
Adaptive, Model-based Cloud

Computing Security Management

By

Mohamed Almorsy

A thesis submitted in fulfillment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

2014

ii

Abstract

The cloud computing model introduces a new paradigm shift in computing platforms with

highly scalable, distributed, and shared computing resources. However, despite the potential

cost savings and revenues reaped by adopting the cloud model, it still has a set of open issues

that impacts its wide adoption. Security is at the top of these issues. In addition to the traditional

technology-related problems, the cloud model introduces a set of new and critical security

problems including loss-of-control, lack-of-trust, data isolation, and tenants’ security controls’

integration. These security problems are not mitigated yet by the existing cloud platforms.

Cloud security solutions should take into consideration that it is hard to get cloud tenants and

service providers to manually customize their shared cloud services’ security. Moreover, the set

of a cloud service tenants usually emerges at real-time. Each service tenant usually has a set of

security requirements which changes over time to reflect new risks and business objectives.

In this research, we have successfully invented a new cloud computing security management

platform addressing these security problems. The invented security platform depends on

capturing cloud platform, services and security specification details using a set of novel system

and security mega-models. Cloud stakeholders use these models to specify their assets-security

requirements. Then, our platform automates the integration of these requirements within target

services at runtime.

Identifying security requirements that need to be satisfied requires deep experience with

system and security to pinpoint possible threats, vulnerabilities, and attacks. This is even worse

when adopting the cloud model where services are publicly accessible to malicious users who

could exploit services’ vulnerabilities and flaws to breach tenants’ security. Our platform

delivers a novel, extensible, and online signature-based security analysis service that automates

services’ security analysis. The outcomes of the analysis service are feed into our security-

patching component.

Furthermore, given that tenants do not have direct control on their outsource shared cloud-

services, our platform provides a new security monitoring service that automatically realizes

tenants’ security metrics, used in assessing services’ security status, into security probes and

automatically deploys, collects, and analyzes probes’ generated measurements.

We evaluated each component of our platform using a set of benchmark applications. Then,

we conducted three case studies using our platform in mitigating three key cloud security

problems. The evaluation results are very supportive and demonstrate that our platform

successfully automated the security management of the shared, multi-tenant cloud services.

iii

Acknowledgement

I am deeply grateful to my lovely wife Amani Ibrahim, for her love, understanding,

encouragement, sacrifice and help. I am also grateful for my parents for raising me up, teaching

me to be a good person, and supporting me throughout my studies.

I sincerely express my deepest gratitude to my coordinate supervisor, Professor John

Grundy, for his supervision and continuous encouragement throughout my PhD study. Without

his consistent support, I would not have been able to complete this research project. The first

year was really tough and I got many rejections. He kept encouraging and supporting me until I

succeed to come up with a good stuff that easily got accepted. He is indeed “a good mentor and

a helpful friend”.

I thank Prof. Jun Han for his sincere advices and feedback whenever I ask him for this. He is

really a very helpful and supportive supervisor.

Finally, I thank Swinburne University of Technology and the Faculty of Information and

Communication Technologies for offering me a full research scholarship throughout my

doctoral program. I also thank the Research Committee of the Faculty of Information and

Communication Technologies for research publication funding support and for providing me

with financial support to attend conferences.

iv

Declaration

This thesis contains no material which has been accepted for the award of any other degree or

diploma, except where due reference is made in the text of the thesis. To the best of my

knowledge, this thesis contains no material previously published or written by another person

except where due reference is made in the text of the thesis.

Mohamed Almorsy

v

List of Publications

During my PhD project, I have managed to publish a bunch of peer-reviewed conference and

journal papers as well as a book chapter that support our analysis, findings and contributions.

[1] Mohamed Almorsy, John Grundy, and Amani Ibrahim, “Adaptable, model-driven

security engineering for SaaS cloud-based applications”, International Journal of

Automated Software Engineering, Volume 29, September 2013.

[2] Mohamed Almorsy, John Grundy, and Amani Ibrahim, “Adaptive Security

Management in SaaS Applications”, Security, Privacy and Trust in Cloud Systems,

Springer.

[3] Mohamed Almorsy, John Grundy, and Amani Ibrahim, “Automated Software

Architecture Security Risk Analysis Using Formalized Signatures", 2013 IEEE/ACM

International Conference on Software Engineering (ICSE 2013), San Franciso, May

2013, IEEE CS Press.

[4] Mohamed Almorsy, John C. Grundy, Amani S. Ibrahim, “MDSE@R: Model-Driven

Security Engineering at Runtime”, 4th International Symposium on Cyberspace Safety

and Security (CSS 2012), Dec 12-13 2012, Melbourne, Australia.

[5] Mohamed Almorsy, John C. Grundy, Amani S. Ibrahim, “VAM-aaS: Online Cloud

Services Security Vulnerability Analysis and Mitigation-as-a-Service”, The 13th

International Conference on Web Information System Engineering (WISE 2012), Nov

28-30 2012, Paphos, Cyprus, Springer.

[6] Mohamed Almorsy, John C. Grundy, Amani S. Ibrahim, “Supporting Automated

Vulnerability Analysis using Formalized Vulnerability Signatures", 27th IEEE/ACM

International Conference on Automated Software Engineering (ASE 2012), Sept 3-7

2012, Essen, Germany, ACM Press.

[7] Mohamed Almorsy, John C. Grundy, Amani S. Ibrahim, “Supporting Automated

Software Re-Engineering Using "Re-Aspects”, 27th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2012), Sept 3-7 2012, Essen,

Germany, ACM Press.

[8] Mohamed Almorsy, John Grundy and Amani S. Ibrahim, “TOSSMA: A Tenant-

Oriented SaaS Security Management Architecture", 5th IEEE Conference on Cloud

Computing (CLOUD 2012), IEEE CS Press, Waikiki, Hawai, USA, June 24-29 2012.

[9] Mohamed Almorsy, John Grundy and Amani S. Ibrahim, “SMURF: Supporting

Multi-tenancy Using Re-Aspects Framework", 17th IEEE International Conference on

vi

Engineering of Complex Computer Systems (ICECCS 2012), Paris, France, July 2012,

IEEE CS Press.

[10] Mohamed Almorsy, John Grundy and Amani S. Ibrahim, “Collaboration-Based

Cloud Computing Security Management Framework", In Proceedings of 2011 IEEE

International Conference on Cloud Computing (CLOUD 2011), Washington DC, USA

on 4 – 9 July, 2011, IEEE.

[11] Mohamed Almorsy, John Grundy Ingo and Mueller, “An analysis of the cloud

computing security problem", In Proceedings of the 2010 Asia Pacific Cloud Workshop

2010 (co-located with APSEC2010), Sydney, Nov 30 2010.

The following publications, which I am a co-author, have been published during my candidature

as a part of my collaboration with colleagues in our research group.

[1] Amani S. Ibrahim, John C. Grundy, James Hamlyn-Harris, Mohamed Almorsy,

“DIGGER: Identifying Operating System Dynamic Kernel Objects for Run-time

Security Analysis", International Journal on Internet and Distributed Computing

Systems (IJIDCS).

[2] Amani S. Ibrahim, John C. Grundy, James Hamlyn-Harris, Mohamed Almorsy,

“Identifying OS Kernel Runtime Objects for Run-time Security Analysis",

6th International Conference on Network and System Security (NSS 2012), Nov 21-23

2012, Wu Yi Shan, Fujian, China, Springer.

[3] Amani S. Ibrahim, John C. Grundy, James Hamlyn-Harris, Mohamed Almorsy,

“Operating System Kernel Data Disambiguation to Support Security Analysis",

6th International Conference on Network and System Security (NSS 2012), Nov 21-23

2012, Wu Yi Shan, Fujian, China, Springer.

[4] Amani S. Ibrahim, John C. Grundy, James Hamlyn-Harris, Mohamed Almorsy,

“Supporting Operating System Kernel Data Disambiguation using Points-to Analysis",

27th IEEE/ACM International Conference on Automated Software Engineering (ASE

2012), Sept 3-7 2012, Essen, Germany, ACM Press.

[5] Amani S. Ibrahim, James Hamlyn-Harris, John Grundy and Mohamed Almorsy,

“Supporting Virtualizaion-Aware Security Solutions using a Systematic Approach to

Overcome the Semantic Gap", 5th IEEE Conference on Cloud Computing (CLOUD

2012), IEEE CS Press, Waikiki, Hawai, USA, June 24-29 2012.

[6] Amani S. Ibrahim, James Hamlyn-Harris, John Grundy and Mohamed Almorsy,

“CloudSec: A Security Monitoring Appliance for Virtual Machines in the IaaS Cloud

Model", 5th International Conference on Network and System Security (NSS 2011),

Milan, Italy on 6 – 8 September, 2011.

vii

Table of Contents

ABSTRACT .. II

ACKNOWLEDGEMENT ... III

DECLARATION ... IV

LIST OF PUBLICATIONS ... V

TABLE OF CONTENTS.. VII

LIST OF FIGURES.. XIV

LIST OF TABLES ... XVIII

 INTRODUCTION.. 3 CHAPTER 1

1.1 Motivating Scenario ... 7

1.2 Research Roadmap ... 9

1.3 Key Contributions ... 12

1.4 Thesis Structure .. 15

 CLOUD COMPUTING SECURITY PROBLEM ...19 CHAPTER 2

2.1 Introduction .. 19

2.2 Cloud Security Analysis ... 21

2.2.1 Deployment Models Security Implications .. 21

2.2.2 Cloud Architecture Security Implications .. 23

2.2.3 Cloud Stakeholders Security Implications ... 24

2.2.4 Cloud Characteristics Security Implications ... 25

2.2.4.1 Multi-tenancy Security Implications ..25

2.2.4.2 Elasticity Security Implication ..26

2.2.5 Service Delivery Models Security Implications .. 27

2.2.5.1 IaaS Security Issues ..27

2.2.5.2 PaaS Security Issues ...28

2.2.5.3 SaaS Security Issues ...29

2.2.5.4 Cloud Management Security Issues ...30

2.2.5.5 Cloud Access Methods Security Issues ...30

2.3 Cloud Computing Security Enablers ... 30

2.3.1 Identity Federation and Access Management ... 30

2.3.2 Data Cryptography ... 31

2.3.3 Secure Cloud Software Development Lifecycle ... 31

2.3.4 Security Performance Tradeoff ... 32

viii

2.3.5 Security Management ..32

2.4 Chapter Summary ...33

 RELATED WORK .. 35 CHAPTER 3

3.1 Introduction ..36

3.2 Security Management ...37

3.2.1 Security Management Standards ...38

3.2.1.1 NIST-FISMA Standard ... 38

3.2.1.2 ISO27000 Standard .. 39

3.2.1.3 Differences between NIST-FISMA and ISO27000 ... 41

3.2.1.4 Security Management Standards and Cloud Computing ... 41

3.2.2 Security Management Systems ..42

3.2.2.1 Policy-based Security Management ... 42

3.2.2.2 Ontology-based Security Management ... 43

3.2.2.3 Model-based Security Management .. 44

3.2.2.4 Security and Service Level Agreement ... 44

3.2.3 Information Security and Risk Management ...45

3.3 Security Analysis ...46

3.3.1 Security Risk Analysis ...46

3.3.2 Architecture Security Analysis ..47

3.3.2.1 Scenario-based Analysis ... 48

3.3.2.2 Metrics-based Analysis .. 49

3.3.3 Security Vulnerability Analysis ...50

3.3.3.1 Static Vulnerability Analysis ... 50

3.3.3.2 Dynamic Vulnerability Analysis .. 51

3.3.3.3 Hybrid Vulnerability Analysis ... 52

3.4 Security Engineering ...52

3.4.1 Design-time Security Engineering ..53

3.4.1.1 Early-stage Security Engineering .. 53

3.4.1.2 Later-stage Security Engineering ... 54

3.4.1.3 Security Engineering Processes .. 56

3.4.1.4 Widely Deployed Security Platforms .. 56

3.4.2 Adaptive Application Security ..57

3.4.3 Multi-tenancy Security Engineering ...58

3.5 Security Re-engineering ..59

3.5.1 Security Retrofitting Approaches ...60

3.5.2 Software Maintenance ...60

3.5.3 Dynamic System Updating ...62

3.5.4 Concept Location Techniques ..63

3.6 Security Measurement and Metrics ...63

ix

3.6.1 Security Monitoring ... 64

3.6.2 SLA Monitoring .. 66

3.6.3 Requirements Monitoring ... 67

3.6.4 Security Metrics Specification Languages .. 67

3.7 Research Gaps Summary .. 68

 ADAPTIVE, MODEL-BASED CLOUD COMPUTING SECURITY MANAGEMENT73 CHAPTER 4

4.1 Introduction .. 73

4.2 Autonomic Computing and MAPE-K Model ... 74

4.2.1 Monitoring Component ... 75

4.2.2 Analysis component .. 76

4.2.3 Planning and Execution components .. 77

4.2.3.1 Architectural/Design Patterns ..77

4.2.3.2 Middleware-Based Approaches ...78

4.3 Adaptive, Model-based Cloud Security Management – “Big Picture” 79

4.4 Approach Evaluation .. 83

4.4.1 Benchmark Applications .. 83

4.4.2 Evaluation Metrics ... 84

4.5 Chapter Summary ... 85

 ALIGNING SECURITY STANDARDS WITH CLOUD COMPUTING MODEL87 CHAPTER 5

5.1 Introduction .. 87

5.2 Rethinking In Security Management .. 90

5.3 Aligning NIST-FISMA with Cloud Computing .. 93

5.3.1 Service Security Categorization ... 93

5.3.2 Security Control Selection ... 94

5.3.2.1 Service Security Risk Assessment ...94

5.3.2.2 Security Controls Baseline Tailoring Process ..95

5.3.3 Security Controls Implementation ... 96

5.3.4 Security Controls Assessment .. 96

5.3.5 Service Authorization .. 96

5.3.6 Monitoring Security Controls Effectiveness .. 97

5.4 Security Automation... 97

5.5 Cloud Security Framework Architecture .. 99

5.6 Usage Example ... 100

5.6.1 Registering Cloud Services ... 101

5.6.2 Service Security Categorization ... 103

5.6.3 Security Controls Selection .. 103

5.6.3.1 Service Risk Assessment ...103

x

5.6.3.2 Security Controls Baseline Tailoring ... 104

5.6.4 Security Controls Implementation and Assessment ... 105

5.6.5 Service Authorization .. 106

5.6.6 Monitoring Security Controls Effectiveness .. 106

5.7 Discussion .. 107

5.8 Chapter Summary .. 108

 CLOUD APPLICATIONS SECURITY ENGINEERING ... 109 CHAPTER 6

6.1 Introduction ... 109

6.2 Key Requirements and Challenges ... 112

6.3 MDSE@R .. 113

6.3.1 Modeling Service and Security Details .. 115

6.3.1.1 Service Description Model (SDM) .. 115

6.3.1.2 Service Security Specification Model (SSM) ... 116

6.3.1.3 Tenant Service Description Model (TSDM) .. 116

6.3.1.4 Tenant Security Specification Model (TSSM) ... 116

6.3.2 Weaving Service and Security Models .. 117

6.3.3 Enforcing Specified Security on Target Application Entities 118

6.3.3.1 Update Live Service Interceptors’ Document .. 118

6.3.3.2 Update Live Security Specification Document ... 119

6.3.3.3 Update Tenant Accessible Resources Document ... 119

6.3.3.4 Update the System Container .. 119

6.3.3.5 Security Enforcement Point – SEP .. 121

6.3.4 Testing the Service-Security Integration ... 121

6.4 Usage Example ... 123

6.4.1 Model Galactic System Description .. 123

6.4.2 Model SwinSoft Security ... 124

6.4.3 Weave Galactic SDM and Security SSM .. 125

6.4.4 On-boarding Swinburne and Auckland Tenants.. 130

6.4.5 Managing Swinburne and Auckland Security .. 131

6.5 MDSE@R Architecture and Implementation ... 131

6.5.1 MDSE@R Platform Architecture Details ... 131

6.5.2 SecDSVL: Security Domain Specific Visual Language .. 134

6.5.2.1 Enterprise Assets ... 135

6.5.2.2 Security Objectives... 135

6.5.2.3 Risk, Threats, Attacks, and Vulnerabilities ... 135

6.5.2.4 Security Requirements ... 136

6.5.2.5 Security Architecture ... 136

6.5.2.6 Security Controls .. 136

6.6 Evaluation .. 136

xi

6.6.1 Experimental Evaluation Setup.. 137

6.6.2 Evaluation Results .. 137

6.6.3 SecDSVL Evaluation ... 139

6.6.4 User Evaluation .. 140

6.6.5 Performance evaluation .. 140

6.6.5.1 Runtime Performance Overhead ...140

6.6.5.2 Security Adaptation Overhead ...142

6.7 Discussion ... 142

6.8 Chapter Summary ... 145

 CLOUD APPLICATIONS SECURITY REENGINEERING .. 147 CHAPTER 7

7.1 Introduction .. 147

7.2 Motivating Examples .. 150

7.3 Change Request Management Process .. 152

7.4 Reengineering Aspects - “Re-Aspects” ... 154

7.5 Change Impact Analysis .. 155

7.5.1 Code Snippet Signature Designator ... 156

7.5.2 Semantic OCL-based Signature Designator ... 157

7.5.2.1 Object Constraint Language (OCL) ...157

7.5.2.2 System Description Meta-model ..158

7.5.3 Code Snippet or OCL Semantic Signatures .. 159

7.5.4 Generating Change Set .. 160

7.5.5 Generating Impact Set ... 160

7.5.5.1 Impact Set Using Dependency Relations ..160

7.5.5.2 Containment-based and Heuristic-based Impact Set ...161

7.6 Change Propagation ... 162

7.7 SMART: A Re-aspect Engineering Tool ... 164

7.8 Usage Example ... 170

7.9 Evaluation ... 173

7.10 Discussion ... 175

7.11 Chapter Summary ... 176

 CLOUD APPLICATIONS SECURITY ANALYSIS .. 179 CHAPTER 8

8.1 Introduction .. 179

8.2 Security Analysis ... 181

8.2.1 Architecture Security Threat Analysis .. 182

8.2.1.1 Examples of Security Attack Scenarios ...182

8.2.1.2 Examples of Architecture Security Assessment Metrics ..183

8.2.2 Vulnerability Analysis... 185

xii

8.2.2.1 Analysis of Security Vulnerabilities .. 187

8.3 Signature-based Security Analysis ... 189

8.3.1 Security Weakness Definition Schema .. 189

8.3.2 Weakness Signature Specification .. 191

8.3.2.1 System Description Meta-Model ... 191

8.3.2.2 Examples of OCL-based Weaknesses Signatures ... 192

8.3.3 Signature-based Security Analysis Tool ... 195

8.4 Implementation ... 198

8.5 Evaluation .. 201

8.5.1 Evaluation Setup ... 201

8.5.2 Experimental Results ... 202

8.5.2.1 Architecture Security Risk Analysis .. 202

8.5.2.2 Vulnerability Analysis Result .. 205

8.6 Chapter Summary .. 210

 CLOUD APPLICATIONS SECURITY MONITORING ... 211 CHAPTER 9

9.1 Introduction ... 212

9.2 Security Monitoring Process .. 214

9.3 Unified Security Monitoring Platform .. 215

9.3.1 Security Metric Definition Schema .. 216

9.3.2 Security Metric Signature Specification .. 218

9.3.3 Derived Security Metrics ... 219

9.3.4 Examples of Security Metrics Signatures .. 219

9.4 Security monitoring platform .. 221

9.5 Implementation ... 223

9.6 Evaluation .. 224

9.6.1 Expressiveness and Usability ... 224

9.6.2 Approach Soundness ... 227

9.6.3 Performance Overhead ... 228

9.7 Discussion .. 229

9.8 Chapter Summary .. 231

 CASE STUDIES ... 235 CHAPTER 10

10.1 Case Study No.1: Online Automated Cloud Applications Security Virtual Patching 236

10.1.1 Introduction .. 236

10.1.2 VAM-aaS .. 238

10.1.2.1 Vulnerability Definition Schema .. 238

10.1.2.2 OCL-based Vulnerability Analysis ... 240

10.1.2.3 Vulnerability Mitigation ... 241

xiii

10.1.3 Experimental Evaluation .. 241

10.1.4 Discussion .. 243

10.2 Case Study No. 2: Supporting Multi-tenancy Reengineering using Re-aspects 245

10.2.1 Introduction ... 245

10.2.2 Multi-tenancy Requirements Analysis ... 246

10.2.2.1 Multi-tenant Data Model ...246

10.2.2.2 Application Layers ..248

10.2.2.3 Non-Functional Requirements ...249

10.2.2.4 Tenant On-boarding and Metadata service ...250

10.2.3 Experimental Results ... 252

10.2.4 Discussion .. 253

10.3 Case Study No.3: Supporting Multi-tenancy Reengineering using Re-aspects 254

10.3.1 Case Study Flow ... 254

10.3.2 LitwareHR .. 255

10.3.3 LitwareHR – SDM and SSM .. 256

10.3.4 Security Analysis .. 260

10.3.5 LitwareHR – Security Re-engineering .. 260

10.3.6 LitwareHR - Security Engineering .. 263

10.3.7 LitwareHR - Security Monitoring ... 265

10.4 Chapter Summary ... 267

 CONCLUSIONS AND FUTURE WORK .. 269 CHAPTER 11

11.1 Key Addressed Security Problems .. 269

11.2 Key Contributions ... 270

11.3 Key Limitations ... 272

11.4 Future Work ... 274

REFERENCES.. 277

xiv

List of Figures

Figure 1-1. Motivating scenario use-case diagram ... 7

Figure 1-2. Thesis structure .. 16

Figure 2-1. Key factors contributing to the cloud computing security 21

Figure 2-2. Cloud service delivery and deployment models 22

Figure 2-3. Cloud computing model layers .. 23

Figure 2-4. Cloud multi-tenancy models .. 25

Figure 3-1. Relevant research areas to the cloud security management problem 35

Figure 3-2. NIST-FISMA main phases, flow, and standards 38

Figure 3-3. ISO27000 main phases, flow, and standards .. 40

Figure 3-4. Comparison of responsibility matrix between on-premise and cloud 42

Figure 3-5. Relationship between ISMS and ISRM ... 45

Figure 3-6. Event Calculus Model [190] .. 67

Figure 4-1. Autonomic computing model [209] .. 74

Figure 4-2. A concept diagram of our joint-collaboration cloud security management

 ... 79

Figure 4-3. General Approach ..80

Figure 4-4. A high-level architecture of our security management approach 81

Figure 5-1. Information security management system phases 90

Figure 5-2. Alignment of NIST-FISMA standard with the cloud model.................... 94

Figure 5-3. Adopted security automation standards and relationships 97

Figure 5-4. Our collaboration-based cloud security management architecture 99

Figure 5-5. SwinSoft is registering their Galactic ERP service with GreenCloud 101

Figure 5-6. Registering a service by Swinburne (top) and Auckland (bottom) 101

Figure 5-7. Security controls registration .. 102

Figure 5-8. Security controls baseline with controls’ status 102

Figure 5-9. Service reported vulnerabilities - integrated with NVD 104

xv

Figure 5-10. Examples of Auckland security management plan 105

Figure 5-11. Sample of Swinburne security status report .. 106

Figure 6-1. Process flow of MDSE@R ... 114

Figure 6-2. Overview of MDSE@R approach ... 114

Figure 6-3. Possible service-security models weaving .. 117

Figure 6-4. Our new UML profile.. 117

Figure 6-5. Our proposed common security interface ... 120

Figure 6-6. Example of the generated security integration test cases 120

Figure 6-7. Sequence diagram of a user request to critical service entity 123

Figure 6-8. Galactic service description model (SDM) .. 126

Figure 6-9. Galactic service security specification model (SSM) 127

Figure 6-10. Swinburne security specification model .. 128

Figure 6-11. Examples of the interceptors and security specification files 129

Figure 6-12. Code snippet from MDSE@R security enforcement point 129

Figure 6-13. A snapshot of MDSE@R security test cases firing log 130

Figure 6-14. MDSE@R architecture ... 132

Figure 6-15. SecDSVL meta-model .. 134

Figure 6-16. SecDSVL usability level of agreement .. 141

Figure 6-17. MDSE@R platform average performance overhead 141

Figure 6-18. Cryptography scenario between MDSE@R and tenants' security

controls.. 144

Figure 7-1. Possible system modifications and their impact on system entities 148

Figure 7-2. Examples of code modification snippets .. 151

Figure 7-3. Our simplified change request management process 153

Figure 7-4. Re-aspect Syntax .. 154

Figure 7-5. Code snippet re-aspect template ... 156

Figure 7-6. OCL expression format and example ...157

Figure 7-7. System description meta-model .. 159

xvi

Figure 7-8. Control and Data flow analysis, local impact analysis 162

Figure 7-9. SMART tool architecture ... 164

Figure 7-10. A snapshot of the SMRT signature locator .. 167

Figure 7-11. Syntactical code snippet matching algorithm 169

Figure 7-12. Semantic OCL signatures matching algorithm 170

Figure 7-13. A snapshot of Galactic class diagram ... 170

Figure 7-14. A snapshot of the Galactic security model .. 171

Figure 7-15. Req. 1 – Security disabling – re-aspects model 171

Figure 7-16. Req. 2 – Vulnerable code – re-aspects model 171

Figure 7-17. Req. 2 re-aspects semantic signatures ..173

Figure 7-18. Re-aspects approach performance evaluation (in seconds)173

Figure 8-1. A code snippet vulnerable to SQL Injection attack 185

Figure 8-2. A code snippet vulnerable to authentication bypass 185

Figure 8-3. A code snippet vulnerable to improper authorization 185

Figure 8-4. An overview of the host-system-component relations 188

Figure 8-5. Weakness definition schema ... 189

Figure 8-6. Signature-based security analysis tool .. 196

Figure 8-7. Security analysis signature locaotor UI ... 199

Figure 8-8. Architecture of our signature-based static analysis 200

Figure 8-9. Sample user-defined OCL function for taint-data 200

Figure 8-10. Sample of the platform profile for ASP.NET 200

Figure 8-11. Example of radar chart of benchmark applications 205

Figure 8-12. Performance of the security analysis component 205

Figure 8-13. Achieved precision, recall, F-measure rates .. 207

Figure 8-14. Performance of approach per vulnerability ... 207

Figure 9-1. Security metrics realization phases ... 215

Figure 9-2. Security metric definition schema ... 216

Figure 9-3. Our system description meta-model ... 219

xvii

Figure 9-4. Security monitoring platform architecture ... 221

Figure 9-5. Snapshots from our security monitoring tool 225

Figure 9-6. Performance overhead grouped by monitoring stage 228

Figure 10-1. Average time to fix security vulnerabilities (in days) 237

Figure 10-2. VAM-aaS Key components, relations and possible interactions 238

Figure 10-3. OCL-based vulnerability analysis component240

Figure 10-4. Vulnerability Mitigation Component ..240

Figure 10-5 Effectiveness of the security mitigation component 242

Figure 10-6. Performance overhead of the security mitigation component 242

Figure 10-7. Example of modifications in the data access layer 249

Figure 10-8. Examples of required modifications in application logic layers 249

Figure 10-9. Steps and relations of case study ... 255

Figure 10-10. A simplified LitwareHR usage example ... 256

Figure 10-11. LitwareHR feature model ... 257

Figure 10-12. LitwareHR architecture.. 258

Figure 10-13. LitwareHR security architecture .. 259

Figure 10-14. A part of LitwareHR class diagram .. 261

Figure 10-15. Base security metrics' status and trend overtime 265

Figure 10-16. Derived security metrics' status and trend overtime 265

xviii

List of Tables

Table 3-1. Key research areas, efforts, and gaps .. 71

Table 4-1. Summary of benchmark applications statistics .. 84

Table 4-2. Evaluation results classification ... 84

Table 5-1. Alignment of NIST-FISMA standard with the cloud computing model ... 91

Table 5-2. Formats and examples of the adopted security standards 97

Table 6-1. Security controls used by service provider, Swinburne, Auckland 138

Table 6-2. Validating MDSE@R against Group-1 and Group-2 applications 138

Table 6-3. Comparison between SecDSVL and existing efforts 139

Table 7-1. List of possible operations in OCL .. 157

Table 7-2. Samples of Re-aspect signatures as OCL expressions 158

Table 7-3. Samples of impact analysis signatures using OCL signatures 161

Table 7-4. Samples of code modification advices... 162

Table 7-5. Part of system modification patterns and related Impacts 166

Table 7-6. Re-aspects change analysis effectiveness ... 177

Table 7-7. Re-aspects impact analysis and change propagation effectiveness 177

Table 8-1. Examples of OCL-specified weaknesses signatures and metrics 193

Table 8-2. Results of our OCL-based architecture security analysis 203

Table 8-3. Results of our OCL-based security vulnerability analysis 208

Table 9-1. Examples of OCL-specified security metrics signatures 219

Table 9-2. Examples of derived security metrics ... 221

Table 9-3. Comparison between metrics specification languages 226

Table 9-4. Security monitoring evaluation results ... 230

Table 9-5. Performance overhead of our security monitoring platform 230

Table 10-1. Examples of vulnerability mitigation actions .. 240

Table 10-2. Results of VAM-aaS vulnerability mitigation component 242

Table 10-3. Multi-tenancy change requests organized by architecture layer 250

xix

Table 10-4. List of re-aspects signatures for modifications in Table 10-3 251

Table 10-5. Evaluation results of our approach on the benchmark applications 252

Table 10-6. LitwareHR found vulnerabilities and threats 262

Table 10-7. LitwareHR security reengineering re-aspects 262

Table 10-8. Tenants' security control ... 262

Table 10-9. Tenants' security-system mappings .. 264

Table 10-10. Security metrics' mitigation actions .. 266

Table 10-11. Security metrics' status .. 266

Part 1

Problem Analysis

Page 3

 Chapter 1

Introduction

The cloud computing model [2] introduces a new generation of computing platforms with more

emphasis on increasing business benefits and reducing IT infrastructure cost. This model is

leading IT industry towards new service models that can utilize resource virtualization, service

outsourcing, and the pay-per-use payment model [3]. The cloud model introduces a win-win

solution for both cloud providers and service providers, and service consumers. Service

consumers can scale their resources up and down at runtime utilizing the cloud elasticity feature

which enables consumers to allocate and de-allocate resources on the fly. On the other hand,

service providers can optimize cost and resource utilization through the cloud multi-tenancy

feature which enables providers to co-locate different service consumers (tenants) to share the

same service instance.

Securing such dynamic, virtualized, and multi-tenant platforms and services is a big

challenge [4]. Our analysis of the cloud computing model shows a set of key factors that

complicate the cloud computing security problem and need to be addressed by cloud security

solutions. These factors include: First, the cloud model has different stakeholders (cloud

platform provider, cloud service provider, and cloud consumer) involved in securing the cloud

platform, the cloud hosted services, and tenants’ data. Each stakeholder owns a piece of

information required in developing the service security model. Moreover, each stakeholder may

have their own security requirements that should be supported by the same service instance, in

case of multi-tenancy. Second, outsourcing assets to be hosted on the cloud without tenants’

involvement in securing these assets raises the loss-of-control problem (tenants do not have

control on the security enforced on their cloud hosted assets) and lack-of-trust problem (tenants

do not trust that the claimed security level by service providers is actually applied). Third, the

key cloud characteristics - multi-tenancy and elasticity - have negative impact on the cloud

security. Multi-tenancy increases tenants concerns about the security isolation between different

tenants’ assets that are co-located on the same cloud service instance. Elasticity increases

tenants concerns about the elasticity of the operated security to cover newly allocated resources.

Fourth, the cloud model itself has a complex layered architecture (servers and infrastructure,

hypervisor, virtual machines, platforms, services, and applications) with long dependency stack.

Each layer has a set of security issues, inherited from the underlying technology used by the

cloud model, as well as a set of deployed security controls. This in turn complicates the

Chapter 1: Introduction

Page 4

management task of such huge number of cloud services and heterogeneous security solutions.

Fifth, the cloud model introduces different service delivery models. Each service model has

different possible deployment models and security controls to be used which complicates the

development of standard security models for each service delivery model.

Delivering a secure cloud platform requires addressing these factors with a consistent and

comprehensive model. From our analysis of the cloud model, we figured out that the current

cloud security model considers security as a crosscutting concern while each cloud layer and

service has to enforce and manage their security individually. The cloud model lacks a strong

security management platform that can address the large amount of the cloud-hosted services,

security controls deployed, stakeholders involved with the cloud platform, constantly changing

security requirements of different tenants, multi-tenancy and elasticity problems, loss of control

and the lack of trust problems raised by cloud tenants.

The main responsibility of any security management framework as defined by ISO27000 [5]

and NIST-FISMA [1] standards is to help in capturing and defining assets’ security

specifications, enforcing specified security, and monitoring and improving security to meet

target security objectives. Although, this mission is obvious, we did not find relevant efforts that

help in fulfilling these tasks consistently. Moreover, we have figured out major gaps and

limitations in these existing efforts when projected on the cloud computing model and its related

security challenges. Below we summarize some of these limitations. A detailed discussion of

the existing, relevant efforts is introduced in the related work chapter 3.

– Security Management Process: Existing security management standards that represent the

basis for adoption by any security management system, such as ISO27000 [5], NIST-FISMA

[1], do not fit well with the cloud model. This is because they assume that the owner of the

assets to be secured has full control over the security management process of these assets.

Thus, outsourcing IT assets and sharing of cloud resources between different tenants are hard

to address by these standards. Furthermore, the existing security management frameworks,

such as POSTIF: Policy-based security management [6], Ontology-based management [7],

hybrid approach of both [16], and model-based security management [8], focus mainly on

automating the configuration of heterogeneous security controls. This is in contrast to

addressing the early phases of the security management process, such as how to capture

security requirements and how to extract and report feedback on system security status.

Moreover, the integration of the deployed security controls within target IT systems (cloud

services in our case) is not addressed and currently done manually. This is not feasible in the

cloud model where we have potentially hundreds of stakeholders with different security

requirements.

Chapter 1: Introduction

Page 5

– Security Specification Phase: The specific security requirements to be enforced by a security

management system arise from the stakeholder security objectives that must be satisfied by

the target IT systems. Refining security objectives into security requirements and policies is

done using risk assessment approaches. Existing risk assessment and management

frameworks, such as OCTAVE [9], CORAS [10], Saripalli [11], Xuan [12] Shirlei et al [13],

focus on the manual process of identifying security risks, threats and proposing mitigation

solutions. Although some tools do exist, they focus on the documentation and modeling of

the identified risks rather than automation of the identification process. Automation is a key

requirement in cloud computing security because of the cloud complexities discussed above.

The security risk assessment process involves vulnerability analysis, threat analysis, and

attack analysis. Existing vulnerability analysis efforts that help in identifying security flaws

and bugs focus on specific vulnerability types e.g. SQL Injection or Cross Site Scripting

(XSS) attacks. However, the cloud model is publicly accessible to end-users who may be

malicious users. Moreover, even one of the cloud service tenants may be a malicious attacker

who has high privileged permissions to exploit more complex vulnerabilities. Thus, there is a

need for an online and comprehensive security analysis approach.

– Security Enforcement Phase: Enforcing the identified security requirements is done through

the security engineering process. Existing security engineering efforts usually focus on

design time security engineering [14-16] where security requirements are captured during the

system development, by service providers, and are not expected to change at runtime. On the

other hand, adaptive application security has been investigated in some research [17] [18,

19]. These approaches mainly focus on low level details, including in-memory objects

update, or deliver adaptive security solutions/architectures only for specific security

objectives, such as delivering adaptive access control mechanisms [20]. Some security

engineering approaches for Service-Oriented Architecture (SOA) applications exist. Such

efforts depend on the nature of SOA-based applications which is not the prominent

architecture of cloud applications (mainly web applications). Multi-tenant security efforts

[21] help in specifying and realizing security requirements on cloud web-based applications

composed of web services. Each application instance, customized for a specific tenant, is

deployed on a separate Virtual Machine (VM). They assume that web applications are

composed of web services only. Security is maintained through using separate VMs for each

tenant. Approaches to extend applications’ capabilities to support multi-tenancy do exist as

well [22-26]. These efforts mostly focus on extending existing application security

capabilities and on handling the isolation security problem. Enabling multi-tenant security

engineering “tenant-oriented security”, to the best of our knowledge, has not been addressed.

Chapter 1: Introduction

Page 6

– Security Monitoring Phase: Confirming that the operated security is effective and efficient is

a very important phase in the security management process. This becomes crucial and

complicated under the cloud computing model, given that service consumers (tenants) do not

have control on their cloud-assets. Existing efforts in the security monitoring area [27-31]

either support security monitoring using controls log-based measurements (lagging security

metrics) which is not efficient for proactive security, or support manually specified and

collected security measurements which cannot be used with cloud outsourced assets. We

could not find an easy to use formalized language that could help in capturing customized

(user-defined) dynamic, runtime security metrics. Most of the existing efforts are either too

formal such as Event-Calculus [190], or domain-specific such as [203, 204, 205]. Automated

security metrics’ realization including monitoring (injecting necessary probes at relevant

components) and analysis of the generated security measurements are not supported.

In this thesis, we introduce a novel, adaptive, model-based, and multi-tenant cloud

computing security management framework addressing these new cloud computing security

challenges and mitigating gaps found in the existing relevant security management efforts. Our

solution is adaptive to cope with the dynamic nature of both the security problem (requirements

change according to current security status and risk) and the cloud model (cloud services and

their tenants change over time). It is model-based to work on abstract level away from the

underlying platform or target service details. Our approach is based on extending the boundaries

of the cloud consumers and providers’ security management processes to include their cloud

hosted services and cloud platforms respectively. This means that stakeholders can go through

the security management process for their cloud hosted assets as if they have been hosted inside

enterprise perimeters. Moreover, they can use the same security specifications, security

enforcement, and monitoring and improvement approaches used internally and thus mitigate the

loss-of-control and the lack-of-trust problems arise from adopting the cloud model. Our

framework can be deployed on cloud platforms and used to manage the security of deployed

services for corresponding service tenants. As none of the cloud stakeholders possess the

information required to secure a given service, we base our approach on joint-collaboration

between different cloud stakeholders in securing their cloud-hosted assets.

We evaluated each component of our cloud security management platform separately using a

set of benchmark applications and a set of soundness and completeness metrics whenever

applicable (introduce in chapter 4). Furthermore, we have conducted three case studies to

evaluate different parts of the platform (two or more components) in addressing specific cloud

security problems. The first case study targets automated, online patching of services’ reported

vulnerabilities (virtual patching) using the enforcement component and analysis component.

The second case study targets facilitating addressing multi-tenant security isolation problem

Chapter 1: Introduction

Page 7

when migrating legacy applications for the cloud computing – to support multi-tenancy. The

third case study addresses a complete multi-tenant security management cycle using our security

management platform. The evaluation results were very supportive and demonstrate that our

platform successfully automated the security management process of the shared, multi-tenant

cloud-hosted services.

1.1 Motivating Scenario

In this section, we introduce a simple motivating scenario, shown in Figure 1-1, which we wish

to satisfy using our research. Although this scenario is a typical scenario that most probably exit

in any cloud platform hosting Software-as-a-Service applications, it still cannot be satisfied

neither by the existing security management nor security engineering efforts.

Get Currency-Now

Build Workflow

Galactic ERP

Execute Batch processing

SWIN

SOFT

SWIN

SOFT GREEN CLOUD

BLUE CLOUD

SWIN
MARKET

Figure 1-1. Motivating scenario use-case diagram

Consider SwinSoft, a virtual software house focusing on developing business applications,

has developed their new enterprise resources planning (ERP) product. The code name of this

product is Galactic. This product is developed as a web-based, multi-tenant, cloud application.

SwinSoft has decided to host Galactic on a SaaS cloud platform delivered by GreenCloud.

During the development of Galactic, SwinSoft has decided to use external third-party services to

speed up their application development and reduce the time to market. These services include:

– Build Workflow Service: This is a customizable workflow engine that enables different

tenants to model their business processes. This service is developed by GreenCloud and

deployed on their cloud platform.

– Get Currency-Now Service: This is an online service that retrieves current and historical

currency exchange rates. This service is also developed by GreenCloud and deployed on

their cloud platform.

Chapter 1: Introduction

Page 8

– Batch-Monster Service: This is an online ERP-posting service (performs batch posting of

system transactions) based on the map-reduce model. This service is developed and deployed

on another cloud platform called BlueCloud.

Swinburne University is planning to buy a new ERP solution in order to automate its internal

processes and facilitate the communications with Swinburne students, staff, and community.

After long investigation and cost analysis of the existing ERP solutions, Swinburne decided to

go for Galactic ERP as a SaaS application, to save upfront investment required when deploying

new ERP solutions while keeping infrastructure cost as optimal as possible by delivering it on

use/load wise. At the same time, Auckland University becomes interested to adopt Galactic as

their ERP system. However, both Swinburne and Auckland have their own business

requirements as well as their own security requirements. Below we summarize some of the

security requirements of both stakeholders.

– Swinburne Security Requirements: Each user should have their own privileges according to

their roles in Swinburne. Such privileges should capture and consider the context of the users

such as their locations, time, and nature of the devices used…etc. Based on these attributes,

the security level and security mechanisms to be used should be applied; Users should not

have different identities to deal with the different IT systems including internally deployed

systems as well as Galactic ERP service; Users’ information should be kept secured. Any

communication between the users and the system or other underlying systems or services

should be kept secured; and Swinburne data should be kept isolated from other customers

and SwinSoft employees as well. These security requirements should not conflict with any

other customer of Galactic ERP or even with security policies defined by SwinSoft or other

providers involved in the service delivery.

– Auckland Security Requirements: Auckland assigns high risk impact to the Galactic service

because of the criticality of data processed by this service. Thus, they have strong security

constraints that are different from their local systems. They plan to use more complicated

security solutions to protect their cloud assets. This includes the following requirements: To

apply an attribute-based access control (ABAC) model [32] for access control that is based

on user context; To apply two-factor authentication security system currently deployed in

Auckland network; To apply transaction accountability and auditability on all user

transactions; and Auckland data should be kept confidential at rest and at transmission.

SwinSoft has to satisfy Galactic tenants’ security requirements in order to convince them to

procure the application. SwinSoft software and security engineers have to manually customize

and redeploy Galactic services after capturing these new security requirements. However,

SwinSoft developers, as most of software engineers, do not have enough experience in the

Chapter 1: Introduction

Page 9

security engineering area. So they face many problems developing tenants’ security

requirements inside their delivered applications and services.

SwinMarket, a new Galactic tenant, becomes also interested to use Galactic point-of-sale

system to operate in their stores. Galactic should be integrated with the SwinMarket systems that

automate their internal business process including General Ledger and Purchasing systems. This

means that SwinSoft has to revisit Galactic application security requirements to incorporate

SwinMarket security needs.

Few months later, Swinburne has decided to change their security requirements to match

their new business needs. Moreover, Auckland has decided to change their security

requirements in order to address new security threats found in Galactic and may result in

breaching their assets confidentiality. This means that SwinSoft development team has to revisit

those tenants’ operated security with relevant change requests.

SwinSoft is now looking for a security management and engineering approach that could help

them in capturing and enforcing different tenants’ security requirements rather than the current

methodologies that deliver one set of application security not linked to different service tenants’

security requirements. Moreover, they are looking for an approach that helps in modifying

security requirements of a given tenant independent of the other tenants. This approach should

support registering new tenants who can apply their security requirements at runtime without a

need for service customizations. It is highly recommended that the proposed approach is a

configuration-based rather than customization-based to avoid delays in modifications, being

overwhelmed with change requests, and improve service availability.

1.2 Research Roadmap

To deliver our cloud security management platform, we have adopted an iterative approach

where each iteration is supported with a prototype as a proof-of-concept. Working iterative

helped to keep adding components to the proposed platform, each new component addresses

one of the research questions/gaps. The order of iterations reflect the logical dependencies

between the research gaps we found in the area of cloud computing security management.

Below we discuss details of our research project roadmap.

First, we investigated the existing efforts in the area of the cloud computing security to

identify the existing research problems, research gaps, and setting the research scope. We

published results of our detailed analysis of the cloud computing security problem in [4].

Second, we projected the existing security management standards including ISO27000 [5]

and NIST-FISMA [1], and security management efforts on the cloud computing model using

Chapter 1: Introduction

Page 10

the requirements and challenges we identified in the first milestone. A practical solution to the

cloud computing security management problem must conform to the existing security standard.

Thus the objective of this step was to assess the existing security standards when applied to the

cloud computing model. We selected NIST-FISMA security management standard (as one of

the two main security management standards). The standard does not target securing outsourced

services, thus we had to adapt NIST-FISMA standard to fit with the cloud model. Our revised

cloud-aligned NIST-FISMA standard is based on improving the collaboration of the cloud

stakeholders in delivering the whole platform and service security model. We developed a

simple prototype based on the modified model, and verified it using the motivating scenario

discussed above (published in [33]). The rest of our platform is aligned with the revised

NIST_FISMA standard.

Third, once we confirmed that our modified cloud security model works well with the cloud

model, we started to work on every task of the security management process (specifying,

enforcing, and monitoring security) to see how we can improve or automate and re-integrate

with our developed framework. We started with the security enforcement step because it

represents the core of the whole security process, whereas a failure to automate, implies

rejecting the hypothesis (that we can deliver automated cloud security management) we are

trying to prove in this project. Assuming that we succeeded in capturing the set of security

objectives of each tenant, how can we enable services to support enforcing these multi-tenant

security requirements? To do this we investigated the existing security engineering, adaptive

application security, and multi-tenant SaaS engineering approaches. These efforts do not

support multi-tenancy security engineering, fully adaptive security, or runtime integration of

third-party security controls. We proposed a new approach for security engineering, MDSE@R.

In MDSE@R, service providers should deliver a service description model that captures their

services’ details (called a Service Description Model – SDM) as part of their service delivery

package. Customer security engineers develop their security specification model (SSM) that

captures all security objectives, requirements, etc. MDSE@R then weaves both models together

at runtime and reflects the resultant weaved system-security model onto the running system

using dynamic-weaving Aspect-Oriented Programming - AOP. We validated MDSE@R with a

set of open source applications from our benchmark set discussed above. The results show that

MDSE@R successfully used in capturing different sets of security requirements and realization

controls, and correctly integrating these security controls within target system entities. The

results were published in CSS2012 [34]. As an extension of this approach we modified

MDSE@R to fit with the multi-tenancy problem – i.e. to support enforcing different sets of

security requirements at runtime. TOSSMA is a tenant-oriented SaaS security management

architecture that supports capturing and enforcing different security requirements, for different

Chapter 1: Introduction

Page 11

tenants, on the same service instance at runtime. TOSSMA was validated on the same set of

open source applications. Results were published in CLOUD2012 [35].

