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Abstract 

The cloud computing model introduces a new paradigm shift in computing platforms with 

highly scalable, distributed, and shared computing resources. However, despite the potential 

cost savings and revenues reaped by adopting the cloud model, it still has a set of open issues 

that impacts its wide adoption. Security is at the top of these issues. In addition to the traditional 

technology-related problems, the cloud model introduces a set of new and critical security 

problems including loss-of-control, lack-of-trust, data isolation, and tenants’ security controls’ 

integration. These security problems are not mitigated yet by the existing cloud platforms. 

Cloud security solutions should take into consideration that it is hard to get cloud tenants and 

service providers to manually customize their shared cloud services’ security. Moreover, the set 

of a cloud service tenants usually emerges at real-time. Each service tenant usually has a set of 

security requirements which changes over time to reflect new risks and business objectives. 

In this research, we have successfully invented a new cloud computing security management 

platform addressing these security problems. The invented security platform depends on 

capturing cloud platform, services and security specification details using a set of novel system 

and security mega-models. Cloud stakeholders use these models to specify their assets-security 

requirements. Then, our platform automates the integration of these requirements within target 

services at runtime.  

Identifying security requirements that need to be satisfied requires deep experience with 

system and security to pinpoint possible threats, vulnerabilities, and attacks. This is even worse 

when adopting the cloud model where services are publicly accessible to malicious users who 

could exploit services’ vulnerabilities and flaws to breach tenants’ security. Our platform 

delivers a novel, extensible, and online signature-based security analysis service that automates 

services’ security analysis. The outcomes of the analysis service are feed into our security-

patching component. 

Furthermore, given that tenants do not have direct control on their outsource shared cloud-

services, our platform provides a new security monitoring service that automatically realizes 

tenants’ security metrics, used in assessing services’ security status, into security probes and 

automatically deploys, collects, and analyzes probes’ generated measurements. 

We evaluated each component of our platform using a set of benchmark applications. Then, 

we conducted three case studies using our platform in mitigating three key cloud security 

problems. The evaluation results are very supportive and demonstrate that our platform 

successfully automated the security management of the shared, multi-tenant cloud services.  
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  Chapter 1

Introduction 

The cloud computing model [2] introduces a new generation of computing platforms with more 

emphasis on increasing business benefits and reducing IT infrastructure cost. This model is 

leading IT industry towards new service models that can utilize resource virtualization, service 

outsourcing, and the pay-per-use payment model [3]. The cloud model introduces a win-win 

solution for both cloud providers and service providers, and service consumers. Service 

consumers can scale their resources up and down at runtime utilizing the cloud elasticity feature 

which enables consumers to allocate and de-allocate resources on the fly. On the other hand, 

service providers can optimize cost and resource utilization through the cloud multi-tenancy 

feature which enables providers to co-locate different service consumers (tenants) to share the 

same service instance. 

Securing such dynamic, virtualized, and multi-tenant platforms and services is a big 

challenge [4]. Our analysis of the cloud computing model shows a set of key factors that 

complicate the cloud computing security problem and need to be addressed by cloud security 

solutions. These factors include: First, the cloud model has different stakeholders (cloud 

platform provider, cloud service provider, and cloud consumer) involved in securing the cloud 

platform, the cloud hosted services, and tenants’ data. Each stakeholder owns a piece of 

information required in developing the service security model. Moreover, each stakeholder may 

have their own security requirements that should be supported by the same service instance, in 

case of multi-tenancy. Second, outsourcing assets to be hosted on the cloud without tenants’ 

involvement in securing these assets raises the loss-of-control problem (tenants do not have 

control on the security enforced on their cloud hosted assets) and lack-of-trust problem (tenants 

do not trust that the claimed security level by service providers is actually applied). Third, the 

key cloud characteristics - multi-tenancy and elasticity - have negative impact on the cloud 

security. Multi-tenancy increases tenants concerns about the security isolation between different 

tenants’ assets that are co-located on the same cloud service instance. Elasticity increases 

tenants concerns about the elasticity of the operated security to cover newly allocated resources. 

Fourth, the cloud model itself has a complex layered architecture (servers and infrastructure, 

hypervisor, virtual machines, platforms, services, and applications) with long dependency stack. 

Each layer has a set of security issues, inherited from the underlying technology used by the 

cloud model, as well as a set of deployed security controls. This in turn complicates the 
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management task of such huge number of cloud services and heterogeneous security solutions. 

Fifth, the cloud model introduces different service delivery models. Each service model has 

different possible deployment models and security controls to be used which complicates the 

development of standard security models for each service delivery model.  

Delivering a secure cloud platform requires addressing these factors with a consistent and 

comprehensive model. From our analysis of the cloud model, we figured out that the current 

cloud security model considers security as a crosscutting concern while each cloud layer and 

service has to enforce and manage their security individually. The cloud model lacks a strong 

security management platform that can address the large amount of the cloud-hosted services, 

security controls deployed, stakeholders involved with the cloud platform, constantly changing 

security requirements of different tenants, multi-tenancy and elasticity problems, loss of control 

and the lack of trust problems raised by cloud tenants.  

The main responsibility of any security management framework as defined by ISO27000 [5] 

and NIST-FISMA [1] standards is to help in capturing and defining assets’ security 

specifications, enforcing specified security, and monitoring and improving security to meet 

target security objectives. Although, this mission is obvious, we did not find relevant efforts that 

help in fulfilling these tasks consistently. Moreover, we have figured out major gaps and 

limitations in these existing efforts when projected on the cloud computing model and its related 

security challenges. Below we summarize some of these limitations. A detailed discussion of 

the existing, relevant efforts is introduced in the related work chapter 3. 

– Security Management Process: Existing security management standards that represent the 

basis for adoption by any security management system, such as ISO27000 [5], NIST-FISMA 

[1], do not fit well with the cloud model. This is because they assume that the owner of the 

assets to be secured has full control over the security management process of these assets. 

Thus, outsourcing IT assets and sharing of cloud resources between different tenants are hard 

to address by these standards. Furthermore, the existing security management frameworks, 

such as POSTIF: Policy-based security management [6], Ontology-based management [7], 

hybrid approach of both [16], and model-based security management [8], focus mainly on 

automating the configuration of heterogeneous security controls. This is in contrast to 

addressing the early phases of the security management process, such as how to capture 

security requirements and how to extract and report feedback on system security status. 

Moreover, the integration of the deployed security controls within target IT systems (cloud 

services in our case) is not addressed and currently done manually. This is not feasible in the 

cloud model where we have potentially hundreds of stakeholders with different security 

requirements. 
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– Security Specification Phase: The specific security requirements to be enforced by a security 

management system arise from the stakeholder security objectives that must be satisfied by 

the target IT systems. Refining security objectives into security requirements and policies is 

done using risk assessment approaches. Existing risk assessment and management 

frameworks, such as OCTAVE [9], CORAS [10], Saripalli [11], Xuan [12] Shirlei et al [13], 

focus on the manual process of identifying security risks, threats and proposing mitigation 

solutions. Although some tools do exist, they focus on the documentation and modeling of 

the identified risks rather than automation of the identification process. Automation is a key 

requirement in cloud computing security because of the cloud complexities discussed above. 

The security risk assessment process involves vulnerability analysis, threat analysis, and 

attack analysis. Existing vulnerability analysis efforts that help in identifying security flaws 

and bugs focus on specific vulnerability types e.g. SQL Injection or Cross Site Scripting 

(XSS) attacks. However, the cloud model is publicly accessible to end-users who may be 

malicious users. Moreover, even one of the cloud service tenants may be a malicious attacker 

who has high privileged permissions to exploit more complex vulnerabilities. Thus, there is a 

need for an online and comprehensive security analysis approach. 

– Security Enforcement Phase: Enforcing the identified security requirements is done through 

the security engineering process. Existing security engineering efforts usually focus on 

design time security engineering [14-16] where security requirements are captured during the 

system development, by service providers, and are not expected to change at runtime. On the 

other hand, adaptive application security has been investigated in some research [17] [18, 

19]. These approaches mainly focus on low level details, including in-memory objects 

update, or deliver adaptive security solutions/architectures only for specific security 

objectives, such as delivering adaptive access control mechanisms [20]. Some security 

engineering approaches for Service-Oriented Architecture (SOA) applications exist. Such 

efforts depend on the nature of SOA-based applications which is not the prominent 

architecture of cloud applications (mainly web applications). Multi-tenant security efforts 

[21] help in specifying and realizing security requirements on cloud web-based applications 

composed of web services. Each application instance, customized for a specific tenant, is 

deployed on a separate Virtual Machine (VM). They assume that web applications are 

composed of web services only. Security is maintained through using separate VMs for each 

tenant. Approaches to extend applications’ capabilities to support multi-tenancy do exist as 

well [22-26]. These efforts mostly focus on extending existing application security 

capabilities and on handling the isolation security problem. Enabling multi-tenant security 

engineering “tenant-oriented security”, to the best of our knowledge, has not been addressed. 
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– Security Monitoring Phase: Confirming that the operated security is effective and efficient is 

a very important phase in the security management process. This becomes crucial and 

complicated under the cloud computing model, given that service consumers (tenants) do not 

have control on their cloud-assets. Existing efforts in the security monitoring area [27-31] 

either support security monitoring using controls log-based measurements (lagging security 

metrics) which is not efficient for proactive security, or support manually specified and 

collected security measurements which cannot be used with cloud outsourced assets. We 

could not find an easy to use formalized language that could help in capturing customized 

(user-defined) dynamic, runtime security metrics. Most of the existing efforts are either too 

formal such as Event-Calculus [190], or domain-specific such as [203, 204, 205]. Automated 

security metrics’ realization including monitoring (injecting necessary probes at relevant 

components) and analysis of the generated security measurements are not supported. 

In this thesis, we introduce a novel, adaptive, model-based, and multi-tenant cloud 

computing security management framework addressing these new cloud computing security 

challenges and mitigating gaps found in the existing relevant security management efforts. Our 

solution is adaptive to cope with the dynamic nature of both the security problem (requirements 

change according to current security status and risk) and the cloud model (cloud services and 

their tenants change over time). It is model-based to work on abstract level away from the 

underlying platform or target service details. Our approach is based on extending the boundaries 

of the cloud consumers and providers’ security management processes to include their cloud 

hosted services and cloud platforms respectively. This means that stakeholders can go through 

the security management process for their cloud hosted assets as if they have been hosted inside 

enterprise perimeters. Moreover, they can use the same security specifications, security 

enforcement, and monitoring and improvement approaches used internally and thus mitigate the 

loss-of-control and the lack-of-trust problems arise from adopting the cloud model. Our 

framework can be deployed on cloud platforms and used to manage the security of deployed 

services for corresponding service tenants. As none of the cloud stakeholders possess the 

information required to secure a given service, we base our approach on joint-collaboration 

between different cloud stakeholders in securing their cloud-hosted assets.  

We evaluated each component of our cloud security management platform separately using a 

set of benchmark applications and a set of soundness and completeness metrics whenever 

applicable (introduce in chapter 4). Furthermore, we have conducted three case studies to 

evaluate different parts of the platform (two or more components) in addressing specific cloud 

security problems. The first case study targets automated, online patching of services’ reported 

vulnerabilities (virtual patching) using the enforcement component and analysis component. 

The second case study targets facilitating addressing multi-tenant security isolation problem 
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when migrating legacy applications for the cloud computing – to support multi-tenancy. The 

third case study addresses a complete multi-tenant security management cycle using our security 

management platform. The evaluation results were very supportive and demonstrate that our 

platform successfully automated the security management process of the shared, multi-tenant 

cloud-hosted services. 

1.1 Motivating Scenario 

In this section, we introduce a simple motivating scenario, shown in Figure  1-1, which we wish 

to satisfy using our research. Although this scenario is a typical scenario that most probably exit 

in any cloud platform hosting Software-as-a-Service applications, it still cannot be satisfied 

neither by the existing security management nor security engineering efforts. 

Get Currency-Now

Build Workflow 

Galactic ERP

Execute Batch processing

SWIN

SOFT

SWIN

SOFT GREEN CLOUD

BLUE CLOUD

SWIN
MARKET

 

Figure 1-1. Motivating scenario use-case diagram 

Consider SwinSoft, a virtual software house focusing on developing business applications, 

has developed their new enterprise resources planning (ERP) product. The code name of this 

product is Galactic. This product is developed as a web-based, multi-tenant, cloud application. 

SwinSoft has decided to host Galactic on a SaaS cloud platform delivered by GreenCloud. 

During the development of Galactic, SwinSoft has decided to use external third-party services to 

speed up their application development and reduce the time to market. These services include: 

– Build Workflow Service: This is a customizable workflow engine that enables different 

tenants to model their business processes. This service is developed by GreenCloud and 

deployed on their cloud platform. 

– Get Currency-Now Service: This is an online service that retrieves current and historical 

currency exchange rates. This service is also developed by GreenCloud and deployed on 

their cloud platform. 
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– Batch-Monster Service: This is an online ERP-posting service (performs batch posting of 

system transactions) based on the map-reduce model. This service is developed and deployed 

on another cloud platform called BlueCloud.  

Swinburne University is planning to buy a new ERP solution in order to automate its internal 

processes and facilitate the communications with Swinburne students, staff, and community. 

After long investigation and cost analysis of the existing ERP solutions, Swinburne decided to 

go for Galactic ERP as a SaaS application, to save upfront investment required when deploying 

new ERP solutions while keeping infrastructure cost as optimal as possible by delivering it on 

use/load wise. At the same time, Auckland University becomes interested to adopt Galactic as 

their ERP system. However, both Swinburne and Auckland have their own business 

requirements as well as their own security requirements. Below we summarize some of the 

security requirements of both stakeholders. 

– Swinburne Security Requirements: Each user should have their own privileges according to 

their roles in Swinburne. Such privileges should capture and consider the context of the users 

such as their locations, time, and nature of the devices used…etc. Based on these attributes, 

the security level and security mechanisms to be used should be applied; Users should not 

have different identities to deal with the different IT systems including internally deployed 

systems as well as Galactic ERP service; Users’ information should be kept secured. Any 

communication between the users and the system or other underlying systems or services 

should be kept secured; and Swinburne data should be kept isolated from other customers 

and SwinSoft employees as well. These security requirements should not conflict with any 

other customer of Galactic ERP or even with security policies defined by SwinSoft or other 

providers involved in the service delivery. 

– Auckland Security Requirements: Auckland assigns high risk impact to the Galactic service 

because of the criticality of data processed by this service. Thus, they have strong security 

constraints that are different from their local systems. They plan to use more complicated 

security solutions to protect their cloud assets. This includes the following requirements: To 

apply an attribute-based access control (ABAC) model [32] for access control that is based 

on user context; To apply two-factor authentication security system currently deployed in 

Auckland network; To apply transaction accountability and auditability on all user 

transactions; and Auckland data should be kept confidential at rest and at transmission. 

SwinSoft has to satisfy Galactic tenants’ security requirements in order to convince them to 

procure the application. SwinSoft software and security engineers have to manually customize 

and redeploy Galactic services after capturing these new security requirements. However, 

SwinSoft developers, as most of software engineers, do not have enough experience in the 
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security engineering area. So they face many problems developing tenants’ security 

requirements inside their delivered applications and services. 

SwinMarket, a new Galactic tenant, becomes also interested to use Galactic point-of-sale 

system to operate in their stores. Galactic should be integrated with the SwinMarket systems that 

automate their internal business process including General Ledger and Purchasing systems. This 

means that SwinSoft has to revisit Galactic application security requirements to incorporate 

SwinMarket security needs. 

Few months later, Swinburne has decided to change their security requirements to match 

their new business needs. Moreover, Auckland has decided to change their security 

requirements in order to address new security threats found in Galactic and may result in 

breaching their assets confidentiality. This means that SwinSoft development team has to revisit 

those tenants’ operated security with relevant change requests. 

SwinSoft is now looking for a security management and engineering approach that could help 

them in capturing and enforcing different tenants’ security requirements rather than the current 

methodologies that deliver one set of application security not linked to different service tenants’ 

security requirements. Moreover, they are looking for an approach that helps in modifying 

security requirements of a given tenant independent of the other tenants. This approach should 

support registering new tenants who can apply their security requirements at runtime without a 

need for service customizations. It is highly recommended that the proposed approach is a 

configuration-based rather than customization-based to avoid delays in modifications, being 

overwhelmed with change requests, and improve service availability. 

1.2 Research Roadmap 

To deliver our cloud security management platform, we have adopted an iterative approach 

where each iteration is supported with a prototype as a proof-of-concept. Working iterative 

helped to keep adding components to the proposed platform, each new component addresses 

one of the research questions/gaps. The order of iterations reflect the logical dependencies 

between the research gaps we found in the area of cloud computing security management. 

Below we discuss details of our research project roadmap. 

First, we investigated the existing efforts in the area of the cloud computing security to 

identify the existing research problems, research gaps, and setting the research scope. We 

published results of our detailed analysis of the cloud computing security problem in [4].  

Second, we projected the existing security management standards including ISO27000 [5] 

and NIST-FISMA  [1], and security management efforts on the cloud computing model using 
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the requirements and challenges we identified in the first milestone. A practical solution to the 

cloud computing security management problem must conform to the existing security standard. 

Thus the objective of this step was to assess the existing security standards when applied to the 

cloud computing model. We selected NIST-FISMA security management standard (as one of 

the two main security management standards). The standard does not target securing outsourced 

services, thus we had to adapt NIST-FISMA standard to fit with the cloud model. Our revised 

cloud-aligned NIST-FISMA standard is based on improving the collaboration of the cloud 

stakeholders in delivering the whole platform and service security model. We developed a 

simple prototype based on the modified model, and verified it using the motivating scenario 

discussed above (published in [33]). The rest of our platform is aligned with the revised 

NIST_FISMA standard.  

Third, once we confirmed that our modified cloud security model works well with the cloud 

model, we started to work on every task of the security management process (specifying, 

enforcing, and monitoring security) to see how we can improve or automate and re-integrate 

with our developed framework. We started with the security enforcement step because it 

represents the core of the whole security process, whereas a failure to automate, implies 

rejecting the hypothesis (that we can deliver automated cloud security management) we are 

trying to prove in this project. Assuming that we succeeded in capturing the set of security 

objectives of each tenant, how can we enable services to support enforcing these multi-tenant 

security requirements? To do this we investigated the existing security engineering, adaptive 

application security, and multi-tenant SaaS engineering approaches. These efforts do not 

support multi-tenancy security engineering, fully adaptive security, or runtime integration of 

third-party security controls. We proposed a new approach for security engineering, MDSE@R. 

In MDSE@R, service providers should deliver a service description model that captures their 

services’ details (called a Service Description Model – SDM) as part of their service delivery 

package.  Customer security engineers develop their security specification model (SSM) that 

captures all security objectives, requirements, etc. MDSE@R then weaves both models together 

at runtime and reflects the resultant weaved system-security model onto the running system 

using dynamic-weaving Aspect-Oriented Programming - AOP. We validated MDSE@R with a 

set of open source applications from our benchmark set discussed above. The results show that 

MDSE@R successfully used in capturing different sets of security requirements and realization 

controls, and correctly integrating these security controls within target system entities. The 

results were published in CSS2012 [34]. As an extension of this approach we modified 

MDSE@R to fit with the multi-tenancy problem – i.e. to support enforcing different sets of 

security requirements at runtime. TOSSMA is a tenant-oriented SaaS security management 

architecture that supports capturing and enforcing different security requirements, for different 
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tenants, on the same service instance at runtime. TOSSMA was validated on the same set of 

open source applications. Results were published in CLOUD2012 [35].  

Fourth, MDSE@R helps adding security at runtime for new and existing applications, but 

for existing applications with built-in security, the new injected security capabilities may result 

in conflicts with the already built-in security capabilities. Thus, we have to introduce a pre-

processing step where the existing, built-in security capabilities are re-engineered. This may 

include modifying, replacing and disabling existing security. We investigated existing system 

and security maintenance, and retrofitting approaches. A limited work was introduced in this 

area. A reasonable justification of this is that once a model-driven engineering approach was 

used in developing the application, the maintenance task will mainly relay on updating existing 

models. Moreover, addressing security as an afterthought is always claimed to be a bad practice 

[36]. Existing efforts do not help enough in automating security reengineering tasks, as most of 

these efforts focus on using aspect-oriented programming (AOP) to deliver dynamic system 

updating through replacing existing methods with updated versions [37]. We propose a new 

approach that helps in reengineering system and security whatever was the information 

available including system models, source code or at the worst case system binaries are only 

available. Our approach is based on a new concept we introduced “Re-aspect” – Reengineering 

aspects – which extends the AOP with more flexible signature specification constructs (to 

capture signature of code entities to be modified) and more supported actions (delete, inject, 

modify, and replace). Re-aspect advice encapsulates code to inject (in case of replace or insert 

re-aspect) or code to be used in system modification (in case of modify re-aspect). We validated 

our approach on the same set of open source web applications. The results show that “Re-

aspects” is sound enough in automating the software security retrofitting process. We 

documented our approach and results and published it in ASE2012 and ICECCS2012 [38, 39] 

Fifth, a key source of security requirements is the security analysis task that pinpoints service 

security issues. Moreover, given a system either secured or not, how can we verify that it is not 

still vulnerable to known weaknesses or vulnerabilities. Existing techniques focus on specific 

types of weaknesses such as SQL Injection, OS Command Injection, XSS, etc. These techniques 

use static analysis, dynamic analysis, string based analysis, runtime analysis, or hybrid 

approaches. These efforts are not comprehensive enough to cover a wide - range of 

vulnerabilities. Conducting vulnerability analysis of the services before hosting on the cloud or 

getting tenants to use it is an important task that helps in reducing the risk of tenants’ data 

breaching. Moreover, such efforts are not extensible enough to address new vulnerabilities that 

emerge at runtime. Having an online vulnerability analysis is a key requirement of the cloud 

computing security problem. To deliver a comprehensive and extensible approach, we 
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developed a formal weakness/vulnerability specification approach independent of the service 

implementation or details of the programming language used (currently, vulnerabilities are 

specified informally e.g. in CWE database). In our approach, vulnerability signatures are 

specified in Object Constraint Language (OCL). We have developed a source code vulnerability 

analysis extension that receives the source code of the service under test along with the 

vulnerabilities’ signatures. It generates a list of found vulnerabilities in the source code along 

with the entities that match the specified vulnerabilities’ signatures. We have evaluated our 

approach in capturing definitions of the top ten weaknesses published by the Open Web 

Application Security Project – OWASP [40], and in analyzing a set of benchmark applications 

using these signatures. The evaluation results show that our online security analysis tool has 

high precision and recall rates. This means that we can depend on it in analyzing SaaS 

applications against possible vulnerabilities and attacks. Our approach along with the evaluation 

results have been published in ASE2012 [41]. We then extended this approach to support not 

only source code analysis (vulnerability analysis) but also system architecture and design 

artifacts (threat and risk analysis). This extension along with the evaluation results have been 

published in ICSE2013 [42]. 

Sixth, given the set of security objectives, identified vulnerabilities, and enforced security 

controls, how to confirm that the system is now secure enough, meets the specified security 

objectives, and blocks the possible security attacks. Security monitoring is a very raw field 

where a very limited amount of research has been done so far. Existing efforts do not help in 

automated security monitoring. They mostly help in developing manual security metrics or 

manual collection of security measures. We have developed a general approach that captures 

security metrics in general signatures as OCL invariants. These metrics definitions are used to 

generate required security probes. These probes are integrated within the target services using 

AOP that intercept service execution and extract values of different attributes of the services to 

be evaluated. The collected measures are sent back to analysis service that analyze such 

measures and generates the corresponding metric values. The evaluation results show that our 

approach is successful in capturing different categories of security metrics, automating the 

generation and deployment of security probes, and analyzing the generated measurements. This 

approach along with the evaluation results are submitted to ASE2014. 

1.3 Key Contributions 

In this research, we have introduced a set of solutions to address relevant security problems that 

arise from the adoption of the cloud computing model. Below we summarize the key 

contributions we have achieved in the area of cloud computing security management. 



Chapter 1: Introduction 

 

Page 13 

A novel alignment of one of the existing security management standards (NIST-FISMA 

standard) to fit with the cloud computing model and its new application service hosting model 

(multi-tenancy model) [33]. Existing security management standards focus on enterprise 

security management where assets are fully owned and controlled by the customers. On the 

other hand, cloud consumers do not have control on their outsourced cloud assets, especially in 

the SaaS applications. Thus, existing security management standards do not fit well with the 

cloud computing model. Our proposed security management standards-to-cloud computing 

alignment is based on improving the joint-collaboration between different cloud stakeholders 

where each stakeholder participates with the piece of information they own about the cloud 

model or the hosted services. Our proposed alignment is introduced in Chapter 5.  

A novel, integrated, and multi-tenant cloud computing security management model and 

platform. Our security management platform, to the best of our knowledge, represents the first 

proposal of a security management platform for the cloud computing model that address the 

loss-of-control and lack-of-trust problems taking into consideration the multi-tenancy 

dimension. Our security management model is based on NIST-FISMA standard as one of the 

two main security management standards. Our aim is to be comprehensive enough to cover 

most of the tasks done by security experts during the security management process. To the best 

of our knowledge, this is the first proposal of multi-tenant security management platform that 

operates as a cloud service shared among all cloud stakeholders including service tenants and 

service providers. 

A novel, model-driven, tenant-oriented security engineering approach [34, 35]. We introduce 

a novel multi-tenant, model-driven security engineering at runtime approach (we call 

MDSE@R). Given cloud services are shared among different tenants who have their own 

security requirements, the service-oriented security engineering approaches (a service can 

reflect one set of security requirements that are captured during design time) are no longer 

suitable to satisfy tenants’ needs. We introduce a tenant-oriented security engineering approach 

that enables different tenants to manage (define security, enforce security, and monitor security) 

their service instances’ security at runtime without a need for service customization.  MDSE@R 

introduces a comprehensive system description mega-model (SDM) that captures all system 

details (this model is developed by service providers using UML) and security specification 

mega-model - SSM (that captures each tenant’s security details, developed by each service 

tenant using our SecDSVL). The SSM is based on a deep analysis of the main entities and tasks 

existing in security management standards. We developed SecDSVL, a security domain-specific 

visual language, to help security engineers and administrators in developing security 

specification models. MDSE@R also introduces a common security interface that helps in 
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integrating third-party security controls with the target IT assets at runtime. Security vendors 

need to develop one adaptor for their security services that complies with our common security 

interface. Thus, they do not need to develop different adaptors for different cloud services. Our 

proposed MDSE@R approach is introduced in Chapter 6. 

An extensible online cloud services’ security analysis service [41, 42]. We introduce a 

security analysis service that can analyse service architecture, design, source code, and binaries 

to identify the existing security design flaws and bugs. The key contributions of our novel 

security analysis service are: integrated security analysis throughout different service artifacts 

including architecture, design and code; the security analysis service is extensible, thus we can 

add different security analysis mechanisms without a need to modify the underlying platform; 

and security analysis is signature-based, thus any vulnerability, threat, or system design security 

metric could be easily specified and verified against the system without a need to develop new 

plugins. This helps to support online analysis for known and unknown vulnerabilities that arise 

at runtime as far as a signature of such vulnerabilities exist. Our proposed security analysis 

approach is introduced in Chapter 8. 

An extensible and automated cloud applications’ security monitoring service. The main 

contribution of our novel security monitoring service is that we did not develop a predefined set 

of security metrics. Service users can define their own security metrics to be used in diagnosing 

the security status of their IT assets. The security monitoring service uses these metrics 

signatures (definitions) to generate and deploy required security probes that are responsible for 

collecting required measurements from the target cloud services. Moreover, it uses these 

signatures in generating metric evaluation expressions to be used in analyzing collected security 

measurements and generating metric values. Our security monitoring approach is introduced in 

Chapter 9. 

A novel approach to help migrating legacy applications to the cloud and disabling hardcoded 

security functionalities [38, 39]. In order to help in managing services security using MDSE@R 

we may need to disable the existing security APIs and functions in a legacy application. To do 

this we introduce a novel system and security reengineering approach using a new concept 

called reengineering aspects “Re-aspects”. This new concept helps in capturing system 

modification details including the signature of system entities to modify, actions to apply, 

advice(s) or code to use in realizing this change. Our re-aspects engine uses these details to 

realize the captured change request details. This approach is supported with two signature 

specification approaches including code-snippets signatures and OCL-based signatures. We 

have used re-aspects to address two other problems: the patching/mitigation of reported 

vulnerabilities and in migrating legacy applications that are not designed with multi-tenancy in 
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mind to support cloud computing multi-tenancy. Our proposed security reengineering approach 

is introduced in Chapter 7. 

An automated vulnerability virtual patching approach [43]. This approach is based on 

integrating MDSE@R and vulnerability analysis service. The reported vulnerabilities by the 

vulnerability analysis service are fed in MDSE@R to inject relevant security controls (as 

vulnerability mitigation actions) at critical (vulnerable) system entities. Our proposed virtual 

patching approach is introduced in Chapter 10 as a case study. 

1.4 Thesis Structure 

This thesis deals with cloud computing security management problem taking into consideration 

the loss-of-control, lack-of-trust, and multi-tenant security problems that arise from the adoption 

of the cloud computing model. In this thesis we introduce our solution to address these 

problems. Our solution is based on an adaptive, model-based cloud computing security 

management approach that enables tenants to extend their security capabilities to include cloud 

hosted assets. By this approach tenants can define their security requirements, their security 

controls, and security metrics and attributes they want to follow up. The thesis structure is 

depicted in Figure 1-2. The thesis is divided into three parts. Part (1) gives an overview of the 

cloud computing model, the key security problems and challenges arise from the adoption of the 

cloud model, and the key limitations of the existing research efforts. Part (2) gives details of our 

solution – the adaptive, model-based cloud computing security management approach. Part (3) 

gives details of the case studies we conducted to evaluate our approach and the key conclusions, 

limitations and future work. 

In Chapter 2, we introduce a detailed analysis of the cloud computing security problem. We 

tried to identify different the key factors that really contribute to the cloud computing security 

problems and should be addressed by any cloud computing security solution. These factors 

include cloud characteristics (multi-tenancy and elasticity), cloud architecture, underlying 

technologies, and service delivery models used. 

In Chapter 3, we give a comprehensive literature review of the main relevant research areas 

related to our research problem, including cloud computing, security management, security 

engineering, security engineering, security analysis, and security monitoring. We summarize the 

key efforts done in each area, key limitations of these efforts, and key gaps compared to the 

security problems and issues of the cloud computing model that we need to address in our 

research project. 
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Figure 1-2. Thesis structure 

In Chapter 4, we introduce the main idea of our security management platform which is the 

autonomic computing model (MAPE-K). We also describe the “big picture” of our platform, 

our solution high-level architecture, and the main components of the security management 

platform. 

In Chapter 5, we describe how we aligned one of the main security management standards 

(NIST-FISMA standard) to fit with the cloud computing model and how we attested the 

proposed model with a prototype with a simplified version of our motivating example. 

In Chapter 6, we describe our security enforcement approach developed as model-driven, 

multi-tenant security engineering at runtime approach (MDSE@R). The proposed approach 

enables each tenant to manage their assets security using security specification models that 

capture their security details using SecDSVL (security domain-0specific visual language). Then, 

MDSE@R realizes these security models using aspect-oriented programming. We introduce a 

detailed evaluation of our MDSE@R approach, including SecDSVL usability evaluation, usage, 

example, and a set of benchmark applications. 

In Chapter 7, we present our security reengineering approach and our new change request 

realization concept “reengineering aspects” re-aspects. MDSE@R helps in injecting tenants’ 

security requirements at runtime; however, it does not help with applications that have built-in 

security functions or APIs. We give details of the reengineering aspects concept, how re-aspects 
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help in impact analysis and change propagation as main steps of the software reengineering and 

maintenance. We describe a detailed evaluation of our security reengineering approach on a set 

of benchmark applications and a set of security related change requests. 

In Chapter 8, we present our novel, online signature-based security analysis approach. This 

approach is based on capturing signatures of weaknesses, vulnerabilities, attacks’ signatures, 

and security metrics using formalized signatures developed with Object Constraint Language 

(OCL). These signatures are automatically transformed into C# code that is used to analyse the 

applications/services source code to pinpoint matched entities. We introduce a detailed 

evaluation of our approach and developed prototype. 

In Chapter 9, we introduce our novel security monitoring approach using formalized security 

metrics schema with metric signature specification approach based on OCL. We describe our 

underlying security monitoring platform that is responsible for transforming these security 

metrics into a set of security probes to be deployed into system entities, collecting 

measurements from the system status attributes, and in analyzing the collected measurements 

using the specified security metrics’ signature after being transformed into C# code. 

In Chapter 10, we present a set of case studies that we have conducted in order to evaluate 

our proposed cloud security engineering approach. We describe three case studies where each 

case study assesses the application of the platform or parts of the platform in a specific cloud 

security problem. The first case study addresses the problem of online virtual patching of the 

newly reported security vulnerabilities. The second case study addresses the problem of 

migrating legacy applications to fit with the cloud model (mainly the isolation of different 

tenants’ data). The third case study shows the application of our platform in realizing a full 

security management cycle of a SaaS application with different tenants. 

In Chapter 11, we summarize the key problems we addressed throughout our research 

project, summarize key contributions of the research project introduced in this thesis, the main 

limitations of our platform, and future tasks that we plan to address. 
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  Chapter 2

Cloud Computing Security Problem 

In this chapter we discuss the key factors, we figure out from our analysis, contributing to the 

complication of the security problem under the cloud computing umbrella i.e. we address the 

question why security is different and more challenging in cloud computing than for other kinds 

of computing domains? Such factors need to be addressed by cloud security solution that targets 

security issues in the cloud computing model. This chapter is organised as follows. In Section 1, 

we give a general introduction of the cloud computing model and why cloud computing security 

is ranked as one of the top concerns when adopting the cloud model. In Section 2, we discuss 

the implications of different factors on the security of the cloud model. In Section3, we discuss 

the key enablers that can help addressing these cloud computing security problems. 

2.1 Introduction 

The cloud computing model provides the next generation of internet-based, highly scalable 

distributed computing systems in which computational resources are offered 'as a service' [2]. 

The cloud model is based on the pay-as-you-go payment model where tenants – users of the 

cloud-hosted software applications – pay only for the amount of resources they use. Tenants can 

expand or shrink their resources on the fly according to current needs [44].  

The cloud model has motivated industry and academia to host a wide spectrum of 

applications ranging from high computationally intensive scientific or business applications 

down to light-weight services. The cloud model also helps in addressing the “long tail market” 

for small and medium enterprises (SMEs) [67]. This is because it does not require large upfront 

investment in IT infrastructure, software licenses, and other computing infrastructure. 

Moreover, governments and other organizations have become more interested in the 

possibilities of using cloud computing to reduce IT costs and increase capabilities and 

reachability (availability and accessibility) of their delivered services. According to a recent 

Gartner survey [45] on cloud computing revenues, the cloud market was worth USD 68 Billion 

in 2010 and will reach USD 148 Billion by 2014. These revenues imply that cloud computing is 

a promising computational platform. Despite the potential benefits of improved reliability, 

quality, cost savings and increased revenues that can be gained from the cloud computing 

model, a major downside is that it increases malicious attackers’ interest and ability to find 

applications and platforms vulnerabilities to exploit. 
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This is because of the increased availability and public accessibility of such applications on 

the internet. In addition, the cloud model is still not mature enough [46] - there are a lot of open 

issues that impact the model creditability and pervasiveness from the cloud consumers’ 

perspective. For example, vendor lock-in, multi-tenancy and isolation, data placement and 

management, service portability, elasticity engines, SLA management, and cloud security are 

well-known open research problems [46-48].  

From the cloud consumers’ perspective, security is a major concern that hampers the 

adoption of the cloud computing model [49]. This is due to, among other reasons: First, 

enterprises outsource the security management of their cloud-hosted assets to a third party 

(cloud provider) that hosts their IT assets. This results in the well-known loss-of-control 

problem [50], where cloud consumers do not have security control over their outsourced assets. 

Second, different tenants’ assets co-exist at the same location and using the same software 

service instance. Tenants are unaware of the soundness of operated service security and what 

security controls are actually used to secure tenants’ data and ensuring no data privacy breach. 

Third, the lack of security guarantees in the Service Level Agreements (SLAs) between cloud 

consumers and cloud providers. Most existing SLAs focus on reliability, availability and 

performance quality of service attributes, rather than security [51]. Fourth, hosting this set of 

valuable assets on publicly accessible infrastructure increases the interest and ability of attackers 

to exploit vulnerabilities in the cloud platform or the hosted services to achieve malicious 

benefits, such as compromising one tenant’s data to another tenant who may be a competitor. 

From the cloud providers’ perspective, security requires a lot of expenditure (e.g. security 

solutions’ licenses) and resources (security is a resource intensive aspect). Moreover, security is 

a difficult problem to master due to its complexity (as we illustrate later in this chapter). The 

cloud provider does not know what software the tenants are running which may introduce 

security risks to the platform. On the other hand, ignoring or delaying security in the cloud 

computing roadmap will violate the expected revenues stated above. Thus, cloud providers have 

to understand consumers’ concerns mentioned above and seek out new security solutions that 

resolve such concerns. In order to deliver a security engineering and management approach that 

helps addressing the security problems arise from the adoption of the cloud computing model, 

we have to gain a deep understanding of the cloud computing model to understand the key 

factors and root causes that should be addressed by any security engineering or management 

approach that address the cloud computing model. This is what we are discussing in the next 

sections. 
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2.2 Cloud Security Analysis 

In this Section we summarize the existing challenges and issues involved in the cloud 

computing security problem. We have grouped these issues, as shown in Figure  2-1, into 

architecture-related issues, service delivery model-related issues, cloud characteristic-related 

issues, cloud deployment models-related issues, and cloud stakeholder-related issues. Our 

objective is to identify the weak points in the cloud model by highlighting their root causes. 

This helps us in formulating our research problem, key challenges and requirements that we 

should address in our approach. 

Cloud Characteristics

Long Dependency Stack

Service Delivery Models Different Possible Deployments

Different  Stakeholders

Cloud Computing Model

 

Figure 2-1. Key factors contributing to the cloud computing security 

2.2.1 Deployment Models Security Implications  

The cloud computing model has three different service delivery models and three possible 

deployment models [2] including: Private Cloud: a cloud platform that is dedicated for specific 

enterprise(s). This is usually deployed within enterprise network perimeter and enterprise IT 

department has full control on the cloud platform. The main objective of this model is to remove 

customers’ concerns about the security of their cloud hosted assets on the expense of increasing 

IT infrastructure cost; Public Cloud: a cloud platform available to public users to register and 

use the available infrastructure and resources over the internet. Tenants use cloud resources 

using pay-as-you-go payment model; and Hybrid Cloud: a combination of private cloud 

platform that can extend to use resources on a public cloud platform.  

Of these three models, public clouds are the most vulnerable deployment models because 

they are available for public users to host their services. Those users may be malicious users or 

services. In this case, we grant high privileges to malicious users who can exploit more 

advanced and complicated vulnerabilities to breach the security of not only one tenant data but 

other cloud tenants’ as well. Thus, we need to have an online security analysis tool that can 

automatically check and pinpoint any vulnerabilities in the shared, multi-tenant cloud 

application. Moreover, we need to enable tenants in securing their assets as hard as they see. 
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Figure 2-2. Cloud service delivery and deployment models 

The cloud model introduces three basic service delivery models, as illustrated in Figure  2-2. 

These service delivery models deliver different types of services for different types of cloud 

tenants. Here, we summarize these models and their security implication: Infrastructure-as-a-

Service (IaaS): in this service delivery model, cloud providers deliver computational resources, 

storage and network as internet-based services. This service model is based on virtualization 

technology – i.e. deploying a special software “hypervisor” [52] on top of the infrastructure, 

which enables creation of different virtual machines that share the same physical server. 

Amazon EC2 is the most familiar IaaS platform; Platform-as-a-Service (PaaS): In this service 

delivery model, cloud providers deliver platforms, tools and other business services that enable 

customers to develop, deploy, and manage their own applications, without installing any of 

these platforms or support tools on their local machines. The PaaS model may be hosted on top 

of IaaS model or on top of the cloud infrastructures directly. Google Apps and Microsoft 

Windows Azure are the most well-known PaaS providers; and Software-as-a-Service (SaaS): in 

this service delivery model, cloud providers deliver applications hosted on the cloud 

infrastructure as internet-based services for end users, without requiring installing the 

applications on the customers’ network. This model may be hosted on top of PaaS, IaaS or 

directly hosted on cloud infrastructure. Salesforce.com CRM is an example of a well-known 

SaaS platform. 

Each service delivery model has different possible implementations, as shown in Figure  2-2 

and discussed above. This complicates the development of standard security model for each 

service delivery model. Moreover, these models may co-exist on one cloud platform leading to 

further complication of the security management process. These service delivery models are 

based on existing technologies such as web applications, service-oriented architecture, and 

virtualization technologies which already suffer from security problems. Of these different 

service delivery models, SaaS model is the weakest model where most of the attacks target to 

breach the model security. In this project, we focus mainly on the SaaS model. However, this 
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work could be applied easily on the PaaS model (mainly web services). We plan to wave the 

work we have done in this research with work done in our research group on IaaS model. 

2.2.2 Cloud Architecture Security Implications 

The cloud computing model depends on a deep stack of inter-dependent layers of objects (VMs, 

APIs, Services and Applications), as shown in Figure  2-3, where the functionality of a higher 

layer depends on lower platform layers. The IaaS model covers cloud physical infrastructure 

(storage, networks and servers), virtualization layer (hypervisors), and virtualized resources 

layer (VMs, virtual storage, virtual networks). The PaaS model covers the platform layers (such 

as application servers, web servers, IDEs, and other tools), and APIs and services layers. The 

PaaS model depends on the virtualization of resources as delivered by IaaS. The SaaS model 

covers applications and services offered as a service for end users. The SaaS layer depends on a 

layer of platforms to host the services and a layer of virtualization to optimize resources 

utilization when delivering services to multiple tenants. 
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Figure 2-3. Cloud computing model layers 

This deep dependency stack of cloud objects complicates the cloud security problem as the 

security of each object or cloud layer depends on the security of the lower objects/layers. 

Furthermore, any breach to any cloud objects will impact the security of the whole cloud 

platform. Each cloud layer/object has a set of security requirements and vulnerabilities so it 

requires a set of security controls to deliver secured services. This results in a huge number of 

security controls that need to be managed. Moreover, managing such heterogeneous security 

controls to meet security needs is a complex task, taking into account conflicts among the 

security requirements and among security controls at each layer. This may result in an 

inconsistent security model. Hence, a unified security control management module is required. 
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This module should coordinate and integrate among the various layers’ security controls based 

on security needs.  

2.2.3 Cloud Stakeholders Security Implications  

The cloud computing model has different involved stakeholders, including: cloud provider (an 

entity that delivers infrastructures to the cloud consumers), service provider (an entity that uses 

the cloud infrastructure to deliver applications or services to end users), and service consumer 

(an entity that rents and uses services hosted on the cloud infrastructure). Each stakeholder has 

their own security management systems and processes; each one has their own expectations 

(requirements) and capabilities (delivered) from/to other stakeholders; and each one owns a 

piece of information that could help in building a complete security model. This leads to:  

– A set of security requirements that need to be defined on a shared service/resource by 

different service tenants that may conflict with each other. Thus security configurations of 

each service need to be maintained and enforced at the tenant level instead of the currently 

used model – i.e. on the service level model. At runtime the system should support the 

possibility of security requirements updating based on current tenants’ needs to mitigate 

new risks;  

– Providers and consumers need to negotiate and agree on the specified security properties. 

However, no standard security specification notations are currently available that can be 

used by all of the cloud stakeholders to represent and reason about their offered or required 

security properties (currently only availability, reliability and performance attributes are 

supported); and  

– Each stakeholder has their own security management processes used to define their assets, 

expected risks and their impacts, and how to mitigate such risks. Adopting the cloud model 

results in an inherent “loss of control” by both involved parties - cloud providers are now 

not aware of the contents and security requirements of services hosted on their 

infrastructures; and cloud consumers who are not able to control security on neither their 

assets security nor other services sharing the same resources. Security SLA management 

frameworks represent a part of the solution related to security properties specification, 

enforcement and monitoring. However, current SLAs still do not cover security attributes in 

their specifications [51]. Moreover, SLAs are high level contracts where the details of the 

security policies, security controls and how to change them at runtime are not clearly stated, 

enforced or monitored.  

Furthermore, cloud providers are faced with a lot of changes on security requirements while 

having a huge number of security controls deployed that need to be reconfigured in accordance 
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with security requirements’ changes. This further complicates the cloud providers’ security 

administrators’ tasks. Transparency of what security is enforced, what risks exist, and what 

breaches occur on the cloud platform and the hosted services must exist among cloud providers 

and consumers. This is what is called “trust but verify” - TBV [53], where cloud consumers 

should trust in their providers in the meanwhile cloud providers should deliver tools to help 

consumers in verifying and monitoring their enforced security.  

2.2.4 Cloud Characteristics Security Implications 

To achieve efficient utilization of resources, cloud providers need to increase their resource 

utilization while minimizing cost. At the same time consumers need to use resources as much as 

they require while being able to increase or decrease resource consumption based on actual 

demands. The cloud computing model meets such needs via a win-win solution delivered by 

two key cloud characteristics: multi-tenancy and elasticity. Both characteristics turn out to have 

serious implications on cloud model security as we discuss below. 
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Figure 2-4.  Cloud multi-tenancy models 

2.2.4.1 Multi-tenancy Security Implications 

Multi-tenancy implies sharing of computational resources, storage, services, and applications 

with other tenants. The concept of “multi-tenancy” actually has different realization approaches, 

as shown in Figure  2-4.  

In approach 1, each tenant has their own dedicated instance with their own customizations 

(customization may include special development to meet customer needs). In approach 2, each 

tenant uses a dedicated instance, like approach 1, while all instances are the same but with 
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different configurations (configurations represent adjustments of application parameters or 

interfaces to meet specific tenant needs). In approach 3, all tenants share the same instance with 

runtime configuration (the application is divided into core application components and extra 

components that are loaded based on the current tenant requests – similar to SalesForce.com). In 

approach 4, tenants are directed to a load balancer that redirects tenants’ requests to a suitable 

instance according to current work load. Approaches 3 and 4 are the most risky models from the 

security perspective as service tenants become coexisting on the same process, memory, and 

hardware. This sharing of resources may violate the confidentiality of tenants’ IT assets which 

leads to the need for secure multi-tenancy. Secure multi-tenancy has two key requirements as 

discussed below. 

- Secure Isolation and Location Transparency: Maintaining isolation between tenants’ data (at 

rest, processing and during transmission) and location transparency where tenants have no 

knowledge or control over the specific location of their resources to avoid planned attacks 

that attempt to co-locate with the victim assets [54]. In some cloud platforms, tenants can 

specify high level policies on data location such as country or region level.  In IaaS, isolation 

should consider VMs’ storage, processing, memory, cache memories, and networks. In PaaS, 

isolation should achieve isolation among running services and APIs’ calls. In SaaS, isolation 

should achieve isolate among transactions carried out on the same instance by different 

tenants and also tenants’ data at rest and processing.  

- Security Engineering of Multi-Tenant Services: Different tenants of the cloud services have 

their own business requirements as well as security requirements that they are keen to 

enforce on their cloud hosted assets and data. Although the current cloud computing model 

does support the capture of different business requirements (through the different multi-

tenancy models discussed above), there is little or no support to capture or reflect different 

sets of security requirements for different tenants. This becomes more complicated when we 

know that different tenants with different requirements usually emerge at runtime. Moreover, 

tenant security requirements can change at runtime to reflect their business needs and current 

security risks that they consider.  

2.2.4.2 Elasticity Security Implication  

Elasticity implies being able to scale up or down resources assigned to services based on the 

current demands. Scaling up and down of a tenant allocated resources gives the opportunity for 

other tenants to use the victim tenant’s previously assigned resources. This may lead to 

confidentiality issues. For example, if tenant A has scaled down so she releases resources, these 

resources are now assigned to tenant B who in turn might use it to deduce the previous contents 

of tenant A.  
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Moreover, elasticity usually depends on a service placement engine that maintains a list of 

the available resources from the provider’s offered resources pool. This list is used to allocate 

resources to cloud services. Such placement engines should incorporate cloud consumers’ 

security and legal requirements such as avoid placing competitors services on the same server, 

data location should be within the tenants’ country boundaries. Placement engines may include 

a migration strategy where services are migrated from physical host to another in order to meet 

demands and efficient utilization of the resources. This migration strategy should take into 

account the same set of tenants’ security constraints. Furthermore, security requirements defined 

by service consumers should be migrated with the service and initiates a process to enforce 

security requirements on the new environment, as defined by cloud consumers, and updates the 

current cloud security model. 

2.2.5 Service Delivery Models Security Implications 

We summarize the key security issues and vulnerabilities for each cloud service delivery model. 

Some of these issues fall under the responsibility of cloud providers, while others are the 

responsibility of cloud consumers. 

2.2.5.1 IaaS Security Issues 

Below we discuss the key security issues in each component of the IaaS service delivery model: 

– Hypervisor Security: a hypervisor is the “virtualizer” that maps from physical resources to 

virtualized resources and vice versa. It is the main controller of any access to the physical 

server resources by VMs. Any compromise of the hypervisor violates the security of the 

VMs because all VMs operations become traced unencrypted. Hypervisor security is the 

responsibility of cloud platform provider. 

– VM Security: This involves securing virtual machines’ operating systems and workloads 

from common security threats that affect traditional physical servers, such as malware and 

viruses, using traditional or cloud-oriented security solutions. The VM’s security is the 

responsibility of cloud consumers. Each cloud consumer can use their own security controls 

based on their needs, expected risk level, and their own security management process. 

However, the security of the cloud platform from a given VM is the responsibility of the 

platform provider. This requires a new model for security controls that can work from the 

virtualization layer (at the hypervisor level). This new model is called virtualization-aware 

security solutions [55, 56]. 

– Securing VM-Images Repository: unlike physical servers, VMs are still at risk even when 

they are offline. VM images can be compromised by injecting malicious codes in the VM 
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file or even stole the VM file itself. Securing the VM images repository is the responsibility 

of cloud providers. Another issue related to VM templates is that such templates may retain 

the original owner (creator) information that may be incorrectly accessed by a new 

consumer. 

– Virtual Network Security: Sharing network infrastructure among different tenants within the 

same server (using a vSwitch - Virtual Switches represent networking entities connecting 

Virtual Machines in a virtual network at layer 2 [52]) or in the physical networks increases 

the possibility to exploit vulnerabilities in DNS servers, DHCP, IP protocol vulnerabilities, 

or even the vSwitch software. This may result in network-based VM attacks. 

– Securing VM Boundaries: VMs have virtual boundaries compared with physical server ones. 

VMs that co-exist on the same physical server share the same CPU, Memory, I/O, network 

interface cards, and others (i.e. there is no physical isolation among VM resources). Securing 

VM boundaries is the responsibility of the cloud provider. 

2.2.5.2 PaaS Security Issues 

The key security issues in each component of the IaaS service delivery model are: 

– SOA Related Security Issues: the PaaS model is based on the service-oriented Architecture 

(SOA) model. This leads to inheriting all the security issues that exist in the SOA domain. 

These issues include Denial-of-Service (DOS) attacks, Man-in-the-middle attacks, web 

services and XML-related attacks, replay attacks, dictionary attacks, injection attacks and 

input validation related attacks [57]. Applying security mechanisms such as mutual 

authentication, authorization and WS-Security standards [58] is important to secure the cloud 

services. This task is a shared responsibility among cloud providers, service providers and 

consumers. 

– API Security: PaaS may offer APIs that deliver management functions such as business 

functions, security functions, application management, etc. Such APIs should be provided 

with security controls and standards implemented, such as OAuth [59] (open identity 

protocol that help in authorizing third-party applications when accessing web services using 

HTTP protocol), to enforce consistent authentication and authorization on calls to such APIs. 

Moreover, there is a need for the isolation of APIs in memory. This issue is the responsibility 

of service providers. Maintaining isolation between the different tenants’ data accessed by 

the same service is another key security problem that should be considered by the service 

provider.  
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2.2.5.3 SaaS Security Issues  

In the SaaS model enforcing and maintaining security is a shared responsibility among the cloud 

providers and service providers (software vendors). The SaaS model inherits the security issues 

discussed in the previous two models as it is built on top of one or both of them as well as data 

security (data locality, integrity, segregation, access, confidentiality, backups) and network 

security. 

Web applications represent the dominant deployment model for SaaS applications. Web 

applications represent 63% of the total reported vulnerabilities over the last three years [60]. 

Thus, SaaS applications to be hosted on the cloud infrastructure should be continuously 

validated and scanned for vulnerabilities using web application scanners. Such scanners should 

be online and up to date with the recently discovered vulnerabilities and attack paths maintained 

in the Common Weaknesses Enumeration (CWE – a database of the well-known software 

weaknesses that documents a detailed description of the weaknesses, mitigation actions, 

prevention actions, etc.). Results (vulnerabilities found) should be recorded in the National 

Vulnerability Database (NVD – a database of the reported vulnerabilities in every well-known 

software system along with other vulnerability details such as criticality, exploitability, etc). 

Getting security experts to analyze every service on the cloud is a very challenging task. Thus 

vulnerability scanners should deliver high precision (small false positives) and recall (small 

false negative) rates and support automated analysis without any human intervention. This 

requires formalizing the existing vulnerability definition databases in terms of vulnerability 

signature, categorization, preconditions, consequences, mitigation action, and so forth.  

Automating vulnerability mitigation is another key requirement in securing SaaS services. 

Vulnerability mitigation actions should be formalized to ease the automated realization of such 

actions using different sets of security controls “virtual patching” [43]. The web application 

firewall is a well-known example of vulnerability mitigation controls that should be in place to 

mitigate discovered vulnerabilities (examining HTTP requests and responses for applications 

specific vulnerabilities). As a reference to assess such vulnerability scanners and mitigation 

controls, we can use the top ten vulnerabilities reported by Open Web Application Security 

Project (OWSAP) [40] according to the number of reported vulnerabilities every year. Such 

vulnerabilities include injection attacks (SQL injection, OS command injection, XML 

injection), cross site scripting attacks (Input validation) weaknesses, improper authorization 

attacks, and so forth. We will explain these vulnerabilities in more detail in the security analysis 

chapter. 
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2.2.5.4 Cloud Management Security Issues 

The Cloud Management Layer (CML) is the “microkernel” that can be extended to incorporate 

and coordinate different components. The CML components include SLA management, service 

monitoring, billing, elasticity, IaaS, PaaS, SaaS services registry, and security management of 

the cloud. This layer is very critical since any vulnerability or security breach of this layer will 

result in an adversary who has got access control, like an administrator, over the whole cloud 

platform. This layer offers a set of APIs and services to be used by client applications to 

integrate with the cloud platform. This means that the same security issues of the PaaS model 

apply to the CML layer as well. 

2.2.5.5 Cloud Access Methods Security Issues 

Cloud computing is based on exposing resources over the internet. These resources can be 

accessed through (1) web browsers (HTTP/HTTPS), in case of web applications - SaaS; (2) 

SOAP, REST and RPC Protocols, in case of web services and APIs – PaaS and CML APIs; (3) 

remote connections, VPN and FTP in case of VMs and storage services – IaaS. Security 

controls should target vulnerabilities related to these protocols to protect data transferred 

between the cloud platform and cloud consumers such as Man-In-The-Middle attack. 

2.3 Cloud Computing Security Enablers 

Via our review of current cloud security issues we have determined a set of key security 

enablers that should be improved by the cloud computing community to mitigate the issues 

discussed above. Some of these factors are considered parts of security controls’ must have 

features and the rest are related to the security management platform itself which is built to be 

adaptive to incorporate possible security controls. 

2.3.1 Identity Federation and Access Management  

Identity is at the core of any security aware system. It allows users, services, servers, clouds, 

and any other entities to be recognized by systems and other parties. Identity consists of a set of 

claims and information associated with a specific entity [61]. This information is relevant based 

on the context. An identity management system should not disclose user personal information 

“privacy”. Cloud platforms should deliver or support a robust and consistent identity 

management system. This system should cover all cloud objects (servers, VMs, services, 

applications, operations) and cloud users with corresponding identity context information. It 

should include: identity provisioning and de-provisioning, identity information privacy, identity 

linking, identity mapping, identity federation, identity attributes federation, single sign on, 
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authentication and authorization. Such system should adopt existing standards, such as SPML, 

SAML, OAuth, and XACML, to securely federate identities among interacting entities within 

different domains and cloud platforms.  

2.3.2 Data Cryptography 

Confidentiality is one of the key security requirements when adopting the cloud computing 

model to host enterprise assets. Encryption is the main solution to the confidentiality objective, 

for data, processes and communications. Different problems arise in the cryptography area from 

the adoption of the cloud model:  

– Format-Preserving Encryption [62]: Due to the lack of trust problem between the cloud 

stakeholders (consumer does not trust the service provider or the cloud provider), 

cryptography security requirements are increasing where one might encrypt every single 

field in customers’ data at transmission and at rest. Data stored on the cloud and processed 

by services and applications then have a different format. Thus, we need to use format-

preserving encryption – e.g. encrypting integer data should result in integer as well to be able 

to store in the database. 

– Homo-Morphic Encryption [63]: The lack-of-trust and possibility of malicious insiders 

(cloud platform administrators who have access to servers memory) add a new cryptography 

requirement to keep data encrypted even at processing time (in memory). This means that 

cloud services and applications should be able to process such encrypted data – i.e. data will 

not be decrypted at any time on the cloud platform. 

