions and enables reverse engineering of metamodels. 

CONVErT generates reverse transformations automatically (when possible) for 

bijective transformations. It also provides a visual representation of transformation rules 

using rule’s source and target notation visualisations. CONVErT framework is not 

limited to specific domain and is suitable for a range of large-scale model to model 

transformation problems, including software tool integration, EDI message 

transformation, and CAD tool integration among others. In summary, key novel 

contributions of this thesis research are: 

• Producing reusable model visualisation specifications using an interactive, by-
example approach. 

• Using a concrete, by-example model transformation metaphor. 
• Model mapping and transformation specification by drag and drop between 

concrete visualisations. 
• Utilising a set of recommenders using various recommender system techniques and 

generating mappings from recommendations. 
• Supporting fully automated model transformation script generation from specified 

mappings. 
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• Providing scalable, easy-to-use, robust and extensive tool support for each of these 
facilities. 

• Carrying out an end user evaluation of our prototype toolset and overall approach. 

Next section summarises key future work and research directions derived from this 

thesis. 

 

 

9.2 Future work 

Indeed a major future work is to perform a structured quantitative experiment from 

which statistically significant statements can be made for example to mitigate against 

learning effects. Additionally, four key directions have been identified for future work, 

1) improved transformation generation and tool support, 2) improved transformation 

recommender system, 3) dynamic visualisation, and 4) application to other domains. 

The following subsections describe these future directions in detail.  

 

9.2.1 Transformation generation and tool support 

To further expand the score of the work presented by this thesis, support for complete 

automatic reverse transformation generation, handling of lossy transformations, 

composition of transformation rules and model checking for conditional transformations 

can be also integrated.  

The tool support provided in this thesis (CONVErT), was intended as a proof of concept 

prototype and therefore has number of implementation specific shortcomings to be 

addressed. For example, it can be improved to accommodate alternative transformation 

languages like ATL or TGG.  

CONVErT uses set of predefined functions to generate more complex transformation 

rules. Although it is possible to add to the list of functions by using the function 

template, it is not fully targeted for novice users as it involves understanding of 
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functions provided by the transformation language. Tool support can be further 

improved by providing more reusable functions and better function designer interfaces. 

Although values to take part in model transformation can be imported from multiple 

input files, a multi-model to multi-model source to target transformation is not allowed 

by the framework. Further improvements can cover this limitation. 

 

9.2.2 Transformation recommender system 

The Suggester system introduced by this thesis was designed to recommend model 

element correspondences. It can be further improved to consider links between model 

and visualisation and suggest correspondences by analysing visual similarity of model 

elements. For example, if two notations have a box shape, they may probably 

correspond to each other.  

The Suggester system of CONVErT is limited to recommending one to one 

correspondences and cannot recommend transformation rules. The recommended 

correspondences (if accepted) will help generating transformation rule templates or 

internal rule correspondences. It can be extended to provide transformation rules by 

grouping set of related correspondences. Additionally, the framework can be altered to 

automatically accept high scoring recommendations. This way it will help further 

improve efficiency of transformation designers. 

Representation of recommendations in our approach is based on list-wise arrangement 

of suggested recommendations. More advanced visual representations can be included 

in the framework to augment recommendations in visualisations. Also, further user 

studies can be conducted to assess the utility of drag and drop actions on the 

visualisations independently and subsequently examine the additional benefit of the 

recommendations. 

 

9.2.3 Dynamic and enhanced visualisation 

Visualisation examples provided in this thesis were mostly proof of concepts and were 

provided to show capabilities of our approach. Consequently, very large scale and more 
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complex examples were not provided. We seek to apply the approach on larger example 

visualisations including 3D visualisations (e.g. X3D, GXL) or interactive visualisation 

for web and mobile devices. These visualisations could explore temporal influence on 

data to show potential multiple linked views of an underlying data set.  