Fourth, MDSE@R helps adding security at runtime for new and existing applications, but

for existing applications with built-in security, the new injected security capabilities may result

in conflicts with the already built-in security capabilities. Thus, we have to introduce a pre-

processing step where the existing, built-in security capabilities are re-engineered. This may

include modifying, replacing and disabling existing security. We investigated existing system

and security maintenance, and retrofitting approaches. A limited work was introduced in this

area. A reasonable justification of this is that once a model-driven engineering approach was

used in developing the application, the maintenance task will mainly relay on updating existing

models. Moreover, addressing security as an afterthought is always claimed to be a bad practice

[36]. Existing efforts do not help enough in automating security reengineering tasks, as most of

these efforts focus on using aspect-oriented programming (AOP) to deliver dynamic system

updating through replacing existing methods with updated versions [37]. We propose a new

approach that helps in reengineering system and security whatever was the information

available including system models, source code or at the worst case system binaries are only

available. Our approach is based on a new concept we introduced “Re-aspect” – Reengineering

aspects – which extends the AOP with more flexible signature specification constructs (to

capture signature of code entities to be modified) and more supported actions (delete, inject,

modify, and replace). Re-aspect advice encapsulates code to inject (in case of replace or insert

re-aspect) or code to be used in system modification (in case of modify re-aspect). We validated

our approach on the same set of open source web applications. The results show that “Re-

aspects” is sound enough in automating the software security retrofitting process. We

documented our approach and results and published it in ASE2012 and ICECCS2012 [38, 39]

Fifth, a key source of security requirements is the security analysis task that pinpoints service

security issues. Moreover, given a system either secured or not, how can we verify that it is not

still vulnerable to known weaknesses or vulnerabilities. Existing techniques focus on specific

types of weaknesses such as SQL Injection, OS Command Injection, XSS, etc. These techniques

use static analysis, dynamic analysis, string based analysis, runtime analysis, or hybrid

approaches. These efforts are not comprehensive enough to cover a wide - range of

vulnerabilities. Conducting vulnerability analysis of the services before hosting on the cloud or

getting tenants to use it is an important task that helps in reducing the risk of tenants’ data

breaching. Moreover, such efforts are not extensible enough to address new vulnerabilities that

emerge at runtime. Having an online vulnerability analysis is a key requirement of the cloud

computing security problem. To deliver a comprehensive and extensible approach, we

Chapter 1: Introduction

Page 12

developed a formal weakness/vulnerability specification approach independent of the service

implementation or details of the programming language used (currently, vulnerabilities are

specified informally e.g. in CWE database). In our approach, vulnerability signatures are

specified in Object Constraint Language (OCL). We have developed a source code vulnerability

analysis extension that receives the source code of the service under test along with the

vulnerabilities’ signatures. It generates a list of found vulnerabilities in the source code along

with the entities that match the specified vulnerabilities’ signatures. We have evaluated our

approach in capturing definitions of the top ten weaknesses published by the Open Web

Application Security Project – OWASP [40], and in analyzing a set of benchmark applications

using these signatures. The evaluation results show that our online security analysis tool has

high precision and recall rates. This means that we can depend on it in analyzing SaaS

applications against possible vulnerabilities and attacks. Our approach along with the evaluation

results have been published in ASE2012 [41]. We then extended this approach to support not

only source code analysis (vulnerability analysis) but also system architecture and design

artifacts (threat and risk analysis). This extension along with the evaluation results have been

published in ICSE2013 [42].

Sixth, given the set of security objectives, identified vulnerabilities, and enforced security

controls, how to confirm that the system is now secure enough, meets the specified security

objectives, and blocks the possible security attacks. Security monitoring is a very raw field

where a very limited amount of research has been done so far. Existing efforts do not help in

automated security monitoring. They mostly help in developing manual security metrics or

manual collection of security measures. We have developed a general approach that captures

security metrics in general signatures as OCL invariants. These metrics definitions are used to

generate required security probes. These probes are integrated within the target services using

AOP that intercept service execution and extract values of different attributes of the services to

be evaluated. The collected measures are sent back to analysis service that analyze such

measures and generates the corresponding metric values. The evaluation results show that our

approach is successful in capturing different categories of security metrics, automating the

generation and deployment of security probes, and analyzing the generated measurements. This

approach along with the evaluation results are submitted to ASE2014.

1.3 Key Contributions

In this research, we have introduced a set of solutions to address relevant security problems that

arise from the adoption of the cloud computing model. Below we summarize the key

contributions we have achieved in the area of cloud computing security management.

Chapter 1: Introduction

Page 13

A novel alignment of one of the existing security management standards (NIST-FISMA

standard) to fit with the cloud computing model and its new application service hosting model

(multi-tenancy model) [33]. Existing security management standards focus on enterprise

security management where assets are fully owned and controlled by the customers. On the

other hand, cloud consumers do not have control on their outsourced cloud assets, especially in

the SaaS applications. Thus, existing security management standards do not fit well with the

cloud computing model. Our proposed security management standards-to-cloud computing

alignment is based on improving the joint-collaboration between different cloud stakeholders

where each stakeholder participates with the piece of information they own about the cloud

model or the hosted services. Our proposed alignment is introduced in Chapter 5.

A novel, integrated, and multi-tenant cloud computing security management model and

platform. Our security management platform, to the best of our knowledge, represents the first

proposal of a security management platform for the cloud computing model that address the

loss-of-control and lack-of-trust problems taking into consideration the multi-tenancy

dimension. Our security management model is based on NIST-FISMA standard as one of the

two main security management standards. Our aim is to be comprehensive enough to cover

most of the tasks done by security experts during the security management process. To the best

of our knowledge, this is the first proposal of multi-tenant security management platform that

operates as a cloud service shared among all cloud stakeholders including service tenants and

service providers.

A novel, model-driven, tenant-oriented security engineering approach [34, 35]. We introduce

a novel multi-tenant, model-driven security engineering at runtime approach (we call

MDSE@R). Given cloud services are shared among different tenants who have their own

security requirements, the service-oriented security engineering approaches (a service can

reflect one set of security requirements that are captured during design time) are no longer

suitable to satisfy tenants’ needs. We introduce a tenant-oriented security engineering approach

that enables different tenants to manage (define security, enforce security, and monitor security)

their service instances’ security at runtime without a need for service customization. MDSE@R

introduces a comprehensive system description mega-model (SDM) that captures all system

details (this model is developed by service providers using UML) and security specification

mega-model - SSM (that captures each tenant’s security details, developed by each service

tenant using our SecDSVL). The SSM is based on a deep analysis of the main entities and tasks

existing in security management standards. We developed SecDSVL, a security domain-specific

visual language, to help security engineers and administrators in developing security

specification models. MDSE@R also introduces a common security interface that helps in

Chapter 1: Introduction

Page 14

integrating third-party security controls with the target IT assets at runtime. Security vendors

need to develop one adaptor for their security services that complies with our common security

interface. Thus, they do not need to develop different adaptors for different cloud services. Our

proposed MDSE@R approach is introduced in Chapter 6.

An extensible online cloud services’ security analysis service [41, 42]. We introduce a

security analysis service that can analyse service architecture, design, source code, and binaries

to identify the existing security design flaws and bugs. The key contributions of our novel

security analysis service are: integrated security analysis throughout different service artifacts

including architecture, design and code; the security analysis service is extensible, thus we can

add different security analysis mechanisms without a need to modify the underlying platform;

and security analysis is signature-based, thus any vulnerability, threat, or system design security

metric could be easily specified and verified against the system without a need to develop new

plugins. This helps to support online analysis for known and unknown vulnerabilities that arise

at runtime as far as a signature of such vulnerabilities exist. Our proposed security analysis

approach is introduced in Chapter 8.

An extensible and automated cloud applications’ security monitoring service. The main

contribution of our novel security monitoring service is that we did not develop a predefined set

of security metrics. Service users can define their own security metrics to be used in diagnosing

the security status of their IT assets. The security monitoring service uses these metrics

signatures (definitions) to generate and deploy required security probes that are responsible for

collecting required measurements from the target cloud services. Moreover, it uses these

signatures in generating metric evaluation expressions to be used in analyzing collected security

measurements and generating metric values. Our security monitoring approach is introduced in

Chapter 9.

A novel approach to help migrating legacy applications to the cloud and disabling hardcoded

security functionalities [38, 39]. In order to help in managing services security using MDSE@R

we may need to disable the existing security APIs and functions in a legacy application. To do

this we introduce a novel system and security reengineering approach using a new concept

called reengineering aspects “Re-aspects”. This new concept helps in capturing system

modification details including the signature of system entities to modify, actions to apply,

advice(s) or code to use in realizing this change. Our re-aspects engine uses these details to

realize the captured change request details. This approach is supported with two signature

specification approaches including code-snippets signatures and OCL-based signatures. We

have used re-aspects to address two other problems: the patching/mitigation of reported

vulnerabilities and in migrating legacy applications that are not designed with multi-tenancy in

Chapter 1: Introduction

Page 15

mind to support cloud computing multi-tenancy. Our proposed security reengineering approach

is introduced in Chapter 7.

An automated vulnerability virtual patching approach [43]. This approach is based on

integrating MDSE@R and vulnerability analysis service. The reported vulnerabilities by the

vulnerability analysis service are fed in MDSE@R to inject relevant security controls (as

vulnerability mitigation actions) at critical (vulnerable) system entities. Our proposed virtual

patching approach is introduced in Chapter 10 as a case study.

1.4 Thesis Structure

This thesis deals with cloud computing security management problem taking into consideration

the loss-of-control, lack-of-trust, and multi-tenant security problems that arise from the adoption

of the cloud computing model. In this thesis we introduce our solution to address these

problems. Our solution is based on an adaptive, model-based cloud computing security

management approach that enables tenants to extend their security capabilities to include cloud

hosted assets. By this approach tenants can define their security requirements, their security

controls, and security metrics and attributes they want to follow up. The thesis structure is

depicted in Figure 1-2. The thesis is divided into three parts. Part (1) gives an overview of the

cloud computing model, the key security problems and challenges arise from the adoption of the

cloud model, and the key limitations of the existing research efforts. Part (2) gives details of our

solution – the adaptive, model-based cloud computing security management approach. Part (3)

gives details of the case studies we conducted to evaluate our approach and the key conclusions,

limitations and future work.

In Chapter 2, we introduce a detailed analysis of the cloud computing security problem. We

tried to identify different the key factors that really contribute to the cloud computing security

problems and should be addressed by any cloud computing security solution. These factors

include cloud characteristics (multi-tenancy and elasticity), cloud architecture, underlying

technologies, and service delivery models used.

In Chapter 3, we give a comprehensive literature review of the main relevant research areas

related to our research problem, including cloud computing, security management, security

engineering, security engineering, security analysis, and security monitoring. We summarize the

key efforts done in each area, key limitations of these efforts, and key gaps compared to the

security problems and issues of the cloud computing model that we need to address in our

research project.

Chapter 1: Introduction

Page 16

• Chapter 1: Introduction

• Chapter 2: Cloud Computing Security Problem

• Chapter 3: Related Work

Part 1: Problem Analysis

• Chapter 4: General Approach

• Chapter 5: Aligning Security Management Standards with Cloud Model

• Chapter 6: Cloud Applications’ Security Engineering

• Chapter 7: Cloud Applications’ Security Reengineering

• Chapter 8: Cloud Applications’ Security Analysis

• Chapter 9: Cloud Applications’ Security Monitoring

Part 2: Adaptive, Model-based Security
Management

• Chapter 10: Case Studies

• Chapter 11: Conclusion and Future Work

Part 3: Evaluation

Figure 1-2. Thesis structure

In Chapter 4, we introduce the main idea of our security management platform which is the

autonomic computing model (MAPE-K). We also describe the “big picture” of our platform,

our solution high-level architecture, and the main components of the security management

platform.

In Chapter 5, we describe how we aligned one of the main security management standards

(NIST-FISMA standard) to fit with the cloud computing model and how we attested the

proposed model with a prototype with a simplified version of our motivating example.

In Chapter 6, we describe our security enforcement approach developed as model-driven,

multi-tenant security engineering at runtime approach (MDSE@R). The proposed approach

enables each tenant to manage their assets security using security specification models that

capture their security details using SecDSVL (security domain-0specific visual language). Then,

MDSE@R realizes these security models using aspect-oriented programming. We introduce a

detailed evaluation of our MDSE@R approach, including SecDSVL usability evaluation, usage,

example, and a set of benchmark applications.

In Chapter 7, we present our security reengineering approach and our new change request

realization concept “reengineering aspects” re-aspects. MDSE@R helps in injecting tenants’

security requirements at runtime; however, it does not help with applications that have built-in

security functions or APIs. We give details of the reengineering aspects concept, how re-aspects

Chapter 1: Introduction

Page 17

help in impact analysis and change propagation as main steps of the software reengineering and

maintenance. We describe a detailed evaluation of our security reengineering approach on a set

of benchmark applications and a set of security related change requests.

In Chapter 8, we present our novel, online signature-based security analysis approach. This

approach is based on capturing signatures of weaknesses, vulnerabilities, attacks’ signatures,

and security metrics using formalized signatures developed with Object Constraint Language

(OCL). These signatures are automatically transformed into C# code that is used to analyse the

applications/services source code to pinpoint matched entities. We introduce a detailed

evaluation of our approach and developed prototype.

In Chapter 9, we introduce our novel security monitoring approach using formalized security

metrics schema with metric signature specification approach based on OCL. We describe our

underlying security monitoring platform that is responsible for transforming these security

metrics into a set of security probes to be deployed into system entities, collecting

measurements from the system status attributes, and in analyzing the collected measurements

using the specified security metrics’ signature after being transformed into C# code.

In Chapter 10, we present a set of case studies that we have conducted in order to evaluate

our proposed cloud security engineering approach. We describe three case studies where each

case study assesses the application of the platform or parts of the platform in a specific cloud

security problem. The first case study addresses the problem of online virtual patching of the

newly reported security vulnerabilities. The second case study addresses the problem of

migrating legacy applications to fit with the cloud model (mainly the isolation of different

tenants’ data). The third case study shows the application of our platform in realizing a full

security management cycle of a SaaS application with different tenants.

In Chapter 11, we summarize the key problems we addressed throughout our research

project, summarize key contributions of the research project introduced in this thesis, the main

limitations of our platform, and future tasks that we plan to address.

Page 19

 Chapter 2

Cloud Computing Security Problem

In this chapter we discuss the key factors, we figure out from our analysis, contributing to the

complication of the security problem under the cloud computing umbrella i.e. we address the

question why security is different and more challenging in cloud computing than for other kinds

of computing domains? Such factors need to be addressed by cloud security solution that targets

security issues in the cloud computing model. This chapter is organised as follows. In Section 1,

we give a general introduction of the cloud computing model and why cloud computing security

is ranked as one of the top concerns when adopting the cloud model. In Section 2, we discuss

the implications of different factors on the security of the cloud model. In Section3, we discuss

the key enablers that can help addressing these cloud computing security problems.

2.1 Introduction

The cloud computing model provides the next generation of internet-based, highly scalable

distributed computing systems in which computational resources are offered 'as a service' [2].

The cloud model is based on the pay-as-you-go payment model where tenants – users of the

cloud-hosted software applications – pay only for the amount of resources they use. Tenants can

expand or shrink their resources on the fly according to current needs [44].

The cloud model has motivated industry and academia to host a wide spectrum of

applications ranging from high computationally intensive scientific or business applications

down to light-weight services. The cloud model also helps in addressing the “long tail market”

for small and medium enterprises (SMEs) [67]. This is because it does not require large upfront

investment in IT infrastructure, software licenses, and other computing infrastructure.

Moreover, governments and other organizations have become more interested in the

possibilities of using cloud computing to reduce IT costs and increase capabilities and

reachability (availability and accessibility) of their delivered services. According to a recent

Gartner survey [45] on cloud computing revenues, the cloud market was worth USD 68 Billion

in 2010 and will reach USD 148 Billion by 2014. These revenues imply that cloud computing is

a promising computational platform. Despite the potential benefits of improved reliability,

quality, cost savings and increased revenues that can be gained from the cloud computing

model, a major downside is that it increases malicious attackers’ interest and ability to find

applications and platforms vulnerabilities to exploit.

Chapter 2: Cloud Computing Security Problem

Page 20

This is because of the increased availability and public accessibility of such applications on

the internet. In addition, the cloud model is still not mature enough [46] - there are a lot of open

issues that impact the model creditability and pervasiveness from the cloud consumers’

perspective. For example, vendor lock-in, multi-tenancy and isolation, data placement and

management, service portability, elasticity engines, SLA management, and cloud security are

well-known open research problems [46-48].

From the cloud consumers’ perspective, security is a major concern that hampers the

adoption of the cloud computing model [49]. This is due to, among other reasons: First,

enterprises outsource the security management of their cloud-hosted assets to a third party

(cloud provider) that hosts their IT assets. This results in the well-known loss-of-control

problem [50], where cloud consumers do not have security control over their outsourced assets.

Second, different tenants’ assets co-exist at the same location and using the same software

service instance. Tenants are unaware of the soundness of operated service security and what

security controls are actually used to secure tenants’ data and ensuring no data privacy breach.

Third, the lack of security guarantees in the Service Level Agreements (SLAs) between cloud

consumers and cloud providers. Most existing SLAs focus on reliability, availability and

performance quality of service attributes, rather than security [51]. Fourth, hosting this set of

valuable assets on publicly accessible infrastructure increases the interest and ability of attackers

to exploit vulnerabilities in the cloud platform or the hosted services to achieve malicious

benefits, such as compromising one tenant’s data to another tenant who may be a competitor.

From the cloud providers’ perspective, security requires a lot of expenditure (e.g. security

solutions’ licenses) and resources (security is a resource intensive aspect). Moreover, security is

a difficult problem to master due to its complexity (as we illustrate later in this chapter). The

cloud provider does not know what software the tenants are running which may introduce

security risks to the platform. On the other hand, ignoring or delaying security in the cloud

computing roadmap will violate the expected revenues stated above. Thus, cloud providers have

to understand consumers’ concerns mentioned above and seek out new security solutions that

resolve such concerns. In order to deliver a security engineering and management approach that

helps addressing the security problems arise from the adoption of the cloud computing model,

we have to gain a deep understanding of the cloud computing model to understand the key

factors and root causes that should be addressed by any security engineering or management

approach that address the cloud computing model. This is what we are discussing in the next

sections.

Chapter 2: Cloud Computing Security Problem

Page 21

2.2 Cloud Security Analysis

In this Section we summarize the existing challenges and issues involved in the cloud

computing security problem. We have grouped these issues, as shown in Figure 2-1, into

architecture-related issues, service delivery model-related issues, cloud characteristic-related

issues, cloud deployment models-related issues, and cloud stakeholder-related issues. Our

objective is to identify the weak points in the cloud model by highlighting their root causes.

This helps us in formulating our research problem, key challenges and requirements that we

should address in our approach.

Cloud Characteristics

Long Dependency Stack

Service Delivery Models Different Possible Deployments

Different Stakeholders

Cloud Computing Model

Figure 2-1. Key factors contributing to the cloud computing security

2.2.1 Deployment Models Security Implications

The cloud computing model has three different service delivery models and three possible

deployment models [2] including: Private Cloud: a cloud platform that is dedicated for specific

enterprise(s). This is usually deployed within enterprise network perimeter and enterprise IT

department has full control on the cloud platform. The main objective of this model is to remove

customers’ concerns about the security of their cloud hosted assets on the expense of increasing

IT infrastructure cost; Public Cloud: a cloud platform available to public users to register and

use the available infrastructure and resources over the internet. Tenants use cloud resources

using pay-as-you-go payment model; and Hybrid Cloud: a combination of private cloud

platform that can extend to use resources on a public cloud platform.

Of these three models, public clouds are the most vulnerable deployment models because

they are available for public users to host their services. Those users may be malicious users or

services. In this case, we grant high privileges to malicious users who can exploit more

advanced and complicated vulnerabilities to breach the security of not only one tenant data but

other cloud tenants’ as well. Thus, we need to have an online security analysis tool that can

automatically check and pinpoint any vulnerabilities in the shared, multi-tenant cloud

application. Moreover, we need to enable tenants in securing their assets as hard as they see.

Chapter 2: Cloud Computing Security Problem

Page 22

Cloud Physical Infrastructure

Infrastructure-as-a-Service

Platform-as-a-Service

Software-as-a-Service

Figure 2-2. Cloud service delivery and deployment models

The cloud model introduces three basic service delivery models, as illustrated in Figure 2-2.

These service delivery models deliver different types of services for different types of cloud

tenants. Here, we summarize these models and their security implication: Infrastructure-as-a-

Service (IaaS): in this service delivery model, cloud providers deliver computational resources,

storage and network as internet-based services. This service model is based on virtualization

technology – i.e. deploying a special software “hypervisor” [52] on top of the infrastructure,

which enables creation of different virtual machines that share the same physical server.

Amazon EC2 is the most familiar IaaS platform; Platform-as-a-Service (PaaS): In this service

delivery model, cloud providers deliver platforms, tools and other business services that enable

customers to develop, deploy, and manage their own applications, without installing any of

these platforms or support tools on their local machines. The PaaS model may be hosted on top

of IaaS model or on top of the cloud infrastructures directly. Google Apps and Microsoft

Windows Azure are the most well-known PaaS providers; and Software-as-a-Service (SaaS): in

this service delivery model, cloud providers deliver applications hosted on the cloud

infrastructure as internet-based services for end users, without requiring installing the

applications on the customers’ network. This model may be hosted on top of PaaS, IaaS or

directly hosted on cloud infrastructure. Salesforce.com CRM is an example of a well-known

SaaS platform.

Each service delivery model has different possible implementations, as shown in Figure 2-2

and discussed above. This complicates the development of standard security model for each

service delivery model. Moreover, these models may co-exist on one cloud platform leading to

further complication of the security management process. These service delivery models are

based on existing technologies such as web applications, service-oriented architecture, and

virtualization technologies which already suffer from security problems. Of these different

service delivery models, SaaS model is the weakest model where most of the attacks target to

breach the model security. In this project, we focus mainly on the SaaS model. However, this

Chapter 2: Cloud Computing Security Problem

Page 23

work could be applied easily on the PaaS model (mainly web services). We plan to wave the

work we have done in this research with work done in our research group on IaaS model.

2.2.2 Cloud Architecture Security Implications

The cloud computing model depends on a deep stack of inter-dependent layers of objects (VMs,

APIs, Services and Applications), as shown in Figure 2-3, where the functionality of a higher

layer depends on lower platform layers. The IaaS model covers cloud physical infrastructure

(storage, networks and servers), virtualization layer (hypervisors), and virtualized resources

layer (VMs, virtual storage, virtual networks). The PaaS model covers the platform layers (such

as application servers, web servers, IDEs, and other tools), and APIs and services layers. The

PaaS model depends on the virtualization of resources as delivered by IaaS. The SaaS model

covers applications and services offered as a service for end users. The SaaS layer depends on a

layer of platforms to host the services and a layer of virtualization to optimize resources

utilization when delivering services to multiple tenants.

C
lo

u
d

 M
an

ag
em

en
t

SaaS Applications

PaaS Applications

Hosting Services

Virtualized Resources

Virtualization Platform

Cloud Infrastructure

Figure 2-3. Cloud computing model layers

This deep dependency stack of cloud objects complicates the cloud security problem as the

security of each object or cloud layer depends on the security of the lower objects/layers.

Furthermore, any breach to any cloud objects will impact the security of the whole cloud

platform. Each cloud layer/object has a set of security requirements and vulnerabilities so it

requires a set of security controls to deliver secured services. This results in a huge number of

security controls that need to be managed. Moreover, managing such heterogeneous security

controls to meet security needs is a complex task, taking into account conflicts among the

security requirements and among security controls at each layer. This may result in an

inconsistent security model. Hence, a unified security control management module is required.

Chapter 2: Cloud Computing Security Problem

Page 24

This module should coordinate and integrate among the various layers’ security controls based

on security needs.

2.2.3 Cloud Stakeholders Security Implications

The cloud computing model has different involved stakeholders, including: cloud provider (an

entity that delivers infrastructures to the cloud consumers), service provider (an entity that uses

the cloud infrastructure to deliver applications or services to end users), and service consumer

(an entity that rents and uses services hosted on the cloud infrastructure). Each stakeholder has

their own security management systems and processes; each one has their own expectations

(requirements) and capabilities (delivered) from/to other stakeholders; and each one owns a

piece of information that could help in building a complete security model. This leads to:

– A set of security requirements that need to be defined on a shared service/resource by

different service tenants that may conflict with each other. Thus security configurations of

each service need to be maintained and enforced at the tenant level instead of the currently

used model – i.e. on the service level model. At runtime the system should support the

possibility of security requirements updating based on current tenants’ needs to mitigate

new risks;

– Providers and consumers need to negotiate and agree on the specified security properties.

However, no standard security specification notations are currently available that can be

used by all of the cloud stakeholders to represent and reason about their offered or required

security properties (currently only availability, reliability and performance attributes are

supported); and

– Each stakeholder has their own security management processes used to define their assets,

expected risks and their impacts, and how to mitigate such risks. Adopting the cloud model

results in an inherent “loss of control” by both involved parties - cloud providers are now

not aware of the contents and security requirements of services hosted on their

infrastructures; and cloud consumers who are not able to control security on neither their

assets security nor other services sharing the same resources. Security SLA management

frameworks represent a part of the solution related to security properties specification,

enforcement and monitoring. However, current SLAs still do not cover security attributes in

their specifications [51]. Moreover, SLAs are high level contracts where the details of the

security policies, security controls and how to change them at runtime are not clearly stated,

enforced or monitored.

Furthermore, cloud providers are faced with a lot of changes on security requirements while

having a huge number of security controls deployed that need to be reconfigured in accordance

Chapter 2: Cloud Computing Security Problem

Page 25

with security requirements’ changes. This further complicates the cloud providers’ security

administrators’ tasks. Transparency of what security is enforced, what risks exist, and what

breaches occur on the cloud platform and the hosted services must exist among cloud providers

and consumers. This is what is called “trust but verify” - TBV [53], where cloud consumers

should trust in their providers in the meanwhile cloud providers should deliver tools to help

consumers in verifying and monitoring their enforced security.

2.2.4 Cloud Characteristics Security Implications

To achieve efficient utilization of resources, cloud providers need to increase their resource

utilization while minimizing cost. At the same time consumers need to use resources as much as

they require while being able to increase or decrease resource consumption based on actual

demands. The cloud computing model meets such needs via a win-win solution delivered by

two key cloud characteristics: multi-tenancy and elasticity. Both characteristics turn out to have

serious implications on cloud model security as we discuss below.

1 2

3

Instance A Instance BInstance B Instance Instance Instance

Instance InstanceInstance

Tenant Loader Balancer
Instance

4

Figure 2-4. Cloud multi-tenancy models

2.2.4.1 Multi-tenancy Security Implications

Multi-tenancy implies sharing of computational resources, storage, services, and applications

with other tenants. The concept of “multi-tenancy” actually has different realization approaches,

as shown in Figure 2-4.

In approach 1, each tenant has their own dedicated instance with their own customizations

(customization may include special development to meet customer needs). In approach 2, each

tenant uses a dedicated instance, like approach 1, while all instances are the same but with

Chapter 2: Cloud Computing Security Problem

Page 26

different configurations (configurations represent adjustments of application parameters or

interfaces to meet specific tenant needs). In approach 3, all tenants share the same instance with

runtime configuration (the application is divided into core application components and extra

components that are loaded based on the current tenant requests – similar to SalesForce.com). In

approach 4, tenants are directed to a load balancer that redirects tenants’ requests to a suitable

instance according to current work load. Approaches 3 and 4 are the most risky models from the

security perspective as service tenants become coexisting on the same process, memory, and

hardware. This sharing of resources may violate the confidentiality of tenants’ IT assets which

leads to the need for secure multi-tenancy. Secure multi-tenancy has two key requirements as

discussed below.

- Secure Isolation and Location Transparency: Maintaining isolation between tenants’ data (at

rest, processing and during transmission) and location transparency where tenants have no

knowledge or control over the specific location of their resources to avoid planned attacks

that attempt to co-locate with the victim assets [54]. In some cloud platforms, tenants can

specify high level policies on data location such as country or region level. In IaaS, isolation

should consider VMs’ storage, processing, memory, cache memories, and networks. In PaaS,

isolation should achieve isolation among running services and APIs’ calls. In SaaS, isolation

should achieve isolate among transactions carried out on the same instance by different

tenants and also tenants’ data at rest and processing.

- Security Engineering of Multi-Tenant Services: Different tenants of the cloud services have

their own business requirements as well as security requirements that they are keen to

enforce on their cloud hosted assets and data. Although the current cloud computing model

does support the capture of different business requirements (through the different multi-

tenancy models discussed above), there is little or no support to capture or reflect different

sets of security requirements for different tenants. This becomes more complicated when we

know that different tenants with different requirements usually emerge at runtime. Moreover,

tenant security requirements can change at runtime to reflect their business needs and current

security risks that they consider.

2.2.4.2 Elasticity Security Implication

Elasticity implies being able to scale up or down resources assigned to services based on the

current demands. Scaling up and down of a tenant allocated resources gives the opportunity for

other tenants to use the victim tenant’s previously assigned resources. This may lead to

confidentiality issues. For example, if tenant A has scaled down so she releases resources, these

resources are now assigned to tenant B who in turn might use it to deduce the previous contents

of tenant A.

Chapter 2: Cloud Computing Security Problem

Page 27

Moreover, elasticity usually depends on a service placement engine that maintains a list of

the available resources from the provider’s offered resources pool. This list is used to allocate

resources to cloud services. Such placement engines should incorporate cloud consumers’

security and legal requirements such as avoid placing competitors services on the same server,

data location should be within the tenants’ country boundaries. Placement engines may include

a migration strategy where services are migrated from physical host to another in order to meet

demands and efficient utilization of the resources. This migration strategy should take into

account the same set of tenants’ security constraints. Furthermore, security requirements defined

by service consumers should be migrated with the service and initiates a process to enforce

security requirements on the new environment, as defined by cloud consumers, and updates the

current cloud security model.

2.2.5 Service Delivery Models Security Implications

We summarize the key security issues and vulnerabilities for each cloud service delivery model.

Some of these issues fall under the responsibility of cloud providers, while others are the

responsibility of cloud consumers.

2.2.5.1 IaaS Security Issues

Below we discuss the key security issues in each component of the IaaS service delivery model:

– Hypervisor Security: a hypervisor is the “virtualizer” that maps from physical resources to

virtualized resources and vice versa. It is the main controller of any access to the physical

server resources by VMs. Any compromise of the hypervisor violates the security of the

VMs because all VMs operations become traced unencrypted. Hypervisor security is the

responsibility of cloud platform provider.

– VM Security: This involves securing virtual machines’ operating systems and workloads

from common security threats that affect traditional physical servers, such as malware and

viruses, using traditional or cloud-oriented security solutions. The VM’s security is the

responsibility of cloud consumers. Each cloud consumer can use their own security controls

based on their needs, expected risk level, and their own security management process.

However, the security of the cloud platform from a given VM is the responsibility of the

platform provider. This requires a new model for security controls that can work from the

virtualization layer (at the hypervisor level). This new model is called virtualization-aware

security solutions [55, 56].

– Securing VM-Images Repository: unlike physical servers, VMs are still at risk even when

they are offline. VM images can be compromised by injecting malicious codes in the VM

Chapter 2: Cloud Computing Security Problem

Page 28

file or even stole the VM file itself. Securing the VM images repository is the responsibility

of cloud providers. Another issue related to VM templates is that such templates may retain

the original owner (creator) information that may be incorrectly accessed by a new

consumer.

– Virtual Network Security: Sharing network infrastructure among different tenants within the

same server (using a vSwitch - Virtual Switches represent networking entities connecting

Virtual Machines in a virtual network at layer 2 [52]) or in the physical networks increases

the possibility to exploit vulnerabilities in DNS servers, DHCP, IP protocol vulnerabilities,

or even the vSwitch software. This may result in network-based VM attacks.

– Securing VM Boundaries: VMs have virtual boundaries compared with physical server ones.

VMs that co-exist on the same physical server share the same CPU, Memory, I/O, network

interface cards, and others (i.e. there is no physical isolation among VM resources). Securing

VM boundaries is the responsibility of the cloud provider.

2.2.5.2 PaaS Security Issues

The key security issues in each component of the IaaS service delivery model are:

– SOA Related Security Issues: the PaaS model is based on the service-oriented Architecture

(SOA) model. This leads to inheriting all the security issues that exist in the SOA domain.

These issues include Denial-of-Service (DOS) attacks, Man-in-the-middle attacks, web

services and XML-related attacks, replay attacks, dictionary attacks, injection attacks and

input validation related attacks [57]. Applying security mechanisms such as mutual

authentication, authorization and WS-Security standards [58] is important to secure the cloud

services. This task is a shared responsibility among cloud providers, service providers and

consumers.

– API Security: PaaS may offer APIs that deliver management functions such as business

functions, security functions, application management, etc. Such APIs should be provided

with security controls and standards implemented, such as OAuth [59] (open identity

protocol that help in authorizing third-party applications when accessing web services using

HTTP protocol), to enforce consistent authentication and authorization on calls to such APIs.

Moreover, there is a need for the isolation of APIs in memory. This issue is the responsibility

of service providers. Maintaining isolation between the different tenants’ data accessed by

the same service is another key security problem that should be considered by the service

provider.

Chapter 2: Cloud Computing Security Problem

Page 29

2.2.5.3 SaaS Security Issues

In the SaaS model enforcing and maintaining security is a shared responsibility among the cloud

providers and service providers (software vendors). The SaaS model inherits the security issues

discussed in the previous two models as it is built on top of one or both of them as well as data

security (data locality, integrity, segregation, access, confidentiality, backups) and network

security.

Web applications represent the dominant deployment model for SaaS applications. Web

applications represent 63% of the total reported vulnerabilities over the last three years [60].

Thus, SaaS applications to be hosted on the cloud infrastructure should be continuously

validated and scanned for vulnerabilities using web application scanners. Such scanners should

be online and up to date with the recently discovered vulnerabilities and attack paths maintained

in the Common Weaknesses Enumeration (CWE – a database of the well-known software

weaknesses that documents a detailed description of the weaknesses, mitigation actions,

prevention actions, etc.). Results (vulnerabilities found) should be recorded in the National

Vulnerability Database (NVD – a database of the reported vulnerabilities in every well-known

software system along with other vulnerability details such as criticality, exploitability, etc).

Getting security experts to analyze every service on the cloud is a very challenging task. Thus

vulnerability scanners should deliver high precision (small false positives) and recall (small

false negative) rates and support automated analysis without any human intervention. This

requires formalizing the existing vulnerability definition databases in terms of vulnerability

signature, categorization, preconditions, consequences, mitigation action, and so forth.

Automating vulnerability mitigation is another key requirement in securing SaaS services.

Vulnerability mitigation actions should be formalized to ease the automated realization of such

actions using different sets of security controls “virtual patching” [43]. The web application

firewall is a well-known example of vulnerability mitigation controls that should be in place to

mitigate discovered vulnerabilities (examining HTTP requests and responses for applications

specific vulnerabilities). As a reference to assess such vulnerability scanners and mitigation

controls, we can use the top ten vulnerabilities reported by Open Web Application Security

Project (OWSAP) [40] according to the number of reported vulnerabilities every year. Such

vulnerabilities include injection attacks (SQL injection, OS command injection, XML

injection), cross site scripting attacks (Input validation) weaknesses, improper authorization

attacks, and so forth. We will explain these vulnerabilities in more detail in the security analysis

chapter.

Chapter 2: Cloud Computing Security Problem

Page 30

2.2.5.4 Cloud Management Security Issues

The Cloud Management Layer (CML) is the “microkernel” that can be extended to incorporate

and coordinate different components. The CML components include SLA management, service

monitoring, billing, elasticity, IaaS, PaaS, SaaS services registry, and security management of

the cloud. This layer is very critical since any vulnerability or security breach of this layer will

result in an adversary who has got access control, like an administrator, over the whole cloud

platform. This layer offers a set of APIs and services to be used by client applications to

integrate with the cloud platform. This means that the same security issues of the PaaS model

apply to the CML layer as well.

2.2.5.5 Cloud Access Methods Security Issues

Cloud computing is based on exposing resources over the internet. These resources can be

accessed through (1) web browsers (HTTP/HTTPS), in case of web applications - SaaS; (2)

SOAP, REST and RPC Protocols, in case of web services and APIs – PaaS and CML APIs; (3)

remote connections, VPN and FTP in case of VMs and storage services – IaaS. Security

controls should target vulnerabilities related to these protocols to protect data transferred

between the cloud platform and cloud consumers such as Man-In-The-Middle attack.

2.3 Cloud Computing Security Enablers

Via our review of current cloud security issues we have determined a set of key security

enablers that should be improved by the cloud computing community to mitigate the issues

discussed above. Some of these factors are considered parts of security controls’ must have

features and the rest are related to the security management platform itself which is built to be

adaptive to incorporate possible security controls.

2.3.1 Identity Federation and Access Management

Identity is at the core of any security aware system. It allows users, services, servers, clouds,

and any other entities to be recognized by systems and other parties. Identity consists of a set of

claims and information associated with a specific entity [61]. This information is relevant based

on the context. An identity management system should not disclose user personal information

“privacy”. Cloud platforms should deliver or support a robust and consistent identity

management system. This system should cover all cloud objects (servers, VMs, services,

applications, operations) and cloud users with corresponding identity context information. It

should include: identity provisioning and de-provisioning, identity information privacy, identity

linking, identity mapping, identity federation, identity attributes federation, single sign on,

Chapter 2: Cloud Computing Security Problem

Page 31

authentication and authorization. Such system should adopt existing standards, such as SPML,

SAML, OAuth, and XACML, to securely federate identities among interacting entities within

different domains and cloud platforms.

2.3.2 Data Cryptography

Confidentiality is one of the key security requirements when adopting the cloud computing

model to host enterprise assets. Encryption is the main solution to the confidentiality objective,

for data, processes and communications. Different problems arise in the cryptography area from

the adoption of the cloud model:

– Format-Preserving Encryption [62]: Due to the lack of trust problem between the cloud

stakeholders (consumer does not trust the service provider or the cloud provider),

cryptography security requirements are increasing where one might encrypt every single

field in customers’ data at transmission and at rest. Data stored on the cloud and processed

by services and applications then have a different format. Thus, we need to use format-

preserving encryption – e.g. encrypting integer data should result in integer as well to be able

to store in the database.

– Homo-Morphic Encryption [63]: The lack-of-trust and possibility of malicious insiders

(cloud platform administrators who have access to servers memory) add a new cryptography

requirement to keep data encrypted even at processing time (in memory). This means that

cloud services and applications should be able to process such encrypted data – i.e. data will

not be decrypted at any time on the cloud platform.

– Key Management [64]: Encryption algorithms are either symmetric key-based or

asymmetric are key-based. Both encryption approaches have a major problem related to

encryption key management - i.e. how to securely generate, store, access and exchange

secrete keys. Moreover, PaaS requires application keys for all APIs and service calls from

other applications. The applications’ keys must be maintained securely along with all other

credentials required by the application to be able to access such APIs.

2.3.3 Secure Cloud Software Development Lifecycle

Integrating security engineering into the software development lifecycle [65, 66] - includes

elicitation of the security requirements, threat modeling, augmentation of security requirements

to the systems models and the generated code consequently. Engineering cloud-based

applications should involve a revolution in the lifecycles and tools used to build secure systems

[67]. The PaaS provides a set of reusable security enabling components to help developing

secure cloud-based applications. Also security engineering of the cloud-based application

Chapter 2: Cloud Computing Security Problem

Page 32

should change to meet new security requirements imposed on such systems. Applications

should support adaptive security (avoiding hardcoded security) to be able to meet vast range of

consumers’ security requirements. Adaptive application security is based on externalizing and

delegating the security enforcement and applications security management to the cloud security

management, service provider and tenant security controls.

2.3.4 Security Performance Tradeoff

The cloud computing model is based on delivering services using SLAs. SLAs should cover

objectives related to performance, reliability, and also security. SLAs also define penalties that

will be applied in case of SLA violation. Delivering high security level, as one of the SLA

objectives, means consuming much more resources that impact on the performance objective.

The more adopted security tools and mechanism, the worst the impact on the performance of the

underlying services. Cloud management should consider the trade-off between security and

performance using utility functions for security and performance (least security unless stated

otherwise). Moreover, we should focus on delivering adaptive security where security controls

configurations are based on the current and expected threat level and considering other

tradeoffs.

2.3.5 Security Management

The large number of cloud stakeholders, the deep dependency stack, and the large number of

services deployed on the cloud platform, and the huge number of security controls to deliver

security requirements, complicate the cloud computing security management task. A cloud

security management platform should support capturing and consolidating security requirements

and policies, specifications; security controls’ configurations according to the policies specified;

and monitoring and feedback from the cloud platform and services, and security controls to the

security management and the cloud stakeholders.

When consumers use applications that depend on services from different clouds, they need to

maintain their security requirements enforced on both clouds and in between. The same case

occurs when multiple clouds integrate together to deliver a bigger pool of resources or

integrated services, their security requirements need to be federated and enforced on different

involved cloud platforms. Given that the cloud management layer has to manage performance,

reliability, availability, elasticity - resource allocation, etc., a good design for this layer is to use

the kernel design pattern where different components delivering different functionalities are

easily integrated. This means that the security management module should function as a plug-in

for the cloud management layer.

Chapter 2: Cloud Computing Security Problem

Page 33

2.4 Chapter Summary

The cloud computing model is a very promising computing model for service providers, cloud

providers, and cloud consumers. However, in order to best utilize the model we need to block

the existing security holes. Based on the details explained above, we can summarize the cloud

security problem as follows:

– Some of the security problems are inherited from the technologies used, such as

virtualization, SOA, and web applications.

– Multi-tenancy and isolation are major dimensions in the cloud security problem that require

a vertical solution from the SaaS layer down to physical infrastructure (to develop physical

alike boundaries among tenants instead of the virtual boundaries currently applied).

– Security management is very critical to control and manage this number of requirements and

controls.

– The cloud model should have a holistic security wrapper, such that any access to any object

on the cloud platform should pass through security components first.

Based on this discussion, we recommend that cloud computing security solutions should:

– Focus on the problem abstraction, using model-based approaches to capture different

security views and link such views in a holistic cloud security model.

– Be inherent in the cloud architecture where delivered mechanisms (such as elasticity

engines) and APIs should provide flexible/extensible security interfaces.

– Support for multi-tenancy, where each user can see only their security configurations,

elasticity, to scale up and down based on the current context.

– Support integration and coordination with other security controls at different layers to deliver

integrated security.

– Be adaptable to meet continuous environment changes and stakeholder needs.

In this research project, our objective is to mitigate the loss-of-control and lack-of-trust

problems that arise from the adoption of the cloud computing model by both providers and

consumers. This is realized by getting cloud consumers involved in securing their cloud hosted

assets. This includes: (i) defining security requirements; (ii) enforcing security using different

sets of security controls either deployed on the cloud platform, in their network perimeter, or on

another cloud platform; and (iii) monitoring and improving enforced security according to the

current security status of the cloud hosted assets and new business and security needs.

Page 35

 Chapter 3

Related Work

In this chapter, we review, analyze, and summarize the key existing efforts in different research

areas relevant to our research problem, cloud computing security management, and our

proposed solution, adaptive, model-based security management model for the cloud computing

model. This chapter is organized as follows. In Section 1, we give an overview of the research

areas we cover in our state-of-the-art analysis. In Section 2, we review the related work in the

area of security management standards and frameworks. In Section 3, we review the related

work in the area of security analysis. In Section 4, we review the related work in the area of

security engineering, multi-tenant and adaptive security. In Section 5, we review the related

work in the area of security and software re-engineering. In Section 6, we review the related

work in the area of security measurement and metrics. This also covers relevant efforts from the

service-level agreement and software requirements monitoring areas. In Section 7, we

summarize the key limitations, we identified in these areas that are either relevant to the

research problem and target solution.

Cloud Computing
Security

Management

Cloud
Computing

Security
Management

Security
Analysis

Security
Engineering

Security

Re-engineering

Security
Measurements

and Metrics

Figure 3-1. Relevant research areas to the cloud security management problem

 Chapter 3: Related Work

Page 36

3.1 Introduction

The main responsibility of a security management system is to help security administrators and

engineers in capturing and defining IT assets’ security, enforcing specified security details,

monitoring the security status of these assets, and improving assets’ security to meet target

security objectives. These security objectives may change overtime according to business needs.

This thus implies changing related security requirements, policies, controls and security control

configurations. As we stated in our analysis of the cloud computing security problem (Chapter

2), it is too hard to depend on manual approaches that require deep involvement of stakeholders

(cloud providers, service providers or service consumers) to deliver the aimed security level.

Thus, any cloud computing security management approach must focus on automating these

security management tasks including defining security, enforcing security, and monitoring and

improving security. A cloud computing security management approach must address the loss-

of-control and lack-of-trust problems because it is the best place to incorporate cloud

consumers’ security. It also should take into consideration multi-tenancy, as a key factor

contributing to the cloud computing security problem. This because multi-tenancy has a big

impact on how to capture, enforce, and monitoring tasks. For example, instead of working only

with one set of security requirements, with multi-tenancy we have different sets of security

requirements for different tenants. These need to be captured, enforced, and monitored on a

shared service instance.

We have determined four main relevant research areas to our research problem (cloud

computing security management), including the security management area, security analysis,

security engineering, and security monitoring. Two more areas are also relevant to our research

problem, cloud computing security as the underlying problem domain, and security

reengineering/retrofitting. The latter is required when addressing cloud services with built-in

security capabilities that hamper (conflict) with the adoption of our security management

platform in automating service security management. Below we discuss the key points and

questions that we need to get answers for in each research area in order to specify what efforts

could help building our cloud computing security management approach.

- Cloud Computing Area: We need to study the cloud computing model details and determine

what factors contribute to the cloud computing security problem? What are the key

requirements that should be addressed when developing such a security management model

for the cloud computing model? This part was discussed in detail in our analysis of the cloud

computing security problem (Chapter 2). Thus, we are not going to discuss it again here.

- Security Management Area: We need to study what are the existing security management

standards? What are the bases and assumptions that these standards are built on? What are

 Chapter 3: Related Work

Page 37

the existing security management systems? What are the core models and paradigms adopted

in developing these systems? What are the key problems and limitations of these security

management standards and systems when applied to the cloud computing model?