– Key Management [64]: Encryption algorithms are either symmetric key-based or 

asymmetric are key-based. Both encryption approaches have a major problem related to 

encryption key management - i.e. how to securely generate, store, access and exchange 

secrete keys. Moreover, PaaS requires application keys for all APIs and service calls from 

other applications. The applications’ keys must be maintained securely along with all other 

credentials required by the application to be able to access such APIs. 

2.3.3 Secure Cloud Software Development Lifecycle  

Integrating security engineering into the software development lifecycle [65, 66] - includes 

elicitation of the security requirements, threat modeling, augmentation of security requirements 

to the systems models and the generated code consequently. Engineering cloud-based 

applications should involve a revolution in the lifecycles and tools used to build secure systems 

[67]. The PaaS provides a set of reusable security enabling components to help developing 

secure cloud-based applications. Also security engineering of the cloud-based application 
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should change to meet new security requirements imposed on such systems. Applications 

should support adaptive security (avoiding hardcoded security) to be able to meet vast range of 

consumers’ security requirements. Adaptive application security is based on externalizing and 

delegating the security enforcement and applications security management to the cloud security 

management, service provider and tenant security controls.  

2.3.4 Security Performance Tradeoff  

The cloud computing model is based on delivering services using SLAs. SLAs should cover 

objectives related to performance, reliability, and also security. SLAs also define penalties that 

will be applied in case of SLA violation. Delivering high security level, as one of the SLA 

objectives, means consuming much more resources that impact on the performance objective. 

The more adopted security tools and mechanism, the worst the impact on the performance of the 

underlying services. Cloud management should consider the trade-off between security and 

performance using utility functions for security and performance (least security unless stated 

otherwise). Moreover, we should focus on delivering adaptive security where security controls 

configurations are based on the current and expected threat level and considering other 

tradeoffs. 

2.3.5 Security Management  

The large number of cloud stakeholders, the deep dependency stack, and the large number of 

services deployed on the cloud platform, and the huge number of security controls to deliver 

security requirements, complicate the cloud computing security management task. A cloud 

security management platform should support capturing and consolidating security requirements 

and policies, specifications; security controls’ configurations according to the policies specified; 

and monitoring and feedback from the cloud platform and services, and security controls to the 

security management and the cloud stakeholders.  

When consumers use applications that depend on services from different clouds, they need to 

maintain their security requirements enforced on both clouds and in between. The same case 

occurs when multiple clouds integrate together to deliver a bigger pool of resources or 

integrated services, their security requirements need to be federated and enforced on different 

involved cloud platforms. Given that the cloud management layer has to manage performance, 

reliability, availability, elasticity - resource allocation, etc., a good design for this layer is to use 

the kernel design pattern where different components delivering different functionalities are 

easily integrated. This means that the security management module should function as a plug-in 

for the cloud management layer. 
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2.4 Chapter Summary  

The cloud computing model is a very promising computing model for service providers, cloud 

providers, and cloud consumers. However, in order to best utilize the model we need to block 

the existing security holes. Based on the details explained above, we can summarize the cloud 

security problem as follows: 

– Some of the security problems are inherited from the technologies used, such as 

virtualization, SOA, and web applications. 

– Multi-tenancy and isolation are major dimensions in the cloud security problem that require 

a vertical solution from the SaaS layer down to physical infrastructure (to develop physical 

alike boundaries among tenants instead of the virtual boundaries currently applied). 

– Security management is very critical to control and manage this number of requirements and 

controls.  

– The cloud model should have a holistic security wrapper, such that any access to any object 

on the cloud platform should pass through security components first. 

Based on this discussion, we recommend that cloud computing security solutions should: 

– Focus on the problem abstraction, using model-based approaches to capture different 

security views and link such views in a holistic cloud security model. 

– Be inherent in the cloud architecture where delivered mechanisms (such as elasticity 

engines) and APIs should provide flexible/extensible security interfaces.  

– Support for multi-tenancy, where each user can see only their security configurations, 

elasticity, to scale up and down based on the current context. 

– Support integration and coordination with other security controls at different layers to deliver 

integrated security. 

– Be adaptable to meet continuous environment changes and stakeholder needs. 

In this research project, our objective is to mitigate the loss-of-control and lack-of-trust 

problems that arise from the adoption of the cloud computing model by both providers and 

consumers. This is realized by getting cloud consumers involved in securing their cloud hosted 

assets. This includes: (i) defining security requirements; (ii) enforcing security using different 

sets of security controls either deployed on the cloud platform, in their network perimeter, or on 

another cloud platform; and (iii) monitoring and improving enforced security according to the 

current security status of the cloud hosted assets and new business and security needs. 
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  Chapter 3

Related Work 

In this chapter, we review, analyze, and summarize the key existing efforts in different research 

areas relevant to our research problem, cloud computing security management, and our 

proposed solution, adaptive, model-based security management model for the cloud computing 

model. This chapter is organized as follows. In Section 1, we give an overview of the research 

areas we cover in our state-of-the-art analysis. In Section 2, we review the related work in the 

area of security management standards and frameworks. In Section 3, we review the related 

work in the area of security analysis. In Section 4, we review the related work in the area of 

security engineering, multi-tenant and adaptive security. In Section 5, we review the related 

work in the area of security and software re-engineering. In Section 6, we review the related 

work in the area of security measurement and metrics. This also covers relevant efforts from the 

service-level agreement and software requirements monitoring areas. In Section 7, we 

summarize the key limitations, we identified in these areas that are either relevant to the 

research problem and target solution. 
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Cloud 
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Security 
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Security 
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Figure 3-1. Relevant research areas to the cloud security management problem
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3.1 Introduction 

The main responsibility of a security management system is to help security administrators and 

engineers in capturing and defining IT assets’ security, enforcing specified security details, 

monitoring the security status of these assets, and improving assets’ security to meet target 

security objectives. These security objectives may change overtime according to business needs. 

This thus implies changing related security requirements, policies, controls and security control 

configurations. As we stated in our analysis of the cloud computing security problem (Chapter 

2), it is too hard to depend on manual approaches that require deep involvement of stakeholders 

(cloud providers, service providers or service consumers) to deliver the aimed security level. 

Thus, any cloud computing security management approach must focus on automating these 

security management tasks including defining security, enforcing security, and monitoring and 

improving security. A cloud computing security management approach must address the loss-

of-control and lack-of-trust problems because it is the best place to incorporate cloud 

consumers’ security. It also should take into consideration multi-tenancy, as a key factor 

contributing to the cloud computing security problem. This because multi-tenancy has a big 

impact on how to capture, enforce, and monitoring tasks. For example, instead of working only 

with one set of security requirements, with multi-tenancy we have different sets of security 

requirements for different tenants. These need to be captured, enforced, and monitored on a 

shared service instance. 

We have determined four main relevant research areas to our research problem (cloud 

computing security management), including the security management area, security analysis, 

security engineering, and security monitoring. Two more areas are also relevant to our research 

problem, cloud computing security as the underlying problem domain, and security 

reengineering/retrofitting. The latter is required when addressing cloud services with built-in 

security capabilities that hamper (conflict) with the adoption of our security management 

platform in automating service security management. Below we discuss the key points and 

questions that we need to get answers for in each research area in order to specify what efforts 

could help building our cloud computing security management approach. 

- Cloud Computing Area: We need to study the cloud computing model details and determine 

what factors contribute to the cloud computing security problem? What are the key 

requirements that should be addressed when developing such a security management model 

for the cloud computing model? This part was discussed in detail in our analysis of the cloud 

computing security problem (Chapter 2). Thus, we are not going to discuss it again here. 

- Security Management Area: We need to study what are the existing security management 

standards? What are the bases and assumptions that these standards are built on? What are 
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the existing security management systems? What are the core models and paradigms adopted 

in developing these systems? What are the key problems and limitations of these security 

management standards and systems when applied to the cloud computing model? 

- Security Analysis Area: What are the main security analysis tasks? What are the main 

security vulnerabilities’ repositories? What are the existing web applications security 

analysis efforts? What vulnerability categories are covered by these efforts? What are the 

main limitations of these efforts? How far do these efforts support automation of the security 

analysis tasks? How are these efforts extensible to support discovery of existing as well as 

new vulnerabilities that emerge at runtime? 

- Security Engineering Area: We need to capture, inject, and update cloud services’ security 

for different tenants at runtime taking into consideration different multi-tenancy models. We 

need to study what are the existing security engineering efforts? What are the key limitations 

of these efforts that arise from applying these techniques on cloud-hosted services? How do 

these efforts fit with the cloud computing multi-tenancy requirements? How much 

automation do these efforts provide to facilitate the automated integration of security with 

cloud services? 

- Security Reengineering (Retrofitting) Area: We need to modify legacy applications’ security 

capabilities. Thus, we need to study what are the existing security reengineering (retrofitting) 

efforts? What are the key limitations of these efforts that arise from applying these 

techniques to the cloud services? How much automation is possible with these approaches to 

facilitate the modification of software systems and realizing new system modifications? 

- Security Monitoring Area: What security monitoring platforms do exist? How extensible 

these platforms in terms of security metrics specification and realization? How easy these 

security metrics could be specified? How these platforms fit with the cloud and multi-

tenancy model? How can we capture different tenants’ security metrics, and how can we 

realize these metrics? How can we plug in security probes that collect measurements 

required to assess the security status specified by different tenants? 

3.2 Security Management 

The area of security management is one of the core areas in IT security where all enterprise IT 

systems and operated security controls are aligned and integrated together. We have determined 

two key groups of efforts in this area: security management standards, and security management 

systems. The first group focuses on defining standard processes that should be followed when 

developing enterprise security model. The latter one focuses on how to help security 

administrators with their IT security management tasks. 
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3.2.1 Security Management Standards 

Information security management systems (ISMS) are defined as systems that deliver a holistic 

“model for establishing, implementing, operating, monitoring, reviewing, maintaining and 

improving the protection of information assets” [1, 5, 68]. We have identified two key security 

management standards. The first one is the Federal Information Security Management Act 

introduced by the National Institute of Standards and Technology - NIST-FISMA [1]. The 

second is the International Organization for Standardization and the International Electro-

technical Commission - ISO/IEC – ISO27000 [5]. Below we summarize these two standards 

highlighting the main assumptions and bases for each one. 

Categorize Information 
Systems

FIPS199

Select Security Controls

FIPS200 / SP800-53

Controls Implementation

SP800-70

Security Assessment

SP800-53A

Security Authorization

SP800-37

Security Monitoring

NIST SP 800-137

 

Figure 3-2. NIST-FISMA main phases, flow, and standards 

3.2.1.1 NIST-FISMA Standard 

This was originally declared as an e-Government Act in 2002 [1]. The first phase of the FISMA 

implementation project was planned to run from 2003 to 2012. The FISMA standard delivers a 

set of guidelines to be used in developing agency-wide security management program that helps 

in categorizing information systems, capturing security objectives, enforcing specified security, 

and monitoring the security status of agency assets. The FISMA standard includes a set of 

guidelines and standards that help implementing the enterprise information security 

management program as follows: 

– FIPS199: Federal Information Processing Standards199 (FIPS199) standard for categorizing 

information and information systems by mission impact. It focus on how to assess the impact 
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of a security breach of one or more of the security objectives (including confidentiality, 

availability, and reliability) assigned to a given information system. 

– FIPS200: A standard that defines a minimum set of security requirements that should be 

applied on information and information systems. Based on the security categorization of a 

given information system (in FIPS199), a set of minimum security requirements and security 

controls is selected from multiple sets of predefined security control baselines – i.e. if an 

information system is assigned a low security impact, this means that the low impact security 

requirements and controls baseline is selected. This set represents the minimum security 

capabilities that enterprise security engineers need to implement. This standard also includes 

applying security risk analysis that may result in a new set of security requirements that 

should be incorporated with standard set of security controls to be applied. 

– SP800-70: A standard to help security administrators in selecting appropriate security 

controls for information systems. Different information systems may have different natures 

that may require using specific rather than enterprise-wide, common security controls. The 

objective of this standard is to guide the selection process of security controls specific to 

certain information systems and controls to be used enterprise-wide.  

– SP800-53A: A guidance for assessing security controls in information systems and 

determining security controls’ effectiveness. This guideline defines how to select security 

controls to be assessed, method of the assessment, metrics that could be used, and how the 

assessment could be conducted. 

– SP800-37: A standard for the security authorization of information systems. This guideline 

specifies who should be responsible for authorizing the security management plan developed 

and how the identified risks are addressed /mitigated. 

– SP800-137: A standard for monitoring the security controls and the security authorization of 

information systems. This guideline defines for each security controls’ family (FISMA 

standard divides the security controls into a set of 17 security controls families), a set of 

security metrics that should be measured in the course of monitoring the security status of 

enterprise IT systems, frequency, nature of the metric, formula, unit of measure, etc. 

3.2.1.2 ISO27000 Standard 

The ISO27000 standard [5, 69] provides a model to guide the definition and operation of 

information systems security management process. The ISO27000 targets all types of 

organizations other than federal agencies as intended in the FISMA standard. The ISO27000 

standard has a series of security standards that address different areas in the information systems 

security management framework as follows: 
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Figure 3-3. ISO27000 main phases, flow, and standards 

– ISO27001: This standard gives an overview of the specification of any ISMS based on the 

ISO27000 standard. It discusses how ISO27000 standard is aligned with the Plan-Do-Check-

Act (PDCA) management model. Moreover, It summarizes the key terminologies exist in the 

security management area and gives a summary of security controls’ objectives that should 

be operated. 

– ISO27002: This standard focuses on security controls’ implementation guidance to help 

organizations during the ISMS implementation, reviewing and authorization phases. It 

covers how these phases could be done to address different targets or categories of security 

including human resources, physical security, communication security, access control, 

information systems, etc.  This is similar to the security controls’ families introduced in the 

NIST-FISMA standard and the security requirements families introduced in the Common 

Criteria model for software security evaluation [70]. 

– ISO27003: This standard gives guidance and details on implementing different ISMS phases 

including plan, do, check, and act (PDCA) phases. 

– ISO27004: This standard addresses and defines the ISMS measurements and metrics that 

could be used, stakeholders involved and their responsibilities, measurement operations, data 

analytics of the measurement results, and further improvement actions that could be taken in 

case of security deviations.  

– ISO27005: This standard addresses the security risk management process. It details the 

proposed methodology for information security risk management including risk analysis, 

treatment, and acceptance. 
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– ISO27006: This standard provides guidelines to help organizations in the accreditation 

process of the ISMS ISO27000 certification. It documents the key requirements that should 

be satisfied and how it could be addressed.  

3.2.1.3 Differences between NIST-FISMA and ISO27000 

We have determined multiple similarities and discrepancies between ISO27000 and NIST-

FISMA standards [71, 72]. The similarities between both standards include the general 

approach, phases of security management, complexity of both standards to implement and 

satisfy, relatively similar concepts, risk management activities, list of security controls (NIST 

specifies links to ISO27000 security controls). On the other hand, we found a set of differences 

between both as well. NIST-FISMA targets federal agencies while ISO27000 target commercial 

organizations; however, we did not figure out problems to apply NIST as a security 

management standard to commercial organizations. NIST-FISMA focuses mainly on one or 

more IT systems. The ISO27000 has organizational-wide focus. NIST uses the IT systems 

categorization to set the security controls baseline to apply (as a default set) while ISO27000 

assumes that the set of security controls provided in the standard are available to be picked up 

and used according to the situation. In our opinion, this helps in the security controls selection 

phase by minimizing the scope of security controls to select from (minimize the possibility of 

error or missing security). This security controls baseline could be customized later, according 

to the identified and assessed risks. In this thesis we base our approach on NIST-FISMA. 

3.2.1.4 Security Management Standards and Cloud Computing 

Both ISO27000 and NIST-FISMA standards assume that the asset (IT system) owner has full 

control over the security management process – i.e. assets are mostly hosted internally inside 

their network perimeter or at least they can specify and monitor the security of their assets if 

hosted on a service provider. Thus, both standards, with their current specifications, do not fit 

well with the cloud computing model. Nor do they fit well with the multi-tenancy model, where 

tenants do not have any control on their outsourced assets. This is shown in the responsibility 

matrix summarized in Figure  3-4. Here, service consumers do not have any participation in 

securing their cloud services – this is a well-known security problem in the cloud computing 

model “loss-of-control” problem. Multi-tenancy adds a new complex dimension to the security 

problem. These security management standards are not designed taking into consideration the 

service sharing concept introduced by multi-tenancy – i.e. how to capture, enforce, and monitor 

service security status for different tenants given that these security requirements may change 

overtime. In addition, the set of service tenants evolves at runtime. New tenants may register to 

use the service at runtime. At the same time, other tenants may unregister from the service. 
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Figure 3-4. Comparison of responsibility matrix between on-premise and cloud 

3.2.2 Security Management Systems 

The area of security management systems has lot of efforts even though relatively few efforts 

deliver full implementation of the security management process. Many focus on detailing 

security management standards (ISO and NIST) [69, 73]. The rest of these efforts that introduce 

a working security management approach could be categorized as policy-based, ontology-based, 

and model-based approach. Below we summarize many of these key efforts. 

3.2.2.1 Policy-based Security Management 

The adoption of security policies as a high-level mean to capture security controls’ 

configurations has been widely used in the area of information security management to 

automate the security controls’ configuration process. These efforts focus on how to capture 

different types of security policies using security policy specification languages such as [74-76] 

and how to automate the configuration of different heterogeneous security controls developed 

by different security vendors. 

POSTIF [77] is a security management framework that focuses on automated configuration 

of different heterogeneous security controls in order to realize the specified security policies. 

The framework is based on the common information model (CIM) introduced by the DMTF 

[78]. The proposed framework focuses mainly on automation of intrusion detection systems’ 

configurations. The security policies are used to specify high-level security controls’ 

configurations. We could not find implementation details of this approach. 

Faheem et al [79, 80] introduce an abstract multi-agent based system for managing network 

security policies. The proposed framework is made of three layers: the core security policies 

layer that captures different security policies; the multi-agent layer that has a set of interacting 
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agents that collaborate to refine the specified security policies into security controls’ 

configurations; and security products layer which is a layer of enterprise deployed security 

controls. Their case study was on an intrusion detection system developed internally in their 

research labs. The proposed framework is based on mobile agents that have severe problems 

with security. In giving permission to software entities to move around in the enterprise network 

increases the possibility of the exposure of malicious activities (malwares and Trojan horses). 

3.2.2.2 Ontology-based Security Management 

The ontology concept has been frequently used in the information security management domain 

as a mean to formalize the concepts, entities, and relationships existing in this domain [81]. 

Bellow we summarize some of the key trials in this area. 

Tsoumas et al [7] introduce an ontology-based information systems security management 

system. They built their own risk analysis security ontology based on the common information 

model (CIM) [78]. They map the IT asset concept (the core entity in security risk management) 

to the CIM CIM_ManagedElement concept. This in turn simplifies the enforcement and 

monitoring process. After linking assets to risks, they developed countermeasures ontology and 

then linked this to threats that each countermeasure can help in resolving. The countermeasures’ 

ontology is as follows: CM_ID, Target (asset), subject (the enforcer of the countermeasure), 

countermeasure group, countermeasure sub groups, actions (that the countermeasure can take), 

constraints (time, location, subject), type (managerial, operational, technical), security attributes 

to preserve (security objectives like confidentiality, integrity,...etc), type of control (protective, 

defective, or corrective), risk mitigation factor (low, medium, high), and control purpose 

(security, audit). This also simplified the adoption of the Web-based enterprise management 

standard (WBEM) [82] introduced by the Distributed Management Task Force (DMTF) 

organization to address the distributed nature of systems management problem (including 

security management). The captured enterprise security knowledge is then converted into 

ponder-based policies [75] (Ponder is a security policy specification language) that are used 

mainly for defining access control policies. 

Xu et al [83] introduce a hybrid network security management approach based on policy-

based management and ontology-based management. The ontology is used to help in reasoning 

about specified security policies while applying the policy-based PDP and PEP management 

model (PDP: policy definition point; PEP: policy enforcement point) for security policies 

enforcement. Each agent deployed on a host can communicate with other network agents 

sharing the same ontology to reason about the operated security policies. 
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Uszok et al [84] introduce a security management architecture based on KAoS policies 

language. The architecture has three main layers: (i) policy specification layer represented by a 

user interface where security administrators can define their own security problems; (ii) policy 

reasoning layer; (iii) policy enforcement layer (guards). The policy specification is based on an 

extensible ontology to recognize domain specific concepts. KAoS can help in defining 

authorization and obligation policies. The reasoning layer takes into account issues like 

precedence, temporal conditions, historical states, policy triggers, and context information. For 

the policy enforcement layer, the authors developed guards (agents) to be deployed for 

applications. These agents cache the policies and act as PDP for the applications. In case of any 

security event raised by the application using Action Instance Description (AID), a java object 

encapsulates event details; the guard decides the correct action based on the cached policies. 

These guards can be extended to monitor application status using AID entities. 

3.2.2.3 Model-based Security Management  

Albuquerque et al [8] introduce a security management approach based on the model-based 

management model. The authors introduce a hierarchical system model which represents the IT 

systems on three abstract, interrelated levels: (i) roles and objects which summarize details of 

the who of the stakeholders and what assets to be secured; (ii) subjects and resources which 

summarize users or services and resources; and (iii) diagram of abstract systems which capture 

the system building blocks. The high-level security policies are mapped on the highest system 

model and automatically refined down with the refined system models to generate the low-level 

security policies. Similar work was introduced by Lang et al [85], OpenPMF - Open Policy 

Management Framework, a model-driven security management approach based on model-

driven security.  

3.2.2.4 Security and Service Level Agreement 

As a result of outsourcing IT assets for hosting on third-party platforms, an increasing need for 

security SLA emerge; however, we have found most of the existing SLA efforts focus on 

capturing SLA terms related to performance, reliability, and availability. The area of security 

SLA is relatively hard to approach because no one will be able to prove a certain security level 

to negotiate and agree on with the customers. However, no one would like to announce security 

breaches on their platforms because this will impact their reputation. Shirlei et al [13] 

introduced a proposal for security SLA (Sec-SLA) which capture customers’ security  

requirements in terms of security metrics that could be regularly measured, analysed, and 

reported for customers.  
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3.2.3 Information Security and Risk Management 

From the discussion above, we conclude that existing security management standards target 

mainly enterprise assets’ security management where tenants own and control the existing 

infrastructure, network, and applications. Thus, they do not help with services’ outsourcing. 

They also do not take into consideration the multi-tenancy and how to capture and enforce 

different tenants’ security requirements. Existing security management systems focus mainly on 

(i) how to capture security details using policies directly, using ontology, or using models; (ii) 

how to convert these security details (requirements) into security policies; (iii) and how to map 

these polices into security controls’ configurations. Thus, it is clear that the monitoring and 

feedback components of the security management process are missing in these efforts. 

From our analysis of the security management area and existing security management 

systems and standards, we have figured out a misunderstanding in some of the concepts related 

to ISMSs. Mainly, we found a mix between the security management and the security risk 

management. We have investigated the differences and relationships between the ISMS and 

ISRMS (Information Security Risk Management Systems). The ISRMSs focus on risk 

identification, treatment, acceptance, communication, and monitoring and reviewing. This is in 

comparison to the ISMS we discussed above shows that the ISRMS is a part of the ISMS as we 

show in Figure  3-5. Implementing security controls specified in the risk mitigation actions, 

integrating security controls with the target IT systems, developing and deploying security 

probes are the other key phases of an ISMS.  

Security Risk Management

Enterprise Security Objectives

Security Controls 
Implementation

Security Monitoring

Se
cu

ri
ty

 s
ta

tu
s

Fe
e

d
b

ac
k

Enterprise IT Assets

Risk Identification

Risk Evaluation

Risk Treatment

Security Requirements

 

Figure 3-5. Relationship between ISMS and ISRM 



 Chapter 3: Related Work 

Page 46 

3.3 Security Analysis 

The security analysis task is one of the very complicated tasks in both security engineering and 

management domains. The security analysis task includes threat analysis, security vulnerability 

analysis, and security attack analysis. These tasks are integrated together while conducting 

security analysis. The output of the security analysis tasks represents the main source of security 

requirements to be realized by any ISMS. A key limitation of the existing security risk analysis 

efforts is that they mainly focus on introducing a risk analysis methodology to be followed by 

security administrators or at the maximum help in the documentation and assessment process. 

They do not help in automating the security risk analysis. Thus, we had to investigate in other 

security analysis areas that contribute to the security analysis including architecture risk analysis 

that helps in identifying security threats in a given software system, and security vulnerability 

analysis that helps in identifying system security vulnerabilities. Both constitute the main 

sources of information required to build a complete security risk model. Below we discuss effort 

in these three main areas. 

3.3.1 Security Risk Analysis 

Security risk analysis is one of the key steps in the ISMSs. The main target of the security risk 

analysis task is to identify possible threats and attacks against a target IT system, that need to be 

secured, and could be exploited by attack agents to breach systems’ security. Then, security 

experts use these vulnerabilities to develop the possible threats and attack graphs that could be 

fired by attackers against systems. The outcome of the security risk analysis task is used to 

develop risk treatment plan where security experts specify how to mitigate or prevent the 

identified risks. These treatment plans contain a set of security requirements that need to be 

enforced in order to mitigate reported risks and meet customers’ security objectives.  

The existing security risk analysis and assessment efforts can be categorized into two main 

categories: tool-based analysis and workshop-based analysis [9]. The tool-based analysis 

approaches introduce toolsets that help in capturing enterprise assets and security details and 

automatically conduct the security risk analysis task. In the workshop-based analysis, the 

stakeholders conduct brainstorming and interviewing sessions. Another possible categorization 

of the security risk analysis methods is either qualitative or quantitative. The latter category uses 

mathematical formulas to assess identified risks while the earlier depends on subjective 

assessment bands (high, medium, low). Syalim et al [86] introduce a comparison between four 

key security analysis methodologies including Mehari, Magerit, NIST800-30 and Microsoft’s 

security management. The key limitation of the security risk analysis efforts is the focus on 

introducing a risk analysis methodology to be followed by security administrators or at the 
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maximum help in the documentation and assessment process. Thus, they do not help in 

automating the security risk analysis. Below we discuss key security risk analysis efforts:  

Operationally Critical Threat, Asset and Vulnerability Evaluation (OCTAVE) [9] is a 

workshop-based risk assessment approach. OCTAVE has three main phases. Each phase has a 

set of processes and activities. First, the security analysis team builds a repository of critical 

enterprise assets. Next, they develop a threat profile for these assets. Then, the security analysis 

team performs vulnerability analysis of the key components related to the critical assets. 

Finally, this team performs impact and probability evaluation of the identified threats on critical 

assets. Furthermore, they develop protection plan to mitigate, reduce, and prevent the identified 

risks. 

Information Security Risk Analysis Method (ISRAM) is a seven-step quantitative risk 

analysis approach based on conducting surveys that contain questions about risk factors (type of 

attachment, number of emails, number of files to be downloaded per day) to help in assessing 

the likelihood and impact of the given list of risks. 

Construct a platform for Risk Analysis of Security Critical Systems (CORAS) [10] is a 

model-based method for security risk analysis. The security analysis team conducts an initial 

risk analysis to identify initial list of threats and vulnerabilities. This is followed by a deeper 

analysis by the security team. A brainstorming workshop is conducted to identify any unwanted 

security incidents. This is followed by another risk estimation workshop to estimate the 

likelihood of the identified risks. Finally, they conduct a workshop to develop risk treatment 

plan including a cost-benefit analysis. 

Saripalli [11] [87] introduces different security risk analysis methods for the cloud 

computing model adopting the existing security management standards such as ISO27000. 

However, they consider applying these standards from the service (cloud platform) provider 

perspective not from the cloud consumers’ perspective. Moreover, these efforts did not consider 

hosting of external services that have been developed by other service providers where the cloud 

platform provider does not have any information about their security issues. 

In summary, the existing security risk analysis efforts focus mainly on how to conduct and 

document the outcomes of the security risk analysis process through a set of well-defined steps, 

some with tool support. However, they do not help in automating the analysis process itself.  

3.3.2 Architecture Security Analysis 

Existing efforts in architecture security risk analysis can be categorized into two main groups: 

scenario-based approaches and metrics-based approaches. Both have limitations related to 
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approach formality in describing metrics or scenarios, extensibility to capture new metrics or 

scenarios to be assessed, and in automating the architecture risk analysis process. A key notice 

from the existing efforts is that they focus mostly on scenario-based analysis. A possible 

justification of this tendency is that developing security metrics is a hard problem. However, it 

limits the capabilities of the approach compared to user-defined or tool-supported scenarios. 

3.3.2.1 Scenario-based Analysis 

Kazman et al. [88], Dobrica et al. [89], and Babar et al [90] introduce comprehensive software 

architecture analysis methods for different milestones of the software architecture development. 

They introduce a set of criteria that can be used in developing or evaluating an architecture 

analysis method including identification of the goals, properties under examination, analysis 

support, and analysis outcomes. Babar et al. compare and contrast eight different existing 

architecture analysis approaches. A common weakness of all these approaches is the lack of 

extensible tool support.  

Kazman et al. [91] introduce architecture trade-off analysis model, ATAM, to identify trade-

offs between quality attributes of a given system and report sensitivity points in its architecture. 

The approach is based on collaboration of stakeholders to define scenarios to be used in 

evaluating different architectures. The analysis is expected to be done manually.  

Faniyi et al. [92] extend the ATAM approach to support architecture analysis in 

unpredictable environments such as cloud computing platforms. They improve the scenario 

elicitation process using security testing with implied scenarios (unanticipated scenarios of 

components’ interactions). This generates potential scenarios that may lead to security attacks. 

Although this improved the scenario elicitation process, it still requires manual analysis. A 

further extension to our signature-based architecture security analysis approach could be to 

integrate this approach as a source of attack and metrics signatures’ specifications.  

Halkidis et al. [93] introduce an architectural risk analysis approach based on locating the 

existing security patterns in the architecture of system under test using architecture annotation. 

Then, they use Microsoft STRIDE model [94] to generate a set of possible attacks along with 

their likelihood. These security attacks can be mitigated using security patterns. Thus, the lack 

of specific security patterns in a given system architecture means possibility of violating certain 

security objectives in the underlying system architecture. However, their approach does not 

support developing custom security scenarios to be analyzed in the target system.  

Admodisastro et al. [95] introduce a scenario-driven architectural analysis approach for 

black-box component-based systems. Their analysis framework is extensible to support 

different pluggable analyzers that perform structure checking, quality checking, and 
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conformance checking. However, their proposed framework is high-level and lacks details of its 

realization system. 

Alkussayer et al. [96, 97] introduce a scenario-based security evaluation framework of 

software architecture. They use mappings between security goals and requirements, security 

patterns, and security threats to identify security scenarios used in evaluating (and may be 

improving) a given system architecture. 

3.3.2.2 Metrics-based Analysis 

Metrics-based analysis techniques focus on developing a set of security metrics that could be 

used in assessing the security strength of a given software system architecture against possible 

attacks and how far a given attack impacts system operation. 

Antonino et al. [98] introduce an indicator-based approach to evaluate architecture-level 

security in Service-Oriented Architecture (SOA). They use reverse engineering to extract 

security-relevant facts. Then, they use system-independent indicators and a knowledgebase 

maintaining a list of security goals and indicators relevant for each security goal. Although the 

approach is extensible, it does not support automated security analysis. Sant’anna et al. [99] 

describe a concern-driven quantitative framework for assessing architecture modularity. They 

introduce a set of predefined modularity metrics that are used to assess a given system 

architecture.  

Alshammari et al. [100, 101] introduce a hierarchical security assessment model for object-

oriented programs. They define a set of dependent metrics that capture security attributes of a 

given system. The proposed metrics are well organized; however, they are not extensible (i.e. 

are predefined metrics). They also do not consider security architecture-level details.  

Heyman et al. [102] introduce an approach to identify security metrics to measure or assess 

based on mapping user security requirements on security objectives. For each security objective, 

they define security patterns that are expected to satisfy such objectives. Each security pattern 

has a set of security metrics that are satisfied by a pattern. The metrics specification approach is 

informal so it does not enable automating the analysis phase.  

Sohr et al. [103] describe an architecture-centric security analysis approach. They reverse 

engineer system architecture from source code using the Bauhaus tool. Then, they perform 

manual analysis to identify security flaws existing in the given system architecture.  

Liu et al.  [104] introduce a service-oriented framework to analyze attack-ability of a given 

software. They develop a new language to capture system architecture and security details. 
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Using this model, they defined a set of built-in security metrics to assess the security 

architecture of a given system. 

In summary, the existing architecture security analysis efforts requires deep involvement 

from the security experts in specify possible attack scenarios as well as analyzing the software 

architecture searching for matched entities. The metrics-based efforts depends on a set of 

predefined, well-known metrics, which in most of the time require manual analysis. 

3.3.3 Security Vulnerability Analysis 

Existing efforts in vulnerability analysis can be categorized according to the analysis 

mechanism used into static analysis, dynamic analysis, and hybrid analysis based approaches. 

Most of these efforts are designed to analyse against specific vulnerability types mainly SQL 

Injection attacks and Cross-Site Scripting as the most frequently reported vulnerabilities. 

Jimenez et al. [105] review various software vulnerability prevention and detection techniques. 

Broadly, static program analysis techniques work on the source code level. This includes pattern 

matching that searches for a given pattern inside software source code - e.g. calls to specific 

functions. Data flow and taint analysis helps identifying data coming from untrusted sources to 

mark as tainted i.e. should not be used before being sanitized or filtered. Model checking can 

detect vulnerabilities based on extracting a system model from the source code and developing a 

set of constraints on the model that should not occur. An issue is that model checking 

approaches often suffer from a state explosion problem and generate only a counterexample. 

Dynamic analysis techniques analyze a system as a black box, avoiding being overwhelmed 

with system details. Fuzzy testing provides random data as input to the application in order to 

determine if the application can handle it correctly or not. Dynamic techniques are however 

limited in code coverage.   

3.3.3.1 Static Vulnerability Analysis 

NIST [106] is conducting a security analysis tools assessment project (SAMATE). A part of this 

project is to specify a set of weaknesses that any source code security analysis approach should 

support including SQL Injection, Cross-Site Scripting, OS Command Injection, etc. They have 

also developed a set of test cases that help in assessing the capabilities of a security analysis tool 

in discovering such vulnerabilities.  

Halfond et al. [107] introduce a new SQL Injection vulnerability identification technique 

based on positive tainting. They identify “trusted” strings in an application and only these 

trusted strings are allowed to be used as parts of an SQL query, such as keywords or operators.  
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Lei et al. [108] trace the memory size of  buffer-related variables and instrument the code 

with corresponding constraint assertions before the potential vulnerable points by constraint 

based analysis. They used model checking to test for the reachability of the injected constraints.  

Dasgupta et al. [109] introduce a framework for analyzing database application binaries to 

automatically identify security, correctness and performance problems especially SQLI 

vulnerabilities. They adopt data and control flow analysis techniques to extract SQL statements, 

parameters, tables and conditions and finally analyze such details to identify SQLI 

vulnerabilities.  

Martin et al [110, 111] introduce a program query language PQL that can be used to capture 

definition of program queries that are capable to identify security errors or vulnerabilities. PQL 

query is a pattern to be matched on execution traces. They focus on Java-based applications and 

define signatures in terms of code snippets. This limits their capabilities in locating 

vulnerabilities’ instances that match semantically but not syntactically.  

Wassermann et al. [112] introduce an approach to find XSS vulnerabilities based on 

formalizing security policies based on W3C recommendation. They conduct a string-taint 

analysis using context free grammars to represent sets of possible string values. They then 

enforce these security policies that guarantee that the generated web pages include no untrusted 

scripts. Jovanovic et al. [113] introduce a static analysis tool for detecting web application 

vulnerabilities. They adopt flow-sensitive, inter-procedural and context-sensitive data flow 

analysis. They target identifying XSS vulnerabilities only.  

Ganesh et al [114, 115] introduce a string constraint solver to check if a given string can 

have a substring with a given set of constraints. They use this technique to conduct white box 

and dynamic testing to verify if a given system is vulnerable to SQLI attacks using strings 

generated by the string constraint solver.  

3.3.3.2 Dynamic Vulnerability Analysis 

Bau et al [116] perform an analysis of the black-box web vulnerability scanners. They 

conducted an evaluation of a set of eight leading commercial tools to assess the supported 

classes of vulnerabilities and their effectiveness against these target vulnerabilities. A key 

conclusion of their analysis is that all these tools have low detection rates of advanced (second-

order) XSS and SQLI. The average percentage of discovered vulnerabilities equals 53%. The 

analysis shows that these tools achieve 87% in session management vulnerabilities and 45% in 

the cross-site scripting vulnerabilities.  

Kals et al [117] introduce a black-box vulnerability scanner that scans websites for the 

presence of exploitable SQLI and XSS vulnerabilities. They do not depend on a vulnerability 
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signature database, but they require attacks to be implemented as classes that satisfy certain 

software interfaces. Thus such attacks can be called from their vulnerability scanner. 

Weinberger et al [118, 119] introduce an analysis of a set of 14 frameworks that provide 

XSS sanitization techniques. They identify a set of limitations in these efforts including lack of 

context-sensitive sanitization that result in developing customized sanitizer. Such sanitizers 

need to be validated for their correctness, and resistance to client-side code “DOM-based XSS”.  

Felmetsger et al [60] use an approach for automated logic vulnerabilities detection in web 

applications. They depend on inferring system specifications of a web application’s logic by 

analyzing system execution traces. They then use model checking to identify specification 

violations. The extraction of security properties’ specifications to be validated is a key 

limitation in this approach. Moreover, they assume that these traces represent correct system 

behavior, which is not always correct (system bugs may result in incorrect/inconsistent traces). 

3.3.3.3 Hybrid Vulnerability Analysis 

Monga et al [120] introduce a hybrid analysis framework that blends static and dynamic 

approaches to detect vulnerabilities in web applications. The application code is translated into 

an intermediate model. This static model is filtered to focus only on dangerous statements. This 

reduces model size where dynamic analysis will be conducted, mitigating the performance 

overhead of the dynamic taint analysis approach. This approach, as most taint analysis 

approaches (either static or dynamic), targets only injection-related vulnerabilities. Balzarotti et 

al [121] introduce composition of static and dynamic analysis approaches “Saner” to help 

validating sanitization functions (addressing the input validation related attacks) in web 

applications. The static analysis is used to identify sensitive source and sink methods. The 

dynamic analysis component is used to analyse suspected paths only. 

In summary, the existing security vulnerability analysis efforts focus on specific vulnerability 

types such as SQLI, XSS, etc. These efforts are not generally extensible enough to support 

analysis against new attacks. Existing vulnerability signatures such as those in the National 

Vulnerability Database (NVD) and Common Weaknesses Enumeration Database (CWE) are 

informal which hamper their adoption in developing automated vulnerability analysis tools. 

3.4 Security Engineering 

Existing security engineering efforts focus on capturing and enforcing security requirements at 

design time, supporting adaptive security, and multi-tenant security engineering. On the other 

hand, most industrial efforts focus on delivering security platforms that can help software 

developers in implementing their security requirements using readymade standard security 
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algorithms and mechanisms. Some of the key limitations with the existing security engineering 

efforts include: (i) these efforts focus mainly on design-time security engineering – i.e. how to 

capture and enforce security requirements during software development phase; (ii) limited 

support to dynamic and adaptive security and require design-time preparation; and (iii) no 

support for multi-tenancy, most of the existing efforts focus on getting services (including cloud 

services) to reflect one set of security requirements without considering different tenants’ 

security requirements. Benjamin et al [122] introduce a detailed survey of the existing security 

engineering efforts; however they did not highlight limitations of these approaches. 

3.4.1 Design-time Security Engineering 

Software security engineering aims to develop secure systems that remain dependable in the 

face of attacks [123]. Security engineering activities include: identifying security objectives that 

systems should satisfy; identifying security risks that threaten system operation; elicitation of 

security requirements that should be enforced on the system to achieve the expected security 

level; developing security architectures and designs that deliver the security requirements and 

integrates with the operational environment; and developing, deploying and enforcing the 

developed or purchased security controls. Below, we summarize the key efforts in the security 

engineering area. 

3.4.1.1 Early-stage Security Engineering  

The early-stage security engineering approaches focus mainly on security requirements 

engineering including security requirements elicitation, capturing, modelling, analysing, and 

validation at design time from the specified security objectives or security risks. Below we 

discuss some of the key existing security requirements engineering efforts.  

Knowledge Acquisition in automated Specification (KAoS) [124] is a goal-oriented 

requirements engineering approach. KAoS uses formal methods for models analysis [125]. 

KAoS was extended to capture security requirements [16] in terms of obstacles to stakeholders’ 

goals. Obstacles are defined in terms of conditions that when satisfied will prevent certain goals 

from being achieved. This is helpful in understanding the system goals in details but it results in 

coupling security goals with system goals.  

Secure i* [126, 127] introduces a methodology based on the i* (agent-oriented requirements 

modelling) framework to address the security and privacy requirements. The secure i* focuses 

on identifying security requirements through analysing relationships between users, attackers, 

and agents of both parties. This analysis process has seven steps organized in three phases of 

security analysis as follows: (i) attacker analysis focuses on identifying potential system abusers 
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and malicious intents; (ii) dependency vulnerability analysis helps in detecting vulnerabilities 

according to the organizational relationships among stakeholders; (iii) countermeasure analysis 

focus on addressing and mitigating the vulnerabilities and threats identified in previous steps. 

Secure TROPOS [128-130] is an extension of the TROPOS requirements engineering 

approach that is based on the goal-oriented requirements engineering paradigm. TROPOS was 

initially developed for agent-oriented security engineering (AOSE). TROPOS introduces a set 

of models to capture the system actors (actors’ model) and their corresponding goals (goal 

model: hard goals represent the actor functional requirements and soft-goals represent the actor 

non-functional requirements).  These goals are iteratively decomposed into sub-goals until these 

sub-goals are refined into tasks, plans, and resources. Secure TROPOS is used to capture 

security requirements during the software requirements analysis. Secure TROPOS was 

appended with new notations. These included: (i) security constraints: restriction related to 

certain security issue like: privacy, integrity...etc.; (ii) security dependency: this adds constraints 

for the dependencies that may exist between actors to achieve their own goals and defines what 

each one expects from the other about the security of supplied or required goals; and (iii) 

security entities: are extensions of the TROPOS notations of entities like goals, tasks, and 

resources as follows: secure goal: means that the actor has some soft-goal related to security (no 

details on how to achieve) this goal will be achieved through a secure task; secure task: is a task 

that represents a particular way of satisfying a secure goal; secure resource: is an informational 

entity that‘s related to the security of the system; and secure capability: means the capability of 

an actor to achieve a secure goal. In our SecDSVL (Chapter 6) we capture these security details 

in abstract level and at runtime. 

Misuse cases [131, 132] capture use cases that the system should allow side by side with the 

use cases that the system should not allow which may harm the system or the stakeholders 

operations or security. The misuse cases focus on the interactions between the system and 

malicious users. This helps in developing the system expecting security threats and drives the 

development of security use cases. 

3.4.1.2 Later-stage Security Engineering  

Efforts in this area focus on how to map security requirements (identified in the previous stage) 

on system design entities at design time and how to help in generating secure and security code 

specified. Below we summarize the key efforts in this area organized according to the approach 

used or the underlying software system architecture and technology used. 

UMLsec [14, 133, 134] is one of the first model-driven security engineering efforts. UMLsec 

extends UML specification with a UML profile that provides stereotypes to be used in 

annotating system design elements with security intentions and requirements. UMLsec provides 
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a comprehensive UML profile but it was developed mainly for use during the design phase. 

Moreover, UMLsec contains stereotypes for predefined security requirements (such as secrecy, 

secure dependency, critical, fair-exchange, no up-flow, no down-flow, guarded entity) to help in 

security analysis and security generation. UMLsec is supported with a formalized security 

analysis mechanism that takes the system models with the specified security annotations and 

performs model checking. UMLsec [135] has recently got a simplified extension to help in 

secure code generation.  

SecureUML [15] provides UML-based language for modeling role-based access control 

(RBAC) policies and authorization constraints of the model-driven engineering approaches. 

This approach is still tightly coupled with system design models. SecureUML defines a set of 

vocabulary that represents RBAC concepts such as roles, role permissions and user-assigned 

roles.  

Satoh et al. [136] provides end-to-end security through the adoption of model-driven security 

using the UML2.0 service profile. Security analysts add security intents (representing security 

patterns) as stereotypes for the UML service model. Then, this is used to guide the generation of 

the security policies. It also works on securing service composition using pattern-based by 

introducing rules to define the relationships among services using patterns. Shiroma et al [137] 

introduce a security engineering approach merging model driven security engineering with 

patterns-based security. The proposed approach works on system class diagrams as input along 

with the required security patterns. It uses model transformation techniques (mainly ATL - atlas 

transformation language) to update the system class diagrams with the suitable security patterns 

applied. This process can be repeated many times during the modeling phase. One point to be 

noticed is that the developers need to be aware of the order of security patterns to be applied 

(i.e. authentication then authorization, then…) 

Delessy et al. [138] introduce a theoretical framework to align security patterns with 

modeling of SOA systems. The approach is based on a security patterns map divided into two 

groups: (i) abstraction patterns that deliver security for SOA without any implementation 

dependencies; and (ii) realization patterns that deliver security solutions for web services’ 

implementation. It appends meta-models for the security patterns on the abstract and concrete 

levels of models. Thus, architects become able to develop their SOA models (platform 

independent) including security patterns attribute. Then generate the concrete models (platform 

dependent web services) including the realization security patterns. Similar work introduced by 

[139] to use security patterns in capturing security requirements and enforcement using patterns. 

Hafner et al. [140] introduce the concept of security-as-a-service (SeAAS) where a set of key 

security controls are grouped and delivered as a service to be used by different web-based 
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applications and services. It is based on outsourcing security tasks to be done by the SeAAS 

component. Security services are registered with SeAAS and then it becomes available for 

consumers and customers to access whenever needed. A key problem of the SeAAS is that it 

introduces a single point of failure and a bottleneck in the network. Moreover, it did not provide 

any interface where third-party security controls can implement to support integration with the 

SeAAS component. The SECTET project [141] focuses on the business-to-business 

collaborations (such as workflows) where security need to be incorporated between both parties. 

The solution was to model security requirements (mainly RBAC policies) at high-level and 

merged with the business requirements using SECTET-PL [142]. These modeled security 

requirements are then used to automate the generation of implementation and configuration of 

the realization security services using WS-Security as the target applications are assumed to be 

SOA-oriented. 

3.4.1.3 Security Engineering Processes  

Different proposals have been developed trying to align and incorporate security engineering 

activities with the software development lifecycle. These processes such as Security Quality 

Requirements Engineering (SQUARE) [65], SREP [143] and Microsoft SDL specify the steps 

to follow during software engineering process to capture, model, and implement system security 

requirements. Such processes are aligned with system development processes. They focus on 

engineering security at design time making assumption about the expected operational 

environment of the application under development. This leads to lot of difficulties when 

integrating such systems and their implemented security with the operational environment 

security as software systems depend on their built-in security controls. 

3.4.1.4 Widely Deployed Security Platforms 

We have determined different industrial security platforms that have been developed to help 

software engineers realizing security requirements through a set of provided security functions 

and mechanisms that the software engineers can select from. Microsoft has introduced more 

advanced extensible security model - Windows Identity Foundation (WIF) [144] to enable 

service providers delivering applications with extensible security. It requires service providers 

to use and implement certain interfaces in system implementation. The Java Spring framework 

has a security framework – Acegi [145]. It implements a set of security controls for identity 

management, authentication, and authorization. However, these platforms require developers’ 

involvement in writing integration code between their applications and such security platforms. 

The resultant software systems are tightly coupled with these platforms’ capabilities and 

mechanisms. Moreover, using different third-party security controls requires updating the 

system source code to add necessary integration code. 
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3.4.2 Adaptive Application Security 

Several research efforts try to enable systems to adapt their security capabilities at runtime. 

Elkhodary et al. [146] survey adaptive security systems. Extensible Security Infrastructure [17] 

is a framework that enables systems to support adaptive authorization enforcement through 

updating in memory authorization policy objects with new low level C code policies. It requires 

developing wrappers for every system resource that catch calls to such resource and check 

authorization policies. Strata Security API [18] where systems are hosted on a strata virtual 

machine which enables interception of system execution at instruction level based on user 

security policies. The framework does not support securing distributed systems and it focuses 

on low level policies specified in C code.  

The SERENITY project [19, 147, 148] enables provisioning of appropriate security and 

dependability mechanisms for Ambient Intelligence (AI) systems at runtime. The SERENITY 

framework supports: definition of security requirements in order to enable a requirements-

driven selection of appropriate security mechanisms within integration schemes at run-time; 

provide mechanisms for monitoring security at run-time and dynamically react to threats, 

breaches of security, or context changes; and integrating security solutions, monitoring, and 

reaction mechanisms in a common framework. SERENITY attributes are specified on system 

components at design time. At runtime, the framework links serenity-aware systems to the 

appropriate security and dependability patterns. SERENITY does not support dynamic or 

runtime adaptation for new unanticipated security requirements neither adding security to 

system entities that was not secured before and become critical points. 

Morin et al. [149] propose a security-driven and model-based dynamic adaptation approach 

to adapt applications’ enforced access control policies in accordance to changes in application 

context – i.e. applying context-aware access control policies. Engineers define security policies 

that take into consideration context information. Whenever the system context changes, the 

proposed approach updates the system architecture to enforce the suitable security policies. 

Mouelhi et al. [7] introduce a model-driven security engineering approach to specify and 

enforce system access control policies at design time based on AOP-static weaving. These 

adaptive approaches require design time preparation (to manually write integration code or to 

use specific platform or architecture). They also support only limited security objectives, such 

as access control. Unanticipated security requirements are not supported. No validation that the 

target system (after adaptation) correctly enforces security as specified.  
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3.4.3 Multi-tenancy Security Engineering 

The area of multi-tenant SaaS applications’ security engineering is relatively new. Existing 

multi-tenancy security solutions from industry and academia are still under development. 

Michael et al. [150] discuss the limitations of security solutions proposed by different 

commercial cloud platforms. Salesforce.com has introduced a simplified solution to support 

their CRM integration with tenants’ security solutions. They focus on the Identity and Access 

Management (IAM) area only. Tenants who are interested in integrating with Salesforce.com 

have to implement web services interfaces with predefined signatures in order to integrate with 

Salesforce.com.  

Enabling applications to support multi-tenancy either during application development or by 

adapting existing web applications to support multi-tenancy has been investigated by [151-154]. 

Cai et al. [22, 23] propose an approach to transform existing web applications into multi-tenant 

SaaS applications. They focus on the isolation problem by analyzing applications to identify the 

possible isolation points that should be handled by the application developers.  

Guo et al. [24] developed a multi-tenancy enabling framework. The framework supports a 

set of common services that provide security isolation, performance isolation, etc. Their security 

isolation pattern considers the case of different security requirements for different tenants while 

still using a predefined, built-in, set of security controls. It depends on the tenant’s 

administration staff to manually configure security policies and map their users and roles to the 

application predefined roles. 

Pervez et al. [25] developed a SaaS architecture that supports multi-tenancy, security and 

load dissemination. The architecture is based on a set of services that provide routing, logging, 

security. Their proposed security service delivers predefined authentication and authorization 

mechanisms. No control by service consumers on the security mechanisms used. No isolation is 

provided between the authentication and authorization data of different tenants. 

Xu et al. [26] propose a new hierarchical access control model for the SaaS model. Their 

model adds higher levels to the access control policy hierarchy to be able to capture new roles 

such as service providers’ administrators (super and regional) and tenants’ administrators. 

Service provider administrators delegate the authorization to the tenants’ administrators to grant 

access rights to their corresponding resources.  

Zhong et al. [155] propose a framework that tackles the trust problem between service 

consumers, service providers and cloud providers on being able to inspect or modify data under 

processing in memory. Their framework delivers a trusted execution environment based on 

encrypting and decrypting data before and after processing inside the execution environment 
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while protecting the computing module from being access from outside the execution 

environment. 

Menzel et al. [156, 157] propose a model-driven platform to compose SaaS applications as a 

set of services.  Their approach focuses on enabling cloud consumers to compose their system 

instances and define their security requirements to be enforced on the composed web services. 

However, tenants’ instances must be deployed on separate VMs and there is no means to update 

or reconfigure the defined security except manual. These efforts deliver security using specific 

solutions and architectures. However, they do not give tenants any type of control on their 

assets’ security; do not support multi-tenant security; and do not support runtime enforcement or 

updating of enforced security. 

In summary, the existing efforts in this area focus mainly on design time security engineering 

which is not feasible in multi-tenant cloud-based applications where tenants’ security 

requirements are not known at design time. The existing adaptive security engineering efforts 

require deep design time preparation, which is mostly not feasible for legacy applications. 

Moreover, the existing multi-tenant security engineering efforts do not consider the possibilities 

of integrating tenant third-party security controls at runtime. 

3.5 Security Re-engineering 

Although a lot of security engineering approaches and techniques do exist as we discussed in 

the last section, the efforts introduced in the area of security re-engineering and retrofitting are 

relatively limited. This comes, based on our understanding, from the assumption that security 

should not be considered as an afterthought and should be considered from the early system 

development phases. Thus, research and industry efforts focus mainly on how to help software 

and security engineers in capturing and documenting security in system design artifacts and how 

to enforce using model-driven engineering approaches. Security maintenance is implicitly 

supported throughout updating design time system or security models. In the real world, system 

delivery plans are dominated by developing business features that should be delivered. This 

leads to systems that miss customers expected or required security capabilities. These existing 

legacy systems lack models (either system or security or both) that could be used to conduct the 

reengineering process. The maintenance or reengineering of such systems is hardly supported 

by existing security (re)engineering approaches. Below we summarize the key efforts we found 

in relevant research areas including security retrofitting, software maintenance and change 

impact analysis, dynamic software updating, and concept location areas. 
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3.5.1 Security Retrofitting Approaches 

Research efforts in the security retrofiting area focus on how to update software systems in 

order to extend their security capabilities or mitigate security issues. Al Abdulkarim  et al [158] 

discussed the limitations and drawbacks of applying the security retrofitting techniques 

including cost and time problems, technicality problems, issues related to the software 

architecture and design security flaws. 

Hafiz et al. [159, 160] propose a security on demand approach which is based on a 

developed catalog of security-oriented program transformations to extend or retrofit system 

security with new security patterns that have been proved to be effective and efficient in 

mitigating specific system security vulnerabilities. These program transformations include 

adding policy enforcement point, single access point, authentication enforcer, perimeter filter, 

decorated filter and more. A key problem with this approach is that it depends on predefined 

transformations that are hard to extend especially by software engineers. 

Ganapathy et al. [161, 162] propose an approach to retrofit legacy systems with authorization 

security policies. They used concept analysis techniques (locating system entities using certain 

signatures) to find fingerprints of security-sensitive operations performed by system under 

analysis. Fingerprints are defined in terms of data structures (such as window, client, input, 

Event, Font) that we would like to secure their access and the set of APIs that represent the 

security sensitive operations. The results represent a set of candidate joinpoints where we can 

operate the well-known “reference monitor” authorization mechanism.  

Padraig et al. [163] present a practical tool to inject security features that defend against low-

level software attacks into system binaries. The authors focus on cases where the system source 

code is not available to system customers. The proposed approach focuses on handling buffer 

overflow related attacks for both memory heap and stack. 

Welch et al. [164] introduce a security reengineering approach based on java reflection 

concept. Their security reengineering approach is based on introducing three meta-objects that 

are responsible for authentication, authorization, and communication confidentiality. These 

meta-objects are weaved with the system objects using java reflection. However, this approach 

focuses only on adding predefined types of security attributes and do not address modifying 

systems to block reported security vulnerabilities. 

3.5.2 Software Maintenance 

Another key area that could be used in addressing the security reengineering problem is the 

software maintenance and reengineering. System reengineering “preventive maintenance” [165] 
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targets improving system structure to easily understand and help in reducing cost of future 

system maintenance. The re-engineering process includes activities such as source code 

translation, reverse engineering, program structure improvement, and program modularization. 

System maintenance [166] includes any post-delivery modification to existing software. 

Runtime system adaptation is similar to system maintenance where we can handle post-delivery 

“unanticipated” requirements, but this should happen while the system is running. These 

concepts target adding, removing, replacing or modifying a system feature or structure either at 

design time or at runtime. Engineering approaches that depend on aspect-oriented software 

development enable systems to extend, may be replace, system functionality even at runtime but 

they do not support leaving out certain patterns that may be buggy, unsafe or insecure. 

Software maintenance requires deep understanding of target applications in order to analyse 

the impact of a given system modification on other system entities “change impact analysis”. 

Existing software maintenance efforts focus mainly on facilitating the impact analysis task as a 

crucial part of change realization [167]. Specifying which entities to be changed and 

propagating changes to the target system are not often considered. Many existing impact 

analysis approaches assume that the entities to be modified – the “change set” - are known 

beforehand. Thus, they usually focus on identifying entities – the “impact set” - that will be 

impacted by modifying entities included in the change set.  

Xiaobing et al. [168] introduce a static analysis approach to identify the impact set of a given 

change request based on the change type (modify, add and delete) and the entity to be modified 

(class, method, attribute). They construct a dependency graph of system classes, methods, and 

members (OOCMDG). Given an entity with change type CT, then using the OOCMDG and a 

set of impact rules they define the other impacted entities in a given application. Types of 

changes are limited to classes and methods. Statement-level modifications are not considered. 