Additionally, the approach presented by this thesis is currently limited to visualisations 

that exhibit clear notation separations. For example, in a class diagram, each class is 

composed of set of attributes and operations which exhibit clear separation in terms of 

visual view and their model with the class itself. A visualisation example that does not 

exhibit this separation is Euler diagrams. In Euler diagrams, each set’s notation may 

contain other sets. With our approach, since the model representing sets are the same 

(with regards to their abstraction), this will result in an ambiguity for the transformation 

engine to produce the final visualisations as the transformation rules will have to call 

themselves recursively. We have not tested these visualisations thoroughly with our 

approach, and therefore have assigned their support as part of our future work. 

The visual notation generation approach (Skin++) introduced in this thesis can be 

altered to accommodate definition of interaction tasks as well. Currently the interaction 

embedded in notations is defined for transformation code generation. This can be 

specified according to users’ needs. For example, to show elements of the source model 

that the target notations are sourced from, by right clicking on target elements; or 

provide drill-down or hide/show visual elements; or to embed further data relations in 

the visualisations. An example is where a pie chart has been visualised representing 

percentage of people who voted for certain product. By clicking on a pie piece in this 

visualisation, it would be possible to show what percentage of them were male and what 

percentage were female.  

 

9.2.4 Other Domains 

We are investigating possible application domains for our visualisation and 

transformation approach other than those mentioned in this thesis. These domains can 

benefit our approach in both areas of visualisation by example and transformation using 

concrete visualisations by example.  
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The visualisation by example approach can benefit users that are not expert in 

visualisations techniques and software engineering in general. Examples of such 

domains are genealogy and urban traffic monitoring. Users of these domains have the 

required knowledge to process and understand their data and therefore, can use 

examples of such data as the basis for visualisation and data to visualisation mapping.   

Data and tool integration is among possible domains that can benefit from our concrete 

visual transformation approach. For example, consider Electronic Data Interchange 

(EDI) messages that have become standard in e-commerce applications. When a parent 

company’s system is to send or receive data from non-EDI based third parties, a data 

transformation should be used. Given that users of such e-commerce applications might 

not be experts in transformation generation, an approach that uses familiar visualisation 

of both source and target messages and generates transformers by drag and drop can be 

very helpful.  
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Appendix 1 

ATL transformation script example 
 

module UML2JAVA; 
create OUT : JAVA from IN : UML; 
 
helper context UML!ModelElement def: isPublic() : Boolean = self.visibility = 
#vk_public; 
 
helper context UML!Feature def: isStatic() : Boolean = self.ownerScope = #sk_static; 
 
helper context UML!Attribute def: isFinal() : Boolean = self.changeability = 
#ck_frozen; 
 
helper context UML!Namespace def: getExtendedName() : String = if 
self.namespace.oclIsUndefined() then  
  '' 
 else if self.namespace.oclIsKindOf(UML!Model) then 
  '' 
 else 
  self.namespace.getExtendedName() + '.' 
 endif endif + self.name; 
 
rule P2P { 
 from e : UML!Package (e.oclIsTypeOf(UML!Package)) 
 to out : JAVA!Package ( 
  name <- e.getExtendedName()  
 ) 
} 
 
rule C2C { 
 from e : UML!Class 
 to out : JAVA!JavaClass ( 
  name <- e.name, 
  isAbstract <- e.isAbstract, 
  isPublic <- e.isPublic(), 
  package <- e.namespace 
 ) 
} 
 
rule D2P { 
 from e : UML!DataType 
 to out : JAVA!PrimitiveType ( 
  name <- e.name, 
  package <- e.namespace) 
} 
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rule A2F { 
 from e : UML!Attribute 
 to out : JAVA!Field ( 
  name <- e.name, 
  isStatic <- e.isStatic(), 
  isPublic <- e.isPublic(), 
  isFinal <- e.isFinal(), 
  owner <- e.owner, 
  type <- e.type 
 ) 
} 
 