- Security Analysis Area: What are the main security analysis tasks? What are the main

security vulnerabilities’ repositories? What are the existing web applications security

analysis efforts? What vulnerability categories are covered by these efforts? What are the

main limitations of these efforts? How far do these efforts support automation of the security

analysis tasks? How are these efforts extensible to support discovery of existing as well as

new vulnerabilities that emerge at runtime?

- Security Engineering Area: We need to capture, inject, and update cloud services’ security

for different tenants at runtime taking into consideration different multi-tenancy models. We

need to study what are the existing security engineering efforts? What are the key limitations

of these efforts that arise from applying these techniques on cloud-hosted services? How do

these efforts fit with the cloud computing multi-tenancy requirements? How much

automation do these efforts provide to facilitate the automated integration of security with

cloud services?

- Security Reengineering (Retrofitting) Area: We need to modify legacy applications’ security

capabilities. Thus, we need to study what are the existing security reengineering (retrofitting)

efforts? What are the key limitations of these efforts that arise from applying these

techniques to the cloud services? How much automation is possible with these approaches to

facilitate the modification of software systems and realizing new system modifications?

- Security Monitoring Area: What security monitoring platforms do exist? How extensible

these platforms in terms of security metrics specification and realization? How easy these

security metrics could be specified? How these platforms fit with the cloud and multi-

tenancy model? How can we capture different tenants’ security metrics, and how can we

realize these metrics? How can we plug in security probes that collect measurements

required to assess the security status specified by different tenants?

3.2 Security Management

The area of security management is one of the core areas in IT security where all enterprise IT

systems and operated security controls are aligned and integrated together. We have determined

two key groups of efforts in this area: security management standards, and security management

systems. The first group focuses on defining standard processes that should be followed when

developing enterprise security model. The latter one focuses on how to help security

administrators with their IT security management tasks.

 Chapter 3: Related Work

Page 38

3.2.1 Security Management Standards

Information security management systems (ISMS) are defined as systems that deliver a holistic

“model for establishing, implementing, operating, monitoring, reviewing, maintaining and

improving the protection of information assets” [1, 5, 68]. We have identified two key security

management standards. The first one is the Federal Information Security Management Act

introduced by the National Institute of Standards and Technology - NIST-FISMA [1]. The

second is the International Organization for Standardization and the International Electro-

technical Commission - ISO/IEC – ISO27000 [5]. Below we summarize these two standards

highlighting the main assumptions and bases for each one.

Categorize Information
Systems

FIPS199

Select Security Controls

FIPS200 / SP800-53

Controls Implementation

SP800-70

Security Assessment

SP800-53A

Security Authorization

SP800-37

Security Monitoring

NIST SP 800-137

Figure 3-2. NIST-FISMA main phases, flow, and standards

3.2.1.1 NIST-FISMA Standard

This was originally declared as an e-Government Act in 2002 [1]. The first phase of the FISMA

implementation project was planned to run from 2003 to 2012. The FISMA standard delivers a

set of guidelines to be used in developing agency-wide security management program that helps

in categorizing information systems, capturing security objectives, enforcing specified security,

and monitoring the security status of agency assets. The FISMA standard includes a set of

guidelines and standards that help implementing the enterprise information security

management program as follows:

– FIPS199: Federal Information Processing Standards199 (FIPS199) standard for categorizing

information and information systems by mission impact. It focus on how to assess the impact

 Chapter 3: Related Work

Page 39

of a security breach of one or more of the security objectives (including confidentiality,

availability, and reliability) assigned to a given information system.

– FIPS200: A standard that defines a minimum set of security requirements that should be

applied on information and information systems. Based on the security categorization of a

given information system (in FIPS199), a set of minimum security requirements and security

controls is selected from multiple sets of predefined security control baselines – i.e. if an

information system is assigned a low security impact, this means that the low impact security

requirements and controls baseline is selected. This set represents the minimum security

capabilities that enterprise security engineers need to implement. This standard also includes

applying security risk analysis that may result in a new set of security requirements that

should be incorporated with standard set of security controls to be applied.

– SP800-70: A standard to help security administrators in selecting appropriate security

controls for information systems. Different information systems may have different natures

that may require using specific rather than enterprise-wide, common security controls. The

objective of this standard is to guide the selection process of security controls specific to

certain information systems and controls to be used enterprise-wide.

– SP800-53A: A guidance for assessing security controls in information systems and

determining security controls’ effectiveness. This guideline defines how to select security

controls to be assessed, method of the assessment, metrics that could be used, and how the

assessment could be conducted.

– SP800-37: A standard for the security authorization of information systems. This guideline

specifies who should be responsible for authorizing the security management plan developed

and how the identified risks are addressed /mitigated.

– SP800-137: A standard for monitoring the security controls and the security authorization of

information systems. This guideline defines for each security controls’ family (FISMA

standard divides the security controls into a set of 17 security controls families), a set of

security metrics that should be measured in the course of monitoring the security status of

enterprise IT systems, frequency, nature of the metric, formula, unit of measure, etc.

3.2.1.2 ISO27000 Standard

The ISO27000 standard [5, 69] provides a model to guide the definition and operation of

information systems security management process. The ISO27000 targets all types of

organizations other than federal agencies as intended in the FISMA standard. The ISO27000

standard has a series of security standards that address different areas in the information systems

security management framework as follows:

 Chapter 3: Related Work

Page 40

<Plan>

Establish ISMS

ISO27001/ISO27005

<Do>

Implement and Operate

ISO27002/ISO27003

<Check>

Monitor and Review

ISO27004

<Act>

Maintain and Improve

ISO27007/ISO27005

Figure 3-3. ISO27000 main phases, flow, and standards

– ISO27001: This standard gives an overview of the specification of any ISMS based on the

ISO27000 standard. It discusses how ISO27000 standard is aligned with the Plan-Do-Check-

Act (PDCA) management model. Moreover, It summarizes the key terminologies exist in the

security management area and gives a summary of security controls’ objectives that should

be operated.

– ISO27002: This standard focuses on security controls’ implementation guidance to help

organizations during the ISMS implementation, reviewing and authorization phases. It

covers how these phases could be done to address different targets or categories of security

including human resources, physical security, communication security, access control,

information systems, etc. This is similar to the security controls’ families introduced in the

NIST-FISMA standard and the security requirements families introduced in the Common

Criteria model for software security evaluation [70].

– ISO27003: This standard gives guidance and details on implementing different ISMS phases

including plan, do, check, and act (PDCA) phases.

– ISO27004: This standard addresses and defines the ISMS measurements and metrics that

could be used, stakeholders involved and their responsibilities, measurement operations, data

analytics of the measurement results, and further improvement actions that could be taken in

case of security deviations.

– ISO27005: This standard addresses the security risk management process. It details the

proposed methodology for information security risk management including risk analysis,

treatment, and acceptance.

 Chapter 3: Related Work

Page 41

– ISO27006: This standard provides guidelines to help organizations in the accreditation

process of the ISMS ISO27000 certification. It documents the key requirements that should

be satisfied and how it could be addressed.

3.2.1.3 Differences between NIST-FISMA and ISO27000

We have determined multiple similarities and discrepancies between ISO27000 and NIST-

FISMA standards [71, 72]. The similarities between both standards include the general

approach, phases of security management, complexity of both standards to implement and

satisfy, relatively similar concepts, risk management activities, list of security controls (NIST

specifies links to ISO27000 security controls). On the other hand, we found a set of differences

between both as well. NIST-FISMA targets federal agencies while ISO27000 target commercial

organizations; however, we did not figure out problems to apply NIST as a security

management standard to commercial organizations. NIST-FISMA focuses mainly on one or

more IT systems. The ISO27000 has organizational-wide focus. NIST uses the IT systems

categorization to set the security controls baseline to apply (as a default set) while ISO27000

assumes that the set of security controls provided in the standard are available to be picked up

and used according to the situation. In our opinion, this helps in the security controls selection

phase by minimizing the scope of security controls to select from (minimize the possibility of

error or missing security). This security controls baseline could be customized later, according

to the identified and assessed risks. In this thesis we base our approach on NIST-FISMA.

3.2.1.4 Security Management Standards and Cloud Computing

Both ISO27000 and NIST-FISMA standards assume that the asset (IT system) owner has full

control over the security management process – i.e. assets are mostly hosted internally inside

their network perimeter or at least they can specify and monitor the security of their assets if

hosted on a service provider. Thus, both standards, with their current specifications, do not fit

well with the cloud computing model. Nor do they fit well with the multi-tenancy model, where

tenants do not have any control on their outsourced assets. This is shown in the responsibility

matrix summarized in Figure 3-4. Here, service consumers do not have any participation in

securing their cloud services – this is a well-known security problem in the cloud computing

model “loss-of-control” problem. Multi-tenancy adds a new complex dimension to the security

problem. These security management standards are not designed taking into consideration the

service sharing concept introduced by multi-tenancy – i.e. how to capture, enforce, and monitor

service security status for different tenants given that these security requirements may change

overtime. In addition, the set of service tenants evolves at runtime. New tenants may register to

use the service at runtime. At the same time, other tenants may unregister from the service.

 Chapter 3: Related Work

Page 42

Network

Storage

Servers

Virtualization

OS

Middleware

Data

Applications

Network

Storage

Servers

Virtualization

OS

Middleware

Data

Applications

Network

Storage

Servers

Virtualization

OS

Middleware

Data

Applications

Network

Storage

Servers

Virtualization

OS

Middleware

Data

Applications

On Premises Cloud computing

Se
rv

ic
e

P
ro

vi
d

er
Se

rv
ic

e
C

o
n

su
m

er

IaaS PaaS SaaS

Se
rv

ic
e

P
ro

vi
d

er
C

o
n

su
m

er

Se
rv

ic
e

P
ro

vi
d

er

R
es

o
u

rc
es

 o
w

n
er

Figure 3-4. Comparison of responsibility matrix between on-premise and cloud

3.2.2 Security Management Systems

The area of security management systems has lot of efforts even though relatively few efforts

deliver full implementation of the security management process. Many focus on detailing

security management standards (ISO and NIST) [69, 73]. The rest of these efforts that introduce

a working security management approach could be categorized as policy-based, ontology-based,

and model-based approach. Below we summarize many of these key efforts.

3.2.2.1 Policy-based Security Management

The adoption of security policies as a high-level mean to capture security controls’

configurations has been widely used in the area of information security management to

automate the security controls’ configuration process. These efforts focus on how to capture

different types of security policies using security policy specification languages such as [74-76]

and how to automate the configuration of different heterogeneous security controls developed

by different security vendors.

POSTIF [77] is a security management framework that focuses on automated configuration

of different heterogeneous security controls in order to realize the specified security policies.

The framework is based on the common information model (CIM) introduced by the DMTF

[78]. The proposed framework focuses mainly on automation of intrusion detection systems’

configurations. The security policies are used to specify high-level security controls’

configurations. We could not find implementation details of this approach.

Faheem et al [79, 80] introduce an abstract multi-agent based system for managing network

security policies. The proposed framework is made of three layers: the core security policies

layer that captures different security policies; the multi-agent layer that has a set of interacting

 Chapter 3: Related Work

Page 43

agents that collaborate to refine the specified security policies into security controls’

configurations; and security products layer which is a layer of enterprise deployed security

controls. Their case study was on an intrusion detection system developed internally in their

research labs. The proposed framework is based on mobile agents that have severe problems

with security. In giving permission to software entities to move around in the enterprise network

increases the possibility of the exposure of malicious activities (malwares and Trojan horses).

3.2.2.2 Ontology-based Security Management

The ontology concept has been frequently used in the information security management domain

as a mean to formalize the concepts, entities, and relationships existing in this domain [81].

Bellow we summarize some of the key trials in this area.

Tsoumas et al [7] introduce an ontology-based information systems security management

system. They built their own risk analysis security ontology based on the common information

model (CIM) [78]. They map the IT asset concept (the core entity in security risk management)

to the CIM CIM_ManagedElement concept. This in turn simplifies the enforcement and

monitoring process. After linking assets to risks, they developed countermeasures ontology and

then linked this to threats that each countermeasure can help in resolving. The countermeasures’

ontology is as follows: CM_ID, Target (asset), subject (the enforcer of the countermeasure),

countermeasure group, countermeasure sub groups, actions (that the countermeasure can take),

constraints (time, location, subject), type (managerial, operational, technical), security attributes

to preserve (security objectives like confidentiality, integrity,...etc), type of control (protective,

defective, or corrective), risk mitigation factor (low, medium, high), and control purpose

(security, audit). This also simplified the adoption of the Web-based enterprise management

standard (WBEM) [82] introduced by the Distributed Management Task Force (DMTF)

organization to address the distributed nature of systems management problem (including

security management). The captured enterprise security knowledge is then converted into

ponder-based policies [75] (Ponder is a security policy specification language) that are used

mainly for defining access control policies.

Xu et al [83] introduce a hybrid network security management approach based on policy-

based management and ontology-based management. The ontology is used to help in reasoning

about specified security policies while applying the policy-based PDP and PEP management

model (PDP: policy definition point; PEP: policy enforcement point) for security policies

enforcement. Each agent deployed on a host can communicate with other network agents

sharing the same ontology to reason about the operated security policies.

 Chapter 3: Related Work

Page 44

Uszok et al [84] introduce a security management architecture based on KAoS policies

language. The architecture has three main layers: (i) policy specification layer represented by a

user interface where security administrators can define their own security problems; (ii) policy

reasoning layer; (iii) policy enforcement layer (guards). The policy specification is based on an

extensible ontology to recognize domain specific concepts. KAoS can help in defining

authorization and obligation policies. The reasoning layer takes into account issues like

precedence, temporal conditions, historical states, policy triggers, and context information. For

the policy enforcement layer, the authors developed guards (agents) to be deployed for

applications. These agents cache the policies and act as PDP for the applications. In case of any

security event raised by the application using Action Instance Description (AID), a java object

encapsulates event details; the guard decides the correct action based on the cached policies.

These guards can be extended to monitor application status using AID entities.

3.2.2.3 Model-based Security Management

Albuquerque et al [8] introduce a security management approach based on the model-based

management model. The authors introduce a hierarchical system model which represents the IT

systems on three abstract, interrelated levels: (i) roles and objects which summarize details of

the who of the stakeholders and what assets to be secured; (ii) subjects and resources which

summarize users or services and resources; and (iii) diagram of abstract systems which capture

the system building blocks. The high-level security policies are mapped on the highest system

model and automatically refined down with the refined system models to generate the low-level

security policies. Similar work was introduced by Lang et al [85], OpenPMF - Open Policy

Management Framework, a model-driven security management approach based on model-

driven security.

3.2.2.4 Security and Service Level Agreement

As a result of outsourcing IT assets for hosting on third-party platforms, an increasing need for

security SLA emerge; however, we have found most of the existing SLA efforts focus on

capturing SLA terms related to performance, reliability, and availability. The area of security

SLA is relatively hard to approach because no one will be able to prove a certain security level

to negotiate and agree on with the customers. However, no one would like to announce security

breaches on their platforms because this will impact their reputation. Shirlei et al [13]

introduced a proposal for security SLA (Sec-SLA) which capture customers’ security

requirements in terms of security metrics that could be regularly measured, analysed, and

reported for customers.

 Chapter 3: Related Work

Page 45

3.2.3 Information Security and Risk Management

From the discussion above, we conclude that existing security management standards target

mainly enterprise assets’ security management where tenants own and control the existing

infrastructure, network, and applications. Thus, they do not help with services’ outsourcing.

They also do not take into consideration the multi-tenancy and how to capture and enforce

different tenants’ security requirements. Existing security management systems focus mainly on

(i) how to capture security details using policies directly, using ontology, or using models; (ii)

how to convert these security details (requirements) into security policies; (iii) and how to map

these polices into security controls’ configurations. Thus, it is clear that the monitoring and

feedback components of the security management process are missing in these efforts.

From our analysis of the security management area and existing security management

systems and standards, we have figured out a misunderstanding in some of the concepts related

to ISMSs. Mainly, we found a mix between the security management and the security risk

management. We have investigated the differences and relationships between the ISMS and

ISRMS (Information Security Risk Management Systems). The ISRMSs focus on risk

identification, treatment, acceptance, communication, and monitoring and reviewing. This is in

comparison to the ISMS we discussed above shows that the ISRMS is a part of the ISMS as we

show in Figure 3-5. Implementing security controls specified in the risk mitigation actions,

integrating security controls with the target IT systems, developing and deploying security

probes are the other key phases of an ISMS.

Security Risk Management

Enterprise Security Objectives

Security Controls
Implementation

Security Monitoring

Se
cu

ri
ty

 s
ta

tu
s

Fe
e

d
b

ac
k

Enterprise IT Assets

Risk Identification

Risk Evaluation

Risk Treatment

Security Requirements

Figure 3-5. Relationship between ISMS and ISRM

 Chapter 3: Related Work

Page 46

3.3 Security Analysis

The security analysis task is one of the very complicated tasks in both security engineering and

management domains. The security analysis task includes threat analysis, security vulnerability

analysis, and security attack analysis. These tasks are integrated together while conducting

security analysis. The output of the security analysis tasks represents the main source of security

requirements to be realized by any ISMS. A key limitation of the existing security risk analysis

efforts is that they mainly focus on introducing a risk analysis methodology to be followed by

security administrators or at the maximum help in the documentation and assessment process.

They do not help in automating the security risk analysis. Thus, we had to investigate in other

security analysis areas that contribute to the security analysis including architecture risk analysis

that helps in identifying security threats in a given software system, and security vulnerability

analysis that helps in identifying system security vulnerabilities. Both constitute the main

sources of information required to build a complete security risk model. Below we discuss effort

in these three main areas.

3.3.1 Security Risk Analysis

Security risk analysis is one of the key steps in the ISMSs. The main target of the security risk

analysis task is to identify possible threats and attacks against a target IT system, that need to be

secured, and could be exploited by attack agents to breach systems’ security. Then, security

experts use these vulnerabilities to develop the possible threats and attack graphs that could be

fired by attackers against systems. The outcome of the security risk analysis task is used to

develop risk treatment plan where security experts specify how to mitigate or prevent the

identified risks. These treatment plans contain a set of security requirements that need to be

enforced in order to mitigate reported risks and meet customers’ security objectives.

The existing security risk analysis and assessment efforts can be categorized into two main

categories: tool-based analysis and workshop-based analysis [9]. The tool-based analysis

approaches introduce toolsets that help in capturing enterprise assets and security details and

automatically conduct the security risk analysis task. In the workshop-based analysis, the

stakeholders conduct brainstorming and interviewing sessions. Another possible categorization

of the security risk analysis methods is either qualitative or quantitative. The latter category uses

mathematical formulas to assess identified risks while the earlier depends on subjective

assessment bands (high, medium, low). Syalim et al [86] introduce a comparison between four

key security analysis methodologies including Mehari, Magerit, NIST800-30 and Microsoft’s

security management. The key limitation of the security risk analysis efforts is the focus on

introducing a risk analysis methodology to be followed by security administrators or at the

 Chapter 3: Related Work

Page 47

maximum help in the documentation and assessment process. Thus, they do not help in

automating the security risk analysis. Below we discuss key security risk analysis efforts:

Operationally Critical Threat, Asset and Vulnerability Evaluation (OCTAVE) [9] is a

workshop-based risk assessment approach. OCTAVE has three main phases. Each phase has a

set of processes and activities. First, the security analysis team builds a repository of critical

enterprise assets. Next, they develop a threat profile for these assets. Then, the security analysis

team performs vulnerability analysis of the key components related to the critical assets.

Finally, this team performs impact and probability evaluation of the identified threats on critical

assets. Furthermore, they develop protection plan to mitigate, reduce, and prevent the identified

risks.

Information Security Risk Analysis Method (ISRAM) is a seven-step quantitative risk

analysis approach based on conducting surveys that contain questions about risk factors (type of

attachment, number of emails, number of files to be downloaded per day) to help in assessing

the likelihood and impact of the given list of risks.

Construct a platform for Risk Analysis of Security Critical Systems (CORAS) [10] is a

model-based method for security risk analysis. The security analysis team conducts an initial

risk analysis to identify initial list of threats and vulnerabilities. This is followed by a deeper

analysis by the security team. A brainstorming workshop is conducted to identify any unwanted

security incidents. This is followed by another risk estimation workshop to estimate the

likelihood of the identified risks. Finally, they conduct a workshop to develop risk treatment

plan including a cost-benefit analysis.

Saripalli [11] [87] introduces different security risk analysis methods for the cloud

computing model adopting the existing security management standards such as ISO27000.

However, they consider applying these standards from the service (cloud platform) provider

perspective not from the cloud consumers’ perspective. Moreover, these efforts did not consider

hosting of external services that have been developed by other service providers where the cloud

platform provider does not have any information about their security issues.

In summary, the existing security risk analysis efforts focus mainly on how to conduct and

document the outcomes of the security risk analysis process through a set of well-defined steps,

some with tool support. However, they do not help in automating the analysis process itself.

3.3.2 Architecture Security Analysis

Existing efforts in architecture security risk analysis can be categorized into two main groups:

scenario-based approaches and metrics-based approaches. Both have limitations related to

 Chapter 3: Related Work

Page 48

approach formality in describing metrics or scenarios, extensibility to capture new metrics or

scenarios to be assessed, and in automating the architecture risk analysis process. A key notice

from the existing efforts is that they focus mostly on scenario-based analysis. A possible

justification of this tendency is that developing security metrics is a hard problem. However, it

limits the capabilities of the approach compared to user-defined or tool-supported scenarios.

3.3.2.1 Scenario-based Analysis

Kazman et al. [88], Dobrica et al. [89], and Babar et al [90] introduce comprehensive software

architecture analysis methods for different milestones of the software architecture development.

They introduce a set of criteria that can be used in developing or evaluating an architecture

analysis method including identification of the goals, properties under examination, analysis

support, and analysis outcomes. Babar et al. compare and contrast eight different existing

architecture analysis approaches. A common weakness of all these approaches is the lack of

extensible tool support.

Kazman et al. [91] introduce architecture trade-off analysis model, ATAM, to identify trade-

offs between quality attributes of a given system and report sensitivity points in its architecture.

The approach is based on collaboration of stakeholders to define scenarios to be used in

evaluating different architectures. The analysis is expected to be done manually.

Faniyi et al. [92] extend the ATAM approach to support architecture analysis in

unpredictable environments such as cloud computing platforms. They improve the scenario

elicitation process using security testing with implied scenarios (unanticipated scenarios of

components’ interactions). This generates potential scenarios that may lead to security attacks.

Although this improved the scenario elicitation process, it still requires manual analysis. A

further extension to our signature-based architecture security analysis approach could be to

integrate this approach as a source of attack and metrics signatures’ specifications.

Halkidis et al. [93] introduce an architectural risk analysis approach based on locating the

existing security patterns in the architecture of system under test using architecture annotation.

Then, they use Microsoft STRIDE model [94] to generate a set of possible attacks along with

their likelihood. These security attacks can be mitigated using security patterns. Thus, the lack

of specific security patterns in a given system architecture means possibility of violating certain

security objectives in the underlying system architecture. However, their approach does not

support developing custom security scenarios to be analyzed in the target system.

Admodisastro et al. [95] introduce a scenario-driven architectural analysis approach for

black-box component-based systems. Their analysis framework is extensible to support

different pluggable analyzers that perform structure checking, quality checking, and

 Chapter 3: Related Work

Page 49

conformance checking. However, their proposed framework is high-level and lacks details of its

realization system.

Alkussayer et al. [96, 97] introduce a scenario-based security evaluation framework of

software architecture. They use mappings between security goals and requirements, security

patterns, and security threats to identify security scenarios used in evaluating (and may be

improving) a given system architecture.

3.3.2.2 Metrics-based Analysis

Metrics-based analysis techniques focus on developing a set of security metrics that could be

used in assessing the security strength of a given software system architecture against possible

attacks and how far a given attack impacts system operation.

Antonino et al. [98] introduce an indicator-based approach to evaluate architecture-level

security in Service-Oriented Architecture (SOA). They use reverse engineering to extract

security-relevant facts. Then, they use system-independent indicators and a knowledgebase

maintaining a list of security goals and indicators relevant for each security goal. Although the

approach is extensible, it does not support automated security analysis. Sant’anna et al. [99]

describe a concern-driven quantitative framework for assessing architecture modularity. They

introduce a set of predefined modularity metrics that are used to assess a given system

architecture.

Alshammari et al. [100, 101] introduce a hierarchical security assessment model for object-

oriented programs. They define a set of dependent metrics that capture security attributes of a

given system. The proposed metrics are well organized; however, they are not extensible (i.e.

are predefined metrics). They also do not consider security architecture-level details.

Heyman et al. [102] introduce an approach to identify security metrics to measure or assess

based on mapping user security requirements on security objectives. For each security objective,

they define security patterns that are expected to satisfy such objectives. Each security pattern

has a set of security metrics that are satisfied by a pattern. The metrics specification approach is

informal so it does not enable automating the analysis phase.

Sohr et al. [103] describe an architecture-centric security analysis approach. They reverse

engineer system architecture from source code using the Bauhaus tool. Then, they perform

manual analysis to identify security flaws existing in the given system architecture.

Liu et al. [104] introduce a service-oriented framework to analyze attack-ability of a given

software. They develop a new language to capture system architecture and security details.

 Chapter 3: Related Work

Page 50

Using this model, they defined a set of built-in security metrics to assess the security

architecture of a given system.

In summary, the existing architecture security analysis efforts requires deep involvement

from the security experts in specify possible attack scenarios as well as analyzing the software

architecture searching for matched entities. The metrics-based efforts depends on a set of

predefined, well-known metrics, which in most of the time require manual analysis.

3.3.3 Security Vulnerability Analysis

Existing efforts in vulnerability analysis can be categorized according to the analysis

mechanism used into static analysis, dynamic analysis, and hybrid analysis based approaches.

Most of these efforts are designed to analyse against specific vulnerability types mainly SQL

Injection attacks and Cross-Site Scripting as the most frequently reported vulnerabilities.

Jimenez et al. [105] review various software vulnerability prevention and detection techniques.

Broadly, static program analysis techniques work on the source code level. This includes pattern

matching that searches for a given pattern inside software source code - e.g. calls to specific

functions. Data flow and taint analysis helps identifying data coming from untrusted sources to

mark as tainted i.e. should not be used before being sanitized or filtered. Model checking can

detect vulnerabilities based on extracting a system model from the source code and developing a

set of constraints on the model that should not occur. An issue is that model checking

approaches often suffer from a state explosion problem and generate only a counterexample.

Dynamic analysis techniques analyze a system as a black box, avoiding being overwhelmed

with system details. Fuzzy testing provides random data as input to the application in order to

determine if the application can handle it correctly or not. Dynamic techniques are however

limited in code coverage.

3.3.3.1 Static Vulnerability Analysis

NIST [106] is conducting a security analysis tools assessment project (SAMATE). A part of this

project is to specify a set of weaknesses that any source code security analysis approach should

support including SQL Injection, Cross-Site Scripting, OS Command Injection, etc. They have

also developed a set of test cases that help in assessing the capabilities of a security analysis tool

in discovering such vulnerabilities.

Halfond et al. [107] introduce a new SQL Injection vulnerability identification technique

based on positive tainting. They identify “trusted” strings in an application and only these

trusted strings are allowed to be used as parts of an SQL query, such as keywords or operators.

 Chapter 3: Related Work

Page 51

Lei et al. [108] trace the memory size of buffer-related variables and instrument the code

with corresponding constraint assertions before the potential vulnerable points by constraint

based analysis. They used model checking to test for the reachability of the injected constraints.

Dasgupta et al. [109] introduce a framework for analyzing database application binaries to

automatically identify security, correctness and performance problems especially SQLI

vulnerabilities. They adopt data and control flow analysis techniques to extract SQL statements,

parameters, tables and conditions and finally analyze such details to identify SQLI

vulnerabilities.

Martin et al [110, 111] introduce a program query language PQL that can be used to capture

definition of program queries that are capable to identify security errors or vulnerabilities. PQL

query is a pattern to be matched on execution traces. They focus on Java-based applications and

define signatures in terms of code snippets. This limits their capabilities in locating

vulnerabilities’ instances that match semantically but not syntactically.

Wassermann et al. [112] introduce an approach to find XSS vulnerabilities based on

formalizing security policies based on W3C recommendation. They conduct a string-taint

analysis using context free grammars to represent sets of possible string values. They then

enforce these security policies that guarantee that the generated web pages include no untrusted

scripts. Jovanovic et al. [113] introduce a static analysis tool for detecting web application

vulnerabilities. They adopt flow-sensitive, inter-procedural and context-sensitive data flow

analysis. They target identifying XSS vulnerabilities only.

Ganesh et al [114, 115] introduce a string constraint solver to check if a given string can

have a substring with a given set of constraints. They use this technique to conduct white box

and dynamic testing to verify if a given system is vulnerable to SQLI attacks using strings

generated by the string constraint solver.

3.3.3.2 Dynamic Vulnerability Analysis

Bau et al [116] perform an analysis of the black-box web vulnerability scanners. They

conducted an evaluation of a set of eight leading commercial tools to assess the supported

classes of vulnerabilities and their effectiveness against these target vulnerabilities. A key

conclusion of their analysis is that all these tools have low detection rates of advanced (second-

order) XSS and SQLI. The average percentage of discovered vulnerabilities equals 53%. The

analysis shows that these tools achieve 87% in session management vulnerabilities and 45% in

the cross-site scripting vulnerabilities.

Kals et al [117] introduce a black-box vulnerability scanner that scans websites for the

presence of exploitable SQLI and XSS vulnerabilities. They do not depend on a vulnerability

 Chapter 3: Related Work

Page 52

signature database, but they require attacks to be implemented as classes that satisfy certain

software interfaces. Thus such attacks can be called from their vulnerability scanner.

Weinberger et al [118, 119] introduce an analysis of a set of 14 frameworks that provide

XSS sanitization techniques. They identify a set of limitations in these efforts including lack of

context-sensitive sanitization that result in developing customized sanitizer. Such sanitizers

need to be validated for their correctness, and resistance to client-side code “DOM-based XSS”.

Felmetsger et al [60] use an approach for automated logic vulnerabilities detection in web

applications. They depend on inferring system specifications of a web application’s logic by

analyzing system execution traces. They then use model checking to identify specification

violations. The extraction of security properties’ specifications to be validated is a key

limitation in this approach. Moreover, they assume that these traces represent correct system

behavior, which is not always correct (system bugs may result in incorrect/inconsistent traces).

3.3.3.3 Hybrid Vulnerability Analysis

Monga et al [120] introduce a hybrid analysis framework that blends static and dynamic

approaches to detect vulnerabilities in web applications. The application code is translated into

an intermediate model. This static model is filtered to focus only on dangerous statements. This

reduces model size where dynamic analysis will be conducted, mitigating the performance

overhead of the dynamic taint analysis approach. This approach, as most taint analysis

approaches (either static or dynamic), targets only injection-related vulnerabilities. Balzarotti et

al [121] introduce composition of static and dynamic analysis approaches “Saner” to help

validating sanitization functions (addressing the input validation related attacks) in web

applications. The static analysis is used to identify sensitive source and sink methods. The

dynamic analysis component is used to analyse suspected paths only.

In summary, the existing security vulnerability analysis efforts focus on specific vulnerability

types such as SQLI, XSS, etc. These efforts are not generally extensible enough to support

analysis against new attacks. Existing vulnerability signatures such as those in the National

Vulnerability Database (NVD) and Common Weaknesses Enumeration Database (CWE) are

informal which hamper their adoption in developing automated vulnerability analysis tools.

3.4 Security Engineering

Existing security engineering efforts focus on capturing and enforcing security requirements at

design time, supporting adaptive security, and multi-tenant security engineering. On the other

hand, most industrial efforts focus on delivering security platforms that can help software

developers in implementing their security requirements using readymade standard security

 Chapter 3: Related Work

Page 53

algorithms and mechanisms. Some of the key limitations with the existing security engineering

efforts include: (i) these efforts focus mainly on design-time security engineering – i.e. how to

capture and enforce security requirements during software development phase; (ii) limited

support to dynamic and adaptive security and require design-time preparation; and (iii) no

support for multi-tenancy, most of the existing efforts focus on getting services (including cloud

services) to reflect one set of security requirements without considering different tenants’

security requirements. Benjamin et al [122] introduce a detailed survey of the existing security

engineering efforts; however they did not highlight limitations of these approaches.

3.4.1 Design-time Security Engineering

Software security engineering aims to develop secure systems that remain dependable in the

face of attacks [123]. Security engineering activities include: identifying security objectives that

systems should satisfy; identifying security risks that threaten system operation; elicitation of

security requirements that should be enforced on the system to achieve the expected security

level; developing security architectures and designs that deliver the security requirements and

integrates with the operational environment; and developing, deploying and enforcing the

developed or purchased security controls. Below, we summarize the key efforts in the security

engineering area.

3.4.1.1 Early-stage Security Engineering

The early-stage security engineering approaches focus mainly on security requirements

engineering including security requirements elicitation, capturing, modelling, analysing, and

validation at design time from the specified security objectives or security risks. Below we

discuss some of the key existing security requirements engineering efforts.

Knowledge Acquisition in automated Specification (KAoS) [124] is a goal-oriented

requirements engineering approach. KAoS uses formal methods for models analysis [125].

KAoS was extended to capture security requirements [16] in terms of obstacles to stakeholders’

goals. Obstacles are defined in terms of conditions that when satisfied will prevent certain goals

from being achieved. This is helpful in understanding the system goals in details but it results in

coupling security goals with system goals.

Secure i* [126, 127] introduces a methodology based on the i* (agent-oriented requirements

modelling) framework to address the security and privacy requirements. The secure i* focuses

on identifying security requirements through analysing relationships between users, attackers,

and agents of both parties. This analysis process has seven steps organized in three phases of

security analysis as follows: (i) attacker analysis focuses on identifying potential system abusers

 Chapter 3: Related Work

Page 54

and malicious intents; (ii) dependency vulnerability analysis helps in detecting vulnerabilities

according to the organizational relationships among stakeholders; (iii) countermeasure analysis

focus on addressing and mitigating the vulnerabilities and threats identified in previous steps.

Secure TROPOS [128-130] is an extension of the TROPOS requirements engineering

approach that is based on the goal-oriented requirements engineering paradigm. TROPOS was

initially developed for agent-oriented security engineering (AOSE). TROPOS introduces a set

of models to capture the system actors (actors’ model) and their corresponding goals (goal

model: hard goals represent the actor functional requirements and soft-goals represent the actor

non-functional requirements). These goals are iteratively decomposed into sub-goals until these

sub-goals are refined into tasks, plans, and resources. Secure TROPOS is used to capture

security requirements during the software requirements analysis. Secure TROPOS was

appended with new notations. These included: (i) security constraints: restriction related to

certain security issue like: privacy, integrity...etc.; (ii) security dependency: this adds constraints

for the dependencies that may exist between actors to achieve their own goals and defines what

each one expects from the other about the security of supplied or required goals; and (iii)

security entities: are extensions of the TROPOS notations of entities like goals, tasks, and

resources as follows: secure goal: means that the actor has some soft-goal related to security (no

details on how to achieve) this goal will be achieved through a secure task; secure task: is a task

that represents a particular way of satisfying a secure goal; secure resource: is an informational

entity that‘s related to the security of the system; and secure capability: means the capability of

an actor to achieve a secure goal. In our SecDSVL (Chapter 6) we capture these security details

in abstract level and at runtime.

Misuse cases [131, 132] capture use cases that the system should allow side by side with the

use cases that the system should not allow which may harm the system or the stakeholders

operations or security. The misuse cases focus on the interactions between the system and

malicious users. This helps in developing the system expecting security threats and drives the

development of security use cases.

3.4.1.2 Later-stage Security Engineering

Efforts in this area focus on how to map security requirements (identified in the previous stage)

on system design entities at design time and how to help in generating secure and security code

specified. Below we summarize the key efforts in this area organized according to the approach

used or the underlying software system architecture and technology used.

UMLsec [14, 133, 134] is one of the first model-driven security engineering efforts. UMLsec

extends UML specification with a UML profile that provides stereotypes to be used in

annotating system design elements with security intentions and requirements. UMLsec provides

 Chapter 3: Related Work

Page 55

a comprehensive UML profile but it was developed mainly for use during the design phase.

Moreover, UMLsec contains stereotypes for predefined security requirements (such as secrecy,

secure dependency, critical, fair-exchange, no up-flow, no down-flow, guarded entity) to help in

security analysis and security generation. UMLsec is supported with a formalized security

analysis mechanism that takes the system models with the specified security annotations and

performs model checking. UMLsec [135] has recently got a simplified extension to help in

secure code generation.

SecureUML [15] provides UML-based language for modeling role-based access control

(RBAC) policies and authorization constraints of the model-driven engineering approaches.

This approach is still tightly coupled with system design models. SecureUML defines a set of

vocabulary that represents RBAC concepts such as roles, role permissions and user-assigned

roles.

Satoh et al. [136] provides end-to-end security through the adoption of model-driven security

using the UML2.0 service profile. Security analysts add security intents (representing security

patterns) as stereotypes for the UML service model. Then, this is used to guide the generation of

the security policies. It also works on securing service composition using pattern-based by

introducing rules to define the relationships among services using patterns. Shiroma et al [137]

introduce a security engineering approach merging model driven security engineering with

patterns-based security. The proposed approach works on system class diagrams as input along

with the required security patterns. It uses model transformation techniques (mainly ATL - atlas

transformation language) to update the system class diagrams with the suitable security patterns

applied. This process can be repeated many times during the modeling phase. One point to be

noticed is that the developers need to be aware of the order of security patterns to be applied

(i.e. authentication then authorization, then…)

Delessy et al. [138] introduce a theoretical framework to align security patterns with

modeling of SOA systems. The approach is based on a security patterns map divided into two

groups: (i) abstraction patterns that deliver security for SOA without any implementation

dependencies; and (ii) realization patterns that deliver security solutions for web services’

implementation. It appends meta-models for the security patterns on the abstract and concrete

levels of models. Thus, architects become able to develop their SOA models (platform

independent) including security patterns attribute. Then generate the concrete models (platform

dependent web services) including the realization security patterns. Similar work introduced by

[139] to use security patterns in capturing security requirements and enforcement using patterns.

Hafner et al. [140] introduce the concept of security-as-a-service (SeAAS) where a set of key

security controls are grouped and delivered as a service to be used by different web-based

 Chapter 3: Related Work

Page 56

applications and services. It is based on outsourcing security tasks to be done by the SeAAS

component. Security services are registered with SeAAS and then it becomes available for

consumers and customers to access whenever needed. A key problem of the SeAAS is that it

introduces a single point of failure and a bottleneck in the network. Moreover, it did not provide

any interface where third-party security controls can implement to support integration with the

SeAAS component. The SECTET project [141] focuses on the business-to-business

collaborations (such as workflows) where security need to be incorporated between both parties.

The solution was to model security requirements (mainly RBAC policies) at high-level and

merged with the business requirements using SECTET-PL [142]. These modeled security

requirements are then used to automate the generation of implementation and configuration of

the realization security services using WS-Security as the target applications are assumed to be

SOA-oriented.

3.4.1.3 Security Engineering Processes

Different proposals have been developed trying to align and incorporate security engineering

activities with the software development lifecycle. These processes such as Security Quality

Requirements Engineering (SQUARE) [65], SREP [143] and Microsoft SDL specify the steps

to follow during software engineering process to capture, model, and implement system security

requirements. Such processes are aligned with system development processes. They focus on

engineering security at design time making assumption about the expected operational

environment of the application under development. This leads to lot of difficulties when

integrating such systems and their implemented security with the operational environment

security as software systems depend on their built-in security controls.

3.4.1.4 Widely Deployed Security Platforms

We have determined different industrial security platforms that have been developed to help

software engineers realizing security requirements through a set of provided security functions

and mechanisms that the software engineers can select from. Microsoft has introduced more

advanced extensible security model - Windows Identity Foundation (WIF) [144] to enable

service providers delivering applications with extensible security. It requires service providers

to use and implement certain interfaces in system implementation. The Java Spring framework

has a security framework – Acegi [145]. It implements a set of security controls for identity

management, authentication, and authorization. However, these platforms require developers’

involvement in writing integration code between their applications and such security platforms.

The resultant software systems are tightly coupled with these platforms’ capabilities and

mechanisms. Moreover, using different third-party security controls requires updating the

system source code to add necessary integration code.

 Chapter 3: Related Work

Page 57

3.4.2 Adaptive Application Security

Several research efforts try to enable systems to adapt their security capabilities at runtime.

Elkhodary et al. [146] survey adaptive security systems. Extensible Security Infrastructure [17]

is a framework that enables systems to support adaptive authorization enforcement through

updating in memory authorization policy objects with new low level C code policies. It requires

developing wrappers for every system resource that catch calls to such resource and check

authorization policies. Strata Security API [18] where systems are hosted on a strata virtual

machine which enables interception of system execution at instruction level based on user

security policies. The framework does not support securing distributed systems and it focuses

on low level policies specified in C code.

The SERENITY project [19, 147, 148] enables provisioning of appropriate security and

dependability mechanisms for Ambient Intelligence (AI) systems at runtime. The SERENITY

framework supports: definition of security requirements in order to enable a requirements-

driven selection of appropriate security mechanisms within integration schemes at run-time;

provide mechanisms for monitoring security at run-time and dynamically react to threats,

breaches of security, or context changes; and integrating security solutions, monitoring, and

reaction mechanisms in a common framework. SERENITY attributes are specified on system

components at design time. At runtime, the framework links serenity-aware systems to the

appropriate security and dependability patterns. SERENITY does not support dynamic or

runtime adaptation for new unanticipated security requirements neither adding security to

system entities that was not secured before and become critical points.

Morin et al. [149] propose a security-driven and model-based dynamic adaptation approach

to adapt applications’ enforced access control policies in accordance to changes in application

context – i.e. applying context-aware access control policies. Engineers define security policies

that take into consideration context information. Whenever the system context changes, the

proposed approach updates the system architecture to enforce the suitable security policies.

Mouelhi et al. [7] introduce a model-driven security engineering approach to specify and

enforce system access control policies at design time based on AOP-static weaving. These

adaptive approaches require design time preparation (to manually write integration code or to

use specific platform or architecture). They also support only limited security objectives, such

as access control. Unanticipated security requirements are not supported. No validation that the

target system (after adaptation) correctly enforces security as specified.

 Chapter 3: Related Work

Page 58

3.4.3 Multi-tenancy Security Engineering

The area of multi-tenant SaaS applications’ security engineering is relatively new. Existing

multi-tenancy security solutions from industry and academia are still under development.

Michael et al. [150] discuss the limitations of security solutions proposed by different

commercial cloud platforms. Salesforce.com has introduced a simplified solution to support

their CRM integration with tenants’ security solutions. They focus on the Identity and Access

Management (IAM) area only. Tenants who are interested in integrating with Salesforce.com

have to implement web services interfaces with predefined signatures in order to integrate with

Salesforce.com.

Enabling applications to support multi-tenancy either during application development or by

adapting existing web applications to support multi-tenancy has been investigated by [151-154].

Cai et al. [22, 23] propose an approach to transform existing web applications into multi-tenant

SaaS applications. They focus on the isolation problem by analyzing applications to identify the

possible isolation points that should be handled by the application developers.

Guo et al. [24] developed a multi-tenancy enabling framework. The framework supports a

set of common services that provide security isolation, performance isolation, etc. Their security

isolation pattern considers the case of different security requirements for different tenants while

still using a predefined, built-in, set of security controls. It depends on the tenant’s

administration staff to manually configure security policies and map their users and roles to the

application predefined roles.

Pervez et al. [25] developed a SaaS architecture that supports multi-tenancy, security and

load dissemination. The architecture is based on a set of services that provide routing, logging,

security. Their proposed security service delivers predefined authentication and authorization

mechanisms. No control by service consumers on the security mechanisms used. No isolation is

provided between the authentication and authorization data of different tenants.

Xu et al. [26] propose a new hierarchical access control model for the SaaS model. Their

model adds higher levels to the access control policy hierarchy to be able to capture new roles

such as service providers’ administrators (super and regional) and tenants’ administrators.

Service provider administrators delegate the authorization to the tenants’ administrators to grant

access rights to their corresponding resources.

Zhong et al. [155] propose a framework that tackles the trust problem between service

consumers, service providers and cloud providers on being able to inspect or modify data under

processing in memory. Their framework delivers a trusted execution environment based on

encrypting and decrypting data before and after processing inside the execution environment

 Chapter 3: Related Work

Page 59

while protecting the computing module from being access from outside the execution

environment.

Menzel et al. [156, 157] propose a model-driven platform to compose SaaS applications as a

set of services. Their approach focuses on enabling cloud consumers to compose their system

instances and define their security requirements to be enforced on the composed web services.

However, tenants’ instances must be deployed on separate VMs and there is no means to update

or reconfigure the defined security except manual. These efforts deliver security using specific

solutions and architectures. However, they do not give tenants any type of control on their

assets’ security; do not support multi-tenant security; and do not support runtime enforcement or

updating of enforced security.

In summary, the existing efforts in this area focus mainly on design time security engineering

which is not feasible in multi-tenant cloud-based applications where tenants’ security

requirements are not known at design time. The existing adaptive security engineering efforts

require deep design time preparation, which is mostly not feasible for legacy applications.

Moreover, the existing multi-tenant security engineering efforts do not consider the possibilities

of integrating tenant third-party security controls at runtime.

3.5 Security Re-engineering

Although a lot of security engineering approaches and techniques do exist as we discussed in

the last section, the efforts introduced in the area of security re-engineering and retrofitting are

relatively limited. This comes, based on our understanding, from the assumption that security

should not be considered as an afterthought and should be considered from the early system

development phases. Thus, research and industry efforts focus mainly on how to help software

and security engineers in capturing and documenting security in system design artifacts and how

to enforce using model-driven engineering approaches. Security maintenance is implicitly

supported throughout updating design time system or security models. In the real world, system

delivery plans are dominated by developing business features that should be delivered. This

leads to systems that miss customers expected or required security capabilities. These existing

legacy systems lack models (either system or security or both) that could be used to conduct the

reengineering process. The maintenance or reengineering of such systems is hardly supported

by existing security (re)engineering approaches. Below we summarize the key efforts we found

in relevant research areas including security retrofitting, software maintenance and change

impact analysis, dynamic software updating, and concept location areas.