The types of modifications required on the identified impact set are not known. Petrenko et al. 

[169] introduce an interactive process to improve the precision of the identified impact analysis 

using variable granularity analysis guided by developers. The proposed approach depends on 

developers’ deep involvement during the impact analysis process to control the precision of the 

change set.  

Hassan et al. [170, 171] introduce an adaptive change impact analysis approach based on 

adaptive change propagation heuristics. The approach combines different heuristics-based 

approaches including history-based impact analysis (given a change request to modify entity 

(A), what are the entities that are often modified with); containment-based impact analysis 

(modifying entity (A) means other entities in the same container may be changed as well. 

Container may be a component or a source file); call-use-depends impact analysis (uses the 
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dependency graph to identify entities that refer to the modified entity); code ownership impact 

analysis (modifying entity (A) will return other entities that are owned by the same developer). 

The best heuristics table maintains for each entity in the system, the best heuristics approach 

that helps in conducting more accurate impact analysis. However, the approach did not explain 

how these best heuristics are automatically selected and updated at runtime.  

It is worth mentioning here that we could not find relevant work that addresses the change 

propagation as the next step of the software maintenance problem. The system refactoring area 

has a similar scope to maintenance but with limited system modification, focusing on 

identifying code regions to be refactored – i.e. “bad smells”. Some of the refactoring problems 

include how to specify and locate code snippets to be refactored, and updating system models to 

maintain consistency between the updated (refactored) source code and system models [24]. 

Wloka et al [172] introduce an aspect-aware refactoring approach where refactoring takes into 

account updating the defined aspects and pointcuts model. Most refactoring tools identify 

known refactoring patterns [173]. They depend on user involvement to define syntactic bad 

smells or use aspect mining tools to propose candidates that need to be refactored. 

3.5.3 Dynamic System Updating 

Dynamic system updating efforts aim to facilitate system updates at runtime. Such efforts have 

been used also in adding new features and updating system at runtime. Most of these efforts are 

based on the aspect oriented programming concept. Existing AOP languages e.g. AspectJ 

support two types of crosscutting concerns: dynamic crosscutting concerns that impact system 

behaviour by injecting code “advice” to run at well-defined points (normally limited to updating 

methods – removing, modifying and replacing); and static crosscutting concerns that impact the 

static structure and signature of program entities (normally limited to adding new declarations 

and methods, rather than modifying existing system entities like classes, methods and fields). 

These are key limitations in adopting AOP for software reengineering and maintenance. 

Pukall et al. [174] introduce an approach using AOP HotSwaping and object wrapping. It is 

based on role-based adaptation. Given a system change (adaptation), the involved entities are 

categorized into caller and callee. The callee is extended by a wrapper class. The caller method 

is replaced with a new method that uses the new wrapper class. The approach suffer from: 

memory and performance impact on the updated system; out of synchronization with the 

original source code; requires modifying the callers in all classes (at runtime); and has limited 

support for class hierarchy change.  

Villazon et al. [175] introduce an approach to support runtime adaptation based on AspectJ - 

HotWave (Hotswap and reWave) – as an aspect weaver. This approach is limited to dynamic 
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AOP and static crosscuts are not supported. Nicorra et al [176] introduced PROSE, an AOP-

based code replacement approach. PROSE does not support schema changes, or “inter-type 

declarations” such as the replacing of a method, and does not allow the addition of new class 

members (i.e., methods, fields) in the original code.  

3.5.4 Concept Location Techniques 

Concept location techniques help in identifying and locating source code blocks that realize a 

given system feature or concept. This area is also relevant to our security reengineering problem 

where we need to locate code blocks with certain signatures as we going to explain in next 

chapters. Efforts in capturing code signatures include point-cut designators, feature location, and 

aspect mining. Feature location is a key step in system reengineering and maintenance to 

understand the target system and identifying implemented features. Feature location approaches 

can be categorized into static-based, dynamic-based, and runtime-based approaches. Below we 

summarize the key efforts in the area of concept location: 

Reiss [177], Shepherd et al [178], Marcus et al [179] use natural language and ontology-

based queries and information retrieval approaches in searching source code looking for certain 

concepts. The adoption of natural language impacts approach accuracy and soundness. 

Poshyvanyk et al [180] use AI techniques e.g. decision making and uncertainty to locate system 

features. These help in understanding target systems but they do not assure high soundness, a 

key requirement in system maintenance [181].  Zhang et al [182] introduce PRISM to help 

extracting aspects. It is similar to our signature approach while it has limited signature 

specification capabilities. 

In summary, the existing software and security re-engineering efforts require deep 

understanding and involvement of the software and security engineers to effect a given system 

modification. Many focus on retrofitting an application with specific security patterns using 

tools with a set of predefined patterns and modification steps required to realize such patterns. 

Furthermore, the existing signature matching efforts are not formal enough to help in 

automating the software analysis process. 

3.6 Security Measurement and Metrics  

There is no mean that could be used to help proving that a given system is completely (100%) 

secure [183]. Security is like a game between the security officers and malicious users – mind-

against-mind. This means that there is no limit to attackers’ malicious actions to breach assets’ 

security. Thus, it is definitely hard to show that the system is secure against existing as well as 

new security vulnerabilities. Security metrics represent a good solution to the security 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Poshyvanyk,%20D..QT.&newsearch=partialPref
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assessment problem. Different types of security metrics do exist either offline security metrics 

such as comparing system security with other systems, how many vulnerabilities found, attack 

surface, planned attacks reported, strength of the applied security controls; and online security 

metrics that assess the current security status and how the operated security is capable to defend 

against different attacks. NIST [184] characterizes security metrics into three types as follows: 

– Implementation Metrics: These metrics are intended to demonstrate progress in 

implementing information security solutions and related policies and procedures; 

– Effectiveness and Efficiency Metrics: These metrics are intended to monitor if the 

implemented security controls are implemented correctly, operating as intended and meet the 

desired outcomes. Effectiveness focuses on the robustness of the security controls while 

efficiency focuses on the capability of the security controls to mitigate the security 

objectives; 

– Impact Measures: These are used to articulate the impact of IT security on enterprise 

mission including cost savings and public trust. 

System monitoring approaches can be categorized into external monitoring which resides in 

the system infrastructure and collects measure from the interactions between the system and its 

underlying infrastructure; or internal monitoring which depends on instrumenting the system 

binaries or source code with monitoring code snippets that can collect measurement related to 

certain internal system events. Below we summarize key efforts in relevant areas including 

security monitoring, SLA monitoring, software requirements monitoring, and metric 

specification languages. 

3.6.1 Security Monitoring 

Existing efforts in information security monitoring focus on proposing guidelines or processes 

to be followed when defining metrics or collecting measurements. Chandra et al. [27] introduce 

a methodology to help in identifying the required security metrics in a given system. This 

methodology has a set of steps to follow including: specifying metric requirements, identify 

vulnerabilities, identifying software characteristics, analysing security model, categorizing 

security metrics, specifying security metric measures, designing metric development process, 

developing security metrics, and finalizing metrics suite. Similar efforts introduced for the cloud 

computing model in [185].  

Savola et al. [28-31, 186] introduce an iterative process for security metrics development 

based on a set of refinements of system security requirements down to the set of on-line and off-

line security metrics to be applied. These security metrics are categorized by related security 

objective (authentication, authorization, confidentiality, integrity and availability).  
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Muñoz et al. [187] introduce a cloud computing dynamic monitoring architecture for the 

security attributes along with a language to capture monitoring rules. The proposed architecture 

is made up of three main layers: the local application surveillance (LAS) which collects 

measures from each application instance in virtual execution environment; intra-platform 

surveillance (IPS) which collects measurements of different LAS elements and start analysing 

them to detect violations occurred from the interactions with other systems on the same virtual 

machine or different virtual machines; and global application surveillance (GAS) which 

analyses the results of different IPS for every specific application (taking into consideration its 

different instances). The key problem of this approach is that it focuses on how to help the 

service provider administrator but it did not consider the involvement of the service tenants in 

developing and enforcing their own security metrics. Moreover, the new proposed language is 

hard to learn and use in developing complex metrics. 

The SERENITY Project [188, 189] introduced the EVEREST security monitoring platform. 

The SERENITY framework helps adding security patterns to systems at runtime (given that 

these systems have been already prepared at design time to integrate with SERENITY). The 

main objective of the EVEREST security monitoring platform is to assess the conditions of the 

operation of the security pattern realization components when integrated with the target system 

at runtime. These conditions are specified as a set of Event-Calculus [190] (first-order temporal 

formal language) assertion rules within the security and dependability patterns. When a security 

pattern is selected, the specified rules are fed into EVEREST to make sure that they are satisfied 

by events collected from the system at runtime. A key problem with this approach is that the 

event calculus is hard to develop by service tenants. An extension of this approach was 

introduced in the area of SLA management as we going to discuss in the next subsection. 

Lorenzoli et al. [191] introduce an extension of this framework (EVEREST+) that helps in 

delivering SLA violation prediction capabilities based on the measurements and results got from 

the EVEREST framework. Similar work introduced by Spanoudakis et al [192]. They introduce 

a security monitoring approach based on event-calculus captured as parameterized monitoring 

patterns classified based on the related security objectives confidentiality, integrity and 

availability. 

Patzina et al. [193] introduce an approach that targets automatic generation of security 

monitors. The approach is based on using Live Sequence Charts (LSCs) by system developers 

to capture use and misuse cases of the system.  These LSCs are translated into monitor petri nets 

(MPNs) dialect (a modified definition of petri nets). These MPNs are then used to generate the 

required security monitors. Although the authors claimed that the introduction of MPNs 

simplified the generation of the security monitors, we see that this step adds more complication 
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and overhead to the process. Using LSCs directly could help to automatically generate security 

monitors. 

3.6.2 SLA Monitoring 

The service level agreement (SLA) management becomes a very important research area with 

the wide-adoption of the service outsourcing for hosting on external third-party platforms (such 

as the cloud computing model) where customers do not have control on such services. This 

increases the need to measure the quality of the delivered services (QOS) in terms of 

performance, availability, reliability, security, and so forth. The service providers and 

consumers conduct SLAs that define the QOS attributes that should be guaranteed by the 

service provider and penalties to be applied on the service provider in case of any violation to 

any of these QOS terms. Hence, it is very important to monitor the QOS terms specified in order 

to take proactive actions before such violations occur or corrective actions in case of such 

violations happened. However, we could not find efforts in the area of SLA that focus on how to 

specify, monitor, and enforce security SLA terms. Below, we summarize some of the key 

relevant SLA efforts we determined in this area. 

Skene et al. [194-197] introduce a SLA specification language, SLang, to help in capturing 

SLA terms (including performance, reliability, and throughput) developed in UML. The SLang 

is supported with OCL that helps in capturing SLA constraints (invariants) that are used in 

assessing the satisfaction or violation of the specified service level agreements. They used the 

timed automaton to help in detecting violation of these SLA terms. This automaton is 

automatically generated from the specified OCL signatures.  

Michlmyar et al. [198, 199] introduce a comprehensive QOS monitoring approach that is 

based on both client and server side monitoring of the QOS attributes. The proposed approach 

was integrated with the VRESCo platform (a runtime environment for SOA-based computing). 

They have developed their own SLA specification schema that is used in developing SLA terms 

in XML. The approach depends on the nature of the web service to deploy interceptors of 

requests and responses and trigger the QOS monitoring component.  

Comuzzi et al. [200] introduce an approach for monitoring SLA terms as a part of the 

SLA@SOI project that targets developing SLA management framework for the cloud 

computing model. The proposed approach is based on the EVEREST monitoring framework. 

This uses event-calculus to express rules and patterns of interest that should be monitored. Thus 

a part of the proposed solution is to extract from the SLA terms patterns to be monitored 

expressed in event-calculus. The proposed approach is event-based. Measurements are sent to 

reasoning component to assess possible violations of the specified SLA terms. Similar efforts 
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[186] were introduced in the area of service selection that take into consideration different QOS 

attributes when selecting between different services.  

3.6.3 Requirements Monitoring 

Efforts in this area focus on how to monitor and gather measurements of the software system 

execution to assess whether the specified requirements are satisfied or not. Most of the existing 

efforts in this area depend on goal-oriented requirements engineering approaches, such as 

KAOS, where system requirements are formally expressed as refinements of high-level goals 

and then these formalizations are used to guide the generation of low-level requirement 

monitoring code that helps assessing the satisfy-ability of system requirements. 

Lahmar et al [201] introduce a new non-functional properties monitoring approach based on 

component transformation that transform component into monitor-able components delivering 

both polling and subscription monitoring models. Each component defines the set of required 

properties. These properties must be offered by the referenced components. Therefore, the 

proposed approach uses these required properties to extend these referenced components with 

monitoring components as extensions to deliver these properties.  

Ramirez et al [202] introduce an adaptive requirements monitoring approach that tries to 

address the performance overhead incurred from the application of extensive system 

monitoring. This is done using the application of configurable (adaptable) monitoring 

components with adaptable monitoring frequency “adaptive sampling”. These can be turned on 

and off according to the current utility functions specified, in order to assess violations of the 

requirements satisfaction as well as the accuracy and cost of the monitoring components. 

Logical
Machinery

Initially  and Happens

What happens when

What actions do

Initiates and Terminates

HoldsAt

What’s true when

 

Figure 3-6. Event Calculus Model [190] 

3.6.4 Security Metrics Specification Languages 

Event-Calculus-Assertions [190] is a first-order predicate calculus that is used to develop formal 

specification/model and reason about system properties that could be specified in terms of a set 
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of events and their effects. The occurrence of these events impacts the satisfaction of specified 

system properties. Event calculus, as shown in Figure  3-6, is based on two basic constructs 

events and fluents. Event represents something that occurs at a specific point in time. An event 

may result in a change in the status. This state is represents by fluents. EC has a set of predicates 

that represent occurrence of an event (Happens), start hold of a fluent (Initiates), termination of 

the hold of a fluent (Terminates), fluent terminates between t1 and t2 (Clipped), and fluent holds 

at time t1 (HoldsAt). 

The Performance Metric Specification Language (PMSL) [203, 204] is developed to capture 

high-level user-defined parallel-systems performance metrics. Metrics developed by the PMSL 

are fed in the G-PM performance analysis tool. PMSL is a declarative functional language. 

PMSL does not support control flow or state altering constructs. The PMSL provides a couple 

of set operations and aggregation functions. The list of measurable objects to be monitored is 

limited to predefined list defined and built-in the PMSL. 

The Goanna Metric Specification Language (GMSL) [205] is developed to assess programs 

source code quality using a set of user-defined static source code metrics. Metrics specified are 

evaluated against source code AST using a model-checker. The grammar of the GMSL is based 

on Extended Backus Naur Form (EBNF) and supported with a set of aggregation functions. 

In summary, the existing security and requirements monitoring efforts introduce proposed 

methodologies and processes to be followed in developing security metrics required in 

assessing the security of a given system. Relevant efforts in the requirements’ monitoring focus 

on verification of certain system properties at runtime using formal mathematical languages 

such  event calculus. Moreover, the existing metrics’ specification efforts are either formal 

(hard to use) or domain specific (does not help in specifying customized security metrics). 

3.7 Research Gaps Summary 

In this chapter we have reviewed, analyzed, and summarized the key efforts, we found, in 

research areas relevant to the research problem we address in this thesis “cloud computing 

security management”. Table  3-1 summarizes the key research branches in each area, key facts, 

and the main research gaps in these efforts project on the research problem. 

- Security Management Area: The area of security management has different security 

management standards NIST-FISMA and ISO27000. Both are not designed for security 

management of outsourced cloud assets that are out of the asset owner control and shared 

with different tenants. Moreover, it has different information security management systems 

(ISMS); however, these efforts focus mainly on refining security objectives down to 

requirements and security policies, and automating the configuration of security controls 
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using these security policies. They do not address the multi-tenancy problem. Moreover, 

these efforts did not address the security monitoring and improvement aspects. Furthermore, 

some of these efforts depend on manual involvement of engineers which is very hard to have 

in case of cloud-hosted assets. Another key limitation of these efforts is that they do not 

consider integration of the operated security controls with the target IT systems (usually 

done manually). In this research project, we consider the security controls’ configuration as 

out of scope for two reasons: (i) it is already covered by existing efforts; and (ii) we consider 

the case where different tenants may operate their own controls which may be out of control. 
  

- Security Analysis Area: We have figured out hundreds of research efforts in this area either 

as risk management and assessment, architecture risk analysis, and vulnerability analysis. 

These efforts focus mainly on how to conduct and document outcomes of the security risk 

analysis process. Thus, we assume that this part of the security management process is out of 

scope in this project – i.e. security engineers can use any of these approaches during the 

security risk analysis process. However, we expect that the final outcome is to be modeled in 

our tool. The existing architecture risk analysis and vulnerability analysis efforts focus on 

specific, well-known threats, attacks, and vulnerabilities such as man-in-the-middle and 

injection attacks, attack surface and compartmentalization metrics, SQLI vulnerabilities, 

XSS, OS Command Injection, Input sanitization. Furthermore, there is no online analysis 

tool that can investigate for new vulnerabilities without a need for new security patches that 

may take weeks to be installed. This is very critical for cloud applications as they are mostly 

publicly accessible for end-users who may use these vulnerabilities to breach applications 

and data security. 

- Security Engineering Area: The area of security engineering has so many approaches and 

methodologies, and relatively few efforts in the area of adaptive security engineering. The 

key limitations we found in this area with regard to our research problem are: they focus 

mainly on design time security engineering which is not feasible in multi-tenant cloud 

applications where tenants’ security requirements become known at runtime. Moreover, 

these requirements are highly expected to change as a consequence of business and security 

changes. The existing adaptive security engineering efforts require deep design time 

preparation, which is mostly not feasible for legacy applications. Moreover, these efforts do 

not address the problem of integrating third-party security controls (at runtime) with the 

target application. 

- Security Retrofitting Area: The area of software and security re-engineering has relatively 

few efforts. Most of these efforts require deep understanding and involvement of software 

and security engineers. Many focus on retrofitting an application with specific security 

patterns using tools with built-in patterns and modification steps required to realize such 
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patterns. Furthermore, the existing signature matching efforts are either not formal enough or 

work on function level signatures only (such as pointcut in AOP). 

- Security Monitoring Area: The area of security monitoring is relatively new. Most of these 

efforts still proposing methodologies and processes to be followed in developing security 

metrics required in assessing the security of a given system. Relevant efforts in the 

requirements’ monitoring focus on verification of certain system properties or invariants at 

runtime using event calculus for example. Event calculus is hard to use, and still limited 

when writing security metrics that perform aggregation functionalities. Furthermore, these 

efforts do not consider the multi-tenancy dimension – i.e. how to define, develop probes, 

deploy, and analyze results of different metrics for different tenants. 
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Table 3-1.  Key research areas, efforts, and gaps 

Area Existing Efforts Limitations 

Security 

Management 

- Security Management Standards 

- Security Management Framework 

- No Multi-tenancy Support 

- Security integration within IT system is limited 

- Focus mainly on security controls’ configuration, no monitoring nor feedback 

Defining 

Security 

- Risk analysis tools 

- Architecture Risk Analysis 

- Security Vulnerability Analysis 

- Mainly focus on risk documentation 

- Limited to specific vulnerability or attack types 

- No support for online security analysis 

Enforcing 

Security 

- Design time security Engineering 

- Multi-tenant Security Engineering 

- Adaptive Security Engineering 

- Focus on design time security engineering 

- Adaptation requires design time preparation 

- Adaptive approaches depend on specific architecture and technologies (SOA, 

CBSE) 

Monitoring 

Security 

- Security Monitoring Framework 

- Requirements Monitoring 

- SLA Monitoring 

- Security Metrics’ specification languages 

- Security monitoring approaches deliver methodologies; no tool support. 

- Requirements monitoring approaches depend on formalized event-calculus; 

hard to express by engineers and service consumers.  

- Approaches depend on system events are limited to reactive actions 

- No formal and familiar metrics specification language. 
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  Chapter 4

Adaptive, Model-based Cloud Computing 

Security Management 

In chapter 2 we have discussed key security challenges in the cloud computing model, and in 

chapter 3 we reviewed and identified research gaps in relevant areas. The conclusion was that 

the cloud computing model lacks a strong security management framework that can handle the 

large number of cloud services and security solutions and takes into consideration the multi-

tenancy and elasticity, lack-of-trust and loss-of-control, and multiple stakeholders involved with 

the cloud model. Moreover, we concluded that the existing efforts are limited and do not fit well 

with the cloud computing security problem. In this chapter, we introduce the core idea of our 

approach and the big picture of the developed solution. This chapter is organized as follows. In 

Section 2 we introduce an overview of the IBM MAPE-K autonomic computing model as the 

reference model for our approach. In Section 3 we introduce the big picture of our approach, 

including the core idea, high-level architecture and main components.  

4.1 Introduction 

The cloud computing model is a good example of an adaptive computing platform. Computing 

resources utilized by different services and different tenants can be scaled up or down according 

to the current needs that are usually captured as a set of constraints, rules or utility functions that 

specify when to adapt the allocated resources. Different frameworks in both industry and 

academy [3, 194, 206] are currently under development to help adapting allocated resources 

according to predefined constraints. This dynamic nature of the cloud computing model along 

with the sharing of resources between tenants and public accessibility of the cloud platform 

reinforce the need for platforms that can change their operated security at runtime according to 

the current security risks and business objectives. The current cloud computing platform’s 

security is still far from adaptive-ness – i.e. how to get cloud services to deliver multi-tenant, 

adaptive security has not been considered with an applicable solution yet. In this chapter, we 

discuss how to deliver a security management platform that can extend cloud computing 

platform with the core infrastructure components required to deliver multi-tenant, adaptive, and 

model-based cloud computing security. We base our approach on the IBM autonomic 

computing platform [207] with a slight modification, which is the ultimate goal of the adaptive 

computing models including cloud computing. 
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In the next sections we discuss IBM MAPE-K autonomic computing model. Then, we introduce 

our general approach we propose to deliver adaptive security model that meets the key 

challenges we have explained in details in the last chapters. Finally, we will introduce the “big 

picture” of our security management framework. 

Managed System

Sensor Effector

Monitor

Analysis Plan

Execute

Knowledge

 

Figure 4-1. Autonomic computing model [209] 

4.2 Autonomic Computing and MAPE-K Model 

Software systems nowadays are getting more complicated, autonomous and real-time. This 

requires such systems to address unanticipated requirements that emerge at runtime without 

waiting for customizations and maintenance tasks that usually take several weeks. 

Administration of such complex systems is also a complicated task. Autonomic computing aims 

at simplifying the administration of such complex computer systems [208]. According to the 

autonomic computing paradigm, system administrators merely specify high level objectives 

(policies), which determine how the system may adjust its behavior at runtime in order to 

guarantee specified objectives/requirements. Administrators are consequently relieved from 

dealing with numerous details of the system. The autonomic computing system idea was 

originally introduced by IBM [209]. Autonomic computing is based on the MAPE-K model, 

show in Figure  4-1. This model proposes architecting any adaptive system into four 

components: Monitoring, Analysing, Planning, and Execution. All these components share a 

common knowledge repository of the managed system(s) and operational environment details 

and status, stakeholders’ objectives, and possible adaptation patterns. Below we discuss MAPE-

K components and possible realization techniques for each component with pros and cons of 

each approach. 
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4.2.1 Monitoring Component 

The first phase of any adaptive or autonomic system is to monitor the underlying system and its 

context. The main responsibility of the monitoring component is to collect the context and the 

managed system’s status information from the available sensors and filter collected information 

from irrelevant information. These measurements are fed into the analysis module to reason 

about the current system status and take predictive or corrective actions. Most of the monitoring 

efforts can be categorized as [207]: 

– Sensor interface: this pattern is based on defining a specific interface to be used by all 

system types (classes/objects) that sense the current status of the environment. This approach 

is applicable when adaptive-ness is considered when designing the managed system itself. 

– Publisher/subscriber “middleware”: this pattern assumes that we have context-provider or 

broker that publishes some context information and each adaptive system needs to register its 

interest in any of the available events or context domains. Thus, when new information is 

available, the publisher calls a certain function or fires a specific event. This approach is 

applicable when data is used by multiple clients and system adaptation requires information 

about its context. 

– Logging: this approach depends on collecting execution traces that reflect certain system 

events in log files or logging database (audit trial) for further analysis by the analysis 

component. A key problem with this pattern is that it leads to lagging measurements not real-

time measurements. Thus it fits more with the mitigation and recovery purposes. 

– Profiling: a library of APIs that can be used to develop profiling tools used to monitor the 

events that arise within the system host – e.g. Java VM runtime tools, and Microsoft .NET 

profiler. This is interesting when dealing with monitoring of the interactions between the 

system and the underlying platform. 

– Reflection: the adaptation system uses reflection to read information about the objects 

existing in its environment without having to alter its implementation. This approach is 

interesting when adding monitoring as afterthought or addressing an existing legacy system. 

We use this approach in the monitoring component of our security management platform. 

– Management protocols:  different protocols are existing related to the area of monitoring and 

serve different domains such as performance, manageability, etc. as follows: first, the 

application response measurement (ARM) [210] defines a set of APIs that can be used 

within application or its transactions in order to define the performance of certain application 

transactions. Second, web-based enterprise management (WBEM) [82] is a new standard 

developed by DMTF. WBEM is based on CIM: The common information model (CIM) [78] 

as a reference for the manageable objects; XML to represent data communications among 
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management and manageable objects; and HTTP to transfer the data among parties. Third, 

Simple Network Management Protocol (SNMP) is based on deploying monitoring agents 

(SNMP agents) on each managed device; SNMP Manager collects data from these agents; 

and the web server that hosts the management application (interface) to be used by the 

administrators. Fourth, Java management framework (JMX) was developed to help 

developing distributed management applications. The framework has three levels: (i) 

Instrumentation Level: this is responsible for the managed objects (MBeans) that define a 

standard interface to reflect set of functions (static or dynamic); (ii) agent level: this is the 

MBean server that delivers a registry of the MBean that allows clients to discover 

information and execute actions on MBeans; and (iii) remote management: this is the client 

of layer. It can communicate with the MBeans server through APIs.  

Before we start developing a monitoring component, we need to answer a set of questions 

including: what are the QOS attributes to be monitored, what system objects to monitor, 

monitoring frequency for each object, required redundancy (avoid failure and noise), how to 

secure monitored data and avoid spams and attacks on it, and how to relate data monitored to 

business objectives (goals) in order to trigger the corresponding adaptation actions. 

4.2.2 Analysis component 

The analysis component receives the monitored data from the monitoring component for 

analysis in order to understand the current system status. Monitored data may be filtered to 

remove any noise or redundancy. Also correlation or aggregation of the monitored data may 

exist to formulate meaningful information about the underlying context or system behavior. 

This information is usually expressed in terms of metrics of interest. These metrics may assess 

system during design time using system models or at runtime using some utility functions 

imposed on the system. The analysis component in most of the time is merged with either the 

monitoring component or with the decision and planning component. Below, we discuss the 

most common ways in developing analysis components. 

- Rule-Based: The monitored data or (metrics of interest calculated from such monitored data) 

are traced against a set of rules that define constraints (upper and lower bounds) [211, 212]. 

In case that any rule violated (in some cases fired), then a set of symptoms are reported. Such 

reported symptoms are linked to certain mitigation actions. We use this approach in our 

security monitoring approach.  

- Symptoms Database (Case-Based Reasoning): The logic of the analysis is formatted as 

symptoms. The current situation (case) is compared with the cases database. Then, the best 

matched case is retrieved and the related solutions or actions are applied. Other artificial 
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intelligent approaches such as neural networks, decision trees, and Game theory could be 

used to analyze system status against stakeholders’ defined desired objectives. 

- Model-Based: A lot of work has been introduced in this area [213, 214]. It is based on 

maintaining a model of the system and/or its operational environment (context). This model 

is updated with the monitored data. Then the current system model is: (i) Compared with the 

target model and the differences are used to guide the adaptation planning and execution 

steps; (ii) Validated against set of rules or constraints defined, so in case of rules violation, 

the system will take corrective actions; (iii) Used to activate a set of components. Each 

component has a set of rules, in case that these rules are matched then the component is 

integrated with the target system model to reflect current needs. 

- Artificial Intelligent and Adaptive Learning: These methods use a set of artificial intelligent 

methods and rules generated through supervised learning [215] and applied as normal 

behavior rules. Any abnormal activities are used to retrain the analyzer. 

- Regression Analysis: This is a statistical approach to help in investigating and understanding 

the relationships between variables [216]. This is usually used in ascertaining the causal 

impact of some variables on others. This is usually followed by statistical significance 

analysis to make sure that the estimated relationships are close to the truth. Regression 

analysis includes: linear regression and non-linear regression based on the nature of the 

dataset; interpolation: prediction within the range of the given data; or extrapolation: 

prediction out of the range of the given data. 

4.2.3 Planning and Execution components 

Given the system status and found deviations pinpointed and reported by the analysis 

component(s), the planning component generates a sequence of actions to be applied on the 

underlying system and/or managed objects (may be the current system environment as well) in 

order to adapt system behavior and meet the specified objectives (either as policies or as utility 

functions). The execution component should update the system behavior or structure 

accordingly and the underlying effectors should reflect such changes on the managed objects as 

well. Below we discuss a set of approaches that could help in realizing new changes. 

4.2.3.1 Architectural/Design Patterns 

Software architectural patterns help in expressing the fundamental structure (main components 

and their relationships) of the software systems [217]. It provides a set of predefined 

subsystems, responsibilities, and guidelines for organizing the relationships between them. 

Below is a list of patterns that could be used in with such approach: 
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– Decorator Pattern [218]: Helps in extending the responsibilities of an object, independent of 

other class objects, dynamically instead of using sub classing and also in cases where sub 

classing is not feasible (sealed or final class). However, this pattern requires design time 

preparation to use it. The decorator pattern is realized by introducing a decorator class that 

wraps/encloses the original class. The decorator class conforms to the interface of the 

original class and delegate calls to the enclosed class object. 

– Microkernel Pattern [217]: The microkernel architectural pattern best fits with the design of 

adaptive systems that target addressing unanticipated requirements at runtime. The 

microkernel enables plugging in and out system features/components and facilitating the 

communication between these components. However, this pattern requires design time 

preparation of the software architecture under development. 

– Interception Pattern [219]: The interceptor pattern helps in updating system behavior and 

capabilities at runtime according to the incoming request and its context information. The 

beauty of this pattern is that such update is realized without a need to modify the existing 

code, design time preparation, or even details of the application. Furthermore, it does not 

affect the current system features. Interceptor pattern usually developed with three 

components: Interceptor interface which defines the operations which are executed by a 

Dispatcher in specific events e.g. at the beginning or at the end of a request processing; 

Dispatcher is the class or method that is called by the interceptor to perform required 

actions. The interception is done in different possible ways e.g. the interceptor could call 

Dispatchers prioritized in a user-defined order; and Context is a data object that maintains 

context information either from the request or the current system status e.g. transaction id, 

caller, passed in parameters. The context object is sent to the interception handler. The 

context object details (data items) may be different from one interceptor to another according 

to the handler functionality. We use this pattern in our security monitoring and execution 

components as we discuss in chapter 6 and chapter 9. 

4.2.3.2 Middleware-Based Approaches 

The execution is implemented in the middleware layer so application does not need to be aware 

of the nature of the effectors (this is mostly used in distributed applications) [207, 220]. The 

middleware may implement one of the mentioned herein solutions to deliver its functionality: 

– Mobile Agents [80]: A mobile agent is a composition of computer software and data which is 

able to migrate (move) from one computer to another autonomously and continue its 

execution on the destination computer. They can be used as communicators/ negotiators with 

existing applications/security solutions. Thus, we can deploy different mobile agent for 

different task or different application interface or methodology of interaction and reasoning. 
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– Reflection Pattern [217]: The reflection architectural pattern helps in changing structure and 

behavior of software systems dynamically. It supports both type structure (e.g. extending 

classes) and function calls adaptation. The reflection pattern has two parts: a meta-level 

which provides information about system properties including structure and behavior; and a 

base-level which includes application logic itself. Its implementation builds on the meta-

level. Changes are usually done on the meta-level. This is subsequently reflected on base-

level components’ behavior. 

– Dynamic Aspect Weaving [221]: Dynamic weaving focus on the ability to apply, replace or 

remove an aspect while the software system is running (in contrast with the static aspect 

weaving at development time). Dynamic aspect weaving includes: (i) Load-time weaving: 

Byte code transformations at class loader level (Subclass the Java class loader or replace it); 

(ii) JIT compiler weaving: Byte code unaltered but alteration takes place when JIT compiler 

is employed; (iii) Code Splicing: Weaving changes on running native code. Native code is 

replaced with branch to external function (known as jump-return hooks). Replaced code 

appended at the end of external function. Jump back to instruction after spliced location. 

CC – Security management process CP – Security management process

Collaboration-based Security management framework

Define

EnforceImprove

Define

EnforceImprove

Define

EnforceImprove

 

Figure 4-2. A concept diagram of our joint-collaboration cloud security management  

4.3 Adaptive, Model-based Cloud Security Management – 

“Big Picture” 

To satisfy the identified requirements and research gaps (questions) relevant to the cloud 

computing security problem as discussed in Chapters 2 and 3, we propose a novel approach 

based on extending the boundaries of the cloud consumers and providers’ security management 

processes to include their cloud hosted services and cloud platforms respectively. This means 

that stakeholders can go through the security management process on their cloud hosted assets 

as if they have been hosting these assets inside their enterprise perimeters, as shown in 
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Figure  4-2. Moreover, they can use the same security specifications, security enforcement and 

monitoring and improvement approaches used internally and thus mitigate the loss-of-control 

and the lack-of-trust problems arise from adopting the cloud model. To deliver such capabilities, 

our framework has to introduce novel approaches to support capturing security requirements 

(including automated security analysis), enforcing security controls (through an automated 

security engineering approach), and monitoring the security of the hosted services (using 

automated security monitoring approach). Our framework should be deployed on cloud 

platforms where IT assets are located and used to manage the security of deployed services for 

corresponding tenants. Because none of the cloud stakeholders possesses the information 

required to secure a given service (going through the whole security management process), we 

adopt a joint-collaboration between cloud stakeholders in securing their cloud-hosted assets. 

Another obstacle to achieve this goal is that it is very hard to get the cloud consumers to have 

administrative access to the cloud platforms (may be malicious users) to manage the security of 

their assets by hand. Thus, we had to base our approach on abstract models that capture details 

of the cloud platform, services, and security. Our platform then takes the responsibility to 

realize these security specifications. 
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Figure 4-3. General Approach 
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Figure  4-3 shows that we get each stakeholder to summarize their information in models 

according to their roles: cloud providers model their platform details, service providers model 

their service details, and cloud consumers model their security model. These models are weaved 

in secure-system model (integrated model reflecting critical system entities and security details 

to be applied on these entities). This model is used as a reference in generating a security 

management plan that guides the configuration of security controls, integration of security 

controls within the target critical entities either in the service or in the cloud model. In our 

approach we move from top to bottom in the refinement process starting from models to real 

configurations “Enforcement”. On the other side, we collect measurements for the services and 

security controls and consolidate such measurements into metrics reflecting security status 

“Feedback”. 

Figure  4-4 shows a high-level architecture of our adaptive-security management framework 

that we have been working on throughout this research project and we are going to discuss 

throughout this thesis. This framework is to be hosted on cloud platforms and used to manage 

the security of cloud services. Our approach architecture is inspired by the MAPE-K autonomic 

computing model introduced by IBM and discussed early in this chapter. Below we discuss the 

responsibilities of each of our approach. 
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Figure 4-4. A high-level architecture of our security management approach 

- Management Component: This is a model-based security management component that is 

responsible for capturing services and security details where service provider system 

engineers model their services’ architecture, features and behavior and tenants’ security 

engineers model and verify their own security objectives, requirements, architecture, and 
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metrics. Both models are then weaved together in a tenant secure-system model that guides 

the next steps of security enforcement and monitoring. This component represents the 

MAPE-K planning component where users define the policies or utility functions to be used 

to manage system adaptation. 

- Enforcement Component: This component is responsible for integrating specified security 

details, modeled by different service tenants, with the target cloud services. The existing 

security management efforts, discussed in the related work chapter, focus mainly on 

automating security controls’ configuration process. Thus, this point is out of our research 

scope. Actually, another reason is that these security controls may be deployed outside the 

cloud platform (inside tenant’s network perimeter). Thus, our focus in this component is to 

support flexible integration of the security controls within the target cloud services. A 

common security interface was developed to facilitate the integration task. This interface 

defines a set of functionalities to be realized by the security vendors through a common 

security controls’ adaptor. This enables security controls to easily integrate with our 

enforcement component which integrates with cloud services. This component represents the 

execute component in the MAPE-K model. 

- Monitoring Component: This component is responsible for generating required security 

probes according to tenants’ specified metrics (captured in the management layer). These 

probes are then deployed into the cloud services to capture system behavior and generate 

corresponding measurements/traces. Moreover, this component is responsible for collecting 

the measurements generated by these probes (according to metrics specified frequencies) and 

passing such measurements to the analysis component. 

- Analysis Component: The analysis component is responsible for two main tasks: performing 

security analysis of the cloud services including vulnerability and threat analysis. The 

analysis component analyses the deployed services and their architectures to identify 

possible flaws and existing security bugs. This helps security engineers from both sides in 

developing their security models. Moreover, such issues are delegated to the security 

management component in order to incorporate in the security status reports for tenants as 

well as dynamically updating the security controls deployed to block the reported security 

issues. The analysis component also analyses the measurements reported by the monitoring 

component against a set of predefined metrics’ stable ranges – e.g. number of incorrect user 

authentications per day should be less than 3 trials, so the analysis component should analyse 

the reported measures of incorrect authentications. This may also include taking corrective 

actions to defend against such probable attack. This represents the analysis component in the 

MAPE-K autonomic computing model. 
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4.4 Approach Evaluation 

We have evaluated our approach using both experimental evaluation of each separate 

component and case studies from the cloud computing model using two or more components of 

our platform. In this section, we summarize the set of benchmark applications and set of 

evaluation metrics that we use throughout the thesis to evaluate the performance of our 

proposed platform components in terms of soundness, accuracy, and time. We introduce this 

here to avoid repetition in the next chapters. Below we summarize these benchmark applications 

and the evaluation metrics used. 

4.4.1 Benchmark Applications 

We have selected a set of real-world, large, widely-used, and commercial open source web 

applications developed using ASP.NET (currently we have a .NET parser) as our benchmark to 

evaluate our approach components including: the security engineering (chapter 6), security 

reengineering (chapter 7), security analysis (chapter 8), and security monitoring (chapter 9). In 

this section we introduce details of these benchmark applications. The other chapters reference 

this section in their evaluation sections. 

The benchmark includes the following applications: (i) Galactic-ERP: An ERP system 

developed internally in our group for testing purposes. (ii) PetShop: A well-known reference e-

Commerce application. (iii) SplendidCRM: An open source CRM that is developed with the 

same capabilities of the well-known open source SugarCRM system. It has been downloaded 

more than 400 times. (iv) KOOBOO: An open source enterprise content management system 

(CMS) used in developing websites. It has been downloaded more than 2000 times. (v) 

BlogEngine: An open source ASP.NET 4.0 blogging engine. It has been downloaded more than 

46000 times. (vi) BugTracer: An open-source, web-based bug tracking and general purpose 

issue tracking application. It has been downloaded more than 500 times. (vii) NopCommerce: 

An open-source eCommerce solution. It has more than 10 releases. (viii) Webgoat: A security 

testing web-based application developed by OWSAP [40] for security analysis and testing 

purposes. This application is used mainly in the evaluation of the security analysis component. 

Except for Galactic, we do not have any previous experience with these applications. Table  4-1 

shows a summary of these benchmark applications including number of downloads (which 

reflects how the applications are widely-used), size of the application in kilo-lines of code 

(KLOC), number of files, components, classes, methods, and time to build abstract syntax tree. 
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Table 4-1. Summary of benchmark applications statistics 

Benchmark Downloads KLOC Files Components Classes Methods 
AST 

Time 

Galactic – 16.2 99 2 101 473 187 

PetShop – 7.8 15 25 40 55 51 

SplendidCRM > 400 245 816 2 6177 6107 765 

KOOBOO > 2,000 112 1178 6 7851 5083 78 

BlogEngine > 46,000 25.7 151 13 258 616 163 

BugTracer > 500 10 19 8 298 223 93 

NopCommerce > 10 Rel. 442 3781 7 5127 9110 484 

* Webgoat - 15 105 2 125 165 150 

Table 4-2. Evaluation results classification 
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4.4.2 Evaluation Metrics 

To assess the effectiveness of our proposed components such as the security analysis, security 

re-engineering, and security monitoring components, we used a set of evaluation metrics to 

measure the soundness and completeness of the proposed technique. These metrics are precision 

rate, recall rate, false alarm rate, and F-measure. These metrics are based on the validity of the 

reported outcomes compared to the actual system status. Table  4-2 shows the different 
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combinations of reported outcomes and actual outcomes as follows: True positive – TP: valid 

outcome, the tool reported as an issue and it turns out to be actual issue; False positive – FP: 

invalid outcome, the tool reported as an issue although it is not an actual issue; False negative –

FN: missed case, it is an actual issue, but the tool missed it; True Negative –TN: it is not an 

actual issue, and the tool did not report it. We next provide our definition of these metrics as 

used in our experiments. The precision metric is used to assess the soundness of the approach. 

A high precision rate means that the approach returns more valid results (true positive - TP) 

than invalid results (false positive - FP). Thus the maximum precision is achieved when no false 

positives (see Equation 1). The recall metric is used to assess the completeness of our approach. 

A high recall means that the approach returns most of the valid results (true positive - TP) than 

missed valid results (false negative - FN), see Equation 2. The low false alarm rate means how 

much invalid results reported by the tool compared to the total invalid results. The F-measure 

metric combines both precision and recall. It is used to measure the overall effectiveness of our 

approach (weighted harmonic mean). This metric depends on the importance of the recall rate 

and the precision rate, e.g. if we are interested in higher precision (more valid vulnerabilities) 

then we will give precision factor high weight, and vice-versa. We assume that the precision 

rate and recall rate are equally important, Equation 4. 

4.5 Chapter Summary 

In this chapter, we introduced a quick overview of the autonomic computing model introduced 

by IBM (MAPE-K model) and key techniques that could be used in realizing MAPE-K. Then 

we introduced the general idea of our approach which is based on getting cloud stakeholders 

involved in securing their assets through a joint-collaboration based approach. Finally, we 

introduced the big picture of our approach – the adaptive model-based security management 

framework. We explained our general approach and its main components. We discussed the 

main functionalities of every component of our proposed framework that we are going to 

discuss in detail. In chapter 5 we introduce our solution to align the existing security 

management standards to fit with the cloud computing model. In chapter 6 we discuss the 

security management and enforcement components using a novel model-driven security 

engineering at runtime approach. In chapter 7 we introduce how to address re-engineer legacy 

system that are already developed with built-in security capabilities to be managed by our 

security management platform. In chapter 8 we discuss one part of the analysis component 

which is a static security analysis. This is based on a novel security analysis approach based on 

formalizing security analysis signature as well as an extensible security analysis tool support. In 

chapter 9 we introduce monitoring component which covers how to capture metrics, generate 

probes, and collect measurements as well as analyzing the collected security measurements. 
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  Chapter 5

Aligning Security Standards with Cloud 

Computing Model 

To build our adaptive model-based cloud computing security management approach we 

introduced in the last chapter, we found it very crucial to base such an approach on a well-

known and well-defined security management standard, such as ISO27000 or NIST-FISMA. 

However, such security management standards are far from covering the full complexity of the 

cloud computing model we discussed in the early chapters mainly multi-tenancy and 

outsourcing of IT assets. In this chapter, we introduce our proposed alignment of the NIST-

FISMA standard to fit with the cloud computing model. This enables cloud providers and 

consumers to better maintain their security management processes on cloud platforms and cloud 

hosted services.  

Our new framework is based on improving collaboration between cloud providers, service 

providers and service consumers in managing the security of the cloud platform and the hosted 

services. It is built on top of a number of security standards that assist in automating the security 

management process. We have developed a proof of concept of our framework using .NET and 

deployed it on a testbed cloud platform. We have evaluated the framework by managing the 

security of a multi-tenant SaaS application exemplar discussed in Chapter 1.  

This chapter is organized as follows. In Section 1 we highlight the existing trials to adopt 

security management standards to fit with the cloud model. We also highlight the key 

requirements and challenges that need to be satisfied by any proposed cloud security 

management platform. Section 2 discusses our refined security management model. Section 3 

explains how we aligned NIST-FISMA standard to fit with the cloud model. Section 4 

summarizes the key security automation standards we adopted in our prototype. Section 5 

outlines our prototype framework we developed based on aligned NIST-FISMA model. Section 

6 introduces a usage example of the developed framework. 

5.1 Introduction 

Although much research into cloud services security engineering has been undertaken [4, 21, 

61, 150, 155, 157, 222, 223], most of these efforts focus on the cloud-based services offered as 
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web services. Such efforts have investigated capturing security requirements and generating 

corresponding WS-Security configurations. However, they pay no attention to the underlying 

platform security or the other cloud service delivery models such as SaaS [21]. They also do not 

address the impact of the multi-tenancy feature introduced by the cloud model on the security of 

the cloud delivered services even in the case of web services. 

From our analysis of the cloud security problem we have identifieid a set of key challenges 

including: Each stakeholder has their own security management process (SMP) that they want 

to maintain/extend to the cloud hosted assets; No stakeholder can individually maintain the 

whole security process of the cloud services because none of them has the full information 

required to manage security and each one has a different perspective; Multi-tenancy requires 

maintaining different security profiles for each tenant on the same service instance; No Security 

SLA is available that can be used to maintain agreements related to cloud assets security; The 

existing standards such as ISO27000 and FISMA do not map well to the cloud model because 

these standards consider the SMP from the platform/asset owner not from a Service Provider 

perspective.  

We have also highlighted a set of Key requirements that need to be satisfied by an 

information security management system targeting the cloud computing model. This includes: 

Enable cloud consumers to specify their security requirements on the cloud hosted assets and 

the underlying cloud platform; Enable cloud consumers to monitor their assets security status 

and the underlying platform security status as well; Support multi-tenancy where different 

tenants can maintain their SMP with strong isolation of data; Aligned with on one of the 

existing security management standards that are already adhered by the cloud consumers and 

cloud providers. 

Two new community projects are trying to tackle the cloud consumers trust problem by 

introducing a list of best practices and checklists that could help cloud providers or cloud 

consumers such as CSA - GRC project [222], or by aligning existing security standards to the 

cloud model such as NIST FedRAMP [224]. The focus of both projects is to obtain cloud 

consumers trust by assessing and authorizing the cloud platforms. In the FedRAMP project, a 

cloud provider claims supported security level. A certifying authority, certified by the 

FedRAMP providers - NIST, audits the cloud provider claimed security level. Each cloud 

consumer specifies their expected security level. The certifying authority matches cloud 

consumers’ requirements and providers’ capabilities and assures it. However, this proposed 

solution by FedRAMP project lacks customizability of the platform-provided security from the 

cloud consumer perspective – i.e. it does assume that the cloud consumers will use the security 

provided by the cloud platform provider as it is. Moreover, adaptation of the provided security 
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is not possible. This also limits the Return of Investment (ROI) of the cloud providers as they 

become limited to certain security level assessed by the certifying authority. Finally, the 

proposed security model by this project assumes that the cloud provider is the service provider 

(like in Amazon AWS or Salesforce.com). However, this is not always the case in cloud 

computing platforms.  

In the Security Registry project introduced by Cloud Security Alliance (CSA), a list of 

security controls to be operated by a cloud provider is introduced, and a checklist to guide 

consumers assessing a cloud platform security before adopting the platform. However, such 

assessment and awareness do not mean to have a real operating security. Neither loss-of-control 

nor lack-of-trust problems have been mitigated. These projects lack the consumers’ involvement 

in specifying their security requirements and managing their SMP. The NIST project fits better 

with cloud providers who deliver their own services only. This is because they need to have a 

deep understanding of the cloud hosted services to be secured. 

To address these shortcomings we introduce a novel approach that tackles both the loss-of-

control and lack-of-trust problems by enabling cloud consumers to extend their security 

management process (SMP) to cover cloud hosted assets. Our approach introduces a new cloud 

security management framework based on aligning the NIST-FISMA standard [225], as one of 

the main security management standards, to fit with the cloud architectural model. The 

information required to put the NIST standard into effect is not possessed by one party. Thus we 

improve collaboration among the key cloud stakeholders to share such required information. 

Getting cloud consumers involved in every step of the SMP of their assets mitigates claims of 

losing trust and control. Our approach also mitigates the loss of control claimed by the cloud 

providers for the hosted services that are developed by other parties. Being based on a security 

management standard our approach enables both parties to get or maintain their security 

certifications. Moreover, this helps in assuring that we can cover the majority of the activities 

done during the security management process. Our approach helps stakeholders to work 

together to address the following issues: 

– What are the security requirements needed to protect a cloud hosted service given that the 

service is used by different tenants at the same time?  

– What are the appropriate security controls that mitigate the service adoption risks and who 

has the authority to select such controls? 

– Are the selected controls available on the cloud platform or we will/can use third party 

controls? 

– What are the security metrics required to measure the security status of our cloud-hosted 

services? 
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To validate our proposed alignment, we developed a prototype of our collaboration-based 

cloud security management approach and deployed it on a cloud platform hosting a SaaS 

application (Galactic ERP service). We evaluated the approach by securing the ERP service 

assuming that the cloud platform has multiple tenants sharing the same cloud application. Each 

tenant has their own security requirements and security management process. 

`  

Figure 5-1. Information security management system phases 

5.2 Rethinking In Security Management 

Information security management systems (ISMS) are defined in ISO27000 as [5] “systems that 

provide a model for establishing, implementing, operating, monitoring, reviewing, maintaining 

and improving the protection of information assets.”. From analyzing both ISO27000 and 

NIST-FISMA standards, we define a security management system to have three key phases: 

defining security, enforcing security, and monitoring and improving security as shown in 

Figure  5-1. First, Defining Security Requirements: this phase covers tasks/efforts required to: 

identify security goals/objectives that the ISMS should satisfy and deliver, conducting risk 

analysis and assessment to identify existing risks within the system scope, and detailing 

objectives/risks into detailed security requirements and security policies. Second, Enforcing 

Security Requirements: this phase covers efforts required to: identify security controls to be 

used, and implementing and configuring such controls based on the specified security 

requirements. Third, Monitoring and Improving Security: this phase includes: monitoring the 

current security status of the implemented security controls, analyzing the measured security 

status to identify existing security issues, and maintaining and improving the current security 

controls. In this research project we addressed most of the tasks in these three phases with 

approaches that help facilitating and automating as much as possible and needed. Our holistic 

approach is based on our refined model of the security management process (define, enforce, 

monitor and improve) shown in the above figure. 
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Table 5-1. Alignment of NIST-FISMA standard with the cloud computing model 

Phase Task CP SP CC Input Output 

Security 

categorization 

Categorize 

security impact 

(SC) 

Informed Informed Responsible 
Business 

objectives 
Security Impact Level 

Security controls 

selection 

Register security  

controls 
Responsible Responsible Responsible 

Control 

Datasheet 
Security controls registry 

Generate 

security controls 

baseline  

Responsible 

(Automated by the framework) 

Service SC + 

Controls 

registry 

Controls baseline + 

matching status 

Assess service  

risks 
Responsible 

(automated in chapter 8) 

Service + 

platform arch. 

+CVE + CWE 

Service Vulns + Threats + 

Risks 

Tailor security 

baseline 

Responsible 

(revised in chapter 6) 

Baseline + Risk 

assessment 
Security mgmt plan (SLA) 

Controls 

implementation  

Implement 

security controls 

Responsible 

(planned to be automated) 

Security mgmt 

plan 
Updated Security plan 
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Security 

assessment  

Define security 

metrics 
Responsible 

Security 

objective 
Security assessment plan 

Assess security 

status 

Rsponsible 

(Automated by the framework) 

Security 

assessment plan 
assessment report 

Service 

authorization  

Authorize 

service Informed Informed Responsible 

Security plan + 

assessment 

report 

Service authorization 

document 

Security 

monitoring  

Monitor security 

status 

Responsible 

(Automated by the framework and revised in 

chapter 9) 

Security 

assessment plan 
Security status report 
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5.3 Aligning NIST-FISMA with Cloud Computing 

The Federal Information Security Management Act (FISMA) standard [1] defines a framework 

for managing the security of information and information systems that support the operations of 

the agencies. The framework has six main phases including: service security categorization, 

security controls selection, security controls implementation, security controls assessment, 

service authorization, and security monitoring. In order to align this standard with the cloud 

computing model, we have studied each phase, activity, and task to understand the main inputs, 

processing, and outcomes. Then we studied the cloud computing responsibility matrix – i.e. who 

can or is allowed to do what. Based on these two inputs we restructured the NIST-FISMA 

standard responsibility matrix to make sure that the relevant stakeholder (who owns the 

information required to fulfill a given task) is allocated as the main responsible for such task 

while getting other stakeholders informed about the activities being done. Table  5-1 and 

Figure 5-2 summarize for each phase in the security management standard, how we aligned 

FISMA to fit with the cloud model in terms of reorganizing the responsibility matrix among 

cloud stakeholders based on who knows what. 

5.3.1 Service Security Categorization 

Each service (SJ) on the cloud platform could be used by different tenants. Each service tenant 

(Ti) owns their information only in the shared service (SJ). The tenant is the only stakeholder 

who can decide/change the impact of a possible loss of confidentiality, integrity and availability 

on their business objectives. Each tenant may assign different impact levels (Low, Medium, or 

High) to possible security breaches on their information. In FedRAMP [4], the cloud provider 

(CP) specifies the security categorization of services delivered on their cloud platform. 

However, this is not sufficient as the CP does not have sufficient knowledge about the impact of 

information security breaches on their tenants’ business objectives. Our approach enables cloud 

consumers (CCs) to be involved in specifying the security categorization of their information. 

Moreover, our approach enables both scenarios where we can consider the security 

categorization (SC) per tenant (tenant-oriented security -as in Equation 1) or per service 

(service-oriented security - as in Equation 2).  

In the service-oriented security model, a cloud service can reflect one set of security 

requirements/controls per time, the security categorization of the service is calculated as the 

maximum of all tenants’ categorizations. On the other hand, the tenant-oriented security model 

gets services to reflect each tenant security requirements as if no one else is using the service. 
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            SC (Ti) = [(Confidentiality, impact), (Integrity, impact), (Availability, impact)], 

                                                                    Impact    [Low, Medium, High]                 Eq. (1) 

            SC (S j) = [(Confidentiality, Max ( Ti (impact)), (Integrity, Max ( Ti (impact)),  

                                                                                 (Availability, Max ( Ti (impact))]    Eq. (2) 

 

Security 

Categorization

S: CPE

R: CCs

Security Controls 

Selection

S: CVE/CWE/CAPEC

R: All

Controls 

Implementation

S: CCE

R: All

Security Monitoring

S: -

R: All

Service Authorization 

S: -

R: CCs

Security Assessment

S: -

R: CCs & CPs

R: Responsible Stakeholder         S: Security Automation Standard
 

Figure 5-2. Alignment of NIST-FISMA standard with the cloud model 

5.3.2 Security Control Selection 

The selection of security controls to be implemented in protecting tenants’ assets has two steps: 

First, baseline security controls selection. The FISMA standard provides a catalogue of security 

control templates categorized into three baselines (low, medium and high). Based on the 

security categorization of the service, specified by service tenants in the first step, the platform 

should automatically select the initial baseline of controls that are expected to provide the 

required level of security specified by tenants. Second, tailoring of the security controls 

baseline. Stakeholders should tailor the security controls baseline identified in the first step to 

cover the service possible vulnerabilities, threats, risks and the other environmental factors as 

discussed below. 

5.3.2.1 Service Security Risk Assessment 

In this step, stakeholders should conduct security risk assessment to identify service 

vulnerabilities, threats, attacks, and risks that may require special security handling – i.e. 

customization of the security controls’ baseline that have been selected in step (a) according to 

service security categorization. This includes: 
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– Vulnerabilities Identification: This step requires being aware of the service and the 

operational environment architecture. We consider the involvement of the service provider 

(SP) who knows the internal structure of the provided service and the CP who knows the 

cloud platform architecture in order to fulfill this task. The main outcome of this step is a 

list of security vulnerabilities that should be patched. 

– Threats Identification: The possible threats, threat sources and capabilities on a given 

service can be identified by collaboration among the SPs, CPs, and CCs. CCs are involved 

as they have the knowledge about their assets’ value and could know who may be a source 

of security breaches. 

At the end of this phase, the cloud service stakeholders will have a list of threats, attacks, and 

vulnerabilities that they should try to mitigate to prevent such possible security breaches. These 

tasks will be automated in our platform as discussed in Chapter 8. 

5.3.2.2 Security Controls Baseline Tailoring Process 

Based on the risk assessment process, the selected security controls baseline can be tailored to 

mitigate new risks and fit with the new environment conditions, as follows: 

– Scoping of the Security Controls: In this step all stakeholders should be involved in 

selecting security controls to be operated. This includes: (i) Identification of the common 

security controls; the cloud stakeholders decide which security controls in the baseline they 

plan to replace with a common security control (either provided by the CPs or by the CCs). 

A common security control is a control that is shared among multiple services; (ii) 

Identification of the critical and non-critical system components; the SPs and CCs should 

define which components are critical to enforce security on it and which are non-critical 

(may be because they are already in a trusted zone) so no possible security breaches; and 

(iii) Identification of the technology and environment related security controls that are used 

whenever required such as wireless network security controls. 