rule O2M { 
 from e : UML!Operation 
 to out : JAVA!Method ( 
  name <- e.name, 
  isStatic <- e.isStatic(), 
  isPublic <- e.isPublic(), 
  owner <- e.owner, 
  type <- e.parameter->select(x|x.kind=#pdk_return)->asSequence()-
>first().type, 
  parameters <- e.parameter->select(x|x.kind<>#pdk_return)-
>asSequence() 
 ) 
} 
 
rule P2F { 
 from e : UML!Parameter (e.kind <> #pdk_return) 
 to out : JAVA!FeatureParameter ( 
  name <- e.name, 
  type <- e.type 
 ) 
} 
 
 
query JAVA2String_query = JAVA!JavaClass.allInstances()-> 
 select(e | e.oclIsTypeOf(JAVA!JavaClass))-> 
 collect(x | x.toString().writeTo('C:/test/' + x.package.name.replaceAll('.', '/') + '/' 
+ x.name + '.java')); 
 
uses JAVA2String; 
 
 
 
library JAVA2String; 
 
helper context JAVA!ClassFeature def: modifierFinal() : String =  if self.isFinal then 
  'final ' 
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 else 
  '' 
 endif; 
 
helper context JAVA!ClassMember def: visibility() : String = if self.isPublic then 
  'public ' 
 else 
  'private ' 
 endif; 
 
helper context JAVA!JavaClass def: visibility() : String =  if self.isPublic then 
  'public ' 
 else 
  'private ' 
 endif; 
 
helper context JAVA!ClassMember def: scope() : String =  if self.isStatic then 
  'static ' 
 else 
  '' 
 endif; 
 
helper context JAVA!JavaClass def: scope() : String = if self.isStatic then 
  'static ' 
 else 
  '' 
 endif; 
 
helper context JAVA!JavaClass def: modifierAbstract() : String =  if self.isAbstract 
then 
  'abstract ' 
 else 
  '' 
 endif; 
 
helper context JAVA!Package def: toString() : String = 'package ' + self.name + ';\n\n'; 
 
helper context JAVA!JavaClass def: toString() : String =  
 self.package.toString() + self.visibility() + 
 self.scope() + self.modifierAbstract() + 
 self.modifierFinal() + 'class ' + self.name + ' {\n' + 
 self.members->iterate(i; acc : String = '' | 
  acc + i.toString() 
 ) + 
 '\n}\n\n'; 
 
helper context JAVA!PrimitiveType def: toString() : String =  if self.name = 'Integer' 
then 
  'int ' 
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 else if self.name = 'Boolean' then 
  'boolean ' 
 else if self.name = 'String' then 
  'java.lang.String ' 
 else if self.name = 'Long' then 
  'long ' 
 else 
  'void ' 
 endif endif endif endif; 
 
helper context JAVA!Field def: toString() : String = '\t' + self.visibility() + self.scope() 
+ self.modifierFinal() + self.type.name + ' ' + self.name + ';\n'; 
 
helper context JAVA!Method def: toString() : String = '\t' + self.visibility() + 
self.scope() + self.modifierFinal() +  self.type.name + ' ' + self.name + '(' + 
 self.parameters->iterate(i; acc : String = '' |  acc +  
  if acc = '' then 
   '' 
  else 
   ', ' 
  endif + 
  i.toString() 
 ) + 
 ') {\n\t\t//Your code here\n\t}\n'; 
 
helper context JAVA!FeatureParameter def: toString() : String =  self.type.name + ' ' + 
self.name; 
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Appendix 2 

Ethics approval clearance 

 
To:   Prof John Grundy, FICT/ Mr Iman Avazpour 
    
Dear Prof Grundy, 
 
SUHREC Project 2013/010 Evaluation of a model visualisation and transformation tool 
(CONVErT) 
Prof John Grundy, FICT/ Mr Iman Avazpour 
Approved Duration:  01/03/2013 To 01/03/2014 [Adjusted] 
  
I refer to the ethical review of the above project protocol undertaken on behalf of 
Swinburne's Human Research Ethics Committee (SUHREC) by SUHREC 
Subcommittee (SHESC2) at a meeting held on 8 February 2013.  Your response to the 
review as e-mailed on 22 February was reviewed by a SHESC2 delegate. 	
  Further 
revision to the protocol was requested by separate e-mail of today's date and the subsequent 
response from Researcher was approved. 
  