 Chapter 3: Related Work

Page 60

3.5.1 Security Retrofitting Approaches

Research efforts in the security retrofiting area focus on how to update software systems in

order to extend their security capabilities or mitigate security issues. Al Abdulkarim et al [158]

discussed the limitations and drawbacks of applying the security retrofitting techniques

including cost and time problems, technicality problems, issues related to the software

architecture and design security flaws.

Hafiz et al. [159, 160] propose a security on demand approach which is based on a

developed catalog of security-oriented program transformations to extend or retrofit system

security with new security patterns that have been proved to be effective and efficient in

mitigating specific system security vulnerabilities. These program transformations include

adding policy enforcement point, single access point, authentication enforcer, perimeter filter,

decorated filter and more. A key problem with this approach is that it depends on predefined

transformations that are hard to extend especially by software engineers.

Ganapathy et al. [161, 162] propose an approach to retrofit legacy systems with authorization

security policies. They used concept analysis techniques (locating system entities using certain

signatures) to find fingerprints of security-sensitive operations performed by system under

analysis. Fingerprints are defined in terms of data structures (such as window, client, input,

Event, Font) that we would like to secure their access and the set of APIs that represent the

security sensitive operations. The results represent a set of candidate joinpoints where we can

operate the well-known “reference monitor” authorization mechanism.

Padraig et al. [163] present a practical tool to inject security features that defend against low-

level software attacks into system binaries. The authors focus on cases where the system source

code is not available to system customers. The proposed approach focuses on handling buffer

overflow related attacks for both memory heap and stack.

Welch et al. [164] introduce a security reengineering approach based on java reflection

concept. Their security reengineering approach is based on introducing three meta-objects that

are responsible for authentication, authorization, and communication confidentiality. These

meta-objects are weaved with the system objects using java reflection. However, this approach

focuses only on adding predefined types of security attributes and do not address modifying

systems to block reported security vulnerabilities.

3.5.2 Software Maintenance

Another key area that could be used in addressing the security reengineering problem is the

software maintenance and reengineering. System reengineering “preventive maintenance” [165]

 Chapter 3: Related Work

Page 61

targets improving system structure to easily understand and help in reducing cost of future

system maintenance. The re-engineering process includes activities such as source code

translation, reverse engineering, program structure improvement, and program modularization.

System maintenance [166] includes any post-delivery modification to existing software.

Runtime system adaptation is similar to system maintenance where we can handle post-delivery

“unanticipated” requirements, but this should happen while the system is running. These

concepts target adding, removing, replacing or modifying a system feature or structure either at

design time or at runtime. Engineering approaches that depend on aspect-oriented software

development enable systems to extend, may be replace, system functionality even at runtime but

they do not support leaving out certain patterns that may be buggy, unsafe or insecure.

Software maintenance requires deep understanding of target applications in order to analyse

the impact of a given system modification on other system entities “change impact analysis”.

Existing software maintenance efforts focus mainly on facilitating the impact analysis task as a

crucial part of change realization [167]. Specifying which entities to be changed and

propagating changes to the target system are not often considered. Many existing impact

analysis approaches assume that the entities to be modified – the “change set” - are known

beforehand. Thus, they usually focus on identifying entities – the “impact set” - that will be

impacted by modifying entities included in the change set.

Xiaobing et al. [168] introduce a static analysis approach to identify the impact set of a given

change request based on the change type (modify, add and delete) and the entity to be modified

(class, method, attribute). They construct a dependency graph of system classes, methods, and

members (OOCMDG). Given an entity with change type CT, then using the OOCMDG and a

set of impact rules they define the other impacted entities in a given application. Types of

changes are limited to classes and methods. Statement-level modifications are not considered.

The types of modifications required on the identified impact set are not known. Petrenko et al.

[169] introduce an interactive process to improve the precision of the identified impact analysis

using variable granularity analysis guided by developers. The proposed approach depends on

developers’ deep involvement during the impact analysis process to control the precision of the

change set.

Hassan et al. [170, 171] introduce an adaptive change impact analysis approach based on

adaptive change propagation heuristics. The approach combines different heuristics-based

approaches including history-based impact analysis (given a change request to modify entity

(A), what are the entities that are often modified with); containment-based impact analysis

(modifying entity (A) means other entities in the same container may be changed as well.

Container may be a component or a source file); call-use-depends impact analysis (uses the

 Chapter 3: Related Work

Page 62

dependency graph to identify entities that refer to the modified entity); code ownership impact

analysis (modifying entity (A) will return other entities that are owned by the same developer).

The best heuristics table maintains for each entity in the system, the best heuristics approach

that helps in conducting more accurate impact analysis. However, the approach did not explain

how these best heuristics are automatically selected and updated at runtime.

It is worth mentioning here that we could not find relevant work that addresses the change

propagation as the next step of the software maintenance problem. The system refactoring area

has a similar scope to maintenance but with limited system modification, focusing on

identifying code regions to be refactored – i.e. “bad smells”. Some of the refactoring problems

include how to specify and locate code snippets to be refactored, and updating system models to

maintain consistency between the updated (refactored) source code and system models [24].

Wloka et al [172] introduce an aspect-aware refactoring approach where refactoring takes into

account updating the defined aspects and pointcuts model. Most refactoring tools identify

known refactoring patterns [173]. They depend on user involvement to define syntactic bad

smells or use aspect mining tools to propose candidates that need to be refactored.

3.5.3 Dynamic System Updating

Dynamic system updating efforts aim to facilitate system updates at runtime. Such efforts have

been used also in adding new features and updating system at runtime. Most of these efforts are

based on the aspect oriented programming concept. Existing AOP languages e.g. AspectJ

support two types of crosscutting concerns: dynamic crosscutting concerns that impact system

behaviour by injecting code “advice” to run at well-defined points (normally limited to updating

methods – removing, modifying and replacing); and static crosscutting concerns that impact the

static structure and signature of program entities (normally limited to adding new declarations

and methods, rather than modifying existing system entities like classes, methods and fields).

These are key limitations in adopting AOP for software reengineering and maintenance.

Pukall et al. [174] introduce an approach using AOP HotSwaping and object wrapping. It is

based on role-based adaptation. Given a system change (adaptation), the involved entities are

categorized into caller and callee. The callee is extended by a wrapper class. The caller method

is replaced with a new method that uses the new wrapper class. The approach suffer from:

memory and performance impact on the updated system; out of synchronization with the

original source code; requires modifying the callers in all classes (at runtime); and has limited

support for class hierarchy change.

Villazon et al. [175] introduce an approach to support runtime adaptation based on AspectJ -

HotWave (Hotswap and reWave) – as an aspect weaver. This approach is limited to dynamic

 Chapter 3: Related Work

Page 63

AOP and static crosscuts are not supported. Nicorra et al [176] introduced PROSE, an AOP-

based code replacement approach. PROSE does not support schema changes, or “inter-type

declarations” such as the replacing of a method, and does not allow the addition of new class

members (i.e., methods, fields) in the original code.

3.5.4 Concept Location Techniques

Concept location techniques help in identifying and locating source code blocks that realize a

given system feature or concept. This area is also relevant to our security reengineering problem

where we need to locate code blocks with certain signatures as we going to explain in next

chapters. Efforts in capturing code signatures include point-cut designators, feature location, and

aspect mining. Feature location is a key step in system reengineering and maintenance to

understand the target system and identifying implemented features. Feature location approaches

can be categorized into static-based, dynamic-based, and runtime-based approaches. Below we

summarize the key efforts in the area of concept location:

Reiss [177], Shepherd et al [178], Marcus et al [179] use natural language and ontology-

based queries and information retrieval approaches in searching source code looking for certain

concepts. The adoption of natural language impacts approach accuracy and soundness.

Poshyvanyk et al [180] use AI techniques e.g. decision making and uncertainty to locate system

features. These help in understanding target systems but they do not assure high soundness, a

key requirement in system maintenance [181]. Zhang et al [182] introduce PRISM to help

extracting aspects. It is similar to our signature approach while it has limited signature

specification capabilities.

In summary, the existing software and security re-engineering efforts require deep

understanding and involvement of the software and security engineers to effect a given system

modification. Many focus on retrofitting an application with specific security patterns using

tools with a set of predefined patterns and modification steps required to realize such patterns.

Furthermore, the existing signature matching efforts are not formal enough to help in

automating the software analysis process.

3.6 Security Measurement and Metrics

There is no mean that could be used to help proving that a given system is completely (100%)

secure [183]. Security is like a game between the security officers and malicious users – mind-

against-mind. This means that there is no limit to attackers’ malicious actions to breach assets’

security. Thus, it is definitely hard to show that the system is secure against existing as well as

new security vulnerabilities. Security metrics represent a good solution to the security

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Poshyvanyk,%20D..QT.&newsearch=partialPref

 Chapter 3: Related Work

Page 64

assessment problem. Different types of security metrics do exist either offline security metrics

such as comparing system security with other systems, how many vulnerabilities found, attack

surface, planned attacks reported, strength of the applied security controls; and online security

metrics that assess the current security status and how the operated security is capable to defend

against different attacks. NIST [184] characterizes security metrics into three types as follows:

– Implementation Metrics: These metrics are intended to demonstrate progress in

implementing information security solutions and related policies and procedures;

– Effectiveness and Efficiency Metrics: These metrics are intended to monitor if the

implemented security controls are implemented correctly, operating as intended and meet the

desired outcomes. Effectiveness focuses on the robustness of the security controls while

efficiency focuses on the capability of the security controls to mitigate the security

objectives;

– Impact Measures: These are used to articulate the impact of IT security on enterprise

mission including cost savings and public trust.

System monitoring approaches can be categorized into external monitoring which resides in

the system infrastructure and collects measure from the interactions between the system and its

underlying infrastructure; or internal monitoring which depends on instrumenting the system

binaries or source code with monitoring code snippets that can collect measurement related to

certain internal system events. Below we summarize key efforts in relevant areas including

security monitoring, SLA monitoring, software requirements monitoring, and metric

specification languages.

3.6.1 Security Monitoring

Existing efforts in information security monitoring focus on proposing guidelines or processes

to be followed when defining metrics or collecting measurements. Chandra et al. [27] introduce

a methodology to help in identifying the required security metrics in a given system. This

methodology has a set of steps to follow including: specifying metric requirements, identify

vulnerabilities, identifying software characteristics, analysing security model, categorizing

security metrics, specifying security metric measures, designing metric development process,

developing security metrics, and finalizing metrics suite. Similar efforts introduced for the cloud

computing model in [185].

Savola et al. [28-31, 186] introduce an iterative process for security metrics development

based on a set of refinements of system security requirements down to the set of on-line and off-

line security metrics to be applied. These security metrics are categorized by related security

objective (authentication, authorization, confidentiality, integrity and availability).

 Chapter 3: Related Work

Page 65

Muñoz et al. [187] introduce a cloud computing dynamic monitoring architecture for the

security attributes along with a language to capture monitoring rules. The proposed architecture

is made up of three main layers: the local application surveillance (LAS) which collects

measures from each application instance in virtual execution environment; intra-platform

surveillance (IPS) which collects measurements of different LAS elements and start analysing

them to detect violations occurred from the interactions with other systems on the same virtual

machine or different virtual machines; and global application surveillance (GAS) which

analyses the results of different IPS for every specific application (taking into consideration its

different instances). The key problem of this approach is that it focuses on how to help the

service provider administrator but it did not consider the involvement of the service tenants in

developing and enforcing their own security metrics. Moreover, the new proposed language is

hard to learn and use in developing complex metrics.

The SERENITY Project [188, 189] introduced the EVEREST security monitoring platform.

The SERENITY framework helps adding security patterns to systems at runtime (given that

these systems have been already prepared at design time to integrate with SERENITY). The

main objective of the EVEREST security monitoring platform is to assess the conditions of the

operation of the security pattern realization components when integrated with the target system

at runtime. These conditions are specified as a set of Event-Calculus [190] (first-order temporal

formal language) assertion rules within the security and dependability patterns. When a security

pattern is selected, the specified rules are fed into EVEREST to make sure that they are satisfied

by events collected from the system at runtime. A key problem with this approach is that the

event calculus is hard to develop by service tenants. An extension of this approach was

introduced in the area of SLA management as we going to discuss in the next subsection.

Lorenzoli et al. [191] introduce an extension of this framework (EVEREST+) that helps in

delivering SLA violation prediction capabilities based on the measurements and results got from

the EVEREST framework. Similar work introduced by Spanoudakis et al [192]. They introduce

a security monitoring approach based on event-calculus captured as parameterized monitoring

patterns classified based on the related security objectives confidentiality, integrity and

availability.

Patzina et al. [193] introduce an approach that targets automatic generation of security

monitors. The approach is based on using Live Sequence Charts (LSCs) by system developers

to capture use and misuse cases of the system. These LSCs are translated into monitor petri nets

(MPNs) dialect (a modified definition of petri nets). These MPNs are then used to generate the

required security monitors. Although the authors claimed that the introduction of MPNs

simplified the generation of the security monitors, we see that this step adds more complication

 Chapter 3: Related Work

Page 66

and overhead to the process. Using LSCs directly could help to automatically generate security

monitors.

3.6.2 SLA Monitoring

The service level agreement (SLA) management becomes a very important research area with

the wide-adoption of the service outsourcing for hosting on external third-party platforms (such

as the cloud computing model) where customers do not have control on such services. This

increases the need to measure the quality of the delivered services (QOS) in terms of

performance, availability, reliability, security, and so forth. The service providers and

consumers conduct SLAs that define the QOS attributes that should be guaranteed by the

service provider and penalties to be applied on the service provider in case of any violation to

any of these QOS terms. Hence, it is very important to monitor the QOS terms specified in order

to take proactive actions before such violations occur or corrective actions in case of such

violations happened. However, we could not find efforts in the area of SLA that focus on how to

specify, monitor, and enforce security SLA terms. Below, we summarize some of the key

relevant SLA efforts we determined in this area.

Skene et al. [194-197] introduce a SLA specification language, SLang, to help in capturing

SLA terms (including performance, reliability, and throughput) developed in UML. The SLang

is supported with OCL that helps in capturing SLA constraints (invariants) that are used in

assessing the satisfaction or violation of the specified service level agreements. They used the

timed automaton to help in detecting violation of these SLA terms. This automaton is

automatically generated from the specified OCL signatures.

Michlmyar et al. [198, 199] introduce a comprehensive QOS monitoring approach that is

based on both client and server side monitoring of the QOS attributes. The proposed approach

was integrated with the VRESCo platform (a runtime environment for SOA-based computing).

They have developed their own SLA specification schema that is used in developing SLA terms

in XML. The approach depends on the nature of the web service to deploy interceptors of

requests and responses and trigger the QOS monitoring component.

Comuzzi et al. [200] introduce an approach for monitoring SLA terms as a part of the

SLA@SOI project that targets developing SLA management framework for the cloud

computing model. The proposed approach is based on the EVEREST monitoring framework.

This uses event-calculus to express rules and patterns of interest that should be monitored. Thus

a part of the proposed solution is to extract from the SLA terms patterns to be monitored

expressed in event-calculus. The proposed approach is event-based. Measurements are sent to

reasoning component to assess possible violations of the specified SLA terms. Similar efforts

 Chapter 3: Related Work

Page 67

[186] were introduced in the area of service selection that take into consideration different QOS

attributes when selecting between different services.

3.6.3 Requirements Monitoring

Efforts in this area focus on how to monitor and gather measurements of the software system

execution to assess whether the specified requirements are satisfied or not. Most of the existing

efforts in this area depend on goal-oriented requirements engineering approaches, such as

KAOS, where system requirements are formally expressed as refinements of high-level goals

and then these formalizations are used to guide the generation of low-level requirement

monitoring code that helps assessing the satisfy-ability of system requirements.

Lahmar et al [201] introduce a new non-functional properties monitoring approach based on

component transformation that transform component into monitor-able components delivering

both polling and subscription monitoring models. Each component defines the set of required

properties. These properties must be offered by the referenced components. Therefore, the

proposed approach uses these required properties to extend these referenced components with

monitoring components as extensions to deliver these properties.

Ramirez et al [202] introduce an adaptive requirements monitoring approach that tries to

address the performance overhead incurred from the application of extensive system

monitoring. This is done using the application of configurable (adaptable) monitoring

components with adaptable monitoring frequency “adaptive sampling”. These can be turned on

and off according to the current utility functions specified, in order to assess violations of the

requirements satisfaction as well as the accuracy and cost of the monitoring components.

Logical
Machinery

Initially and Happens

What happens when

What actions do

Initiates and Terminates

HoldsAt

What’s true when

Figure 3-6. Event Calculus Model [190]

3.6.4 Security Metrics Specification Languages

Event-Calculus-Assertions [190] is a first-order predicate calculus that is used to develop formal

specification/model and reason about system properties that could be specified in terms of a set

 Chapter 3: Related Work

Page 68

of events and their effects. The occurrence of these events impacts the satisfaction of specified

system properties. Event calculus, as shown in Figure 3-6, is based on two basic constructs

events and fluents. Event represents something that occurs at a specific point in time. An event

may result in a change in the status. This state is represents by fluents. EC has a set of predicates

that represent occurrence of an event (Happens), start hold of a fluent (Initiates), termination of

the hold of a fluent (Terminates), fluent terminates between t1 and t2 (Clipped), and fluent holds

at time t1 (HoldsAt).

The Performance Metric Specification Language (PMSL) [203, 204] is developed to capture

high-level user-defined parallel-systems performance metrics. Metrics developed by the PMSL

are fed in the G-PM performance analysis tool. PMSL is a declarative functional language.

PMSL does not support control flow or state altering constructs. The PMSL provides a couple

of set operations and aggregation functions. The list of measurable objects to be monitored is

limited to predefined list defined and built-in the PMSL.

The Goanna Metric Specification Language (GMSL) [205] is developed to assess programs

source code quality using a set of user-defined static source code metrics. Metrics specified are

evaluated against source code AST using a model-checker. The grammar of the GMSL is based

on Extended Backus Naur Form (EBNF) and supported with a set of aggregation functions.

In summary, the existing security and requirements monitoring efforts introduce proposed

methodologies and processes to be followed in developing security metrics required in

assessing the security of a given system. Relevant efforts in the requirements’ monitoring focus

on verification of certain system properties at runtime using formal mathematical languages

such event calculus. Moreover, the existing metrics’ specification efforts are either formal

(hard to use) or domain specific (does not help in specifying customized security metrics).

3.7 Research Gaps Summary

In this chapter we have reviewed, analyzed, and summarized the key efforts, we found, in

research areas relevant to the research problem we address in this thesis “cloud computing

security management”. Table 3-1 summarizes the key research branches in each area, key facts,

and the main research gaps in these efforts project on the research problem.

- Security Management Area: The area of security management has different security

management standards NIST-FISMA and ISO27000. Both are not designed for security

management of outsourced cloud assets that are out of the asset owner control and shared

with different tenants. Moreover, it has different information security management systems

(ISMS); however, these efforts focus mainly on refining security objectives down to

requirements and security policies, and automating the configuration of security controls

 Chapter 3: Related Work

Page 69

using these security policies. They do not address the multi-tenancy problem. Moreover,

these efforts did not address the security monitoring and improvement aspects. Furthermore,

some of these efforts depend on manual involvement of engineers which is very hard to have

in case of cloud-hosted assets. Another key limitation of these efforts is that they do not

consider integration of the operated security controls with the target IT systems (usually

done manually). In this research project, we consider the security controls’ configuration as

out of scope for two reasons: (i) it is already covered by existing efforts; and (ii) we consider

the case where different tenants may operate their own controls which may be out of control.

- Security Analysis Area: We have figured out hundreds of research efforts in this area either

as risk management and assessment, architecture risk analysis, and vulnerability analysis.

These efforts focus mainly on how to conduct and document outcomes of the security risk

analysis process. Thus, we assume that this part of the security management process is out of

scope in this project – i.e. security engineers can use any of these approaches during the

security risk analysis process. However, we expect that the final outcome is to be modeled in

our tool. The existing architecture risk analysis and vulnerability analysis efforts focus on

specific, well-known threats, attacks, and vulnerabilities such as man-in-the-middle and

injection attacks, attack surface and compartmentalization metrics, SQLI vulnerabilities,

XSS, OS Command Injection, Input sanitization. Furthermore, there is no online analysis

tool that can investigate for new vulnerabilities without a need for new security patches that

may take weeks to be installed. This is very critical for cloud applications as they are mostly

publicly accessible for end-users who may use these vulnerabilities to breach applications

and data security.

- Security Engineering Area: The area of security engineering has so many approaches and

methodologies, and relatively few efforts in the area of adaptive security engineering. The

key limitations we found in this area with regard to our research problem are: they focus

mainly on design time security engineering which is not feasible in multi-tenant cloud

applications where tenants’ security requirements become known at runtime. Moreover,

these requirements are highly expected to change as a consequence of business and security

changes. The existing adaptive security engineering efforts require deep design time

preparation, which is mostly not feasible for legacy applications. Moreover, these efforts do

not address the problem of integrating third-party security controls (at runtime) with the

target application.

- Security Retrofitting Area: The area of software and security re-engineering has relatively

few efforts. Most of these efforts require deep understanding and involvement of software

and security engineers. Many focus on retrofitting an application with specific security

patterns using tools with built-in patterns and modification steps required to realize such

 Chapter 3: Related Work

Page 70

patterns. Furthermore, the existing signature matching efforts are either not formal enough or

work on function level signatures only (such as pointcut in AOP).

- Security Monitoring Area: The area of security monitoring is relatively new. Most of these

efforts still proposing methodologies and processes to be followed in developing security

metrics required in assessing the security of a given system. Relevant efforts in the

requirements’ monitoring focus on verification of certain system properties or invariants at

runtime using event calculus for example. Event calculus is hard to use, and still limited

when writing security metrics that perform aggregation functionalities. Furthermore, these

efforts do not consider the multi-tenancy dimension – i.e. how to define, develop probes,

deploy, and analyze results of different metrics for different tenants.

 Chapter 3: Related Work

Page 71

Table 3-1. Key research areas, efforts, and gaps

Area Existing Efforts Limitations

Security

Management

- Security Management Standards

- Security Management Framework

- No Multi-tenancy Support

- Security integration within IT system is limited

- Focus mainly on security controls’ configuration, no monitoring nor feedback

Defining

Security

- Risk analysis tools

- Architecture Risk Analysis

- Security Vulnerability Analysis

- Mainly focus on risk documentation

- Limited to specific vulnerability or attack types

- No support for online security analysis

Enforcing

Security

- Design time security Engineering

- Multi-tenant Security Engineering

- Adaptive Security Engineering

- Focus on design time security engineering

- Adaptation requires design time preparation

- Adaptive approaches depend on specific architecture and technologies (SOA,

CBSE)

Monitoring

Security

- Security Monitoring Framework

- Requirements Monitoring

- SLA Monitoring

- Security Metrics’ specification languages

- Security monitoring approaches deliver methodologies; no tool support.

- Requirements monitoring approaches depend on formalized event-calculus;

hard to express by engineers and service consumers.

- Approaches depend on system events are limited to reactive actions

- No formal and familiar metrics specification language.

Part 2

Adaptive, Model-based Cloud

Computing Security Management

Page 73

 Chapter 4

Adaptive, Model-based Cloud Computing

Security Management

In chapter 2 we have discussed key security challenges in the cloud computing model, and in

chapter 3 we reviewed and identified research gaps in relevant areas. The conclusion was that

the cloud computing model lacks a strong security management framework that can handle the

large number of cloud services and security solutions and takes into consideration the multi-

tenancy and elasticity, lack-of-trust and loss-of-control, and multiple stakeholders involved with

the cloud model. Moreover, we concluded that the existing efforts are limited and do not fit well

with the cloud computing security problem. In this chapter, we introduce the core idea of our

approach and the big picture of the developed solution. This chapter is organized as follows. In

Section 2 we introduce an overview of the IBM MAPE-K autonomic computing model as the

reference model for our approach. In Section 3 we introduce the big picture of our approach,

including the core idea, high-level architecture and main components.

4.1 Introduction

The cloud computing model is a good example of an adaptive computing platform. Computing

resources utilized by different services and different tenants can be scaled up or down according

to the current needs that are usually captured as a set of constraints, rules or utility functions that

specify when to adapt the allocated resources. Different frameworks in both industry and

academy [3, 194, 206] are currently under development to help adapting allocated resources

according to predefined constraints. This dynamic nature of the cloud computing model along

with the sharing of resources between tenants and public accessibility of the cloud platform

reinforce the need for platforms that can change their operated security at runtime according to

the current security risks and business objectives. The current cloud computing platform’s

security is still far from adaptive-ness – i.e. how to get cloud services to deliver multi-tenant,

adaptive security has not been considered with an applicable solution yet. In this chapter, we

discuss how to deliver a security management platform that can extend cloud computing

platform with the core infrastructure components required to deliver multi-tenant, adaptive, and

model-based cloud computing security. We base our approach on the IBM autonomic

computing platform [207] with a slight modification, which is the ultimate goal of the adaptive

computing models including cloud computing.

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 74

In the next sections we discuss IBM MAPE-K autonomic computing model. Then, we introduce

our general approach we propose to deliver adaptive security model that meets the key

challenges we have explained in details in the last chapters. Finally, we will introduce the “big

picture” of our security management framework.

Managed System

Sensor Effector

Monitor

Analysis Plan

Execute

Knowledge

Figure 4-1. Autonomic computing model [209]

4.2 Autonomic Computing and MAPE-K Model

Software systems nowadays are getting more complicated, autonomous and real-time. This

requires such systems to address unanticipated requirements that emerge at runtime without

waiting for customizations and maintenance tasks that usually take several weeks.

Administration of such complex systems is also a complicated task. Autonomic computing aims

at simplifying the administration of such complex computer systems [208]. According to the

autonomic computing paradigm, system administrators merely specify high level objectives

(policies), which determine how the system may adjust its behavior at runtime in order to

guarantee specified objectives/requirements. Administrators are consequently relieved from

dealing with numerous details of the system. The autonomic computing system idea was

originally introduced by IBM [209]. Autonomic computing is based on the MAPE-K model,

show in Figure 4-1. This model proposes architecting any adaptive system into four

components: Monitoring, Analysing, Planning, and Execution. All these components share a

common knowledge repository of the managed system(s) and operational environment details

and status, stakeholders’ objectives, and possible adaptation patterns. Below we discuss MAPE-

K components and possible realization techniques for each component with pros and cons of

each approach.

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 75

4.2.1 Monitoring Component

The first phase of any adaptive or autonomic system is to monitor the underlying system and its

context. The main responsibility of the monitoring component is to collect the context and the

managed system’s status information from the available sensors and filter collected information

from irrelevant information. These measurements are fed into the analysis module to reason

about the current system status and take predictive or corrective actions. Most of the monitoring

efforts can be categorized as [207]:

– Sensor interface: this pattern is based on defining a specific interface to be used by all

system types (classes/objects) that sense the current status of the environment. This approach

is applicable when adaptive-ness is considered when designing the managed system itself.

– Publisher/subscriber “middleware”: this pattern assumes that we have context-provider or

broker that publishes some context information and each adaptive system needs to register its

interest in any of the available events or context domains. Thus, when new information is

available, the publisher calls a certain function or fires a specific event. This approach is

applicable when data is used by multiple clients and system adaptation requires information

about its context.

– Logging: this approach depends on collecting execution traces that reflect certain system

events in log files or logging database (audit trial) for further analysis by the analysis

component. A key problem with this pattern is that it leads to lagging measurements not real-

time measurements. Thus it fits more with the mitigation and recovery purposes.

– Profiling: a library of APIs that can be used to develop profiling tools used to monitor the

events that arise within the system host – e.g. Java VM runtime tools, and Microsoft .NET

profiler. This is interesting when dealing with monitoring of the interactions between the

system and the underlying platform.

– Reflection: the adaptation system uses reflection to read information about the objects

existing in its environment without having to alter its implementation. This approach is

interesting when adding monitoring as afterthought or addressing an existing legacy system.

We use this approach in the monitoring component of our security management platform.

– Management protocols: different protocols are existing related to the area of monitoring and

serve different domains such as performance, manageability, etc. as follows: first, the

application response measurement (ARM) [210] defines a set of APIs that can be used

within application or its transactions in order to define the performance of certain application

transactions. Second, web-based enterprise management (WBEM) [82] is a new standard

developed by DMTF. WBEM is based on CIM: The common information model (CIM) [78]

as a reference for the manageable objects; XML to represent data communications among

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 76

management and manageable objects; and HTTP to transfer the data among parties. Third,

Simple Network Management Protocol (SNMP) is based on deploying monitoring agents

(SNMP agents) on each managed device; SNMP Manager collects data from these agents;

and the web server that hosts the management application (interface) to be used by the

administrators. Fourth, Java management framework (JMX) was developed to help

developing distributed management applications. The framework has three levels: (i)

Instrumentation Level: this is responsible for the managed objects (MBeans) that define a

standard interface to reflect set of functions (static or dynamic); (ii) agent level: this is the

MBean server that delivers a registry of the MBean that allows clients to discover

information and execute actions on MBeans; and (iii) remote management: this is the client

of layer. It can communicate with the MBeans server through APIs.

Before we start developing a monitoring component, we need to answer a set of questions

including: what are the QOS attributes to be monitored, what system objects to monitor,

monitoring frequency for each object, required redundancy (avoid failure and noise), how to

secure monitored data and avoid spams and attacks on it, and how to relate data monitored to

business objectives (goals) in order to trigger the corresponding adaptation actions.

4.2.2 Analysis component

The analysis component receives the monitored data from the monitoring component for

analysis in order to understand the current system status. Monitored data may be filtered to

remove any noise or redundancy. Also correlation or aggregation of the monitored data may

exist to formulate meaningful information about the underlying context or system behavior.

This information is usually expressed in terms of metrics of interest. These metrics may assess

system during design time using system models or at runtime using some utility functions

imposed on the system. The analysis component in most of the time is merged with either the

monitoring component or with the decision and planning component. Below, we discuss the

most common ways in developing analysis components.

- Rule-Based: The monitored data or (metrics of interest calculated from such monitored data)

are traced against a set of rules that define constraints (upper and lower bounds) [211, 212].

In case that any rule violated (in some cases fired), then a set of symptoms are reported. Such

reported symptoms are linked to certain mitigation actions. We use this approach in our

security monitoring approach.

- Symptoms Database (Case-Based Reasoning): The logic of the analysis is formatted as

symptoms. The current situation (case) is compared with the cases database. Then, the best

matched case is retrieved and the related solutions or actions are applied. Other artificial

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 77

intelligent approaches such as neural networks, decision trees, and Game theory could be

used to analyze system status against stakeholders’ defined desired objectives.

- Model-Based: A lot of work has been introduced in this area [213, 214]. It is based on

maintaining a model of the system and/or its operational environment (context). This model

is updated with the monitored data. Then the current system model is: (i) Compared with the

target model and the differences are used to guide the adaptation planning and execution

steps; (ii) Validated against set of rules or constraints defined, so in case of rules violation,

the system will take corrective actions; (iii) Used to activate a set of components. Each

component has a set of rules, in case that these rules are matched then the component is

integrated with the target system model to reflect current needs.

- Artificial Intelligent and Adaptive Learning: These methods use a set of artificial intelligent

methods and rules generated through supervised learning [215] and applied as normal

behavior rules. Any abnormal activities are used to retrain the analyzer.

- Regression Analysis: This is a statistical approach to help in investigating and understanding

the relationships between variables [216]. This is usually used in ascertaining the causal

impact of some variables on others. This is usually followed by statistical significance

analysis to make sure that the estimated relationships are close to the truth. Regression

analysis includes: linear regression and non-linear regression based on the nature of the

dataset; interpolation: prediction within the range of the given data; or extrapolation:

prediction out of the range of the given data.

4.2.3 Planning and Execution components

Given the system status and found deviations pinpointed and reported by the analysis

component(s), the planning component generates a sequence of actions to be applied on the

underlying system and/or managed objects (may be the current system environment as well) in

order to adapt system behavior and meet the specified objectives (either as policies or as utility

functions). The execution component should update the system behavior or structure

accordingly and the underlying effectors should reflect such changes on the managed objects as

well. Below we discuss a set of approaches that could help in realizing new changes.

4.2.3.1 Architectural/Design Patterns

Software architectural patterns help in expressing the fundamental structure (main components

and their relationships) of the software systems [217]. It provides a set of predefined

subsystems, responsibilities, and guidelines for organizing the relationships between them.

Below is a list of patterns that could be used in with such approach:

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 78

– Decorator Pattern [218]: Helps in extending the responsibilities of an object, independent of

other class objects, dynamically instead of using sub classing and also in cases where sub

classing is not feasible (sealed or final class). However, this pattern requires design time

preparation to use it. The decorator pattern is realized by introducing a decorator class that

wraps/encloses the original class. The decorator class conforms to the interface of the

original class and delegate calls to the enclosed class object.

– Microkernel Pattern [217]: The microkernel architectural pattern best fits with the design of

adaptive systems that target addressing unanticipated requirements at runtime. The

microkernel enables plugging in and out system features/components and facilitating the

communication between these components. However, this pattern requires design time

preparation of the software architecture under development.

– Interception Pattern [219]: The interceptor pattern helps in updating system behavior and

capabilities at runtime according to the incoming request and its context information. The

beauty of this pattern is that such update is realized without a need to modify the existing

code, design time preparation, or even details of the application. Furthermore, it does not

affect the current system features. Interceptor pattern usually developed with three

components: Interceptor interface which defines the operations which are executed by a

Dispatcher in specific events e.g. at the beginning or at the end of a request processing;

Dispatcher is the class or method that is called by the interceptor to perform required

actions. The interception is done in different possible ways e.g. the interceptor could call

Dispatchers prioritized in a user-defined order; and Context is a data object that maintains

context information either from the request or the current system status e.g. transaction id,

caller, passed in parameters. The context object is sent to the interception handler. The

context object details (data items) may be different from one interceptor to another according

to the handler functionality. We use this pattern in our security monitoring and execution

components as we discuss in chapter 6 and chapter 9.

4.2.3.2 Middleware-Based Approaches

The execution is implemented in the middleware layer so application does not need to be aware

of the nature of the effectors (this is mostly used in distributed applications) [207, 220]. The

middleware may implement one of the mentioned herein solutions to deliver its functionality:

– Mobile Agents [80]: A mobile agent is a composition of computer software and data which is

able to migrate (move) from one computer to another autonomously and continue its

execution on the destination computer. They can be used as communicators/ negotiators with

existing applications/security solutions. Thus, we can deploy different mobile agent for

different task or different application interface or methodology of interaction and reasoning.

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 79

– Reflection Pattern [217]: The reflection architectural pattern helps in changing structure and

behavior of software systems dynamically. It supports both type structure (e.g. extending

classes) and function calls adaptation. The reflection pattern has two parts: a meta-level

which provides information about system properties including structure and behavior; and a

base-level which includes application logic itself. Its implementation builds on the meta-

level. Changes are usually done on the meta-level. This is subsequently reflected on base-

level components’ behavior.

– Dynamic Aspect Weaving [221]: Dynamic weaving focus on the ability to apply, replace or

remove an aspect while the software system is running (in contrast with the static aspect

weaving at development time). Dynamic aspect weaving includes: (i) Load-time weaving:

Byte code transformations at class loader level (Subclass the Java class loader or replace it);

(ii) JIT compiler weaving: Byte code unaltered but alteration takes place when JIT compiler

is employed; (iii) Code Splicing: Weaving changes on running native code. Native code is

replaced with branch to external function (known as jump-return hooks). Replaced code

appended at the end of external function. Jump back to instruction after spliced location.

CC – Security management process CP – Security management process

Collaboration-based Security management framework

Define

EnforceImprove

Define

EnforceImprove

Define

EnforceImprove

Figure 4-2. A concept diagram of our joint-collaboration cloud security management

4.3 Adaptive, Model-based Cloud Security Management –

“Big Picture”

To satisfy the identified requirements and research gaps (questions) relevant to the cloud

computing security problem as discussed in Chapters 2 and 3, we propose a novel approach

based on extending the boundaries of the cloud consumers and providers’ security management

processes to include their cloud hosted services and cloud platforms respectively. This means

that stakeholders can go through the security management process on their cloud hosted assets

as if they have been hosting these assets inside their enterprise perimeters, as shown in

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 80

Figure 4-2. Moreover, they can use the same security specifications, security enforcement and

monitoring and improvement approaches used internally and thus mitigate the loss-of-control

and the lack-of-trust problems arise from adopting the cloud model. To deliver such capabilities,

our framework has to introduce novel approaches to support capturing security requirements

(including automated security analysis), enforcing security controls (through an automated

security engineering approach), and monitoring the security of the hosted services (using

automated security monitoring approach). Our framework should be deployed on cloud

platforms where IT assets are located and used to manage the security of deployed services for

corresponding tenants. Because none of the cloud stakeholders possesses the information

required to secure a given service (going through the whole security management process), we

adopt a joint-collaboration between cloud stakeholders in securing their cloud-hosted assets.

Another obstacle to achieve this goal is that it is very hard to get the cloud consumers to have

administrative access to the cloud platforms (may be malicious users) to manage the security of

their assets by hand. Thus, we had to base our approach on abstract models that capture details

of the cloud platform, services, and security. Our platform then takes the responsibility to

realize these security specifications.

Security
Model

Service
Model

Cloud
Model

System

Cloud
Platform

Cloud
Services

Security
Solutions

En
fo

rcem
en

tFe
ed

b
ac

k

Figure 4-3. General Approach

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 81

Figure 4-3 shows that we get each stakeholder to summarize their information in models

according to their roles: cloud providers model their platform details, service providers model

their service details, and cloud consumers model their security model. These models are weaved

in secure-system model (integrated model reflecting critical system entities and security details

to be applied on these entities). This model is used as a reference in generating a security

management plan that guides the configuration of security controls, integration of security

controls within the target critical entities either in the service or in the cloud model. In our

approach we move from top to bottom in the refinement process starting from models to real

configurations “Enforcement”. On the other side, we collect measurements for the services and

security controls and consolidate such measurements into metrics reflecting security status

“Feedback”.

Figure 4-4 shows a high-level architecture of our adaptive-security management framework

that we have been working on throughout this research project and we are going to discuss

throughout this thesis. This framework is to be hosted on cloud platforms and used to manage

the security of cloud services. Our approach architecture is inspired by the MAPE-K autonomic

computing model introduced by IBM and discussed early in this chapter. Below we discuss the

responsibilities of each of our approach.

Analysis
Component

Measurements
Analyzer

Threat and
Vulnerability

Analyzer

S
1

Management Component

Service &
Platform
Modeller

Tenant Security
Modeller

Enforcement
Component

Service-
security

Integrator

Monitoring Component

Security Probes
Generator

Measurements
Collector

S
2

S
n

Security
Services

Security
Interface

Figure 4-4. A high-level architecture of our security management approach

- Management Component: This is a model-based security management component that is

responsible for capturing services and security details where service provider system

engineers model their services’ architecture, features and behavior and tenants’ security

engineers model and verify their own security objectives, requirements, architecture, and

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 82

metrics. Both models are then weaved together in a tenant secure-system model that guides

the next steps of security enforcement and monitoring. This component represents the

MAPE-K planning component where users define the policies or utility functions to be used

to manage system adaptation.

- Enforcement Component: This component is responsible for integrating specified security

details, modeled by different service tenants, with the target cloud services. The existing

security management efforts, discussed in the related work chapter, focus mainly on

automating security controls’ configuration process. Thus, this point is out of our research

scope. Actually, another reason is that these security controls may be deployed outside the

cloud platform (inside tenant’s network perimeter). Thus, our focus in this component is to

support flexible integration of the security controls within the target cloud services. A

common security interface was developed to facilitate the integration task. This interface

defines a set of functionalities to be realized by the security vendors through a common

security controls’ adaptor. This enables security controls to easily integrate with our

enforcement component which integrates with cloud services. This component represents the

execute component in the MAPE-K model.

- Monitoring Component: This component is responsible for generating required security

probes according to tenants’ specified metrics (captured in the management layer). These

probes are then deployed into the cloud services to capture system behavior and generate

corresponding measurements/traces. Moreover, this component is responsible for collecting

the measurements generated by these probes (according to metrics specified frequencies) and

passing such measurements to the analysis component.

- Analysis Component: The analysis component is responsible for two main tasks: performing

security analysis of the cloud services including vulnerability and threat analysis. The

analysis component analyses the deployed services and their architectures to identify

possible flaws and existing security bugs. This helps security engineers from both sides in

developing their security models. Moreover, such issues are delegated to the security

management component in order to incorporate in the security status reports for tenants as

well as dynamically updating the security controls deployed to block the reported security

issues. The analysis component also analyses the measurements reported by the monitoring

component against a set of predefined metrics’ stable ranges – e.g. number of incorrect user

authentications per day should be less than 3 trials, so the analysis component should analyse

the reported measures of incorrect authentications. This may also include taking corrective

actions to defend against such probable attack. This represents the analysis component in the

MAPE-K autonomic computing model.

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 83

4.4 Approach Evaluation

We have evaluated our approach using both experimental evaluation of each separate

component and case studies from the cloud computing model using two or more components of

our platform. In this section, we summarize the set of benchmark applications and set of

evaluation metrics that we use throughout the thesis to evaluate the performance of our

proposed platform components in terms of soundness, accuracy, and time. We introduce this

here to avoid repetition in the next chapters. Below we summarize these benchmark applications

and the evaluation metrics used.

4.4.1 Benchmark Applications

We have selected a set of real-world, large, widely-used, and commercial open source web

applications developed using ASP.NET (currently we have a .NET parser) as our benchmark to

evaluate our approach components including: the security engineering (chapter 6), security

reengineering (chapter 7), security analysis (chapter 8), and security monitoring (chapter 9). In

this section we introduce details of these benchmark applications. The other chapters reference

this section in their evaluation sections.

The benchmark includes the following applications: (i) Galactic-ERP: An ERP system

developed internally in our group for testing purposes. (ii) PetShop: A well-known reference e-

Commerce application. (iii) SplendidCRM: An open source CRM that is developed with the

same capabilities of the well-known open source SugarCRM system. It has been downloaded

more than 400 times. (iv) KOOBOO: An open source enterprise content management system

(CMS) used in developing websites. It has been downloaded more than 2000 times. (v)

BlogEngine: An open source ASP.NET 4.0 blogging engine. It has been downloaded more than

46000 times. (vi) BugTracer: An open-source, web-based bug tracking and general purpose

issue tracking application. It has been downloaded more than 500 times. (vii) NopCommerce:

An open-source eCommerce solution. It has more than 10 releases. (viii) Webgoat: A security

testing web-based application developed by OWSAP [40] for security analysis and testing

purposes. This application is used mainly in the evaluation of the security analysis component.

Except for Galactic, we do not have any previous experience with these applications. Table 4-1

shows a summary of these benchmark applications including number of downloads (which

reflects how the applications are widely-used), size of the application in kilo-lines of code

(KLOC), number of files, components, classes, methods, and time to build abstract syntax tree.

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 84

Table 4-1. Summary of benchmark applications statistics

Benchmark Downloads KLOC Files Components Classes Methods
AST

Time

Galactic – 16.2 99 2 101 473 187

PetShop – 7.8 15 25 40 55 51

SplendidCRM > 400 245 816 2 6177 6107 765

KOOBOO > 2,000 112 1178 6 7851 5083 78

BlogEngine > 46,000 25.7 151 13 258 616 163

BugTracer > 500 10 19 8 298 223 93

NopCommerce > 10 Rel. 442 3781 7 5127 9110 484

* Webgoat - 15 105 2 125 165 150

Table 4-2. Evaluation results classification

Actual Issue

Yes No

Reported As Issue

Yes TP FN

No FP TN

 Equation 1

 Equation 2

 Equation 3

 Equation 4

4.4.2 Evaluation Metrics

To assess the effectiveness of our proposed components such as the security analysis, security

re-engineering, and security monitoring components, we used a set of evaluation metrics to

measure the soundness and completeness of the proposed technique. These metrics are precision

rate, recall rate, false alarm rate, and F-measure. These metrics are based on the validity of the

reported outcomes compared to the actual system status. Table 4-2 shows the different

Chapter 4: Adaptive, Model-based Cloud Computing Security Management

Page 85

combinations of reported outcomes and actual outcomes as follows: True positive – TP: valid

outcome, the tool reported as an issue and it turns out to be actual issue; False positive – FP:

invalid outcome, the tool reported as an issue although it is not an actual issue; False negative –

FN: missed case, it is an actual issue, but the tool missed it; True Negative –TN: it is not an

actual issue, and the tool did not report it. We next provide our definition of these metrics as

used in our experiments. The precision metric is used to assess the soundness of the approach.

A high precision rate means that the approach returns more valid results (true positive - TP)

than invalid results (false positive - FP). Thus the maximum precision is achieved when no false

positives (see Equation 1). The recall metric is used to assess the completeness of our approach.

A high recall means that the approach returns most of the valid results (true positive - TP) than

missed valid results (false negative - FN), see Equation 2. The low false alarm rate means how

much invalid results reported by the tool compared to the total invalid results. The F-measure

metric combines both precision and recall. It is used to measure the overall effectiveness of our

approach (weighted harmonic mean). This metric depends on the importance of the recall rate

and the precision rate, e.g. if we are interested in higher precision (more valid vulnerabilities)

then we will give precision factor high weight, and vice-versa. We assume that the precision

rate and recall rate are equally important, Equation 4.

4.5 Chapter Summary

In this chapter, we introduced a quick overview of the autonomic computing model introduced

by IBM (MAPE-K model) and key techniques that could be used in realizing MAPE-K. Then

we introduced the general idea of our approach which is based on getting cloud stakeholders

involved in securing their assets through a joint-collaboration based approach. Finally, we

introduced the big picture of our approach – the adaptive model-based security management

framework. We explained our general approach and its main components. We discussed the

main functionalities of every component of our proposed framework that we are going to

discuss in detail. In chapter 5 we introduce our solution to align the existing security

management standards to fit with the cloud computing model. In chapter 6 we discuss the

security management and enforcement components using a novel model-driven security

engineering at runtime approach. In chapter 7 we introduce how to address re-engineer legacy

system that are already developed with built-in security capabilities to be managed by our

security management platform. In chapter 8 we discuss one part of the analysis component

which is a static security analysis. This is based on a novel security analysis approach based on

formalizing security analysis signature as well as an extensible security analysis tool support. In

chapter 9 we introduce monitoring component which covers how to capture metrics, generate

probes, and collect measurements as well as analyzing the collected security measurements.

Page 87

 Chapter 5

Aligning Security Standards with Cloud

Computing Model

To build our adaptive model-based cloud computing security management approach we

introduced in the last chapter, we found it very crucial to base such an approach on a well-

known and well-defined security management standard, such as ISO27000 or NIST-FISMA.