– Compensating Security Controls: Whenever the stakeholders find that one or more of the 

security controls in the tailored baseline do not fit with their environmental conditions or are 

not available (may be cost wise), they may decide to replace such controls with another 

compensating security control.  

– Set Security Controls Parameters: The last step in the baseline tailoring process is the 

security controls’ parameters configuration, such as minimum password length, maximum 

number of unsuccessful logins, etc. This is done by collaboration between the CPs and CCs. 

All these details are captured by cloud stakeholders in a model-based approach, as we 

discuss in Chapter 6. The outcome of this phase is a security management plan that 
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documents service security categorization, risks, vulnerabilities, and the tailored security 

controls baseline with the specified security configurations. 

5.3.3 Security Controls Implementation 

This phase focuses on implementation of the security controls that have been tailored in the 

previous step. In the original NIST-FISMA standard, this is the sole responsibility of the service 

owner. Thus this need to be aligned with the new responsibilities we have got in the cloud 

model. The security plan for each tenant describes the security controls to be implemented by 

each involved stakeholder based on the security control category (common for all services or 

service-specific control). The common security controls implementation is the responsibility of 

the common control provider who is most probably be the CPs. Tenant specific security controls 

are the responsibility of the service tenants. The service-specific security controls 

implementation is the responsibility of the SPs. Each stakeholder must document the security 

controls implementation and configuration details in the security management plan.  

5.3.4 Security Controls Assessment 

Security controls assessment is required to make sure that the security controls implemented are 

functioning properly and meet the security objectives specified. This step includes developing a 

security assessment plan that defines security controls to be assessed, assessment methods to be 

used, and security metrics to be used with each security control. The results of the assessment 

process are documented in a security assessment report. This step may result in going back to 

the previous steps in case of deficiency in the controls implemented or continuing with the next 

steps. The security controls assessment is a shared responsibility of all cloud stakeholders. Each 

one should develop the metrics they would like to use in assessing the security status of their 

cloud assets. The framework tries to automate the assessment process by analysing the log files 

of the security controls operated. 

5.3.5 Service Authorization 

This step represents the formal acceptance of the stakeholders on the identified risks involved in 

the adoption of the service and the agreed on mitigations. We consider the security plan and 

security assessment plan to be used as the security SLA among the involved parties. These plans 

reflect mostly all the information required to assess the security properties of a given cloud 

service and responsibility of each involved stakeholder towards other stakeholders. 
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5.3.6 Monitoring Security Controls Effectiveness 

The CPs should provide security monitoring tools to help the CCs in monitoring the security 

status of their assets. The monitoring tools should have the capability to capture the required 

security metrics and report the collected measures in a security status report either event-based 

or periodic-based. The results of the monitoring process may require re-entering the SMP to 

handle new unanticipated changes. For now we consider our log-based monitoring component 

as a tool to help addressing this task. Later in chapter 9, we are going to discuss our refined and 

automated security monitoring approach. 

5.4 Security Automation 

After aligning the FISMA standard with the cloud model we adopted a set of existing security 

standards to help improving the framework automation and its integration with the existing 

security capabilities, as shown in Figure  5-3 and Table  5-2. These security standards include: 
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Figure 5-3. Adopted security automation standards and relationships 

Table 5-2. Formats and examples of the adopted security standards  

Standard Format Example 

CPE  cpe:/ [part] : [vendor] : [product] : 

[version] : [update] : [edition] : [language]  

cpe:/a:SWINSOFT: Galactic:1.0: 

update1:pro:en-us  

CVE  CVE-Year-SerialNumber  CVE-2010-0249  

CWE  CWE-SerialNumber  CWE-441  

CAPEC  CAPEC-SerialNumber  CAPEC-113  

CCE  CCE-softwareID-SerialNumber  CCE-17743-6  
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– Common Platform Enumeration (CPE) [226]: The CPE provides a structured naming 

schema for IT systems including hardware, operating systems and applications. We use the 

CPE as the naming convention of the cloud platform components and services. This helps in 

sharing the same service name with other cloud platforms and with the existing 

vulnerabilities databases – e.g. The National Vulnerability Database - NVD [227]. The 

format of the CPE consists of constant “CPE”, part which may be (application, OS, 

network), software vendor, product name, used version, service pack, edition, and language. 

– Common Weakness Enumeration (CWE) and Common Attack Pattern Enumeration and 

Classification (CAPEC) [226]: The CWE provides a catalogue of the community recognized 

software weaknesses. The CAPEC provides a catalogue of the common attack patterns. Each 

attack pattern provides a description of the attack scenario, likelihood, knowledge required 

and possible mitigations. We use the CWE and CAPEC as a reference for the cloud 

stakeholders during the vulnerabilities identification phase. 

– Common Vulnerability and Exposure (CVE) [226]: The CVE provides a dictionary of the 

common vulnerabilities with a reference to the set of the vulnerable products (encoded in the 

CPE). It also offers vulnerability scoring that reflects the severity of the vulnerability.  We 

use the CVE to retrieve the know vulnerabilities discovered in the service or the platform 

under investigation. Thus, in this version of our implementation we depend on security 

experts to identify and report any possible vulnerability in the National Vulnerability 

Database (NVD) using CVE format. In the next chapters we will introduce our new online 

security analysis approach that completely automates this task. This will also help in case of 

new vulnerabilities that are not reported in the NVD yet or in case of using cloud services 

that do not have CPE ID to be used in retrieving relevant vulnerabilities. 

– Common Configuration Enumeration (CCE) [226]: The CCE provides a structured and 

unique naming to systems’ configuration statements so that systems can communicate and 

understand such configurations. We use the CCE in the security controls implementation 

phase. Instead of configuring security controls manually, the administrators can assign 

values to security control templates’ parameters. Our framework uses these configurations in 

managing the selected security controls. This point is out of scope for this project as we 

discussed previously. We are not concerned with how to automate the security controls’ 

configuration because many platforms and frameworks do exist that help in this. 

Figure  5-3 shows the relationships between these security automation standards. This helps 

in understanding why we selected such standards and where they actually fit. At the center of 

the model we have the CPE. This CPE is referenced in retrieving vulnerabilities from the CVE 

and controls’ configurations in CCE. The CVE is linked to the common weaknesses in the 
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CWE. The attacks recorded in the CAPEC repository is based on exploiting known weakness 

recorded in CWE repository. 

5.5 Cloud Security Framework Architecture 

Our initial framework architecture consists of three main layers: a management layer, an 

enforcement layer, and a feedback layer. These layers, shown in Figure  5-4, represent the 

realization of the ISMS phases we described in previous sections. 
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Figure 5-4. Our collaboration-based cloud security management architecture 

- Management Layer: This layer is responsible for capturing security specifications of the CPs, 

SPs, and CCs. It consists of: (a) The security categorization service used by the hosted 

services’ tenants to specify security categorization of their information maintained by the 

cloud services; (b) The collaborative risk assessment service where all the cloud platform 

stakeholders participate in the risk assessment process with the knowledge they possess; (c) 

The security controls manager service is used to register security controls, their mappings to 

the FISMA security controls’ templates, and their log files structure and locations; (d) The 

security metrics manager service is used by the cloud stakeholders to register security 

metrics they need to measure about the platform security; (e) The multi-tenant security plan 

(SLA) viewer service is used to reflect the tenant security agreement. This shows the tenant-

service security categorization, vulnerabilities, threats, risks, the selected mitigation controls 

and the required metrics; (f) The multi-tenant security status viewer which reflects the 

current values of the security metrics and their trends. 



Chapter 5: Aligning Security Management Standards with Cloud Computing Model  

 

Page 100 

- Enforcement Layer: This layer is responsible for security planning and security controls 

selection based on the identified risks. The selected security controls are documented in the 

security management plan. The implementation service then uses this plan for maintaining 

security control configuration parameters and the mapping of such parameters to the 

corresponding security controls. This service does not address the integration of security 

controls with the target cloud services. Later in Chapter 6, we will introduce our security 

integration approach. 

- Feedback Layer: This layer has two key services: the monitoring service which is 

responsible for collecting measures defined in the security metrics manager and storing it in 

the security management repository to be used by the analysis service and by the multi-

tenant security status reporting service. The analysis service analyses the collected measures 

to make sure that the system is operating within the defined boundaries for each metric. If 

there is a deviation from the predefined limits, the analysis service will give alerts to update 

the current configurations. This service only supports log-based metrics. Moreover, there is 

no support for possible mitigation actions. The reported measurements can only visualized 

for the stakeholders in regular security status reports. 

5.6 Usage Example 

To demonstrate the capabilities of our cloud computing security framework and our prototype 

tool implementing this framework we revisit the motivating example from Chapter 1, a cloud 

based ERP system “Galactic” used by Swinburne and Auckland (CCs), developed by SwinSoft 

(SP), and deployed on the GreenCloud (CP). The two tenants using the Galactic ERP services, 

Swinburne and Auckland, are still concerned about their assets’ security on the cloud. Both 

have their own SMP and their own security requirements to be enforced on their cloud assets.  

First, the service provider registers the service on the cloud computing platform service 

registry. This enables tenants to search and register to use the service. Then, each registered 

tenant will get permission to access the security management portal. Each tenant will be 

required to define the security categorization of the service from their perspective. Next, cloud 

stakeholders should start registering their security controls that they would like to use. This 

requires mapping such controls to the NIST-FISMA standard template. After this, cloud 

stakeholders should collaborate to identify the possible threats and existing security 

vulnerabilities. This should guide the security controls’ tailoring process. The platform helps 

stakeholders to find out which security controls are missing – i.e. exist in the standard as must 

have, and do not have realization security control specified by any of the service stakeholders. 

Finally, service tenants define the security metrics they would like to monitor or follow up. The 
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platform keeps track of these metrics and analyzes the security controls’ log files on regular 

basis to extract the specified information usually in terms of aggregation functions on monitored 

or logged data. Below we show how the cloud computing-aligned security management process 

works supported with snapshots from our security management platform. 

5.6.1 Registering Cloud Services 

The first step in our example is to register Galactic ERP service in the cloud platform service 

repository so that it can be discovered/used by the CCs. This step could be done either by 

SwinSoft or by the GreenCloud. In this step we use the CPE standard name as the service ID, as 

shown in Figure  5-5. To register a service, first we search by service name or service CPE ID in 

the set of registered services. If found, just select it from the found matches to register the 

service. Otherwise, insert service details as a new record to the service repository. Once the 

service was registered, cloud consumers can register to use it. A new tenant, Auckland, can 

register their interest in using the Galactic service. Then Auckland will be granted a permission 

to manage the security of his information maintained by Galactic service. The same is done by 

Swinburne, as shown in Figure  5-6. Now Auckland and Swinburne can use our platform to 

manage the security of their assets. 

 

Figure 5-5. SwinSoft is registering their Galactic ERP service with GreenCloud 

 

Figure 5-6. Registering a service by Swinburne (top) and Auckland (bottom) 
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Figure 5-7. Security controls registration 

 

Figure 5-8. Securitycontrolsbaselinewithcontrols’status 
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5.6.2 Service Security Categorization 

The Swinburne security administrator specifies the impact level of losing the confidentiality, 

integrity, and availability of their data maintained by the Galactic ERP service, as shown in 

Figure 5-6(top). The same should be done by Auckland security administrator, as shown in 

Figure 5-6(bottom). Whenever a new tenant registers their interest in a service and defines their 

security categorization of data processed by the service (or any of the existing tenants update his 

security categorization), the platform updates the overall service security categorization with the 

maximum value as per equation1, discussed in the process alignment section. 

5.6.3 Security Controls Selection 

GreenCloud as a cloud provider already publishes their security controls database. Swinburne 

and Auckland can register their own security controls using the security controls manager 

service. Based on the security categorization step, our framework generates the security 

controls’ templates baseline. Then stakeholders should start registering their security controls 

and their features and link such features to security controls’ baseline as shown in Figure  5-7. 

The registration of a security control should specify master data including control name, 

category, control family, location and schema of the log file. Moreover, each registration should 

map security control features to the NIST-FISMA standard security control template (as in the 

detail section of Figure  5-7). Our prototype helps in identifying security controls’ templates that 

are: satisfied (matches one of the registered security controls), missing (does not match 

registered security controls), or duplicate (more than one matched control),  as shown in 

Figure  5-8. This figure shows that in the access control family, the control number (14) which is 

“Permitted Actions without Identification or Authentication”, enhancement number (1) which is 

“Permitted Actions Should Be Limited to The Limit That Service Business Needs” is missing. So 

that stakeholders can highlight this problem and work on it or simply accept this problem. The 

same with the security control (17) which is “Remote Access” has got duplicated security 

controls defined that satisfy the same template from the baseline which by analysis turned out to 

be a mistake in the registration of security control done by a stakeholder. This helps 

stakeholders in revising the status of the security controls to be operated on their services. 

5.6.3.1 Service Risk Assessment 

Galactic vulnerabilities are identified for the first time by SwinSoft with the help of GreenCloud 

who knows the architecture of the service and the hosting cloud platform. Both SwinSoft and 

GreenCloud have the responsibility to maintain the service vulnerabilities list up to date. The 

framework enables to synchronize the service vulnerabilities with the community vulnerabilities 
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database – NVD, as shown in Figure  5-9. This figure shows the list of found vulnerabilities. 

Users can click on “Use known vulnerabilities in NVD” to synchronize the list with the least 

recently reported vulnerabilities. Stakeholders can link on CVE-ID to navigate to the full 

detailed version of the vulnerability on the NVD website. Each cloud consumer – Swinburne 

and Auckland – should review the defined threats and risks on Galactic and append any missing 

threats. The framework integrates with the CWE and CAPEC databases to help stakeholders in 

identifying possible vulnerabilities whenever the service does not have vulnerabilities recorded 

in the NVD. 

 

Figure 5-9. Service reported vulnerabilities - integrated with NVD 

5.6.3.2 Security Controls Baseline Tailoring 

The service tenants decide which security controls in the baseline they plan to replace with 

common security controls provided by the cloud provider or the service tenants, as shown in 

Figure  5-8. Stakeholders can edit the registered security control mapping to another control or 

they can delete any mapping all together. SwinSoft, Auckland, and Swinburne should also 

select the critical service components that must be secured. Swinburne and Auckland define 

their security controls’ parameter configurations. The security controls provided by the cloud 

platform can only be reviewed.  

The final outcome of this step is a security management plan that documents the service 

security categorization (either from the tenant perspective or from the service perspective), 

found vulnerabilities, expected threats, risks, and the tailored security controls to mitigate the 

identified possible security breaches, as shown in Figure  5-10. 
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Figure 5-10. Examples of Auckland security management plan 

5.6.4 Security Controls Implementation and Assessment 

Each stakeholder implements the security controls under their responsibility as stated in the 

security management plan and the security controls configurations as specified in the previous 

step. In case of Galactic ERP, Swinburne should implement and configure their Swin-

Authenticator, Swin-Antivirus, and Swin-IPS security controls. The same should be done by 

Auckland using their security controls. The controls to be assessed and the objectives of the 

assessment are defined by GreenCloud, Auckland and Swinburne and documented in the tenant 

security assessment plan. The execution of such plan, the assessment process, should be 

conducted by a third party. Our framework helps in assessing security controls status when 

using security controls that integrate with our framework (the framework can understand and 

read their log files/database structure). The outcome of the assessment phase is a security 

assessment report. An example of the metrics to be used in assessing service security is shown 

in Figure  5-10 – e.g. in the last section “login activity” metric. 
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5.6.5 Service Authorization 

Swinburne and Auckland give their formal acceptance of the security plan, assessment plan, and 

the assessment reports. This acceptance represents the authorization decision to use Galactic by 

the cloud consumers. 

 

Figure 5-11. Sample of Swinburne security status report 

5.6.6 Monitoring Security Controls Effectiveness 

The framework collects the defined security metrics as per the assessment plan of each tenant 

and generates regular security status reports to the intended cloud stakeholders. A report shows 

the metrics status and trends, as shown in Figure  5-11. This report shows that the number of 

login activities is increasing which may be a reason for normal workload or malicious attacker 

trying to break the authentication service. The unsuccessful logins metric helps in deciding 

which scenario may be most likely to happen. In this case the unsuccessful logins metric is 

increasing as well which means that someone is trying to login to the system and does not have 

a correct password. The procedure we went through in the example above should be applied not 

only on cloud services but also on the cloud platform itself. In this case the cloud provider uses 

our framework to manage the platform security from a consumer perspective.  
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5.7 Discussion 

Our approach provides a security management process; a set of security automation standards to 

help in automating the security management process; integration with known threats, 

vulnerabilities, and weakness databases; and a log-based security metrics monitoring and 

analysis tool. Our approach is based on joint-collaboration between all stakeholders, allowing 

different stakeholders to develop a mutually-satisfying security model. It addresses the multi-

tenancy nature of shared cloud-hosted services when tenants have different security 

requirements and different SMPs. This is achieved by maintaining and managing multiple 

security profiles with multiple security controls on the same service. Such controls are delivered 

by different security vendors. This enables managing traceability between controls, the 

identified risks and identifies what are the risks still not mitigated.   

Based on our proposed security management model, each cloud service has two possible 

scenarios: Either to let each tenant to go through the whole SMP as if she is the only user of the 

service (tenant-based SMP) or to accumulate all tenants’ security requirements on a given 

service and maintain the security management process on the service level (service-based). The 

later scenario is more straight forward because cloud stakeholders collaborate together to secure 

the cloud platform and their services with one set of security requirements. The former scenario 

gives the service tenants more control in securing their cloud hosted asset but it has the 

following problems: (i) the current multi-tenancy feature delivered by the cloud services enables 

tenants to customize service functionality but it does not enable tenants to customize service 

security capabilities; (ii) the underlying cloud platform infrastructure, such as OS, does not 

support for multi-tenancy, so we cannot install multiple anti-viruses or anti-malware systems on 

the same OS while being able to configure each one to monitor specific memory process for a 

certain user. One solution may be to use a VM for each tenant as in [21]. This work around may 

not be applicable if the service is not designed for individual instances usage or if the cloud 

platform does not support VM technology. 

Whenever the service tenants are not interested in following the security standards or require 

a light-weight version of our approach, they can just specify their service security categorization 

level. Based on this, the rest of the other activities will be completed using the default settings. 

Another variation of our framework is to enable cloud providers to deliver predefined security 

profiles to be applied on cloud services – i.e. a cloud service X is available with three different 

security profiles (low, medium, high). Thus, service tenants can select the suitable profile based 

on their security needs.  

The key limitations of this version of the platform are: (i) lack of automated integration 

capability of security controls specified with the target cloud services (currently need to be done 
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manually). This issue is addressed in chapter (6) by our model-driven security engineering at 

runtime approach; (ii) although the platform do support service-level and tenant-level security, 

the current implementation of cloud applications (SaaS applications) only supports service-level 

security. This issue is addressed in chapter (6) as well; (iii) the service security analysis is 

currently done manually or using different existing tools. We introduce an automated, online, 

signature-based security analysis approach that can cover wide-range of attacks and extensible 

enough to address new attacks without a need for patches or customizations. This approach is 

introduced in chapter (8); (iv) The provided monitoring capabilities is based on security 

controls’ log files. This leads to lagging metrics that need to wait until the situation occurs. We 

address this problem with a unified monitoring platform that is easy to extend to capture 

different types of security metrics. This issue is address in chapter (9). 

5.8 Chapter Summary 

In this chapter we introduced a novel alignment of the well-known NIST-FISMA security 

management standard to fit with the cloud computing model. Based on our alignment, we 

developed a collaboration-based security management framework for the cloud computing 

model. We utilize the existing security automation efforts such as CPE, CWE, CVE and 

CAPEC to facilitate the cloud services security management process (SMP). We have validated 

our framework by using it to model and secure a multi-tenant SaaS application with two 

different tenants. The framework can be used by cloud providers to manage their cloud 

platforms security, by cloud consumers to manage their cloud-hosted assets security, and as a 

security-as-a-service tool to help cloud consumers in outsourcing their internal SMP for hosting 

on cloud platforms. In the next chapters, we address the limitations (discussed above) of the 

solution we introduced in this chapter taking into consideration the multi-tenancy, automation, 

and extensibility of the task as much as possible. 
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  Chapter 6

Cloud Applications Security Engineering 

In the last chapter we introduced our proposed alignment, along with the prototype platform, of 

the NIST-FISMA standard with the cloud computing model. In this chapter, we address and 

mitigate two of the key limitations of this approach which are the lack of automated security 

controls integration, and lack of multi-tenancy support – i.e. getting cloud services to reflect 

different sets of security requirements for different tenants at runtime. We introduce our new 

security engineering approach to help in automating the integration of tenants’ security needs 

with cloud services at runtime without getting software developers involved in realizing suh 

customizations. Our approach is based on modeling service description details (by the service 

provider) and security specification details (by service tenants). These models are then used to 

integrate and manage service security from the different tenants’ perspective. This chapter is 

organised as follows. In Section 1 we give an overview of the problem and research questions 

we are trying to address along with a summary of the existing efforts. In Section 2 we 

summarize the key challenges and requirements that must be satisfied by a multi-tenant security 

engineering approach. Section 3 provides details of our model-driven security engineering at 

runtime approach (MDSE@R). Section 4 describes a usage example of our MDSE@R 

framework and toolset. Section 5 describes our platform architecture and implementation 

details. Section 6 presents evaluation results of MDSE@R. Section 7 discusses the key strengths 

and weaknesses of MDSE@R. 

6.1 Introduction 

Supporting multi-tenancy places more requirements on service providers. They now have to 

develop or reengineer their systems to support multi-tenancy and to ensure tenants' data 

isolation. Multi-tenancy also increases service tenants' concerns about the security of their 

outsourced, cloud-hosted assets that are now shared with other tenants – who may be either 

competitors or malicious users. In addition, the range of actual SaaS tenants usually becomes 

known only after applications have been delivered and thus the range of service tenants is 

highly dynamic. Tenants may register and unregister from the service at runtime. Service 

tenants often have different security requirements that evolve at runtime based on their current 

business objectives and security risks. Existing application security models poorly fit with this 

dynamic, run-time evolving model as they focus mainly on design time security engineering. 
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Service providers are in bad need of a new security engineering approach that addresses these 

challenges. 

Existing traditional security engineering approaches, such as KAoS [16, 228], Secure i* 

[126], and Secure TROPOS [128, 130] focus on identifying, capturing, and modelling security 

objectives and requirements at requirements elicitation time. Others including UMLsec [14, 

134], secureUML [15] focus on mapping these security requirements onto application design 

entities (classes, methods, interactions) at design time. These security engineering approaches 

typically result in: applications with fixed security as it is based on one set of predefined 

security requirements; built-in security as it is usually integrated with system design which 

means that security related code will be mixed with system code; limited integration with third 

party security controls because they most of the time are not considered at design time; and very 

limited flexibility in terms of adaptation and integration with the security management systems 

operating in the software target operational environment because such environments are usually 

not known at design time. Moreover, most of such approaches do not support changing 

application security at runtime to address new unanticipated security risks or new tenant 

security needs. From the cloud computing and multi-tenancy perspective, these approaches 

could help in solving the tenants’ data isolation problem (i.e. how to prevent tenants from 

accessing other tenants’ data). However, such efforts are not extensible to support different 

tenants’ security engineering – i.e. how to capture and enforce different tenants’ security 

requirements at runtime.  

Adaptive security engineering has been investigated in [19, 146, 229]. However most focus 

on low-level details or limited to specific security properties – e.g. adaptive architecture-level 

access control mechanism [20]. These efforts require preparing applications at design time to 

support runtime adaptation. Thus, these efforts cannot be readily adapted to deliver multi-

tenant SaaS applications’ security engineering. In addition, their actual run-time re-

configuration capabilities are still limited. 

New research efforts in securing multi-tenant SaaS applications have focused on: 

(re)engineering multi-tenant SaaS applications to extend their security capabilities – e.g. 

authentication, authorization, and encryption [22, 153, 230, 231];  maintaining isolation 

between different tenants’ data [155, 223, 232]; and developing security controls and 

architectures that deliver SaaS application security (e.g. access control) taking into account 

multi-tenancy [26, 233-235]. Most of those efforts depend on or still lead to built-in, or 

predefined, security architectures for SaaS applications. Thus, tackling the loss of control 

concerns raised by cloud consumers - i.e. capturing and enforcing tenants' security requirements 
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and integration of SaaS applications with tenants’ security infrastructure – have not been 

addressed before. 

Two key research gaps in the multi-tenant applications’ security engineering area are lack of 

adaptable security support and lack of multi-tenant security support – i.e. to support capturing 

and enforcing different tenants’ security requirements at runtime without a need to conduct 

application or service maintenance. We capture these gaps in the following research questions 

that we address by our new MDSE@R approach explained in this chapter: 

– How can we effectively capture important details about different services at different levels 

of abstraction? And how to make it available for tenants to add their security requirements? 

– How can we capture different tenants’ security requirements for different service entities at 

different levels of abstraction? 

– How can we enforce these different sets of security requirements for different tenants’ on 

any arbitrary application or service entity at runtime?  

– How can we verify that critical entities correctly enforce specified security needs? 

– How can all of these tasks be achieved dynamically and at runtime without a need for 

frequent service code customization? 

In this chapter, we introduce our novel approach called MDSE@R (Model-Driven Security 

Engineering at Runtime) for multi-tenant cloud-based applications. MDSE@R supports 

capturing, enforcing, and verifying different tenants’ and service providers’ security 

requirements at runtime without a need to modify or customize the underlying application or 

service – i.e. it works with both existing and new SaaS applications. Our approach is based on 

enabling cloud application security engineering to be conducted at runtime instead of at design 

time. This is facilitated by externalizing security from the target applications and services. Thus 

both application and security can evolve at runtime. On the other hand, we automate the 

integration of security requirements and controls within any service entity that is marked as 

security critical. The list of critical service entities emerges at runtime based on tenants’ current 

security risks and security requirements. 

When using MDSE@R, service providers have to deliver a service description model (SDM) 

as a part of each application or service delivery package. The SDM is a mega-model (a model 

that contains a set of models and a set of relations between these models [236]) that contains 

details of the application or service features, architecture, classes, etc. Furthermore, they deliver 

a security specification model (SSM). The SSM is a mega-model that contains details of the 

security they already deliver and enforce on application entities (features, components, etc.). 

Security controls are not built into the developed application. They rather are implemented and 

deployed externally and weaved with the secured application and service entities at runtime. 
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Thus such controls can be modified, updated, or disabled at runtime without modifying the 

target application. Moreover, different sets of these security controls can be enforced at runtime 

by different tenants and on different services. For applications with built-in security we have 

introduced a quick security retrofitting approach discussed in Chapter 7.  

During the provisioning of a new tenant, the service provider either creates an instance of the 

cloud application or configures a shared instance to disable or enable certain features for the 

new tenant. They also have to create a copy of the service description and service security 

models for the new tenant. Tenant service description model (TSDM) is a copy of the SDM 

updated with tenant procured features. Tenants can specify their security details using their copy 

of the SSM. This copy is called the tenant security specification model (TSSM). Tenants can 

add new security controls or disable/replace/modify the existing security controls (these 

modifications are also modelled at runtime). These updates are automatically reflected on the 

target application or service using MDSE@R. The service provider can specify certain security 

controls as mandatory. This means that such controls cannot be disabled or modified by the 

application or service tenants. This is very important in enforcing, for example, security 

isolation controls. Getting tenants involved in managing their assets’ security helps in reducing 

the lack-of-trust and mitigating the loss-of-control problem. We have validated our approach on 

a set of significant open source benchmark applications. We have conducted a security adaption 

evaluation, performance evaluation and user evaluation of our approach and prototype platform. 

These are described later in this chapter. 

6.2 Key Requirements and Challenges 

The analysis of the motivating scenario in Chapter 1 and details of the existing efforts discussed 

above identifies the following challenges: (i) Security requirements differ from one tenant to 

another; Each tenant's security requirements may change over time based on current operational 

environment security and business objectives; (ii) Overall application security should support 

integration with each tenant's security controls in order to achieve coherent security solutions; 

and (iii) New security vulnerabilities may be discovered in a SaaS application at any point in 

time. These vulnerabilities need to be patched as soon as possible to prevent attacks that can 

exploit such vulnerabilities. 

Using traditional security engineering techniques would require the application provider to 

conduct a lot of application maintenance to deliver application patches that block vulnerabilities 

and adapt the application to every new customer’s needs. Multiple versions of the application, 

one for each tenant and with substantial differing security enforcement embedded in the 

application, would have to be maintained. 
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A new security engineering approach that addresses these challenges is needed. Such a 

security engineering approach should: (i) Enable each tenant to specify and enforce their own 

security requirements based on their current security needs; (ii) Security should be applied to 

any arbitrary application or service entity. No predefined application or service security 

interception points should be specified at design time. This means that it should support 

interception of calls to any service method once declared as critical; (iii) Security specification 

should be supported at different levels of abstraction based on the customers’ experience, scale 

and engineers’ capabilities; and (iv) Integration of security with application or service entities 

should be supported at different levels of granularity, from the application as one unit to a 

specific application method. Integration should be supported with third-party security controls. 

This should support the application or service and security specifications to be reconfigured at 

both design time and runtime. 

6.3 MDSE@R 

MDSE@R approach enables service tenants to be involved in securing their cloud hosted assets. 

This helps in mitigating the loss-of-control problem arises from the adoption of cloud services. 

As a consequence of getting tenants involved, a single service instance must support capturing 

and enforcing different sets of security requirements for different tenants as they become known 

and as they evolve at runtime. We name this model "tenant-oriented security", compared to the 

traditional model of “service-oriented security” where a service instance reflects only one set of 

security controls captured by the service provider at design time. Tenant-oriented security may 

require integrating cloud services with security controls deployed on or out of the cloud 

platform. MDSE@R is based on two key concepts: externalizing security management and 

enforcement tasks from the application or service to be secured while being able to wrap the 

application or service and intercept calls to any arbitrary critical application or service entity at 

runtime using dynamic weaving AOP; and Model-Driven Engineering (MDE), using Domain-

Specific Visual Language (DSVL) models to capture application or service security properties 

at different levels of abstraction. Moreover, we automate the generation of security controls’ 

integration code rather than hand-coding of bespoke solutions. 

Figure  6-1 shows the basic flow of MDSE@R to support multi-tenant security engineering. 

Service providers develop a detailed service description model (SDM). Then, they develop a 

security specification model (SSM) capturing all security details that they deliver in their cloud 

services. Once a service tenant registers to use the service, they will get a copy of the service 

SDM and SSM. Tenants can then use these models to manage their instances and develop their 
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security needs. At the same time, service providers can use service SDM and SSM models to 

update and manage service security. 

 

Figure 6-1. Process flow of MDSE@R 

 

Figure 6-2. Overview of MDSE@R approach 

Figure  6-2 gives an overview of the MDSE@R approach to support multi-tenant security 

engineering and tenants’ security management at runtime. After capturing application and 

security models (steps 1 and 2), tenants application instances and their security details (steps 3 

and 4) and mapping security details on system details, the MDSE@R platform realizes such 

modelled changes using interceptors and dynamic aspect-oriented programming approach (steps 

5, 6, 7, and 8) that injects security handlers into the target application entities (components, 

classes, and methods) to be secured using tenants’ specified security controls as we discuss 

below. 
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6.3.1 Modeling Service and Security Details 

In this phase, stakeholders from both the service providers and tenants develop different models 

capturing details of the service, tenant instance, service security, and tenants' security. 

6.3.1.1 Service Description Model (SDM) 

A detailed service description model (SDM) is delivered by the service provider (a detailed 

example is introduced in the usage example section) as a part of the service delivery package 

which also contains service binaries and any other deployment packages. The SDM captures 

various details of the target application or service including system features (we use a simplified 

version of the UML use case diagram to capture system features), system architecture (using 

UML component diagrams), system classes (using UML class diagrams), system behaviour 

(using UML sequence diagrams), and system deployment (using UML deployment diagrams). 

These models cover most of the perspectives that may be required in securing a given system. 

These models are usually developed during system development stage. Not all these models are 

mandatory. Cloud stakeholders may need to specify security on system entities (using system 

components and/or classes models), on system status (using system behaviour model), on 

hosting nodes (using system deployment model), or on external system interactions (using 

system context model). Moreover, they may specify their security requirements on a coarse-

grained level (using system features and components models), or on a fine-grain (using system 

class diagrams). Maintaining service SDM synchronized and up to date with the running service 

instance may introduce overhead and headache on service providers. However, recent efforts in 

models@runtime synchronization techniques [236, 237] help in maintaining SDM consistent 

with service instance. Some of the application or service description details, specifically the 

system class diagrams, can be reverse-engineered if not available from the target application or 

service binaries or even from the service source code. We developed a new UML profile to 

extend UML models used in the SDM with necessary attributes that help in: Capturing relations 

between different system entities in different models – e.g. a feature entity in the service 

features model with its related components in the service component model, and a service 

component entity with its related classes in the class diagram. This part of the profile helps in 

propagating security modelled and mapped a at coarse-grain level to system and security lower 

entities; and Capturing security concepts/attributes (security objectives, requirements, controls, 

etc.) mapped to the SDM entities – e.g. what security requirements specified on a given service 

feature or service component. This helps in security enforcement and models weaving as we 

discuss later. 
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6.3.1.2 Service Security Specification Model (SSM) 

A second part of the service delivery package is the service security specification model. The 

SSM is a set of models developed and managed by the service provider security engineers to 

specify the security requirements or controls that the service providers enforce and operate on 

their services (a detailed example is introduced in the usage example section). It provides the 

details required during the security engineering process including: security goals and objectives; 

security risks and threats; security requirements; security architecture for the operational 

environment; and security controls to be enforced. These models capture different levels of 

abstractions. The key mandatory model in the security specification models set is the security 

controls model. It is required in generating the security integration code. 

6.3.1.3 Tenant Service Description Model (TSDM) 

The TSDM model describes system features, architecture and classes available for a tenant T. It 

is usually different from one tenant to another. It depends on the multi-tenancy model adopted 

by the service provider in customizing tenant instance or configuring a single shared service 

instance. At tenant provisioning time, an initial TSDM is copied from the system SDM. Then 

the TSDM is updated to reflect the current tenant's service instance details. The tenant system 

administrator can use this model later to turn features on/off at runtime. The TSDM helps in two 

scenarios: To customize or configure the system based on tenant requirements – e.g. tenant T is 

permitted to use certain features that she registered for. The service provider uses the tenant 

initial TSDM and delete other system features that are not required. The same approach can be 

used in both cases either the tenant has a separate instance or share the same instance with other 

tenants. Still the model@runtime synchronization techniques can be used to keep the TSDM 

synchronized with the running tenant instance; and to capture tenants’ security requirements on 

their instance scope – i.e. security to be applied on instance features, components, methods, etc. 

6.3.1.4 Tenant Security Specification Model (TSSM) 

The TSSM model is the tenant copy of the service SSM, an example is shown in Figure  6-10 

(details are explained in the usage example). It describes security objectives, requirements, 

architecture, design, and controls that the service tenants have and want to enforce on their 

cloud-hosted assets. This may include authentication, authorization controls, auditing, 

encryption, etc. that tenants use in their internal sites or even from other security vendors. 

Tenants may decide to continue using the same security provided by the service provider or 

rather prefer to use their security controls. However, tenants will not be able to disable security 

controls that the service provider has marked as mandatory in the service SSM. This helps to 

avoid disabling critical security controls such as tenants’ data isolation control provided by the 
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service provider. This model can be used by tenants to manage security of multiple cloud-hosted 

applications – i.e. to provide a single security model to manage all enterprise outsourced 

services. 
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Figure 6-3. Possible service-security models weaving 

 

Figure 6-4. Our new UML profile 

6.3.2 Weaving Service and Security Models 

MDSE@R has two mapping levels: Mapping service SSM model entities to service SDM 

model entities; and Mapping service TSSM model entities to service TSDM model entities. The 

first type of mapping is developed and managed by the service provider at design time, 

deployment time, or even at runtime to reflect new needs. Whenever the service provider 

discovers a security problem – such as a new vulnerability, or has a new security requirement – 

they can update or mitigate it on the service security specification model and then map these 

new updates on the service description model. Such mapping is directly reflected on the tenants' 
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models. The second mapping type is developed and managed by the service tenant at runtime. 

Both mappings can be modified at runtime to reflect new security needs or business objectives. 

MDSE@R supports many-to-many mapping between the (tenant) service description model 

entities and (tenant) security specification model (SSM) entities, as shown in Figure  6-3. This is 

supported by our UML profile which extends every service description concept – i.e. feature, 

component, class, method, host, connection, etc. with a set of security attributes – i.e. security 

objectives, requirements, services and controls (see Figure  6-4 for UML profile diagram, details 

are available in the implementation section). Using drag-and-drop between the SSM and SDM 

entities, SSM entity will be added as an attribute value, based on the dragged SSM entity, to the 

selected SDM entity – i.e. if the tenant drag an authentication security control and drop it on a 

system class, this means that all the methods in this class must use this authentication security 

control. One or more security entities (security objective, requirement and/or control) can be 

mapped to one or more service model entity (feature, component, class or method). Mapping a 

security concept on an abstract service entity – e.g. a system feature – implies a delegation of 

the same security concept to the concrete entities e.g. the feature realization classes and 

methods. This is facilitated using our UML profile which helps in managing traceability 

between application and service entities. Moreover, mapping an abstract security concept – e.g. 

a security objective to a service entity - e.g. a class - implies mapping all security requirements, 

services, and controls that realize this security objective to that class and its methods. Any 

application or service entity that has a security mapping is called a critical service entity. 

6.3.3 Enforcing Specified Security on Target Application Entities 

In the previous steps, both security details and critical application or service entities emerge at 

runtime. MDSE@R automates the realization task of the specified security requirements on 

critical application or service entities without the involvement of security or application 

engineers. This helps both parties to easily update their application and security capabilities to 

meet their needs. Moreover, this helps avoiding inconsistency problem that arise from updating 

application security realizations without reflecting updates on application and security models. 

Whenever the service provider or service tenant develops a new mapping or updates an existing 

mapping between an SSM entity and an SDM entity, the underlying MDSE@R platform 

propagates these changes as discussed below. 

6.3.3.1 Update Live Service Interceptors’ Document 

This document maintains a list of the application security critical entities (CP - an application or 

service entity that has security attributes mapped on it) where security controls should be 
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weaved or integrated. Equation 1 states that the critical service entities - CP(s) - are the union of 

all tenants’ critical points - CP (Ti) – where T0 is the service provider. 

CP(s) =  ⋃        
      Equation 1 

6.3.3.2 Update Live Security Specification Document 

This document maintains a list of security controls to be applied at every critical system entity. 

This may be defined by the service provider or by the service tenant. The service provider can 

mark security controls as mandatory. This means that these security controls cannot be weaved 

or replaced by other stakeholders. Service tenants can see such controls and where they are 

applies – as a part of our solution of the “lack of trust” problem. These security controls must be 

applied first before other stakeholders’ security controls. 

6.3.3.3 Update Tenant Accessible Resources Document 

This document maintains a list of system resources that should not be accessible for each tenant. 

For example, in our Galactic scenario if Swinburne did not buy the Customer Management 

module then they should not be able to access webpages or functionalities provided in this 

module. Equation 2 is used in specifying tenant Ti inaccessible resources. The prohibited 

resources list for tenant Ti is the difference between the service SDM resources and the tenant Ti 

TSDM resources. 

                              Equation 2 

This list of tenant's prohibited resources is used by the MDSE@R to deny access to any of 

such resources by a request submitted by one of the tenant's users. The application or service is 

now ready to enforce security specified by tenants and service providers based on the woven 

secure-service model. This update is conducted in parallel with the application or service 

operation. Thus it does not incur any further performance overhead – i.e. we do not need to take 

the application offline in order to update system security. 

6.3.3.4 Update the System Container 

The system container is responsible for intercepting system calls to critical system entities at 

runtime and delegating such requests to a default request handler "Security Enforcement Point”. 

The system container is updated with critical entities (CPs) from the live service interceptors’ 

document. It is also updated with entities in the prohibited resources list. For the later one, it 

simply denies requests to such service resources. 
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Figure 6-5. Our proposed common security interface 

 

Figure 6-6. Example of the generated security integration test cases 
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6.3.3.5 Security Enforcement Point – SEP 

A key objective of MDSE@R is to avoid being tightly coupled with specific security controls, 

specific security vendor, and specific security platform (Java security manager, spring acegi 

framework, Microsoft Windows Identity Foundations, etc.). It also aims to keep developers and 

administrators from being too deeply involved in integrating security controls with a target 

system that often results in inconsistent security being enforced on different systems. We have 

developed a common security interface for every security attribute (authentication, 

authorization, auditing, encryption, etc). This interface, shown in Figure  6-5, specifies interface 

functions and signatures that each security control expects/requires in order to perform their 

tasks – e.g. AuthenitcateUser function should authenticate the user and return the set of claims 

including user identity, credentials, roles, and permissions. A security or service vendor must 

implement this interface in their connector or adapter to support integration with MDSE@R. 

The sequence of calling/executing these methods is controlled by the SEP and depends on 

security attributes mapped on the critical point being intercepted. This helps security vendors 

develop one connector that - using MDSE@R - can be integrated with all target 

applications/services. 

So far we have prepared the system to intercept requests to critical methods via the system 

container and have prepared security controls to be communicated using the common security 

interface. The SEP works as a bridge between the system container and the deployed security 

controls. SEP queries the security specification document for controls to enforce at every 

intercepted request. It then initiates calls (using the security interface) to the designated security 

controls’ clients or connectors. Moreover, the SEP assigns results returned by such controls to 

the system context e.g. an authentication control returns userID of the requesting user after 

being authenticated. The SEP creates an Identity object from this userID and assigns it to the 

current thread’ user identity attribute. Thus a secured application can work normally as if it has 

authenticated the user by itself. An application may use such information in its operations e.g. to 

insert a record in the database, it uses the user identity to set the "enteredBy” database field. 

6.3.4 Testing the Service-Security Integration 

Before allowing the developed specifications and mappings to be applied to live cloud services, 

MDSE@R conducts security testing to verify that the target service is correctly enforcing the 

tenants and service providers’ specified security needs. We assume that the reused security 

controls are already tested by the security vendors. Thus, our testing task focuses on verifying 

that the security controls are now being correctly integrated within specified critical system 

entities as required. To automate this step, we use the live interceptors’ document and the 
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security specification document to generate a set of test cases (scripts) for each critical entity – 

i.e. each critical entity will have a set of test cases according to the security specified on it (from 

the security specification document). Each test case verifies that a security control C is correctly 

integrated within the critical entity E. An example is shown in Figure  6-6. As this figure shows, 

we have GetCustomers method of the CustomerBLL class is marked as a critical point. This 

critical point has a set of security controls mapped on it including authorize users before 

executing this method. Thus, the security testing service generates a test case that calls this 

method and check the resultant system security context (after calls - actual results) against the 

expected results. In the backend, the SEP is converted in debug mode which let the SEP to raise 

exceptions if a security control call failed. The testing framework (we use the nUnit framework, 

discussed in the implementation section) fires these test cases and generates a log of the test 

cases’ firing results to the tenant/service provider security engineers showing the failed test 

cases, the critical entities, and the failed to integrate security controls. 

Figure  6-6 shows a sequence diagram describing a user requesting resource X, from a 

service operated by MDSE@R. In this scenario we have several interacting entities including 

user, webserver, MDSE@R system container, SEP, security services and the application 

resource. Once the web server receives a request (1) submitted by a user to access resource X, it 

delegates the request to the system container (2) along with the user’s tenantID T. The system 

container queries the live service interceptors’ document (3) to decide if the resource requested 

is marked as "critical” or not either by the tenant or by the service provider. If the resource is 

critical (4), the system container delegates the request to the security enforcement point (5). The 

SEP queries the security specification document (6) for the required security controls to be 

enforced on the requested resource by the user’s tenant or by the service provider. This is an 

ordered list of security controls to be activated by the SEP. The SEP loops through the retrieved 

security controls list. Using the standard security interface, the SEP generates requests to the 

security controls required according to their type (7). After each security control call, the SEP 

updates the current threat security context (8). This includes update the execution context with 

current user identity, set of claims and roles. Finally, the SEP returns to the system container a 

recommendation to either proceed with the request or to deny it. If appropriate, the system 

container then forwards the request to the target resource (9) or else returns an appropriate 

security exception to the caller. If the tenant defined security properties or controls to be applied 

on system responses – e.g. to encrypt the response body, the system container intercepts such 

responses, applies security controls (through the SEP), and then forward the updated response 

back to the client. 
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Figure 6-7. Sequence diagram of a user request to critical service entity 

6.4 Usage Example 

We introduce a usage example to show how the service provider and tenants can collaborate 

together using MDSE@R and its provided platform toolsets to manage security of their services 

at runtime. Moreover, we highlight the key stakeholders involved in the security engineering 

process along with their responsibilities and expected outcomes of every step. We use our 

motivating example discussed in details in chapter 1, the Galactic application developed by 

SwinSoft and procured by Swinburne and Auckland. SwinSoft wants to adapt its application 

security at runtime to block security holes and vulnerabilities that have been discovered at 

runtime. Moreover, two tenants (Swinburne and Auckland) using Galactic are worried about the 

security of their assets and have their own, different security requirements to be enforced on 

their Galactic ERP application instance(s). We illustrate our usage example using toolset screen 

dumps. 

6.4.1 Model Galactic System Description 

This task is done during or after the system is developed. SwinSoft, the service provider, 

decides the level of application details to provide to their tenants in Galactic SDM. 

Figure  6-8(a) shows that SwinSoft SDM captures the description of system features including 

customer, employee and order management features (Figure  6-8(a)), system architecture details 
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including presentation, business and data access layers (Figure  6-8(b)), system classes including 

CustomerBLL, OrderBLL, EmployeeBLL (Figure  6-8(c)), and system deployment including 

web server, application server, and database server (Figure  6-8(d)). SwinSoft uses our UML 

profile (Figure  6-4) to capture dependences and relationships between system features and 

components, and system components/classes. This model will be used as a reference by 

SwinSoft system and security engineers. No tenant is allowed to have write access to the 

Galactic SDM or its details. 

6.4.2 Model SwinSoft Security 

This task is conducted by SwinSoft (the service provider) security engineers at the system 

deployment phase. This model is usually updated during their recurring security management 

process to reflect new risks. In this scenario, SwinSoft security engineers document SwinSoft 

security objectives that must be satisfied by Galactic system (Figure  6-9(A)).  It includes system 

availability, data integrity, accountability objectives. This model is revised frequently to 

incorporate emerging changes in SwinSoft security objectives. Security engineers then use this 

model as a reference in developing system security requirements. They refine these security 

objectives in terms of security requirements that must be implemented by Galactic system, 

developing a security requirements model.  

Figure  6-9(B) shows a part of the security requirements model focusing on AuthenticateUser 

as a security requirement identified as a refinement of the data confidentiality and integrity 

security objectives. The security requirements model keeps track of the security requirements 

and their links back to the high level security objectives. SwinSoft security engineers next 

develop a detailed security architecture including services and security mechanisms to be used 

in securing Galactic.  

Figure  6-9(C) shows the main security zones (represent as big boxes - containers) that cover 

Galactic deployment environment including security management zone, web servers’ zone, and 

enterprise network zone. A network zone means that there is a firewall with an intrusion 

prevention system deployed. It also shows the allocation of IT systems, including Galactic in 

these zones. The security architecture also shows the security services, security mechanisms and 

standards that should be deployed. SwinSoft security engineers finally specify the security 

controls (i.e. the real implementations) for the security services modelled in the security 

architecture model. 

Figure  6-9(D) shows the key security controls selected by security engineers as a realization 

of their security requirements. This includes SwinValidator as an input validation control, 

ESAPI.AccessController as an authorization control, and SecurityIsolator as a multi-tenancy 
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isolation and access controller security control. Each security control entity defined in the 

security controls model specifies its family including authentication, authorization, audit, 

cryptography, and audit. This helps in deciding the suitable API interface to be called in order to 

use this control. It also helps in sequencing (ordering) the requests to be issued by the SEP to 

secure a given system critical point. Each security control should define the deployment URL of 

its connector. This is also required by the SEP when issuing requests to such controls. Each 

security specification model maintains traceability information to parent model entities. 

Figure  6-9(E) shows mappings specified between security entities and system entities. In this 

example we specify that SecurityIsolator realizes the "TenantsDataIsolation” requirement. 

Whenever MDSE@R finds a system entity with a mapped security requirement 

TenantsDataIsolation it adds SecurityIsolator as its realization control – i.e. an SecurityIsolator 

check will run before the entity is accessed e.g. before a method is called or a module is loaded. 

SwinSoft security engineers have to mark mandatory security controls that their tenants cannot 

modify or disable.  

6.4.3 Weave Galactic SDM and Security SSM 

After SwinSoft system and security engineers have completed the development of Galactic 

SDM and security SSM, SwinSoft security engineers should specify/map security attributes (in 

terms of objectives, requirements and controls) on Galactic system specification details (in 

terms of features, components, classes). This is achieved by drag and drop of security attributes 

on system entities. Thus, system features, structure, and behaviour can dynamically and at 

runtime reflect different levels of security based on the currently mapped security attributes on 

it. Figure  6-9(E) shows a part of Galactic component diagram where PresentationLayer, a UML 

component entity, is extended with security objectives, requirements and controls 

compartments. In this example the security engineers have specified TenantsDataIsolation as 

one of the security requirement to be enforced on the PresentationLayer component (1). Such a 

requirement is achieved indirectly using SecurityIsolator control (2). MDSE@R uses the 

security attributes mapped to system entities to generate the full set of methods’ call 

interceptors, as in Figure  6-11(1) (system interceptors document), and application or service 

entities’ required security controls, as in Figure  6-11(2) (security specification document). 
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Figure 6-8. Galactic service description model (SDM) 
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Figure 6-9. Galactic service security specification model (SSM) 
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Figure 6-10. Swinburne security specification model 
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. . . 
<extension type="Interception" /> 

  <register type="PresentationLayer.CustomerBLL, PresentationLayer "> 

    . . . 
    <interception> 

      <policy name="PolicyCustomersBLL"> 

        <matchingRule name="MatchingRuleCustomersBLL“ Type="MemberNameMatchingRule"> 

          <constructor> 

          <param name="nameToMatch" value="GetCustomers" /> 

          <param name="nameToMatch" value="GetCustomerByName" /> 

          <callHandler name="callhandlerCustBLL“ type="SecurityCallHandler, SecurityKernel"> 

. . . 

A 

<systemlevel> 

<componentlevel> 

. . . 
<classlevel> 

 

   <objectname> 

    . . . 
<methodlevel> 

  . . . 
< ObjectName> GetCustomers </ObjectName> 

    <Authentication_Method>Forms</Authentication_Method> 

    <Authorization_Method>RBAC_Impersonate</Authorization_Method> 

   . . . 

B 

 

Figure 6-11. Examples of the interceptors and security specification files 

public IMethodReturn Invoke( IMethodInvocation input, GetNextHandlerDelegate getNext)   { 
          EntitySecurity entity = LoadMethodSecurityAttributes(input.MethodName); 
          if (entity == null || entity.HasSecurityRequirements() == false) { 
                    return getNext().Invoke(input, getNext); 
          } 
        //Check for logging 

        if (entity.GetLoggingMethod() != LoggingMethod.None) { 
 SecurityInterfaceLogging obj = new Type.GetType(entity. entity.GetInputValidationMethod()); 
                  obj.Log(Datetime.Now, input.Method.MethodName); 
         } 
        //Check for Input Validation 

         if ( entity.GetInputValidationMethod() != InputValidationMethod.None )  { 
                SecurityInterfaceInputValidation obj = new Type.GetType(entity.GetInputValidationMethod()); 
         } 
        //Check for Authentication 

         if (entity.GetAuthenticationMethod() != AuthenticationMethod.None) { 
            if(CurrentThread.CurrentPrincipal == null) { 
                   SecurityInterfaceInputValidation obj = new Type.GetType(entity.GetAuthenticationMethod());      
                   obj.AuthenitcateUser(); 
             } 
          } 
          //Check for Authorization 

          if ( entity.GetAuthorizationMethod() != AuthorizationMethod.None )  { 
                  . . . 
          } 
 } 

 

Figure 6-12. Code snippet from MDSE@R security enforcement point
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Once security has been specified and interceptors and configurations generated, MDSE@R 

verifies that the system is correctly enforcing security as specified. MDSE@R generates and 

fires a set of required security integration test cases. Our test case generator uses the system 

interceptors and security specification documents to generate a set of test cases for each method 

listed in the interception document. An example of a generated test case is shown in Figure  6-6. 

This contains a set of security assertions (one for each security attribute specified on a given 

system entity). During the firing phase, the security enforcement point is instrumented with 

logging transactions to reflect the calling method, called security control, and the returned 

values. Security engineers should check the security test cases firing log, an example is shown 

in Figure  6-13, to verify that no errors introduced during the security controls integration with 

Galactic entities. After SwinSoft security engineers have checked the MDSE@R Security 

testing service log files and make sure that no integration errors have been introduced, they can 

publish their updated Galactic security model for their tenants. 

 

Figure 6-13. A snapshot of MDSE@R security test cases firing log 

6.4.4 On-boarding Swinburne and Auckland Tenants 

During the tenants on-boarding process (preparing the service to be used by a new tenant), 

SwinSoft system engineers/admins start to customize/configure Galactic instance for tenant 

based on their requirements and purchased modules. Depending on the adopted multi-tenancy 

model, they may register new features or components as well. The final Swinburne or Auckland 

TSDM is similar to Galactic SDM in Figure  6-8. Swinburne and Auckland system 

administrators can update their own tenants’ TSDMs to reflect any further system 

customization, such as enabling or disabling sub-features such as calculate overtime, nightshifts, 

and vacations in the Employee Management module. This TSDM is used by Swinburne security 

engineers to define and map required security on it. Moreover, any updates done by SwinSoft or 

Swinburne on their TSDMs are reflected on the prohibited resources list (Eq. 2)  
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6.4.5 Managing Swinburne and Auckland Security 

Swinburne and Auckland security engineers go through the same process as SwinSoft did when 

specifying their security requirements and controls. Each tenant can customize their TSSM as 

far as they want and as frequent as required. For example, in Figure  6-10 Swinburne engineers 

have specified that LDAP "realizes” the AuthenticateUser requirement. Whenever MDSE@R 

finds a system entity with a mapped security requirement AuthenticateUser it adds LDAP as its 

realization control i.e. an LDAP authentication check will run before the entity is accessed - e.g. 

before a method is called or a module loaded. This applies to the CustomerBLL class methods, 

Figure  6-10 (1). However, Swinburne security engineers have a different requirement for the 

GetCustomers method - the requester should be authenticated using Forms-based authentication 

instead, Figure  6-10(2). Auckland can specify their specific requirements, context, and security 

controls based on their specific needs. This results in quite different generated security 

enforcement controls. Both Swinburne and Auckland security engineers can modify the security 

specifications while their Galactic application is in use. MDSE@R platform updates 

interceptors in the target systems and enforces changes to the security specification for each 

system as required. For example, the Swinburne Galactic security model can be updated with a 

single sign-on security authentication component and these updates are directly applied on the 

running Galactic instance.  

6.5 MDSE@R Architecture and Implementation 

The architecture of MDSE@R platform is shown in Figure  6-14. This is designed as a cloud 

Platform-as-a-Service (PaaS) that can manage multiple SaaS applications hosted on the same 

platform. MDSE@R consists of system and security specification modellers, models and 

security controls specifications repositories, system container to intercept request, testing 

services and security enforcement point. 

6.5.1 MDSE@R Platform Architecture Details 

System Description Modeller (1) is developed as an extension of Microsoft Visual Studio 2010 

modeller with an UML profile (Figure  6-4) to enable system engineers modelling their systems’ 

details with different perspectives including system features, components, deployment, and 

classes. The UML profile, as shown in Figure  6-4, defines stereotypes and attributes to maintain 

the track back and forward relations between entities from different models. This includes 

related features stereotype extending system components’ entities; system components 

stereotype extending system classes’ entities. Moreover, a set of security attributes to maintain 

the security concepts including objectives, requirements and controls mapped to every system 
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entity. The minimum level of details expected from the system provider is the system 

deployment model. MDSE@R can use this model to reverse engineer system classes and 

methods using .NET Reflections in case of system binaries only available. We use .NET parsers 

to extract classes and methods from system source code by analysing the generated AST files. 

  

Figure 6-14. MDSE@R architecture 

Security Specification Modeller – SecDSVL (2) is also developed as a Microsoft Visual 

Studio 2010 plug-in. It enables service providers and tenants, represented by their security 

engineers, to specify the security attributes and capabilities that must be enforced on the service 

and/or its operational environment. Figure  6-15 shows the meta-model of the MDSE@R 

SecDSVL which captures security details developed during the security management process. 

We will discuss SecDSVL details in the next Section.  

Models Repository (3) is a shared repository to maintain models developed either by the 

system engineers or the security engineers. This repository also maintains the live system 

interceptors’ document and security specification document. An example of these documents is 

shown in Figure  6-11. This example shows a sample of the Galactic interceptors’ document 

generated from the specified security-system mapping. It informs the system container to 
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intercept GetCstomerByName and GetCustomers methods (1); a sample of Swinburne security 

specification file defining the security controls to be enforced on every intercepted point (2).  