I am pleased to advise that, as submitted to date, the project may proceed in line with 
standard on-going ethics clearance conditions here outlined. 
  
- All human research activity undertaken under Swinburne auspices must conform to 
Swinburne and external regulatory standards, including the National Statement on 
Ethical Conduct in Human Research and with respect to secure data use, retention and 
disposal. 
  
- The named Swinburne Chief Investigator/Supervisor remains responsible for any 
personnel appointed to or associated with the project being made aware of ethics 
clearance conditions, including research and consent procedures or instruments 
approved. Any change in chief investigator/supervisor requires timely notification and 
SUHREC endorsement. 
  
- The above project has been approved as submitted for ethical review by or on behalf 
of SUHREC. Amendments to approved procedures or instruments ordinarily require 
prior ethical appraisal/ clearance. SUHREC must be notified immediately or as soon as 
possible thereafter of (a) any serious or unexpected adverse effects on participants and 
any redress measures; (b) proposed changes in protocols; and (c) unforeseen events 
which might affect continued ethical acceptability of the project. 
  
- At a minimum, an annual report on the progress of the project is required as well as at 
the conclusion (or abandonment) of the project. 
  
- A duly authorised external or internal audit of the project may be undertaken at any 
time. 
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Please contact the Research Ethics Office if you have any queries about on-going ethics 
clearance or you need a signed ethics clearance certificate, citing the SUHREC project 
number. A copy of this clearance email should be retained as part of project record-
keeping. 
   
Best wishes for the project. 
 
Yours sincerely 
Kaye Goldenberg 
Secretary, SHESC2 
**************************** 
Kaye Goldenberg 
Administrative Officer (Research Ethics) 
Swinburne Research (H68) 
Swinburne University of Technology 
P O Box 218 
HAWTHORN VIC 3122 
Tel  +61 3 9214 8468 
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Appendix 3 

User study tasks for first group 
 
Task 1 

This task is designed to study the user friendliness of CONVErT in generating 
visualisations from input data. You are required to generate a bar chart visualisation for 
provided input data “salesfile.xml” from available drawings. The drawings (Chart area 
and Bar) are available in the predefined shapes section of the tool.  
 
 

 
 
 
 
Task 2 

This task is designed to check CONVErT in modification of visualisations. You are 
required to modify the bar chart visualisation by providing a new bar element for 
provided input data “salesfile2.xml”.  We are planning to use provided functions in this 
task. The required functions can be found in the “Mapping Functions” section.  
 

 
  



 
294 
 

Task 3 

This task is designed to study CONVErT in generation of mappings. You are required 
to create a mapping from a bar chart visualisation to a pie chart visualisation (see figure 
below). You will be using the bar chart you created in Task 2 and the pie chart provided 
(“Piechart.xml”).  
 
 
 

 
 
The final visualisation should look like following figure. 
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Appendix 4 

User study tasks for second group 
 
Task 1 

This task is designed to study the user friendliness of CONVErT in generating 
visualisations from input data. You are required to generate a UML class diagram 
visualisation for provided input data “umldata.xml” from available drawings. The 
drawings (Diagram, Class, Attribute, Operation, Association and function parameters) 
are available in the predefined shapes section of the tool.  
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Task 2 

This task is designed to study CONVErT in generation of mappings. You are required 
to create a mapping from a UML class diagram visualisation to Java code visualisation 
(see figure below). You will be using the UML class diagram you just created in task 1 
and the Java example (“Javavisual.xml”).  
 