However, such security management standards are far from covering the full complexity of the

cloud computing model we discussed in the early chapters mainly multi-tenancy and

outsourcing of IT assets. In this chapter, we introduce our proposed alignment of the NIST-

FISMA standard to fit with the cloud computing model. This enables cloud providers and

consumers to better maintain their security management processes on cloud platforms and cloud

hosted services.

Our new framework is based on improving collaboration between cloud providers, service

providers and service consumers in managing the security of the cloud platform and the hosted

services. It is built on top of a number of security standards that assist in automating the security

management process. We have developed a proof of concept of our framework using .NET and

deployed it on a testbed cloud platform. We have evaluated the framework by managing the

security of a multi-tenant SaaS application exemplar discussed in Chapter 1.

This chapter is organized as follows. In Section 1 we highlight the existing trials to adopt

security management standards to fit with the cloud model. We also highlight the key

requirements and challenges that need to be satisfied by any proposed cloud security

management platform. Section 2 discusses our refined security management model. Section 3

explains how we aligned NIST-FISMA standard to fit with the cloud model. Section 4

summarizes the key security automation standards we adopted in our prototype. Section 5

outlines our prototype framework we developed based on aligned NIST-FISMA model. Section

6 introduces a usage example of the developed framework.

5.1 Introduction

Although much research into cloud services security engineering has been undertaken [4, 21,

61, 150, 155, 157, 222, 223], most of these efforts focus on the cloud-based services offered as

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 88

web services. Such efforts have investigated capturing security requirements and generating

corresponding WS-Security configurations. However, they pay no attention to the underlying

platform security or the other cloud service delivery models such as SaaS [21]. They also do not

address the impact of the multi-tenancy feature introduced by the cloud model on the security of

the cloud delivered services even in the case of web services.

From our analysis of the cloud security problem we have identifieid a set of key challenges

including: Each stakeholder has their own security management process (SMP) that they want

to maintain/extend to the cloud hosted assets; No stakeholder can individually maintain the

whole security process of the cloud services because none of them has the full information

required to manage security and each one has a different perspective; Multi-tenancy requires

maintaining different security profiles for each tenant on the same service instance; No Security

SLA is available that can be used to maintain agreements related to cloud assets security; The

existing standards such as ISO27000 and FISMA do not map well to the cloud model because

these standards consider the SMP from the platform/asset owner not from a Service Provider

perspective.

We have also highlighted a set of Key requirements that need to be satisfied by an

information security management system targeting the cloud computing model. This includes:

Enable cloud consumers to specify their security requirements on the cloud hosted assets and

the underlying cloud platform; Enable cloud consumers to monitor their assets security status

and the underlying platform security status as well; Support multi-tenancy where different

tenants can maintain their SMP with strong isolation of data; Aligned with on one of the

existing security management standards that are already adhered by the cloud consumers and

cloud providers.

Two new community projects are trying to tackle the cloud consumers trust problem by

introducing a list of best practices and checklists that could help cloud providers or cloud

consumers such as CSA - GRC project [222], or by aligning existing security standards to the

cloud model such as NIST FedRAMP [224]. The focus of both projects is to obtain cloud

consumers trust by assessing and authorizing the cloud platforms. In the FedRAMP project, a

cloud provider claims supported security level. A certifying authority, certified by the

FedRAMP providers - NIST, audits the cloud provider claimed security level. Each cloud

consumer specifies their expected security level. The certifying authority matches cloud

consumers’ requirements and providers’ capabilities and assures it. However, this proposed

solution by FedRAMP project lacks customizability of the platform-provided security from the

cloud consumer perspective – i.e. it does assume that the cloud consumers will use the security

provided by the cloud platform provider as it is. Moreover, adaptation of the provided security

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 89

is not possible. This also limits the Return of Investment (ROI) of the cloud providers as they

become limited to certain security level assessed by the certifying authority. Finally, the

proposed security model by this project assumes that the cloud provider is the service provider

(like in Amazon AWS or Salesforce.com). However, this is not always the case in cloud

computing platforms.

In the Security Registry project introduced by Cloud Security Alliance (CSA), a list of

security controls to be operated by a cloud provider is introduced, and a checklist to guide

consumers assessing a cloud platform security before adopting the platform. However, such

assessment and awareness do not mean to have a real operating security. Neither loss-of-control

nor lack-of-trust problems have been mitigated. These projects lack the consumers’ involvement

in specifying their security requirements and managing their SMP. The NIST project fits better

with cloud providers who deliver their own services only. This is because they need to have a

deep understanding of the cloud hosted services to be secured.

To address these shortcomings we introduce a novel approach that tackles both the loss-of-

control and lack-of-trust problems by enabling cloud consumers to extend their security

management process (SMP) to cover cloud hosted assets. Our approach introduces a new cloud

security management framework based on aligning the NIST-FISMA standard [225], as one of

the main security management standards, to fit with the cloud architectural model. The

information required to put the NIST standard into effect is not possessed by one party. Thus we

improve collaboration among the key cloud stakeholders to share such required information.

Getting cloud consumers involved in every step of the SMP of their assets mitigates claims of

losing trust and control. Our approach also mitigates the loss of control claimed by the cloud

providers for the hosted services that are developed by other parties. Being based on a security

management standard our approach enables both parties to get or maintain their security

certifications. Moreover, this helps in assuring that we can cover the majority of the activities

done during the security management process. Our approach helps stakeholders to work

together to address the following issues:

– What are the security requirements needed to protect a cloud hosted service given that the

service is used by different tenants at the same time?

– What are the appropriate security controls that mitigate the service adoption risks and who

has the authority to select such controls?

– Are the selected controls available on the cloud platform or we will/can use third party

controls?

– What are the security metrics required to measure the security status of our cloud-hosted

services?

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 90

To validate our proposed alignment, we developed a prototype of our collaboration-based

cloud security management approach and deployed it on a cloud platform hosting a SaaS

application (Galactic ERP service). We evaluated the approach by securing the ERP service

assuming that the cloud platform has multiple tenants sharing the same cloud application. Each

tenant has their own security requirements and security management process.

`

Figure 5-1. Information security management system phases

5.2 Rethinking In Security Management

Information security management systems (ISMS) are defined in ISO27000 as [5] “systems that

provide a model for establishing, implementing, operating, monitoring, reviewing, maintaining

and improving the protection of information assets.”. From analyzing both ISO27000 and

NIST-FISMA standards, we define a security management system to have three key phases:

defining security, enforcing security, and monitoring and improving security as shown in

Figure 5-1. First, Defining Security Requirements: this phase covers tasks/efforts required to:

identify security goals/objectives that the ISMS should satisfy and deliver, conducting risk

analysis and assessment to identify existing risks within the system scope, and detailing

objectives/risks into detailed security requirements and security policies. Second, Enforcing

Security Requirements: this phase covers efforts required to: identify security controls to be

used, and implementing and configuring such controls based on the specified security

requirements. Third, Monitoring and Improving Security: this phase includes: monitoring the

current security status of the implemented security controls, analyzing the measured security

status to identify existing security issues, and maintaining and improving the current security

controls. In this research project we addressed most of the tasks in these three phases with

approaches that help facilitating and automating as much as possible and needed. Our holistic

approach is based on our refined model of the security management process (define, enforce,

monitor and improve) shown in the above figure.

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 91

Table 5-1. Alignment of NIST-FISMA standard with the cloud computing model

Phase Task CP SP CC Input Output

Security

categorization

Categorize

security impact

(SC)

Informed Informed Responsible
Business

objectives
Security Impact Level

Security controls

selection

Register security

controls
Responsible Responsible Responsible

Control

Datasheet
Security controls registry

Generate

security controls

baseline

Responsible

(Automated by the framework)

Service SC +

Controls

registry

Controls baseline +

matching status

Assess service

risks
Responsible

(automated in chapter 8)

Service +

platform arch.

+CVE + CWE

Service Vulns + Threats +

Risks

Tailor security

baseline

Responsible

(revised in chapter 6)

Baseline + Risk

assessment
Security mgmt plan (SLA)

Controls

implementation

Implement

security controls

Responsible

(planned to be automated)

Security mgmt

plan
Updated Security plan

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 92

Security

assessment

Define security

metrics
Responsible

Security

objective
Security assessment plan

Assess security

status

Rsponsible

(Automated by the framework)

Security

assessment plan
assessment report

Service

authorization

Authorize

service Informed Informed Responsible

Security plan +

assessment

report

Service authorization

document

Security

monitoring

Monitor security

status

Responsible

(Automated by the framework and revised in

chapter 9)

Security

assessment plan
Security status report

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 93

5.3 Aligning NIST-FISMA with Cloud Computing

The Federal Information Security Management Act (FISMA) standard [1] defines a framework

for managing the security of information and information systems that support the operations of

the agencies. The framework has six main phases including: service security categorization,

security controls selection, security controls implementation, security controls assessment,

service authorization, and security monitoring. In order to align this standard with the cloud

computing model, we have studied each phase, activity, and task to understand the main inputs,

processing, and outcomes. Then we studied the cloud computing responsibility matrix – i.e. who

can or is allowed to do what. Based on these two inputs we restructured the NIST-FISMA

standard responsibility matrix to make sure that the relevant stakeholder (who owns the

information required to fulfill a given task) is allocated as the main responsible for such task

while getting other stakeholders informed about the activities being done. Table 5-1 and

Figure 5-2 summarize for each phase in the security management standard, how we aligned

FISMA to fit with the cloud model in terms of reorganizing the responsibility matrix among

cloud stakeholders based on who knows what.

5.3.1 Service Security Categorization

Each service (SJ) on the cloud platform could be used by different tenants. Each service tenant

(Ti) owns their information only in the shared service (SJ). The tenant is the only stakeholder

who can decide/change the impact of a possible loss of confidentiality, integrity and availability

on their business objectives. Each tenant may assign different impact levels (Low, Medium, or

High) to possible security breaches on their information. In FedRAMP [4], the cloud provider

(CP) specifies the security categorization of services delivered on their cloud platform.

However, this is not sufficient as the CP does not have sufficient knowledge about the impact of

information security breaches on their tenants’ business objectives. Our approach enables cloud

consumers (CCs) to be involved in specifying the security categorization of their information.

Moreover, our approach enables both scenarios where we can consider the security

categorization (SC) per tenant (tenant-oriented security -as in Equation 1) or per service

(service-oriented security - as in Equation 2).

In the service-oriented security model, a cloud service can reflect one set of security

requirements/controls per time, the security categorization of the service is calculated as the

maximum of all tenants’ categorizations. On the other hand, the tenant-oriented security model

gets services to reflect each tenant security requirements as if no one else is using the service.

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 94

 SC (Ti) = [(Confidentiality, impact), (Integrity, impact), (Availability, impact)],

 Impact [Low, Medium, High] Eq. (1)

 SC (S j) = [(Confidentiality, Max (Ti (impact)), (Integrity, Max (Ti (impact)),

 (Availability, Max (Ti (impact))] Eq. (2)

Security

Categorization

S: CPE

R: CCs

Security Controls

Selection

S: CVE/CWE/CAPEC

R: All

Controls

Implementation

S: CCE

R: All

Security Monitoring

S: -

R: All

Service Authorization

S: -

R: CCs

Security Assessment

S: -

R: CCs & CPs

R: Responsible Stakeholder S: Security Automation Standard

Figure 5-2. Alignment of NIST-FISMA standard with the cloud model

5.3.2 Security Control Selection

The selection of security controls to be implemented in protecting tenants’ assets has two steps:

First, baseline security controls selection. The FISMA standard provides a catalogue of security

control templates categorized into three baselines (low, medium and high). Based on the

security categorization of the service, specified by service tenants in the first step, the platform

should automatically select the initial baseline of controls that are expected to provide the

required level of security specified by tenants. Second, tailoring of the security controls

baseline. Stakeholders should tailor the security controls baseline identified in the first step to

cover the service possible vulnerabilities, threats, risks and the other environmental factors as

discussed below.

5.3.2.1 Service Security Risk Assessment

In this step, stakeholders should conduct security risk assessment to identify service

vulnerabilities, threats, attacks, and risks that may require special security handling – i.e.

customization of the security controls’ baseline that have been selected in step (a) according to

service security categorization. This includes:

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 95

– Vulnerabilities Identification: This step requires being aware of the service and the

operational environment architecture. We consider the involvement of the service provider

(SP) who knows the internal structure of the provided service and the CP who knows the

cloud platform architecture in order to fulfill this task. The main outcome of this step is a

list of security vulnerabilities that should be patched.

– Threats Identification: The possible threats, threat sources and capabilities on a given

service can be identified by collaboration among the SPs, CPs, and CCs. CCs are involved

as they have the knowledge about their assets’ value and could know who may be a source

of security breaches.

At the end of this phase, the cloud service stakeholders will have a list of threats, attacks, and

vulnerabilities that they should try to mitigate to prevent such possible security breaches. These

tasks will be automated in our platform as discussed in Chapter 8.

5.3.2.2 Security Controls Baseline Tailoring Process

Based on the risk assessment process, the selected security controls baseline can be tailored to

mitigate new risks and fit with the new environment conditions, as follows:

– Scoping of the Security Controls: In this step all stakeholders should be involved in

selecting security controls to be operated. This includes: (i) Identification of the common

security controls; the cloud stakeholders decide which security controls in the baseline they

plan to replace with a common security control (either provided by the CPs or by the CCs).

A common security control is a control that is shared among multiple services; (ii)

Identification of the critical and non-critical system components; the SPs and CCs should

define which components are critical to enforce security on it and which are non-critical

(may be because they are already in a trusted zone) so no possible security breaches; and

(iii) Identification of the technology and environment related security controls that are used

whenever required such as wireless network security controls.

– Compensating Security Controls: Whenever the stakeholders find that one or more of the

security controls in the tailored baseline do not fit with their environmental conditions or are

not available (may be cost wise), they may decide to replace such controls with another

compensating security control.

– Set Security Controls Parameters: The last step in the baseline tailoring process is the

security controls’ parameters configuration, such as minimum password length, maximum

number of unsuccessful logins, etc. This is done by collaboration between the CPs and CCs.

All these details are captured by cloud stakeholders in a model-based approach, as we

discuss in Chapter 6. The outcome of this phase is a security management plan that

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 96

documents service security categorization, risks, vulnerabilities, and the tailored security

controls baseline with the specified security configurations.

5.3.3 Security Controls Implementation

This phase focuses on implementation of the security controls that have been tailored in the

previous step. In the original NIST-FISMA standard, this is the sole responsibility of the service

owner. Thus this need to be aligned with the new responsibilities we have got in the cloud

model. The security plan for each tenant describes the security controls to be implemented by

each involved stakeholder based on the security control category (common for all services or

service-specific control). The common security controls implementation is the responsibility of

the common control provider who is most probably be the CPs. Tenant specific security controls

are the responsibility of the service tenants. The service-specific security controls

implementation is the responsibility of the SPs. Each stakeholder must document the security

controls implementation and configuration details in the security management plan.

5.3.4 Security Controls Assessment

Security controls assessment is required to make sure that the security controls implemented are

functioning properly and meet the security objectives specified. This step includes developing a

security assessment plan that defines security controls to be assessed, assessment methods to be

used, and security metrics to be used with each security control. The results of the assessment

process are documented in a security assessment report. This step may result in going back to

the previous steps in case of deficiency in the controls implemented or continuing with the next

steps. The security controls assessment is a shared responsibility of all cloud stakeholders. Each

one should develop the metrics they would like to use in assessing the security status of their

cloud assets. The framework tries to automate the assessment process by analysing the log files

of the security controls operated.

5.3.5 Service Authorization

This step represents the formal acceptance of the stakeholders on the identified risks involved in

the adoption of the service and the agreed on mitigations. We consider the security plan and

security assessment plan to be used as the security SLA among the involved parties. These plans

reflect mostly all the information required to assess the security properties of a given cloud

service and responsibility of each involved stakeholder towards other stakeholders.

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 97

5.3.6 Monitoring Security Controls Effectiveness

The CPs should provide security monitoring tools to help the CCs in monitoring the security

status of their assets. The monitoring tools should have the capability to capture the required

security metrics and report the collected measures in a security status report either event-based

or periodic-based. The results of the monitoring process may require re-entering the SMP to

handle new unanticipated changes. For now we consider our log-based monitoring component

as a tool to help addressing this task. Later in chapter 9, we are going to discuss our refined and

automated security monitoring approach.

5.4 Security Automation

After aligning the FISMA standard with the cloud model we adopted a set of existing security

standards to help improving the framework automation and its integration with the existing

security capabilities, as shown in Figure 5-3 and Table 5-2. These security standards include:

1..*

0..*

Vuln. product

h
as

 v
u

ln
s.0..*

C
o
n
fi

g
.
P

ro
d

has configuration

0..*

1..*

related attacks

use weak.

1..*

0..*

re
la

te
d

 w
ea

k
n

es
s re

la
te

d
 v

u
ln

s.

(CVE)
Vulnerability

(CWE)
Weakness

(CAPEC)
Attack

(CPE)
Product/Service

(CCE)
Control Configuration

0..*

Figure 5-3. Adopted security automation standards and relationships

Table 5-2. Formats and examples of the adopted security standards

Standard Format Example

CPE cpe:/ [part] : [vendor] : [product] :

[version] : [update] : [edition] : [language]

cpe:/a:SWINSOFT: Galactic:1.0:

update1:pro:en-us

CVE CVE-Year-SerialNumber CVE-2010-0249

CWE CWE-SerialNumber CWE-441

CAPEC CAPEC-SerialNumber CAPEC-113

CCE CCE-softwareID-SerialNumber CCE-17743-6

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 98

– Common Platform Enumeration (CPE) [226]: The CPE provides a structured naming

schema for IT systems including hardware, operating systems and applications. We use the

CPE as the naming convention of the cloud platform components and services. This helps in

sharing the same service name with other cloud platforms and with the existing

vulnerabilities databases – e.g. The National Vulnerability Database - NVD [227]. The

format of the CPE consists of constant “CPE”, part which may be (application, OS,

network), software vendor, product name, used version, service pack, edition, and language.

– Common Weakness Enumeration (CWE) and Common Attack Pattern Enumeration and

Classification (CAPEC) [226]: The CWE provides a catalogue of the community recognized

software weaknesses. The CAPEC provides a catalogue of the common attack patterns. Each

attack pattern provides a description of the attack scenario, likelihood, knowledge required

and possible mitigations. We use the CWE and CAPEC as a reference for the cloud

stakeholders during the vulnerabilities identification phase.

– Common Vulnerability and Exposure (CVE) [226]: The CVE provides a dictionary of the

common vulnerabilities with a reference to the set of the vulnerable products (encoded in the

CPE). It also offers vulnerability scoring that reflects the severity of the vulnerability. We

use the CVE to retrieve the know vulnerabilities discovered in the service or the platform

under investigation. Thus, in this version of our implementation we depend on security

experts to identify and report any possible vulnerability in the National Vulnerability

Database (NVD) using CVE format. In the next chapters we will introduce our new online

security analysis approach that completely automates this task. This will also help in case of

new vulnerabilities that are not reported in the NVD yet or in case of using cloud services

that do not have CPE ID to be used in retrieving relevant vulnerabilities.

– Common Configuration Enumeration (CCE) [226]: The CCE provides a structured and

unique naming to systems’ configuration statements so that systems can communicate and

understand such configurations. We use the CCE in the security controls implementation

phase. Instead of configuring security controls manually, the administrators can assign

values to security control templates’ parameters. Our framework uses these configurations in

managing the selected security controls. This point is out of scope for this project as we

discussed previously. We are not concerned with how to automate the security controls’

configuration because many platforms and frameworks do exist that help in this.

Figure 5-3 shows the relationships between these security automation standards. This helps

in understanding why we selected such standards and where they actually fit. At the center of

the model we have the CPE. This CPE is referenced in retrieving vulnerabilities from the CVE

and controls’ configurations in CCE. The CVE is linked to the common weaknesses in the

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 99

CWE. The attacks recorded in the CAPEC repository is based on exploiting known weakness

recorded in CWE repository.

5.5 Cloud Security Framework Architecture

Our initial framework architecture consists of three main layers: a management layer, an

enforcement layer, and a feedback layer. These layers, shown in Figure 5-4, represent the

realization of the ISMS phases we described in previous sections.

Configurations

Management Layer

Security Metrics

Manager

Security

Categorization

Collaboration Risk

Assessment

Security Controls

Manager

Multi-Tenant

Security Plan

Multi-Tenant

Status Report

Enforcement Layer

Planning Implementation

Feedback Layer

Monitoring Analysis

Security Management

Repository

Security

Controls Logs

Security

Controls

Cloud

Platform

Security Status Security Requirements

Measurements

Figure 5-4. Our collaboration-based cloud security management architecture

- Management Layer: This layer is responsible for capturing security specifications of the CPs,

SPs, and CCs. It consists of: (a) The security categorization service used by the hosted

services’ tenants to specify security categorization of their information maintained by the

cloud services; (b) The collaborative risk assessment service where all the cloud platform

stakeholders participate in the risk assessment process with the knowledge they possess; (c)

The security controls manager service is used to register security controls, their mappings to

the FISMA security controls’ templates, and their log files structure and locations; (d) The

security metrics manager service is used by the cloud stakeholders to register security

metrics they need to measure about the platform security; (e) The multi-tenant security plan

(SLA) viewer service is used to reflect the tenant security agreement. This shows the tenant-

service security categorization, vulnerabilities, threats, risks, the selected mitigation controls

and the required metrics; (f) The multi-tenant security status viewer which reflects the

current values of the security metrics and their trends.

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 100

- Enforcement Layer: This layer is responsible for security planning and security controls

selection based on the identified risks. The selected security controls are documented in the

security management plan. The implementation service then uses this plan for maintaining

security control configuration parameters and the mapping of such parameters to the

corresponding security controls. This service does not address the integration of security

controls with the target cloud services. Later in Chapter 6, we will introduce our security

integration approach.

- Feedback Layer: This layer has two key services: the monitoring service which is

responsible for collecting measures defined in the security metrics manager and storing it in

the security management repository to be used by the analysis service and by the multi-

tenant security status reporting service. The analysis service analyses the collected measures

to make sure that the system is operating within the defined boundaries for each metric. If

there is a deviation from the predefined limits, the analysis service will give alerts to update

the current configurations. This service only supports log-based metrics. Moreover, there is

no support for possible mitigation actions. The reported measurements can only visualized

for the stakeholders in regular security status reports.

5.6 Usage Example

To demonstrate the capabilities of our cloud computing security framework and our prototype

tool implementing this framework we revisit the motivating example from Chapter 1, a cloud

based ERP system “Galactic” used by Swinburne and Auckland (CCs), developed by SwinSoft

(SP), and deployed on the GreenCloud (CP). The two tenants using the Galactic ERP services,

Swinburne and Auckland, are still concerned about their assets’ security on the cloud. Both

have their own SMP and their own security requirements to be enforced on their cloud assets.

First, the service provider registers the service on the cloud computing platform service

registry. This enables tenants to search and register to use the service. Then, each registered

tenant will get permission to access the security management portal. Each tenant will be

required to define the security categorization of the service from their perspective. Next, cloud

stakeholders should start registering their security controls that they would like to use. This

requires mapping such controls to the NIST-FISMA standard template. After this, cloud

stakeholders should collaborate to identify the possible threats and existing security

vulnerabilities. This should guide the security controls’ tailoring process. The platform helps

stakeholders to find out which security controls are missing – i.e. exist in the standard as must

have, and do not have realization security control specified by any of the service stakeholders.

Finally, service tenants define the security metrics they would like to monitor or follow up. The

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 101

platform keeps track of these metrics and analyzes the security controls’ log files on regular

basis to extract the specified information usually in terms of aggregation functions on monitored

or logged data. Below we show how the cloud computing-aligned security management process

works supported with snapshots from our security management platform.

5.6.1 Registering Cloud Services

The first step in our example is to register Galactic ERP service in the cloud platform service

repository so that it can be discovered/used by the CCs. This step could be done either by

SwinSoft or by the GreenCloud. In this step we use the CPE standard name as the service ID, as

shown in Figure 5-5. To register a service, first we search by service name or service CPE ID in

the set of registered services. If found, just select it from the found matches to register the

service. Otherwise, insert service details as a new record to the service repository. Once the

service was registered, cloud consumers can register to use it. A new tenant, Auckland, can

register their interest in using the Galactic service. Then Auckland will be granted a permission

to manage the security of his information maintained by Galactic service. The same is done by

Swinburne, as shown in Figure 5-6. Now Auckland and Swinburne can use our platform to

manage the security of their assets.

Figure 5-5. SwinSoft is registering their Galactic ERP service with GreenCloud

Figure 5-6. Registering a service by Swinburne (top) and Auckland (bottom)

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 102

Figure 5-7. Security controls registration

Figure 5-8. Securitycontrolsbaselinewithcontrols’status

M
as

te
r

re
co

rd

D
et

ai
l

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 103

5.6.2 Service Security Categorization

The Swinburne security administrator specifies the impact level of losing the confidentiality,

integrity, and availability of their data maintained by the Galactic ERP service, as shown in

Figure 5-6(top). The same should be done by Auckland security administrator, as shown in

Figure 5-6(bottom). Whenever a new tenant registers their interest in a service and defines their

security categorization of data processed by the service (or any of the existing tenants update his

security categorization), the platform updates the overall service security categorization with the

maximum value as per equation1, discussed in the process alignment section.

5.6.3 Security Controls Selection

GreenCloud as a cloud provider already publishes their security controls database. Swinburne

and Auckland can register their own security controls using the security controls manager

service. Based on the security categorization step, our framework generates the security

controls’ templates baseline. Then stakeholders should start registering their security controls

and their features and link such features to security controls’ baseline as shown in Figure 5-7.

The registration of a security control should specify master data including control name,

category, control family, location and schema of the log file. Moreover, each registration should

map security control features to the NIST-FISMA standard security control template (as in the

detail section of Figure 5-7). Our prototype helps in identifying security controls’ templates that

are: satisfied (matches one of the registered security controls), missing (does not match

registered security controls), or duplicate (more than one matched control), as shown in

Figure 5-8. This figure shows that in the access control family, the control number (14) which is

“Permitted Actions without Identification or Authentication”, enhancement number (1) which is

“Permitted Actions Should Be Limited to The Limit That Service Business Needs” is missing. So

that stakeholders can highlight this problem and work on it or simply accept this problem. The

same with the security control (17) which is “Remote Access” has got duplicated security

controls defined that satisfy the same template from the baseline which by analysis turned out to

be a mistake in the registration of security control done by a stakeholder. This helps

stakeholders in revising the status of the security controls to be operated on their services.

5.6.3.1 Service Risk Assessment

Galactic vulnerabilities are identified for the first time by SwinSoft with the help of GreenCloud

who knows the architecture of the service and the hosting cloud platform. Both SwinSoft and

GreenCloud have the responsibility to maintain the service vulnerabilities list up to date. The

framework enables to synchronize the service vulnerabilities with the community vulnerabilities

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 104

database – NVD, as shown in Figure 5-9. This figure shows the list of found vulnerabilities.

Users can click on “Use known vulnerabilities in NVD” to synchronize the list with the least

recently reported vulnerabilities. Stakeholders can link on CVE-ID to navigate to the full

detailed version of the vulnerability on the NVD website. Each cloud consumer – Swinburne

and Auckland – should review the defined threats and risks on Galactic and append any missing

threats. The framework integrates with the CWE and CAPEC databases to help stakeholders in

identifying possible vulnerabilities whenever the service does not have vulnerabilities recorded

in the NVD.

Figure 5-9. Service reported vulnerabilities - integrated with NVD

5.6.3.2 Security Controls Baseline Tailoring

The service tenants decide which security controls in the baseline they plan to replace with

common security controls provided by the cloud provider or the service tenants, as shown in

Figure 5-8. Stakeholders can edit the registered security control mapping to another control or

they can delete any mapping all together. SwinSoft, Auckland, and Swinburne should also

select the critical service components that must be secured. Swinburne and Auckland define

their security controls’ parameter configurations. The security controls provided by the cloud

platform can only be reviewed.

The final outcome of this step is a security management plan that documents the service

security categorization (either from the tenant perspective or from the service perspective),

found vulnerabilities, expected threats, risks, and the tailored security controls to mitigate the

identified possible security breaches, as shown in Figure 5-10.

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 105

Figure 5-10. Examples of Auckland security management plan

5.6.4 Security Controls Implementation and Assessment

Each stakeholder implements the security controls under their responsibility as stated in the

security management plan and the security controls configurations as specified in the previous

step. In case of Galactic ERP, Swinburne should implement and configure their Swin-

Authenticator, Swin-Antivirus, and Swin-IPS security controls. The same should be done by

Auckland using their security controls. The controls to be assessed and the objectives of the

assessment are defined by GreenCloud, Auckland and Swinburne and documented in the tenant

security assessment plan. The execution of such plan, the assessment process, should be

conducted by a third party. Our framework helps in assessing security controls status when

using security controls that integrate with our framework (the framework can understand and

read their log files/database structure). The outcome of the assessment phase is a security

assessment report. An example of the metrics to be used in assessing service security is shown

in Figure 5-10 – e.g. in the last section “login activity” metric.

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 106

5.6.5 Service Authorization

Swinburne and Auckland give their formal acceptance of the security plan, assessment plan, and

the assessment reports. This acceptance represents the authorization decision to use Galactic by

the cloud consumers.

Figure 5-11. Sample of Swinburne security status report

5.6.6 Monitoring Security Controls Effectiveness

The framework collects the defined security metrics as per the assessment plan of each tenant

and generates regular security status reports to the intended cloud stakeholders. A report shows

the metrics status and trends, as shown in Figure 5-11. This report shows that the number of

login activities is increasing which may be a reason for normal workload or malicious attacker

trying to break the authentication service. The unsuccessful logins metric helps in deciding

which scenario may be most likely to happen. In this case the unsuccessful logins metric is

increasing as well which means that someone is trying to login to the system and does not have

a correct password. The procedure we went through in the example above should be applied not

only on cloud services but also on the cloud platform itself. In this case the cloud provider uses

our framework to manage the platform security from a consumer perspective.

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 107

5.7 Discussion

Our approach provides a security management process; a set of security automation standards to

help in automating the security management process; integration with known threats,

vulnerabilities, and weakness databases; and a log-based security metrics monitoring and

analysis tool. Our approach is based on joint-collaboration between all stakeholders, allowing

different stakeholders to develop a mutually-satisfying security model. It addresses the multi-

tenancy nature of shared cloud-hosted services when tenants have different security

requirements and different SMPs. This is achieved by maintaining and managing multiple

security profiles with multiple security controls on the same service. Such controls are delivered

by different security vendors. This enables managing traceability between controls, the

identified risks and identifies what are the risks still not mitigated.

Based on our proposed security management model, each cloud service has two possible

scenarios: Either to let each tenant to go through the whole SMP as if she is the only user of the

service (tenant-based SMP) or to accumulate all tenants’ security requirements on a given

service and maintain the security management process on the service level (service-based). The

later scenario is more straight forward because cloud stakeholders collaborate together to secure

the cloud platform and their services with one set of security requirements. The former scenario

gives the service tenants more control in securing their cloud hosted asset but it has the

following problems: (i) the current multi-tenancy feature delivered by the cloud services enables

tenants to customize service functionality but it does not enable tenants to customize service

security capabilities; (ii) the underlying cloud platform infrastructure, such as OS, does not

support for multi-tenancy, so we cannot install multiple anti-viruses or anti-malware systems on

the same OS while being able to configure each one to monitor specific memory process for a

certain user. One solution may be to use a VM for each tenant as in [21]. This work around may

not be applicable if the service is not designed for individual instances usage or if the cloud

platform does not support VM technology.

Whenever the service tenants are not interested in following the security standards or require

a light-weight version of our approach, they can just specify their service security categorization

level. Based on this, the rest of the other activities will be completed using the default settings.

Another variation of our framework is to enable cloud providers to deliver predefined security

profiles to be applied on cloud services – i.e. a cloud service X is available with three different

security profiles (low, medium, high). Thus, service tenants can select the suitable profile based

on their security needs.

The key limitations of this version of the platform are: (i) lack of automated integration

capability of security controls specified with the target cloud services (currently need to be done

Chapter 5: Aligning Security Management Standards with Cloud Computing Model

Page 108

manually). This issue is addressed in chapter (6) by our model-driven security engineering at

runtime approach; (ii) although the platform do support service-level and tenant-level security,

the current implementation of cloud applications (SaaS applications) only supports service-level

security. This issue is addressed in chapter (6) as well; (iii) the service security analysis is

currently done manually or using different existing tools. We introduce an automated, online,

signature-based security analysis approach that can cover wide-range of attacks and extensible

enough to address new attacks without a need for patches or customizations. This approach is

introduced in chapter (8); (iv) The provided monitoring capabilities is based on security

controls’ log files. This leads to lagging metrics that need to wait until the situation occurs. We

address this problem with a unified monitoring platform that is easy to extend to capture

different types of security metrics. This issue is address in chapter (9).

5.8 Chapter Summary

In this chapter we introduced a novel alignment of the well-known NIST-FISMA security

management standard to fit with the cloud computing model. Based on our alignment, we

developed a collaboration-based security management framework for the cloud computing

model. We utilize the existing security automation efforts such as CPE, CWE, CVE and

CAPEC to facilitate the cloud services security management process (SMP). We have validated

our framework by using it to model and secure a multi-tenant SaaS application with two

different tenants. The framework can be used by cloud providers to manage their cloud

platforms security, by cloud consumers to manage their cloud-hosted assets security, and as a

security-as-a-service tool to help cloud consumers in outsourcing their internal SMP for hosting

on cloud platforms. In the next chapters, we address the limitations (discussed above) of the

solution we introduced in this chapter taking into consideration the multi-tenancy, automation,

and extensibility of the task as much as possible.

Page 109

 Chapter 6

Cloud Applications Security Engineering

In the last chapter we introduced our proposed alignment, along with the prototype platform, of

the NIST-FISMA standard with the cloud computing model. In this chapter, we address and

mitigate two of the key limitations of this approach which are the lack of automated security

controls integration, and lack of multi-tenancy support – i.e. getting cloud services to reflect

different sets of security requirements for different tenants at runtime. We introduce our new

security engineering approach to help in automating the integration of tenants’ security needs

with cloud services at runtime without getting software developers involved in realizing suh

customizations. Our approach is based on modeling service description details (by the service

provider) and security specification details (by service tenants). These models are then used to

integrate and manage service security from the different tenants’ perspective. This chapter is

organised as follows. In Section 1 we give an overview of the problem and research questions

we are trying to address along with a summary of the existing efforts. In Section 2 we

summarize the key challenges and requirements that must be satisfied by a multi-tenant security

engineering approach. Section 3 provides details of our model-driven security engineering at

runtime approach (MDSE@R). Section 4 describes a usage example of our MDSE@R

framework and toolset. Section 5 describes our platform architecture and implementation

details. Section 6 presents evaluation results of MDSE@R. Section 7 discusses the key strengths

and weaknesses of MDSE@R.

6.1 Introduction

Supporting multi-tenancy places more requirements on service providers. They now have to

develop or reengineer their systems to support multi-tenancy and to ensure tenants' data

isolation. Multi-tenancy also increases service tenants' concerns about the security of their

outsourced, cloud-hosted assets that are now shared with other tenants – who may be either

competitors or malicious users. In addition, the range of actual SaaS tenants usually becomes

known only after applications have been delivered and thus the range of service tenants is

highly dynamic. Tenants may register and unregister from the service at runtime. Service

tenants often have different security requirements that evolve at runtime based on their current

business objectives and security risks. Existing application security models poorly fit with this

dynamic, run-time evolving model as they focus mainly on design time security engineering.

 Chapter 6: Cloud Applications Security Engineering

Page 110

Service providers are in bad need of a new security engineering approach that addresses these

challenges.

Existing traditional security engineering approaches, such as KAoS [16, 228], Secure i*

[126], and Secure TROPOS [128, 130] focus on identifying, capturing, and modelling security

objectives and requirements at requirements elicitation time. Others including UMLsec [14,

134], secureUML [15] focus on mapping these security requirements onto application design

entities (classes, methods, interactions) at design time. These security engineering approaches

typically result in: applications with fixed security as it is based on one set of predefined

security requirements; built-in security as it is usually integrated with system design which

means that security related code will be mixed with system code; limited integration with third

party security controls because they most of the time are not considered at design time; and very

limited flexibility in terms of adaptation and integration with the security management systems

operating in the software target operational environment because such environments are usually

not known at design time. Moreover, most of such approaches do not support changing

application security at runtime to address new unanticipated security risks or new tenant

security needs. From the cloud computing and multi-tenancy perspective, these approaches

could help in solving the tenants’ data isolation problem (i.e. how to prevent tenants from

accessing other tenants’ data). However, such efforts are not extensible to support different

tenants’ security engineering – i.e. how to capture and enforce different tenants’ security

requirements at runtime.

Adaptive security engineering has been investigated in [19, 146, 229]. However most focus

on low-level details or limited to specific security properties – e.g. adaptive architecture-level

access control mechanism [20]. These efforts require preparing applications at design time to

support runtime adaptation. Thus, these efforts cannot be readily adapted to deliver multi-

tenant SaaS applications’ security engineering. In addition, their actual run-time re-

configuration capabilities are still limited.

New research efforts in securing multi-tenant SaaS applications have focused on:

(re)engineering multi-tenant SaaS applications to extend their security capabilities – e.g.

authentication, authorization, and encryption [22, 153, 230, 231]; maintaining isolation

between different tenants’ data [155, 223, 232]; and developing security controls and

architectures that deliver SaaS application security (e.g. access control) taking into account

multi-tenancy [26, 233-235]. Most of those efforts depend on or still lead to built-in, or

predefined, security architectures for SaaS applications. Thus, tackling the loss of control

concerns raised by cloud consumers - i.e. capturing and enforcing tenants' security requirements

 Chapter 6: Cloud Applications Security Engineering

Page 111

and integration of SaaS applications with tenants’ security infrastructure – have not been

addressed before.

Two key research gaps in the multi-tenant applications’ security engineering area are lack of

adaptable security support and lack of multi-tenant security support – i.e. to support capturing

and enforcing different tenants’ security requirements at runtime without a need to conduct

application or service maintenance. We capture these gaps in the following research questions

that we address by our new MDSE@R approach explained in this chapter:

– How can we effectively capture important details about different services at different levels

of abstraction? And how to make it available for tenants to add their security requirements?

– How can we capture different tenants’ security requirements for different service entities at

different levels of abstraction?

– How can we enforce these different sets of security requirements for different tenants’ on

any arbitrary application or service entity at runtime?

– How can we verify that critical entities correctly enforce specified security needs?

– How can all of these tasks be achieved dynamically and at runtime without a need for

frequent service code customization?

In this chapter, we introduce our novel approach called MDSE@R (Model-Driven Security

Engineering at Runtime) for multi-tenant cloud-based applications. MDSE@R supports

capturing, enforcing, and verifying different tenants’ and service providers’ security

requirements at runtime without a need to modify or customize the underlying application or

service – i.e. it works with both existing and new SaaS applications. Our approach is based on

enabling cloud application security engineering to be conducted at runtime instead of at design

time. This is facilitated by externalizing security from the target applications and services. Thus

both application and security can evolve at runtime. On the other hand, we automate the

integration of security requirements and controls within any service entity that is marked as

security critical. The list of critical service entities emerges at runtime based on tenants’ current

security risks and security requirements.

When using MDSE@R, service providers have to deliver a service description model (SDM)

as a part of each application or service delivery package. The SDM is a mega-model (a model

that contains a set of models and a set of relations between these models [236]) that contains

details of the application or service features, architecture, classes, etc. Furthermore, they deliver

a security specification model (SSM). The SSM is a mega-model that contains details of the

security they already deliver and enforce on application entities (features, components, etc.).

Security controls are not built into the developed application. They rather are implemented and

deployed externally and weaved with the secured application and service entities at runtime.

 Chapter 6: Cloud Applications Security Engineering

Page 112

Thus such controls can be modified, updated, or disabled at runtime without modifying the

target application. Moreover, different sets of these security controls can be enforced at runtime

by different tenants and on different services. For applications with built-in security we have

introduced a quick security retrofitting approach discussed in Chapter 7.

During the provisioning of a new tenant, the service provider either creates an instance of the

cloud application or configures a shared instance to disable or enable certain features for the

new tenant. They also have to create a copy of the service description and service security

models for the new tenant. Tenant service description model (TSDM) is a copy of the SDM

updated with tenant procured features. Tenants can specify their security details using their copy

of the SSM. This copy is called the tenant security specification model (TSSM). Tenants can

add new security controls or disable/replace/modify the existing security controls (these

modifications are also modelled at runtime). These updates are automatically reflected on the

target application or service using MDSE@R. The service provider can specify certain security

controls as mandatory. This means that such controls cannot be disabled or modified by the

application or service tenants. This is very important in enforcing, for example, security

isolation controls. Getting tenants involved in managing their assets’ security helps in reducing

the lack-of-trust and mitigating the loss-of-control problem. We have validated our approach on

a set of significant open source benchmark applications. We have conducted a security adaption

evaluation, performance evaluation and user evaluation of our approach and prototype platform.

These are described later in this chapter.

6.2 Key Requirements and Challenges

The analysis of the motivating scenario in Chapter 1 and details of the existing efforts discussed

above identifies the following challenges: (i) Security requirements differ from one tenant to

another; Each tenant's security requirements may change over time based on current operational

environment security and business objectives; (ii) Overall application security should support

integration with each tenant's security controls in order to achieve coherent security solutions;

and (iii) New security vulnerabilities may be discovered in a SaaS application at any point in

time. These vulnerabilities need to be patched as soon as possible to prevent attacks that can

exploit such vulnerabilities.

Using traditional security engineering techniques would require the application provider to

conduct a lot of application maintenance to deliver application patches that block vulnerabilities

and adapt the application to every new customer’s needs. Multiple versions of the application,

one for each tenant and with substantial differing security enforcement embedded in the

application, would have to be maintained.

 Chapter 6: Cloud Applications Security Engineering

Page 113

A new security engineering approach that addresses these challenges is needed. Such a

security engineering approach should: (i) Enable each tenant to specify and enforce their own

security requirements based on their current security needs; (ii) Security should be applied to

any arbitrary application or service entity. No predefined application or service security

interception points should be specified at design time. This means that it should support

interception of calls to any service method once declared as critical; (iii) Security specification

should be supported at different levels of abstraction based on the customers’ experience, scale

and engineers’ capabilities; and (iv) Integration of security with application or service entities

should be supported at different levels of granularity, from the application as one unit to a

specific application method. Integration should be supported with third-party security controls.

This should support the application or service and security specifications to be reconfigured at

both design time and runtime.

6.3 MDSE@R

MDSE@R approach enables service tenants to be involved in securing their cloud hosted assets.

This helps in mitigating the loss-of-control problem arises from the adoption of cloud services.

As a consequence of getting tenants involved, a single service instance must support capturing

and enforcing different sets of security requirements for different tenants as they become known

and as they evolve at runtime. We name this model "tenant-oriented security", compared to the

traditional model of “service-oriented security” where a service instance reflects only one set of

security controls captured by the service provider at design time. Tenant-oriented security may

require integrating cloud services with security controls deployed on or out of the cloud

platform. MDSE@R is based on two key concepts: externalizing security management and

enforcement tasks from the application or service to be secured while being able to wrap the

application or service and intercept calls to any arbitrary critical application or service entity at

runtime using dynamic weaving AOP; and Model-Driven Engineering (MDE), using Domain-

Specific Visual Language (DSVL) models to capture application or service security properties

at different levels of abstraction. Moreover, we automate the generation of security controls’

integration code rather than hand-coding of bespoke solutions.

Figure 6-1 shows the basic flow of MDSE@R to support multi-tenant security engineering.

Service providers develop a detailed service description model (SDM). Then, they develop a

security specification model (SSM) capturing all security details that they deliver in their cloud

services. Once a service tenant registers to use the service, they will get a copy of the service

SDM and SSM. Tenants can then use these models to manage their instances and develop their

 Chapter 6: Cloud Applications Security Engineering

Page 114

security needs. At the same time, service providers can use service SDM and SSM models to

update and manage service security.

Figure 6-1. Process flow of MDSE@R

Figure 6-2. Overview of MDSE@R approach

Figure 6-2 gives an overview of the MDSE@R approach to support multi-tenant security

engineering and tenants’ security management at runtime. After capturing application and

security models (steps 1 and 2), tenants application instances and their security details (steps 3

and 4) and mapping security details on system details, the MDSE@R platform realizes such

modelled changes using interceptors and dynamic aspect-oriented programming approach (steps

5, 6, 7, and 8) that injects security handlers into the target application entities (components,

classes, and methods) to be secured using tenants’ specified security controls as we discuss

below.

 Chapter 6: Cloud Applications Security Engineering

Page 115

6.3.1 Modeling Service and Security Details

In this phase, stakeholders from both the service providers and tenants develop different models

capturing details of the service, tenant instance, service security, and tenants' security.

6.3.1.1 Service Description Model (SDM)

A detailed service description model (SDM) is delivered by the service provider (a detailed

example is introduced in the usage example section) as a part of the service delivery package

which also contains service binaries and any other deployment packages. The SDM captures

various details of the target application or service including system features (we use a simplified

version of the UML use case diagram to capture system features), system architecture (using

UML component diagrams), system classes (using UML class diagrams), system behaviour

(using UML sequence diagrams), and system deployment (using UML deployment diagrams).

These models cover most of the perspectives that may be required in securing a given system.

These models are usually developed during system development stage. Not all these models are

mandatory. Cloud stakeholders may need to specify security on system entities (using system

components and/or classes models), on system status (using system behaviour model), on

hosting nodes (using system deployment model), or on external system interactions (using

system context model). Moreover, they may specify their security requirements on a coarse-

grained level (using system features and components models), or on a fine-grain (using system

class diagrams). Maintaining service SDM synchronized and up to date with the running service

instance may introduce overhead and headache on service providers. However, recent efforts in

models@runtime synchronization techniques [236, 237] help in maintaining SDM consistent

with service instance. Some of the application or service description details, specifically the

system class diagrams, can be reverse-engineered if not available from the target application or

service binaries or even from the service source code. We developed a new UML profile to

extend UML models used in the SDM with necessary attributes that help in: Capturing relations

between different system entities in different models – e.g. a feature entity in the service

features model with its related components in the service component model, and a service

component entity with its related classes in the class diagram. This part of the profile helps in

propagating security modelled and mapped a at coarse-grain level to system and security lower

entities; and Capturing security concepts/attributes (security objectives, requirements, controls,

etc.) mapped to the SDM entities – e.g. what security requirements specified on a given service

feature or service component. This helps in security enforcement and models weaving as we

discuss later.