Security Controls Database (4) is a database of the available and registered security patterns 

and controls. It can be extended by the service providers or by a third party security provider. A 

security control must implement certain APIs defined by the security enforcement point in order 

to be able to integrate with the target system security standard interface. Having a single 

enforcement point with a predefined security interface for each security controls family enables 

security providers to integrate with systems without having to redevelop adopters for every 

system. We adopted OWASP Enterprise Security API (ESAPI) library [238] as our security 

controls database. It provides a set of authentication, authorization, encryption, etc. controls that 

we used in testing our approach.  

System Container (5) used to support run-time security enforcement. MDSE@R uses a 

combined dependency injection and dynamic-weaving AOP approach. Whenever a client or 

application component sends a request to any critical system component method, this request is 

intercepted by the system container. The system container supports wrapping of both new 

developments and existing systems. For new development, SwinSoft system engineers should 

use the Unity application block delivered by Microsoft PnP team to support intercepting any 

arbitrary class entity. Unity supports dynamic runtime injection of interceptors on methods, 

attributes and class constructors. For existing systems we adopted Yiihaw AOP, where we can 

modify application binaries (dll and exe files) and add security aspects at any arbitrary system 

method (we add a call to our security enforcement point). For component level interception, we 

can use httpModules to add interceptors on the component level. 

Security Test Case Generator (6) uses the NUnit testing framework to partially automate 

security controls and system integration testing. We developed a test case generator library, 

using test cases template, to generate a set of security test cases for authentication, 

authorization, input validation, and cryptography for every enforcement point defined in the 

interceptors’ document. MDSE@R uses nUnit library to fire the generated test cases and notify 

security engineers via test case execution result logs.  

At runtime, whenever a request for a system resource is received (7), the system container 

checks for the requested method in the live interceptors’ document. If a matching found, the 

system container delegates this request with the given parameters to the security enforcement 

point (8). Figure  6-12 shows a sample of the security enforcement point API that injects the 

necessary security control calls before and after application code is run for different security 

attributes. Security Enforcement Point (9) is a class library that is developed to act as the default 

interception handler and the mediator between the system and the security controls. Whenever a 
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request for a target application operation is received, it checks the system security specification 

document to enforce the particular system security controls required. It then invokes such 

security controls through APIs published in the security control database (4). The security 

enforcement point validates a request via the appropriate security control(s) specified, e.g. 

imposes authentication, authorization, encryption or decryption of message contents. The 

validated request is then propagated to the target system method for execution (10). 

 

Figure 6-15. SecDSVL meta-model 

6.5.2 SecDSVL: Security Domain Specific Visual Language  

SecDSVL provides a mega-model using visual notations to be used by security engineers in 

managing IT systems’ security. To develop SecDSVL, we studied the existing security 

management standards (including NIST, ISO27000) details and come up with a comprehensive 

security meta-model that captures all relevant details, as summarized in SecDSVL meta-model 

Figure  6-15 and discussed below: 
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6.5.2.1 Enterprise Assets 

The first step in the security management process is the identification of existing IT assets that 

need to be secured. We capture enterprise assets in an asset model. This model captures all 

enterprise assets along with their categories i.e. information systems, physical assets or business 

value - and interrelationships. We use UML models to capture assets’ detailed descriptions as 

discussed in the system description model. Stakeholders need to assign security categorization 

for every modelled asset. This categorization depends on the asset assigned criticality level. 

6.5.2.2 Security Objectives 

Enterprise top management defines key security goals, objectives, and losses of breaching 

assets’ security. These objectives are captured in a security objectives model. Objectives may be 

specified per asset– i.e. objectives are mapped to the corresponding asset, or enterprise-wide 

thus a given security objective could be mapped to many assets. Possible relationships between 

objectives include: composition – a security objective is made up of sub-objectives; dependency 

– a security objective depends on other security objectives in order to be satisfied/achieved. 

Availability, integrity, confidentiality, and accountability are the key security objective 

categories [239].  Each security objective is assigned an importance level. This indicates the 

impact of the failure to meet such objective as a result of security breach – e.g. impact of 

breaching asset confidentiality may be high, moderate, or low. A security objective may be 

assigned realization security strategy including preventive, detective, and recovery strategies. 

6.5.2.3 Risk, Threats, Attacks, and Vulnerabilities 

Security engineers conduct risk analysis on critical enterprise assets to identify possible threats 

on a given asset, and likelihood and impact of such threats. This also may include performing 

vulnerability analysis to identify inherent flaws that may be exploited by threat agents while 

attack the system. These security details are captured in a security risk model. This may be 

developed per asset – i.e. for each enterprise asset we develop risk model capturing risks, threats 

and attacks, or enterprise-wide risk model capturing all possible risks, threats and attacks and 

map such items onto different assets. Threats should be linked with the source threat agents and 

to the exploited vulnerabilities. Vulnerabilities should be mapped to the vulnerable assets. 

Security risks map identified threats to the breached security objectives – i.e. a risk is a violation 

of a security objective through a possible threat. For each risk, we should specify the probability 

that a given threat can be exploited and the impact of exploiting such a threat by a threat agent. 
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6.5.2.4 Security Requirements 

Security requirements are the treatments to be taken by security engineers in order to mitigate or 

avoid the identified threats. Security requirements are captured in a security requirements 

model. For each specified security objective and identified security risk, we may define a set of 

security requirements e.g. “the system should not grant access to a resource X unless the user is 

authorized by the user name and password”. NIST [240] has 18 Security requirements family 

including audit, communication, cryptography, data protection, identification and 

authentication, privacy, etc.  

6.5.2.5 Security Architecture 

Security architects use the given security requirements model to develop a security architecture 

model. This model captures planned behaviour and structure of enterprise security. It shows 

how and where security controls and enterprise assets are positioned. Moreover, it captures how 

these security controls are integrated with other enterprise assets. A security architecture model 

includes identifying security zones (domain) in the enterprise operational environment including 

uncontrolled, controlled, restricted, and managed zones. Security architects define the security 

services that will be deployed or used in every zone. These services include authentication, 

authorization, cryptography, audit, etc. these services may also specify the mechanism or 

standard that should be provided by every security service e.g. cryptography should use AES 

instead of DES, authorization should use LDAP and SSO instead of forms-based authentication 

or Microsoft membership security. 

6.5.2.6 Security Controls 

Security administrators specify security controls that realize security services specified in the 

security architecture model. These security controls are captured in a security controls model. 

This model includes for every security control, the configurations to be applied on it. Moreover, 

each security control entity should specify the security control family. Thus, we can load 

configurations from the Common Configuration Enumeration (CCE) database [241].  

6.6 Evaluation 

In this section we summarize some of the experiments we have performed to assess the 

soundness and scalability of our MDSE@R approach in: 

– Capturing descriptions of different real systems and different security details for both 

service providers and tenants; 
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– Propagating security attributes on different system entities (features, components, classes, 

and methods);  

– Enforcing unanticipated security requirements that emerge at runtime including 

authentication, authorization, auditing, etc. at runtime with an acceptable performance 

overhead;  

– Validating that security controls are correctly integrated with the target entities. 

– Usability of our SecDSVL language? 

We divided the benchmark set (the set of applications discussed in Chapter 4) into two 

groups: Group-1 has two applications including Galactic ERP and PetShop. Both applications 

have been modified to adopt the Unity application block as the system container. Group-2 has 

the other five open source web applications including Splendid, KOOBOO CMS, 

NopCommerce, BlogEngine, BugTracer, and TinyERP. For this group we use Yiihaw 

framework as the system container to inject interceptors into system binaries. Except for 

Galactic, we do not have any previous experience with these applications. 

6.6.1 Experimental Evaluation Setup 

Using MDSE@R, we developed three security specification models (SSM) with security 

objectives, requirements, and controls as described in Figure  6-9 and Figure  6-10. One model for 

service provider and two other models were copied from it and modified to reflect two security 

requirements sets. We specified security requirements and controls for authentication, 

authorization, input validation, logging and cryptography as shown in Table  6-1. 

We used MDSE@R to model the system description (SDMs) for applications in Group-1, as 

we know the details of these systems – i.e. we can develop a complete SDM including system 

features, components, classes, etc. For Group-2, we used system deployment diagram for these 

applications and used reverse engineering to extract systems’ class diagrams from their binaries. 

Thus for applications in Group-1 we should be able to map security to system features, 

components, classes, methods. However, in Group-2 we should be able to specify security on 

component, class, and method levels only because these are the only available models (features 

cannot reverse engineered from system source code or binaries so far). 

6.6.2 Evaluation Results 

Table  6-2 shows security attributes that MDSE@R succeeds in capturing and enforcing at 

runtime, including authentication, authorization, input sanitization, auditing and cryptography. 

This represents most common security attributes. Table  6-2 also shows that MSDE@R 

succeeded in mapping and enforcing these security attributes on systems in both Group-1 and 
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Group-2 with different levels of system abstractions (F: feature, C: component, S: class, and M: 

method). Note that for Group-2 applications we do not have a system feature model to map and 

enforce security on this level. The enforcement of cryptography has a limitation with Group-2 

applications especially when securing methods. This is because it requires that the caller and 

callee expect parameters of type String. To address this problem, we used format-preserving 

encryption (FPE) techniques [62]. The output of these techniques is in the same format (type) of 

the input - i.e. if the input to encrypt is of type integer then the output is of the same type. 

Table 6-1. Security controls used by service provider, Swinburne, Auckland 

Sec. Attribute SwinSoft Ctls Swinburne Ctls Auckland Ctls 

Authentication ESAPI Forms-based LDAP 

Authorization ESAPI Forms-based LDAP 

I/P santization ESAPI SwinFirewall – 

Audit ESAPI PrivateAuditor PrivateAuditor 

Cryptography ESAPI DES AES 

Sec. Isolation ESAPI – – 

Table 6-2. Validating MDSE@R against Group-1 and Group-2 applications 

Benchmark

Applications 

SecurityAttributes 

Authn Authz. I/P Valid. Audit Crypto. 

G
ro

u
p

-1
 

Galactic F, C, S, M 

PetShop F, C, S, M 

G
ro

u
p

-2
 

SplendidCRM C, S, M (C, S, M)* 

KOOBOO 

CMS 
C, S, M (C, S, M)* 

NopCommerce C, S, M (C, S, M)* 

BlogEngine C, S, M (C, S, M)* 

BugTracer C, S, M (C, S, M)* 

TinyERP C, S, M (C, S, M)* 
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6.6.3 SecDSVL Evaluation  

We have evaluated SecDSVL capabilities in capturing different kinds of enterprise security 

details with different levels of abstractions in comparison with the existing security 

management, risk management, and security engineering approaches. Table  6-3 shows 

SecDSVL compared to a range of other existing security modeling techniques based on their 

documented capabilities in Chapter 3 (related work). Table  6-3 shows that none of the existing 

approaches provides a comprehensive security model that covers every aspect in the security 

management process. Security management approaches (ISO27000, NIST-FISMA) focus on 

assets, risks, threats, and mitigation controls. Risk management approaches (OCTAVE, 

CORAS) focus on similar areas except for security controls. Early stage security engineering 

efforts (KAOS, i*, Tropos) focus on security objectives and requirements. Later-stage security 

engineering efforts (UMLsec, SecureUML) focus on security requirements, mapping and 

integration with target systems. 

Table 6-3. Comparison between SecDSVL and existing efforts 

Approach 1 2 3 4 5 6 7 8 9 10 

Misuse case X X √ √ √ X X X X X 

UMLSec X X X X ● X ● X X ● 

SecureUML X X X X ● X ● X X ● 

KAOS X √ ● √ √ X X X X X 

i* X √ ● √ √ X X X X X 

Tropos X √ ● √ √ X X X X X 

CORAS √ ● √ √ X X X X ● ● 

OCTAVE √ ● √ √ X X X X ● X 

FISMA √ √ √ √ X X X √ √ X 

ISO27000 √ √ √ √ X X X √ √ X 

SecDSVL √ √ √ √ √ √ √ √ √ √ 

[1] Assets Model, [2] Security Objective, [3] Security Threats and Vulnerabilities, [4] Security 

Risks, [5] Security Requirements, [6] Security Architecture, [7] Design, [8] Security Controls, 

[9] Traceability, [10] Mapping between systems and security models 

√: Fully Supported     ● :  Partially supported       X :  Not supported 
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6.6.4 User Evaluation 

We carried out a preliminary user evaluation of our tools and platform to assess MDSE@R 

approach and platform usability. We had seven post-graduate researchers, not involved in the 

development of our MDSE@R approach, to use our developed tools and platform after 

receiving an hour training session on the tool and platform features. We asked them to explore 

several MDSE@R system and security DSVL specifications of the PetShop and Galactic 

applications. Then we asked them to perform updates on these models and to modify the 

security specification models at run-time. We conducted a basic usability survey to gain their 

feedback on our DSVL, modelling tools, and the security enforcement platform. The results 

show that they successfully understood and updated security models for the target systems. 

They gave positive feedback about the overall approach and the tool usability, and the 

capabilities in managing system security, as shown in Figure  6-16 (1: Strongly disagree to 5: 

Strongly agree). A key recommendation was to use more expressive icons in the security DSVL 

rather than just boxes. 

6.6.5 Performance evaluation 

In this section, we discuss the performance evaluation of MDSE@R platform in two key areas: 

runtime performance overhead of the MDSE@R platform on the secured system; and the offline 

system security adaptation overhead. 

6.6.5.1 Runtime Performance Overhead 

The runtime performance overhead of MDSE@R equals time taken to intercept requests, plus 

time spent by the security enforcement module in querying the security requirements repository 

to be enforced on the intercepted point, plus time spent in calling the security controls specified. 

The time spent by security controls themselves we do not factor in, as this needs to be spent 

whether using our approach or as hard-coded security solutions. Arguably, traditional 

approaches may incur some of these other time penalties as well e.g. checking authenticated 

user access controls or generating audit checkpoint information to log.  

Figure  6-17 shows the time required (in msec) by MDSE@R to process a request for systems 

with different numbers of concurrent users and different number of system entities that have 

been marked as critical. Experiments were conducted on a Core2Duo desktop PC with 4GB 

Memory. The maximum performance overhead we got for a system with 10000 CPs defined 

and having 100 users concurrently sending requests equals 140msec. This performance 

considers efficient memory utilization as interceptors and security specification documents are 

loaded as needed. Significantly better performance could probably be achieved by caching these 
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MDSE@R models in memory and using a hash table data structure to enable faster search. 

Moreover, using replicas of the MDSE@R platform on different servers and for different 

applications will result in further improvement of the approach performance overhead. 

 

 

Figure 6-16. SecDSVL usability level of agreement 

 

Figure 6-17. MDSE@R platform average performance overhead 
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6.6.5.2 Security Adaptation Overhead 

We have measured the adaptation delay incurred by MDSE@R in order to realize a single 

simple mapping between a security entity and a system entity – e.g. system methods. This 

overhead equals on average 3 seconds. This represents the time taken to update the security 

interceptors and security specification documents and time to generate and fire the required 

integration test case(s). This is an offline task and so does not impact the performance of the 

running system instance. 

6.7 Discussion 

MDSE@R approach promotes multi-tenancy security engineering from design time to runtime. 

This is based on externalizing security engineering activities including capturing objectives, 

requirements controls, and realization from the target system implementation. This permits both 

security (to be enforced) and critical system entities (to be secured) to evolve at runtime 

(supporting adaptive security at runtime). Moreover, it enables enforcing different security 

requirements’ sets for different tenants who are not known at design time. We name this as 

"tenant-oriented security" compared to the traditional service-oriented security where a service 

can reflect only one set of security requirements usually captured by service provider at design 

time. One may argue that our approach may lead to a more open and vulnerable system as we 

did not consider security engineering during design time. Our argument is that at design time 

security engineering is often done by security non-experts and this is a leading reason why we 

still discover a lot of vulnerabilities in systems. Moreover, service providers can still perform 

security engineering during design time using MDSE@R. The service provider delivers both the 

SDM and SSM to their tenants for further customization. This also helps small tenants or 

tenants who are satisfied with the delivered security. 

A key benefit reaped from MDSE@R approach is supporting model-based security 

management. Tenant security requirements, architecture and controls are maintained and 

enforced through a set of centralized TSSMs instead of low level scattered configurations and 

code that lack consistency and are difficult to modify. A tenant can have a single TSSM for all 

of their IT systems that captures all of their security specifications and can be updated anytime 

to reflect his new configurations. Thus any update to their TSSM will be reflected on all IT 

systems that use MDSE@R platform. We developed one security model and used it with 

different systems. Each system enforces the security mapped to its entities. Moreover, any 

update to the security model results in updating all systems linked to it. This is a key issue in 

environments where multiple applications must enforce the same security requirements. Having 

one place to manage security reduces the probability of errors, delays, and inconsistencies. 
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Moreover, automating the propagation of security changes to underlying systems simplifies the 

enterprise security management process.  

The selection of the level of details to apply security on depends on the criticality of the 

system. In some situations, we may intercept calls to the presentation layer only (webserver) 

while considering the other layers secured by default (not publicly accessible). In other cases, 

such as integration with a certain web service or using third party component, we may need to 

have security enforced at the method level (for certain methods only).  

Security and performance trade-off is another dilemma to consider. The more security 

validations and checks the more resources required. This impacts application performance. This 

should be included as a part of the Service Level Agreement (SLA) with the tenants. We plan to 

extend our generated test cases to include performance tests, allowing MDSE@R provider to 

assess the overhead of new security configurations in terms of cost and to help both providers 

and tenants to optimize the security level enforced. MDSE@R helps in engineering security into 

systems at runtime, while the security controls’ configuration and administration should be 

managed by security administrators. Moreover, MDSE@R does not support defining business 

rules at runtime – e.g. employee should not be able to retrieve customers’ records of type VIP. 

The target system should have this rule while MDSE@R will provide the current user 

roles/permissions as returned by the tenant security access control. 

Security isolation between different tenants’ data is a very critical requirement in 

engineering security of a multi-tenant SaaS application. Although multi-tenancy security 

isolation is out of the project scope, the MDSE@R can help in addressing the security isolation 

problem. Security isolation controls, that simply perform authorization of the tenants supplied 

inputs, are added to the service SSM as a mandatory security control to be applied before 

proceeding with any given request. Thus no tenant can access other tenants’ data by providing 

malicious inputs. However, the service providers have to perform the data filtration when 

loading/storing data from/to the application database.  

Currently the communication (request/ response) between the MDSE@R and tenants’ 

security controls is not encrypted. Thus, the key management itself does not fall directly under 

the responsibility of MDSE@R. However, MDSE@R is responsible for issuing requests for 

cryptography security controls to encrypt or decrypt tenants’ data as specified in their security 

specification model. Such security controls have to know where to get the cryptography keys for 

example. If the encryption of these communication messages is also a requirement, we can use a 

PKI as an extension of the MDSE@R to manage cryptography keys used for secure 

communication, as shown in Figure  6-18. This would be used by MDSE@R to get tenants’ 

public keys to be used in encrypting communications with tenant’s controls. 
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Figure 6-18. Cryptography scenario between MDSE@R and tenants' security controls 

The multi-tenant security engineering of existing services (extending system security 

capabilities) has three possible scenarios: Systems that already have their SDMs, we can use 

MDSE@R directly to specify and enforce multi-tenant security at runtime; Systems without 

SDMs, we reverse engineer parts of system models (specifically the class diagram) using 

MDSE@R. Then we can use MDSE@R to engineer required system security; and Systems with 

built-in security, in this case we can use MDSE@R to add new security capabilities only. 

MDSE@R cannot itself help modifying or disabling existing security. In chapter 7, we 

introduce our approach (reengineering aspects – re-aspects) to support disabling of existing 

security methods and partial code using modified AOP techniques.  

In cloud computing model, most of the services are publicly accessible to end users who may 

be malicious users. Those users may try to exploit services’ vulnerabilities to breach data 

security. Thus, it is very important to operate a security service that can easily mitigate such 

vulnerabilities at runtime without any delays to develop security patches. MDSE@R could be 

used in automating such vulnerability mitigation process. Reported vulnerabilities will be used 

to extract the critical points that need to be secured. A set of mitigation actions that should be 

applied to mitigate the reported vulnerability will be used to integrate required security controls 

within the vulnerable points at runtime. We will discuss this case in more details in the case 

studies chapter (chapter 10). 
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6.8 Chapter Summary 

MDSE@R is a new model-driven approach to dynamically engineering security for multi-tenant 

SaaS applications at runtime. Our approach is based on using a set of multi-level service 

description models (SDM), developed by service providers, to describe different perspectives of 

their applications or services; a set of security specification models (SSM), developed by the 

service provider, to capture security objectives, requirements and environment security controls 

using Domain-Specific Visual Languages. Then, tenants can customize their copies of the SDM 

and SSM to reflect their application or service and security configurations. MDSE@R then 

bridges the gap between these two specifications through merging of the service and security 

models for both service provider and service tenants into a joint service security model. 

MDSE@R uses dynamic injection of security enforcement interceptors and code into the target 

application or service to enforce the security specified. Security specifications are thus 

externalized and loosely coupled with application specifications, enabling both the application 

and security specification to evolve. 

It also allows sharing of security specification models among different applications "model-

based security management". Security controls can be integrated with MDSE@R (which was 

implicitly integrated with the tenant service) by implementing a standard security interface we 

introduced. We have developed a set of modelling tools and a prototype of MDSE@R. We have 

successfully validated our approach by applying it to a set of benchmark applications, most of 

them open source, successfully modelling and enforcing a range of security needs on these 

applications. We performed a user evaluation of our toolset that demonstrates that it is readily 

usable by a technical audience but with little security engineering background. We assessed the 

performance overheads of using our current prototype of MDSE@R. It has a performance 

overhead ranging from 0.13msec up to 140msec per request for each critical application or 

service entity. MDSE@R has adaptation delay of 3 seconds for each simple mapping between 

SSM and SDM. This represents time to update interceptors and security specification 

documents as well as generating and firing security test cases. 
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  Chapter 7

Cloud Applications Security 

Reengineering 

In the last chapter we introduced our multi-tenant security engineering at runtime approach, 

MDSE@R, to enable cloud services to reflect different sets of security requirements for 

different tenants that emerge at runtime. However, MDSE@R does not help in case of cloud 

services that have been originally developed with built-in security capabilities (functions). 

MDSE@R helps in adding new security capabilities. Such new capabilities may conflict with 

existing service security capabilities. In this chapter we introduce a new security reengineering 

(retrofitting) approach that is used as a preprocessing step to help in disabling services’ built-in 

security as well as mitigating system security vulnerabilities found in such services that may be 

reported by a security analysis service (we introduce our approach in chapter 8). Our approach 

is based on Reengineering-Aspects “Re-aspects” as a new concept we introduce to address and 

capture the complex details involved in fulfilling such security reengineering tasks. This chapter 

is organised as follows. Section 1 introduces an overview of software reengineering and key 

limitation of the existing efforts. Section 2 introduces some motivating examples that we may 

face during the security reengineering process. Section 3 provides an overview of the normal 

change request management process that should be followed when conducting system 

maintenance task. Section 4 provides an overview of our re-aspects concept. Section 5 describes 

how re-aspects concept helps automating the change impact analysis task. Section 6 describes 

how re-aspects concept helps automating change propagation task. Section 7 discusses, 

SMART, our reengineering tool based on the re-aspects concepts along with the key 

implementation details. Section 8 discusses a usage example that shows how SMART tool 

works. Section 9 describes evaluation experiments of our approach. Section 10 discusses 

strengths and weaknesses and areas for further research. 

7.1 Introduction 

Software systems are usually exposed to extensive changes and evolution after deployment. 

This might be to address quality problems (e.g. fixing bugs), performance problems (e.g. too 

slow), make use of new APIs or integrate with new systems (e.g. change system to use 

company-wide LDAP authentication for single sign-on from a custom ID/password system), or 

to fix security problems (e.g. found to be vulnerable to SQL Injection attack). 
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These maintenance activities represent up to 80% of the total system cost and effort [242]. 

System re-engineering is concerned with system understanding, organization, and migration 

[165]. System maintenance [166] is concerned with post-delivery modifications to an existing 

system in order to address new issues. These can be small spot-patches to major revision of 

system architecture and codebase. Dynamic runtime adaptation is more a limited approach and 

is sometimes used to handle post-delivery “unanticipated” requirements made while the system 

is running [37, 174, 243]. System reengineering, refactoring and maintenance are concerned 

with removing, modifying and replacing existing features as well as adding new system features 

at design time. This requires: (i) capturing new features or modifications of existing features; 

(ii) locating system entities that must be modified; (iii) locating system entities that is impacted 

by this modification and should be modified; and (iv) propagating or reflecting the required 

modification on the whole system.  

A

B C

A

B

A

B C

A

B D

A

B C

A

B

A

B C

A

B C

B
ef

o
re

A
ft

er

Remove 

Feature

Replace

Feature
Modify 

Feature

Add

Feature

C
D

 

Figure 7-1. Possible system modifications and their impact on system entities 

Figure  7-1 illustrates possible system modifications (types of change requests): (i) a feature 

is removed (e.g. code taken away); (ii) a feature is replaced (e.g. old code replaced by new 

code); (iii) a feature is modified (some old code replaced by changed code); and (iv) a feature is 

added (new code is inserted into old code). In these scenarios, other features may be impacted – 

e.g. the removal of feature C requires updating dependent features (A, B). This figure also 

highlights a key problem which is that realizing a given system modification on a specific 

feature (added, removed, modified, or replaced) requires modifying other related system 

features that integrates (interacts or uses) the modified system feature. Below we discuss some 

of the relevant efforts related to how we realize system modification/updating. 

Existing system reengineering approaches focus on understanding the target system and 

locating implemented features [177, 178, 181, 244], discovering implemented design patterns 

[245], aspects mining [182], understanding source code evolution between different system 

versions [246], applying system restructuring [247]. These efforts are limited in their 

expressiveness and identification precision, as most of them are targeted to help program 
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understanding rather than supporting actual program modifications. On the other hand, the 

existing system refactoring approaches [172, 173, 248] focus on specific refactoring patterns 

and requires user involvement. Existing system maintenance approaches are limited to change 

impact analysis [167-169, 249, 250]. Moreover, these approaches help in identifying what are 

the impacted entities only. Specifying parts required to be updated and how to update them is 

not addressed at all. Add to that, they focus on modifications on class, method and field level. 

Thus block-of-code modifications are not addressed. Existing Syntactic pointcuts, such as those 

delivered by AspectJ, are limited to arguments and attributes of the caller or the callee. 

Although statement and block level interception do exist [251, 252], they depend on explicit, 

manual, marking of statements or code blocks to be intercepted.  Moreover, these syntactic 

pointcuts are fragile under system evolution [253]. On the other hand, the semantics-based 

pointcut specification approaches are more powerful than syntactic pointcuts [253]. Existing 

semantics-based pointcuts are either informal and not powerful enough [254] [255] or formal 

but are often very complex to use by software developers [256]. 

Aspect-oriented software development (ASOD) techniques repetitively applied to support 

software maintenance [37, 174], re-engineering [182, 247] and refactoring [173, 248] for both 

object-oriented and aspect-oriented programs [257]. On the other hand, existing AOP languages 

such as AspectJ [258] and Caesar [259] support two types of crosscutting concerns: static 

crosscutting concerns that impact the static structure and signature of program entities, and 

dynamic crosscutting concerns that impact the system behavior by injecting code “advice” to 

run at well-defined points in the program execution. The static crosscutting constructs supported 

by AspectJ “inter-type declarations” are limited to adding new declarations and methods rather 

than modifying existing system entities (classes, methods, attributes, fields). This is a key 

limitation in adopting existing AOP approaches for software reengineering and maintenance 

activities. The existing runtime dynamic system adaptation approaches are limited in their 

capabilities in updating the running system with dynamic aspects (updating methods – 

removing, modifying and replacing). Thus, static aspects (updating classes, inheritance 

hierarchy, method signature, etc.) are not supported to be updated at runtime [175].  

To address these issues, we introduce the concept of re-engineering aspects – or “re-aspects” 

- as a novel integrated and systematic solution to the system re-engineering and maintenance 

problem. A re-aspect can capture signature of system entities to be modified, actions required, 

and code to apply on the identified entities. Then we analyse the system source code, locate 

entities that match the specified signatures, conduct detailed impact analysis to identified 

impacted system entities, and then propagate the changes required on these entities. Re-aspects 

help in removing, replacing, modifying or adding code at any arbitrary code block. These code 
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blocks may have a heterogeneous and complicated signature that is more complex than can be 

expressed using existing AOP approaches. Changes supported to be made on a target system 

include removing declarations, method calls, sets of lines of code, or whole methods, etc. We 

introduce two novel signature designators to help capturing formal and flexible semantic 

signature expressions as well as flexible syntactic signatures. 

Using the re-aspect de-weaving and replacement concept, we have developed a supporting 

model-driven application reengineering tool, SMART. SMART captures a set of required target 

system changes as re-aspects. These re-aspects are mapped to target system entities as a set of 

change requests. SMART applies these change requests and updates the source code as 

appropriate. We have validated SMART on our set of benchmark applications introduced in 

Chapter 4. 

7.2 Motivating Examples 

Figure  7-2 shows example code snippets that need to be modified to satisfy different change 

requests for a security retrofitting task (modifying application security capabilities). These code 

snippets are excerpted from Galactic – our research project motivating example; a web-based 

ERP system developed using .NET. These examples also show possible system modifications 

for these change requests, the code with grey shading - i.e. required re-engineering of the 

original code to address raised issues. 

bool updateCustomerBalance(string custID, decimal nBalance) { 

if(!AuthenitcateUser( username, password)) return false; 

if(!AuthorzUser(username, "updateCustBalance")) return false; 

LogTrx(username, dateTime.Now, "updateCustomerBalance"); 

Customer customer = Customers.getCustomerByID(custID); 

customer.Balance = nBalance; 

Customers.SaveChanges(); 

LogTrx(username, dateTime.Now, "updateCustBalance done"); 

} 
 

if( Request.Cookies["Loggedin"] != true ) { 

      if(!AuthenticateUser(Request.Params["username"], 

                                        Request.Params["password"] ) ) 

              throw new Exception("Invalid user");  

} 

DoAdministration(); 
  

A 

B 
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bool updateSalary(string userID, strig password, string staffID, decimal nSalary) { 

IDManager idm = IDManager.getIDManager(); 

if(idm.CheckAccessOk(userid, password, "updateSalary") { 

Staff staff = Staff.getStaffByID(staffID); 

staff.Salary = nSalary;  

staff.SaveChanges();   

} 

  else {  

    throw new BadAccessExcption("user is not authorized");  

} 

} 
 

if( !AuthenticateUser( Request.Params["username"],  

                  Request.Params["password"] ) )  

throw new Exception("Invalid user"); 

if( !AuthorizeUser( Thread.CurrentPrincipal, 

                    (new StakeFrame()).GetMethod().Name,  

                    (new StakeFrame()).GetMethod().GetParameters()  )  )   

         throw new Exception("User is not auhorized"); 

updateCustomerBalance(Request.QueryString["cID"], nBalance); 

 

Inputsanitizer( (new StakeFrame()).GetMethod().GetParameters() ); 

string query = "SELECT *  FROM USERS WHERE UserID = '"  

+ EncodeForSQL(username) 

+ "' AND password = '"  

+ EncodeForSQL(password)  + "'"; 

 

void public onbtnSave_Click(….)  { 

string TenantID = Session[“TenantID”]; 

BusinessLayer.UpdateCustomerBalance(TenantID,…); 

     … 

} 

Figure 7-2. Examples of code modification snippets 
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Figure  7-2-A, we have old security function calls throughout the codebase that we want to 

disable in order to integrate the application with the customer environment security controls. 

Customer security engineers want to replace this with a declarative security e.g. attribute-based 

webserver security – through configuration files. We need to update every method that has this 

shaded code and delete these obsolete lines of code, or replace, modify, insert this shaded code. 

In Figure  7-2-B, the code is vulnerable to authentication bypassing attack as it depends on 

user inputs (stored in a cookie) to check if the user is logged-in or not. If the user is not logged-

in, they will be authenticated using “AuthenitcateUser” function. A malicious user can modify 

the cookie file to bypass the authentication process. One possible mitigation problem is to 

replace checks on user cookies with a session variable managed by web server. 

Figure  7-2-C, we have a more complicated example where we need to modify the method 

signature (parameters) to remove the userID and password parameters. Moreover, relevant code 

using these parameters should be removed.  

Figure  7-2-D shows code vulnerable to improper authorization attack as user inputs are not 

authorized before being used. A malicious user can pass invalid data to retrieve information 

they are not authorized to see. A possible mitigation is to authorize every user input before 

using within the system. This is done by modifying the old code to do this checking i.e. 

injecting code to perform request authorization and input data authorization.  

In Figure  7-2-E we have code that uses user inputs directly in SQL statements without 

sanitization. A malicious user may enter data to execute unauthorized commands. A possible 

mitigation to this problem is to conduct input sanitization before constructing the SQL statement 

or precede references to user inputs with encoding functions. This requires inserting code, at 

statement level, to carry out the checking of user inputs used in dynamically SQL statements. 

In Figure  7-2-F shows a code snippet from the presentation layer (webpage) that must be 

modified to inject code that retrieves tenantID session variable. Moreover, we need to modify 

business functions to pass in tenantID parameter. 

7.3 Change Request Management Process 

In order to develop a realistic solution to the software systems (security) reengineering, we 

studied how software vendors realize such system modifications. We figured out that any 

software house operates a change request management process that defines and manages how 

software systems could be changed. Developers frequently receive change requests (CR) from 

customers, marketing and sales teams, and application implementers. These require them to 

modify, disable or add new features to one of their delivered systems. The change request 
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management process is initiated once a new CR is received or as planned in the project. This 

process is conducted to determine and document expected impacts of the CR on system artifacts 

including requirements, architecture, design, and source code. This helps in estimating cost and 

effort required to realize the given change request. 

Initial analysis

Impact Analysis
Change 

Propagation

Change Set

Impact 
Set

Change 
Verification

Updated System

System Artifacts

 

Figure 7-3. Our simplified change request management process 

The change request management process, as shown in Figure  7-3, starts with assigning the 

CR to a development team to conduct an initial impact analysis. The results of the initial impact 

analysis are maintained in a “change set”. This task is usually broken down into subtasks that 

are assigned to different stakeholders (business analyst, software architect, designer, developer, 

and tester). Each item in the change set may be removed, modified, replaced, or new code, 

model entity, or test case injected. Next, a deeper analysis is then conducted by stakeholders to 

develop the “impact set” which includes items to be impacted by changes to entities in the 

“change set”. Both sets are used to assess the time and cost required to effect the change. 

Thirdly, software stakeholders propagate the specified system modifications on target system 

entities including system requirements, architecture, design, source code, and test cases. Finally, 

stakeholders have to verify the changes made using appropriate reviews and test suites.  

This software maintenance process is challenging as different system entities at different 

abstraction levels may need modifying; code may be developed with different programming 

languages; and a change may touch code parts with different syntactical format (variable name, 

conditions’ order, format) that perform the same function. An effective approach that facilitates 

system maintenance activities requires: capturing complex code signatures ranged from a class 

name down to a block of code; locating change set for the required modifications; identifying 

impacted system entities; propagating the required modifications on the target system source 

code and models; support abstract signatures’ definition and analysis. In this chapter we focus 

on supporting automation of the first three tasks in the change management process. Testing can 

also be automated using the change and impact sets, checking pre and post conditions that must 

be satisfied by modified entities (this needs to be specified by re-aspects’ developers). However, 
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we also test that the modifications introduced did not break the validity and integrity of the final 

system executable file. 

7.4 Reengineering Aspects - “Re-Aspects” 

The reengineering aspects (“re-aspects”) concept is motivated by the change request 

management process we discussed above. The relevant information required to realize a given 

change request is consolidated in a re-aspect. Then, using our re-aspects engine, we automate 

the change impact analysis required and change propagation of system modifications. Re-

aspects concept is inspired by traditional AOP, but aimed at supporting system re-engineering 

and maintenance. In re-engineering, an existing application has code scattered throughout its 

codebase that we need to remove, replace, modify, or add additional code to, in order to effect 

the desired changes. In fact, we want to identify such code blocks, sometimes disabling them, 

sometimes replacing, sometimes selectively modifying, and sometimes inserting new code into 

them. Such code blocks can be coarse-grain (classes and methods) or fine-grain (lines of code). 

Moreover, these blocks may have different formats, structures or even programming languages. 

This leads us to the concept of re-engineering aspects, or “re-aspects”. A re-aspect is analogous 

to the “aspect” in traditional AOP excepting that signatures are more complicated and more 

actions could be applied on matched source code blocks in the target system. 

Re-aspect   ::= s:[Sign]   a:[Action]  d:[Advice]    i:[Impact ] 

Sign           ::= NULL | st:SignType se: [Signature Expr] | Sign Sign 

SigType        ::= code-snippet  |  OCL-expression 

Action       ::= at:ActionType 

Action Type    ::= Delete | Modify | Replace | Inject 

Impact   ::= NULL | Re-aspectDef | Impact  

Figure 7-4. Re-aspect Syntax 

Each re-aspect has signature, action, advice, and impact parts. The syntax of re-aspects is 

shown in Figure  7-4. A re-aspect signature(s) captures invariants that describe footprints of the 

target system entities that should be deleted/modified/replaced or into which new code is 

inserted. These may be a line of code, whole method, or a class. A re-aspect instance is a 

specific system entity that matches a given re-aspect signature. A re-aspect instance maintains 

its specific context information – i.e. location, parent entity, children, etc. The set of re-aspect 

instances represent the change set. A re-aspect action specifies what to do on each matching 

entity. A re-aspect impact represents the re-aspect that handles system entities impacted by a 

given system modification. This may be entities that are directly impacted by the modification – 
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i.e. after modifying a method name; all methods that call this method should be updated. 

Moreover, the re-aspect developer can define signatures of other entities that should be modified 

as well e.g. methods in the same component, methods that have specific signature, etc. These 

are called heuristics-based impact analysis. We categorize possible system re-aspects into four 

types according to specified re-aspect action: 

– Adding re-aspect (used in situations similar to Figure  7-2-D): this is a conventional aspect 

like what traditional AOP can deliver. Code to be injected is specified in a separate advice 

that is weaved with the target system at a given re-aspect instance. Unlike many existing 

AOP techniques it has capabilities to add to any static code structure (including new 

method, field, and lines-of-code) to system entities. 

– Deletion re-aspect, or “anti-aspect” (used in situations similar to Figure  7-2-A): this is a 

special case re-aspect that has only signature and no advices. The identified re-aspect 

instances, e.g. classes, code blocks, are removed from the target system.  

– Replacing re-aspect (used in situations similar to Figure  7-2-C):  this re-aspect is a 

combination of deletion and adding re-aspects. It includes signature of code to be removed 

and an advice specifying new code to be added.  

– Modifying re-aspect (used in situations similar to Figure  7-2-B): this is the most 

complicated re-aspect. It allows a developer to specify selective deletion, reordering, or 

addition of new elements into matched code instances. For example, the problem in 

Figure  7-2-B should be mitigated using a modifying re-aspect. It receives the identified re-

aspect instance (an Abstract Syntax Tree - AST node) as input parameter. At weaving time 

we call the modifying aspect script on each identified instance. The returned, modified AST 

is used to replace the original sub-tree. 

7.5 Change Impact Analysis 

The software reengineering and maintenance domain requires expressive and accurate signature 

specification approach to identify target system structures on which to apply changes. Exiting 

impact analysis efforts assume that the software developer knows exactly what entities need to 

be modified in order to satisfy the system modification request. However, in re-aspects, we start 

one step earlier to help developers build the change set (entities that need to be modified). This 

is facilitated through the specification of signatures of entities that should be modified in the 

target system. Using these same signatures we can locate entities that will be impacted by 

specified modifications. Re-aspects’ signatures are specified using a hybrid approach that 

delivers flexible syntactical code signature specification and semantic Object Constraint 
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Language (OCL)-based signature specification. Below we introduce our proposed signature 

specification approaches. 

7.5.1 Code Snippet Signature Designator 

Re-aspects’ developers can specify flexible code snippets as a re-aspect signature i.e. a pattern 

to match parts of the target system that needs to be modified. Developers can use the code 

snippet template shown in Figure  7-5. To avoid fragility problems related to using lexical 

pattern matching [178], or being specific to code written in specific programming language, our 

code snippet signature matching algorithm works on source code abstract syntax tree (AST). A 

“Dummy” keyword acts as a ‘*’-like wild card in regular expressions (we cannot parse or 

compile code with * in C#). For example, using myClassDummy instead of Dummy for a class 

name means the developer wants to locate classes that start with ‘myClass’ in any namespace 

with any contents. If a developer is assured in which namespace the code match is expected they 

can modify the Dummy namespace (line 2). The same applies with class name - a class name 

can be specified or leave it as “Dummy” (line 4), and for method names (line 6). Signatures can 

be matched with code blocks inside method body. A developer can specify a code block to 

locate regardless where this block is located. If they do not know details of the code block, they 

use “Dummy” (line 8). This indicates that all statements in the method body will be ignored 

until a match between the target method statements and the next statement in the signature is 

found (A = Dummy). Same applies to control statements (if, while, …). 

1 //update namespace or class with specific name if any 

2 namespace Dummy { 

3    class Dummy { 

4   // update method modifier, return type or  

5  // name for specific method signatures 

6 public void Dummy () { 

7     // update method body in case of code block re-aspect 

8     A = Dummy; 

9     if (Dummy) {    

10     } 

11        }  // end of Dummy Method 

12    } // end of Dummy Class 

13 }  // end of Dummy Namespace 

Figure 7-5. Code snippet re-aspect template 
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7.5.2 Semantic OCL-based Signature Designator 

To support semantic re-aspect signatures we use the Object Constraint Language (OCL) as a 

signature definition language. Below we summarize some of the key features of the OCL and 

explain how we succeed in using OCL to capture signatures of system entities to be located in 

different software artifacts. 

Syntax Example 

package PackageName 

 context TargetEntity 

 inv InvariantName: 

   OCL expression 

endpackage 

package SecurityTesting 

 context Class 

inv PublicMethods: 

  self.Methods->select(M | M.IsPublic = ‘true’) 

endpackage 

Figure 7-6. OCL expression format and example 

Table 7-1. List of possible operations in OCL 

OCL Operation Description 

Exists check if the given collection of elements contains elements that satisfy a 

given expression 

ForAll Is used to check if the given collection of elements satisfies (all) a given 

expression 

Select Returns all elements in a given collection that satisfy a given expression. 

Reject Returns all elements in a given collection that does not satisfy a given 

expression. 

Iterate Iterate on all elements in a given collection checking for satisfaction of a 

given expression 

Sequence Returns a sequence of elements that satisfy specific Type T 

First, Last Returns the first/last element in a collection 

Intersection Returns a collection containing all elements of a given collection A 

contained by B 

 

7.5.2.1 Object Constraint Language (OCL)  

OCL is a declarative, formal language that helps in specifying rules with “invariant conditions” 

that should be satisfied in a given model or in query expressions over objects in such model 

[179]. OCL was developed to overcome the problem of specifying such constraints using 

natural languages which lead to ambiguity problems. Thus, OCL was introduced as a formal 
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language that can capture such signatures in a formal way. Unlike traditional formal languages 

such as linear temporal logic (LTL)) and computational tree logic (CTL) that heavily depend on 

mathematics and hard for many software engineers to use in writing invariant expressions; OCL 

uses a more familiar and easy to use syntax and semantics to capture such signatures. OCL 

expressions are declarative i.e. they have no side-effects on the target systems. Figure  7-6 shows 

the basic syntax of an OCL expression. OCL expressions (invariants) are usually consolidated 

in packages. Each invariant should have a context entity that specifies where this invariant 

should be applied. Moreover, the context attribute is used to load the entity properties and 

operations that could be used in the specified signature. OCL is supported with many functions 

that could be used in defining invariant expressions. Table  7-1 shows some examples of the key 

functions supported by OCL. OCL is also an extensible language. Thus, we can use common 

expressions as base expressions (base functions) to create complex expressions to be used in 

developing more complex invariants. 

7.5.2.2 System Description Meta-model 

We developed a system description meta-model, shown in Figure  7-7, that captures all entities 

in any object oriented programming-based system including component, class, instance, 

method, inputs, input sources, control statements, etc. It also reflects key attributes and relations 

between these entities. Moreover, it can be extended to capture more system details such as 

platform APIs, or more abstract system entities and relations such as security APIs and system 

or security models.  

This model is used in validating OCL re-aspect signatures and in generating code to look for 

matches in target system entities. Table  7-2 shows examples of re-aspect OCL-based signatures 

at different levels of abstraction: (a) a signature that specifies all public methods that belong to 

classes derived from ASP.NET Page class; (b) a signature that specifies all methods that call 

EXEC_SQL function; (c) a signature that specifies all public classes that implement the 

customer management system feature. 

Table 7-2. Samples of Re-aspect signatures as OCL expressions 

A Context Method inv PresentationLayerPublicMethods: 

   self.IsPublic = true and self.Class.BaseClass = “Page” 

B Context Method inv MethodsMayContainSQLInjection: 

self.Body.Contains(stmt:MethodCall | stmt.MethodName = “EXEC_SQL”) 

C Context Class inv MethodsImplementCustMgmtFeature: 

     self.IsPublic = true and self.RelatedFeature = “CustomerManagement” 
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Figure 7-7. System description meta-model 

7.5.3 Code Snippet or OCL Semantic Signatures 

The selection between using code snippet or OCL when specifying re-aspect signatures depends 

on the type of entities that we want to retrieve, experience with the software, and re-aspects’ 

developers skills. OCL can support more abstract/semantic signatures such as retrieve list of 

methods that use methods from other components. Another example for OCL signatures is 

retrieving all methods that use user inputs in calling critical functions without sanitization (SQL 

Inject attacks), etc. Capturing these signatures using code snippet is more complicated. On the 



 Chapter 7: Cloud Applications Security Reengineering 

 

Page 160 

other hand, some signatures for code blocks with specific structure can be easily captured using 

code snippet approach. For example, retrieve all classes that start with a prefix or postfix or call 

specific methods. This signature is easier in code snippet than OCL. 

7.5.4 Generating Change Set 

The list of entities to be modified in order to effect a given system modification is generated 

using re-aspect signatures specified as either a code snippet or as an OCL signature. We have 

developed two algorithms (discussed in the implementation section) that analyse system source 

code to retrieve the change set. Algorithm 1 (for code snippet signatures) traverses the AST of 

the source code and re-aspect signature looking for matching sequences (taking into 

consideration the dummy nodes). Algorithm 2 generates a system model from the system source 

code that confirms to our system description meta-model. Then, it generates C# code from this 

OCL signature. The C# code analyses the generated system model looking for matched entities 

that satisfy the specified conditions. 

7.5.5 Generating Impact Set 

In traditional AOP we have code to be injected encapsulated as a self-contained advice, separate 

from the target joinpoint itself and executed as separate method call before/after/around the 

joinpoint. Thus no impact analysis is required. However, re-aspects handle more complex 

scenarios as we modify existing code parts that have similar signature but different structure and 

format and are located in different places. Thus any system modification requires a detailed 

impact analysis to identify other system entities that should be updated, other than the identified 

re-aspect instances, as part of code modification. Many efforts do exist in this area using 

heuristic rules, use-dependency relations, structural containment relation, or even hybrid 

techniques [260]. However, a key limitation of these efforts is that they do not deliver high 

soundness and completeness. Moreover, they do not support customizable user-defined impact 

analysis techniques that retrieve impacted entities with different relations with entities that 

belong to the change set. Re-aspects does support defining such customizable variations using 

OCL to capture signatures (techniques) to be used in retrieving such entities. Examples of 

supported impact analysis techniques are discussed below. 

7.5.5.1 Impact Set Using Dependency Relations 

For each re-aspect instance (in the change set) we compute a corresponding impact set based on 

the re-aspect instance type (class, method, property, field, line-of-code). Any given code 
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modification will have either local impact (on the method level) or global impact (other system 

entities will be impacted) based on the re-aspect instance as follows: 

Table 7-3. Samples of impact analysis signatures using OCL signatures 

A Context Method inv GetImpactedMethodsforMethod:  
   Self.Contains(S:MethodCall|  

                      S.MethodName = “ModifiedMethod”) 
B Context Method inv GetImpactedMethodsforClass:  

  Self.Contains( S:NewObj | S.ClassType = “ModifiedClass”) 
C Context Method inv GetImpactedMethodsContainment: 

  Self.Statements.Contains(S:NewObj | S.ClassType = ModifiedPropert.Class) 
D Context Method inv GetImpactedMethodsContainment: 

  Self.Class = ModifiedMethod.Class 
 

 

– Block-of-Code: if the re-aspect instance is a block-of-code, including declarations, 

assignments, control statements, then it will have local impact only – i.e. it will impact other 

code blocks in the same method, but it will not impact other entities, thus the corresponding 

impact set is empty.  

– Method: if the re-aspect instance is a method, then it will have a global impact. To compute 

the impact set, we locate methods and properties that contain method calls to the modified 

method. Table  7-3(a) shows the signature used to identify method impact set. 

– Class: if the re-aspect instance is a class, then it has a global impact. The change impact set 

contains all methods that have identifiers of this class; properties of this type or have 

identifier of this type; fields of this class type; and classes that have this class as base class. 

Table  7-3(b) shows a sample signature used to identify class impact set. 

– Property: if the re-aspect instance is a property, then it has a global impact. To compute the 

change impact set, we locate all methods that have this property in any expression statement 

– e.g. assignment, call, if condition, loops. Table  7-3(c) shows a sample signature used to 

identify property impact set. 

7.5.5.2 Containment-based and Heuristic-based Impact Set  

Different impact set identification techniques can be supported using our OCL-based signatures. 

For example, the containment-based approaches focus on retrieving entities that are co-located 

in the same component with the modified entities. Table  7-3-D shows a simple OCL signature 

that can retrieve such entities. Heuristic-based approaches focus on capturing patterns of system 

modifications from history or relations between system entities. To support these approaches, 

we have to modify our system description meta-model to capture source code versioning 

information. Then, we can develop OCL signatures that retrieve entities that are usually 
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modified together. Re-aspect developers will need to write impact analysis signatures once and 

then use them as templates to retrieve impact set of every system modification.  

Table 7-4. Samples of code modification advices 

Re-aspect type Advice 

A Modify Method Signature Method.Parameters.Add(new Parameter(“TenantID”, “Guid”) 

B Inject code to extract TenantID string currentTenatID=Session[“TenantID”]; 

C Modify Method Invocation InvocationExpression.Argument.Add(new 

IdentifierExpression(currentTenatID)); 

D Inject code to add TenantID 

Param 

db.AddInParameter(command, "tenantId", DbType.Guid, 

tenantId); 
 

 

Figure 7-8. Control and Data flow analysis, local impact analysis 

7.6 Change Propagation 

Automating the change propagation phase in software reengineering and maintenance is very 

challenging. Refactoring techniques do apply some code modifications. However, these 

techniques depend on the nature of refactoring problem where predefined templates are used to 

identify bad smells and fix such code snippets using code modifications  [172]. The change 

propagation of a given system modification depends on the re-aspect type (action) - to insert, 

delete, replace, or modify code of the located re-aspect instance.  

To avoid inconsistency problems that may arise from repetitive updating of system source 

code and to support different system components that may be developed with different 

programming languages, we conduct change propagation on system source code ASTs. Then, 

we generate the final code version from the updated AST. Comments are saved when parsing 

source code to the AST and re-inserted in the re-generated source code. Entities in the impact 
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set are updated using the re-aspect impact part. Table  7-4 shows examples of re-aspect advices 

and their corresponding actions from the multi-tenancy reengineering domain, we are going to 

discuss in the case studies chapter. In Table  7-4(a) we have a modification advice that adds 

tenantID parameter of type GUID to a method signature. In Table  7-4(b) we have an inserting 

advice that has a block-of-code to be injected. In Table  7-4(c) we have modification advice that 

adds a parameter to the method call. Table  7-4(d) we have an injection advice that injects a new 

code block to a method at the matched location. It is worth noting that the modifying re-aspect 

requires that the advice is developed as code to be used in modifying the system entities AST. 

Moreover, we do not have advices for deletion re-aspects because it only deletes code with no 

update. Finally, the replacing and injection re-aspects have the same advices except that a 

replacing re-aspect has a pre-weaving step that deletes matched entities.  

Whenever a system modification requires updating a method body, confirming that changes 

do not cause cascading problems is an extremely hard problem in general and requires a deep 

understanding of the logic behind the code block. Here we focus on confirming that the added, 

removed, replaced, or modified code does not break the data flow or the control flow between 

the blocks before and after the modified block, as shown in Figure  7-8. Data flow analysis 

(DFA) helps in confirming that the required data for the modified block is available from 

previous blocks and that the next blocks in the same method still have the required data items 

(Figure  7-8 - cases 1, 2, 3). In case 1, we removed a block of code (block A). This means that 

we need to make sure that data required to execute block B3 still available. In case 2, we are 

interested in adding block A, so it is important to make sure that data required by block A is 

already available from the previous blocks. The control flow analysis (CFA) helps in 

confirming that the modification does not lead to unreachable code (case 4). 

We can use re-aspects at the model level as well as code level, to support model-driven 

engineering practices. Identified change set and impact set can be used to highlight (using 

different format – e.g. color) system UML model entities that must be modified (change set) and 

entities that should be modified (impact set). Developers can then update the target system 

models to effect required changes. Using model-driven engineering, they can propagate such 

changes on system source code level. Developers can continue to use re-aspect’s code change 

propagation component. Updates are applied on code entities in the change and impact sets. 

Updated source code could be used to update back and synchronize system model entities. This 

helps in resolving the source code and models inconsistency problem that arise from frequent 

code updates that are often not reflected on system models. 
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7.7 SMART: A Re-aspect Engineering Tool 

In order to support re-engineering with re-aspects, we have developed SMART (Supporting 

Model-driven Application Reengineering with Re-Aspects). We outline the key components of 

SMART as shown in Figure 7-9and its usage in re-aspects-based re-engineering as below: 
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Figure 7-9. SMART tool architecture 

Given the system codebase, SMART extracts system abstract representation as shown in 

Figure  7-9(1). Using a set of different programming languages parsers, we can build an abstract 

syntax tree (AST) of the input program codebase. We use AST as a program representation 

because it is a quick, straight forward transformation and still maintains all necessary 

information about the source code. In the meanwhile, it leaves out unnecessary details related to 

formatting and grammar details. Moreover, we can easily regenerate the same code from a given 

AST which is still required in the change propagation phase. SMART generates a system class 

diagram from the generated AST. This class diagram helps easing the next steps for the re-

aspects developers. We use NReFactory, an existing .NET parser, which supports VB.NET and 

C#. We developed a class library to transform generated AST into a more abstract 

representation that conforms to our system description model Figure  7-7. 

Software engineers develop different perspective models to be used in the change 

management process, as shown in Figure  7-9(2). This step is optional in our proposed re-

engineering process. However, it is crucial for two reasons: First, to help specifying re-aspects’ 

signatures that take into consideration different system perspectives – e.g. get all methods that 

realize a given system feature, included in a given test case or belongs to a certain system 

component. Second, to identify possible system entities that will be impacted as a result of a 

given change request – e.g. disabling a system function may require updating the system test 

cases to drop related test cases or even drop a system feature at all. Possible system perspectives 
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include system description models (SDM, Chapter 6) such as features model, system security 

model, system test cases, etc. Developing a perspective-aware reengineering and refactoring 

tools, that avoids inconsistency problems between the updated code and system models, is an 

open research challenge in the system reengineering field [154]. SMART system perspectives 

modeler is extensible. Developers can define a perspective meta-model, develop a parser to 

parse perspective models (or scripts – e.g. test case script or configuration files) and start 

creating and linking instances of system perspectives with source code entities modeled as 

system class diagram entities – e.g. marking classes or methods that deliver a certain feature. 

System engineers specify system modifications they want to carry out on the target system 

using re-aspects, as shown in Figure  7-9(3). For each required system modification, system 

engineers develop a set of re-aspects that delete, replace, modify, or insert code at different 

places with different signatures. Developers have two options: (i) to use SMART modification 

guide, set of extensible patterns we developed, based on our analysis, and shown in Table  7-5, 

to facilitate the re-aspect specification process. This will save time in developing re-aspects and 

at the same time avoid fragile and incomplete signatures; or (ii) to specify re-aspects manually. 

In this case, the system engineers first specify where they want to touch the source code using 

re-aspects’ signatures. This may be a code snippet written in one of the supported programming 

languages (currently C# or VB.NET) or using OCL constraints. Next, they need to define the set 

of modifications (advices) to be applied on the identified re-aspect’ instances. Finally, system 

engineers specify actions (link advices with signatures) to be applied on each matching entity. 

This includes replace, modify, inject with suitable conditions – e.g. apply this action on all 

identified instances that within method X but for method Y apply different actions.  