 
 
The final visualisation should look like following figure. 
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Appendix 5 

Survey Questionnaire 
	
  

Research	
  Supervisor	
  

Prof.	
  John	
  Grundy	
  

Professor	
   in	
   Software	
   Engineering	
   and	
   Head	
   of	
   Academic	
   Group,	
   Computer	
   Science	
   &	
  
Software	
  Engineering	
  
FICT,	
  Swinburne	
  University	
  of	
  Technology	
  
Phone:	
  +61	
  3	
  9214	
  8731	
  
Email:	
  jgrundy@swin.edu.au	
  
	
  
PhD	
  Student	
  Researcher	
  

Mr.	
  Iman	
  Avazpour	
  

PhD	
  Student	
  
FICT,	
  Swinburne	
  University	
  of	
  Technology	
  
Phone:	
  	
  +61	
  3	
  9214	
  8786	
  
Email:	
  iavazpour@swin.edu.au	
  
 
Dear	
  Participant,	
  

	
  

This questionnaire aims to capture your experience with CONcrete Visual assistEd 
Transformation framework (CONVErT). CONVErT is proposed as part of PhD research by 
Iman Avazpour under the supervision of Professor John Grundy. The project 2013/010 is 
approved by Swinburne University Human Research Ethics Sub Committee (SHESC3) and 
conducted under the privacy policy followed by Swinburne University of Technology. 
 
This questionnaire has three sections. Section one consists of questions regarding your 
experience with visualisation and is designed to capture how efficient our visualisation 
approach was for users. Section two evaluates your experience with CONVErT for generating 
transformations between two visualisations. Section three is design to capture the effectiveness 
of CONVErT's recommender system. And finally section four contains some demographic 
question about you. Please read the questions in each section carefully and put a cross in the box 
that is closer to your feeling.  
 
Please Note: Individual responses will not be released or shared and individuals will not be 
identified. The information provided will be kept secure and will be accessible to the 
researchers only. Aggregate results from analysis of survey responses will be published in peer-
reviewed academic journals and conferences.  
 
If you have any complaints or question regarding the approval of the project you can contact 
Research Ethics Officer, Swinburne Research (H68), Swinburne University of Technology, P O 
Box 218, HAWTHORN VIC 3122. Tel (03) 9214 5218 or +61 3 9214 5218 or 
resethics@swin.edu.au 
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Part 1. Visualisation  

 
Usefulness 
 

1. It is useful to have a drag and drop approach for visualisation. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

2. Visualisations help me better understand complex data. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

3. It is useful to be able to visualise data tailored to users.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Cognitive dimensions 
 

4. It is easy to see various parts of the tool such as drawings, functions, etc. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

5. It is easy to make changes to visualisations.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

6. Some things do require a lot of thought.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

7. It is easy to make errors or mistakes.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
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8. Couple of drawings were provided on the right side of the tool panel to assist 
you with your task. Did you find they were helpful?  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

9. It was easy to recognise which element on the left hand side was related to 
which visualisation element on the right hand side.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

10. Provided Logs of your previous actions was useful.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

11. I can work in any order I like when working with the tool.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Ease of use 
 

12. I found it easy to visualise the given data as a Barchart/Class diagram.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

13. I found it easy to modify the visualisations.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

14. In general I found the tool to be easy to use for visualisation activities. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Ease of learning 
 

15. I learned to use the tool quickly. 
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Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
16. I would like to have received further instruction to be able to understand the 

procedure and perform the task. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

17. I had to redo some parts to be able to understand the procedure. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

18. I easily remember how to use the tool. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Satisfaction 
 

19. It is likely that I use the tool for visualisation in my future projects. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

20. I had fun using the tool. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

21. I would recommend it to a friend.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Please put any comments regarding visualisation procedure in the box bellow 
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Part 2. Transformation 

 
 
Usefulness 
 

1. The familiar diagrams and visual elements used to show the different views of 
the data were useful.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

2. Visual diagrams help me better understand the relationships between source and 
target drawings.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

3. It is useful to specify relationships between different elements in the left hand 
side and the right hand side visualisations by using the drag and drop of each 
element.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Cognitive dimensions 

4. It is easy to see various parts of the tool such as drawings, functions, etc. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