 Chapter 6: Cloud Applications Security Engineering

Page 116

6.3.1.2 Service Security Specification Model (SSM)

A second part of the service delivery package is the service security specification model. The

SSM is a set of models developed and managed by the service provider security engineers to

specify the security requirements or controls that the service providers enforce and operate on

their services (a detailed example is introduced in the usage example section). It provides the

details required during the security engineering process including: security goals and objectives;

security risks and threats; security requirements; security architecture for the operational

environment; and security controls to be enforced. These models capture different levels of

abstractions. The key mandatory model in the security specification models set is the security

controls model. It is required in generating the security integration code.

6.3.1.3 Tenant Service Description Model (TSDM)

The TSDM model describes system features, architecture and classes available for a tenant T. It

is usually different from one tenant to another. It depends on the multi-tenancy model adopted

by the service provider in customizing tenant instance or configuring a single shared service

instance. At tenant provisioning time, an initial TSDM is copied from the system SDM. Then

the TSDM is updated to reflect the current tenant's service instance details. The tenant system

administrator can use this model later to turn features on/off at runtime. The TSDM helps in two

scenarios: To customize or configure the system based on tenant requirements – e.g. tenant T is

permitted to use certain features that she registered for. The service provider uses the tenant

initial TSDM and delete other system features that are not required. The same approach can be

used in both cases either the tenant has a separate instance or share the same instance with other

tenants. Still the model@runtime synchronization techniques can be used to keep the TSDM

synchronized with the running tenant instance; and to capture tenants’ security requirements on

their instance scope – i.e. security to be applied on instance features, components, methods, etc.

6.3.1.4 Tenant Security Specification Model (TSSM)

The TSSM model is the tenant copy of the service SSM, an example is shown in Figure 6-10

(details are explained in the usage example). It describes security objectives, requirements,

architecture, design, and controls that the service tenants have and want to enforce on their

cloud-hosted assets. This may include authentication, authorization controls, auditing,

encryption, etc. that tenants use in their internal sites or even from other security vendors.

Tenants may decide to continue using the same security provided by the service provider or

rather prefer to use their security controls. However, tenants will not be able to disable security

controls that the service provider has marked as mandatory in the service SSM. This helps to

avoid disabling critical security controls such as tenants’ data isolation control provided by the

 Chapter 6: Cloud Applications Security Engineering

Page 117

service provider. This model can be used by tenants to manage security of multiple cloud-hosted

applications – i.e. to provide a single security model to manage all enterprise outsourced

services.

Security Risks

Security Design

System Classes

System Model

System
Features

System
Behaviour

System
Architecture

System
Deployment

Security
Model

Security
Objectives

Security
Architecture

Security
Requirements

Security
Controls

Security Domain System Domain

1..*

1..*

Figure 6-3. Possible service-security models weaving

Figure 6-4. Our new UML profile

6.3.2 Weaving Service and Security Models

MDSE@R has two mapping levels: Mapping service SSM model entities to service SDM

model entities; and Mapping service TSSM model entities to service TSDM model entities. The

first type of mapping is developed and managed by the service provider at design time,

deployment time, or even at runtime to reflect new needs. Whenever the service provider

discovers a security problem – such as a new vulnerability, or has a new security requirement –

they can update or mitigate it on the service security specification model and then map these

new updates on the service description model. Such mapping is directly reflected on the tenants'

 Chapter 6: Cloud Applications Security Engineering

Page 118

models. The second mapping type is developed and managed by the service tenant at runtime.

Both mappings can be modified at runtime to reflect new security needs or business objectives.

MDSE@R supports many-to-many mapping between the (tenant) service description model

entities and (tenant) security specification model (SSM) entities, as shown in Figure 6-3. This is

supported by our UML profile which extends every service description concept – i.e. feature,

component, class, method, host, connection, etc. with a set of security attributes – i.e. security

objectives, requirements, services and controls (see Figure 6-4 for UML profile diagram, details

are available in the implementation section). Using drag-and-drop between the SSM and SDM

entities, SSM entity will be added as an attribute value, based on the dragged SSM entity, to the

selected SDM entity – i.e. if the tenant drag an authentication security control and drop it on a

system class, this means that all the methods in this class must use this authentication security

control. One or more security entities (security objective, requirement and/or control) can be

mapped to one or more service model entity (feature, component, class or method). Mapping a

security concept on an abstract service entity – e.g. a system feature – implies a delegation of

the same security concept to the concrete entities e.g. the feature realization classes and

methods. This is facilitated using our UML profile which helps in managing traceability

between application and service entities. Moreover, mapping an abstract security concept – e.g.

a security objective to a service entity - e.g. a class - implies mapping all security requirements,

services, and controls that realize this security objective to that class and its methods. Any

application or service entity that has a security mapping is called a critical service entity.

6.3.3 Enforcing Specified Security on Target Application Entities

In the previous steps, both security details and critical application or service entities emerge at

runtime. MDSE@R automates the realization task of the specified security requirements on

critical application or service entities without the involvement of security or application

engineers. This helps both parties to easily update their application and security capabilities to

meet their needs. Moreover, this helps avoiding inconsistency problem that arise from updating

application security realizations without reflecting updates on application and security models.

Whenever the service provider or service tenant develops a new mapping or updates an existing

mapping between an SSM entity and an SDM entity, the underlying MDSE@R platform

propagates these changes as discussed below.

6.3.3.1 Update Live Service Interceptors’ Document

This document maintains a list of the application security critical entities (CP - an application or

service entity that has security attributes mapped on it) where security controls should be

 Chapter 6: Cloud Applications Security Engineering

Page 119

weaved or integrated. Equation 1 states that the critical service entities - CP(s) - are the union of

all tenants’ critical points - CP (Ti) – where T0 is the service provider.

CP(s) = ⋃
 Equation 1

6.3.3.2 Update Live Security Specification Document

This document maintains a list of security controls to be applied at every critical system entity.

This may be defined by the service provider or by the service tenant. The service provider can

mark security controls as mandatory. This means that these security controls cannot be weaved

or replaced by other stakeholders. Service tenants can see such controls and where they are

applies – as a part of our solution of the “lack of trust” problem. These security controls must be

applied first before other stakeholders’ security controls.

6.3.3.3 Update Tenant Accessible Resources Document

This document maintains a list of system resources that should not be accessible for each tenant.

For example, in our Galactic scenario if Swinburne did not buy the Customer Management

module then they should not be able to access webpages or functionalities provided in this

module. Equation 2 is used in specifying tenant Ti inaccessible resources. The prohibited

resources list for tenant Ti is the difference between the service SDM resources and the tenant Ti

TSDM resources.

 Equation 2

This list of tenant's prohibited resources is used by the MDSE@R to deny access to any of

such resources by a request submitted by one of the tenant's users. The application or service is

now ready to enforce security specified by tenants and service providers based on the woven

secure-service model. This update is conducted in parallel with the application or service

operation. Thus it does not incur any further performance overhead – i.e. we do not need to take

the application offline in order to update system security.

6.3.3.4 Update the System Container

The system container is responsible for intercepting system calls to critical system entities at

runtime and delegating such requests to a default request handler "Security Enforcement Point”.

The system container is updated with critical entities (CPs) from the live service interceptors’

document. It is also updated with entities in the prohibited resources list. For the later one, it

simply denies requests to such service resources.

 Chapter 6: Cloud Applications Security Engineering

Page 120

Figure 6-5. Our proposed common security interface

Figure 6-6. Example of the generated security integration test cases

 Chapter 6: Cloud Applications Security Engineering

Page 121

6.3.3.5 Security Enforcement Point – SEP

A key objective of MDSE@R is to avoid being tightly coupled with specific security controls,

specific security vendor, and specific security platform (Java security manager, spring acegi

framework, Microsoft Windows Identity Foundations, etc.). It also aims to keep developers and

administrators from being too deeply involved in integrating security controls with a target

system that often results in inconsistent security being enforced on different systems. We have

developed a common security interface for every security attribute (authentication,

authorization, auditing, encryption, etc). This interface, shown in Figure 6-5, specifies interface

functions and signatures that each security control expects/requires in order to perform their

tasks – e.g. AuthenitcateUser function should authenticate the user and return the set of claims

including user identity, credentials, roles, and permissions. A security or service vendor must

implement this interface in their connector or adapter to support integration with MDSE@R.

The sequence of calling/executing these methods is controlled by the SEP and depends on

security attributes mapped on the critical point being intercepted. This helps security vendors

develop one connector that - using MDSE@R - can be integrated with all target

applications/services.

So far we have prepared the system to intercept requests to critical methods via the system

container and have prepared security controls to be communicated using the common security

interface. The SEP works as a bridge between the system container and the deployed security

controls. SEP queries the security specification document for controls to enforce at every

intercepted request. It then initiates calls (using the security interface) to the designated security

controls’ clients or connectors. Moreover, the SEP assigns results returned by such controls to

the system context e.g. an authentication control returns userID of the requesting user after

being authenticated. The SEP creates an Identity object from this userID and assigns it to the

current thread’ user identity attribute. Thus a secured application can work normally as if it has

authenticated the user by itself. An application may use such information in its operations e.g. to

insert a record in the database, it uses the user identity to set the "enteredBy” database field.

6.3.4 Testing the Service-Security Integration

Before allowing the developed specifications and mappings to be applied to live cloud services,

MDSE@R conducts security testing to verify that the target service is correctly enforcing the

tenants and service providers’ specified security needs. We assume that the reused security

controls are already tested by the security vendors. Thus, our testing task focuses on verifying

that the security controls are now being correctly integrated within specified critical system

entities as required. To automate this step, we use the live interceptors’ document and the

 Chapter 6: Cloud Applications Security Engineering

Page 122

security specification document to generate a set of test cases (scripts) for each critical entity –

i.e. each critical entity will have a set of test cases according to the security specified on it (from

the security specification document). Each test case verifies that a security control C is correctly

integrated within the critical entity E. An example is shown in Figure 6-6. As this figure shows,

we have GetCustomers method of the CustomerBLL class is marked as a critical point. This

critical point has a set of security controls mapped on it including authorize users before

executing this method. Thus, the security testing service generates a test case that calls this

method and check the resultant system security context (after calls - actual results) against the

expected results. In the backend, the SEP is converted in debug mode which let the SEP to raise

exceptions if a security control call failed. The testing framework (we use the nUnit framework,

discussed in the implementation section) fires these test cases and generates a log of the test

cases’ firing results to the tenant/service provider security engineers showing the failed test

cases, the critical entities, and the failed to integrate security controls.

Figure 6-6 shows a sequence diagram describing a user requesting resource X, from a

service operated by MDSE@R. In this scenario we have several interacting entities including

user, webserver, MDSE@R system container, SEP, security services and the application

resource. Once the web server receives a request (1) submitted by a user to access resource X, it

delegates the request to the system container (2) along with the user’s tenantID T. The system

container queries the live service interceptors’ document (3) to decide if the resource requested

is marked as "critical” or not either by the tenant or by the service provider. If the resource is

critical (4), the system container delegates the request to the security enforcement point (5). The

SEP queries the security specification document (6) for the required security controls to be

enforced on the requested resource by the user’s tenant or by the service provider. This is an

ordered list of security controls to be activated by the SEP. The SEP loops through the retrieved

security controls list. Using the standard security interface, the SEP generates requests to the

security controls required according to their type (7). After each security control call, the SEP

updates the current threat security context (8). This includes update the execution context with

current user identity, set of claims and roles. Finally, the SEP returns to the system container a

recommendation to either proceed with the request or to deny it. If appropriate, the system

container then forwards the request to the target resource (9) or else returns an appropriate

security exception to the caller. If the tenant defined security properties or controls to be applied

on system responses – e.g. to encrypt the response body, the system container intercepts such

responses, applies security controls (through the SEP), and then forward the updated response

back to the client.

 Chapter 6: Cloud Applications Security Engineering

Page 123

:User :SystemContainer:WebServer :SEP :SecService (S)

Access resource X
Access(X, T)

IsCritical(X,T)

:ResourceX

EnforceSec(X,T)opt

[X is

critical]

GetRequiredSec(X,T)

ApplySec(CurrConetxt)

CheckCurrentSecContext()

<<return>>

UpdateSecContext()

<<return>>

X

X
opt

[X is not

critical

Or X is secured]

Access(X, T)

<<results>>

XX
X

<<results>>

X

Loop

[security controls

list]

1
2

3

4

5
6

7

8

9

Figure 6-7. Sequence diagram of a user request to critical service entity

6.4 Usage Example

We introduce a usage example to show how the service provider and tenants can collaborate

together using MDSE@R and its provided platform toolsets to manage security of their services

at runtime. Moreover, we highlight the key stakeholders involved in the security engineering

process along with their responsibilities and expected outcomes of every step. We use our

motivating example discussed in details in chapter 1, the Galactic application developed by

SwinSoft and procured by Swinburne and Auckland. SwinSoft wants to adapt its application

security at runtime to block security holes and vulnerabilities that have been discovered at

runtime. Moreover, two tenants (Swinburne and Auckland) using Galactic are worried about the

security of their assets and have their own, different security requirements to be enforced on

their Galactic ERP application instance(s). We illustrate our usage example using toolset screen

dumps.

6.4.1 Model Galactic System Description

This task is done during or after the system is developed. SwinSoft, the service provider,

decides the level of application details to provide to their tenants in Galactic SDM.

Figure 6-8(a) shows that SwinSoft SDM captures the description of system features including

customer, employee and order management features (Figure 6-8(a)), system architecture details

 Chapter 6: Cloud Applications Security Engineering

Page 124

including presentation, business and data access layers (Figure 6-8(b)), system classes including

CustomerBLL, OrderBLL, EmployeeBLL (Figure 6-8(c)), and system deployment including

web server, application server, and database server (Figure 6-8(d)). SwinSoft uses our UML

profile (Figure 6-4) to capture dependences and relationships between system features and

components, and system components/classes. This model will be used as a reference by

SwinSoft system and security engineers. No tenant is allowed to have write access to the

Galactic SDM or its details.

6.4.2 Model SwinSoft Security

This task is conducted by SwinSoft (the service provider) security engineers at the system

deployment phase. This model is usually updated during their recurring security management

process to reflect new risks. In this scenario, SwinSoft security engineers document SwinSoft

security objectives that must be satisfied by Galactic system (Figure 6-9(A)). It includes system

availability, data integrity, accountability objectives. This model is revised frequently to

incorporate emerging changes in SwinSoft security objectives. Security engineers then use this

model as a reference in developing system security requirements. They refine these security

objectives in terms of security requirements that must be implemented by Galactic system,

developing a security requirements model.

Figure 6-9(B) shows a part of the security requirements model focusing on AuthenticateUser

as a security requirement identified as a refinement of the data confidentiality and integrity

security objectives. The security requirements model keeps track of the security requirements

and their links back to the high level security objectives. SwinSoft security engineers next

develop a detailed security architecture including services and security mechanisms to be used

in securing Galactic.

Figure 6-9(C) shows the main security zones (represent as big boxes - containers) that cover

Galactic deployment environment including security management zone, web servers’ zone, and

enterprise network zone. A network zone means that there is a firewall with an intrusion

prevention system deployed. It also shows the allocation of IT systems, including Galactic in

these zones. The security architecture also shows the security services, security mechanisms and

standards that should be deployed. SwinSoft security engineers finally specify the security

controls (i.e. the real implementations) for the security services modelled in the security

architecture model.

Figure 6-9(D) shows the key security controls selected by security engineers as a realization

of their security requirements. This includes SwinValidator as an input validation control,

ESAPI.AccessController as an authorization control, and SecurityIsolator as a multi-tenancy

 Chapter 6: Cloud Applications Security Engineering

Page 125

isolation and access controller security control. Each security control entity defined in the

security controls model specifies its family including authentication, authorization, audit,

cryptography, and audit. This helps in deciding the suitable API interface to be called in order to

use this control. It also helps in sequencing (ordering) the requests to be issued by the SEP to

secure a given system critical point. Each security control should define the deployment URL of

its connector. This is also required by the SEP when issuing requests to such controls. Each

security specification model maintains traceability information to parent model entities.

Figure 6-9(E) shows mappings specified between security entities and system entities. In this

example we specify that SecurityIsolator realizes the "TenantsDataIsolation” requirement.

Whenever MDSE@R finds a system entity with a mapped security requirement

TenantsDataIsolation it adds SecurityIsolator as its realization control – i.e. an SecurityIsolator

check will run before the entity is accessed e.g. before a method is called or a module is loaded.

SwinSoft security engineers have to mark mandatory security controls that their tenants cannot

modify or disable.

6.4.3 Weave Galactic SDM and Security SSM

After SwinSoft system and security engineers have completed the development of Galactic

SDM and security SSM, SwinSoft security engineers should specify/map security attributes (in

terms of objectives, requirements and controls) on Galactic system specification details (in

terms of features, components, classes). This is achieved by drag and drop of security attributes

on system entities. Thus, system features, structure, and behaviour can dynamically and at

runtime reflect different levels of security based on the currently mapped security attributes on

it. Figure 6-9(E) shows a part of Galactic component diagram where PresentationLayer, a UML

component entity, is extended with security objectives, requirements and controls

compartments. In this example the security engineers have specified TenantsDataIsolation as

one of the security requirement to be enforced on the PresentationLayer component (1). Such a

requirement is achieved indirectly using SecurityIsolator control (2). MDSE@R uses the

security attributes mapped to system entities to generate the full set of methods’ call

interceptors, as in Figure 6-11(1) (system interceptors document), and application or service

entities’ required security controls, as in Figure 6-11(2) (security specification document).

 Chapter 6: Cloud Applications Security Engineering

Page 126

Figure 6-8. Galactic service description model (SDM)

 Chapter 6: Cloud Applications Security Engineering

Page 127

Figure 6-9. Galactic service security specification model (SSM)

 Chapter 6: Cloud Applications Security Engineering

Page 128

Figure 6-10. Swinburne security specification model

 Chapter 6: Cloud Applications Security Engineering

Page 129

. . .
<extension type="Interception" />

 <register type="PresentationLayer.CustomerBLL, PresentationLayer ">

 . . .
 <interception>

 <policy name="PolicyCustomersBLL">

 <matchingRule name="MatchingRuleCustomersBLL“ Type="MemberNameMatchingRule">

 <constructor>

 <param name="nameToMatch" value="GetCustomers" />

 <param name="nameToMatch" value="GetCustomerByName" />

 <callHandler name="callhandlerCustBLL“ type="SecurityCallHandler, SecurityKernel">

. . .

A

<systemlevel>

<componentlevel>

. . .
<classlevel>

 <objectname>

 . . .
<methodlevel>

 . . .
< ObjectName> GetCustomers </ObjectName>

 <Authentication_Method>Forms</Authentication_Method>

 <Authorization_Method>RBAC_Impersonate</Authorization_Method>

 . . .

B

Figure 6-11. Examples of the interceptors and security specification files

public IMethodReturn Invoke(IMethodInvocation input, GetNextHandlerDelegate getNext) {
 EntitySecurity entity = LoadMethodSecurityAttributes(input.MethodName);
 if (entity == null || entity.HasSecurityRequirements() == false) {
 return getNext().Invoke(input, getNext);
 }
 //Check for logging

 if (entity.GetLoggingMethod() != LoggingMethod.None) {
 SecurityInterfaceLogging obj = new Type.GetType(entity. entity.GetInputValidationMethod());
 obj.Log(Datetime.Now, input.Method.MethodName);
 }
 //Check for Input Validation

 if (entity.GetInputValidationMethod() != InputValidationMethod.None) {
 SecurityInterfaceInputValidation obj = new Type.GetType(entity.GetInputValidationMethod());
 }
 //Check for Authentication

 if (entity.GetAuthenticationMethod() != AuthenticationMethod.None) {
 if(CurrentThread.CurrentPrincipal == null) {
 SecurityInterfaceInputValidation obj = new Type.GetType(entity.GetAuthenticationMethod());
 obj.AuthenitcateUser();
 }
 }
 //Check for Authorization

 if (entity.GetAuthorizationMethod() != AuthorizationMethod.None) {
 . . .
 }
 }

Figure 6-12. Code snippet from MDSE@R security enforcement point

 Chapter 6: Cloud Applications Security Engineering

Page 130

Once security has been specified and interceptors and configurations generated, MDSE@R

verifies that the system is correctly enforcing security as specified. MDSE@R generates and

fires a set of required security integration test cases. Our test case generator uses the system

interceptors and security specification documents to generate a set of test cases for each method

listed in the interception document. An example of a generated test case is shown in Figure 6-6.

This contains a set of security assertions (one for each security attribute specified on a given

system entity). During the firing phase, the security enforcement point is instrumented with

logging transactions to reflect the calling method, called security control, and the returned

values. Security engineers should check the security test cases firing log, an example is shown

in Figure 6-13, to verify that no errors introduced during the security controls integration with

Galactic entities. After SwinSoft security engineers have checked the MDSE@R Security

testing service log files and make sure that no integration errors have been introduced, they can

publish their updated Galactic security model for their tenants.

Figure 6-13. A snapshot of MDSE@R security test cases firing log

6.4.4 On-boarding Swinburne and Auckland Tenants

During the tenants on-boarding process (preparing the service to be used by a new tenant),

SwinSoft system engineers/admins start to customize/configure Galactic instance for tenant

based on their requirements and purchased modules. Depending on the adopted multi-tenancy

model, they may register new features or components as well. The final Swinburne or Auckland

TSDM is similar to Galactic SDM in Figure 6-8. Swinburne and Auckland system

administrators can update their own tenants’ TSDMs to reflect any further system

customization, such as enabling or disabling sub-features such as calculate overtime, nightshifts,

and vacations in the Employee Management module. This TSDM is used by Swinburne security

engineers to define and map required security on it. Moreover, any updates done by SwinSoft or

Swinburne on their TSDMs are reflected on the prohibited resources list (Eq. 2)

 Chapter 6: Cloud Applications Security Engineering

Page 131

6.4.5 Managing Swinburne and Auckland Security

Swinburne and Auckland security engineers go through the same process as SwinSoft did when

specifying their security requirements and controls. Each tenant can customize their TSSM as

far as they want and as frequent as required. For example, in Figure 6-10 Swinburne engineers

have specified that LDAP "realizes” the AuthenticateUser requirement. Whenever MDSE@R

finds a system entity with a mapped security requirement AuthenticateUser it adds LDAP as its

realization control i.e. an LDAP authentication check will run before the entity is accessed - e.g.

before a method is called or a module loaded. This applies to the CustomerBLL class methods,

Figure 6-10 (1). However, Swinburne security engineers have a different requirement for the

GetCustomers method - the requester should be authenticated using Forms-based authentication

instead, Figure 6-10(2). Auckland can specify their specific requirements, context, and security

controls based on their specific needs. This results in quite different generated security

enforcement controls. Both Swinburne and Auckland security engineers can modify the security

specifications while their Galactic application is in use. MDSE@R platform updates

interceptors in the target systems and enforces changes to the security specification for each

system as required. For example, the Swinburne Galactic security model can be updated with a

single sign-on security authentication component and these updates are directly applied on the

running Galactic instance.

6.5 MDSE@R Architecture and Implementation

The architecture of MDSE@R platform is shown in Figure 6-14. This is designed as a cloud

Platform-as-a-Service (PaaS) that can manage multiple SaaS applications hosted on the same

platform. MDSE@R consists of system and security specification modellers, models and

security controls specifications repositories, system container to intercept request, testing

services and security enforcement point.

6.5.1 MDSE@R Platform Architecture Details

System Description Modeller (1) is developed as an extension of Microsoft Visual Studio 2010

modeller with an UML profile (Figure 6-4) to enable system engineers modelling their systems’

details with different perspectives including system features, components, deployment, and

classes. The UML profile, as shown in Figure 6-4, defines stereotypes and attributes to maintain

the track back and forward relations between entities from different models. This includes

related features stereotype extending system components’ entities; system components

stereotype extending system classes’ entities. Moreover, a set of security attributes to maintain

the security concepts including objectives, requirements and controls mapped to every system

 Chapter 6: Cloud Applications Security Engineering

Page 132

entity. The minimum level of details expected from the system provider is the system

deployment model. MDSE@R can use this model to reverse engineer system classes and

methods using .NET Reflections in case of system binaries only available. We use .NET parsers

to extract classes and methods from system source code by analysing the generated AST files.

Figure 6-14. MDSE@R architecture

Security Specification Modeller – SecDSVL (2) is also developed as a Microsoft Visual

Studio 2010 plug-in. It enables service providers and tenants, represented by their security

engineers, to specify the security attributes and capabilities that must be enforced on the service

and/or its operational environment. Figure 6-15 shows the meta-model of the MDSE@R

SecDSVL which captures security details developed during the security management process.

We will discuss SecDSVL details in the next Section.

Models Repository (3) is a shared repository to maintain models developed either by the

system engineers or the security engineers. This repository also maintains the live system

interceptors’ document and security specification document. An example of these documents is

shown in Figure 6-11. This example shows a sample of the Galactic interceptors’ document

generated from the specified security-system mapping. It informs the system container to

 Chapter 6: Cloud Applications Security Engineering

Page 133

intercept GetCstomerByName and GetCustomers methods (1); a sample of Swinburne security

specification file defining the security controls to be enforced on every intercepted point (2).

Security Controls Database (4) is a database of the available and registered security patterns

and controls. It can be extended by the service providers or by a third party security provider. A

security control must implement certain APIs defined by the security enforcement point in order

to be able to integrate with the target system security standard interface. Having a single

enforcement point with a predefined security interface for each security controls family enables

security providers to integrate with systems without having to redevelop adopters for every

system. We adopted OWASP Enterprise Security API (ESAPI) library [238] as our security

controls database. It provides a set of authentication, authorization, encryption, etc. controls that

we used in testing our approach.

System Container (5) used to support run-time security enforcement. MDSE@R uses a

combined dependency injection and dynamic-weaving AOP approach. Whenever a client or

application component sends a request to any critical system component method, this request is

intercepted by the system container. The system container supports wrapping of both new

developments and existing systems. For new development, SwinSoft system engineers should

use the Unity application block delivered by Microsoft PnP team to support intercepting any

arbitrary class entity. Unity supports dynamic runtime injection of interceptors on methods,

attributes and class constructors. For existing systems we adopted Yiihaw AOP, where we can

modify application binaries (dll and exe files) and add security aspects at any arbitrary system

method (we add a call to our security enforcement point). For component level interception, we

can use httpModules to add interceptors on the component level.

Security Test Case Generator (6) uses the NUnit testing framework to partially automate

security controls and system integration testing. We developed a test case generator library,

using test cases template, to generate a set of security test cases for authentication,

authorization, input validation, and cryptography for every enforcement point defined in the

interceptors’ document. MDSE@R uses nUnit library to fire the generated test cases and notify

security engineers via test case execution result logs.

At runtime, whenever a request for a system resource is received (7), the system container

checks for the requested method in the live interceptors’ document. If a matching found, the

system container delegates this request with the given parameters to the security enforcement

point (8). Figure 6-12 shows a sample of the security enforcement point API that injects the

necessary security control calls before and after application code is run for different security

attributes. Security Enforcement Point (9) is a class library that is developed to act as the default

interception handler and the mediator between the system and the security controls. Whenever a

 Chapter 6: Cloud Applications Security Engineering

Page 134

request for a target application operation is received, it checks the system security specification

document to enforce the particular system security controls required. It then invokes such

security controls through APIs published in the security control database (4). The security

enforcement point validates a request via the appropriate security control(s) specified, e.g.

imposes authentication, authorization, encryption or decryption of message contents. The

validated request is then propagated to the target system method for execution (10).

Figure 6-15. SecDSVL meta-model

6.5.2 SecDSVL: Security Domain Specific Visual Language

SecDSVL provides a mega-model using visual notations to be used by security engineers in

managing IT systems’ security. To develop SecDSVL, we studied the existing security

management standards (including NIST, ISO27000) details and come up with a comprehensive

security meta-model that captures all relevant details, as summarized in SecDSVL meta-model

Figure 6-15 and discussed below:

 Chapter 6: Cloud Applications Security Engineering

Page 135

6.5.2.1 Enterprise Assets

The first step in the security management process is the identification of existing IT assets that

need to be secured. We capture enterprise assets in an asset model. This model captures all

enterprise assets along with their categories i.e. information systems, physical assets or business

value - and interrelationships. We use UML models to capture assets’ detailed descriptions as

discussed in the system description model. Stakeholders need to assign security categorization

for every modelled asset. This categorization depends on the asset assigned criticality level.

6.5.2.2 Security Objectives

Enterprise top management defines key security goals, objectives, and losses of breaching

assets’ security. These objectives are captured in a security objectives model. Objectives may be

specified per asset– i.e. objectives are mapped to the corresponding asset, or enterprise-wide

thus a given security objective could be mapped to many assets. Possible relationships between

objectives include: composition – a security objective is made up of sub-objectives; dependency

– a security objective depends on other security objectives in order to be satisfied/achieved.

Availability, integrity, confidentiality, and accountability are the key security objective

categories [239]. Each security objective is assigned an importance level. This indicates the

impact of the failure to meet such objective as a result of security breach – e.g. impact of

breaching asset confidentiality may be high, moderate, or low. A security objective may be

assigned realization security strategy including preventive, detective, and recovery strategies.

6.5.2.3 Risk, Threats, Attacks, and Vulnerabilities

Security engineers conduct risk analysis on critical enterprise assets to identify possible threats

on a given asset, and likelihood and impact of such threats. This also may include performing

vulnerability analysis to identify inherent flaws that may be exploited by threat agents while

attack the system. These security details are captured in a security risk model. This may be

developed per asset – i.e. for each enterprise asset we develop risk model capturing risks, threats

and attacks, or enterprise-wide risk model capturing all possible risks, threats and attacks and

map such items onto different assets. Threats should be linked with the source threat agents and

to the exploited vulnerabilities. Vulnerabilities should be mapped to the vulnerable assets.

Security risks map identified threats to the breached security objectives – i.e. a risk is a violation

of a security objective through a possible threat. For each risk, we should specify the probability

that a given threat can be exploited and the impact of exploiting such a threat by a threat agent.

 Chapter 6: Cloud Applications Security Engineering

Page 136

6.5.2.4 Security Requirements

Security requirements are the treatments to be taken by security engineers in order to mitigate or

avoid the identified threats. Security requirements are captured in a security requirements

model. For each specified security objective and identified security risk, we may define a set of

security requirements e.g. “the system should not grant access to a resource X unless the user is

authorized by the user name and password”. NIST [240] has 18 Security requirements family

including audit, communication, cryptography, data protection, identification and

authentication, privacy, etc.

6.5.2.5 Security Architecture

Security architects use the given security requirements model to develop a security architecture

model. This model captures planned behaviour and structure of enterprise security. It shows

how and where security controls and enterprise assets are positioned. Moreover, it captures how

these security controls are integrated with other enterprise assets. A security architecture model

includes identifying security zones (domain) in the enterprise operational environment including

uncontrolled, controlled, restricted, and managed zones. Security architects define the security

services that will be deployed or used in every zone. These services include authentication,

authorization, cryptography, audit, etc. these services may also specify the mechanism or

standard that should be provided by every security service e.g. cryptography should use AES

instead of DES, authorization should use LDAP and SSO instead of forms-based authentication

or Microsoft membership security.

6.5.2.6 Security Controls

Security administrators specify security controls that realize security services specified in the

security architecture model. These security controls are captured in a security controls model.

This model includes for every security control, the configurations to be applied on it. Moreover,

each security control entity should specify the security control family. Thus, we can load

configurations from the Common Configuration Enumeration (CCE) database [241].

6.6 Evaluation

In this section we summarize some of the experiments we have performed to assess the

soundness and scalability of our MDSE@R approach in:

– Capturing descriptions of different real systems and different security details for both

service providers and tenants;

 Chapter 6: Cloud Applications Security Engineering

Page 137

– Propagating security attributes on different system entities (features, components, classes,

and methods);

– Enforcing unanticipated security requirements that emerge at runtime including

authentication, authorization, auditing, etc. at runtime with an acceptable performance

overhead;

– Validating that security controls are correctly integrated with the target entities.

– Usability of our SecDSVL language?

We divided the benchmark set (the set of applications discussed in Chapter 4) into two

groups: Group-1 has two applications including Galactic ERP and PetShop. Both applications

have been modified to adopt the Unity application block as the system container. Group-2 has

the other five open source web applications including Splendid, KOOBOO CMS,

NopCommerce, BlogEngine, BugTracer, and TinyERP. For this group we use Yiihaw

framework as the system container to inject interceptors into system binaries. Except for

Galactic, we do not have any previous experience with these applications.

6.6.1 Experimental Evaluation Setup

Using MDSE@R, we developed three security specification models (SSM) with security

objectives, requirements, and controls as described in Figure 6-9 and Figure 6-10. One model for

service provider and two other models were copied from it and modified to reflect two security

requirements sets. We specified security requirements and controls for authentication,

authorization, input validation, logging and cryptography as shown in Table 6-1.

We used MDSE@R to model the system description (SDMs) for applications in Group-1, as

we know the details of these systems – i.e. we can develop a complete SDM including system

features, components, classes, etc. For Group-2, we used system deployment diagram for these

applications and used reverse engineering to extract systems’ class diagrams from their binaries.

Thus for applications in Group-1 we should be able to map security to system features,

components, classes, methods. However, in Group-2 we should be able to specify security on

component, class, and method levels only because these are the only available models (features

cannot reverse engineered from system source code or binaries so far).

6.6.2 Evaluation Results

Table 6-2 shows security attributes that MDSE@R succeeds in capturing and enforcing at

runtime, including authentication, authorization, input sanitization, auditing and cryptography.

This represents most common security attributes. Table 6-2 also shows that MSDE@R

succeeded in mapping and enforcing these security attributes on systems in both Group-1 and

 Chapter 6: Cloud Applications Security Engineering

Page 138

Group-2 with different levels of system abstractions (F: feature, C: component, S: class, and M:

method). Note that for Group-2 applications we do not have a system feature model to map and

enforce security on this level. The enforcement of cryptography has a limitation with Group-2

applications especially when securing methods. This is because it requires that the caller and

callee expect parameters of type String. To address this problem, we used format-preserving

encryption (FPE) techniques [62]. The output of these techniques is in the same format (type) of

the input - i.e. if the input to encrypt is of type integer then the output is of the same type.

Table 6-1. Security controls used by service provider, Swinburne, Auckland

Sec. Attribute SwinSoft Ctls Swinburne Ctls Auckland Ctls

Authentication ESAPI Forms-based LDAP

Authorization ESAPI Forms-based LDAP

I/P santization ESAPI SwinFirewall –

Audit ESAPI PrivateAuditor PrivateAuditor

Cryptography ESAPI DES AES

Sec. Isolation ESAPI – –

Table 6-2. Validating MDSE@R against Group-1 and Group-2 applications

Benchmark

Applications

SecurityAttributes

Authn Authz. I/P Valid. Audit Crypto.

G
ro

u
p

-1

Galactic F, C, S, M

PetShop F, C, S, M

G
ro

u
p

-2

SplendidCRM C, S, M (C, S, M)*

KOOBOO

CMS
C, S, M (C, S, M)*

NopCommerce C, S, M (C, S, M)*

BlogEngine C, S, M (C, S, M)*

BugTracer C, S, M (C, S, M)*

TinyERP C, S, M (C, S, M)*

 Chapter 6: Cloud Applications Security Engineering

Page 139

6.6.3 SecDSVL Evaluation

We have evaluated SecDSVL capabilities in capturing different kinds of enterprise security

details with different levels of abstractions in comparison with the existing security

management, risk management, and security engineering approaches. Table 6-3 shows

SecDSVL compared to a range of other existing security modeling techniques based on their

documented capabilities in Chapter 3 (related work). Table 6-3 shows that none of the existing

approaches provides a comprehensive security model that covers every aspect in the security

management process. Security management approaches (ISO27000, NIST-FISMA) focus on

assets, risks, threats, and mitigation controls. Risk management approaches (OCTAVE,

CORAS) focus on similar areas except for security controls. Early stage security engineering

efforts (KAOS, i*, Tropos) focus on security objectives and requirements. Later-stage security

engineering efforts (UMLsec, SecureUML) focus on security requirements, mapping and

integration with target systems.

Table 6-3. Comparison between SecDSVL and existing efforts

Approach 1 2 3 4 5 6 7 8 9 10

Misuse case X X √ √ √ X X X X X

UMLSec X X X X ● X ● X X ●

SecureUML X X X X ● X ● X X ●

KAOS X √ ● √ √ X X X X X

i* X √ ● √ √ X X X X X

Tropos X √ ● √ √ X X X X X

CORAS √ ● √ √ X X X X ● ●

OCTAVE √ ● √ √ X X X X ● X

FISMA √ √ √ √ X X X √ √ X

ISO27000 √ √ √ √ X X X √ √ X

SecDSVL √ √ √ √ √ √ √ √ √ √

[1] Assets Model, [2] Security Objective, [3] Security Threats and Vulnerabilities, [4] Security

Risks, [5] Security Requirements, [6] Security Architecture, [7] Design, [8] Security Controls,

[9] Traceability, [10] Mapping between systems and security models

√: Fully Supported ● : Partially supported X : Not supported

 Chapter 6: Cloud Applications Security Engineering

Page 140

6.6.4 User Evaluation

We carried out a preliminary user evaluation of our tools and platform to assess MDSE@R

approach and platform usability. We had seven post-graduate researchers, not involved in the

development of our MDSE@R approach, to use our developed tools and platform after

receiving an hour training session on the tool and platform features. We asked them to explore

several MDSE@R system and security DSVL specifications of the PetShop and Galactic

applications. Then we asked them to perform updates on these models and to modify the

security specification models at run-time. We conducted a basic usability survey to gain their

feedback on our DSVL, modelling tools, and the security enforcement platform. The results

show that they successfully understood and updated security models for the target systems.

They gave positive feedback about the overall approach and the tool usability, and the

capabilities in managing system security, as shown in Figure 6-16 (1: Strongly disagree to 5:

Strongly agree). A key recommendation was to use more expressive icons in the security DSVL

rather than just boxes.

6.6.5 Performance evaluation

In this section, we discuss the performance evaluation of MDSE@R platform in two key areas:

runtime performance overhead of the MDSE@R platform on the secured system; and the offline

system security adaptation overhead.

6.6.5.1 Runtime Performance Overhead

The runtime performance overhead of MDSE@R equals time taken to intercept requests, plus

time spent by the security enforcement module in querying the security requirements repository

to be enforced on the intercepted point, plus time spent in calling the security controls specified.

The time spent by security controls themselves we do not factor in, as this needs to be spent

whether using our approach or as hard-coded security solutions. Arguably, traditional

approaches may incur some of these other time penalties as well e.g. checking authenticated

user access controls or generating audit checkpoint information to log.

Figure 6-17 shows the time required (in msec) by MDSE@R to process a request for systems

with different numbers of concurrent users and different number of system entities that have

been marked as critical. Experiments were conducted on a Core2Duo desktop PC with 4GB

Memory. The maximum performance overhead we got for a system with 10000 CPs defined

and having 100 users concurrently sending requests equals 140msec. This performance

considers efficient memory utilization as interceptors and security specification documents are

loaded as needed. Significantly better performance could probably be achieved by caching these

 Chapter 6: Cloud Applications Security Engineering

Page 141

MDSE@R models in memory and using a hash table data structure to enable faster search.

Moreover, using replicas of the MDSE@R platform on different servers and for different

applications will result in further improvement of the approach performance overhead.

Figure 6-16. SecDSVL usability level of agreement

Figure 6-17. MDSE@R platform average performance overhead

 Chapter 6: Cloud Applications Security Engineering

Page 142

6.6.5.2 Security Adaptation Overhead

We have measured the adaptation delay incurred by MDSE@R in order to realize a single

simple mapping between a security entity and a system entity – e.g. system methods. This

overhead equals on average 3 seconds. This represents the time taken to update the security

interceptors and security specification documents and time to generate and fire the required

integration test case(s). This is an offline task and so does not impact the performance of the

running system instance.

6.7 Discussion

MDSE@R approach promotes multi-tenancy security engineering from design time to runtime.

This is based on externalizing security engineering activities including capturing objectives,

requirements controls, and realization from the target system implementation. This permits both

security (to be enforced) and critical system entities (to be secured) to evolve at runtime

(supporting adaptive security at runtime). Moreover, it enables enforcing different security

requirements’ sets for different tenants who are not known at design time. We name this as

"tenant-oriented security" compared to the traditional service-oriented security where a service

can reflect only one set of security requirements usually captured by service provider at design

time. One may argue that our approach may lead to a more open and vulnerable system as we

did not consider security engineering during design time. Our argument is that at design time

security engineering is often done by security non-experts and this is a leading reason why we

still discover a lot of vulnerabilities in systems. Moreover, service providers can still perform

security engineering during design time using MDSE@R. The service provider delivers both the

SDM and SSM to their tenants for further customization. This also helps small tenants or

tenants who are satisfied with the delivered security.

A key benefit reaped from MDSE@R approach is supporting model-based security

management. Tenant security requirements, architecture and controls are maintained and

enforced through a set of centralized TSSMs instead of low level scattered configurations and

code that lack consistency and are difficult to modify. A tenant can have a single TSSM for all

of their IT systems that captures all of their security specifications and can be updated anytime

to reflect his new configurations. Thus any update to their TSSM will be reflected on all IT

systems that use MDSE@R platform. We developed one security model and used it with

different systems. Each system enforces the security mapped to its entities. Moreover, any

update to the security model results in updating all systems linked to it. This is a key issue in

environments where multiple applications must enforce the same security requirements. Having

one place to manage security reduces the probability of errors, delays, and inconsistencies.

 Chapter 6: Cloud Applications Security Engineering

Page 143

Moreover, automating the propagation of security changes to underlying systems simplifies the

enterprise security management process.

The selection of the level of details to apply security on depends on the criticality of the

system. In some situations, we may intercept calls to the presentation layer only (webserver)

while considering the other layers secured by default (not publicly accessible). In other cases,

such as integration with a certain web service or using third party component, we may need to

have security enforced at the method level (for certain methods only).

Security and performance trade-off is another dilemma to consider. The more security

validations and checks the more resources required. This impacts application performance. This

should be included as a part of the Service Level Agreement (SLA) with the tenants. We plan to

extend our generated test cases to include performance tests, allowing MDSE@R provider to

assess the overhead of new security configurations in terms of cost and to help both providers

and tenants to optimize the security level enforced. MDSE@R helps in engineering security into

systems at runtime, while the security controls’ configuration and administration should be

managed by security administrators. Moreover, MDSE@R does not support defining business

rules at runtime – e.g. employee should not be able to retrieve customers’ records of type VIP.

The target system should have this rule while MDSE@R will provide the current user

roles/permissions as returned by the tenant security access control.

Security isolation between different tenants’ data is a very critical requirement in

engineering security of a multi-tenant SaaS application. Although multi-tenancy security

isolation is out of the project scope, the MDSE@R can help in addressing the security isolation

problem. Security isolation controls, that simply perform authorization of the tenants supplied

inputs, are added to the service SSM as a mandatory security control to be applied before

proceeding with any given request. Thus no tenant can access other tenants’ data by providing

malicious inputs. However, the service providers have to perform the data filtration when

loading/storing data from/to the application database.

Currently the communication (request/ response) between the MDSE@R and tenants’

security controls is not encrypted. Thus, the key management itself does not fall directly under

the responsibility of MDSE@R. However, MDSE@R is responsible for issuing requests for

cryptography security controls to encrypt or decrypt tenants’ data as specified in their security

specification model. Such security controls have to know where to get the cryptography keys for

example. If the encryption of these communication messages is also a requirement, we can use a

PKI as an extension of the MDSE@R to manage cryptography keys used for secure

communication, as shown in Figure 6-18. This would be used by MDSE@R to get tenants’

public keys to be used in encrypting communications with tenant’s controls.

 Chapter 6: Cloud Applications Security Engineering

Page 144

Figure 6-18. Cryptography scenario between MDSE@R and tenants' security controls

The multi-tenant security engineering of existing services (extending system security

capabilities) has three possible scenarios: Systems that already have their SDMs, we can use

MDSE@R directly to specify and enforce multi-tenant security at runtime; Systems without

SDMs, we reverse engineer parts of system models (specifically the class diagram) using

MDSE@R. Then we can use MDSE@R to engineer required system security; and Systems with

built-in security, in this case we can use MDSE@R to add new security capabilities only.

MDSE@R cannot itself help modifying or disabling existing security. In chapter 7, we

introduce our approach (reengineering aspects – re-aspects) to support disabling of existing

security methods and partial code using modified AOP techniques.

In cloud computing model, most of the services are publicly accessible to end users who may

be malicious users. Those users may try to exploit services’ vulnerabilities to breach data

security. Thus, it is very important to operate a security service that can easily mitigate such

vulnerabilities at runtime without any delays to develop security patches. MDSE@R could be

used in automating such vulnerability mitigation process. Reported vulnerabilities will be used

to extract the critical points that need to be secured. A set of mitigation actions that should be

applied to mitigate the reported vulnerability will be used to integrate required security controls

within the vulnerable points at runtime. We will discuss this case in more details in the case

studies chapter (chapter 10).

 Chapter 6: Cloud Applications Security Engineering

Page 145

6.8 Chapter Summary

MDSE@R is a new model-driven approach to dynamically engineering security for multi-tenant

SaaS applications at runtime. Our approach is based on using a set of multi-level service

description models (SDM), developed by service providers, to describe different perspectives of

their applications or services; a set of security specification models (SSM), developed by the

service provider, to capture security objectives, requirements and environment security controls

using Domain-Specific Visual Languages. Then, tenants can customize their copies of the SDM

and SSM to reflect their application or service and security configurations. MDSE@R then

bridges the gap between these two specifications through merging of the service and security

models for both service provider and service tenants into a joint service security model.

MDSE@R uses dynamic injection of security enforcement interceptors and code into the target

application or service to enforce the security specified. Security specifications are thus

externalized and loosely coupled with application specifications, enabling both the application

and security specification to evolve.

It also allows sharing of security specification models among different applications "model-

based security management". Security controls can be integrated with MDSE@R (which was

implicitly integrated with the tenant service) by implementing a standard security interface we

introduced. We have developed a set of modelling tools and a prototype of MDSE@R. We have

successfully validated our approach by applying it to a set of benchmark applications, most of

them open source, successfully modelling and enforcing a range of security needs on these

applications. We performed a user evaluation of our toolset that demonstrates that it is readily

usable by a technical audience but with little security engineering background. We assessed the

performance overheads of using our current prototype of MDSE@R. It has a performance

overhead ranging from 0.13msec up to 140msec per request for each critical application or

service entity. MDSE@R has adaptation delay of 3 seconds for each simple mapping between

SSM and SDM. This represents time to update interceptors and security specification

documents as well as generating and firing security test cases.