Given the source code, perspectives models, and re-aspects model, SMART starts locating 

re-aspects’ instances as shown in Figure  7-9(4). Given the re-aspect definitions, SMART checks 

the aspect signature type first. If the signature is a code snippet it traverses the source code AST 

looking for matches to the given re-aspect signature. Otherwise, OCL-based, it generates a 

corresponding re-aspect check class (in C#) that implements the OCL specified constraints. This 

class parses the system description model (extracted from the source code) to identify entities 

with matching signatures. 
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Table 7-5. Part of system modification patterns and related Impacts 

L
ev

el
 

ID Modification Re-aspect Signature Action Advice 
Impact 

(By ID) 

C
la

ss
 

1 Delete class parent self.ClassName == “MyClass” Modify self.BaseClass == “” 5, 11 

2 
Decrease Accessibility or 

Add Static modifier 
self.ClassName == “MyClass” Modify 

self.Modifier.Add(“New Modifier”) 

self.Modifier.Remove(“Old Modifier”) 
9 

3 Change Class Name self.ClassName == “MyClass” Modify self.ClassName==”NewClassName” 10 

M
et

h
o
d

 

4 Delete a method self.MethodName==”MyMethod” Delete self.Class.Methods.Delete(MyMethod) 11 

5 Change method signature self.MethodName==”MyMethod” Modify self.Modifier.Remove(“virtual”) - 

6 Add static self.MethodName==”MyMethod” Modify self.Modifier.Add(“static”) 12 

7 Change return type self.MethodName==”MyMethod” Modify self.Returntype == “New Type” 13 

8 Add Parameter self.MethodName==”MyMethod” Modify Self.Parameters.Add(new Parameter(…))  

S
ta

te
m

en
t 

9 Delete Class Instance Body.Contains(Createobj(“MyClass”)) Delete  

L
o

ca
l 

Im
p

ac
t 

10 Modify Class Instance Body.Contains(Createobj (“MyClass”)) Replace 

Modify 

new NewClassName(…) 

self.TypeReference = “NewClassName” 

11 Delete Method Call Body.Contains(InvocExpr (“MyMthd”)) Delete If self.ReturnType = void Then Delete  

Else Replace with null 

12 Modify to call static mthd  Body.Contains(InvocExpr (“MyMthd”)) Modify Self.ReferenceType=     

                       “MyClass.MyMethod” 

13 Modify Called Method 

Return Type 

Body.Contains(InvocExpr(“MyMthd”)) Replace NewReturnType t = MyMethod(…) 
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Figure 7-10. A snapshot of the SMRT signature locator 

1 2

3 4

5

Target code in 
VB.Net Anti-aspect in C#
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Figure  7-9 shows a snapshot of the re-aspect locator with GUI interface. Given the system 

source code (1), re-aspects definition (2), the re-aspect locator parses the system source code (3) 

and generates the corresponding AST. Then the locator parses the supplied re-aspect and 

generates the corresponding AST as well. Finally the locator traverses system AST searching 

for matches against re-aspects AST using either code snippet matching algorithm (algorithm 1) 

or OCL matching algorithm (algorithm 2, after converting the AST into abstract system model) 

and generates a list of identified re-aspect instances (5). The selection between these matching 

algorithms depends on re-aspect signature type. If it is code snippet then apply algorithm 1, else 

apply algorithm 2.  

- Algorithm 1: The aspect locator, shown in Figure  7-11, traverses the input source code AST 

and the input re-aspect code snippet AST looking for matches. The matching takes into 

consideration the node hierarchy in both the signature and the system code. It iterates 

through the source code AST comparing with the signature AST treating the dummy 

constructs as “do not care” nodes in the AST. 

- Algorithm 2: Is based on compiling and validating the given OCL signature, shown in 

Figure  7-12, using an OCL parser against the system meta-model from Figure  7-7. Then we 

generate C# class from the given re-aspect OCL signature. This class performs checks on 

system entities to locate entities that match the specified constraints that have been converted 

into set of conditions in C#. 

Given the outcomes of the re-aspect signature locator, the impact analysis component, 

Figure  7-9(5), traverses the AST looking for nodes that depend or use any of the modified 

system entities using impact analysis signatures as in Table 7-3, and matching algorithm 2 

shown in Figure 7-12. The results of the impact analysis component are system impacted 

entities as in Table  7-5 - the impact analysis column. The identified modifications are added to 

the re-aspect impacted entities to be considered in the re-aspect enforcement phase. 

Given the identified instances of the current re-aspect, SMART executes the specified 

actions for the given re-aspects including injecting code (adding re-aspect), removing code 

(anti-aspect), replacing code (replacing re-aspect), or executing the aspect code (modifying-re-

aspect), as shown in Figure  7-9(6). The re-aspect enforcer compiles the resultant code to make 

sure that no compilation errors have been introduced. The code injected by the enforcer depends 

on the target system entity language not on the aspect language – e.g. if the aspect defined in C# 

and one of the system components is written in VB.NET, the generated code will be in C# for 

all places except for the VB.NET component. Then, SMART updates the system AST, class and 

perspectives diagrams with the realized modifications including deleting/adding classes, 
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methods. Steps 3-6 should be repeated for every change request. These steps comprise the same 

scenario followed by any developer when implementing a given change request.  

Figure 7-11. Syntactical code snippet matching algorithm 

Procedure  CheckNodes 

     Set SigAST = Call Generate signature AST 

Set StartNode = codeAST.CurrentNode 

CheckNodes:   //Recursively traverse the source code AST 

IF code-AST.CurrNode = NULL THEN        

      Exit 

Dummy = True 

IF SigAST.CurrentNode.Contains("dummy")  ==  True 

     DummyStatement = True 

END IF 

IF (codeAST.CurrNode.Type == SigAST.CurrNode.Type)  

OR (Dummy = True  AND codeAST.CurrNode  = SigAST.NextNode) THEN 

BEGIN 

    Result = Call CompareNodes(codeAST.CurrNode, SigAST.CurrNode) 

    IF Result = True THEN  //Nodes are equal 

    BEGIN 

        Set codeAST.CurrNode = codeAST.NextNode 

        Set SigAST.CurrNode = SigAST.NextNode 

     END IF 

     ELSE IF Result = False THEN      

     BEGIN 

            Set StartNode = StartNode.NextNode 

            Set codeAST.CurrNode = StartNode.NextNode 

            Set sigAST.CurrNode = SigAST.Root 

    END IF 

    GOTO CheckNodes 

END IF 

ELSE 

BEGIN 

    Set codeAST.CurrNode = codeAST.NextNode 

    Set StartNode = codeAST.CurrNode 

    GOTO CheckNodes 

END IF 
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SigAST = Call ParseOCL(OCLSig) 

SigClass = Call GenerateC#(SigAST) 

SigInstance = Call CreateInstance(SigClass) 

SystemModel = Call ExtractSystemModel(codeAST) 

Foreach entity in SystemModel DO 

IF entity.Type == SigClass.ContextType THEN 

BEGIN 

   Var Output = SigInstance.InvariantName_Test(entity) 

   MatchesList = Output.ToList() 

END IF  

Figure 7-12. Semantic OCL signatures matching algorithm 

7.8 Usage Example 

To demonstrate re-aspects and SMART capabilities, we apply it on Galactic application, 

introduced in Chapter 1, and security reengineering examples described in Section 2. SwinSoft 

engineers were given a set of change requests and security vulnerabilities/bugs to correct in 

Galactic. The list of change requests required to be realized includes: disabling built-in security 

controls, and solving the set of reported security bugs/vulnerabilities reported by Auckland, 

including SQL injection vulnerability and incorrect authorization approach. We illustrate this 

security reengineering scenario via screen dumps from SMART tool. 

 

Figure 7-13. A snapshot of Galactic class diagram 
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Figure 7-14. A snapshot of the Galactic security model 

<code snippet>
LogTransaction(Dummy)

<anti-aspect>
Logging disable aspect

Signature

<replacing re-aspect>
Authn-Authz disabling aspect

Signature

<code snippet>
AuthenticateUser(Dummy)

<code snippet>
AuthenticateUser(Dummy)

 

Figure 7-15. Req. 1 – Security disabling – re-aspects model 

<OCL>
Improper Authorization Signature

<OCL>
Authentication Bypass Signature

<OCL>
SQL Injection Signature

<adding re-aspect>
SQL Injection

<adding re-aspect>
Improper Authorization

<adding re-aspect>
Authentication Bypass

Signature

Signature
Signature

 

Figure 7-16. Req. 2 – Vulnerable code – re-aspects model 

1. Model System Diagrams: Given Galactic codebase, SMART loads and parses the source 

code and generates the corresponding AST. Using this AST, SMART builds a class diagram 

reflecting all classes, methods, attributes and relationships defined in Galactic – in 

Figure  7-13. 

2. Model System perspectives: SwinSoft engineers upload system UML models they are going 

to use in their change request implementation process or they want to include in the impact 

analysis phase. Here we model Galactic security APIs in a system security model, as shown 
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in Figure  7-14. This model is used as a reference in specifying re-aspects’ signatures. Each 

entity in the security model shows the security control name, APIs, and the security control 

family. 

3. Model Re-aspects: SwinSoft system engineers then model changes discussed in section 

2 in terms of re-aspects model as shown in Figure  7-15 and Figure  7-16. Here we consider 

two requirements: disabling a set of built-in security controls; and patching a set of reported 

vulnerabilities as discussed in section 2. For requirement 1, security engineers determined 

three security controls (authentication, authorization and logging) need modification. These 

security controls changes are defined by three re-aspects’ signatures. These signatures are 

defined as code snippets with only one line of code “security_fn_name (dummy-params)” – 

e.g. AuthenitcateUser(Dummy), developers may use an OCL signature instead. Next, 

security engineers identified two situations to take out the built-in security functions. 

Security functions used in If-Else statements, the security function call is replaced with 

“true”, and security controls that are used in a simple method invocation (such as logging). 

In this case we just de-weave. For requirement 2, SwinSoft has been notified with three 

vulnerabilities in Galactic including improper authorization, authentication bypass, and 

SQLI shown in Figure  7-2. SwinSoft Security engineers figured out that it is better to 

describe these vulnerabilities in OCL – as shown in Figure  7-17. The authentication bypass 

re-aspect signature is defined as “any If-Else statement that contains a user input and the If-

Else body has an invocation expression to the authentication API”. For this re-aspect we 

need to modify this vulnerable code as shown in Figure  7-2. The improper authorization is 

defined as “any statement that uses user input without being checked by the authorization 

API”. Finally SQL injection re-aspect is defined as “any statement that contains SQL 

keywords and uses user inputs”. For the later re-aspects we need to inject input sanitizer and 

authorization function call at each re-aspect instance. 

4. Locating Re-aspects: As shown in Figure  7-10, given the system AST and a re-aspect 

definition, the re-aspect locator parses the supplied re-aspect signature using SMART 

registered language parsers (C#, VB.NET and OCL parser) and generates the corresponding 

AST as well. Finally the locator traverses system AST searching for matches against re-

aspects AST using either algorithm 1 or algorithm 2 and generates a list of found re-aspects 

instances (5). 

5. Applying System Modifications: At each identified re-aspect instances, SMART checks the 

modeled actions on each re-aspect signature and their conditions (if any), and then it 

executes the linked aspects (advices). The resultant code is shown in Figure  7-2 with gray 

background. 
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Conext Method  

inv AuthenticationBypass: 

MethodBody.Select( stmt: IfElseStatement  | Stmt.Condition.Contains(Method.Inputs) 

   AND Stmt.Body.Contains (s : InvocationExpression   |  s.Method.IsSecurityFunction == true  

                                                                                  AND s.Method.SecurityFamily = "Authentication") 

inv ImproperAuthorization: 

MethodBody.Select ( stmt : Expression  |  

  (   (stmt.Contains(Self.Parameters) OR  stmt.Contains(UserInputs)) AND NOT  

     MethodBody.Exists(s : InvocationExpression |  S.Method.IsSecurityFunction == true  

                                    And S.Method.SecurityFamily == "Authorization" 

                                    And S.Params.Contains(UserInputs) 

                                    AND S.Params.Contains(self.Parameters)) ) 

inv SQLInjection: 

        MethodBody.Exists ( stmt:AssignmentStmt   | 

                        stmt.RightPart.Contains("select")  

                                And stmt.RightPart.Contains(Method.Inputs)) 

Figure 7-17. Req. 2 re-aspects semantic signatures 
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Figure 7-18. Re-aspects approach performance evaluation (in seconds) 

7.9 Evaluation 

We performed several evaluation experiments to assess the capabilities of our re-aspects toolset 

for change impact analysis and change propagation tasks. We have selected four applications of 

our benchmark applications introduced in Chapter 4. These applications include Galactic ERP, 

SplendidCRM, KOOBOO, and NopCommerce. To evaluate our approach, we developed a set 

of three re-aspects from the security reengineering domain including: (CR1) legacy security 

APIs disabling (Figure  7-2-A); (CR2) authentication bypassing mitigation (Figure  7-2-B); and 

(CR3) improper authorization mitigation (Figure  7-2-D).  
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To assess the effectiveness of our approach in software reengineering and maintenance using 

re-aspects, we use a set of metrics to measure the soundness and completeness as discussed in 

Chapter 4. From our experiments, as shown in Table  7-6, the average precision of the change set 

using code snippet is (89%) and the recall value is (92%). The OCL-based signatures achieved 

Precision (96%) and recall (97%).  We see that the OCL-based signatures are capable of 

capturing more semantic signatures than code snippets. However the code snippet is useful with 

some rigid well-defined signatures such as get methods in specific layer with specific signature. 

The heuristics-based approach (here we use file containment as a heuristic rule) achieved 

average precision of (48%) and recall (50%). This was expected as the assumption that 

modifying a method in a file or component implies that other methods in this file should be 

modified is not usually valid. From the figures we conclude that OCL signatures outperform 

other approaches. However, accuracy of retrieved results depends heavily on the soundness of 

the specified signatures.  

The results of the impact set generation, Table  7-7, were fair enough. Our approach achieved 

precision rate (85%) and recall rate (87%) percentages. Security reengineering change requests 

that we have selected did not have global impact (only modification in the method body). We 

used other change requests from the multi-tenancy reengineering domain (discussed in Chapter 

10, case study 2).  Thus, their impact sets where empty. OCL supports this task as well as it 

enables querying system source code in the AST to accurately retrieve dependent entities to be 

impacted by given changes. These results can be further improved by developing more sound 

OCL-based impact set signatures. The dependency-based approach is extensible as it is built on 

top of OCL. This means that we can develop more signatures for entities that should be 

retrieved in impact sets.  

The evaluation of change propagation was different. We count how many entities 

successfully updated from the given entities in the change and impact sets. The results of 

change propagation were good enough with average success rate (89%). However, it heavily 

depends on the re-aspect developer to define correct advices that will be applied on the system 

entities according to the re-aspect action type. The precision and recall of existing efforts such 

as [261] were (28%) and (74%) respectively. In [168], metrics were around (50%) and (90%) 

respectively. In [167], metrics of the best reported effort (40%) and (50%), respectively. 

Figure 7-18 shows some performance evaluation results. Numbers of re-aspects range from 1 

re-aspect to 100 re-aspects. We used a desktop PC with core2Duo and 4GB memory. The time 

required to locate possible instances of a given re-aspect depends on the system size (KLOC). 

Re-aspects take on average 0.2 sec. to check 1 KLOC for a given re-aspect. The time required 
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for re-aspect modification depends on amount of code included in re-aspect advice and what is 

to be done as a re-aspect action. 

7.10 Discussion 

Re-aspects were inspired by traditional AOP code injection concept, but provide more possible 

actions – delete, replace or modify - needed for re-engineering. Re-aspects’ signatures are 

highly flexible and specified on abstract code structures to capture syntactical code snippets, 

avoiding fragility factors including spaces, comments, new lines, specific variable or parameters 

names, variable code blocks sizes, and language syntax. Re-aspects’ signatures can also capture 

abstract target system signatures, such as features, architecture, design and testing entities using 

OCL expressions. OCL-based signatures also allow capturing semantic expressions. 

From experiments we found that we need to use a hybrid approach between a heuristics-

based and dependency-based approach to develop an impact set. This gives a more 

comprehensive approach that can capture entities that have a variety of relations with the 

entities to be changed. A Key issue with re-aspect signatures is how to ensure that developers 

have written the correct signature definition for the target system entities they want to locate and 

change. This is, of course, also an issue for conventional AOP aspect specification and 

debugging too. Currently we provide a re-aspect locator UI to help developers in writing and 

testing their signatures. Thus, they can review the signature located entities before proceeding 

with the change propagation step.  

Code updating usually suffers from code dependency problems where the existing code 

depends on code parts that we have been modifying, replacing or deleting. We have identified 

two key cases for dependency analysis. When changing an entity interface e.g. changing a 

method name from M1 to M2, we impact other system entities i.e. have a “global impact”. 

Existing efforts identify entities that need to be modified – e.g. methods that call method M1. In 

our approach we support further analysis by generating signatures of entities to be modified e.g. 

as we renamed M1 to M2, we generate another re-aspect with signature specifying location of 

all method invocations to M1. Thus using the re-aspect locator we pinpoint not only the entities 

to change but also specific lines of code to be updated in every entity. Code required for update 

may be complex such as adding new method parameter. This requires developers to specify how 

to obtain the new argument in every updated method call. When changing a method body we 

use existing techniques of control flow and data flow analysis to make sure that the resultant 

code is still consistent. Moreover, we compile the resultant code to make sure that no 

compilation errors have been introduced during the reengineering process. The resultant binary 



 Chapter 7: Cloud Applications Security Reengineering 

 

Page 176 

files are verified by PEVerify. Ultimately, we still depend on testing tools to make sure that the 

updated application functions as required.  

7.11 Chapter Summary 

We introduced a novel solution, the re-engineering aspect or “re-aspect”, to help with two 

key tasks: disabling built-in security capabilities of the cloud-services as a preprocessing step 

before applying MDSE@R for security engineering; and patching of the reported security 

vulnerabilities in cloud services. Re-aspects are inspired by traditional AOP but capture richer 

details required for system modifications. They include rich signatures to identify target system 

entities that need to be modified, actions to apply on located matches, including take away (de-

weaving), replace, modify or insert new code, and code to update matched entities. A key 

strength of re-aspects comes from the signature specification. Re-aspects support flexible 

signature specification approaches using syntactical code snippet templates and formal OCL-

based signatures. We have developed a prototype tool that supports software reengineering 

including locating code entities to change, conducting impact analysis, and automated code 

updates. We validated the effectiveness of our approach in locating system entities to be 

modified and propagating changes using a set of open source .NET benchmark applications.
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Table 7-6. Re-aspects change analysis effectiveness 

Application Galactic SplendidCRM KOOBOO NopCommerce 

Techniques C O H C O H C O H C O H 

Metrics P R P R P R P R P R P R P R P R P R P R P R P R 

C
h

an
g

e 
R

eq
u

es
t CR1 1 1 1 1 0.7 0.6 1 1 1 1 0.5 0.6 1 1 1 1 0.7 0.5 1 1 1 1 0.4 0.5 

CR2 0.8 0.9 0.9 0.9 0.4 0.5 0.8 0.8 0.8 1 0.5 0.5 0.7 0.8 0.9 0.8 0.3 0.4 0.8 0.8 1 1 0.6 0.4 

CR3 0.7 0.8 0.9 0.8 0 0 0.6 0.8 0.9 0.9 0.1 0.1 0.7 0.7 0.8 0.8 0.2 0.1 0.8 0.7 0.9 0.9 0.2 0.2 

Table 7-7. Re-aspects impact analysis and change propagation effectiveness 

Impact Set Change Propagation 

Application Galactic SplendidCRM KOOBOO NopCommerce Galactic SplendidCRM KOOBOO NopCommerce 

Metrics P R P R P R P R M S M S M S M S 

C
h

an
g

e 
R

eq
u

es
t CR1 L L L L L L L L 3 3 13 9 11 11 10 10 

CR2 L L L L L L L L 9 6 3 2 13 12 3 3 

CR3 L L L L L L L L 3 3 5 6 0 0 0 0 

 

P: Precision, R: Recall, C: Code Snippet, O: OCL signatures, and H: Heuristics-based 

L: has local impact only, M: Number of entities to be modified, S: number of entities successfully modified 
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  Chapter 8

Cloud Applications Security Analysis 

In this chapter, we discuss the key security analysis tasks and challenges when applied to cloud 

computing applications and how we address these challenges in our new online security analysis 

approach. This chapter is organised as follows. In Section 1, we give a general introduction of 

the software systems’ security analysis problem and how this becomes more complicated under 

the cloud computing umbrella. In Section 2, we discuss key security analysis tasks with few 

examples of each subtask. In Section 3, we introduce our comprehensive, extensible cloud 

application security analysis approach. In Section 4, we describe implementation details of our 

approach. In Section 5, we summarize the experimental evaluation results.  

8.1 Introduction 

Although the adoption of publicly accessible cloud computing platforms to host IT systems 

helps customers to minimize cost and increase availability and reachability of their applications, 

it has serious implications on their applications’ security. Hackers can easily exploit 

vulnerabilities in such publically accessible services. Moreover, some hackers may become 

legitimate tenants of the shared cloud services which enable them to exploit more advanced and 

complicated vulnerabilities that require higher privileges. In addition, the number of newly 

identified and reported application vulnerabilities is increasing rapidly. Delays in discovering 

and mitigating such vulnerabilities increase the probability of successful application attacks and 

security breach.  

Web applications are the prominent application delivery model used in cloud computing to 

deliver SaaS applications. Web applications do not require client deployment or configuration, 

and can be centrally updated and managed. However, web application vulnerabilities continue 

to make up the largest percentage of the total reported vulnerabilities in software applications. 

Web applications vulnerabilities constitute 63% on average of the total reported vulnerabilities 

[60]. Of these reported vulnerabilities, well-known vulnerabilities such as Cross-Site Scripting 

(XSS) represents 28%, while SQL Injection (SQLI) vulnerabilities represent 20%. These figures 

mean that web applications are the weakest link in the cloud computing model where many 

security breaches may be exploited.  

From our investigation of the cloud computing model, cloud services, their security 

problems, and existing industrial and academic efforts, we have reached a conclusion that it is
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 very important to have an online security analysis service. Such a service can help different 

cloud stakeholders in analyzing and mitigating against existing (known) as well as new (i.e. 

never seen before) security flaws and vulnerabilities before attackers do. However, security 

analysis is a very complicated and time consuming task. It usually takes place at different stages 

of the software lifecycle starting from the development phase, deployment, and at runtime. In 

each of these stages, we have different artifacts to verify (system models, security models, 

source code, and software binaries) and different techniques (black-box, white-box, dynamic 

analysis, static analysis) that are applicable at each stage.  

From our analysis we have categorized the security analysis task into three subtasks: threat 

analysis, which is conducted in the early stage of software development and focuses on 

identifying the security flaws resulting from the adoption of specific platforms, patterns, or 

languages; vulnerability analysis, which is conducted during software development given the 

source code is available or after the software delivery using the software binaries; and attack 

analysis, which is conducted using software security and deployment models to identify 

possible attack vectors that exploit existing vulnerabilities either in the software or its 

operational environment.  

Security flaws, bugs, and attacks reported by different security analysis tasks are usually 

recorded in commonly available databases, such as vulnerabilities’ databases - NVD [262] or 

CVEdetails.com [263]. Specifications of classes of possible vulnerabilities (known as 

weaknesses) are already maintained in the Common Weaknesses Enumeration (CWE) database. 

Possible attack patterns are already maintained in the Common Attack Patterns Enumeration 

and Classification (CAPEC) database. Both databases are used as a reference framework by 

application developers, deployment engineers and security engineers to help identifying 

possible weaknesses and attacks on the software under analysis. A key problem with both CWE 

and CAPEC is that recorded vulnerabilities and attacks are specified informally. This leads to 

adoption of manual security analysis done by security experts using some of their helping tools 

developed by different security vendors. Such tools are usually based on the security vendors’ 

understanding of security vulnerabilities, threats, and attacks. Commercial vulnerability 

scanners such as IBM AppScan, HP Web inspect, Cenzic, McAfee focus on black-box 

vulnerability analysis [116] (where few knowledge about the target software is required) to 

avoid being limited to specific programming languages or platforms. However, none of these 

scanners cover all known vulnerability types [116]. These tools cover no more than 47% of the 

known vulnerabilities. To achieve good results and high accuracy in the vulnerability analysis 

mission, multiple scanners should be applied [116]. On the other hand, most existing research 

efforts [113, 114, 117, 121, 264] tend to focus on specific vulnerability, threat, or attack types. 



 Chapter 8: Cloud Applications Security Analysis 

 

Page 181 

Thus, addressing new vulnerabilities or threats is often not possible with these approaches. Most 

of existing vulnerability analysis efforts, for example, focus on SQLI [107, 109, 115], XSS 

[113, 115, 265], or input sanitization [118, 119, 121] using static analysis with different 

variations [108, 109, 112, 113, 264], dynamic analysis [116, 117, 265, 266], or hybrid 

techniques of static and dynamic analysis [111, 121, 264, 267].  

From our analysis of both industrial and academic efforts, we have reached a conclusion that 

the root cause of the security analysis problem lies in the vulnerability, threat and attack 

definitions and not in introducing new analysis techniques, as most of the existing approaches 

use similar techniques in various combinations. Moreover, the various existing vulnerability and 

attack databases, while useful, cannot be directly utilized by security analysis tools due to their 

informality.  

We determined that different security analysis tasks, including vulnerability analysis, attack 

analysis and threat analysis, can be facilitated given that a formalized weakness definition 

exists. In our approach discussed in this chapter focus on the following open research questions: 

– What details do we need to capture to fully describe a given security flaw and 

vulnerability? 

– How can we formalize the signatures of such security flaws and vulnerabilities? 

– How can we effectively use such formal specifications in automating the security analysis 

process? 

– How can we enable different tenants to specify and analyze their cloud services security? 

In the next sections we introduce an analysis of the well-known security issues (attacks and 

vulnerabilities). Then we introduce our new approach to address the research questions 

specified above. Finally, we discuss the limitations of our approach and future extensions. 

8.2 Security Analysis 

In this section we analyze some of the frequently reported security flaws and vulnerabilities in 

software systems. However, this is neither a comprehensive nor a complete list of all possible 

attack scenarios or security vulnerabilities. The main objective from this analysis is to show 

details of such security flaws/bugs and discuss proposed signatures that we can use to locate 

such flaws/bugs in the software under analysis. The example signatures discussed in this section 

are not meant to be complete. Security experts might need to develop more detailed signatures 

to use in analyzing systems using our signature-based security analysis approach. 
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8.2.1 Architecture Security Threat Analysis 

Assessing software architecture security risks is usually conducted either using attack scenarios-

based approaches [92, 96, 97, 268] or using architecture assessment metrics [92, 93, 98, 103, 

139]. Developing security attack scenarios to be used in assessing software architecture is a key 

task in scenario-based architecture analysis approaches. However, it requires deep knowledge of 

the security domain, which is usually not feasible for software engineers. Microsoft introduced 

STRIDE model [94] (Spoofing, Tampering, Reputation, Integrity, Denial-of-Service, and 

Elevation-of-Privilege) that defines a framework that gives guidance in identifying such security 

scenarios. Microsoft has introduced further refinements on this model (EOP Card Game) to 

simplify the threat identification process [269]. However, this approach still depends heavily on 

engineers’ experience to analyze the architecture of the software under test. Recently, a new 

community effort, CAPEC, introduces a reference repository that can be used in assessing 

systems’ security. It provides a comprehensive list of possible attack patterns that are frequently 

used to breach systems’ security. However, CAPEC is not yet formalized enough for use in 

automated architecture security analysis tools. Below we discuss a few of the key patterns that 

currently exist in these repositories. Then we show how we have succeeded in developing 

formal signatures of these attacks using our signature specification approach. We note that these 

attacks may have other signatures and specifications when it comes to source code level analysis 

(bugs) i.e. for vulnerability analysis. 

8.2.1.1 Examples of Security Attack Scenarios 

We summarize some of the key attack scenarios that may be used in assessing architecture 

security of software systems. More attacks can be found in the CAPEC database. Later we will 

show how we have developed formalized signatures of such attack scenarios. 

- Man-in-the-Middle Attack (MITM): In this attack, the attacker intercepts communications 

between two components or two parties. The attacker makes independent connections with 

the victims and relays messages between them, making them believe that they are talking 

directly to each other. How to decide that the software under analysis is vulnerable to such 

attack? A signature of such attack is to check if the system has any unsecure connection 

between two communicating components, or if the components communicate in an untrusted 

zone without security authentication applied. 

- Denial of Service Attack (DOS): This attack aims to make a system or one of its key 

resources unavailable for legitimate users. DOS attacks have different formats and different 

signatures. Some use invalid inputs or big sized inputs. Others overwhelm the system with a 

tremendous number of requests. Possible signatures of such attack include: (i) a publicly 
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accessible component that does not use input validation control (or application firewall) to 

validate incoming requests, or (ii) a public interface that does not implement appropriate 

authentication control to filter malicious or unauthenticated requests. 

- Data Tampering Attack: An attacker can tamper with data at rest (storage), in transmission, 

or during processing if data is manipulated as plaintext. Possible signatures of these attacks 

include: (i) a system with one or more components that operate in an untrusted host 

(malicious insider); (ii) data communicated between components or to a client in plaintext, 

or (iii) absence of appropriate security authorization controls on user accessible components. 

- Injection Attack: These attacks use the lack of input validation to pass in malicious inputs 

that can be used to gain higher privileges, modify data, or get the system to crash. There are 

different types of injection attacks including SQL Injection, OS Command Injection, and 

XML Injection attacks. The key signature of such attacks is that system components do not 

apply suitable input filtration on user inputs or on inputs from other untrusted components. 

8.2.1.2 Examples of Architecture Security Assessment Metrics 

Developing security metrics to be used in assessing security strength of a software system’s 

architecture is also a very complicated task. Different security metrics exist with different scope 

of applicability. Below we discuss some well-known metrics that are used in assessing system 

architecture security soundness based on software and security architectural structures. 

System Architecture Security Metrics. These metrics help in assessing the security 

soundness of the software architecture itself. Examples of these metrics include attack surface 

metric [270], total public classified attributes and methods [101], critical super-classes 

proportion, least privilege, and least common mechanisms [271]. These metrics can be used to 

assess the exposure, exploitability, and attack-ability of the software system given its 

architecture, design, and source code details. New architectural patterns such as multi-tenancy 

require new security metrics that can assess tenants’ data isolation, security elasticity, etc. 

Examples of such metrics are: 

– Attack Surface Metric [270]:  This metric has been frequently used in assessing different 

system versions from the security perspective. It measures the proportion of the system 

accessible to public users which an attacker can exploit to attack the system. This can be 

measured as the number of system methods that receive data from the software environment, 

number of methods that return data to the software environment, number of communication 

channels, and number of untrusted data items. The larger the attack surface value, the more 

potentially insecure the system. 
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– Compartmentalization Metric [271]: Compartmentalization means that a system and its 

components run in different compartments, isolated from each other. Thus, the compromise 

of any of these components does not impact the others. This metric can be measured as the 

number of independent components that the system is based on to deliver its function and do 

not trust each other - i.e. components authenticate and authorize requests and calls coming 

from other system components. The higher the compartmentalization value, the more secure 

the system. However, higher compartmentalisation usually has higher performance 

overheads and system complexity. 

– Least Privilege Metric [271]: This metric states that each component or user should be 

granted the minimal privileges required to complete their tasks. This metric can be assessed 

from two perspectives: from the security controls perspective we can review users’ granted 

privileges – i.e. security permissions. From the architectural analysis perspective this can be 

assessed as how a system is broken down to minimal possible actions i.e. the number of 

components that can access critical data. The smaller the value, the more secure the system. 

– Fail Securely Metric [271]: The system does not disclose any data that should not be 

disclosed ordinarily at system failure state. This includes system data as well as data about 

the system in case of exceptions. This metric can be evaluated from the security control 

responses – i.e. how the control behaves in case it fails to operate. From the system 

architecture perspective, we can assess it as the number of critical attributes and methods that 

can be accessed in a given component. The smaller the metric value, the likely more secure 

the component in case of failure. 

Security Architecture Metrics. These metrics help in assessing the security architecture 

and mechanisms used in securing a target system. Security mechanisms include: security 

functions and components, security patterns, and security controls. NIST [271] introduced a set 

of design principles that should be adopted in developing secure systems. These principles 

include: layered security; simplicity of the security design; protect information while it is being 

processed, in transit, and in storage; and never trust external inputs. Examples of metrics that 

can be used to judge such characteristics include: 

– Defence-in-depth (layered security) Metric: This metric verifies that security controls are 

used appropriately at different points in the system chain including network security, host 

security, and application security. Components that have critical data should employ 

security controls in the network, host, and component layer. To assess this metric we need 

to capture system architecture and deployment models as well as the security architecture 

model. Then we can calculate the ratio of components with critical data that apply the 

layered security principle compared to the total number of critical components. 
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– Isolation Metric: This assesses the level of security isolation between system components. 

This means getting privileges to a component does not imply accessibility of other co-

located components. This metric can be assessed using system architecture and deployment 

models. Components marked as confidential should not be co-located with non-

confidential (public) components. Methods that are not marked as confidential should not 

have access to confidential attributes or methods.  

public bool LogUser(string username, string password)  

{ 

    … 

    string query = “SELECT username FROM Users WHERE       

            UserID =‘” username “ ‘ AND Password = ‘” +  password + “’”;  

… 

 } 

Figure 8-1. A code snippet vulnerable to SQL Injection attack  

if( Request.Cookies["Loggedin"] != true )  

{ 

   if(!AuthenticateUser(Request.Params["username"],  Request.Params["password"] ) ) 

              throw new Exception("Invalid user"); 

} 

DoAdministrativeTask(); 

Figure 8-2. A code snippet vulnerable to authentication bypass 

if(!AuthenticateUser(Request.Params["username"],   

                                Request.Params["password"] ) ) 

          throw new Exception("Invalid user"); 

updateCustomerBalance(Request.QueryString["custID"], nBalance); 

Figure 8-3. A code snippet vulnerable to improper authorization 

8.2.2 Vulnerability Analysis 

Security vulnerability analysis is usually conducted on either software binaries or source 

code. Before we discuss how we formalize software system vulnerability definitions, we give an 

overview of the OWSAP Top 10 web application vulnerabilities. OWSAP (Open Web Security 

Application Project) is a community effort to define and share knowledge about web application 

security approaches. We discuss these Top 10 vulnerabilities and signatures that we deduced 

from the vulnerabilities recorded in NVD and CWE. These signatures are used by our 

vulnerability analysis tool; however, they can be further revised by experts to get more accurate 

results.  

- Injection Flaws: This type of vulnerability includes several well-known attacks intended to 

compromise application inputs in order to gain control or modify data, such as SQLI, OS 

Command Injection, LDAP query injection, and XPath query injection. All arise from input 

validation problems. “All external inputs are untrusted” is a well-known security principal 
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[271] that should be realized in securing systems. These vulnerabilities occur whenever the 

system under analysis trusts inputs from users (first order injection) or from a repository 

(stored or second order injection) and uses it to build dynamic queries that run Operating 

System or database commands without sufficient input sanitization or validation. An attacker 

can use this type of vulnerabilities to execute malicious commands or gain privileged access 

to the system under attack. Figure  8-1 shows code vulnerable to SQLI. For example, a 

password argument of the form “’ OR (1=1) OR ‘’=‘” allows access to any specified 

username e.g. ‘admin’ or ‘root’. The signature of these vulnerabilities is a dynamic query 

statement that uses external inputs without proper sanitization. 

- Cross-Site Scripting Flaws: This is a two-step vulnerability. First, an attacker uses the 

application to store malicious data. Whenever a victim sends a request to resource X, the 

web server responds with data containing “malicious code” without being encoded. This 

malicious code executes on the victim browser causing disclosure of their confidential 

information to the attacker. This vulnerability type may be from stored data (e.g. from a 

database) or reflected (from user input). This is a very common attack in applications that 

use user inputs for search or discussions. The signature of these vulnerabilities is to call 

output functions using external or stored inputs without sanitization or encoding. 

- Broken Authentication and Session Management Flaws: This is a common problem with 

security authentication. It includes attacks such as: authentication bypassing via external 

inputs (depend on external input to decide whether to conduct authentication or not on the 

received request); authentication checking not included in critical functions; using hard-

coded credentials; using an easy to guess password; or session timeouts not set or checked. 

This enables unauthenticated users to maliciously access and use system resources. 

Figure  8-2 shows a code-snippet vulnerable to improper authentication attack, where a user 

can modify their cookie to bypass the authentication check. The signature of these 

vulnerabilities is that every publicly accessible function should not trust external inputs to 

bypass (by conditional statement) triggering the authentication function. 

- Insecure Direct Object Reference Flaws: Authenticated users can send malicious inputs to 

access unauthorized data. Figure  8-3 shows an example where an attacker sends custID = 

XYZ instead of custID = ABC. This enables the attacker to access other customers’ data. 

The signature of these vulnerabilities is that user inputs are not authorized before use in 

business functions. This is a very critical problem in multi-tenant SaaS applications where 

different tenants sharing the same service instance should not be able to request data of other 

tenants. 

- Cross-Site Request Forgery (CSRF) Flaws: An attacker deceives an authorized user by 

sending a forged request to the user’s application to perform malicious actions. This attack 
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requires the victim to have a valid session or cookie with the application (already 

authorized). The signature of these vulnerabilities is that requests’ origins are not validated 

or that responses are usually predictable or have fixed URL format. It is usually difficult to 

identify CSRF using static analysis because it is usually managed externally by the web 

server. 

- Security Misconfiguration Flaws: The system is not securely configured. This includes 

exposing information through exceptions; a system executing with higher privileges than it 

requires; system files are accessible to unauthenticated users; or resources have 

misconfigured permissions. Some of these vulnerabilities can be discovered from the 

exception handlers whether they expose system details or not. Others need to be examined 

by application responses for unauthorized actions using dynamic analysis. 

- Invalidated Redirect and Forward Flaws: The application redirects requests to a target URL 

that is concatenated from user inputs “Response.Redirect(userInput)”. This type of 

vulnerability is similar to the injection vulnerabilities where web redirect functions use 

external inputs to build the redirect URL. 

- Failure to Restrict URL Access Flaws: An application does not perform access control on 

resources or URLs. These vulnerabilities can be easily examined by checking webpage 

methods for authorization function calls. Dynamic analysis is required to check application 

responses for unauthorized URLs. 

- Insufficient Transport Layer Protection Flaws: Sensitive data including credentials and 

customer data are transmitted in plain text. The signature of these vulnerabilities is that 

output data are transmitted without passing through appropriate encryption functions. 

Dynamic analysis is required to examine responses if protection is done on transportation 

layer.  

8.2.2.1 Analysis of Security Vulnerabilities 

A given software system, whether desktop, web, or embedded, needs to run on a hosting service 

– e.g. web server, operating system, virtual server, etc., as shown in Figure  8-4. A hosting 

service provides a set of APIs that the hosted system can use to read inputs from possible input 

sources (users, files, memory, database, etc.) or write outputs to possible output targets. Any 

vulnerability in the hosting service implies that an attacker can control inputs and/or outputs of 

the target system. The hosting media is a place where the hosted system runs – e.g. a process in 

case of web server, or memory in case of operating systems. If the hosting media was breached, 

it may be used to control the hosted system inputs, outputs, or even processing (overriding 

kernel data using buffer overflow). However, these entities are out of the software system 

control. 
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Figure 8-4. An overview of the host-system-component relations 

Any target system is composed of a set of components. These components may be 

subsystems, composite components, or simple components. System components may be hosted 

on the same hosting service instance or different instances (different servers). In the latter case, 

they have to communicate through communication channels, which may be unsecure (an 

attacker may eavesdrop, or intercept messages). A system component may be an active 

component, a component that can take actions or perform operations such as system functions. 

Active components are able to secure themselves and their processed data – e.g. by 

authenticating users, authorizing users, encrypting data, etc. Alternatively, a passive component 

is a component that cannot take actions to protect or change data it maintains, such as storage 

components (databases and files – we are not talking here about the DBMSs, these are hosting 

software systems) or transmission components (communication channels). Passive components 

cannot secure themselves e.g. a file or table cannot enforce security access on its contents by 

itself. They depend on other components, such as the hosting service (OS, DBMS), or active 

system components to manage and secure such components. This is a big open issue in data 

security area – i.e. data leakage protection - where confidentiality of data moving between 

different applications with different security levels may be threatened. Both active and passive 

components might be breached by the hosting service e.g. read data in memory, files, or when it 

is on communication channels. 

Each component, regardless of its type, has a set of entry points (E) and set of exit, output 

points (X), and is used in processing (P), storage (S), or as a communication channel (T). These 

entry and exit points can be compromised by an attacker who has control on the hosting service 

to read/write/modify/delete the data. Usually the number of entry points and exit points – the 

“attack surface” - is used as a security metric when assessing systems security. Furthermore, an 

active component may have vulnerabilities related to inputs (input validation - input coming 

from a user passing by the hosting service), outputs (output validation and exceptions – outputs 

may depend on malicious or modified inputs or passed through a vulnerable hosting service), or 
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processing (logical errors – e.g. race conditions, malicious data corruption, service overloading). 

We use this analysis in categorizing vulnerabilities according to the source of vulnerability, 

such as input validation, output validation, processing, and hosting service vulnerabilities. This 

helps in deciding which types of vulnerabilities can be identified by static analysis, dynamic 

analysis, etc. Moreover, it helps in deciding the mitigation actions that can be applied to block 

such vulnerabilities. 

8.3 Signature-based Security Analysis 

We base our security analysis approach on (i) a formal security weakness definition schema that 

captures every detail related to a given security flaw or vulnerability; (ii) a formal security 

weakness signature specification approach that can capture security flaw and vulnerability 

signatures; and (iii) an extensible security analysis tool that perform signature-based software 

security analysis.  

8.3.1 Security Weakness Definition Schema 

We studied the various security analysis tasks (vulnerability, attack and threat analysis) to 

identify the key items required in these tasks that should be included in a weakness definition 

schema, as shown in Figure  8-5. These weaknesses’ definitions should be managed by security 

experts. Such definitions can be incorporated in CWE database. A security weakness definition 

should contain: 

Weakness Definition

Language

Description

Category

ID

Preconditions

Consequences

Likelihood

Impacted Resources

Signatures

Prevention actions

Mitigation Actions 

 

Figure 8-5. Weakness definition schema 

– Weakness ID: Every discovered weakness instance, as in the NVD database, should have a 

reference to its parent weakness or vulnerability definition. This helps retrieving other 
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vulnerability details e.g. preconditions, consequences from the vulnerability definition 

stored in the CWE database. 

– Weakness Category: Many categorization-schemas for software weaknesses do exist. Each 

categorization schema helps understanding weaknesses from a specific point of view e.g. 

developers or researchers. A categorization based on the root cause or source of the 

weakness, as shown in Figure  8-4, helps in deciding which technique is suitable to perform 

analysis, mitigation, and avoidance. We categorize vulnerabilities as input validation-

related, processing logic-related, output validation-related, hosting service related, hosting 

media-related, communication channel-related, storage-related, and security control-related 

vulnerabilities. 

– Language/Platform: Specifies enumeration of language(s) that a given weakness applies to 

- i.e. many languages C, C++, C#, Java. have language-specific weaknesses such as buffer 

overflow, sandbox breaching, etc. We also use this to describe the technology or 

architecture paradigm inherent with the weakness - e.g. client-server, web-based, service-

oriented, or multi-tier, along with the underlying environment e.g. web server, client, 

application server, database server. This helps in threat analysis to identify possible 

weaknesses that may exist and start taking precautions to avoid such vulnerabilities. 

– Preconditions: This attribute helps in both vulnerability analysis and attack analysis. 

Preconditions are a list of the capabilities that an attacker should possess, or the list of 

system configurations that need to be present in order to exploit such vulnerability e.g. to 

exploit a specific vulnerability, an attacker might have to have root access, user access, 

remote root access, public access, etc. 

– Consequences: If a given vulnerability is exploited, what will be the benefits achieved by 

the attacker e.g. disclosure of system information, invalid processing, invalid results, 

execute an unauthorized function, elevate permission, bypass security, system crash, or 

Denial-of-Service. This can be used to analyze against planned attacks e.g. exploiting 

vulnerability V1 will give the attacker a set X of privileges. These privileges may be one of 

the preconditions to exploit vulnerability V2. The consequence of V2 may be the actual 

goal of the attacker. 

– Impacted Resources: This specifies the resources that will be impacted if the given 

vulnerability is exploited including memory, configuration files, registry, customer data, 

credentials, cryptography keys.  

– Likelihood: The probability that the given weakness is exploited by an attacker may be low, 

medium, or high. This depends on the complexity of the given vulnerability and attacker 

capabilities as defined in the vulnerability preconditions. 
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– Vulnerability Signature: A weakness signature describes constraints, invariants and 

patterns that when matched in a target system it means it is likely to suffer from the given 

weakness. This may be signature of software architecture or code snippets, or signature of 

system response for requests with specific signatures. Every single weakness may have 

different signatures that capture different forms (attack scenarios), or that are applicable 

with different weakness analysis techniques. 

– Prevention: A list of precautions to be followed or checked during code review. These 

might be rules to check during system development or deployment; combinations of 

architectures; languages and platforms to use or to avoid. 

– Mitigations: A list of actions that specify how we can modify the vulnerable system entities 

to block a discovered weakness. This may require modification of the vulnerable code 

parts; changing system configurations; or even changing system or security architecture.  

8.3.2 Weakness Signature Specification 

To address the different types of security analysis, we use a signature-based approach where the 

signatures of weaknesses to be analyzed are captured as invariants or constraints to be matched 

against appropriate target system artifacts. These artifacts may be lines of code, partial 

class/method signatures, architectural structures, or other suitable system models. In our 

approach, we use the Object Constraint Language (OCL) to specify such signatures (We 

introduced an overview of OCL in chapter 7, section 7.5.2). 

8.3.2.1 System Description Meta-Model 

To support specifying and validating software architecture and source code weaknesses’ 

signatures, we have developed a system-description meta-model, shown in Figure  7-7 

(discussed in chapter 7)Error! Reference source not found.. This model is inspired from our 

nalysis of security weaknesses and vulnerabilities as discussed in Section  8.2. It captures the 

main entities in an object-oriented program including: 

– Architecture Concepts: Such as components, components’ interfaces, communication 

channels, storage, hosting service (web server), deployment descriptors (configuration files), 

deployment packages, etc.  

– Source Code Concepts: Including classes, instances, inputs, input sources, output, output 

targets, methods, method body, method parameters, method statements e.g. if-else 

statements, loops, new objects, etc.  

– Security Concepts: Such as authentication, authorization, access control, input validation, 

auditing, cryptography and key management, and output encoder controls.  
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Each entity in the model has a set of attributes such as component name, class name, method 

name, accessibility, variable name, variable type, method call name, arguments, etc. This 

enables specifying OCL-based weakness and vulnerability signatures on different system 

entities other than source code such as deployment descriptors, hosting services, storage, output 

targets, or input sources. Of course, this requires developing different parsers other than source 

code parsers that can read such system description details.  

A security analysis tool needs to have different profiles for different languages and platforms 

(ASP.NET, PHP, C#, Java, etc.). Thus weaknesses with signatures containing input source or 

output targets, security authentication, authorization, sanitization controls and other functions 

can be interpreted differently based on the platform or programming language used. If the 

system uses custom sanitization or security functions, developers have to mark their security 

functions in the resulting system model or add it to the platform profile member functions. 

8.3.2.2 Examples of OCL-based Weaknesses Signatures 

Table  8-1 shows example architecture attack scenarios, metrics, and vulnerabilities signatures 

specified in OCL using our system description meta-model, as shown in Figure  7-7. Each entry 

shows weakens or attack name, description, and signature. Before we discuss these signatures, it 

is worth mentioning that these signatures can be further improved to incorporate system design 

details and even more source code details, if available. The second point is that these signatures 

should be developed by security experts (captured in a knowledge base), while software 

developers can further extend such signatures using customized and user-defined scenario and 

metric signatures.  

A key problem with these signatures is that they do not consider security solutions applied 

beyond the system source code. For example, a system might be using proxies to filter SQL 

queries or be using security controls deployed on the web server such as an http handler. 

However, these can be modeled by appending a dynamic signature forming a sequence of OCL 

constraints to be checked on system responses to malicious requests. Another workaround is to 

use the information available from system architecture to check for these scenarios. Another 

issue is that we may have different signatures with different complexities for the same 

vulnerability. We expect security experts to develop strong and complete signatures. Weak 

signatures mean more false positives, which may annoy developers, or more false negatives, 

which harm customers. However, weak signatures can sometimes be much easier to find and 

computationally inexpensive to locate matches compared to complex ones. 
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Table 8-1. Examples of OCL-specified weaknesses signatures and metrics 

Man-in-the-middle attack 

Any two components that communicate through an unencrypted channel and one or both of 

them operate in an untrusted zone or do not apply cryptography controls on their communicated 

messages. 

context System  inv MITM: 

self.components->select(C1|C1.DeploymentZoneType = 'Untrusted'   

   and self.components.exists(C2 | C2.Channels->exists(Ch |  

       Ch.TargetComponent = C1 and Ch.EncryptionCtlDeployed = false)  

   and C1.EncryptionControlDeployed = false 

   and C2.EncryptionControlDeployed = false)) 

Denial-of-service attack 

Any publicly accessible component that does not operate input sanitization control (or 

application firewall), and does not have authentication control. 

context System inv DOS: 

self.components->select(C1|C1.DeploymentZoneType = 'Untrusted'   

  and  C1.AuthenticationControlDeployed = false  

  and (C1.InputSanitizationControlDeployed = false 

  or  C1.Host.Network.FirewallControlDeployed= false)) 

Data tampering attack 

Any component that is deployed on an untrusted host (malicious insider) or zone, sends data in 

plain text, or does not operate authorization control. 

context System inv DataTampering: 

self.components->select(C1|C1.DeploymentZoneType = 'Untrusted'   

  and self.components.exists(C2 | C2.Channels->exists(Ch |  

                  Ch.TargetComponent = C1  

              and Ch.EncryptionControlDeployed = false)  

         and C1.EncryptionControlDeployed = false 

         and C2.EncryptionControlDeployed = false)) 

Attack Surface metric 

Number of the functions defined in the provided interfaces of the public system components and 

number of functions defined in the required interfaces of the system public components that are 

used by other components. 

context System   inv AttackSurface: 

   self.components->select(C1|  

     C1. DeploymentZoneType = 'Untrusted')->collect(C2 | 

                                          C2.Functions)->size() 

Compartmentalization Metric 

Number of architecture components that apply authentication and authorization controls on 

incoming requests and calls (work independent and do not trust other system components). 

context System     inv Compartmentalization: 

    self.components->select(C | C.AuthenticationCtlDeployed = true 

    and C.AuthorizationControlDeployed = true)->size() 
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Fail securely Metric 

The average of critical methods and attributes in each system component. 

context System   inv FailSecurely: 

   self.components->collect(C | C.Functions->select( F |  

                  F.IsCritical = true)->size())->sum()/     

   self.components->collect(C |C.Functions->select( F |  

                               F.IsCritical = true)->size())->siz() 

Defense in depth Metric 

The ratio of critical components that have layered security compared to the total number of 

critical components in the system. 

context System     inv Defense-in-depth: 

    self.select( C | C.IsCritical= true  

       and C.AuthenticationControlDeployed = true  

       and C.AuthorizationControlDeployed = true 

       and C.CryptographyControlDeployed = true  

       and C.Host.AuthenticationControlDeployed = true  

       and C. Host.AuthorizationControlDeployed = true  

       and C. Host.CryptographyControl = true)->size() / 

              self.select( C | C.IsCritical = true)->size() 

SQLI Vulnerability 

Any method that has method call statement “S” where the callee function is “ExecuteQuery” 

and one of the parameters passed to it is previously assigned to untrusted identifier coming from 

one of the input sources. This initial signature can be revised to incorporate taint analysis 

checking. Taint analysis can be defined as an OCL function that adds every variable assigned to 

a user input parameter to a suspected list. In this case, we update the vulnerability signature to 

use “Method.SuspectedList().Contains(X)” instead of X.Contains(InputSource)”. 

context Method    inv SQLI: 

       Method.Contains( S : MethodCall | S.FnName  = “ExecuteQuery”  

     and S.Arguments.Contains( X :  IdentifierExpression |  X.Contains(InputSource))) 

XSS vulnerability 

Any method statement “S” of type assignment statement where left part is of type “output 

target” e.g. text, label, grid, etc. and right part uses input from the tainted input sources. 

context Method    inv XSS: 

      Method.Contains(S : AssignmentStatement | S.RightPart.Contains(InputSource) 

      And S.LeftPart.Contains(OutputTarget)) 

Authentication Bypass Vulnerability 

Any public method that has statement “S” of type “method call” where the callee method is 

marked as authentication function while this method call can be skipped using user input as part 

of the bypassing condition. 

context Method    inv ImproperAuthentication: 

          Method.IsPublic == true  

   And Method.Contains( S : MethodCall | S.IsAuthenitcationFn == true   

   And S.Parent == IFElseStmt  

   And S.Parent.Condition.Contains(InputSource)) 
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Improper Authorization Vulnerability 

Any public method that has statement “S” of type “expression” – i.e. any statement - where “S” 

uses data X without being sanitized, authorized, or simply taint data 

(Method.SuspectedList().Contains(X) == true). 

context Method    inv ImproperAuthorization: 

      Method.IsPublic == true  

 And Method.Contains( S : Expression |  

          S.Contains(X: InputSource  |   X.IsSanitized == False Or X.IsAuthorized == False) 

8.3.3 Signature-based Security Analysis Tool 

After formalizing security attack scenarios, metrics signatures, and vulnerability signatures 

using OCL, an OCL-based analyzer component is used to perform the security analysis of the 

target system and its security details to locate and evaluate the specified security scenarios 

vulnerabilities, and metrics. This includes system source code, system design, architecture, and 

security models. Figure  8-6 shows the architecture of the analysis component. Figure  8-6(a) 

shows the main components of our analyzer, including the signature locator interface. 

Figure  8-6(b) shows different possible signature locators that can be plugged into our security 

analysis tool. This list is extensible to incorporate new customized signature locators. Below we 

discuss details of each component in the security analysis tool. 

- System Model: Instead of using only the system architecture model to capture and apply 

security metrics, we use our proposed system description model – SDM explained in details 

with examples in the security engineering chapter (chapter 6). This model is developed by 

software engineers using UML to describe the details of the software system under analysis. 

The system SDM should cover system features (using use case diagrams), system 

architecture (using component diagrams), system classes (using class diagrams), system 

behavior (using sequence diagrams), and system deployment (using deployment diagrams). 

These models cover most of the perspectives that may be required in analysing system 

architecture security soundness. However, not all these models are mandatory for the 

analysis. It depends on the system engineers and which attack scenarios or metrics they want 

to evaluate or make it available for their tenants to evaluate or analyze – i.e. software 

engineers, during their analysis, may start with an initial system architecture and then 

develop system design to include in their analysis. Later, they may incorporate system source 

code. Some of these system description details, for example class diagrams, sequence 

diagrams, can be reverse-engineered from source code, if not available – e.g. in case of 

legacy systems. 

- Source Code Abstract Program Representation: To try and avoid signatures being overly 

specific to programs written in a specific programming language or with a specific coding 
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style, we transform the given system code into an abstract syntax tree (AST) representation. 

The program AST abstracts most of the source code details away from specific language 

constructs. This requires having different source code parsers for different programming 

languages that should be supported by the security analysis platform. If the software source 

code is not available and only software binaries are available, we can use the de-compilation 

tools such as ILSpy to reverse engineer source code from software binaries. 

 

-  

Figure 8-6. Signature-based security analysis tool 

- Security Model: The service provider and service tenants’ security engineers capture the 

security details developed in the software or defined on their own using our model-driven 

security engineering at runtime approach in separate security specification model (SSM), 

explained in details in Chapter 6. This enables evaluating system architecture details and 

security architecture details separately and combined – i.e. where we have security 

requirements already mapped to system entities. We use our SecDSVL as a comprehensive 

security domain-specific visual language. SecDSVL covers most of the details required 

during the security engineering process including: security goals and objectives, security 
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risks and threats, security requirements, security architecture for the operational environment 

and security controls and patterns to be enforced. Not all these models are mandatory to use. 

Engineers decide which models they need to check or incorporate in their security analysis. 

- Abstraction Modeler: The system description meta-model captures all the concepts and 

entities around the system and security details we have explained above along with the 

relations between them. As discussed earlier, this model helps in validating specified 

signatures and in generating analyzers that will pinpoint these signatures in the software 

under test. To consolidate different system details in one model as described in the system 

description model we do System-and-Security model reconstruction covering system, 

security, and security-system mappings (specified using our UML profile, discussed in 

chapter 6). The UML profile extends UML models with attributes for: (i) relations between 

different system entities in different models – e.g. a feature entity in a feature model with its 

related components in the component model and a component entity with its related classes 

in the class diagram; and (ii) security entities (objectives, requirements, controls) mapped on 

system entities. The source code AST is transformed into more abstract representation that 

summarizes AST nodes into abstract system description model. 

- Signature Locator: This is the main component in our security analysis tool. It receives the 

system and security details, security scenarios, vulnerabilities, and metrics signatures to be 

evaluated, platform profiles, and generates a list of the found potential flaws, vulnerabilities, 

security holes, and security measures. Our security analysis tool is developed to support 

different types of analysis techniques including static analysis, white-box analysis and 

dynamic analysis. The signature locator is designed to support extensibility in terms of new 

analysis techniques that can easily plugged-in. However, in our research project we focus on 

the static signature locator that can analyze the architecture and source code details statically. 

- Static Signature Locator: This component loads OCL-based weaknesses and metrics from 

the signatures database and compiles these signatures into runtime analysis modules (using 

OCL_2_C# transformation that generates C# code from these signatures). These generated 

analysis modules analyze the fed in system and security models and locate entities that 

match the specified signatures and calculate measurements specified.  