5. Some things do require a lot of thought.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

6. It is easy to make errors or mistakes.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

7. It was easy to recognise which visual element on the left hand side was related 
to which visual element on the right hand side.  
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Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

8. Provided Logs of my previous actions was useful.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

9. I can work in any order I like when working with the tool.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Ease of use 
 

10. I found it easy to specify the relations between left hand side and right hand side 
visualisations. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

11. The user interface is very consistent.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

12. In general I found the tool to be easy for transformation between visualisations.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Ease of learning 
 

13. I learned to use the tool quickly.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

14. I would like to have received further instruction to be able to understand the 
procedure and perform the task. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
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Comments	
   	
   	
   	
   	
   	
   	
  

 
 

15. I had to redo some parts to be able to understand the procedure 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

16. I easily remember how to use the tool 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

 
Satisfaction 
 

17. It is likely that I use the tool for transformation in my future projects. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

18. I had fun using the tool.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

19. I would recommend it to a friend. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
 
Please put further comments regarding transformation procedure in the box bellow 
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Part 3. Recommendation System 

 
Usefulness 
 

1. It is useful to have recommendations during the process. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

2. Recommendations helped me better understand relations between source and 
target visualisations.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

3. Recommendations help me discover other possible relations.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

4. Recommendations seemed to offer a good (correct) solution.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

5. I was able to trust the recommendations.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

6. I used recommendations at least once.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

7. I already knew most of the recommendations.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
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Presentation 
 

8. I was satisfied with the way recommendations were presented.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

9. When a recommendation said for example “Bar/Name” I was easily able to spot “Name” in 
source or target visualisations. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

10. I was able to use recommendations.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Satisfaction 
 

11. It is likely that I use provided recommendation system in future. 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

12. I found some recommendation to be surprising in a good way.  

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 

13. I had fun using the recommendations 

Strongly	
  Disagree	
   	
   	
   	
   	
   	
   Strongly	
  Agree	
  
	
   	
   	
   	
   	
   	
   	
  

Comments	
   	
   	
   	
   	
   	
   	
  
 
 
Please put any comments regarding recommendation system in the box bellow 
 

 
 



 
306 
 

Part 4. Demographic Information 

	
  

Please	
  circle	
  the	
  option	
  that	
  is	
  most	
  applicable	
  to	
  you.	
  	
  

	
  

Gender	
   o Male	
  

o Female	
  

o Prefer	
  not	
  to	
  say	
  

	
  

Age	
  range	
   o 25-­‐30	
  

o 31-­‐40	
  

o 41-­‐50	
  

o 51-­‐60	
  

o 61+	
  

	
  

How	
   familiar	
   are	
   you	
   with	
  
model	
   transformation	
   and	
  
modelling	
  in	
  general?	
  	
  

o Very	
  familiar	
  

o Somewhat	
  familiar	
  

o I	
  had	
  heard	
  about	
  it	
  

o Not	
  familiar	
  at	
  all	
  

	
  

How	
   familiar	
   are	
   you	
   with	
  
data	
  visualisation?	
  

o Very	
  familiar	
  

o Somewhat	
  familiar	
  

o I	
  had	
  heard	
  about	
  it	
  

o Not	
  familiar	
  at	
  all	
  

	
  

What	
   best	
   describes	
   your	
  
area?	
  

o Software	
  engineering	
  	
  

o Computer	
  Science	
  /	
  IT	
  

o Economics	
  

o Management	
  

o Other	
  _____________________	
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Appendix 6 