Page 147

 Chapter 7

Cloud Applications Security

Reengineering

In the last chapter we introduced our multi-tenant security engineering at runtime approach,

MDSE@R, to enable cloud services to reflect different sets of security requirements for

different tenants that emerge at runtime. However, MDSE@R does not help in case of cloud

services that have been originally developed with built-in security capabilities (functions).

MDSE@R helps in adding new security capabilities. Such new capabilities may conflict with

existing service security capabilities. In this chapter we introduce a new security reengineering

(retrofitting) approach that is used as a preprocessing step to help in disabling services’ built-in

security as well as mitigating system security vulnerabilities found in such services that may be

reported by a security analysis service (we introduce our approach in chapter 8). Our approach

is based on Reengineering-Aspects “Re-aspects” as a new concept we introduce to address and

capture the complex details involved in fulfilling such security reengineering tasks. This chapter

is organised as follows. Section 1 introduces an overview of software reengineering and key

limitation of the existing efforts. Section 2 introduces some motivating examples that we may

face during the security reengineering process. Section 3 provides an overview of the normal

change request management process that should be followed when conducting system

maintenance task. Section 4 provides an overview of our re-aspects concept. Section 5 describes

how re-aspects concept helps automating the change impact analysis task. Section 6 describes

how re-aspects concept helps automating change propagation task. Section 7 discusses,

SMART, our reengineering tool based on the re-aspects concepts along with the key

implementation details. Section 8 discusses a usage example that shows how SMART tool

works. Section 9 describes evaluation experiments of our approach. Section 10 discusses

strengths and weaknesses and areas for further research.

7.1 Introduction

Software systems are usually exposed to extensive changes and evolution after deployment.

This might be to address quality problems (e.g. fixing bugs), performance problems (e.g. too

slow), make use of new APIs or integrate with new systems (e.g. change system to use

company-wide LDAP authentication for single sign-on from a custom ID/password system), or

to fix security problems (e.g. found to be vulnerable to SQL Injection attack).

 Chapter 7: Cloud Applications Security Reengineering

Page 148

These maintenance activities represent up to 80% of the total system cost and effort [242].

System re-engineering is concerned with system understanding, organization, and migration

[165]. System maintenance [166] is concerned with post-delivery modifications to an existing

system in order to address new issues. These can be small spot-patches to major revision of

system architecture and codebase. Dynamic runtime adaptation is more a limited approach and

is sometimes used to handle post-delivery “unanticipated” requirements made while the system

is running [37, 174, 243]. System reengineering, refactoring and maintenance are concerned

with removing, modifying and replacing existing features as well as adding new system features

at design time. This requires: (i) capturing new features or modifications of existing features;

(ii) locating system entities that must be modified; (iii) locating system entities that is impacted

by this modification and should be modified; and (iv) propagating or reflecting the required

modification on the whole system.

A

B C

A

B

A

B C

A

B D

A

B C

A

B

A

B C

A

B C

B
ef

o
re

A
ft

er

Remove

Feature

Replace

Feature
Modify

Feature

Add

Feature

C
D

Figure 7-1. Possible system modifications and their impact on system entities

Figure 7-1 illustrates possible system modifications (types of change requests): (i) a feature

is removed (e.g. code taken away); (ii) a feature is replaced (e.g. old code replaced by new

code); (iii) a feature is modified (some old code replaced by changed code); and (iv) a feature is

added (new code is inserted into old code). In these scenarios, other features may be impacted –

e.g. the removal of feature C requires updating dependent features (A, B). This figure also

highlights a key problem which is that realizing a given system modification on a specific

feature (added, removed, modified, or replaced) requires modifying other related system

features that integrates (interacts or uses) the modified system feature. Below we discuss some

of the relevant efforts related to how we realize system modification/updating.

Existing system reengineering approaches focus on understanding the target system and

locating implemented features [177, 178, 181, 244], discovering implemented design patterns

[245], aspects mining [182], understanding source code evolution between different system

versions [246], applying system restructuring [247]. These efforts are limited in their

expressiveness and identification precision, as most of them are targeted to help program

 Chapter 7: Cloud Applications Security Reengineering

Page 149

understanding rather than supporting actual program modifications. On the other hand, the

existing system refactoring approaches [172, 173, 248] focus on specific refactoring patterns

and requires user involvement. Existing system maintenance approaches are limited to change

impact analysis [167-169, 249, 250]. Moreover, these approaches help in identifying what are

the impacted entities only. Specifying parts required to be updated and how to update them is

not addressed at all. Add to that, they focus on modifications on class, method and field level.

Thus block-of-code modifications are not addressed. Existing Syntactic pointcuts, such as those

delivered by AspectJ, are limited to arguments and attributes of the caller or the callee.

Although statement and block level interception do exist [251, 252], they depend on explicit,

manual, marking of statements or code blocks to be intercepted. Moreover, these syntactic

pointcuts are fragile under system evolution [253]. On the other hand, the semantics-based

pointcut specification approaches are more powerful than syntactic pointcuts [253]. Existing

semantics-based pointcuts are either informal and not powerful enough [254] [255] or formal

but are often very complex to use by software developers [256].

Aspect-oriented software development (ASOD) techniques repetitively applied to support

software maintenance [37, 174], re-engineering [182, 247] and refactoring [173, 248] for both

object-oriented and aspect-oriented programs [257]. On the other hand, existing AOP languages

such as AspectJ [258] and Caesar [259] support two types of crosscutting concerns: static

crosscutting concerns that impact the static structure and signature of program entities, and

dynamic crosscutting concerns that impact the system behavior by injecting code “advice” to

run at well-defined points in the program execution. The static crosscutting constructs supported

by AspectJ “inter-type declarations” are limited to adding new declarations and methods rather

than modifying existing system entities (classes, methods, attributes, fields). This is a key

limitation in adopting existing AOP approaches for software reengineering and maintenance

activities. The existing runtime dynamic system adaptation approaches are limited in their

capabilities in updating the running system with dynamic aspects (updating methods –

removing, modifying and replacing). Thus, static aspects (updating classes, inheritance

hierarchy, method signature, etc.) are not supported to be updated at runtime [175].

To address these issues, we introduce the concept of re-engineering aspects – or “re-aspects”

- as a novel integrated and systematic solution to the system re-engineering and maintenance

problem. A re-aspect can capture signature of system entities to be modified, actions required,

and code to apply on the identified entities. Then we analyse the system source code, locate

entities that match the specified signatures, conduct detailed impact analysis to identified

impacted system entities, and then propagate the changes required on these entities. Re-aspects

help in removing, replacing, modifying or adding code at any arbitrary code block. These code

 Chapter 7: Cloud Applications Security Reengineering

Page 150

blocks may have a heterogeneous and complicated signature that is more complex than can be

expressed using existing AOP approaches. Changes supported to be made on a target system

include removing declarations, method calls, sets of lines of code, or whole methods, etc. We

introduce two novel signature designators to help capturing formal and flexible semantic

signature expressions as well as flexible syntactic signatures.

Using the re-aspect de-weaving and replacement concept, we have developed a supporting

model-driven application reengineering tool, SMART. SMART captures a set of required target

system changes as re-aspects. These re-aspects are mapped to target system entities as a set of

change requests. SMART applies these change requests and updates the source code as

appropriate. We have validated SMART on our set of benchmark applications introduced in

Chapter 4.

7.2 Motivating Examples

Figure 7-2 shows example code snippets that need to be modified to satisfy different change

requests for a security retrofitting task (modifying application security capabilities). These code

snippets are excerpted from Galactic – our research project motivating example; a web-based

ERP system developed using .NET. These examples also show possible system modifications

for these change requests, the code with grey shading - i.e. required re-engineering of the

original code to address raised issues.

bool updateCustomerBalance(string custID, decimal nBalance) {

if(!AuthenitcateUser(username, password)) return false;

if(!AuthorzUser(username, "updateCustBalance")) return false;

LogTrx(username, dateTime.Now, "updateCustomerBalance");

Customer customer = Customers.getCustomerByID(custID);

customer.Balance = nBalance;

Customers.SaveChanges();

LogTrx(username, dateTime.Now, "updateCustBalance done");

}

if(Request.Cookies["Loggedin"] != true) {

 if(!AuthenticateUser(Request.Params["username"],

 Request.Params["password"]))

 throw new Exception("Invalid user");

}

DoAdministration();

A

B

 Chapter 7: Cloud Applications Security Reengineering

Page 151

bool updateSalary(string userID, strig password, string staffID, decimal nSalary) {

IDManager idm = IDManager.getIDManager();

if(idm.CheckAccessOk(userid, password, "updateSalary") {

Staff staff = Staff.getStaffByID(staffID);

staff.Salary = nSalary;

staff.SaveChanges();

}

 else {

 throw new BadAccessExcption("user is not authorized");

}

}

if(!AuthenticateUser(Request.Params["username"],

 Request.Params["password"]))

throw new Exception("Invalid user");

if(!AuthorizeUser(Thread.CurrentPrincipal,

 (new StakeFrame()).GetMethod().Name,

 (new StakeFrame()).GetMethod().GetParameters()))

 throw new Exception("User is not auhorized");

updateCustomerBalance(Request.QueryString["cID"], nBalance);

Inputsanitizer((new StakeFrame()).GetMethod().GetParameters());

string query = "SELECT * FROM USERS WHERE UserID = '"

+ EncodeForSQL(username)

+ "' AND password = '"

+ EncodeForSQL(password) + "'";

void public onbtnSave_Click(….) {

string TenantID = Session[“TenantID”];

BusinessLayer.UpdateCustomerBalance(TenantID,…);

 …

}

Figure 7-2. Examples of code modification snippets

C

D

E

F

 Chapter 7: Cloud Applications Security Reengineering

Page 152

Figure 7-2-A, we have old security function calls throughout the codebase that we want to

disable in order to integrate the application with the customer environment security controls.

Customer security engineers want to replace this with a declarative security e.g. attribute-based

webserver security – through configuration files. We need to update every method that has this

shaded code and delete these obsolete lines of code, or replace, modify, insert this shaded code.

In Figure 7-2-B, the code is vulnerable to authentication bypassing attack as it depends on

user inputs (stored in a cookie) to check if the user is logged-in or not. If the user is not logged-

in, they will be authenticated using “AuthenitcateUser” function. A malicious user can modify

the cookie file to bypass the authentication process. One possible mitigation problem is to

replace checks on user cookies with a session variable managed by web server.

Figure 7-2-C, we have a more complicated example where we need to modify the method

signature (parameters) to remove the userID and password parameters. Moreover, relevant code

using these parameters should be removed.

Figure 7-2-D shows code vulnerable to improper authorization attack as user inputs are not

authorized before being used. A malicious user can pass invalid data to retrieve information

they are not authorized to see. A possible mitigation is to authorize every user input before

using within the system. This is done by modifying the old code to do this checking i.e.

injecting code to perform request authorization and input data authorization.

In Figure 7-2-E we have code that uses user inputs directly in SQL statements without

sanitization. A malicious user may enter data to execute unauthorized commands. A possible

mitigation to this problem is to conduct input sanitization before constructing the SQL statement

or precede references to user inputs with encoding functions. This requires inserting code, at

statement level, to carry out the checking of user inputs used in dynamically SQL statements.

In Figure 7-2-F shows a code snippet from the presentation layer (webpage) that must be

modified to inject code that retrieves tenantID session variable. Moreover, we need to modify

business functions to pass in tenantID parameter.

7.3 Change Request Management Process

In order to develop a realistic solution to the software systems (security) reengineering, we

studied how software vendors realize such system modifications. We figured out that any

software house operates a change request management process that defines and manages how

software systems could be changed. Developers frequently receive change requests (CR) from

customers, marketing and sales teams, and application implementers. These require them to

modify, disable or add new features to one of their delivered systems. The change request

 Chapter 7: Cloud Applications Security Reengineering

Page 153

management process is initiated once a new CR is received or as planned in the project. This

process is conducted to determine and document expected impacts of the CR on system artifacts

including requirements, architecture, design, and source code. This helps in estimating cost and

effort required to realize the given change request.

Initial analysis

Impact Analysis
Change

Propagation

Change Set

Impact
Set

Change
Verification

Updated System

System Artifacts

Figure 7-3. Our simplified change request management process

The change request management process, as shown in Figure 7-3, starts with assigning the

CR to a development team to conduct an initial impact analysis. The results of the initial impact

analysis are maintained in a “change set”. This task is usually broken down into subtasks that

are assigned to different stakeholders (business analyst, software architect, designer, developer,

and tester). Each item in the change set may be removed, modified, replaced, or new code,

model entity, or test case injected. Next, a deeper analysis is then conducted by stakeholders to

develop the “impact set” which includes items to be impacted by changes to entities in the

“change set”. Both sets are used to assess the time and cost required to effect the change.

Thirdly, software stakeholders propagate the specified system modifications on target system

entities including system requirements, architecture, design, source code, and test cases. Finally,

stakeholders have to verify the changes made using appropriate reviews and test suites.

This software maintenance process is challenging as different system entities at different

abstraction levels may need modifying; code may be developed with different programming

languages; and a change may touch code parts with different syntactical format (variable name,

conditions’ order, format) that perform the same function. An effective approach that facilitates

system maintenance activities requires: capturing complex code signatures ranged from a class

name down to a block of code; locating change set for the required modifications; identifying

impacted system entities; propagating the required modifications on the target system source

code and models; support abstract signatures’ definition and analysis. In this chapter we focus

on supporting automation of the first three tasks in the change management process. Testing can

also be automated using the change and impact sets, checking pre and post conditions that must

be satisfied by modified entities (this needs to be specified by re-aspects’ developers). However,

 Chapter 7: Cloud Applications Security Reengineering

Page 154

we also test that the modifications introduced did not break the validity and integrity of the final

system executable file.

7.4 Reengineering Aspects - “Re-Aspects”

The reengineering aspects (“re-aspects”) concept is motivated by the change request

management process we discussed above. The relevant information required to realize a given

change request is consolidated in a re-aspect. Then, using our re-aspects engine, we automate

the change impact analysis required and change propagation of system modifications. Re-

aspects concept is inspired by traditional AOP, but aimed at supporting system re-engineering

and maintenance. In re-engineering, an existing application has code scattered throughout its

codebase that we need to remove, replace, modify, or add additional code to, in order to effect

the desired changes. In fact, we want to identify such code blocks, sometimes disabling them,

sometimes replacing, sometimes selectively modifying, and sometimes inserting new code into

them. Such code blocks can be coarse-grain (classes and methods) or fine-grain (lines of code).

Moreover, these blocks may have different formats, structures or even programming languages.

This leads us to the concept of re-engineering aspects, or “re-aspects”. A re-aspect is analogous

to the “aspect” in traditional AOP excepting that signatures are more complicated and more

actions could be applied on matched source code blocks in the target system.

Re-aspect ::= s:[Sign] a:[Action] d:[Advice] i:[Impact]

Sign ::= NULL | st:SignType se: [Signature Expr] | Sign Sign

SigType ::= code-snippet | OCL-expression

Action ::= at:ActionType

Action Type ::= Delete | Modify | Replace | Inject

Impact ::= NULL | Re-aspectDef | Impact

Figure 7-4. Re-aspect Syntax

Each re-aspect has signature, action, advice, and impact parts. The syntax of re-aspects is

shown in Figure 7-4. A re-aspect signature(s) captures invariants that describe footprints of the

target system entities that should be deleted/modified/replaced or into which new code is

inserted. These may be a line of code, whole method, or a class. A re-aspect instance is a

specific system entity that matches a given re-aspect signature. A re-aspect instance maintains

its specific context information – i.e. location, parent entity, children, etc. The set of re-aspect

instances represent the change set. A re-aspect action specifies what to do on each matching

entity. A re-aspect impact represents the re-aspect that handles system entities impacted by a

given system modification. This may be entities that are directly impacted by the modification –

 Chapter 7: Cloud Applications Security Reengineering

Page 155

i.e. after modifying a method name; all methods that call this method should be updated.

Moreover, the re-aspect developer can define signatures of other entities that should be modified

as well e.g. methods in the same component, methods that have specific signature, etc. These

are called heuristics-based impact analysis. We categorize possible system re-aspects into four

types according to specified re-aspect action:

– Adding re-aspect (used in situations similar to Figure 7-2-D): this is a conventional aspect

like what traditional AOP can deliver. Code to be injected is specified in a separate advice

that is weaved with the target system at a given re-aspect instance. Unlike many existing

AOP techniques it has capabilities to add to any static code structure (including new

method, field, and lines-of-code) to system entities.

– Deletion re-aspect, or “anti-aspect” (used in situations similar to Figure 7-2-A): this is a

special case re-aspect that has only signature and no advices. The identified re-aspect

instances, e.g. classes, code blocks, are removed from the target system.

– Replacing re-aspect (used in situations similar to Figure 7-2-C): this re-aspect is a

combination of deletion and adding re-aspects. It includes signature of code to be removed

and an advice specifying new code to be added.

– Modifying re-aspect (used in situations similar to Figure 7-2-B): this is the most

complicated re-aspect. It allows a developer to specify selective deletion, reordering, or

addition of new elements into matched code instances. For example, the problem in

Figure 7-2-B should be mitigated using a modifying re-aspect. It receives the identified re-

aspect instance (an Abstract Syntax Tree - AST node) as input parameter. At weaving time

we call the modifying aspect script on each identified instance. The returned, modified AST

is used to replace the original sub-tree.

7.5 Change Impact Analysis

The software reengineering and maintenance domain requires expressive and accurate signature

specification approach to identify target system structures on which to apply changes. Exiting

impact analysis efforts assume that the software developer knows exactly what entities need to

be modified in order to satisfy the system modification request. However, in re-aspects, we start

one step earlier to help developers build the change set (entities that need to be modified). This

is facilitated through the specification of signatures of entities that should be modified in the

target system. Using these same signatures we can locate entities that will be impacted by

specified modifications. Re-aspects’ signatures are specified using a hybrid approach that

delivers flexible syntactical code signature specification and semantic Object Constraint

 Chapter 7: Cloud Applications Security Reengineering

Page 156

Language (OCL)-based signature specification. Below we introduce our proposed signature

specification approaches.

7.5.1 Code Snippet Signature Designator

Re-aspects’ developers can specify flexible code snippets as a re-aspect signature i.e. a pattern

to match parts of the target system that needs to be modified. Developers can use the code

snippet template shown in Figure 7-5. To avoid fragility problems related to using lexical

pattern matching [178], or being specific to code written in specific programming language, our

code snippet signature matching algorithm works on source code abstract syntax tree (AST). A

“Dummy” keyword acts as a ‘*’-like wild card in regular expressions (we cannot parse or

compile code with * in C#). For example, using myClassDummy instead of Dummy for a class

name means the developer wants to locate classes that start with ‘myClass’ in any namespace

with any contents. If a developer is assured in which namespace the code match is expected they

can modify the Dummy namespace (line 2). The same applies with class name - a class name

can be specified or leave it as “Dummy” (line 4), and for method names (line 6). Signatures can

be matched with code blocks inside method body. A developer can specify a code block to

locate regardless where this block is located. If they do not know details of the code block, they

use “Dummy” (line 8). This indicates that all statements in the method body will be ignored

until a match between the target method statements and the next statement in the signature is

found (A = Dummy). Same applies to control statements (if, while, …).

1 //update namespace or class with specific name if any

2 namespace Dummy {

3 class Dummy {

4 // update method modifier, return type or

5 // name for specific method signatures

6 public void Dummy () {

7 // update method body in case of code block re-aspect

8 A = Dummy;

9 if (Dummy) {

10 }

11 } // end of Dummy Method

12 } // end of Dummy Class

13 } // end of Dummy Namespace

Figure 7-5. Code snippet re-aspect template

 Chapter 7: Cloud Applications Security Reengineering

Page 157

7.5.2 Semantic OCL-based Signature Designator

To support semantic re-aspect signatures we use the Object Constraint Language (OCL) as a

signature definition language. Below we summarize some of the key features of the OCL and

explain how we succeed in using OCL to capture signatures of system entities to be located in

different software artifacts.

Syntax Example

package PackageName

 context TargetEntity

 inv InvariantName:

 OCL expression

endpackage

package SecurityTesting

 context Class

inv PublicMethods:

 self.Methods->select(M | M.IsPublic = ‘true’)

endpackage

Figure 7-6. OCL expression format and example

Table 7-1. List of possible operations in OCL

OCL Operation Description

Exists check if the given collection of elements contains elements that satisfy a

given expression

ForAll Is used to check if the given collection of elements satisfies (all) a given

expression

Select Returns all elements in a given collection that satisfy a given expression.

Reject Returns all elements in a given collection that does not satisfy a given

expression.

Iterate Iterate on all elements in a given collection checking for satisfaction of a

given expression

Sequence Returns a sequence of elements that satisfy specific Type T

First, Last Returns the first/last element in a collection

Intersection Returns a collection containing all elements of a given collection A

contained by B

7.5.2.1 Object Constraint Language (OCL)

OCL is a declarative, formal language that helps in specifying rules with “invariant conditions”

that should be satisfied in a given model or in query expressions over objects in such model

[179]. OCL was developed to overcome the problem of specifying such constraints using

natural languages which lead to ambiguity problems. Thus, OCL was introduced as a formal

 Chapter 7: Cloud Applications Security Reengineering

Page 158

language that can capture such signatures in a formal way. Unlike traditional formal languages

such as linear temporal logic (LTL)) and computational tree logic (CTL) that heavily depend on

mathematics and hard for many software engineers to use in writing invariant expressions; OCL

uses a more familiar and easy to use syntax and semantics to capture such signatures. OCL

expressions are declarative i.e. they have no side-effects on the target systems. Figure 7-6 shows

the basic syntax of an OCL expression. OCL expressions (invariants) are usually consolidated

in packages. Each invariant should have a context entity that specifies where this invariant

should be applied. Moreover, the context attribute is used to load the entity properties and

operations that could be used in the specified signature. OCL is supported with many functions

that could be used in defining invariant expressions. Table 7-1 shows some examples of the key

functions supported by OCL. OCL is also an extensible language. Thus, we can use common

expressions as base expressions (base functions) to create complex expressions to be used in

developing more complex invariants.

7.5.2.2 System Description Meta-model

We developed a system description meta-model, shown in Figure 7-7, that captures all entities

in any object oriented programming-based system including component, class, instance,

method, inputs, input sources, control statements, etc. It also reflects key attributes and relations

between these entities. Moreover, it can be extended to capture more system details such as

platform APIs, or more abstract system entities and relations such as security APIs and system

or security models.

This model is used in validating OCL re-aspect signatures and in generating code to look for

matches in target system entities. Table 7-2 shows examples of re-aspect OCL-based signatures

at different levels of abstraction: (a) a signature that specifies all public methods that belong to

classes derived from ASP.NET Page class; (b) a signature that specifies all methods that call

EXEC_SQL function; (c) a signature that specifies all public classes that implement the

customer management system feature.

Table 7-2. Samples of Re-aspect signatures as OCL expressions

A Context Method inv PresentationLayerPublicMethods:

 self.IsPublic = true and self.Class.BaseClass = “Page”

B Context Method inv MethodsMayContainSQLInjection:

self.Body.Contains(stmt:MethodCall | stmt.MethodName = “EXEC_SQL”)

C Context Class inv MethodsImplementCustMgmtFeature:

 self.IsPublic = true and self.RelatedFeature = “CustomerManagement”

 Chapter 7: Cloud Applications Security Reengineering

Page 159

Figure 7-7. System description meta-model

7.5.3 Code Snippet or OCL Semantic Signatures

The selection between using code snippet or OCL when specifying re-aspect signatures depends

on the type of entities that we want to retrieve, experience with the software, and re-aspects’

developers skills. OCL can support more abstract/semantic signatures such as retrieve list of

methods that use methods from other components. Another example for OCL signatures is

retrieving all methods that use user inputs in calling critical functions without sanitization (SQL

Inject attacks), etc. Capturing these signatures using code snippet is more complicated. On the

 Chapter 7: Cloud Applications Security Reengineering

Page 160

other hand, some signatures for code blocks with specific structure can be easily captured using

code snippet approach. For example, retrieve all classes that start with a prefix or postfix or call

specific methods. This signature is easier in code snippet than OCL.

7.5.4 Generating Change Set

The list of entities to be modified in order to effect a given system modification is generated

using re-aspect signatures specified as either a code snippet or as an OCL signature. We have

developed two algorithms (discussed in the implementation section) that analyse system source

code to retrieve the change set. Algorithm 1 (for code snippet signatures) traverses the AST of

the source code and re-aspect signature looking for matching sequences (taking into

consideration the dummy nodes). Algorithm 2 generates a system model from the system source

code that confirms to our system description meta-model. Then, it generates C# code from this

OCL signature. The C# code analyses the generated system model looking for matched entities

that satisfy the specified conditions.

7.5.5 Generating Impact Set

In traditional AOP we have code to be injected encapsulated as a self-contained advice, separate

from the target joinpoint itself and executed as separate method call before/after/around the

joinpoint. Thus no impact analysis is required. However, re-aspects handle more complex

scenarios as we modify existing code parts that have similar signature but different structure and

format and are located in different places. Thus any system modification requires a detailed

impact analysis to identify other system entities that should be updated, other than the identified

re-aspect instances, as part of code modification. Many efforts do exist in this area using

heuristic rules, use-dependency relations, structural containment relation, or even hybrid

techniques [260]. However, a key limitation of these efforts is that they do not deliver high

soundness and completeness. Moreover, they do not support customizable user-defined impact

analysis techniques that retrieve impacted entities with different relations with entities that

belong to the change set. Re-aspects does support defining such customizable variations using

OCL to capture signatures (techniques) to be used in retrieving such entities. Examples of

supported impact analysis techniques are discussed below.

7.5.5.1 Impact Set Using Dependency Relations

For each re-aspect instance (in the change set) we compute a corresponding impact set based on

the re-aspect instance type (class, method, property, field, line-of-code). Any given code

 Chapter 7: Cloud Applications Security Reengineering

Page 161

modification will have either local impact (on the method level) or global impact (other system

entities will be impacted) based on the re-aspect instance as follows:

Table 7-3. Samples of impact analysis signatures using OCL signatures

A Context Method inv GetImpactedMethodsforMethod:
 Self.Contains(S:MethodCall|

 S.MethodName = “ModifiedMethod”)
B Context Method inv GetImpactedMethodsforClass:

 Self.Contains(S:NewObj | S.ClassType = “ModifiedClass”)
C Context Method inv GetImpactedMethodsContainment:

 Self.Statements.Contains(S:NewObj | S.ClassType = ModifiedPropert.Class)
D Context Method inv GetImpactedMethodsContainment:

 Self.Class = ModifiedMethod.Class

– Block-of-Code: if the re-aspect instance is a block-of-code, including declarations,

assignments, control statements, then it will have local impact only – i.e. it will impact other

code blocks in the same method, but it will not impact other entities, thus the corresponding

impact set is empty.

– Method: if the re-aspect instance is a method, then it will have a global impact. To compute

the impact set, we locate methods and properties that contain method calls to the modified

method. Table 7-3(a) shows the signature used to identify method impact set.

– Class: if the re-aspect instance is a class, then it has a global impact. The change impact set

contains all methods that have identifiers of this class; properties of this type or have

identifier of this type; fields of this class type; and classes that have this class as base class.

Table 7-3(b) shows a sample signature used to identify class impact set.

– Property: if the re-aspect instance is a property, then it has a global impact. To compute the

change impact set, we locate all methods that have this property in any expression statement

– e.g. assignment, call, if condition, loops. Table 7-3(c) shows a sample signature used to

identify property impact set.

7.5.5.2 Containment-based and Heuristic-based Impact Set

Different impact set identification techniques can be supported using our OCL-based signatures.

For example, the containment-based approaches focus on retrieving entities that are co-located

in the same component with the modified entities. Table 7-3-D shows a simple OCL signature

that can retrieve such entities. Heuristic-based approaches focus on capturing patterns of system

modifications from history or relations between system entities. To support these approaches,

we have to modify our system description meta-model to capture source code versioning

information. Then, we can develop OCL signatures that retrieve entities that are usually

 Chapter 7: Cloud Applications Security Reengineering

Page 162

modified together. Re-aspect developers will need to write impact analysis signatures once and

then use them as templates to retrieve impact set of every system modification.

Table 7-4. Samples of code modification advices

Re-aspect type Advice

A Modify Method Signature Method.Parameters.Add(new Parameter(“TenantID”, “Guid”)

B Inject code to extract TenantID string currentTenatID=Session[“TenantID”];

C Modify Method Invocation InvocationExpression.Argument.Add(new

IdentifierExpression(currentTenatID));

D Inject code to add TenantID

Param

db.AddInParameter(command, "tenantId", DbType.Guid,

tenantId);

Figure 7-8. Control and Data flow analysis, local impact analysis

7.6 Change Propagation

Automating the change propagation phase in software reengineering and maintenance is very

challenging. Refactoring techniques do apply some code modifications. However, these

techniques depend on the nature of refactoring problem where predefined templates are used to

identify bad smells and fix such code snippets using code modifications [172]. The change

propagation of a given system modification depends on the re-aspect type (action) - to insert,

delete, replace, or modify code of the located re-aspect instance.

To avoid inconsistency problems that may arise from repetitive updating of system source

code and to support different system components that may be developed with different

programming languages, we conduct change propagation on system source code ASTs. Then,

we generate the final code version from the updated AST. Comments are saved when parsing

source code to the AST and re-inserted in the re-generated source code. Entities in the impact

 Chapter 7: Cloud Applications Security Reengineering

Page 163

set are updated using the re-aspect impact part. Table 7-4 shows examples of re-aspect advices

and their corresponding actions from the multi-tenancy reengineering domain, we are going to

discuss in the case studies chapter. In Table 7-4(a) we have a modification advice that adds

tenantID parameter of type GUID to a method signature. In Table 7-4(b) we have an inserting

advice that has a block-of-code to be injected. In Table 7-4(c) we have modification advice that

adds a parameter to the method call. Table 7-4(d) we have an injection advice that injects a new

code block to a method at the matched location. It is worth noting that the modifying re-aspect

requires that the advice is developed as code to be used in modifying the system entities AST.

Moreover, we do not have advices for deletion re-aspects because it only deletes code with no

update. Finally, the replacing and injection re-aspects have the same advices except that a

replacing re-aspect has a pre-weaving step that deletes matched entities.

Whenever a system modification requires updating a method body, confirming that changes

do not cause cascading problems is an extremely hard problem in general and requires a deep

understanding of the logic behind the code block. Here we focus on confirming that the added,

removed, replaced, or modified code does not break the data flow or the control flow between

the blocks before and after the modified block, as shown in Figure 7-8. Data flow analysis

(DFA) helps in confirming that the required data for the modified block is available from

previous blocks and that the next blocks in the same method still have the required data items

(Figure 7-8 - cases 1, 2, 3). In case 1, we removed a block of code (block A). This means that

we need to make sure that data required to execute block B3 still available. In case 2, we are

interested in adding block A, so it is important to make sure that data required by block A is

already available from the previous blocks. The control flow analysis (CFA) helps in

confirming that the modification does not lead to unreachable code (case 4).

We can use re-aspects at the model level as well as code level, to support model-driven

engineering practices. Identified change set and impact set can be used to highlight (using

different format – e.g. color) system UML model entities that must be modified (change set) and

entities that should be modified (impact set). Developers can then update the target system

models to effect required changes. Using model-driven engineering, they can propagate such

changes on system source code level. Developers can continue to use re-aspect’s code change

propagation component. Updates are applied on code entities in the change and impact sets.

Updated source code could be used to update back and synchronize system model entities. This

helps in resolving the source code and models inconsistency problem that arise from frequent

code updates that are often not reflected on system models.

 Chapter 7: Cloud Applications Security Reengineering

Page 164

7.7 SMART: A Re-aspect Engineering Tool

In order to support re-engineering with re-aspects, we have developed SMART (Supporting

Model-driven Application Reengineering with Re-Aspects). We outline the key components of

SMART as shown in Figure 7-9and its usage in re-aspects-based re-engineering as below:

Re-aspect Engine

Change Propagator

Impact Analyser

Re-aspect Locator

AST Generator

Target Code Base

Source Code Base

R
e

-a
sp

ec
t

 M
o

d
el

le
r

P
er

sp
ec

ti
ve

 M
o

d
el

le
r

1

4

5

6

3 2

Figure 7-9. SMART tool architecture

Given the system codebase, SMART extracts system abstract representation as shown in

Figure 7-9(1). Using a set of different programming languages parsers, we can build an abstract

syntax tree (AST) of the input program codebase. We use AST as a program representation

because it is a quick, straight forward transformation and still maintains all necessary

information about the source code. In the meanwhile, it leaves out unnecessary details related to

formatting and grammar details. Moreover, we can easily regenerate the same code from a given

AST which is still required in the change propagation phase. SMART generates a system class

diagram from the generated AST. This class diagram helps easing the next steps for the re-

aspects developers. We use NReFactory, an existing .NET parser, which supports VB.NET and

C#. We developed a class library to transform generated AST into a more abstract

representation that conforms to our system description model Figure 7-7.

Software engineers develop different perspective models to be used in the change

management process, as shown in Figure 7-9(2). This step is optional in our proposed re-

engineering process. However, it is crucial for two reasons: First, to help specifying re-aspects’

signatures that take into consideration different system perspectives – e.g. get all methods that

realize a given system feature, included in a given test case or belongs to a certain system

component. Second, to identify possible system entities that will be impacted as a result of a

given change request – e.g. disabling a system function may require updating the system test

cases to drop related test cases or even drop a system feature at all. Possible system perspectives

 Chapter 7: Cloud Applications Security Reengineering

Page 165

include system description models (SDM, Chapter 6) such as features model, system security

model, system test cases, etc. Developing a perspective-aware reengineering and refactoring

tools, that avoids inconsistency problems between the updated code and system models, is an

open research challenge in the system reengineering field [154]. SMART system perspectives

modeler is extensible. Developers can define a perspective meta-model, develop a parser to

parse perspective models (or scripts – e.g. test case script or configuration files) and start

creating and linking instances of system perspectives with source code entities modeled as

system class diagram entities – e.g. marking classes or methods that deliver a certain feature.

System engineers specify system modifications they want to carry out on the target system

using re-aspects, as shown in Figure 7-9(3). For each required system modification, system

engineers develop a set of re-aspects that delete, replace, modify, or insert code at different

places with different signatures. Developers have two options: (i) to use SMART modification

guide, set of extensible patterns we developed, based on our analysis, and shown in Table 7-5,

to facilitate the re-aspect specification process. This will save time in developing re-aspects and

at the same time avoid fragile and incomplete signatures; or (ii) to specify re-aspects manually.

In this case, the system engineers first specify where they want to touch the source code using

re-aspects’ signatures. This may be a code snippet written in one of the supported programming

languages (currently C# or VB.NET) or using OCL constraints. Next, they need to define the set

of modifications (advices) to be applied on the identified re-aspect’ instances. Finally, system

engineers specify actions (link advices with signatures) to be applied on each matching entity.

This includes replace, modify, inject with suitable conditions – e.g. apply this action on all

identified instances that within method X but for method Y apply different actions.

Given the source code, perspectives models, and re-aspects model, SMART starts locating

re-aspects’ instances as shown in Figure 7-9(4). Given the re-aspect definitions, SMART checks

the aspect signature type first. If the signature is a code snippet it traverses the source code AST

looking for matches to the given re-aspect signature. Otherwise, OCL-based, it generates a

corresponding re-aspect check class (in C#) that implements the OCL specified constraints. This

class parses the system description model (extracted from the source code) to identify entities

with matching signatures.

 Chapter 7: Cloud Applications Security Reengineering

Page 166

Table 7-5. Part of system modification patterns and related Impacts

L
ev

el

ID Modification Re-aspect Signature Action Advice
Impact

(By ID)

C
la

ss

1 Delete class parent self.ClassName == “MyClass” Modify self.BaseClass == “” 5, 11

2
Decrease Accessibility or

Add Static modifier
self.ClassName == “MyClass” Modify

self.Modifier.Add(“New Modifier”)

self.Modifier.Remove(“Old Modifier”)
9

3 Change Class Name self.ClassName == “MyClass” Modify self.ClassName==”NewClassName” 10

M
et

h
o
d

4 Delete a method self.MethodName==”MyMethod” Delete self.Class.Methods.Delete(MyMethod) 11

5 Change method signature self.MethodName==”MyMethod” Modify self.Modifier.Remove(“virtual”) -

6 Add static self.MethodName==”MyMethod” Modify self.Modifier.Add(“static”) 12

7 Change return type self.MethodName==”MyMethod” Modify self.Returntype == “New Type” 13

8 Add Parameter self.MethodName==”MyMethod” Modify Self.Parameters.Add(new Parameter(…))

S
ta

te
m

en
t

9 Delete Class Instance Body.Contains(Createobj(“MyClass”)) Delete

L
o

ca
l

Im
p

ac
t

10 Modify Class Instance Body.Contains(Createobj (“MyClass”)) Replace

Modify

new NewClassName(…)

self.TypeReference = “NewClassName”

11 Delete Method Call Body.Contains(InvocExpr (“MyMthd”)) Delete If self.ReturnType = void Then Delete

Else Replace with null

12 Modify to call static mthd Body.Contains(InvocExpr (“MyMthd”)) Modify Self.ReferenceType=

 “MyClass.MyMethod”

13 Modify Called Method

Return Type

Body.Contains(InvocExpr(“MyMthd”)) Replace NewReturnType t = MyMethod(…)

 Chapter 7: Cloud Applications Security Reengineering

Page 167

Figure 7-10. A snapshot of the SMRT signature locator

1 2

3 4

5

Target code in
VB.Net Anti-aspect in C#

 Chapter 7: Cloud Applications Security Reengineering

Page 168

Figure 7-9 shows a snapshot of the re-aspect locator with GUI interface. Given the system

source code (1), re-aspects definition (2), the re-aspect locator parses the system source code (3)

and generates the corresponding AST. Then the locator parses the supplied re-aspect and

generates the corresponding AST as well. Finally the locator traverses system AST searching

for matches against re-aspects AST using either code snippet matching algorithm (algorithm 1)

or OCL matching algorithm (algorithm 2, after converting the AST into abstract system model)

and generates a list of identified re-aspect instances (5). The selection between these matching

algorithms depends on re-aspect signature type. If it is code snippet then apply algorithm 1, else

apply algorithm 2.

- Algorithm 1: The aspect locator, shown in Figure 7-11, traverses the input source code AST

and the input re-aspect code snippet AST looking for matches. The matching takes into

consideration the node hierarchy in both the signature and the system code. It iterates

through the source code AST comparing with the signature AST treating the dummy

constructs as “do not care” nodes in the AST.

- Algorithm 2: Is based on compiling and validating the given OCL signature, shown in

Figure 7-12, using an OCL parser against the system meta-model from Figure 7-7. Then we

generate C# class from the given re-aspect OCL signature. This class performs checks on

system entities to locate entities that match the specified constraints that have been converted

into set of conditions in C#.

Given the outcomes of the re-aspect signature locator, the impact analysis component,

Figure 7-9(5), traverses the AST looking for nodes that depend or use any of the modified

system entities using impact analysis signatures as in Table 7-3, and matching algorithm 2

shown in Figure 7-12. The results of the impact analysis component are system impacted

entities as in Table 7-5 - the impact analysis column. The identified modifications are added to

the re-aspect impacted entities to be considered in the re-aspect enforcement phase.

Given the identified instances of the current re-aspect, SMART executes the specified

actions for the given re-aspects including injecting code (adding re-aspect), removing code

(anti-aspect), replacing code (replacing re-aspect), or executing the aspect code (modifying-re-

aspect), as shown in Figure 7-9(6). The re-aspect enforcer compiles the resultant code to make

sure that no compilation errors have been introduced. The code injected by the enforcer depends

on the target system entity language not on the aspect language – e.g. if the aspect defined in C#

and one of the system components is written in VB.NET, the generated code will be in C# for

all places except for the VB.NET component. Then, SMART updates the system AST, class and

perspectives diagrams with the realized modifications including deleting/adding classes,

 Chapter 7: Cloud Applications Security Reengineering

Page 169

methods. Steps 3-6 should be repeated for every change request. These steps comprise the same

scenario followed by any developer when implementing a given change request.

Figure 7-11. Syntactical code snippet matching algorithm

Procedure CheckNodes

 Set SigAST = Call Generate signature AST

Set StartNode = codeAST.CurrentNode

CheckNodes: //Recursively traverse the source code AST

IF code-AST.CurrNode = NULL THEN

 Exit

Dummy = True

IF SigAST.CurrentNode.Contains("dummy") == True

 DummyStatement = True

END IF

IF (codeAST.CurrNode.Type == SigAST.CurrNode.Type)

OR (Dummy = True AND codeAST.CurrNode = SigAST.NextNode) THEN

BEGIN

 Result = Call CompareNodes(codeAST.CurrNode, SigAST.CurrNode)

 IF Result = True THEN //Nodes are equal

 BEGIN

 Set codeAST.CurrNode = codeAST.NextNode

 Set SigAST.CurrNode = SigAST.NextNode

 END IF

 ELSE IF Result = False THEN

 BEGIN

 Set StartNode = StartNode.NextNode

 Set codeAST.CurrNode = StartNode.NextNode

 Set sigAST.CurrNode = SigAST.Root

 END IF

 GOTO CheckNodes

END IF

ELSE

BEGIN

 Set codeAST.CurrNode = codeAST.NextNode

 Set StartNode = codeAST.CurrNode

 GOTO CheckNodes

END IF

 Chapter 7: Cloud Applications Security Reengineering

Page 170

SigAST = Call ParseOCL(OCLSig)

SigClass = Call GenerateC#(SigAST)

SigInstance = Call CreateInstance(SigClass)

SystemModel = Call ExtractSystemModel(codeAST)

Foreach entity in SystemModel DO

IF entity.Type == SigClass.ContextType THEN

BEGIN

 Var Output = SigInstance.InvariantName_Test(entity)

 MatchesList = Output.ToList()

END IF

Figure 7-12. Semantic OCL signatures matching algorithm

7.8 Usage Example

To demonstrate re-aspects and SMART capabilities, we apply it on Galactic application,

introduced in Chapter 1, and security reengineering examples described in Section 2. SwinSoft

engineers were given a set of change requests and security vulnerabilities/bugs to correct in

Galactic. The list of change requests required to be realized includes: disabling built-in security

controls, and solving the set of reported security bugs/vulnerabilities reported by Auckland,

including SQL injection vulnerability and incorrect authorization approach. We illustrate this

security reengineering scenario via screen dumps from SMART tool.

Figure 7-13. A snapshot of Galactic class diagram

 Chapter 7: Cloud Applications Security Reengineering

Page 171

Figure 7-14. A snapshot of the Galactic security model

<code snippet>
LogTransaction(Dummy)

<anti-aspect>
Logging disable aspect

Signature

<replacing re-aspect>
Authn-Authz disabling aspect

Signature

<code snippet>
AuthenticateUser(Dummy)

<code snippet>
AuthenticateUser(Dummy)

Figure 7-15. Req. 1 – Security disabling – re-aspects model

<OCL>
Improper Authorization Signature

<OCL>
Authentication Bypass Signature

<OCL>
SQL Injection Signature

<adding re-aspect>
SQL Injection

<adding re-aspect>
Improper Authorization

<adding re-aspect>
Authentication Bypass

Signature

Signature
Signature

Figure 7-16. Req. 2 – Vulnerable code – re-aspects model

1. Model System Diagrams: Given Galactic codebase, SMART loads and parses the source

code and generates the corresponding AST. Using this AST, SMART builds a class diagram

reflecting all classes, methods, attributes and relationships defined in Galactic – in

Figure 7-13.

2. Model System perspectives: SwinSoft engineers upload system UML models they are going

to use in their change request implementation process or they want to include in the impact

analysis phase. Here we model Galactic security APIs in a system security model, as shown

 Chapter 7: Cloud Applications Security Reengineering

Page 172

in Figure 7-14. This model is used as a reference in specifying re-aspects’ signatures. Each

entity in the security model shows the security control name, APIs, and the security control

family.

3. Model Re-aspects: SwinSoft system engineers then model changes discussed in section

2 in terms of re-aspects model as shown in Figure 7-15 and Figure 7-16. Here we consider

two requirements: disabling a set of built-in security controls; and patching a set of reported

vulnerabilities as discussed in section 2. For requirement 1, security engineers determined

three security controls (authentication, authorization and logging) need modification. These

security controls changes are defined by three re-aspects’ signatures. These signatures are

defined as code snippets with only one line of code “security_fn_name (dummy-params)” –

e.g. AuthenitcateUser(Dummy), developers may use an OCL signature instead. Next,

security engineers identified two situations to take out the built-in security functions.

Security functions used in If-Else statements, the security function call is replaced with

“true”, and security controls that are used in a simple method invocation (such as logging).

In this case we just de-weave. For requirement 2, SwinSoft has been notified with three

vulnerabilities in Galactic including improper authorization, authentication bypass, and

SQLI shown in Figure 7-2. SwinSoft Security engineers figured out that it is better to

describe these vulnerabilities in OCL – as shown in Figure 7-17. The authentication bypass

re-aspect signature is defined as “any If-Else statement that contains a user input and the If-

Else body has an invocation expression to the authentication API”. For this re-aspect we

need to modify this vulnerable code as shown in Figure 7-2. The improper authorization is

defined as “any statement that uses user input without being checked by the authorization

API”. Finally SQL injection re-aspect is defined as “any statement that contains SQL

keywords and uses user inputs”. For the later re-aspects we need to inject input sanitizer and

authorization function call at each re-aspect instance.

4. Locating Re-aspects: As shown in Figure 7-10, given the system AST and a re-aspect

definition, the re-aspect locator parses the supplied re-aspect signature using SMART

registered language parsers (C#, VB.NET and OCL parser) and generates the corresponding

AST as well. Finally the locator traverses system AST searching for matches against re-

aspects AST using either algorithm 1 or algorithm 2 and generates a list of found re-aspects

instances (5).

5. Applying System Modifications: At each identified re-aspect instances, SMART checks the

modeled actions on each re-aspect signature and their conditions (if any), and then it

executes the linked aspects (advices). The resultant code is shown in Figure 7-2 with gray

background.