- Execution Traces Signature Locator: An execution trace signature locator works on the 

execution traces collected from the execution of the software – i.e. logs of the system 

functions’ calls along with the arguments’ values used. These execution logs attributes are 

already abstracted in the system description model. Thus security experts can specify 

signatures on such execution traces attributes. This signature locator works in the same 

approach like the static signature locator – i.e. it generates the corresponding C# analysis 

module that analyses the software model. 
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- Dynamic Signature Locator: A dynamic signature locator depends on two key attributes of 

the software entities (including components, classes, and methods). These attributes are 

requests and responses. Each of these attributes has sub-attributes including request time, 

values, requester, response time, values, etc. Security experts use these two attributes to 

specify signatures of the malicious requests that satisfy specific vulnerabilities or attacks – 

e.g. use “’ or 1 =1” as a part of the query string or the http request sent to the server. The 

dynamic vulnerability analysis component uses such signatures to generate malicious 

requests. Then, the signature locator analyses the software responses looking for flaws in the 

software responses. More details are available in the security monitoring work in chapter 9. 

8.4 Implementation 

To help in developing and testing weaknesses scenarios, metrics and vulnerability signatures, 

we have developed a GUI, as shown in Figure  8-7, where security experts can write OCL 

expressions, check it for syntax errors, semantic errors (i.e. concepts, attributes, navigations 

specified), and test the specified signatures on sample data provided by the tool users. We use 

an existing OCL parser [272] to parse and validate signatures against our system description 

model. Once validated, signatures are stored in the signatures database. 

To parse the given program source code and generate the corresponding Abstract Syntax 

Tree (AST), we use existing .NET parser NReFactory Library, which supports parsing VB.NET 

and C#. For software systems developed in C, we have used pycparser (a parser written in 

python). As a further extension, we plan to incorporate parser for PhP and Java to enable 

parsing programs written in these languages as well. For software systems with executable or 

binaries only available, we use existing de-compilation tool ILSPY to generate source code from 

binaries. This is currently supported for C# and VB.NET only. This generated source code will 

be parsed using NReFactory library. 

For the system and security models, we assume that all these models will be captured either 

using our own system and security modelers developed using Microsoft Visual Studio 

(discussed in chapter 6) or by using system models (in UML) developed by any third-party 

modeling tool represented in XMI (XML Metadata Interchange). 

We have developed a class library to transform the generated source code AST into a more 

abstract (summarized) representation as specified in our system description meta-model (shown 

in Error! Reference source not found.). This reduces its size and complexity to reflect only 

ecessary details required in signatures’ matching. Our class library takes the system and security 

models (in XML format) and appends them to the system description model. The output of this 

class library is a complete model with all software system and security details.  



 Chapter 8: Cloud Applications Security Analysis 

 

Page 199 

1

2

3

4

5

6

7

8

9

10

11

12

 

Figure 8-7. Security analysis signature locaotor UI 
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Figure 8-8. Architecture of our signature-based static analysis 

 Context Method::SuspectedList(): Collection(Identifier) 

   Let userInputs: Collection(Identifier) = Method. Parameters 

   Post:  

      result = Method.Body->select(stmt:AssignmentStmt |  

                         RightPart.Contains(userInputs)->select(id: IdentifierExp))  

Figure 8-9. Sample user-defined OCL function for taint-data 

<Profile platform="ASP.Net"> 

      <InputSources> 

           <Source> Web.HttpRequest.get_QueryString</Source> 

           <Source>Web.HttpRequest.get_Cookies</Source> 

      </InputSources> 

    <OutputTargets> 

           <Target>System.Web.HttpResponse.Write</Target>           

           <Target> UI.WebControls.TextBox.set_Text</Target> 

          <Target> WebControls.HyperLink.set_NavigateUrl</Target> 

    </OutputTargets> 

</Profile> 

Figure 8-10. Sample of the platform profile for ASP.NET 

The signature locator manager is developed as a class loader; it reads the list of registered 

signature locators from a configuration file. According to the weakness signature type, it loads 

the corresponding signature locator (static, dynamic, etc.) to start analyzing the system 

description model. New signature locators can be developed and registered with the security 

analysis manager. Any signature locator has access to the system description details (as a 

model) as well as the signatures repository. We have developed a signature-based static analysis 

component, as shown in Figure  8-8. This component translates the signatures expressed in OCL 
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to C# code using the OCL parser we discussed above. This C# code is then used by the static 

analysis component to traverse the system model looking for matching entities.  

The static analysis component supports specifying signatures using some user-defined 

functions that are stored as OCL functions including control-flow analysis (CFA), data-flow 

analysis (DFA), Tainted-data analysis, etc. The OCL to C# library translates these user-defined 

functions as well as new OCL signatures once defined. Program slicing and taint analysis 

techniques (core techniques in program and security analysis area) can be easily captured in 

OCL. Figure  8-9 shows a sample tainted-data analysis function defined in OCL. This can be 

extended to filter sanitized variables (variables processed by sanitization functions). The static 

analyzer depends on platform profiles to set the analysis context. A platform profile is an XML 

document that contains information about a specific platform. Figure  8-10 shows an example of 

a platform profile for ASP.NET. This is different from Java or PHP profiles. These functions 

are used by the signature locator as values for the abstract concepts defined in the system meta-

model (input sources, output targets, etc.). 

8.5 Evaluation 

In this section we summarize evaluation experiments we performed on our security analysis 

toolset to assess their capabilities in capturing as well as identifying security flaws and bugs. In 

these experiments we applied the set of exemplar OCL-based security attack scenarios, metrics, 

and signatures that we introduced in Section  8.3.2. 

8.5.1 Evaluation Setup 

We could not find a repository or benchmark set of software architectures to evaluate our 

approach in security architecture risk analysis. Therefore we decided to use the benchmark 

applications we introduced in chapter 4 section 1.3 including Galactic (ERP system developed 

for internal testing purposes); SplendidCRM (open source CRM); KOOBOO (open source 

Enterprise CMS for websites); BlogEngine (open source ASP.NET 4.0 blogging engine); 

BugTracer (open-source, web-based bug tracking); and NopCommerce (open-source 

eCommerce solution). Except for our own Galactic exemplar application we did not have 

detailed prior knowledge of the architecture, design, and security details of the open source 

applications that we analyzed. We used reverse engineering to retrieve parts of the system 

description models – SDM - (mainly class diagram, sequence diagram and component diagram) 

from the benchmark applications source code using Altova UModel. All of these benchmark 

applications were already developed with their own built in security functions. We performed a 

detailed, manual analysis to identify security controls used in such systems. We use these details 
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to develop benchmark applications security specification models and where they currently 

applied mappings between security entities and system entities. In our evaluation, we used a set 

of effectiveness evaluation metrics including precision and recall discussed in chapter 4. 

8.5.2 Experimental Results 

8.5.2.1 Architecture Security Risk Analysis 

Table  8-2 is divided into two parts: security attack scenarios, and security metrics. Columns 

represent the benchmark applications. Rows represent security flaws and metrics. We 

summarize for each application and each attack scenario or security metric analyzed the number 

of discovered flaws or the metric measured value, number of false positives (our prototype 

reported as a flaw but it is not), and number of false negatives (a flaw, but missed by our 

prototype). Moreover, for each security scenario or security metric we indicate using (↑ and ↓) 

whether it is recommended to minimize or maximize the reported instances. If the indicator is 

(↑), it means that the higher the metric value, the more secure the architecture. The (↓) indicator 

means that the lower the metric value, the more secure the architecture. 

Table  8-2 summarizes the results of our experiments in security scenarios and security 

metrics analysis and evaluation. From our experiments we found that our approach achieves on 

average a (90%) precision over both security scenarios analysis and security metrics 

measurement. This means that in every reported (100) scenario instances (90) scenarios are 

valid scenarios. It also has an average (89%) recall rate. This means that in every reported (100) 

scenario instances approximately (11) scenarios are not actual cases. These values depend on 

the soundness of the scenarios and the metrics’ signatures used to detect them.  

Table  8-2 shows that the man-in-the-middle attack is the most frequent attack in the 

benchmark applications. We also found a number of injection attack vulnerabilities that include 

SQL Injection, OS Command Injection, XPath Injection attacks. The denial-of-service attack 

was the least frequent attack. When we compare these results with OWSAP TOP10 

vulnerabilities, we found that they reflect closely the same ranking where injection attacks are 

ranked number (1) common vulnerability in web applications according to OWSAP Top10.  

However, from these experiments and our analysis we note that, simple totaling of the 

security metrics has no sensible meaning as they have different units (some count, others use 

average or ratio). Although security metrics are helpful in comparing two different architectures 

for the same system (trade-off analysis); they are misleading as they depend on the application 

scale.  
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Table 8-2. Results of our OCL-based architecture security analysis 

Scenario / Metric Galactic SplendidCRM  KOOBOO  BlogEngine  BugTracer NopCommerce  Total 

***** Security Scenarios ***** 

Man-in-The-Middle (↓) 

D 1 1 4 8 3 5 22 

FP 0 0 0 1 0 0 1 

FN 0 0 0 1 0 1 2 

Denial of Service (↓) 

D 1 1 3 2 1 2 10 

FP 0 0 0 0 0 1 1 

FN 0 0 0 1 1 0 2 

Data Tampering (↓) 

   

D 1 1 3 5 3 3 16 

FP 0 0 0 2 0 0 2 

FN 0 0 1 0 1 0 2 

Injection Attack (↓) 

D 2 1 3 5 4 3 18 

FP 0 0 1 1 0 1 3 

FN 0 1 1 1 0 0 3 

Total 

D 5 4 13 20 11 13 66 

FP 0 0 1 4 0 2 7 

FN 0 1 2 3 2 1 9 

Average Precision = 90%  Average Recall = 87%    F-Measure = 88% 
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***** Security Metrics ***** 

Attack Surface (↓) 

M 8 11 17 23 18 24 101 

FP 1 2 2 1 2 4 12 

FN 0 0 1 3 2 1 7 

Compartmental-ization (↑) 

M 1 1 3 3 4 3 14 

FP 0 0 0 0 1 0 1 

FN 0 0 1 1 0 0 2 

Fail Securely (↓) 

M 0.3 0.2 0.5 0.5 0.4 0.6 - 

FP 2 1 0 0 0 1 4 

FN 1 0 0 0 1 1 3 

Defence-in-Depth (↑) 

M 0.5 0.5 0.8 0.4 0.3 0.5 - 

FP 0 1 0 0 1 0 2 

FN 0 2 0 1 0 1 4 

Average Precision = 91%   Average Recall = 89%    F-Measure = 90% 
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Figure 8-11. Example of radar chart of benchmark applications 
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Figure 8-12. Performance of the security analysis component 

Regarding the performance of our approach, Figure  8-12 shows the time (in seconds) 

required to analyze the benchmark applications’ architectures to assessing specified security 

attack scenarios and metrics using the given set of scenarios and signatures Table  8-1. It is clear 

that the defense-in-depth metric takes much more time to identify than other metrics. The 

system criticality takes the lowest time. This is because the time required estimating a given 

security metric expression depends on the complexity of the specified OCL signature 

(transformed into C# code) and system size.  

8.5.2.2 Vulnerability Analysis Result 

Table  8-3 summarizes the results of our experiments in source code vulnerability analysis 

applied on the set of open source benchmark suite against seven of the OWASP Top10 web 

applications vulnerabilities. The other three vulnerabilities could not be specified using static 

signatures (i.e. could not be analyzed using static program analysis). These vulnerabilities are 
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security misconfiguration because it requires developing XML parser that can extract entities in 

the system configuration file and then we can apply signatures on these entities; insecure 

communication because it requires dynamic signatures; and insecure cryptographic storage 

because it requires dynamic signatures.  

Table  8-3 summarizes, for each application and each vulnerability analyzed, the total time 

taken, number of found vulnerability instances in the codebase, FPs (analyzer thought 

vulnerability but there is not on manual analysis), and FNs (manual code analysis indicates a 

vulnerability but our tool did not discover it). Table  8-3 shows that SQLI represents the most 

frequent vulnerability in all applications, then the cross-site reference forgery (CSRF) 

vulnerability. After that, cross-site scripting (XSS) and authorization bypassing vulnerabilities 

are relatively equal in frequency. These results mostly (in terms of ratios) conform to the 

ranking reported by OWSAP2010. Table  8-3 also shows the number of vulnerabilities identified 

per application. It is clear that nopCommerce and KOOBOO are the most vulnerable 

applications in our benchmark suite using these vulnerability signatures. However, if we 

consider the application size factor, we see that the ratio of vulnerabilities discovered compared 

to application size is about equal. Moreover, some applications such as BlogEngine use 

Microsoft membership for access control, which eliminates the authentication bypassing 

vulnerabilities. 

Figure  8-13 shows the precision, recall, and F-measure rates for each vulnerability type. This 

chart shows that we achieve a high precision rate for most of the vulnerability types. The 

precision metric is on average (93%). This means that for each identified (100) vulnerabilities 

we have (7) false positives. This chart also shows a good recall rate, although it is relatively 

lower than precision rate we achieved. The recall metric is on average (82%). This means that in 

every (100) vulnerability instances, we can correctly identify (82) and we missed (18) instances. 

This value could be improved if we use a hybrid dynamic and static analysis approach. The 

overall effectiveness of our vulnerability analysis approach (F-measure) is around (87%). A key 

result from this chart is that the recall metric is higher in SQLI, XSS, Information disclosure, 

and URL redirection than in the other vulnerabilities. This justifies our initial supposition that 

although we succeeded in developing a static signature for these signatures (CSRF, improper 

authorization and authentication bypass), it is difficult to achieve a high correct detection rate 

without also utilizing complementary dynamic analysis techniques. 

Figure  8-14 shows the time (in seconds) required to analyze the benchmark applications to 

locate the existing vulnerabilities’ instances for the given set of vulnerability signatures. It is 

clear that the SQLI vulnerability takes much more time to identify than XSS and authorization 

bypassing. The authentication bypass takes the lowest time. This is because the time required to 

identify a given vulnerability depends on number and complexity of specified OCL signatures. 
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Figure 8-13. Achieved precision, recall, F-measure rates 
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Figure 8-14. Performance of approach per vulnerability 
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Table 8-3. Results of our OCL-based security vulnerability analysis 

Security Issue Galactic SplendidCRM KOOBOO BlogEngine BugTracer NopCommerce Webgoat Total 

SQLI 

D 2 12 14 3 9 19 8 67 

FP 0 2 2 0 0 2 0 6 

FN 0 2 2 1 3 1 1 10 

Authentication 

Bypass 

D 2 2 1 0 0 0 2 7 

FP 0 0 0 0 0 0 0 0 

FN 0 0 0 0 1 0 1 2 

Improper 

Authorization 

 

D 2 3 11 4 0 0 3 23 

FP 1 0 2 0 0 0 0 3 

FN 0 0 2 0 2 3 0 7 

XSS 

D 3 5 10 2 0 4 5 29 

FP 0 1 1 0 0 0 1 3 

FN 1 2 2 1 2 1 0 9 

CSRF 

D 5 6 13 10 0 12 3 49 

FP 1 0 1 0 0 1 0 3 

FN 0 1 2 0 4 1 0 8 
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Info.  

Expo. 

D 3 0 0 10 0 0 3 16 

FP 0 0 0 0 0 0 0 0 

FN 0 0 0 0 2 1 0 3 

URL 

Redirect 

D 1 0 2 8 0 6 0 17 

FP 0 0 0 0 0 0 0 0 

FN 0 0 0 0 3 1 0 4 

Total 

D 18 28 51 37 9 41 24 208 

FP 2 3 6 0 0 3 1 15 

FN 1 5 8 2 17 8 2 43 
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8.6 Chapter Summary 

In this chapter we introduced a new security analysis approach. Unlike other existing 

approaches, ours is signature-based where the security flaws, attacks, vulnerabilities, and 

metrics are captured as a set of declarative invariants. When matched, our approach confirms 

the existence or absence of the given security flaw in the software under test. We summarized 

the key subtasks involved in the security analysis e.g. architecture security threat and threat 

analysis, attack analysis and vulnerability analysis. We gave examples of such flaws and 

vulnerabilities along with our proposed signatures for such flaws/bugs. We summarized the 

experimental evaluation we did to assess the effectiveness of our approach. These experiments 

show that our approach can easily analyze software systems against a set of vulnerabilities and 

metrics that never seen before, given that we can formulate signatures of such vulnerabilities or 

metrics using OCL. Moreover, the experiments show that our approach has a high precision and 

recall rates for both architecture risk analysis and system source code vulnerability analysis. 

Finally, some of the existing vulnerabilities could be expressed as static signatures, while other 

need to be specified in terms of dynamic signatures that can be analyzed using dynamic analysis 

of the system under test. 
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  Chapter 9

Cloud Applications Security Monitoring  

In previous chapters we introduced our approaches to help stakeholders in analyzing their 

services security to identify threats against their assets security objectives. We also introduced 

an approach to help in modeling and enforcing security requirements and controls according to 

current needs and how these security capabilities could be changed at runtime to reflect or 

incorporate new needs. In this chapter, we discuss how cloud stakeholders can assess the 

strength and stability of their enforced security controls, where we might need to add security 

controls, and where we may need to change deployed security controls with stronger security 

controls. It is impossible to assess complex software systems and prove that they meet tenants’ 

absolute level of required security. However, developing relevant and practical security metrics 

that help in abstracting and visualizing system security status is an alternative solution. Security 

monitoring is the task of quantifying security using appropriate metrics to help in taking 

corrective actions on the identified security weaknesses. Another key aspect of security 

monitoring is detecting possible trends of system security status, which helps in taking proactive 

actions. Most existing efforts focus on developing security metrics depend on formal languages 

to capture properties to be assessed. Such efforts usually require design-time preparation to 

support monitoring of system security properties. Our unified monitoring approach enables 

enterprise security engineers to specify, update, and remove their security metrics at runtime, 

without any design time preparation. Our developed platform is responsible for automatic 

conversion of these security metrics’ specifications into security probes and integration of these 

metrics within target enterprise IT systems at runtime. Measurements collected are fed into an 

analysis component that applies aggregation functions, visualizes metrics, and reports 

deviations from expected behaviors, indicating possible vulnerability to attack. We have 

validated our approach expressiveness, usability, soundness, and performance overhead. This 

chapter is organized as follows. Section 1 gives overview of the security monitoring problem 

and key limitations of the existing efforts. Section 2 discusses details of our unified security 

monitoring approach. Section 3 discusses architecture and implementation of underlying 

security monitoring platform. Section 5 summarizes implementation details of our approach. 

Section 6 summarizes the experimental evaluation results. Section 7 discusses capabilities, 

limitations, and future work. 
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9.1 Introduction 

Monitoring software systems behaviour is a crucial source of information reflecting details of 

the executing system and its operational environment. These information are used in assessing 

the satisfaction of system requirements [201, 202, 273], discovering and reporting any system 

violations [191, 194], and adapting system behaviour and structure based on current system 

context [213] (in case of context-aware and adaptive systems) or through proactive or corrective 

actions that involve modifying the system or its operational environment [274]. 

One of the key attributes that we usually want to monitor is the security status of the 

executing system and how it behaves if under attack. Although the area of security monitoring 

is not new [275], there is currently no way to prove that a given system is (100%) secure [183]. 

Using subjective and qualitative approaches usually requires deep involvement of security 

experts and is thus usually error prone, time-consuming and difficult to repeat. Security metrics 

represent a more quantitative basis for security assurance [275].  

There is different categorization of system (and security) monitoring approaches including: 

(i) real-time and log-based monitoring; and (ii) active and passive monitoring. Real-time 

monitoring approaches focus on reporting the current system status while the system is 

executing. On the other hand, log-based approaches focus on using system generated logs and 

execution traces to analyse system behavior after events have happened. Active monitoring 

efforts intercept system execution to collect necessary measures. Active monitoring blocks 

system execution or put it on hold until the monitoring platform verifies the received request is 

not an attack. In contrast, passive monitoring efforts focus on collecting measures 

asynchronously and cannot take actions on current system requests, but instead inform longer-

term corrective measures.  

The area of security metrics (assessing system security using quantitative measures rather 

than qualitative measures) is relatively new area [275].  It is challenging in that there is not an 

“absolute” level of security [183] – i.e. it is too hard, or mostly impossible, to prove that a given 

system is 100% secure. Developing meaningful, relevant, and practical security metrics that 

help in abstracting and visualizing system security status is not an easy task. In our literature 

review we found relatively few efforts in the area of security monitoring. However, we did find 

a number of related efforts in different areas such as requirements monitoring, runtime 

verification, and SLA management. 

Most existing efforts in the dynamic security metrics and security monitoring area focus on 

providing guidelines and frameworks that help in conducting security metrics development and 

analysis processes [28-31, 187]. Using such subjective and qualitative approaches usually 
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requires deep involvement of security experts and again tends to be both time-consuming and 

error prone. A number of related efforts have been made in the service level agreement (SLA) 

monitoring and management area. These efforts depend on the idea that SLAs are usually 

limited in properties to be assessed and thus predefined templates could be used. Moreover, 

most of the SLA measurements can be extracted from the hosting service – e.g. service 

performance usually measured at the webserver level. Software requirements monitoring efforts 

are also relevant to our research, though they focus on assessing certain system properties 

(usually developed in event-calculus) that are validated against system execution traces. Jansen 

et al [275] introduce a set of security metrics that could be used to assess system security status. 

A key problem with these efforts that limits the automation and extensibility of the security 

monitoring tools is that they depend on informal metrics’ definitions. Thus, security experts 

have to be involved in developing required monitoring tools. 

The formality, familiarity, and extensibility of the language used in developing security 

properties and metrics to be monitored are key issues in the security monitoring area. In order to 

facilitate the automation of the monitoring and analysis tasks, most existing efforts use formal 

languages to capture these properties, such as Event-Calculus [188, 191]. The Event-Calculus is 

a formalism based on first order logic that helps in representing events and effects [190]. Thus, 

most of the existing monitoring efforts are event-based – i.e. they depend on the occurrence of 

specific events in the system. Moreover, such languages are hard to use by software developers, 

security engineers, and security administrators. New easier domain specific languages have 

been introduced to help in capturing system metrics and properties to be monitored and assessed 

[203, 205]; however they do not help with security metrics and properties.  

In our research, we focus mainly on the security metrics and monitoring of software systems’ 

security status. We do not consider collecting measures of other security solutions such as 

vulnerability assessment tools or patch management tools, etc. Moreover, we do not address the 

managerial or implementation security metrics. We have defined four key research questions we 

need to address in order to tackle the security monitoring problem under the cloud computing 

umbrella: 

– What details do we need to capture to fully describe a given security metric? 

– How can we formalize the signatures of such security metrics? 

– How can we effectively use such formal specifications in automating the security 

monitoring process? 

– How can we enable different tenants to specify and notified with their cloud services 

security status? 
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In the next sections we introduce our security monitoring approach and its underlying 

security monitoring platform. Our approach is based on using OCL as a formal language to 

express and specify formalized security metrics’ signatures. Based on these metrics’ signatures 

we generate security probes, deploy at the critical system points, and generate security analysis 

procedures/functions that inspect the collected security measures, and generate security status 

reports summarizing metrics’ updates. We discuss the key evaluation experiments we did so far 

to assess the capabilities of our approach in capturing metrics’ definitions, collecting measures 

and analyzing collected measured, and performance overhead of our approach. Finally, we 

discuss the limitations of our approach and future work. 

9.2 Security Monitoring Process 

Before we introduce our refined security monitoring process, it is worth mentioning different 

categorization of security metrics. In our approach we focus on dynamic security metrics only; 

however, the other metrics still could be supported as we will discuss later. Security metrics are 

usually categorized as: 

- Static and Dynamic Metrics: Static metrics assess static system structure properties such as 

system architecture security [98], system design security [101], security quality of the system 

source code [205]. We have addressed this type of security metrics in our security analysis 

Chapter 8. On the other hand, dynamic security metrics focus on assessing dynamic security 

properties of the system behaviour such as reported attacks, found runtime vulnerabilities 

[183, 276]. 

- Technical, Operational, and Management Metrics [277]: Operational metrics cover risk 

assessment metrics, time to patch vulnerabilities, number of stakeholders committed to tasks, 

and other day-to-day activities. Technical metrics cover numbers of vulnerabilities and 

threats reported by security analysis tools. Management metrics focus on measuring the 

effectiveness of the organisational security programs and processes. 

- Implementation, Effectiveness and Efficiency, and Impact metrics [275]: Implementation 

metrics focus on progress achieved in the implementation of enterprise security program. 

The effectiveness and efficiency metrics focus on how the deployed and followed security 

programs achieve the defined goals and provide the required protection and how efficient 

they are in terms of cost. The impact metrics focus on how the operated security systems 

help in achieving organization missions. 

From our understanding of the security monitoring area, we highlighted three main tasks that 

must be addressed by any software security monitoring platform as shown in Figure  9-1: 
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Figure 9-1. Security metrics realization phases 

- Developing Security Metrics: In this phase, key stakeholders including management and 

security engineers define what metrics they need to measure about their software systems 

behaviour. This task is usually guided by the stakeholders’ goals (in case of security metric, 

this should be the security objectives such as confidentiality, integrity, accountability, and 

availability). This also includes more details about metrics’ definitions including 

frequency, owner (responsible person), unit of measure, etc. 

- Collecting Measurements: This phase focuses on how to refine the metrics specified into 

necessary security probes (captors) that can collect raw measurements (system events) with 

necessary details. Moreover, it focuses on how to deploy these probes in an optimized way 

to reduce the performance overhead of the monitoring task. It also focuses on how to 

reason and control probes to turn on and off, at what time, and the suitable measurements 

rate according to system current system behaviour – adaptive monitoring. 

- Analysing Measurements and Improving Metrics: Once the raw measurements have been 

collected, the analysis phase starts tracing any deviations or violations of the specified 

system metrics’ normal boundaries. Further actions may be required to modify the 

specified metrics, or adding new metrics if needed. Analysing these measurements may 

range from applying simple set of rules to using some artificial intelligence techniques such 

as game theory, case-based reasoning, or fuzzy logic. 

9.3 Unified Security Monitoring Platform 

In chapter 8 we introduced an OCL-based static security analysis approach supported with a 

toolset. Our approach is based on capturing security vulnerabilities and flaws signatures as OCL 

invariants. These expressions are used in conducting security analysis of program artifacts 

including architecture models, source code, and binaries to identify matches to OCL-specified 
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signatures. Our approach succeeded in locating static vulnerabilities with high precision and 

accuracy rates. In this chapter, we further extend this work to support runtime security 

monitoring and dynamic security metrics. 

We base our SaaS applications security monitoring approach on (i) a comprehensive security 

metric definition schema that captures every detail related to a given security metric. This 

security metric definition schema includes a formalized security metric signature specification 

approach to help in capturing security metric’s signatures; (ii) externalizing security monitoring 

and measurement from the target application(s), such that the application and security 

monitoring could be easily changed without a need for customizations; and (iii) automating 

security monitoring probes’ generation and deployment at runtime using metric’s attributes. 

Stakeholders including service tenants and service providers specify the security metrics they 

are interested to measure in their cloud services as a part of their security specification model 

(SSM) introduce in Chapter 6. 

9.3.1 Security Metric Definition Schema 

We studied the key attributes that could be required in developing security metrics and come up 

with a security metric definition schema covering all possible attributes, as shown in Figure  9-2. 

Managing security metrics’ definitions repository is the responsibility of the cloud service and 

platform stakeholders. Our security metric definition schema contains: 

Metric Definition

Signature
Frequency

Description

ID

Attributes

Minimum Value

Corrective Actions

Maximum Value

Related Objectives

Metric Category

Related Systems

 

Figure 9-2. Security metric definition schema 

– Metric ID: Every security metric should have a reference ID that helps in linking collected 

measurements generated or collected from system(s) together. It also helps in uninstalling 

security probes whenever the metric is no longer needed. 

– Metric Category: This attribute helps in categorizing enterprise security metrics into e.g. 

operational metrics, management metrics, static metrics, dynamic metrics, etc. 
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– Metric Description: This describes the security metric to be evaluated. This description is 

used as a part of the security configuration, status reporting and for reviewing. 

– Metric Related Security Objectives: Each security metric should be linked to one or more of 

enterprise security objectives that need to be assessed using the security metric. This is also 

helpful when assessing satisfaction of security objectives or highlighting issues with 

security objectives. 

– Metric Related Systems: Enterprise security officers may be interested in applying different 

security metrics on different systems. This attribute helps in deciding which enterprise 

software systems this metric applies on.  

– Metric Signature: The security metric signature specifies the metric formula, property, rule, 

or expression to be evaluated. The metric signature helps in identifying which service 

objects or security controls to monitor and what aggregation functions to apply e.g. 

minimum, maximum, average, top, last, etc. These metrics’ signatures should be extensible 

enough to capture different stakeholders’ metrics of interest. We use OCL in our framework 

to describe security metric signatures. 

– Metric Attributes: Each metric has a list of relevant attributes to be set by the metric user. 

These attributes should be calculated by the monitoring platform when generating a new 

measurement – i.e. whenever the software system receives a request to access resource X, 

the monitoring platform generates a new measurement record. The attributes to be included 

in the measurement record should be extensible to support user defined attributes. These 

attributes depend on the planned usage of the metric collected measurements. Some of the 

key metric attributes to be included in every measurement include: Metric ID, Timestamp, 

Source of the measurement (method name, component name, system name, etc.), and 

identity of the system user at time of measurement. Other user-defined metric attributes 

(such as method input parameters, variables, etc.) should be easy to add, to metric 

definition, and collect by the security monitoring platform. 

– Metric Frequency: Each security metric definition should include the measurement 

frequency required. This may be every X-hours, X-days, X-weeks, X-months, and so on. 

The results collected by security monitoring probes are grouped, evaluated, and 

consolidated in a security status report to the security metric owner. 

– Minimum-Maximum Values: Each security metric should have the minimum and maximum 

values that define valid boundaries of the security metric. Whenever the security metric 

value becomes (or is forecasted to be) below the minimum value or above the security 

metric maximum value, security alerts should be reported to the security metric owner. 

– Corrective Actions: Security officers may decide to specify a set of corrective actions to be 

fired automatically when the current security metric comes below or above the security 
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metric boundaries specified above. In our framework, these actions are realized by a set of 

model-based configuration specifications as we introduced in [43].  

9.3.2 Security Metric Signature Specification 

A key problem that limits the capabilities of the existing security monitoring efforts is the lack 

of security metric specification language that could be used in capturing security metrics’ 

details. This problem impacts the whole security monitoring process as it usually requires 

manual involvement to help developing and deploying required security probes that measure 

and collect required system properties. In our approach, we use Object Constraint Language 

(OCL) to specify such security metrics signatures. We use OCL as a well-known, extensible, 

and formal language to specify semantic signatures of security metrics. To support specifying 

and validating OCL-based signatures, we have reused the system-description meta-model 

introduced in the previous chapters and shown in Figure  9-3. The system description meta-

model captures system and security details from the high-level objectives down to the source 

code entities and realization security controls. This model captures main entities in an object-

oriented system including components, deployment package, hosting services (web server), 

storage, communication channels, classes, instances, inputs, input sources, output, output 

targets, methods, method body, method statements e.g. if-else statements, loops, new objects, 

objects interactions, etc.  Moreover, it captures security concepts such as security objectives, 

requirements, architecture, zones, mechanisms, authentication, authorization, audit controls, etc. 

Each entity has a set of attributes such as component name, provider, platform used, class name, 

accessibility, method name, accessibility, variable name, variable type, method name, etc.  

However, these features and concepts represent static details of the application. To capture 

the behavior properties of the application and its entities, we extended the system description 

meta-model with two concepts (request and response) along with the details involved with such 

concepts according to the system entity – i.e. both requests and responses are linked to the 

application level, component level, class, method level, security entities. We have defined a set 

of attributes related to requests and responses such as input parameters, class and object status, 

sender, receiver, timestamp, etc. These attributes are defined in an XML file. Thus, it is easy to 

extend according to current needs. This requires specifying how to get request/response new 

attribute value. The system description meta-model is also extensible to incorporate new 

concepts that need to be analyzed with the same concept.  
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Figure 9-3. Our system description meta-model 

9.3.3 Derived Security Metrics 

Developing complex metrics is always a requirement in any monitoring and analysis domain. 

To support capturing more complicated security metrics that make use of the deployed security 

metrics, we incorporate stakeholders’ specified security metrics into our system description 

meta-model. This in turn means that we can use these metrics as if they were system entities and 

attributes in developing more complicated metrics. Table  9-2 shows examples of derived 

security metrics based on base security metrics introduced in Table  9-1. 

9.3.4 Examples of Security MetricsSignatures 

Table  9-1 shows some security metrics’ signatures specified in OCL using our system 

description meta-model, shown in Figure  9-3. Before we discuss these signatures, it is worth 

mentioning that these signatures can be further improved to incorporate different tenants’ 

security metrics requirements.  

Table 9-1. Examples of OCL-specified security metrics signatures 

Authenticated Requests Metric 

This metric measures the ratio of system requests against number of requests that have been 

received by the security authentication control. The higher the ratio, the more secured 

(authenticated) the system. 
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context System  inv AuthenticatedRequests: 

self.AuthenticationControl.Requests->select()->count()/  

  self.Request->select()->count()                        

Authentic Requests Metric 

This metric measures the ratio of invalid authentication requests out of the total number of 

requests received by the security authentication control. Any increase in this ratio reflects the 

possibility of being under attack to break the application operated authentication control. Some 

corrective actions may be to incorporate a more complicate (second stage) authentication 

control to block such attacks. Furthermore, we may add the user IP to the authentication control 

black list. 

context System inv AuthenticRequests: 

 self.AuthenticationControl.Response->select(R | R.IsValid = false)->count()/ 

self.AuthenticationControl.Request->select()->count()  

Last(10) Requests to Authorization Control Metric 

This metric is used to take a random sample of the recent requests sent to the authorization 

security control. This metric could be used by system administrators to check the details (e.g. 

identity of requesters) of requests sent to the authorization security control after certain period 

of the day – e.g. out of the working hours. 

context System inv Last10AuthzCtl: 

   self.AuthorizationControl.Requests->select()->Last(10) 

Top(10) Request to Authentication Control By Admin Account Metric 

This metric could be used by the management to check how frequent administrators login to the 

system in the last period, this metric could be detailed as well to reflect details of these requests 

sent to the system such as time of these requests, source (IP of the request). 

context System inv Top10AuthnCtl: 

   self.AuthenticationControl.Responses->select(R | R.UserID = ‘Admin’).count() 

Mean Time Between Unauthentic Request Metric 

This metric helps in assessing the average time between consecutive unauthentic requests that 

have been reported by the authentication control. A high metric value means more stable and 

secure the underlying system. 

context System inv MTBUnauthenticRequests: 

self.AuthenticationControl.Responses->select(R | R.IsValid = false)-> 

differences(‘Measurementtime’)-> sum() / self.AuthenticationControl.Responses->select(R | 

R.IsValid = false)-> count() 

Logging Activities 

This metric helps in assessing the ratio of logging activities generated by the monitored system 

context System inv LoggingActivities: 

self.Auditor.Requests->select()->count / self.Requests->select()-> count() 
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Table 9-2. Examples of derived security metrics 

Authenticated Requests Metric Trend 

This security metric helps in assessing the trend of metric values over a period of time. Here, 

we apply it on the authenticated requests metric. This helps in figuring out whether there is an 

increasing or decreasing trend in the number of unauthenticated requests or not. 

context System inv Authenticated RequestsTrend: 

   self.AuthenticatedRequests.Differences(‘AuthenticatedRequests’)->sum()/      

   self.AuthenticatedRequests-> count() 

Security Metric over Multiple Systems 

This metric helps in following up the security status over multiple systems/services. Here, we 

apply it on the average of mean time between unauthentic requests over multiple systems. 

context System inv MTBUROverSystems: 

   self.MTBUnauthenticRequests->sum()/ self.MTBUnauthenticRequests->count() 

9.4 Security monitoring platform 

After formalizing security metrics specification, we need to develop the underlying security 

monitoring platform which is responsible for realizing these metrics and reporting the 

measurements collected to the corresponding metrics’ authors. We have figured out five key 

challenges we need to address in our security monitoring platform:  
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Figure 9-4. Security monitoring platform architecture 
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– Security probes: How to extract entities to be monitored given the specified metric OCL? 

– How to deploy these security probes within the target system at the specified system 

entities? 

– How to extract metrics’ values from the generated security measurements? 

– How to enable/disable security metrics (in case they are no longer used)? 

– How to fire security metrics’ analysis service according to metrics’ frequencies? 

To address these challenges, our security monitoring platform is designed to be extensible in 

supporting new security metrics, new measurement attributes, and new entities to monitor 

without a need for patching or maintenance. The architecture of the security monitoring 

platform shown in Figure  9-4 and is discussed below. 

- Security Metrics Specification: This is a UI where security officers can develop their security 

metrics including the metric signature and corrective action specifications. These metrics are 

validated against the system description meta-model discussed above. Once validated, the 

metric is registered in the metrics repository that is managed by our monitoring platform. 

- Probe Manager: Once a security metric is added or updated in the metrics repository, the 

security probe manager does the following: (i) Triggers the probe generator component to 

generate security probes that collect required measures with corresponding attributes; (ii) 

Deploys the generated security probes within the system using system wrapper component 

and removes deployed probes if the metric is no longer required; and (iii) Adds a new entry 

in the metrics analysis service timer according to the metric specified frequency. This is 

responsible for triggering the metric analysis service regularly to analyze new measurements. 

- Probe Generator: The main responsibility of the probe generator is to extract security probes 

from a given metric definition. The probe generator extracts: (i) entities to be monitored 

from the metric signature OCL expression (the context section of the signature); (ii) 

attributes to monitor from the attribute list of the metric; (iii) what requests/responses to 

monitor (probe filter) from the metric signature OCL expression (conditions part – e.g. only 

unauthentic requests). Given a security metric signature “self.Authenitcation 

Control.Request…”, will result in a security probe to be deployed in the system 

authentication control to intercept and report requests to the authentication control. 

Moreover, to optimize the performance of the probes’ reported measurements; we extract the 

specified conditions in the security metric signature to use in filtering which requests to 

report and log. Measurements generated by a security probe include attributes defined on the 

security metric e.g. Metric ID, timestamp, inputs, outputs, user identity, host IP address. The 

outcome of the probe generator is a probe class that is managed by the probe manager.  

- System Wrapper: The system wrapper is responsible for injecting interceptors (using 

dynamic aspect-oriented programming - AOP) within the target system/service at runtime at 
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the critical points (system entities that have security metrics defined on them). The list of 

critical points is managed by the probe manager. The system wrapper supports two modes of 

interception: synchronous where the system is intercepted and put on hold until the security 

analysis service confirmation (this helps in active monitoring tasks, such as introduction 

prevention systems or application firewalls) or asynchronous to reduce the performance 

overhead (passive monitoring). The system wrapper that we have implemented currently 

supports intercepting requests at the system level, component level, and method level, which 

is adequate for our goal of the security monitoring and analysis. However, we plan to extend 

this system wrapper to intercept requests on a block of code level (i.e. blocks of code with a 

specific signature pattern). This increases the usability of our approach in deep security 

analysis and in addressing different QoS attributes other than security. 

- Metrics Analysis Service: The analysis service parses the specified security metric signature 

developed in OCL and generates a C# analysis class. These security analysis classes are 

loaded at runtime according to the metric frequency that is registered (by the probe manager) 

in the security metrics analysis and timing service. These security analysis classes check the 

measurements repository for metric collected measures. These measures are then analyzed 

and aggregated. The outputs of this analysis service are sent back to the repository for further 

use by other metrics (e.g. by other derived metrics), for historical analysis, and for the 

reporting service that use these metrics’ values to generate status reports.  

- Reporting Service: this takes the aggregated results stored in the repository for the target 

system and provides a set of visualizations for security and systems engineers. Currently a 

set of tabular and chart visualizations are supported and accessed via a web page. A further 

extension of our platform is to provide security officers with a visual designer where they 

can specify how they want these metrics to be visualized [278]. 

9.5 Implementation 

We briefly describe some implementation details of our automated, formal security monitoring 

and analysis tool. First, we developed a UI component, show in Figure  9-5, to assist security 

experts in developing their security metrics definitions and signatured using OCL (Figure  9-5-

A). This provides security metric specification and signature editing including checking validity 

of OCL expressions (Figure  9-5-B and Figure  9-5-C) and testing of specifications on sample 

measurements. We use an existing OCL parser [279] to parse and validate signatures against our 

system description model. Once validated, the metric definition and signature is stored in the 

signatures database. Second, we developed an OCL-to-C# translator library that transforms the 

developed metrics’ signatures into C# analysis classes. Each class has a single static method that 

accesses the metrics’ and measurement repository and applies the C# code on these 
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measurements (Figure  9-5-D). Third, we developed a probe generator library that analyses 

OCL-based metric definitions and extracts a list of attributes and list of entities to monitor. Both 

lists are used by a probe class template to generate the metric probe class. These are currently 

C# implementations that can be deployed at run-time against the target software system. Fourth, 

we reused our system wrapper, introduced in Chapter 6, to help in injecting security probes at 

the critical system entities. To support runtime system interception, our platform combines both 

dependency injection and dynamic-weaving AOP approaches.  

The system wrapper supports wrapping of both new developments and existing systems. For 

new development, we use the Microsoft Unity application block delivered by Microsoft PnP 

team to support intercepting any arbitrary system entity. Unity supports dynamic runtime 

injection of interceptors on methods, attributes and class constructors using system 

configurations. For existing systems we adopted Yiihaw AOP tool to modify application 

binaries (dll and exe files) by adding security aspects at any arbitrary system entity. In the latter 

case, we add a call to our system wrapper. The communication between the system wrapper and 

security measurements repository are implemented using Microsoft Windows Communication 

Foundation (WCF) based services. Figure  9-5-E shows a sample security status report showing 

metrics’ values and trends. 

9.6 Evaluation 

In this section we summarize our evaluation experiments we performed to assess the capabilities 

of our approach in capturing, generating, deploying, collecting measures, and analyzing security 

metrics details. We apply the OCL-based security metrics signatures as illustrated in Section 3. 

We defined three aspects to address in our approach evaluation. This includes expressiveness 

and usability, soundness and effectiveness of the approach, and performance overhead. These 

aspects are discussed in the next subsections. 

9.6.1 Expressiveness and Usability 

In this experiment, we assess the expressiveness and usability of our security metrics 

specification language in capturing definitions of different security metrics. These range from 

simple counting of raw measures collected from certain system entities up to complicated 

security metrics that incorporate results from different base metrics. We decided that the best 

approach to assess the expressiveness of our approach was to use it in capturing definitions and 

signatures of a set of benchmark security metrics. However, we unfortunately could not find 

such benchmarks. Currently there is a new project led by OWASP [276] to come up with 

critical security metrics to be used in assessing web-based software systems.  
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Figure 9-5. Snapshots from our security monitoring tool 
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Table 9-3. Comparison between metrics specification languages 

*: Feature supported through language extensions 

Criteria EC-Assertions Our Language PMSL GMSL 

Applications 
Reasoning and verification of system 

properties 

System properties + Metrics 

specification and evaluation 

Parallel systems performance 

metrics 

Static program quality 

metrics 

 

Supported Features Events, properties, relations 
Declarative, properties, 

relations, set theory 

Declarative, Functional, Built-

in attributes and metrics, 

statistical fns. 

Declarative, built-in code 

analysis functions. 

Boolean connectives *    

Quantifiers *    

Modalities *   Not Required 

Temporal Events *    

Preconditions *    

Post conditions     

Complexity     

User-Extensibility     

Limitations 
No aggregation functions,  no 

historical data 
 

No control flow, no alterable 

state 
Work on source code AST 
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To find a workaround to this problem, we have compared our approach expressiveness and 

usability with different system properties and metrics specification languages including the Event 

calculus with different extensions as explained in [190], PMSL (performance metrics specification 

language) [203] , GMSL (Goanna Metric Specification Language) [205]. Details of these metrics’ 

and properties’ specification languages are covered in the related work chapter. Table  9-3 shows 

that our OCL-based security metrics’ specification language is more rich and expressive in 

developing different types of metrics. The main observations from this comparison are: the usability 

(complexity feature) and extensibility of our language compared to others mainly event Calculus. 

Another key feature is the support of aggregation functions that are mainly used in data reduction 

and extraction of meaningful metrics from the collected measurements. 

9.6.2 Approach Soundness 

In these experiments, we assess our approach accuracy and soundness in two key points: the 

security probes automatic generation from the security metrics’ signatures; and analysis results of 

the security analysis service which is based on metrics’ signatures. Other relevant points to be 

evaluated include the deployment of generated security probes (this depends on the MDSE@R 

system wrapper component which is based on Microsoft application blocks), and the extraction of 

security measurements from current system requests and status (this depends on accuracy of the 

user defined attributes and expressions specified to extract such attributes). Thus, we focus on the 

generation of security probes and evaluation of metrics’ expressions. 

A key problem we faced in this experiment is that we need to consider different variables related 

to system usage and our security monitoring soundness including number of concurrent users, 

number of requests per second, number of malicious requests sent to the software system, and 

system entities to be accessed. A possible solution is to conduct a set of planned experiments with 

different sets of variables’ values to assess the security monitoring platform. In our evaluation, we 

have used a random number generator to generate random numbers for each of experiment variables 

– i.e. number of users, requests, etc. At every time step, we generate a random number that is used 

to represent number of concurrent users. Then we generate a random number for the number of 

requests to be issued for each concurrent user. The same applies for each experiment variable. For 

system entities to be accessed, we generated a hash map of system entities with IDs. Based on the 

generated random number we retrieve the system entity to be requested. 

Table  9-4 shows the experimental evaluation results of our platform on GalacticERP service (our 

motivating example) using a set of four security metrics shown in Table  9-1. We have done three 

consecutive trials (time steps). For each experiment we assessed our platform capability in 

generating security probes (column “P”), generating metric evaluation expression (column “E”), 
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and testing the system with the metric deployed using a random number of users, requests, and 

malicious requests (column “A”). This column shows the metric value calculated using metric 

evaluation expression generated from the metric signature. Each experiment has a set of attributes 

including number of concurrent users, number of generated requests, how many of these requests 

are malicious. These attributes’ values are set using random number generator. Furthermore, we 

assume that all requests are not within the same session. Thus, every request sent by the user need 

to be re-authenticated and re-authorized. 

The metrics values show that monitoring platform successfully intercepted requests, generated 

measurements, and analyzed these measurements correctly. For example the authenticated request 

metric value was 100% which means that all system requests have been authenticated. The ratio of 

the authentic requests also conforms to the ratio of malicious requests in each experiment. The ratio 

of logging activity reflects how many requests were sent to the logging control compared to the 

total number of system received requests. 
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Figure 9-6. Performance overhead grouped by monitoring stage 

9.6.3 Performance Overhead 

In these experiments, we aimed to assess the performance overhead of our security monitoring 

platform in five points: generating security probes and metric evaluation function; deploying probe; 

intercepting system execution; extracting system measurements required by specified security 

metrics; and evaluating metrics from collected security measurements. The system interception and 

measurement collections have impact on systems performance. The other efforts are done offline 

without impact on system at all. Table  10-5 summarizes the time taken in each of these points in 

milliseconds. It is worth mentioning here that measurements extraction is repeated according to the 

usage of the system – i.e. number of system requests. Figure  9-6 summarizes the performance 
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overhead incurred in the metric preparation step, measurement collection, and metric evaluation. 

We measure the performance overhead of the measurement collection with 100 system requests. 

The same with the metric evaluation, the input to the evaluation function is (100) measurements. 

The time displayed is scaled using (log10) for visualization. 

9.7 Discussion 

We introduce a security monitoring approach that helps in automating the realization and analysis 

of security metrics. Our approach is based on adoption of OCL supported with a system description 

meta-model to help in capture security metrics’ signatures. Our platform uses these signatures to 

generate probes, deploy probes at critical system entities, and generate security analysis classes that 

analyse probes’ generated measurements. We have evaluated the approach expressiveness, 

usability, soundness and performance overhead.  

Extensibility to support automation of operational and managerial security metrics: enterprises 

usually have different systems other than IT systems (either used for operational or managerial 

purposes) where security engineers would like to assess their security level as well. Moreover, 

different security systems are usually operated in these enterprises where security engineers would 

like to aggregate their reported results. A possible way to address this issue in our approach is to 

add those systems’ logs to our measurements repository. This enables security engineers to develop 

operational and managerial security metrics [275] that work on these measurements. A possibility 

for automation is also feasible given that we can develop adaptors that integrate such systems with 

our security management platform.   

A key further extension of our approach is to develop an automated adaptive security approach 

that uses the results of the security monitoring platform along with the corrective actions to address 

reported deviations from the normal behavior of the system. Furthermore, we plan to extend our 

platform with more abstract metric specification language (may be based on natural language or 

using model-driven techniques) to help security engineers in developing metrics without a need to 

learn new languages. This will require development of a parser that can extract metric signatures (in 

OCL) from such abstract definitions. 
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Table 9-4. Security monitoring evaluation results 

 

Time Step 
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#Users – – 69 – – 56 – – 84 

#Requests – – 3429 – – 3180 – – 4455 

#Malicious Requests – – 2096 – – 1921 – – 2631 
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Authenticated Requests   100%   100%   100% 

Authentic Requests   61%   60%   59% 

Mean Time Between Unauthentic Requests (sec)   2   1   2 

Logging Activities   85%   87%   88% 

Table 9-5. Performance overhead of our security monitoring platform 

Aspect  /  Metric Generate Probe Deploy probe Intercept Exec. Extract Measures Evaluate Metric 

Authenticated Requests 10 3 5 6 4 

Authentic Requests 11 3 5 7 8 

Last(10) Requests to 

Authorization Control 
5 3 5 6 3 

Top(10) Admin Requests to 

Authent. Control 
5 3 5 5 4 

Mean Time Between 

Unauthentic Request 
14 3 5 5 18 

Logging Activities 10 3 5 5 7 
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9.8 Chapter Summary 

In this chapter we introduced our new security monitoring approach that we developed to complete 

a full security management cycle, after previously defining security (security analysis and security 

models) and enforcing security (security engineering and retrofitting). The security monitoring 

component covers the security dynamic analysis part. The security monitoring approach is based on 

the same concept used in the system security analysis and security retrofitting which is to abstract 

system details in a system description meta-model and using OCL to develop security metrics’ 

signatures (invariants and constraints) on this abstract level. Using our extension of the OCL parser 

we extract security probes and conditions to apply. Furthermore, we extract the security 

measurements’ analysis module that analyse and summarize collected metric measurements. We 

have evaluated our approach expressiveness, soundness, and performance overhead. 
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  Chapter 10

Case Studies 

Throughout this thesis, we have explained in detail how our model-based cloud computing security 

management approach works and how we evaluated each component individually. In this chapter 

we introduce a set of case studies as a part of evaluating our platform. We have selected three 

different security problems that arise from the adoption of the cloud computing model. These 

problems are critical, and represent hot research areas in the cloud computing area. Moreover, our 

approach to address these case studies depend on using multiple components from our platform. 

This also justifies why we introduce these case studies in a separate chapter and not as an integrated 

part of the approach chapters (5-9): 

– Case Study No.1: Online Automated Cloud Applications Security Virtual Patching: This case 

study addresses the problem of public accessibility of the cloud platform which increases the 

potential of being under attack and exploiting cloud services vulnerabilities. To address this 

problem we introduce VAM-aaS as a comprehensive and integrated solution composed of the 

vulnerability analysis and MDSE@R components of our security management platform. This 

enables VAM-aaS to work as an online vulnerability analysis and mitigation service that keeps 

analyzing cloud services looking for vulnerabilities. Whenever a new vulnerability is found a 

set of agreed on actions are applied to block such new security hole. 

– Case Study No.2: Supporting Multi-tenancy Reengineering using Re-aspects: This case study 

addresses the security isolation problem that arises from adopting cloud computing model. 

Getting tenants to share the same service instance means that we have to filter data they can 

access which is specific to them and according to their assigned roles and permissions. To 

address this problem we introduce SMURF as an easy to use tool to help reengineering legacy 

applications to support multi-tenancy. 

– Case Study No.3: Supporting Multi-tenancy Reengineering using Re-aspects: This case study 

addresses the whole problem of getting cloud services to reflect different sets of security 

requirements for different tenants and getting these sets to be changed at runtime. Moreover, it 

addresses how to adapt security requirements according to current security status. Finally, to 

incorporate security controls relevant to mitigate specific vulnerabilities. This case study covers 

the whole process of tenant-oriented cloud services security management. 
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10.1 Case Study No.1: Online Automated Cloud Applications 

Security Virtual Patching 

However, the potential benefits reaped from the adoption of the cloud computing model, these are 

threatened by the public accessibility of the cloud-hosted services and sharing of resources among 

different tenants. This increases the possibility of malicious service attacks. Existing cloud 

platforms do not provide a means to validate the security of the offered cloud services. Moreover, 

the public accessibility of cloud services increases the potential for exploitation of newly discovered 

vulnerabilities that usually take a long time to discover and to mitigate. We introduce VAM-aaS, 

Vulnerability Analysis and Mitigation as-a-Service, as a novel, integrated, and online cloud-based 

security vulnerability analysis and mitigation service. VAM-aaS performs online service analysis to 

pinpoint new vulnerabilities/weaknesses. It then uses this information to generate security control 

integration scripts to block these discovered security holes at runtime. Our approach is based on the 

vulnerability signature and mitigation-actions specification approach discussed in Chapter 8. This 

case study is organized as follows. Section 1 explains why automated vulnerability mitigation 

becomes a key requirement. In Section 2, we introduce our approach and the proposed VAM-aaS 

architecture details. In Section 3, we summarize evaluation results from evaluating our approach. 

10.1.1 Introduction 

The cloud model is based on service outsourcing for hosting on third-party platforms outside of the 

enterprise network perimeter. However, the cloud model also introduces new opportunities for 

attackers to exploit the publicly accessible valuable cloud services. Adopting the multi-tenancy 

model increases the exploitability of service vulnerabilities because one of the service tenements 

(who has been granted privileged access on the cloud service) may be malicious users. This means 

that they can exploit complicated vulnerabilities that require higher privileges rather than being a 

public user. Moreover, the number of newly discovered vulnerabilities is increasing rapidly. Web 

applications (the prominent application delivery model used in SaaS applications) continue to make 

up the largest percentage (63%) of the total reported vulnerabilities [60].  

Commercial vulnerability scanners such as IBM-AppScan, HP-Web inspect, McAfee tools focus 

mainly on black-box vulnerability analysis to avoid being limited to specific programming language 

or platform. However, none of these scanners cover all known vulnerability types [116]. On the 

other hand, existing research efforts [60, 109-111, 113, 117] focus on discovering specific 

vulnerability types including SQLI [107, 115], XSS [112, 115, 118], or input sanitization [119, 121] 

using static analysis [114, 117], dynamic analysis [115], or hybrid techniques [120, 264].  
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The key problems with these efforts include: they provide specific techniques for specific 

vulnerability types; proposed techniques apply on specific platforms or programming languages; 

they do not support analyzing for new vulnerability types. On the other hand, these limitations are 

key requirements for cloud services’ vulnerability analysis tools. An online vulnerability analysis 

approach that supports locating well-known as well as new vulnerabilities without waiting for new 

tool patches is a must to have in the cloud computing environment. 

On the other hand, mitigating application vulnerabilities is usually done manually by modifying 

application source code and deploying new patches; however, this takes a long time as shown in 

Figure  10-1. This lagging time between vulnerability detection and patching means that the service 

remains vulnerable to security breaches exploiting such vulnerabilities. The possibility of 

vulnerability exploitation increases dramatically in the cloud, given the public accessibility of the 

cloud services and sharing of services with multiple tenants. Thus, the cloud computing model 

requires an online vulnerability patching approach that can block such vulnerabilities once reported. 
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Figure 10-1. Average time to fix security vulnerabilities (in days) 

We introduce VAM-aaS as a new integrated solution to cloud-based services vulnerability 

analysis and mitigation problems. VAM-aaS is based on the formalized vulnerability signatures as 

well as enumerated mitigation actions to block such vulnerabilities. Vulnerability signatures, 

developed using OCL, are specified as invariants, when matched; it means that the specified 

vulnerabilities do exist in the application/service under analysis. These signatures are validated 

against a comprehensive system description meta-model (represents language semantics) covering 

most of the object oriented program concepts/entities. To support locating new types of 

vulnerabilities, security experts will need to update the vulnerability analysis service repository with 

the OCL-signatures of the new vulnerability. 

The vulnerability mitigation actions specify a set of security solutions that can be used to block 

“virtual patching” the discovered vulnerabilities reported by the analysis component. It also 

specifies the configurations and rules that should be applied when activating security controls. We 
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modified MDSE@R to work as a vulnerability mitigation component that uses these vulnerability 

mitigation actions (instead of tenants’ security requirements as explained in Chapter 6) to plug-in 

the specified mitigation security controls within the target vulnerable service/application online. 

Thus, our proposed mitigation component is not limited/hardcoded to specific security controls as it 

depends on a simplified security interface that security controls should satisfy in order to be 

integrated with our mitigation component explained in Chapter 6.  

Hosting Service

Vulnerability Analysis Vulnerability Mitigation

Vulnerability Definition Schema

Reported 
Vulnerabilities

Signatures Mitigations

SaaS Application
Vulnerabilities Mitigations

2 5
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Figure 10-2. VAM-aaS Key components, relations and possible interactions 

10.1.2 VAM-aaS 

Our security vulnerability analysis and mitigation approach is based on (i) our formalized 

vulnerability signature and potential mitigation actions specification approach; (ii) an extensible 

vulnerability analysis tool that performs OCL-based vulnerability signature-based program analysis; 

and (iii) a vulnerability mitigation component that blocks service/application security vulnerabilities 

by generating configuration and integration scripts that integrate security controls at the 

application/service reported vulnerable points. In Figure  10-2, we summarize the possible 

interactions between the vulnerabilities definition repository, analysis and mitigation components, 

applications/service, and the hosting services (Web Server, Operating System, another PaaS, etc).  