Samples of citation formats used for evaluating Suggester 
 
EndNote format 

<records> 
        <record> 
  <database name="My Collection.enl" path="My Collection.enl">My 
Collection.enl</database> 
            <ref-type name="Conference Proceedings">3</ref-type> 
            <contributors> 
                <authors> 
                    <author>Abramov, Sergei</author> 
                    <author>Gluck, Robert</author> 
                </authors> 
                <secondary-authors> 
                    <author>Mogensen, Torben</author> 
                    <author>Schmidt, David</author> 
                    <author>Sudborough, I.</author> 
                </secondary-authors> 
            </contributors> 
            <titles> 
                <title>Principles of Inverse Computation and the Universal Resolving 
                    Algorithm</title> 
                <secondary-title>The Essence of Computation Complexity, Analysis, 
                    Transformation</secondary-title> 
            </titles> 
            <periodical> 
                <full-title>The Essence of Computation Complexity, Analysis, 
                    Transformation</full-title> 
            </periodical> 
            <pages>269-295</pages> 
            <keywords/> 
            <dates> 
                <year>2002</year> 
            </dates> 
            <publisher>Springer Berlin / Heidelberg</publisher> 
            <electronic-resource-num>10.1007/3-540-36377-7</electronic-resource-num> 
            <urls> 
                <pdf-urls> 
                    <url>internal-pdf://Abramov, Gluck - 2002 - Principles of Inverse 
Computation and the Universal Resolving Algorithm.pdf</url> 
                </pdf-urls> 
            </urls> 
        </record> 
        <record> 
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            <database name="My Collection.enl" path="My Collection.enl">My 
Collection.enl</database> 
            <ref-type name="Journal Article">0</ref-type> 
            <contributors> 
                <authors> 
                    <author>Adomavicius, G.</author> 
                    <author>Tuzhilin, a.</author> 
                </authors> 
            </contributors> 
            <titles> 
                <title>Toward the next generation of recommender systems: a survey of the 
                    state-of-the-art and possible extensions</title> 
                <secondary-title>IEEE Transactions on Knowledge and Data 
                    Engineering</secondary-title> 
            </titles> 
            <periodical> 
                <full-title>IEEE Transactions on Knowledge and Data Engineering</full-
title> 
            </periodical> 
            <pages>734-749</pages> 
            <volume>17</volume> 
            <issue>6</issue> 
            <keywords/> 
            <dates> 
                <year>2005</year> 
            </dates> 
            <electronic-resource-num>10.1109/TKDE.2005.99</electronic-resource-num> 
            <urls> 
                <pdf-urls> 
                    <url>internal-pdf://Adomavicius, Tuzhilin - 2005 - Toward the next 
generation of recommender systems a survey of the state-of-the-art and possible 
                        extensions.pdf</url> 
                </pdf-urls> 
                <web-urls> 

<url>http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=14
23975</url> 

                </web-urls> 
            </urls> 
        </record> 
</records> 
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DocBook format 

<bibliography> 
<biblioentry xreflabel="Abramov2002" id="Abramov2002"> 
   <authorgroup> 
       <author><firstname>Sergei</firstname><surname>Abramov</surname></author> 
       <author><firstname>Robert</firstname><surname>Gluck</surname></author>  
       <editor><firstname>Torben</firstname><surname>Mogensen</surname></editor> 
       <editor><firstname>David</firstname><surname>Schmidt</surname></editor> 
       <editor><firstname>I.</firstname><surname>Sudborough</surname></editor>  
   </authorgroup> 
   <citetitle pubwork="article">Principles of Inverse Computation and the Universal 
Resolving Algorithm</citetitle> 
   <publisher> 
      <publishername>Springer Berlin / Heidelberg</publishername> 
   </publisher> 
   <artpagenums>269&#x2013;295</artpagenums>  
   <pubdate>2002</pubdate>   
</biblioentry> 
<biblioentry xreflabel="Adomavicius" id="Adomavicius"> 
   <authorgroup> 
       <author><firstname>Gediminas</firstname><surname>Adomavicius</surname> 
      </author>  
   </authorgroup> 
   <citetitle pubwork="article">Towards More Confident Recommendations : Improving 
Recommender Systems Using Filtering Approach Based on Rating Variance 
Department of Computer Science and Engineering &#44; University of 
Minnesota</citetitle> 
   <artpagenums>1&#x2013;6</artpagenums>  
</biblioentry> 
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