10.1.2.1 Vulnerability Definition Schema 

Existing software security weaknesses, or vulnerability definitions, in the Common Weakness 

Enumeration (CWE) [27] database help in understanding the nature of a given vulnerability. 

However, these vulnerabilities’ definitions are informal. This requires manual analysis (by security 

experts) to locate such vulnerabilities in the applications under analysis. This is very hard to satisfy 

in the cloud computing model as services are already outsourced. Formalizing these vulnerability 

definitions helps automating the vulnerability analysis and mitigation process. In chapter 8, we gave 

a detailed explanation of our proposed vulnerability definition schema which include vulnerability 

signature, category, preconditions, consequences, mitigation and prevention actions, and so on. In 
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this case study we focus on the vulnerability signature specification and vulnerability mitigation 

actions attributes in a given vulnerability definition. 

As we explained before, a formal vulnerability signature should be specified on an abstract level 

far from the source code and programming language details, enabling locating of possible 

vulnerability instances in different programs written in different programming languages. We use 

Object Constraint Language (OCL) as a well-known, extensible, and formal language to specify 

semantic rather than syntactical signatures of security weaknesses. To support specifying and 

validating OCL-based vulnerabilities’ signatures, we have developed a system-description meta-

model. It captures the main entities in any object-oriented program and relationships between them 

including components, classes, instances, inputs, input sources, output, output targets, methods, 

method bodies, statements e.g. if-else statements, loops, new objects, etc. Each entity has a set of 

attributes such as method name, accessibility, variable name, variable type, method call name. This 

model helps conducting semantic analysis of the specified vulnerability signatures.  

Discovered application/service security vulnerabilities can be mitigated in different approaches 

including: modifying application source code to block the identified problems (patches); however, 

this solution is hard to adopt in the cloud model as it may take long time to deliver patched version 

as shown in Figure  10-1. A quick solution is to use Web application firewall (WAF) to filter 

requests/responses that exploit such vulnerabilities; however, WAF has many limitations including 

it does not help in output validation, cryptography storage, and mitigating improper authorization. 

We introduce a new approach that supports integration of different security controls including 

identity management, authentication controls, authorization controls, input validation, output 

encoding, WAF, cryptography controls, etc.  Each vulnerability definition has a set of mitigation 

actions that specify how to mitigate such vulnerability. Each mitigation action defines a security 

control type/family to be used in mitigating the related vulnerability, its required configurations, 

and application/service entity where the security control will be integrated with (hosting service 

including web servers or operating systems, components, classes, and methods). Thus, a reported 

SQLI vulnerability in a method (M) that belongs to component (C) can be mitigated by adding input 

sanitization control (Z) on component (C) that filter out SQL keyword from every single request to 

the method (M). 

Table  10-1 shows examples of mitigation actions for some of the well-known security 

vulnerabilities. These actions should be specified in XML and included as a part of the formalized 

vulnerability definition. In Chapter 8 we introduced a set of proposed signatures that could be used 

to identify vulnerabilities in a given service/application. 
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Table 10-1. Examples of vulnerability mitigation actions 

Vulnerability Security Control Entity Level 

SQLI Input sanitization Method level 

XSS Input encoding Component level 

Authn. Bypass WAF Component level 

Improper Authz. Authorization Method Level 

 

10.1.2.2 OCL-based Vulnerability Analysis 

Given that vulnerability signatures become now formally specified using OCL, the static 

vulnerability analysis component simply traverses the given program looking for code snippets with 

matches to the given vulnerabilities’ signatures. The architecture of our formal and scalable static 

vulnerability analysis component, as shown in Figure  10-3, is already explained in Chapter 8. 
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Figure 10-3. OCL-based vulnerability analysis component 
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Figure 10-4. Vulnerability Mitigation Component 
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10.1.2.3 Vulnerability Mitigation 

The analysis component outputs a list of the newly discovered vulnerabilities in each of the cloud 

hosted SaaS applications (Figure  10-4-1). Each entry in this list has a service/application vulnerable 

entity (method, class, or component) along with the list of discovered vulnerabilities. Given this list 

of vulnerabilities, the security vulnerability mitigation manager queries the vulnerability definition 

schema database (Figure  10-4-2) to retrieve the appropriate actions to be taken in order to mitigate 

each of such reported vulnerabilities. Examples of the retrieved actions are shown in Table  10-1. 

Using these two lists (vulnerable entities and mitigation actions), the vulnerability mitigation 

manager (Figure  10-4-3) decides the patching level (component level, class level, or method level) 

using e.g. HttpModules, object interceptor using dependency injection, or method level interception 

using dynamic weaving AOP respectively. These details are maintained in a security specification 

document for each application (Figure  10-4). Moreover, the mitigation manager uses the registered 

security services’ properties to decide which security service realizes what security control type 

specified in the mitigation action – e.g. the identity and access management control is currently (on 

this platform) realized by identity manager. Finally, the vulnerability mitigation manager updates 

the security specification document (Figure  10-4-5) with the list of actual security services to be 

triggered whenever the application receives request to every vulnerable resource. The application 

wrapper (Figure  10-4-6) is responsible for intercepting requests to entities specified in the 

application interceptors’ document – i.e. vulnerable entities. These requests will be redirected to the 

security kernel (Figure  10-4-7). The security kernel queries the security specification document to 

get the security controls/services to be enforced to patch the requested resource. Then, it generates 

calls/requests to these security services (Figure  10-4-8). When these services return, the security 

kernel returns the control back to the called resource. This is a bit modified version of MDSE@R to 

replace secure-system model that is developed by service provider and tenants with vulnerability 

list and reference vulnerability definition repository. 

10.1.3 Experimental Evaluation 

The key objectives of our evaluation experiments are to assess the soundness of our VAM-aaS in 

capturing different vulnerabilities’ signatures, detecting these vulnerabilities in given applications, 

and in mitigating them. We apply the OCL-based vulnerability signatures examples and mitigation 

actions discussed in Chapter 8. We used the full set of benchmark applications (discussed in chapter 

4) applied in the security analysis task as explained in Chapter 8. To assess the effectiveness of our 

approach we use the same evaluation metrics including precision, recall and f-measure to measure 

our approach soundness and completeness. The results of evaluating our analysis component 

applied on benchmark suite to identify four of the Top10 web applications vulnerabilities 

(OWSAP2010) are already presented in Chapter 8 for the security analysis part.  
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Table 10-2. Results of VAM-aaS vulnerability mitigation component  

App 

SQLI XSS Authn. Bypass Improper Authz. 

TP FP FN TP FP FN TP FP FN TP FP FN 

Galactic 2 1 0 4 1 0 4 0 0 2 1 0 

Splendid 14 0 0 7 1 0 3 2 0 3 0 0 

KOOBOO 14 2 0 10 3 0 4 1 0 12 0 0 

BlogEngine 4 0 0 4 2 0 0 0 0 4 2 0 

BugTracer 10 0 0 1 0 0 4 1 0 1 1 0 

NopCommerce 19 0 0 5 0 0 0 0 0 1 0 0 

Webgoat 9 0 0 5 1 0 4 2 0 3 1 0 

Total 72 3 0 36 8 0 19 8 0 30 5 0 
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Figure 10-5 Effectiveness of the security mitigation component 
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Figure 10-6. Performance overhead of the security mitigation component 
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Table  10-2 summarizes our experiments’ results applied on benchmark suite to mitigate the 

vulnerabilities reported by the vulnerability analysis component. It shows the number of TP, FP, 

and FN. A key observation from this table is that the mitigation component does not have false 

negatives which means that no missing points that has not been mitigated. 

Figure  10-5 shows precision, recall, and F-measure for the mitigation component, we have 

incorporated the results returned from the analysis component with the FN missed vulnerabilities. 

Although the recall rate is (100%) which means that we did not miss any of the specified 

mitigations, we have an average of (85%) precision – i.e. high FP - as we may secure entities that 

have no security problem. This depends on the accuracy of the specified mitigation actions. 

Figure  10-6 shows the performance overhead of the mitigation component with different 

numbers of concurrent users and numbers of critical/vulnerable points (on a Core2Duo desktop PC 

with 4GB Memory). The performance overhead equals the time spent by the security kernel to 

query security specification document and get security controls to be employed in securing 

intercepted point, and time spent in calling these security controls. The time spent by the security 

controls themselves we do not factor in, as this needs to be spent whether using our approach or 

traditional hard-coded security. Performance can be further improved using replicas of the 

mitigation component with different services and platforms. 

10.1.4 Discussion 

We developed a formal vulnerability definition schema including vulnerability signature and 

mitigation actions, extensible vulnerability analyzer based on the proposed signature specification 

schema and applied on abstract program representation, and a vulnerability mitigation approach 

based on dynamic and runtime injection of security controls into vulnerable entities. Using OCL 

allows adoption of existing validation and query parsing tools. Using abstract representation helps 

generalizing and abstracting the security analysis task from specific programming languages or 

platform details. It also helps making the approach more scalable for larger applications. Use of a 

common security interface helps integrating different security controls without a need to develop 

new system-security control connectors.  

From our experiments with mitigation actions and security controls integration, we found that 

although using web application firewalls is a straight forward solution, it is not always a feasible 

option to block all discovered vulnerabilities. The selection of the entity level to apply security 

controls on (application level, component level, method level, etc.) impacts the application 

performance – i.e. instead of securing only vulnerable methods, we intercept and secure (add more 

calls) the whole component requests. A key point that worth mentioning is that the administration of 
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security controls should be managed by the service/cloud provider administrators. Our focus is 

integrating controls within vulnerable entities. 

Our vulnerability mitigation component works online without a need for manual integration with 

the applications/services under its management. The overhead added by the mitigation action can be 

easily saved if the service developers worked out a new service patch. In this case, the vulnerability 

analysis component will not report such vulnerability. Thus, the mitigation component will not 

inject security controls. Our experimental results show that the OCL-based analysis tool achieves 

(90%) precision rate and (92%) recall rate while our mitigation component achieves (100%) recall 

and (85%) precision rate.   

  



 Chapter 10: Case Studies 

Page 245 

10.2 Case Study No. 2: Supporting Multi-tenancy 

Reengineering using Re-aspects 

In this case study, we address the multi-tenancy reengineering problem that obstacles service 

providers from adopting the cloud computing model to host their applications. One of the key issues 

that must be addressed in multi-tenancy reengineering is how to support security isolation between 

different tenants’ data. To address this problem, we have applied our reengineering aspects “re-

aspects” concept to help in this task. This case study is organized as follows. In Section 1, we 

discuss an overview of the multi-tenancy reengineering and security isolation problem. In Section 2 

we introduce an analysis of the SaaS multi-tenancy reengineering requirements. Section 3 goes 

through usage example. Section 4 shows our experimental evaluation results and discusses 

implications of our approach. 

10.2.1 Introduction 

Multi-tenancy helps in delivering services including infrastructure, platform and software that can 

be shared between different tenants. In the IaaS model, multi-tenancy is achieved through using 

hypervisors that virtualize the server resources. Thus the Operating System itself does not need to 

be modified. Moreover, each customer has a separate instance (VM). However, In the SaaS model, 

multi-tenancy has different possible deployment models including a separate instance for each 

tenant up to a single instance for multiple tenants. The later deployment model is definitely the 

optimal model. However, it requires the SaaS application to handle multi-tenancy and tenants 

isolation themselves.  

Supporting multi-tenancy requires the SaaS application to support capturing, processing and 

storing data of different tenants in the same application instance. Moreover, the SaaS application 

should maintain security and performance isolation between its tenants. This requires considering 

multi-tenancy as a key requirement from the early stages of the system development process. Many 

of the existing well-known, large-scale business applications that are widely used nowadays are 

locked-in a high cost business model. This prohibits them from targeting/servicing the “long-tail-

market”. Thus, it becomes a business need to migrate such applications to support multi-tenancy. 

Migration of such applications to support multi-tenancy is a very complicated task as it requires a 

deep understanding of the application. Moreover, multiple system modifications are required to be 

delivered. This requires revising/updating almost all system modules.  

Existing multi-tenancy efforts focus either on extending applications to support multi-tenancy by 

wrapping a single-tenant application with a platform that manages the multi-tenancy dimension [22-

24, 230, 232, 280]. The same approach has been followed in industrial efforts as well [281]. Using 

these approaches, applications are locked-in to cloud platforms that have such multi-tenancy 
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platform hosted. Moreover, features such as user interface customization, application model 

extension, etc. will not be available for tenants if the original applications do not support them. 

Limited efforts targeted conducting real reengineering of applications to support multi-tenancy 

[282, 283]. These efforts focus only on providing a systematic process to be followed by system 

engineers to support multi-tenancy. They do not provide tool support to facilitate process. 

Our multi-tenancy reengineering approach is based on reengineering-aspects “Re-Aspects” 

concept where a given system modification (change request) details are captured as a re-aspect. A 

re-aspect includes a signature of code snippets to be modified; action to be applied on identified 

code matches (instances of these signatures) include inserting, modifying, replacing, or deleting 

code parts; and code to modify, replace or insert. We conduct a thorough analysis of the multi-

tenancy pattern for web applications and come up with a set of key requirements/modifications that 

should be addressed at the database, data access layer, business logic layer, and presentation layer. 

Moreover, we studied the requirements for security and performance isolation. 

We developed a set of modification patterns that system engineers can use when reengineering 

their applications to support multi-tenancy. Given these modifications specified as re-aspects, we 

analyse the system source code to identify code snippets that match specified re-aspect’s signatures, 

and then it performs impact analysis to identify matched entities that need to be modified to realize 

the given modifications. Finally, we use the specified re-aspect actions to update the identified 

matches.  

10.2.2 Multi-tenancy Requirements Analysis 

We introduce an analysis of the potential modifications that may be required when reengineering an 

application to support multi-tenancy. We project our analysis to a typical architecture of a web 

application explaining what need to be added, modified, replaced, or deleted during the process of 

supporting multi-tenancy. This analysis is also helpful for service providers who plan to develop 

new multi-tenant SaaS application. Service providers have to make their own decisions based on 

their application architecture and the multi-tenancy paradigm they plan to adopt including single-

instance single tenant, multiple-instance multiple-tenant, and single-instance multiple-tenant.  

10.2.2.1 Multi-tenant Data Model 

The multi-tenant application’s database has different possible architecture models. The service 

provider has to select between these architecture models based on the isolation level they plan to 

deliver, scalability of the application, number of tables, expected sizes of the data tables, and impact 

on system performance. These architecture models include [13]:  
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- Separate Database: In this model, the service provider maintains a separate database for every 

tenant. This represents the highest level of isolation of the four models. Moreover, it is the 

easiest model for migration. On the other hand, database servers are usually limited in number of 

databases that they can host – e.g. SQL Server theoretically can support 32,767, however, 

practically it supports up to 2000 database instances with max number of concurrent connections 

up to 1000.  

- Shared Database but Separate Schema: In this model, all tenants share the same database but 

different schemas. Thus each tenant has his own set of tables grouped under one separate 

schema. This provides a logical isolation between tenants’ data. However, this approach helps 

mitigating limitations in the previous model; it suffers from database backup and restore 

problem. Moreover, it is mainly suitable for applications that have small number of tables.  

- Shared Database and Shared Schema: In this model, all tenants share the same database and the 

same schema. Although this model is considered the most cost effective solution, it highlights 

the isolation problem between tenants’ data. Developers have to make sure that every tenant 

cannot access other tenants’ data. This may require modifying the whole application to consider 

filtering by tenantID in every query. This requires an intensive analysis of every system 

function. A simple common solution to this problem is to use database views to perform the 

filtering task. This in turn requires modifying all database queries to work on views-level not 

tables. A possible tricky solution to save such efforts is to rename all tables to be (initial + table 

name) – e.g. rename table Employees to sys_Employees. Then create views for all tables with 

the original table name – e.g.  

EXECsp_rename‘Employees’,'sys_Employees'  

CREATE VIEW Employees AS 

SELECT * FROM sys_Employees WHERE TenantID = USERID 

 

Thus all application queries will be projected automatically on views where data are already 

filtered by the current tenant. Of course, this requires using security impersonation (to allow the 

application to take the identity of the requesting user) when application connects to the database 

server. Another possible option is to modify the database connection in the data access layer so 

that all requests are redirected to a proxy where queries are validated and filtered before 

submitted to the actual database. 

- Mixed Model: In this model, the service providers support different data models (of the three 

models discussed above) and leave it to tenants to select the model that best fits their needs in 

terms of scalability, security, performance and cost – e.g. Tenant T1 may decide to use shared 

schema model as it is less expensive and he is not worried about his data security. On the other 

hand, Tenant T2 may decide to use separate database model to maintain his data as he is very 
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keen about his data security. From the service provider perspective, this model (mixed-model) 

requires to support the three data models. Hence, service providers should conduct cost-benefit 

analysis (market share gained against cost) before delivering this model. Based on requesting 

user’s tenant, the system (data access layer) should either connect to the shared database or to 

the tenant separate database. 

Another issue that should be considered when architecting application data model is how to 

enable data model extensibility – i.e. every tenant may have special fields or data items that they 

need to maintain for every operation (record). This is straight forward when maintaining separate 

database or separate schema per tenant. However, it still has to be propagated to the next layers. 

There are different approaches to realize the data model extensibility including: pre-allocated fields 

where service providers define a set of dummy columns in every table they expect that their tenants 

may need to extend; Name-value pairs where the service provider defines one or more table to 

maintain other tables extensions. This table structure will look like (TableID, TenantID, 

attributeName, attributeValue); and XML extension column where every table has a predefined 

column of type XML where tenant extension columns can be maintained as one entity that can be 

saved and loaded. The selection of the database model and the model extensibility to adopt, impacts 

the modifications required in the next layers/tiers.  

10.2.2.2 Application Layers 

In data access and business logic layers we need to modify public methods’ signatures to expect 

tenantID as a parameter. Methods’ bodies should be modified as well to process the tenantID – e.g. 

adding tenantID to database queries, file access commands, database connection strings, loading 

business rules, loading and initializing workflow engine based on current tenant. TenantID is 

usually propagated from the presentation layer to these layers. Both the data access layer and the 

business logic layer should handle custom fields (data model extension) based on the model adopted 

in the data model. This includes handling load, store, and query of these custom fields. Business 

objects’ classes should be modified to include tenant’s specific data members. 

In the presentation layer we have a set of potential modifications including user interface 

customization and branding (e.g. company logo, styles, themes, etc.), adding TenantID to session 

state, modifying calls to business logic layer functions to pass tenantID, modifying used business 

objects to set/get tenantID. Moreover, the presentation layer should support displaying different 

custom fields based on the current requesting user’s tenant 
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using (DbCommand command = db.GetStoredProcCommand("dbo.GetEntityDefFields")) { 

                db.AddInParameter(command, "tenantId", DbType.Guid, tenantId); 

                db.AddInParameter(command, "entityDefName", DbType.String, entityDefName); 

                using (IDataReader reader = db.ExecuteReader(command)) 

} 

Figure 10-7. Example of modifications in the data access layer 

 

Figure 10-8. Examples of required modifications in application logic layers 

10.2.2.3 Non-Functional Requirements 

A multi-tenant application has to be scalable to support the potential number of tenants and their 

workloads. This requires the service providers to deploy their application on web farms and 

clusters. SaaS SLAs usually capture tenants’ security, performance, availability, and reliability 

objectives requirements that should be satisfied by the SaaS application. This resulted in issues 

related to how to maintain performance isolation where the execution flow of a given tenant should 

not be impacted by other tenants’. Load balancers with performance controllers can help in solving 

this problem. However, it requires applications to be stateless. SaaS applications should maintain 

session information either on client side or on a shared server that is accessible to all other servers 

in this cluster.  

Security is another nonfunctional requirement that should be addressed. A SaaS application 

should support customizing applications to support tenants’ security “tenant-oriented security”. This 

can be achieved by externalizing the security from the multi-tenant system by calling a standard 

library that performs authentication, authorization, etc. based on tenants’ requirements and security 

controls. This enables every tenant to use his security controls – e.g. to use his LDAP server to 

authenticate and authorize users.  
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Table 10-3. Multi-tenancy change requests organized by architecture layer 

Layer Change Request 

Presentation 

Layer 

1. All web pages should load layout, localization and menus based on 

requesting tenant. 

2. Entity extension fields should be loaded based on current tenant. 

3. Every page grid-view column, user control should be enabled based on user 

security customization for current user’s tenant. 

4. All business functions should receive tenantID param. 

5. Set tenantID field for every business entity created in the presentation or the 

business logic layer. 

6. All entities display pages should include the tenant defined custom fields. 

7. All entity insert/edit pages should include the tenants’ defined custom 

fields. 

Business 

Layer 

8. All workflow definitions should filter by tenantID. 

9. Update web services to have tenantID param. 

10. Update all business functions to have tenantID param. 

Data Access 11. All SQL queries should filter by tenantID. 

12. All Linq queries should filter by tenantID. 

13. All stored procedures should have parameter tenantID. 

14. All business entities should have extra attribute of tenantID. 

Database 15. Update all database tables with tenantID column. 

16. Add new table for tenants’ data. 

QOS 17. User Authentication and Authorization should be done through the 

customer security controls, if any. 

18. Support Load balancing and meet tenants’ SLA. 

10.2.2.4 Tenant On-boarding and Metadata service 

The registration of a new tenant should be managed by a separate tenant administration service 

(may be an extension of an existing system administration module). This includes batches to restore 

a new database instance of the system template if the “separate DB” model is applied, or create a 

new schema with necessary tables. This module should also enable specifying security permissions 

for users, roles, screens and controls. It may also include screens’ customization and localization. 

The metadata service is a key module in a multi-tenant application. It helps tenants and service 

providers to customize (branding) the application to match tenants’ business needs. This includes 
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customizing the user interface text, fields, visibility, and security capabilities, customizing the 

business workflow, business rules, and custom fields. Table  10-3 shows a summary of the 

modifications required in reengineering a given system to support multi-tenancy grouped by the 

application layer where each modification applied. Table  10-4 shows the re-aspects’ signatures 

required to located entities to be modified in relation to the modifications specified in Table  10-3. 

Table 10-4. List of re-aspects signatures for modifications in Table 10-3  

CR Change Request Signature 

1 Context Method inv loadMethods: self.Class.GetBaseType() = “Page” AND self.Name = 

“Page_Load” 

2 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name = 

“Page_Load” AND self.Contains(s : IfElseStatement | s.condition = “Page.IsPostBack” 

3 Context Method inv fieldSecurity: self.Class.GetBaseType() = “Page” AND self.Name = 

“Page_Load” AND self.Contains(s : IfElseStatement | s.condition = “Page.IsPostBack”) 

4 Context Method inv businessfns: self.Contains(s : InvocationExpression | 

s.fnName.Contains(“BusinessLayer”) )  

5 Context Method inv businessentity: self.contains(s : newObjectStatement | s.ClassName = 

“businessentity”)  

6 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name = 

“Page_Load” AND self.Contains(s : IfElseStatement | s.condition = “Page.IsPostBack”) 

7 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name = 

“Page_Load” AND self.Contains(s : IfElseStatement | s.condition = “Page.IsPostBack”) 

8 Context Method inv wrkflwfns: self.Class.Component = “Workflow” 

9 Context Method inv webservicemethods: self.Class.GetBaseType() = “Webservice” 

10 Context Method inv businesfns: self.Class.Component = “BusinessLayer” 

11 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName =  

“ExecuteScalar” OR “ExecuteQuery”) 

12 Context Method inv Linqqueries: self.Contains(s: QueryExpression) 

13 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName =  

“ExecuteScalar” OR “ExecuteQuery” 

14 Context Class inv businessentityDef: self.ClassName = “businessentity” 

15, 16 DB script 

17 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName =  “Redirect” 

AND TargetObject = “Response” AND Arguments.Contains(“Login.aspx”) 

18 Context Class inv sessionmgmt: self.GetBaseClassType() = “IHttpModule” 
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Table 10-5. Evaluation results of our approach on the benchmark applications 

CR Galactic PetShop SplendidCRM NopCommerce BlogEngine 

1 √ √ √ √ √ 

2 √ √ ● √ × 

3 √ √ √ √ √ 

4 √ √ √ √  

5 √ ○ ○ √ √ 

6 √ √ √ × √ 

7 √ √ √ × √ 

8 √ ○ × √ ○ 

9 √ ○ ○ √ ○ 

10 √ √ ○ √ ● 

11 √ √ √ √ √ 

12 √ ○ ○ √ √ 

13 ○ ○ √ √ ○ 

14 √ √ ○ √ √ 

Time 8 5 90 205 15 

(√) CR successfully implemented, (●) CR Partially succeeded. (×) CR modification 

failed, (○) CR is not required 

10.2.3 Experimental Results 

To evaluate our approach, we have selected a set of our benchmark applications and tried to apply 

the set of change requests we identified from our analysis in the previous sections using signature 

developed and summarized in Table  10-4.  

Table  10-5 shows that we have successfully applied our approach to migrate the benchmark 

applications. Some of these applications do not have features that we look for to change (○) – e.g. 

an application that does not provide workflow. Our approach failed to apply some changes on a set 

of given applications (×). This is specific for BlogEngine as code is mixed with html in the same 

file or use MVC pattern as in NopCommerce. Our approach has successfully implemented other 

remaining changes (√). We have evaluated our approach performance in locating instances to be 

updated for the given changes. Table  10-5 shows the total time taken by our approach to locate 

possible matches of the specified signatures. 
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10.2.4 Discussion 

We introduced a new multi-tenancy reengineering approach that helps software engineers in 

migrating their applications to support multi-tenancy. Our re-aspects concept helps automating the 

program analysis and system updating (change propagation) phases using re-aspects. Software 

engineers model their modifications to be applied on the target application in terms of reengineering 

aspects. A re-aspect capture the signature of system entities to be modified in terms of OCL 

constraints; actions to be applied including insert, replace, modify, and delete; and code to apply. 

Our approach then uses these re-aspects’ signatures to locate system entities to be modified and 

applying the actions specified for each re-aspect. We have developed a set of modifications that 

may be required to reengineer a given application to multi-tenancy. We used these modifications’ 

set in validating our approach against a set of five benchmark applications. Our approach 

successfully helped in upgrading these applications to support multi-tenancy.  
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10.3 Case Study No.3: Supporting Multi-tenancy 

Reengineering using Re-aspects 

We conclude this thesis with a case study that illustrates how the full platform components integrate 

together to deliver model-driven, multi-tenant, adaptive security management for cloud computing 

at runtime. To explain how our platform works, we start with an open source multi-tenant SaaS 

application, LitwareHR, developed by Microsoft to be used as a sample multi-tenant application. 

LitwareHR is a single instance multi-tenant SaaS Human Resources Recruiting SaaS application. 

This case study is organized as follows. In Section 1, we introduce the details of this case study and 

what scenario we are going to follow during our case study. In Section 2, we give details of the 

LitwareHR as our example SaaS application. In Section 3, we discuss the system description and 

security specification models that we will depend on through the whole case study. In Section 4, we 

introduce details and outcomes of the security analysis task. In Section 5, we explain how we 

reengineer LitwareHR to disable the built-in security capabilities of the system. In Section 6, we 

introduce different security models developed by different tenants of the service and how we 

integrate them using MDSE@R. In Section 7, we introduce a set of security metrics we want to 

follow up to conform the security status of our service assets and key mitigation actions.  

10.3.1 Case Study Flow 

Figure  10-9 shows the main steps, and possible relationships, that we are going to go throw in this 

case study. We possibly have two cycles: (1) security analysis, retrofitting, and patching, and (2) 

security management process. The first cycle starts with a deep security analysis task. This task 

should be a recurring and online task. The identified/reported vulnerabilities could be patched by 

modifying the system to patch such vulnerabilities using re-aspects engine, or could be patched 

using the MDSE@R “virtual patching”. The reengineering task could be applied as well whenever 

we apply our approach on an existing system with built-in security capabilities.  

The security management process (2) starts with defining security by service tenants. Then, the 

captured security details are realized using MDSE@R. Finally, the operated tenants’ security is then 

monitored using our security monitoring approach. The results are fed back to the security 

management component to report and update the specification of security to be operated. In this 

case study, we start with cycle (1) as a preprocessing step – i.e. to identify and patch existing 

vulnerabilities and also to disable the built in security capabilities. Then, we show how the normal 

security management process goes including capturing tenants’ security requirements, enforcing 

tenants’ security, and finally monitoring service security status. 
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Figure 10-9. Steps and relations of case study 

10.3.2 LitwareHR 

LitwareHR  is a sample multi-tenant SaaS application developed by Microsoft architecture strategy 

team to be used as guidelines for software vendors and developers who plan to develop SaaS 

applications. LitwareHR is based on a single-instance multi-tenant model where all tenants share 

the same service instance. LitwareHR uses a set of best practices in architecting and designing 

scalable and extensible software systems. Moreover, it uses a set of new technologies that help in 

developing such kind of applications. The main business delivered by LitwareHR is a recruitment 

management process which represents a key role of the HR department in any company. LitwareHR 

enables different tenants (companies) to outsource their recruitment process for third party cloud 

platform hosting LitwareHR to fulfill their business. LitwareHR has two key components: public 

site (that is used by applicants and employees to search and apply for jobs), and private site (that is 

used by employees to customize the application business, UI, and security).  

LitwareHR comes with a usage example, Figure  10-10, where two tenants Contoso (retail shoe 

chain) and Fabrikam (music school) adopt the software where each tenant has their own business 

requirements (workflow, and data), UI (styles, logo, etc.), and security requirements (authentication, 

authorization). However, the LitwareHR does not enable using tenants’ security controls. Those 

tenants are satisfied with the security requirements delivered by LitwareHR. We have added two 

new tenants to the usage example, Swinburne and Swine Market. Both tenants have their own 

security requirements and controls to be applied on their outsourced assets as we are going to 

discuss in the security engineering section later in this case study. 
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Figure 10-10. A simplified LitwareHR usage example 

10.3.3 LitwareHR – SDM and SSM 

Before we conduct security analysis, reengineering, or multi-tenant security engineering we need to 

develop system and security specification models that we can use in these tasks. However, we do 

not have any previous experience with LitwareHR. Thus, we had to spend some time (2 days) to 

understand the architecture and implementation details in order to figure out the delivered system 

functionalities. Fortunately, we found a set of system architecture diagrams that helped with this 

task. We deployed the application and used it for a couple of days in order to understand the whole 

set of provided LitwareHR features. Below we show and discuss the system and security details of 

the LitwareHR. 

- LitwareHR Features: LitwareHR delivers a set of features that are related to HR recruitment 

process and a set of helping features related to the multi-tenancy concept and how to address the 

configurability of tenants’ instances, as shown in Figure  10-11 (we developed from our 

understanding of LitwareHR). The main features delivered by LitwareHR includes: manage 

tenant instance (this includes customize look-and-feel, customize data-model, and customize 

workflow); manage tenant security (this includes mange roles, users and permissions); 

manage tenant recruitment (this includes posting jobs, searching for jobs, applying for jobs); 

and application evaluation (this includes interview, negotiation, acceptance, and rejection). 

LitwareHR is delivered with built-in security capabilities for authentication, authorization and 

secure communication channels for security critical capabilities. 
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Figure 10-11. LitwareHR feature model 
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Figure 10-12. LitwareHR architecture 
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Figure 10-13. LitwareHR security architecture 

- LitwareHR Architecture and Deployment: Figure  10-12 (provided by LitwareHR application 

developers) shows the LitwareHR architecture components with security components used. The 

LitwareHRWebsite component is the service provider website (published on the cloud platform) 

where tenants can register to use the LitwareHR service. This website is used to create separate 

copies of the public and private sites (as we will see later) and add required entries in the 

tenants’ database and LitwareHR active directory that is used to authenticate and authorize 

tenants and their users. The publicApp website is used to post jobs, search and apply for jobs, 

and update applicants’ recruitment process status according to tenant workflow. The privateApp 

website is used to configure the application according to tenant needs in terms of UI, security, 

data-model, and workflows. The Gateway component provides implementation of all 

functionalities used in the privateApp and publicApp components. In fact, the responsibility of 

the Gateway component is to delegate request from the presentation layer to the actual 

components/services in the business and services layer so that the presentation layer does not 

need to know how and who delivers the required functionality. The contracts component defines 

functionality interfaces that should be realized by business services. This contract is referenced 

by the presentation layer components to avoid being tightly coupled with the realization services 

(binding is done using configuration scripts). The services component delivers the realization 

services that implement the actual business functionalities used. The services component uses 

the Microsoft application blocks “Enterprise Library” to deliver the data access layer using the 

“DataAccess” block. 
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- LitwareHR Class Diagram: Figure  10-14 shows a part of the LitwareHR class diagram we 

extracted using reverse engineering of the system source code using Altova UModel toolset.  We 

have grouped some of these classes that are related together such as classes used in the contracts 

component (1); classes related to workflow entities (2); classes related to authentication service 

(3); and classes related to the presentation view and presenter classes (4). 

- LitwareHR Security: Figure  10-13 shows the main security components used by LitwareHR to 

deliver secure communication channels and interactions between LitwareHR components/layers 

and these security components. The main security components of LitwareHR are: 

BrokeredSender; BrokeredReceiver; authenticationHost; AuthorizationHost. These components 

are used to generate security tokens (BrokeredSender – in this case the presentation layer) and 

validate security token (BrokeredReceiver – services layer). Actually, the LitwareHR has other 

security components that are developed as part of the LitwareHR including ASP.NET custom 

membership feature that is used in authenticating and authorizing users in the publicApp 

component; and authentication and authorization services that are delivered by services 

component. 

10.3.4 Security Analysis 

The first step in our case study is to conduct a security analysis of the LitwareHR application to 

pinpoint the existing system security threats and vulnerabilities that we should mitigate. The 

objective of this task is to mitigate as much vulnerabilities as possible before publishing 

LitwareHR. Later on, the security analysis service will work online with the cloud services to report 

the existence of any new vulnerability. To fulfill this task we studied the LitwareHR system and 

security details covered in the last section. The list of vulnerabilities to test LitwareHR against is the 

list of threats and vulnerabilities we discussed in the security analysis chapter. Table 10-6 

summarizes the list of threats and vulnerabilities we found in LitwareHR. 

10.3.5 LitwareHR – Security Re-engineering  

The objective of this security reengineering task is twofold: (i) to reengineer LitwareHR in order to 

disable the built-in security capabilities to start using MDSE@R in managing LitwareHR multi-

tenant security; and (ii) to mitigate the reported vulnerabilities and threats from the previous task. 

To disable the LitwareHR developed security we have figured out three security properties that we 

need to address: secure communication, authentication, and authorization. For the secure 

communication, we have come up with two possible solutions: the first one requires modifying 

different parts of the system by adding new methods to contracts (interfaces) used in the unsecure 

communication and their realizations. At the same time, removing these methods from the 

interfaces used in secure communication channels. 
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Figure 10-14. A part of LitwareHR class diagram 
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Table 10-6. LitwareHR found vulnerabilities and threats 

Type Name Number/value 

Attack scenarios 

and metrics 

Man-in-The-Middle (↓) 0 

Denial of Service (↓) 2 

Data Tampering (↓) 2 

Injection Attack (↓) 3 

Attack Surface (↓) 12 

Compartmentalization (↑) 3 

Fail Securely (↓) 11 

Security 

Vulnerabilities 

SQLI 3 

Authentication Bypass 0 

Improper Authorization 3 

XSS 3 

CSRF 6 

Table 10-7. LitwareHR security reengineering re-aspects 

Re-aspect Signature Re-aspect Action Re-aspect Advice 

AuthenticationGateway.GetUsers Replace Session[“TenantUsers”] 

AuthenticationGateway.GetRoles Replace Session[“TenantRoles”] 

Table 10-8. Tenants' security control 

Security Attribute Contoso Fabrikam Swinburne Swine 

Authentication LitwareHR LitwareHR Forms-based LDAP 

Authorization LitwareHR LitwareHR Forms-based LDAP 

I/Psantization – – – Private Sanitization 

Audit – – Private Auditor Private Auditor 

Cryptography LitwareHR LitwareHR DES AES 
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The second solution, which we applied, is modifying the system configurations by removing the 

details of security controls configurations used in the encrypted communication. For the 

authentication and authorization properties, we have figured out that these properties are based on 

security authentication and authorization controls. Again modifying websites configurations helped 

to get rid of these security controls. We also found that authentication and authorization controls are 

used in internal business functions such as workflow roles and users. To address these problems, we 

have developed re-aspects to modify the LitwareHR source code to replace calls to these 

authentication/authorization functions with access to session variables that maintain list of roles and 

permissions that are set when the user login or requested from the source of security controls. We 

found 14 functions in the authentication service and 5 functions in the authorization service. We 

have categorized changes required to update system authentication and authorization into three 

categories as follows. Table 10-7 summarizes re-aspects’ details required to update LitwareHR 

with modifications we just explained now. 

- Functions that are used in managing tenants’ accounts including adding, removing, updating, 

deleting tenants, users and roles. We do not need to modify this part. It could still be used for 

tenants who do not have new security requirements as we will see in the MDSE@R step.  

- Functions used to authenticate and authorize users for certain actions (calls to these functions 

should be left out). If the tenant does not want to change the system security capabilities, we will 

inject system security controls using MDSE@R. A good point of the LitwareHR is that it is 

mostly based on configurations. Authentication and authorization functions are integrated with 

the system using configuration functions. Thus, we removed these configurations and will use 

MDSE@R to integrate them at runtime whenever needed. 

- Functions used in business functions. These functions should be replaced with session-based. To 

do this task, we have used our re-aspects approach to modify the system source code. Here we 

depend on MDSE@R to fill in these session variables. 

10.3.6 LitwareHR - Security Engineering 

Now we come to the runtime multi-tenant security engineering task. The first step here is to deliver 

a system description model (SDM) that capture system features, architecture, deployment, and 

design details. Figure  10-11, Figure  10-12, Figure  10-13, and Figure  10-14 show the SDM and SSM 

models of the LitwareHR application. These models should have been delivered by LitwareHR 

service providers. However, in our case study, we could not have all these models because the 

system was developed beforehand. Thus, we developed some of these models manually by 

analyzing the system source code. The other part was developed using reverse engineering 

techniques. Next, service tenants (in this case study we have Contoso and Fabrikam) start 

developing (and updating whenever needed) their security specification models to define their 
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security objectives, requirements, architecture, and controls. As a future work of our approach, we 

plan to develop a client extension of MDSE@R where tenants can download the service SDM 

model locally – i.e. inside their network perimeter – where they can develop their security model 

and perform security-to-system mappings. These mapping are then refined locally – i.e. refining 

mapping of high-level security concepts, such as security objectives, or high-level system entities, 

such as system components, into security controls and system methods - and sent back to the 

MDSE@R platform to update the live system and security specification documents. Thus tenants 

can keep their security specification models confidential from hosting on the cloud platform. 

In the security engineering chapter 6, we have validated in details the flexibility of MDSE@R to 

manage traceability of security details from high-level to detailed-level security (security objectives 

to security controls), managing traceability of system details using our UML profile (features to 

methods), and the many-to-many mappings between tenants’ SSMs and system SDM. Here we 

focus mainly on the key (mandatory) security diagrams required to realize tenants’ security (the 

tenant security controls model).  

Table  10-8 shows LitwareHR tenants’ security controls models. We consider in our usage 

example including Contoso, Fabrikam, Swinburne, and Swin Market. From the usage example, both 

Contoso and Fabrikam would like to apply the same set of security controls, while Swinburne and 

Swin Market would like to apply different security requirements. The key problem with the 

selection of these security controls to apply in our case study is that we have to develop adaptors for 

these controls that implement our common security interface introduced in MDSE@R chapter and 

integrates with these security controls. Thus, we reused the security controls we applied in the 

MDSE@R Chapter. Table  10-9 summarizes mappings done by each tenant between the selected 

security controls and system entities on the architecture level. 

Table 10-9. Tenants' security-system mappings 

Security 

Attribute 
Contoso Fabrikam Swinburne Swin Market 

Authentication 
Presentation 

layer 

Presentation 

layer 
Presentation layer 

Presentation + 

Services layer 

Authorization 
Presentation 

layer 

Presentation 

layer 

Presentation + 

Services layer 

Presentation + 

Services layer 

I/Psantization – – – Presentation 

Audit – – 
Presentation + 

Services layer 

Presentation + 

Services layer 

Cryptography 
Communication 

channels 

Communication 

channels 

Presentation + 

Services layer 

Presentation + 

Services layer 
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10.3.7 LitwareHR - Security Monitoring 

We reuse the set of security metrics we defined in the security metrics and monitoring chapter (such 

as Authenticated Requests, Authentic Requests, Last(10) Requests to Authorization Control, 

Top(10) Request to Authentication Control By Admin Account, Mean Time Between Unauthentic 

Request, etc.) as the set of security metrics to be applied on the LitwareHR instance in this case 

study. For each tenant we use random number generator to control number of concurrent users per 

tenant, number of requests per tenant(s), number of malicious requests. As a further evaluation of 

the security management platform, we have defined a set of mitigation actions to be applied in case 

of security metrics’ violations detected as shown in Table  10-10. The possible set of actions to be 

taken could range from simple alerts up to getting system offline or even analyzing collected 

measures and trying to detect root causes. However, our delivered platform capabilities, so far, is 

limited to mitigation actions that could be applied by the MDSE@R enforcement component. A 

future work in this point is to develop mitigation actions specification language with the associated 

mitigation actions realization components. Table  10-11shows the behavior (values of different 

metrics) of the LitwareHR when applying randomly generated requests (experiment attributes) at 

different time steps. Figure  10-15 and Figure  10-16 show the trend of the security metrics we have 

been monitoring. 
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Figure 10-15. Base security metrics' status and trend overtime 
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Table 10-10. Security metrics' mitigation actions 

Metric Conditions Mitigation Actions 

Authenticated Requests M < 100% Alert 

Authentic Requests 
M < 50% Add,  AuthenticationControl, LDAP 

M < 80% Replace,  AuthenticationControl, LDAP 

Mean Time Between Unauthentic Requests 
M < 1 Add,  AuthenticationControl, LDAP 

M < 5 Replace,  AuthenticationControl, LDAP 

Logging Activities M < 100% Alert 

Table 10-11. Security metrics' status 

Time Step 1 2 3 4 5 6 7 8 9 10 

Experiment 

Attributes 

#Users 67 84 13 60 73 89 23 46 78 98 

#Requests 3423 4268 793 3297 4278 4977 1481 1376 4364 5154 

#Malicious Requests 2178 2535 356 2071 2697 2995 862 771 2461 2936 

Security 

Metrics 

Authenticated Requests 95% 94% 93% 97% 100% 92% 94% 100% 98% 97% 

Authentic Requests 64% 59% 45% 63% 63% 60% 58% 56% 56% 57% 

Mean Time Between Unauthentic Requests(sec) 3 5 2 3 3 4 5 1 2 3 

Logging Activities 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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10.4 Chapter Summary 

In this chapter, we introduced three case studies we conducted to assess our platform 

components and integrations between platform components. The first case study addresses the 

automated virtual patching of reported vulnerabilities by our online vulnerability analysis and 

MDSE@R security enforcement component. Thus, this case study addresses integration 

between security analysis and mitigation components. The second case study addresses 

application of our reengineering aspects component in migrating applications to support multi-

tenancy as a key task, beside the security reengineering, in the preprocessing phase before 

adopting the cloud computing model. The third case study shows the whole security 

management process for different tenants applied on a SaaS application developed as a sample 

multi-tenant application. One of the key areas that still need to improve is the mitigation actions 

that could be applied with the current metrics’ values. Currently we support only mitigation 

actions that are linked to the security enforcement component which may be adding extra 

security control, replacing existing security control, or removing an existing security control to a 

new or already secured system entity at runtime. Further actions could be updating operated 

security controls’ configurations, analyzing root causes of the reported problem (deviation from 

the expected behavior), or even taking system offline until further administrative actions are 

taken. This may require developing an extension of our OCL-based language to capture such 

invariants and metrics. 
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  Chapter 11

Conclusions and Future Work  

In this chapter we summarize the key problems we addressed in our research project; key 

observations we found throughout the project; key contributions we achieved; key limitations 

we figured out in our approach and solutions; and key future work tasks that we plan to work on 

as extension of the work introduced in this project and explained throughout this thesis. 

11.1 Key Addressed Security Problems 

In this research project we addressed a set of important security problems in the cloud 

computing domain. This set of problems was identified from our initial cloud computing 

security problem analysis that we completed in our first milestone [4]. Below we summarize 

this set of problems that we addressed in our research project. 

We addressed the Loss-of-Control Security Problem. This is one of the top ranked cloud 

consumers’ security concerns about the cloud computing model. This problem arises from three 

key factors: Outsourcing IT assets for hosting on third-party cloud platform; The new 

responsibility matrix of the cloud computing model that puts cloud consumers out of control 

over their assets (e.g. SaaS model); And lack of support to integrate cloud consumers’ security 

controls’ with cloud services taking into consideration those different tenants may be sharing 

the same service instance. 

We addressed the Lack-of-Trust Problem. This is one of the top ranked cloud consumers’ 

security concerns about the adoption of the cloud computing model. This problem arises from: 

The lack of feedback about the operated security, security breaches, and any relevant security 

status; Cloud consumers do not trust that the cloud providers really enforce the specified 

security controls; lack of security terms in the service level agreements between the cloud 

provider, service provider, and cloud consumers; and cloud consumers do not trust that the 

cloud provider administrators do not breach their assets security at rest, at processing, or at 

transmission. 

We addressed the tenants’ Security Integration Problem. Different tenants have their own 

security requirements, policies and controls that they operate internally in their network 

perimeter. These security controls should be integrated with their cloud-hosted assets as well. 

Currently this is not supported by default. Service providers have to prepare a certain interface 

or connectors to enable tenants in integrating their controls. Moreover, these tenants’ security 
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requirements could be easily changed at runtime to address new security risks and threats. New 

service tenants can register to use the service and apply their security requirements. Existing 

tenants can unregister from the service. Those tenants should not be able to access or use the 

service anymore. 

We addressed the security problems arise from the public accessibility of cloud services. 

Cloud-hosted services are publicly accessible to end users who may be malicious users. 

Moreover, the cloud services are shared among different tenants. One of those tenants may be 

malicious tenant or a competitor who wants to breach other tenants’ security. The key problem 

of service sharing is that malicious users are granted high privilege and permissions to perform 

more administrative actions. This increases the possibility to exploit more complicated 

vulnerabilities and to perform planned attacks. On the other hand, depending on traditional 

service patching approaches (through the use of service maintenance) takes a long time that 

increases the probability of being under attack by exploiting the reported service vulnerabilities. 

We addressed the tenants’ data isolation problem. Supporting multi-tenancy requires cloud 

applications to support capturing, processing and storing data of different tenants on the same 

application instance. Thus these applications must maintain isolation between different tenants’ 

data. Many of the existing well-known business applications that are widely used nowadays are 

locked-in a high cost business model. This prohibits them from targeting/servicing. 

11.2 Key Contributions 

In this research project we have introduced a set of solutions to address security problems arise 

from the adoption of the cloud computing model summarized in the previous section. Bellow 

we summarize the key contributions we did in the cloud computing and security management 

area. 

We introduced a novel alignment of the NIST-FISMA standard to fit with the cloud 

computing model. The existing security management standards are not developed taking into 

consideration the multi-tenancy, sharing of cloud services, and outsourcing of the tenants’ assets 

out of their network perimeter. Our proposed alignment is based on the joint-collaboration 

between different cloud stakeholders (cloud providers, service providers, and cloud consumers) 

in securing cloud platforms and services. To deliver this new alignment, we studied the standard 

activities and tasks. Then, we developed a new responsibility matrix that shows who is 

responsible to fulfill a given task and who are informed with these results. We also introduced a 

web-based security management prototype to help in assessing our proposed alignment. 

We introduced a novel security management platform for the cloud computing model based 

on the use of model-based management concept to overcome the problem of manual 
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customization and engineering efforts required to manage the target cloud-hosted services. The 

model-based management is based on automating realization and configuration of the software 

systems and security controls based on abstract system and security models. This approach best 

fits with the cloud model as we cannot grant service consumers admin privileges to customize 

or modify shared cloud services. Our security management model enables realization of both 

manual security adaptation through updating system and security models as well as automated 

security adaptation through specification of recovery and mitigation actions in case of reported 

security vulnerabilities or deviations from the expected behaviors. The proposed model is based 

on one of the key security management standards (NIST-FISMA standard) after aligning it to fit 

with the cloud computing model. This helps in getting tenants and providers to keep their 

security management processes including their cloud hosted assets easily aligned with the 

security management standards using our cloud computing security management model. 

We introduced a novel security modelling domain-specific visual language SecDSVL to be 

used in capturing and modelling their security details. SecDSVL is based on a deep analysis of 

the main entities and tasks existing in security management standards (mainly NIST-FISMA 

standard). SecDSVL is made of 5 main models including security objectives model, security 

requirements, security risks ad threats, security architecture and design, and security controls 

model. SecDSVL is designed with the loosely coupling concept where each model addresses 

specific perspective of the security management process that usually done by certain process 

stakeholders. 

We invented a novel, model-driven, tenant-oriented security engineering model compared 

with the existing traditional design time, service-oriented, security engineering efforts. We 

introduced multi-tenant, model-driven security engineering at runtime approach (MDSE@R). 

Our approach enables different cloud and service tenants to manage (define, enforce, and 

monitor) their service instances’ security at runtime without a need for service customizations. 

MDSE@R introduces a comprehensive system description model (SDM) that captures all 

system details (this model is developed by service providers using UML) and security 

specification model (SSM) that captures each tenant’s security details (this model is developed 

by service tenants using SecDSVL). MDSE@R introduces a common security interface that 

helps in integrating third-party security controls with the target IT assets at runtime. Security 

vendors need to develop their security services’ adaptor to comply with this security interface. 

Thus, they do not need to develop different adaptors for different services. 

We developed an extensible online security analysis service. We introduced a security 

analysis service that can analyze service architecture, design, source code, and binaries to 

identify the existing security design flaws and bugs. The key contributions of the security 

analysis service are: integrated security analysis throughout different service artifacts including 
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architecture, design and code; the security analysis service is extensible, thus we can add 

different security analysis mechanisms without a need to modify the underlying platform; and 

security analysis is signature-based, thus any vulnerability, threat, or system design security 

metric could be easily specified and verified against the system without a need for new plugins. 

This helps to support online analysis for known and unknown vulnerabilities that arise at 

runtime as far as a signature of such vulnerability exists. 

We invented a new, extensible security monitoring service. The main contribution of this 

security monitoring service is that we did not develop a predefined set of security metrics. 

Service users can define their own security metrics they wanted to use in diagnosing the security 

status of their cloud assets. The security monitoring service uses these metrics signatures 

(definitions) to generate and deploy required security probes that will be responsible for 

collecting required measurements from the target cloud assets. Moreover, it uses these 

signatures in generating metric evaluation expressions that will be used in analysing the 

collected measurements and generating metric values.  

We invented a new pre-processing tool to help migrating legacy applications to the cloud 

and disabling pre-existing, hardcoded security functionalities. In order to help managing 

services security using MDSE@R we need to disable the existing security APIs and functions. 

We introduce a novel system and security reengineering approach using a new concept called 

reengineering aspects “Re-aspects”. This new concept helps in capturing system modification 

details including signature of system entities to modify, actions to apply, advice(s) or code to 

use in realizing this change. The re-aspects engine uses these details to realize the captured 

change request details. This approach is supported with two signature specification approaches 

including code-snippets signatures and OCL-based signatures. We used re-aspects in two 

problems: the patching/mitigation of reported vulnerabilities and in migrating legacy 

applications that are not designed with multi-tenancy in mind to support cloud multi-tenancy.  

We invented a new, automated vulnerability virtual patching approach. This is an integration 

of the MDSE@R and vulnerability analysis service. This approach provides an automated 

virtual patching where reported vulnerabilities are fed in MDSE@R to inject specified security 

controls (as specified in the vulnerability mitigation actions) at the critical (vulnerable) system 

entities at runtime without waiting for patches that usually take several weeks.  

11.3 Key Limitations 

In this section we summarize the key limitations that we determined out in our proposed 

solutions and contributions we explained throughout this thesis. Below we summarize these 

limitations grouped by the corresponding approach or contribution. 
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MDSE@R does not help in realizing security requirements that should be enforced on the 

cloud services’ underlying platforms (e.g. webservers) and operating systems (in case of 

separate VMs). Moreover, MDSE@R currently does not support security engineering of 

applications developed by languages other than .NET languages because of the currently used 

system wrapper. We plan to develop further wrappers for systems developed with Java and 

scripting languages. 

The current signature locator implements static signature analysis of the software source 

code and system architecture. This helps in identifying certain types of security vulnerabilities 

that have strong signatures in source code. Other vulnerabilities related to dynamic analysis 

such as cross site reference forgery (CSRF) could not be addressed with high accuracy using the 

static analysis. It is worth mentioning here that our security analysis platform is already 

developed with such possible extensions in mind. 

Another problem with our security analysis approach is that applications using dynamic 

integration of security controls using aspect-oriented programming will result in high false 

positives as we cannot trace the existence of security controls’ calls in the system source code. 

The same applies with applications that depend on the hosting platform (webserver) deployed 

security controls. Furthermore, applications with obfuscated binaries are hard to analyze (given 

that we do not have access to the source code) because we cannot reflect source code from 

system binaries using the existing reflection techniques.  

The accuracy of the security analysis results depends on the specified vulnerabilities, attacks, 

and metrics’ signatures. This justifies our assumption that such signatures should be developed 

by security experts. As a possible improvement to this problem, we plan to develop an artificial 

intelligent extension that can analyze reported vulnerabilities in the National Vulnerabilities 

Database (NVD) and come up with the security vulnerabilities’ signatures that represent such 

vulnerabilities.  

The current implementation of the security monitoring approach supports only security 

metrics but not security properties (policies). Moreover, the current approach is limited in terms 

of the mitigation actions that could be applied to the capabilities provided by the security 

enforcement component (MDSE@R). Thus any further analysis or mitigation actions still not 

supported. 

The currently used probe generator technology (Roslyn Scripting APIs) result in security 

probes with high performance overhead because we compile and run security probe code at 

runtime. We are currently investigating in how to integrate newly generated security probes 

with the system wrapper without a need to perform online compilation. 
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Our security reengineering approach does not help with system modifications that have 

hierarchical impact on system entities – i.e. modifying entity A requires modifying B and C, 

modifying B and C requires modifying D, E, and F. our reengineering approach (re-aspects) 

supports only one level of the impacted entities. This can be addressed by extending impact re-

aspect to be a complete re-aspect. But this will increase developers’ involvement. 

The accuracy of the located entities to be modified, entities that will be impacted, and 

validity of the applied modification actions by a given system modification depends on the 

signature specified by the re-aspects developer.  

Applications with obfuscated binaries are hard to reengineer because we cannot reverse 

engineer source code from system binaries using existing reflection techniques.  

11.4 Future Work 

In this thesis we have introduced an adaptive, model-based cloud computing security 

management approach. Our proposed approach focused on delivering a platform that helps 

enforcing different sets of security requirements for different tenants that arise at runtime. We 

take the single-instance multi-tenant Software-as-a-Service service delivery model as the main 

model to be addressed by our approach. This is because it represents the most complicated 

service delivery model. The work we did with the software-as-a-service service delivery model 

can easily be applied on the platform-as-a-service service delivery model. Below we summarize 

future extensions in the proposed approach in general and in specific components of the 

delivered platform:  

We plan to extend our security management platform to include managing security of the 

Infrastructure-as-a-service service delivery model. This helps tenants to extend their security 

management capabilities to manage security of their cloud virtual infrastructure (mainly virtual 

machines). This enables our security management platform to deliver comprehensive cloud 

computing security management platform that could be used to manage cloud platform security 

whatever the service delivery model(s) delivered by the cloud platform. It enables mitigating the 

cloud consumers’ lack-of-trust problems completely. Moreover, it enables cloud providers to 

integrate their security management platforms (used to manage the cloud platform security) with 

our platform in one comprehensive and integrated model. A further key point is the adoption of 

homo-morphic encryption where tenants’ data are not even decrypted while being processed on 

the cloud platform. This helps in addressing concerns related to malicious insiders – i.e. cloud 

platform administrators who are expected to have access to the hosting server memory, storage, 

and network. 
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We plan to extend our vulnerability analysis platform to support not only static analysis but 

also dynamic analysis. This dynamic analysis will be mostly dependent on the security 

monitoring platform with a test case generation service. The analysis of application responses 

should be automated according to vulnerability specified signature. The security vulnerability 

analysis platform is designed with extensibility in mind. Thus, we will not need to modify its 

design. We will need to develop the dynamic analysis component as a plugin to be registered 

and triggered by the vulnerability analysis platform according to the type of the vulnerability 

signature (static or dynamic signature). 

We plan to extend the security monitoring platform with mitigation action and analysis 

specification language. The objective of this extension is to provide a formal and familiar 

language to help in developing expressions that could be used in identifying root causes of 

possible system deviations from the normal behavior specified by service tenants. Moreover, 

this could help in specifying and applying more complicated mitigation actions on the service or 

its underlying platform such as replacing one of the service components with a more secure one, 

using components from another service provider in case of mash up applications, or extending 

the operated security with more complicated controls. 

We plan to conduct multiple large scale industrial case studies with different industrial cloud 

platform providers, service providers and a set of SaaS applications hosted on different cloud 

platforms and shared among different tenants. We also plan to contact different security vendors 

who deliver cloud-based security services (authentication, authorization, etc.) to get involved in 

developing a common security interface that facilitates integrating security controls with the 

target cloud services. 
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