 Chapter 7: Cloud Applications Security Reengineering

Page 173

Conext Method

inv AuthenticationBypass:

MethodBody.Select(stmt: IfElseStatement | Stmt.Condition.Contains(Method.Inputs)

 AND Stmt.Body.Contains (s : InvocationExpression | s.Method.IsSecurityFunction == true

 AND s.Method.SecurityFamily = "Authentication")

inv ImproperAuthorization:

MethodBody.Select (stmt : Expression |

 ((stmt.Contains(Self.Parameters) OR stmt.Contains(UserInputs)) AND NOT

 MethodBody.Exists(s : InvocationExpression | S.Method.IsSecurityFunction == true

 And S.Method.SecurityFamily == "Authorization"

 And S.Params.Contains(UserInputs)

 AND S.Params.Contains(self.Parameters)))

inv SQLInjection:

 MethodBody.Exists (stmt:AssignmentStmt |

 stmt.RightPart.Contains("select")

 And stmt.RightPart.Contains(Method.Inputs))

Figure 7-17. Req. 2 re-aspects semantic signatures

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Re-aspect (1)

Re-aspect (10)

Re-aspect (50)

Re-aspect (100)

Figure 7-18. Re-aspects approach performance evaluation (in seconds)

7.9 Evaluation

We performed several evaluation experiments to assess the capabilities of our re-aspects toolset

for change impact analysis and change propagation tasks. We have selected four applications of

our benchmark applications introduced in Chapter 4. These applications include Galactic ERP,

SplendidCRM, KOOBOO, and NopCommerce. To evaluate our approach, we developed a set

of three re-aspects from the security reengineering domain including: (CR1) legacy security

APIs disabling (Figure 7-2-A); (CR2) authentication bypassing mitigation (Figure 7-2-B); and

(CR3) improper authorization mitigation (Figure 7-2-D).

 Chapter 7: Cloud Applications Security Reengineering

Page 174

To assess the effectiveness of our approach in software reengineering and maintenance using

re-aspects, we use a set of metrics to measure the soundness and completeness as discussed in

Chapter 4. From our experiments, as shown in Table 7-6, the average precision of the change set

using code snippet is (89%) and the recall value is (92%). The OCL-based signatures achieved

Precision (96%) and recall (97%). We see that the OCL-based signatures are capable of

capturing more semantic signatures than code snippets. However the code snippet is useful with

some rigid well-defined signatures such as get methods in specific layer with specific signature.

The heuristics-based approach (here we use file containment as a heuristic rule) achieved

average precision of (48%) and recall (50%). This was expected as the assumption that

modifying a method in a file or component implies that other methods in this file should be

modified is not usually valid. From the figures we conclude that OCL signatures outperform

other approaches. However, accuracy of retrieved results depends heavily on the soundness of

the specified signatures.

The results of the impact set generation, Table 7-7, were fair enough. Our approach achieved

precision rate (85%) and recall rate (87%) percentages. Security reengineering change requests

that we have selected did not have global impact (only modification in the method body). We

used other change requests from the multi-tenancy reengineering domain (discussed in Chapter

10, case study 2). Thus, their impact sets where empty. OCL supports this task as well as it

enables querying system source code in the AST to accurately retrieve dependent entities to be

impacted by given changes. These results can be further improved by developing more sound

OCL-based impact set signatures. The dependency-based approach is extensible as it is built on

top of OCL. This means that we can develop more signatures for entities that should be

retrieved in impact sets.

The evaluation of change propagation was different. We count how many entities

successfully updated from the given entities in the change and impact sets. The results of

change propagation were good enough with average success rate (89%). However, it heavily

depends on the re-aspect developer to define correct advices that will be applied on the system

entities according to the re-aspect action type. The precision and recall of existing efforts such

as [261] were (28%) and (74%) respectively. In [168], metrics were around (50%) and (90%)

respectively. In [167], metrics of the best reported effort (40%) and (50%), respectively.

Figure 7-18 shows some performance evaluation results. Numbers of re-aspects range from 1

re-aspect to 100 re-aspects. We used a desktop PC with core2Duo and 4GB memory. The time

required to locate possible instances of a given re-aspect depends on the system size (KLOC).

Re-aspects take on average 0.2 sec. to check 1 KLOC for a given re-aspect. The time required

 Chapter 7: Cloud Applications Security Reengineering

Page 175

for re-aspect modification depends on amount of code included in re-aspect advice and what is

to be done as a re-aspect action.

7.10 Discussion

Re-aspects were inspired by traditional AOP code injection concept, but provide more possible

actions – delete, replace or modify - needed for re-engineering. Re-aspects’ signatures are

highly flexible and specified on abstract code structures to capture syntactical code snippets,

avoiding fragility factors including spaces, comments, new lines, specific variable or parameters

names, variable code blocks sizes, and language syntax. Re-aspects’ signatures can also capture

abstract target system signatures, such as features, architecture, design and testing entities using

OCL expressions. OCL-based signatures also allow capturing semantic expressions.

From experiments we found that we need to use a hybrid approach between a heuristics-

based and dependency-based approach to develop an impact set. This gives a more

comprehensive approach that can capture entities that have a variety of relations with the

entities to be changed. A Key issue with re-aspect signatures is how to ensure that developers

have written the correct signature definition for the target system entities they want to locate and

change. This is, of course, also an issue for conventional AOP aspect specification and

debugging too. Currently we provide a re-aspect locator UI to help developers in writing and

testing their signatures. Thus, they can review the signature located entities before proceeding

with the change propagation step.

Code updating usually suffers from code dependency problems where the existing code

depends on code parts that we have been modifying, replacing or deleting. We have identified

two key cases for dependency analysis. When changing an entity interface e.g. changing a

method name from M1 to M2, we impact other system entities i.e. have a “global impact”.

Existing efforts identify entities that need to be modified – e.g. methods that call method M1. In

our approach we support further analysis by generating signatures of entities to be modified e.g.

as we renamed M1 to M2, we generate another re-aspect with signature specifying location of

all method invocations to M1. Thus using the re-aspect locator we pinpoint not only the entities

to change but also specific lines of code to be updated in every entity. Code required for update

may be complex such as adding new method parameter. This requires developers to specify how

to obtain the new argument in every updated method call. When changing a method body we

use existing techniques of control flow and data flow analysis to make sure that the resultant

code is still consistent. Moreover, we compile the resultant code to make sure that no

compilation errors have been introduced during the reengineering process. The resultant binary

 Chapter 7: Cloud Applications Security Reengineering

Page 176

files are verified by PEVerify. Ultimately, we still depend on testing tools to make sure that the

updated application functions as required.

7.11 Chapter Summary

We introduced a novel solution, the re-engineering aspect or “re-aspect”, to help with two

key tasks: disabling built-in security capabilities of the cloud-services as a preprocessing step

before applying MDSE@R for security engineering; and patching of the reported security

vulnerabilities in cloud services. Re-aspects are inspired by traditional AOP but capture richer

details required for system modifications. They include rich signatures to identify target system

entities that need to be modified, actions to apply on located matches, including take away (de-

weaving), replace, modify or insert new code, and code to update matched entities. A key

strength of re-aspects comes from the signature specification. Re-aspects support flexible

signature specification approaches using syntactical code snippet templates and formal OCL-

based signatures. We have developed a prototype tool that supports software reengineering

including locating code entities to change, conducting impact analysis, and automated code

updates. We validated the effectiveness of our approach in locating system entities to be

modified and propagating changes using a set of open source .NET benchmark applications.

 Chapter 7: Cloud Applications Security Reengineering

Page 177

Table 7-6. Re-aspects change analysis effectiveness

Application Galactic SplendidCRM KOOBOO NopCommerce

Techniques C O H C O H C O H C O H

Metrics P R P R P R P R P R P R P R P R P R P R P R P R

C
h

an
g

e
R

eq
u

es
t CR1 1 1 1 1 0.7 0.6 1 1 1 1 0.5 0.6 1 1 1 1 0.7 0.5 1 1 1 1 0.4 0.5

CR2 0.8 0.9 0.9 0.9 0.4 0.5 0.8 0.8 0.8 1 0.5 0.5 0.7 0.8 0.9 0.8 0.3 0.4 0.8 0.8 1 1 0.6 0.4

CR3 0.7 0.8 0.9 0.8 0 0 0.6 0.8 0.9 0.9 0.1 0.1 0.7 0.7 0.8 0.8 0.2 0.1 0.8 0.7 0.9 0.9 0.2 0.2

Table 7-7. Re-aspects impact analysis and change propagation effectiveness

Impact Set Change Propagation

Application Galactic SplendidCRM KOOBOO NopCommerce Galactic SplendidCRM KOOBOO NopCommerce

Metrics P R P R P R P R M S M S M S M S

C
h

an
g

e
R

eq
u

es
t CR1 L L L L L L L L 3 3 13 9 11 11 10 10

CR2 L L L L L L L L 9 6 3 2 13 12 3 3

CR3 L L L L L L L L 3 3 5 6 0 0 0 0

P: Precision, R: Recall, C: Code Snippet, O: OCL signatures, and H: Heuristics-based

L: has local impact only, M: Number of entities to be modified, S: number of entities successfully modified

Page 179

 Chapter 8

Cloud Applications Security Analysis

In this chapter, we discuss the key security analysis tasks and challenges when applied to cloud

computing applications and how we address these challenges in our new online security analysis

approach. This chapter is organised as follows. In Section 1, we give a general introduction of

the software systems’ security analysis problem and how this becomes more complicated under

the cloud computing umbrella. In Section 2, we discuss key security analysis tasks with few

examples of each subtask. In Section 3, we introduce our comprehensive, extensible cloud

application security analysis approach. In Section 4, we describe implementation details of our

approach. In Section 5, we summarize the experimental evaluation results.

8.1 Introduction

Although the adoption of publicly accessible cloud computing platforms to host IT systems

helps customers to minimize cost and increase availability and reachability of their applications,

it has serious implications on their applications’ security. Hackers can easily exploit

vulnerabilities in such publically accessible services. Moreover, some hackers may become

legitimate tenants of the shared cloud services which enable them to exploit more advanced and

complicated vulnerabilities that require higher privileges. In addition, the number of newly

identified and reported application vulnerabilities is increasing rapidly. Delays in discovering

and mitigating such vulnerabilities increase the probability of successful application attacks and

security breach.

Web applications are the prominent application delivery model used in cloud computing to

deliver SaaS applications. Web applications do not require client deployment or configuration,

and can be centrally updated and managed. However, web application vulnerabilities continue

to make up the largest percentage of the total reported vulnerabilities in software applications.

Web applications vulnerabilities constitute 63% on average of the total reported vulnerabilities

[60]. Of these reported vulnerabilities, well-known vulnerabilities such as Cross-Site Scripting

(XSS) represents 28%, while SQL Injection (SQLI) vulnerabilities represent 20%. These figures

mean that web applications are the weakest link in the cloud computing model where many

security breaches may be exploited.

From our investigation of the cloud computing model, cloud services, their security

problems, and existing industrial and academic efforts, we have reached a conclusion that it is

 Chapter 8: Cloud Applications Security Analysis

Page 180

 very important to have an online security analysis service. Such a service can help different

cloud stakeholders in analyzing and mitigating against existing (known) as well as new (i.e.

never seen before) security flaws and vulnerabilities before attackers do. However, security

analysis is a very complicated and time consuming task. It usually takes place at different stages

of the software lifecycle starting from the development phase, deployment, and at runtime. In

each of these stages, we have different artifacts to verify (system models, security models,

source code, and software binaries) and different techniques (black-box, white-box, dynamic

analysis, static analysis) that are applicable at each stage.

From our analysis we have categorized the security analysis task into three subtasks: threat

analysis, which is conducted in the early stage of software development and focuses on

identifying the security flaws resulting from the adoption of specific platforms, patterns, or

languages; vulnerability analysis, which is conducted during software development given the

source code is available or after the software delivery using the software binaries; and attack

analysis, which is conducted using software security and deployment models to identify

possible attack vectors that exploit existing vulnerabilities either in the software or its

operational environment.

Security flaws, bugs, and attacks reported by different security analysis tasks are usually

recorded in commonly available databases, such as vulnerabilities’ databases - NVD [262] or

CVEdetails.com [263]. Specifications of classes of possible vulnerabilities (known as

weaknesses) are already maintained in the Common Weaknesses Enumeration (CWE) database.

Possible attack patterns are already maintained in the Common Attack Patterns Enumeration

and Classification (CAPEC) database. Both databases are used as a reference framework by

application developers, deployment engineers and security engineers to help identifying

possible weaknesses and attacks on the software under analysis. A key problem with both CWE

and CAPEC is that recorded vulnerabilities and attacks are specified informally. This leads to

adoption of manual security analysis done by security experts using some of their helping tools

developed by different security vendors. Such tools are usually based on the security vendors’

understanding of security vulnerabilities, threats, and attacks. Commercial vulnerability

scanners such as IBM AppScan, HP Web inspect, Cenzic, McAfee focus on black-box

vulnerability analysis [116] (where few knowledge about the target software is required) to

avoid being limited to specific programming languages or platforms. However, none of these

scanners cover all known vulnerability types [116]. These tools cover no more than 47% of the

known vulnerabilities. To achieve good results and high accuracy in the vulnerability analysis

mission, multiple scanners should be applied [116]. On the other hand, most existing research

efforts [113, 114, 117, 121, 264] tend to focus on specific vulnerability, threat, or attack types.

 Chapter 8: Cloud Applications Security Analysis

Page 181

Thus, addressing new vulnerabilities or threats is often not possible with these approaches. Most

of existing vulnerability analysis efforts, for example, focus on SQLI [107, 109, 115], XSS

[113, 115, 265], or input sanitization [118, 119, 121] using static analysis with different

variations [108, 109, 112, 113, 264], dynamic analysis [116, 117, 265, 266], or hybrid

techniques of static and dynamic analysis [111, 121, 264, 267].

From our analysis of both industrial and academic efforts, we have reached a conclusion that

the root cause of the security analysis problem lies in the vulnerability, threat and attack

definitions and not in introducing new analysis techniques, as most of the existing approaches

use similar techniques in various combinations. Moreover, the various existing vulnerability and

attack databases, while useful, cannot be directly utilized by security analysis tools due to their

informality.

We determined that different security analysis tasks, including vulnerability analysis, attack

analysis and threat analysis, can be facilitated given that a formalized weakness definition

exists. In our approach discussed in this chapter focus on the following open research questions:

– What details do we need to capture to fully describe a given security flaw and

vulnerability?

– How can we formalize the signatures of such security flaws and vulnerabilities?

– How can we effectively use such formal specifications in automating the security analysis

process?

– How can we enable different tenants to specify and analyze their cloud services security?

In the next sections we introduce an analysis of the well-known security issues (attacks and

vulnerabilities). Then we introduce our new approach to address the research questions

specified above. Finally, we discuss the limitations of our approach and future extensions.

8.2 Security Analysis

In this section we analyze some of the frequently reported security flaws and vulnerabilities in

software systems. However, this is neither a comprehensive nor a complete list of all possible

attack scenarios or security vulnerabilities. The main objective from this analysis is to show

details of such security flaws/bugs and discuss proposed signatures that we can use to locate

such flaws/bugs in the software under analysis. The example signatures discussed in this section

are not meant to be complete. Security experts might need to develop more detailed signatures

to use in analyzing systems using our signature-based security analysis approach.

 Chapter 8: Cloud Applications Security Analysis

Page 182

8.2.1 Architecture Security Threat Analysis

Assessing software architecture security risks is usually conducted either using attack scenarios-

based approaches [92, 96, 97, 268] or using architecture assessment metrics [92, 93, 98, 103,

139]. Developing security attack scenarios to be used in assessing software architecture is a key

task in scenario-based architecture analysis approaches. However, it requires deep knowledge of

the security domain, which is usually not feasible for software engineers. Microsoft introduced

STRIDE model [94] (Spoofing, Tampering, Reputation, Integrity, Denial-of-Service, and

Elevation-of-Privilege) that defines a framework that gives guidance in identifying such security

scenarios. Microsoft has introduced further refinements on this model (EOP Card Game) to

simplify the threat identification process [269]. However, this approach still depends heavily on

engineers’ experience to analyze the architecture of the software under test. Recently, a new

community effort, CAPEC, introduces a reference repository that can be used in assessing

systems’ security. It provides a comprehensive list of possible attack patterns that are frequently

used to breach systems’ security. However, CAPEC is not yet formalized enough for use in

automated architecture security analysis tools. Below we discuss a few of the key patterns that

currently exist in these repositories. Then we show how we have succeeded in developing

formal signatures of these attacks using our signature specification approach. We note that these

attacks may have other signatures and specifications when it comes to source code level analysis

(bugs) i.e. for vulnerability analysis.

8.2.1.1 Examples of Security Attack Scenarios

We summarize some of the key attack scenarios that may be used in assessing architecture

security of software systems. More attacks can be found in the CAPEC database. Later we will

show how we have developed formalized signatures of such attack scenarios.

- Man-in-the-Middle Attack (MITM): In this attack, the attacker intercepts communications

between two components or two parties. The attacker makes independent connections with

the victims and relays messages between them, making them believe that they are talking

directly to each other. How to decide that the software under analysis is vulnerable to such

attack? A signature of such attack is to check if the system has any unsecure connection

between two communicating components, or if the components communicate in an untrusted

zone without security authentication applied.

- Denial of Service Attack (DOS): This attack aims to make a system or one of its key

resources unavailable for legitimate users. DOS attacks have different formats and different

signatures. Some use invalid inputs or big sized inputs. Others overwhelm the system with a

tremendous number of requests. Possible signatures of such attack include: (i) a publicly

 Chapter 8: Cloud Applications Security Analysis

Page 183

accessible component that does not use input validation control (or application firewall) to

validate incoming requests, or (ii) a public interface that does not implement appropriate

authentication control to filter malicious or unauthenticated requests.

- Data Tampering Attack: An attacker can tamper with data at rest (storage), in transmission,

or during processing if data is manipulated as plaintext. Possible signatures of these attacks

include: (i) a system with one or more components that operate in an untrusted host

(malicious insider); (ii) data communicated between components or to a client in plaintext,

or (iii) absence of appropriate security authorization controls on user accessible components.

- Injection Attack: These attacks use the lack of input validation to pass in malicious inputs

that can be used to gain higher privileges, modify data, or get the system to crash. There are

different types of injection attacks including SQL Injection, OS Command Injection, and

XML Injection attacks. The key signature of such attacks is that system components do not

apply suitable input filtration on user inputs or on inputs from other untrusted components.

8.2.1.2 Examples of Architecture Security Assessment Metrics

Developing security metrics to be used in assessing security strength of a software system’s

architecture is also a very complicated task. Different security metrics exist with different scope

of applicability. Below we discuss some well-known metrics that are used in assessing system

architecture security soundness based on software and security architectural structures.

System Architecture Security Metrics. These metrics help in assessing the security

soundness of the software architecture itself. Examples of these metrics include attack surface

metric [270], total public classified attributes and methods [101], critical super-classes

proportion, least privilege, and least common mechanisms [271]. These metrics can be used to

assess the exposure, exploitability, and attack-ability of the software system given its

architecture, design, and source code details. New architectural patterns such as multi-tenancy

require new security metrics that can assess tenants’ data isolation, security elasticity, etc.

Examples of such metrics are:

– Attack Surface Metric [270]: This metric has been frequently used in assessing different

system versions from the security perspective. It measures the proportion of the system

accessible to public users which an attacker can exploit to attack the system. This can be

measured as the number of system methods that receive data from the software environment,

number of methods that return data to the software environment, number of communication

channels, and number of untrusted data items. The larger the attack surface value, the more

potentially insecure the system.

 Chapter 8: Cloud Applications Security Analysis

Page 184

– Compartmentalization Metric [271]: Compartmentalization means that a system and its

components run in different compartments, isolated from each other. Thus, the compromise

of any of these components does not impact the others. This metric can be measured as the

number of independent components that the system is based on to deliver its function and do

not trust each other - i.e. components authenticate and authorize requests and calls coming

from other system components. The higher the compartmentalization value, the more secure

the system. However, higher compartmentalisation usually has higher performance

overheads and system complexity.

– Least Privilege Metric [271]: This metric states that each component or user should be

granted the minimal privileges required to complete their tasks. This metric can be assessed

from two perspectives: from the security controls perspective we can review users’ granted

privileges – i.e. security permissions. From the architectural analysis perspective this can be

assessed as how a system is broken down to minimal possible actions i.e. the number of

components that can access critical data. The smaller the value, the more secure the system.

– Fail Securely Metric [271]: The system does not disclose any data that should not be

disclosed ordinarily at system failure state. This includes system data as well as data about

the system in case of exceptions. This metric can be evaluated from the security control

responses – i.e. how the control behaves in case it fails to operate. From the system

architecture perspective, we can assess it as the number of critical attributes and methods that

can be accessed in a given component. The smaller the metric value, the likely more secure

the component in case of failure.

Security Architecture Metrics. These metrics help in assessing the security architecture

and mechanisms used in securing a target system. Security mechanisms include: security

functions and components, security patterns, and security controls. NIST [271] introduced a set

of design principles that should be adopted in developing secure systems. These principles

include: layered security; simplicity of the security design; protect information while it is being

processed, in transit, and in storage; and never trust external inputs. Examples of metrics that

can be used to judge such characteristics include:

– Defence-in-depth (layered security) Metric: This metric verifies that security controls are

used appropriately at different points in the system chain including network security, host

security, and application security. Components that have critical data should employ

security controls in the network, host, and component layer. To assess this metric we need

to capture system architecture and deployment models as well as the security architecture

model. Then we can calculate the ratio of components with critical data that apply the

layered security principle compared to the total number of critical components.

 Chapter 8: Cloud Applications Security Analysis

Page 185

– Isolation Metric: This assesses the level of security isolation between system components.

This means getting privileges to a component does not imply accessibility of other co-

located components. This metric can be assessed using system architecture and deployment

models. Components marked as confidential should not be co-located with non-

confidential (public) components. Methods that are not marked as confidential should not

have access to confidential attributes or methods.

public bool LogUser(string username, string password)

{

 …

 string query = “SELECT username FROM Users WHERE

 UserID =‘” username “ ‘ AND Password = ‘” + password + “’”;

…

 }

Figure 8-1. A code snippet vulnerable to SQL Injection attack

if(Request.Cookies["Loggedin"] != true)

{

 if(!AuthenticateUser(Request.Params["username"], Request.Params["password"]))

 throw new Exception("Invalid user");

}

DoAdministrativeTask();

Figure 8-2. A code snippet vulnerable to authentication bypass

if(!AuthenticateUser(Request.Params["username"],

 Request.Params["password"]))

 throw new Exception("Invalid user");

updateCustomerBalance(Request.QueryString["custID"], nBalance);

Figure 8-3. A code snippet vulnerable to improper authorization

8.2.2 Vulnerability Analysis

Security vulnerability analysis is usually conducted on either software binaries or source

code. Before we discuss how we formalize software system vulnerability definitions, we give an

overview of the OWSAP Top 10 web application vulnerabilities. OWSAP (Open Web Security

Application Project) is a community effort to define and share knowledge about web application

security approaches. We discuss these Top 10 vulnerabilities and signatures that we deduced

from the vulnerabilities recorded in NVD and CWE. These signatures are used by our

vulnerability analysis tool; however, they can be further revised by experts to get more accurate

results.

- Injection Flaws: This type of vulnerability includes several well-known attacks intended to

compromise application inputs in order to gain control or modify data, such as SQLI, OS

Command Injection, LDAP query injection, and XPath query injection. All arise from input

validation problems. “All external inputs are untrusted” is a well-known security principal

 Chapter 8: Cloud Applications Security Analysis

Page 186

[271] that should be realized in securing systems. These vulnerabilities occur whenever the

system under analysis trusts inputs from users (first order injection) or from a repository

(stored or second order injection) and uses it to build dynamic queries that run Operating

System or database commands without sufficient input sanitization or validation. An attacker

can use this type of vulnerabilities to execute malicious commands or gain privileged access

to the system under attack. Figure 8-1 shows code vulnerable to SQLI. For example, a

password argument of the form “’ OR (1=1) OR ‘’=‘” allows access to any specified

username e.g. ‘admin’ or ‘root’. The signature of these vulnerabilities is a dynamic query

statement that uses external inputs without proper sanitization.

- Cross-Site Scripting Flaws: This is a two-step vulnerability. First, an attacker uses the

application to store malicious data. Whenever a victim sends a request to resource X, the

web server responds with data containing “malicious code” without being encoded. This

malicious code executes on the victim browser causing disclosure of their confidential

information to the attacker. This vulnerability type may be from stored data (e.g. from a

database) or reflected (from user input). This is a very common attack in applications that

use user inputs for search or discussions. The signature of these vulnerabilities is to call

output functions using external or stored inputs without sanitization or encoding.

- Broken Authentication and Session Management Flaws: This is a common problem with

security authentication. It includes attacks such as: authentication bypassing via external

inputs (depend on external input to decide whether to conduct authentication or not on the

received request); authentication checking not included in critical functions; using hard-

coded credentials; using an easy to guess password; or session timeouts not set or checked.

This enables unauthenticated users to maliciously access and use system resources.

Figure 8-2 shows a code-snippet vulnerable to improper authentication attack, where a user

can modify their cookie to bypass the authentication check. The signature of these

vulnerabilities is that every publicly accessible function should not trust external inputs to

bypass (by conditional statement) triggering the authentication function.

- Insecure Direct Object Reference Flaws: Authenticated users can send malicious inputs to

access unauthorized data. Figure 8-3 shows an example where an attacker sends custID =

XYZ instead of custID = ABC. This enables the attacker to access other customers’ data.

The signature of these vulnerabilities is that user inputs are not authorized before use in

business functions. This is a very critical problem in multi-tenant SaaS applications where

different tenants sharing the same service instance should not be able to request data of other

tenants.

- Cross-Site Request Forgery (CSRF) Flaws: An attacker deceives an authorized user by

sending a forged request to the user’s application to perform malicious actions. This attack

 Chapter 8: Cloud Applications Security Analysis

Page 187

requires the victim to have a valid session or cookie with the application (already

authorized). The signature of these vulnerabilities is that requests’ origins are not validated

or that responses are usually predictable or have fixed URL format. It is usually difficult to

identify CSRF using static analysis because it is usually managed externally by the web

server.

- Security Misconfiguration Flaws: The system is not securely configured. This includes

exposing information through exceptions; a system executing with higher privileges than it

requires; system files are accessible to unauthenticated users; or resources have

misconfigured permissions. Some of these vulnerabilities can be discovered from the

exception handlers whether they expose system details or not. Others need to be examined

by application responses for unauthorized actions using dynamic analysis.

- Invalidated Redirect and Forward Flaws: The application redirects requests to a target URL

that is concatenated from user inputs “Response.Redirect(userInput)”. This type of

vulnerability is similar to the injection vulnerabilities where web redirect functions use

external inputs to build the redirect URL.

- Failure to Restrict URL Access Flaws: An application does not perform access control on

resources or URLs. These vulnerabilities can be easily examined by checking webpage

methods for authorization function calls. Dynamic analysis is required to check application

responses for unauthorized URLs.

- Insufficient Transport Layer Protection Flaws: Sensitive data including credentials and

customer data are transmitted in plain text. The signature of these vulnerabilities is that

output data are transmitted without passing through appropriate encryption functions.

Dynamic analysis is required to examine responses if protection is done on transportation

layer.

8.2.2.1 Analysis of Security Vulnerabilities

A given software system, whether desktop, web, or embedded, needs to run on a hosting service

– e.g. web server, operating system, virtual server, etc., as shown in Figure 8-4. A hosting

service provides a set of APIs that the hosted system can use to read inputs from possible input

sources (users, files, memory, database, etc.) or write outputs to possible output targets. Any

vulnerability in the hosting service implies that an attacker can control inputs and/or outputs of

the target system. The hosting media is a place where the hosted system runs – e.g. a process in

case of web server, or memory in case of operating systems. If the hosting media was breached,

it may be used to control the hosted system inputs, outputs, or even processing (overriding

kernel data using buffer overflow). However, these entities are out of the software system

control.

 Chapter 8: Cloud Applications Security Analysis

Page 188

Function Storage Channel

Component

Hosting Media

Hosting Service

E

P/S/T

X

(a) (b)

Figure 8-4. An overview of the host-system-component relations

Any target system is composed of a set of components. These components may be

subsystems, composite components, or simple components. System components may be hosted

on the same hosting service instance or different instances (different servers). In the latter case,

they have to communicate through communication channels, which may be unsecure (an

attacker may eavesdrop, or intercept messages). A system component may be an active

component, a component that can take actions or perform operations such as system functions.

Active components are able to secure themselves and their processed data – e.g. by

authenticating users, authorizing users, encrypting data, etc. Alternatively, a passive component

is a component that cannot take actions to protect or change data it maintains, such as storage

components (databases and files – we are not talking here about the DBMSs, these are hosting

software systems) or transmission components (communication channels). Passive components

cannot secure themselves e.g. a file or table cannot enforce security access on its contents by

itself. They depend on other components, such as the hosting service (OS, DBMS), or active

system components to manage and secure such components. This is a big open issue in data

security area – i.e. data leakage protection - where confidentiality of data moving between

different applications with different security levels may be threatened. Both active and passive

components might be breached by the hosting service e.g. read data in memory, files, or when it

is on communication channels.

Each component, regardless of its type, has a set of entry points (E) and set of exit, output

points (X), and is used in processing (P), storage (S), or as a communication channel (T). These

entry and exit points can be compromised by an attacker who has control on the hosting service

to read/write/modify/delete the data. Usually the number of entry points and exit points – the

“attack surface” - is used as a security metric when assessing systems security. Furthermore, an

active component may have vulnerabilities related to inputs (input validation - input coming

from a user passing by the hosting service), outputs (output validation and exceptions – outputs

may depend on malicious or modified inputs or passed through a vulnerable hosting service), or

 Chapter 8: Cloud Applications Security Analysis

Page 189

processing (logical errors – e.g. race conditions, malicious data corruption, service overloading).

We use this analysis in categorizing vulnerabilities according to the source of vulnerability,

such as input validation, output validation, processing, and hosting service vulnerabilities. This

helps in deciding which types of vulnerabilities can be identified by static analysis, dynamic

analysis, etc. Moreover, it helps in deciding the mitigation actions that can be applied to block

such vulnerabilities.

8.3 Signature-based Security Analysis

We base our security analysis approach on (i) a formal security weakness definition schema that

captures every detail related to a given security flaw or vulnerability; (ii) a formal security

weakness signature specification approach that can capture security flaw and vulnerability

signatures; and (iii) an extensible security analysis tool that perform signature-based software

security analysis.

8.3.1 Security Weakness Definition Schema

We studied the various security analysis tasks (vulnerability, attack and threat analysis) to

identify the key items required in these tasks that should be included in a weakness definition

schema, as shown in Figure 8-5. These weaknesses’ definitions should be managed by security

experts. Such definitions can be incorporated in CWE database. A security weakness definition

should contain:

Weakness Definition

Language

Description

Category

ID

Preconditions

Consequences

Likelihood

Impacted Resources

Signatures

Prevention actions

Mitigation Actions

Figure 8-5. Weakness definition schema

– Weakness ID: Every discovered weakness instance, as in the NVD database, should have a

reference to its parent weakness or vulnerability definition. This helps retrieving other

 Chapter 8: Cloud Applications Security Analysis

Page 190

vulnerability details e.g. preconditions, consequences from the vulnerability definition

stored in the CWE database.

– Weakness Category: Many categorization-schemas for software weaknesses do exist. Each

categorization schema helps understanding weaknesses from a specific point of view e.g.

developers or researchers. A categorization based on the root cause or source of the

weakness, as shown in Figure 8-4, helps in deciding which technique is suitable to perform

analysis, mitigation, and avoidance. We categorize vulnerabilities as input validation-

related, processing logic-related, output validation-related, hosting service related, hosting

media-related, communication channel-related, storage-related, and security control-related

vulnerabilities.

– Language/Platform: Specifies enumeration of language(s) that a given weakness applies to

- i.e. many languages C, C++, C#, Java. have language-specific weaknesses such as buffer

overflow, sandbox breaching, etc. We also use this to describe the technology or

architecture paradigm inherent with the weakness - e.g. client-server, web-based, service-

oriented, or multi-tier, along with the underlying environment e.g. web server, client,

application server, database server. This helps in threat analysis to identify possible

weaknesses that may exist and start taking precautions to avoid such vulnerabilities.

– Preconditions: This attribute helps in both vulnerability analysis and attack analysis.

Preconditions are a list of the capabilities that an attacker should possess, or the list of

system configurations that need to be present in order to exploit such vulnerability e.g. to

exploit a specific vulnerability, an attacker might have to have root access, user access,

remote root access, public access, etc.

– Consequences: If a given vulnerability is exploited, what will be the benefits achieved by

the attacker e.g. disclosure of system information, invalid processing, invalid results,

execute an unauthorized function, elevate permission, bypass security, system crash, or

Denial-of-Service. This can be used to analyze against planned attacks e.g. exploiting

vulnerability V1 will give the attacker a set X of privileges. These privileges may be one of

the preconditions to exploit vulnerability V2. The consequence of V2 may be the actual

goal of the attacker.

– Impacted Resources: This specifies the resources that will be impacted if the given

vulnerability is exploited including memory, configuration files, registry, customer data,

credentials, cryptography keys.

– Likelihood: The probability that the given weakness is exploited by an attacker may be low,

medium, or high. This depends on the complexity of the given vulnerability and attacker

capabilities as defined in the vulnerability preconditions.

 Chapter 8: Cloud Applications Security Analysis

Page 191

– Vulnerability Signature: A weakness signature describes constraints, invariants and

patterns that when matched in a target system it means it is likely to suffer from the given

weakness. This may be signature of software architecture or code snippets, or signature of

system response for requests with specific signatures. Every single weakness may have

different signatures that capture different forms (attack scenarios), or that are applicable

with different weakness analysis techniques.

– Prevention: A list of precautions to be followed or checked during code review. These

might be rules to check during system development or deployment; combinations of

architectures; languages and platforms to use or to avoid.

– Mitigations: A list of actions that specify how we can modify the vulnerable system entities

to block a discovered weakness. This may require modification of the vulnerable code

parts; changing system configurations; or even changing system or security architecture.

8.3.2 Weakness Signature Specification

To address the different types of security analysis, we use a signature-based approach where the

signatures of weaknesses to be analyzed are captured as invariants or constraints to be matched

against appropriate target system artifacts. These artifacts may be lines of code, partial

class/method signatures, architectural structures, or other suitable system models. In our

approach, we use the Object Constraint Language (OCL) to specify such signatures (We

introduced an overview of OCL in chapter 7, section 7.5.2).

8.3.2.1 System Description Meta-Model

To support specifying and validating software architecture and source code weaknesses’

signatures, we have developed a system-description meta-model, shown in Figure 7-7

(discussed in chapter 7)Error! Reference source not found.. This model is inspired from our

nalysis of security weaknesses and vulnerabilities as discussed in Section 8.2. It captures the

main entities in an object-oriented program including:

– Architecture Concepts: Such as components, components’ interfaces, communication

channels, storage, hosting service (web server), deployment descriptors (configuration files),

deployment packages, etc.

– Source Code Concepts: Including classes, instances, inputs, input sources, output, output

targets, methods, method body, method parameters, method statements e.g. if-else

statements, loops, new objects, etc.

– Security Concepts: Such as authentication, authorization, access control, input validation,

auditing, cryptography and key management, and output encoder controls.

 Chapter 8: Cloud Applications Security Analysis

Page 192

Each entity in the model has a set of attributes such as component name, class name, method

name, accessibility, variable name, variable type, method call name, arguments, etc. This

enables specifying OCL-based weakness and vulnerability signatures on different system

entities other than source code such as deployment descriptors, hosting services, storage, output

targets, or input sources. Of course, this requires developing different parsers other than source

code parsers that can read such system description details.

A security analysis tool needs to have different profiles for different languages and platforms

(ASP.NET, PHP, C#, Java, etc.). Thus weaknesses with signatures containing input source or

output targets, security authentication, authorization, sanitization controls and other functions

can be interpreted differently based on the platform or programming language used. If the

system uses custom sanitization or security functions, developers have to mark their security

functions in the resulting system model or add it to the platform profile member functions.

8.3.2.2 Examples of OCL-based Weaknesses Signatures

Table 8-1 shows example architecture attack scenarios, metrics, and vulnerabilities signatures

specified in OCL using our system description meta-model, as shown in Figure 7-7. Each entry

shows weakens or attack name, description, and signature. Before we discuss these signatures, it

is worth mentioning that these signatures can be further improved to incorporate system design

details and even more source code details, if available. The second point is that these signatures

should be developed by security experts (captured in a knowledge base), while software

developers can further extend such signatures using customized and user-defined scenario and

metric signatures.

A key problem with these signatures is that they do not consider security solutions applied

beyond the system source code. For example, a system might be using proxies to filter SQL

queries or be using security controls deployed on the web server such as an http handler.

However, these can be modeled by appending a dynamic signature forming a sequence of OCL

constraints to be checked on system responses to malicious requests. Another workaround is to

use the information available from system architecture to check for these scenarios. Another

issue is that we may have different signatures with different complexities for the same

vulnerability. We expect security experts to develop strong and complete signatures. Weak

signatures mean more false positives, which may annoy developers, or more false negatives,

which harm customers. However, weak signatures can sometimes be much easier to find and

computationally inexpensive to locate matches compared to complex ones.

 Chapter 8: Cloud Applications Security Analysis

Page 193

Table 8-1. Examples of OCL-specified weaknesses signatures and metrics

Man-in-the-middle attack

Any two components that communicate through an unencrypted channel and one or both of

them operate in an untrusted zone or do not apply cryptography controls on their communicated

messages.

context System inv MITM:

self.components->select(C1|C1.DeploymentZoneType = 'Untrusted'

 and self.components.exists(C2 | C2.Channels->exists(Ch |

 Ch.TargetComponent = C1 and Ch.EncryptionCtlDeployed = false)

 and C1.EncryptionControlDeployed = false

 and C2.EncryptionControlDeployed = false))

Denial-of-service attack

Any publicly accessible component that does not operate input sanitization control (or

application firewall), and does not have authentication control.

context System inv DOS:

self.components->select(C1|C1.DeploymentZoneType = 'Untrusted'

 and C1.AuthenticationControlDeployed = false

 and (C1.InputSanitizationControlDeployed = false

 or C1.Host.Network.FirewallControlDeployed= false))

Data tampering attack

Any component that is deployed on an untrusted host (malicious insider) or zone, sends data in

plain text, or does not operate authorization control.

context System inv DataTampering:

self.components->select(C1|C1.DeploymentZoneType = 'Untrusted'

 and self.components.exists(C2 | C2.Channels->exists(Ch |

 Ch.TargetComponent = C1

 and Ch.EncryptionControlDeployed = false)

 and C1.EncryptionControlDeployed = false

 and C2.EncryptionControlDeployed = false))

Attack Surface metric

Number of the functions defined in the provided interfaces of the public system components and

number of functions defined in the required interfaces of the system public components that are

used by other components.

context System inv AttackSurface:

 self.components->select(C1|

 C1. DeploymentZoneType = 'Untrusted')->collect(C2 |

 C2.Functions)->size()

Compartmentalization Metric

Number of architecture components that apply authentication and authorization controls on

incoming requests and calls (work independent and do not trust other system components).

context System inv Compartmentalization:

 self.components->select(C | C.AuthenticationCtlDeployed = true

 and C.AuthorizationControlDeployed = true)->size()

 Chapter 8: Cloud Applications Security Analysis

Page 194

Fail securely Metric

The average of critical methods and attributes in each system component.

context System inv FailSecurely:

 self.components->collect(C | C.Functions->select(F |

 F.IsCritical = true)->size())->sum()/

 self.components->collect(C |C.Functions->select(F |

 F.IsCritical = true)->size())->siz()

Defense in depth Metric

The ratio of critical components that have layered security compared to the total number of

critical components in the system.

context System inv Defense-in-depth:

 self.select(C | C.IsCritical= true

 and C.AuthenticationControlDeployed = true

 and C.AuthorizationControlDeployed = true

 and C.CryptographyControlDeployed = true

 and C.Host.AuthenticationControlDeployed = true

 and C. Host.AuthorizationControlDeployed = true

 and C. Host.CryptographyControl = true)->size() /

 self.select(C | C.IsCritical = true)->size()

SQLI Vulnerability

Any method that has method call statement “S” where the callee function is “ExecuteQuery”

and one of the parameters passed to it is previously assigned to untrusted identifier coming from

one of the input sources. This initial signature can be revised to incorporate taint analysis

checking. Taint analysis can be defined as an OCL function that adds every variable assigned to

a user input parameter to a suspected list. In this case, we update the vulnerability signature to

use “Method.SuspectedList().Contains(X)” instead of X.Contains(InputSource)”.

context Method inv SQLI:

 Method.Contains(S : MethodCall | S.FnName = “ExecuteQuery”

 and S.Arguments.Contains(X : IdentifierExpression | X.Contains(InputSource)))

XSS vulnerability

Any method statement “S” of type assignment statement where left part is of type “output

target” e.g. text, label, grid, etc. and right part uses input from the tainted input sources.

context Method inv XSS:

 Method.Contains(S : AssignmentStatement | S.RightPart.Contains(InputSource)

 And S.LeftPart.Contains(OutputTarget))

Authentication Bypass Vulnerability

Any public method that has statement “S” of type “method call” where the callee method is

marked as authentication function while this method call can be skipped using user input as part

of the bypassing condition.

context Method inv ImproperAuthentication:

 Method.IsPublic == true

 And Method.Contains(S : MethodCall | S.IsAuthenitcationFn == true

 And S.Parent == IFElseStmt

 And S.Parent.Condition.Contains(InputSource))

 Chapter 8: Cloud Applications Security Analysis

Page 195

Improper Authorization Vulnerability

Any public method that has statement “S” of type “expression” – i.e. any statement - where “S”

uses data X without being sanitized, authorized, or simply taint data

(Method.SuspectedList().Contains(X) == true).

context Method inv ImproperAuthorization:

 Method.IsPublic == true

 And Method.Contains(S : Expression |

 S.Contains(X: InputSource | X.IsSanitized == False Or X.IsAuthorized == False)

8.3.3 Signature-based Security Analysis Tool

After formalizing security attack scenarios, metrics signatures, and vulnerability signatures

using OCL, an OCL-based analyzer component is used to perform the security analysis of the

target system and its security details to locate and evaluate the specified security scenarios

vulnerabilities, and metrics. This includes system source code, system design, architecture, and

security models. Figure 8-6 shows the architecture of the analysis component. Figure 8-6(a)

shows the main components of our analyzer, including the signature locator interface.

Figure 8-6(b) shows different possible signature locators that can be plugged into our security

analysis tool. This list is extensible to incorporate new customized signature locators. Below we

discuss details of each component in the security analysis tool.

- System Model: Instead of using only the system architecture model to capture and apply

security metrics, we use our proposed system description model – SDM explained in details

with examples in the security engineering chapter (chapter 6). This model is developed by

software engineers using UML to describe the details of the software system under analysis.

The system SDM should cover system features (using use case diagrams), system

architecture (using component diagrams), system classes (using class diagrams), system

behavior (using sequence diagrams), and system deployment (using deployment diagrams).

These models cover most of the perspectives that may be required in analysing system

architecture security soundness. However, not all these models are mandatory for the

analysis. It depends on the system engineers and which attack scenarios or metrics they want

to evaluate or make it available for their tenants to evaluate or analyze – i.e. software

engineers, during their analysis, may start with an initial system architecture and then

develop system design to include in their analysis. Later, they may incorporate system source

code. Some of these system description details, for example class diagrams, sequence

diagrams, can be reverse-engineered from source code, if not available – e.g. in case of

legacy systems.

- Source Code Abstract Program Representation: To try and avoid signatures being overly

specific to programs written in a specific programming language or with a specific coding

 Chapter 8: Cloud Applications Security Analysis

Page 196

style, we transform the given system code into an abstract syntax tree (AST) representation.

The program AST abstracts most of the source code details away from specific language

constructs. This requires having different source code parsers for different programming

languages that should be supported by the security analysis platform. If the software source

code is not available and only software binaries are available, we can use the de-compilation

tools such as ILSpy to reverse engineer source code from software binaries.

-

Figure 8-6. Signature-based security analysis tool

- Security Model: The service provider and service tenants’ security engineers capture the

security details developed in the software or defined on their own using our model-driven

security engineering at runtime approach in separate security specification model (SSM),

explained in details in Chapter 6. This enables evaluating system architecture details and

security architecture details separately and combined – i.e. where we have security

requirements already mapped to system entities. We use our SecDSVL as a comprehensive

security domain-specific visual language. SecDSVL covers most of the details required

during the security engineering process including: security goals and objectives, security

 Chapter 8: Cloud Applications Security Analysis

Page 197

risks and threats, security requirements, security architecture for the operational environment

and security controls and patterns to be enforced. Not all these models are mandatory to use.

Engineers decide which models they need to check or incorporate in their security analysis.

- Abstraction Modeler: The system description meta-model captures all the concepts and

entities around the system and security details we have explained above along with the

relations between them. As discussed earlier, this model helps in validating specified

signatures and in generating analyzers that will pinpoint these signatures in the software

under test. To consolidate different system details in one model as described in the system

description model we do System-and-Security model reconstruction covering system,

security, and security-system mappings (specified using our UML profile, discussed in

chapter 6). The UML profile extends UML models with attributes for: (i) relations between

different system entities in different models – e.g. a feature entity in a feature model with its

related components in the component model and a component entity with its related classes

in the class diagram; and (ii) security entities (objectives, requirements, controls) mapped on

system entities. The source code AST is transformed into more abstract representation that

summarizes AST nodes into abstract system description model.

- Signature Locator: This is the main component in our security analysis tool. It receives the

system and security details, security scenarios, vulnerabilities, and metrics signatures to be

evaluated, platform profiles, and generates a list of the found potential flaws, vulnerabilities,

security holes, and security measures. Our security analysis tool is developed to support

different types of analysis techniques including static analysis, white-box analysis and

dynamic analysis. The signature locator is designed to support extensibility in terms of new

analysis techniques that can easily plugged-in. However, in our research project we focus on

the static signature locator that can analyze the architecture and source code details statically.

- Static Signature Locator: This component loads OCL-based weaknesses and metrics from

the signatures database and compiles these signatures into runtime analysis modules (using

OCL_2_C# transformation that generates C# code from these signatures). These generated

analysis modules analyze the fed in system and security models and locate entities that

match the specified signatures and calculate measurements specified.

- Execution Traces Signature Locator: An execution trace signature locator works on the

execution traces collected from the execution of the software – i.e. logs of the system

functions’ calls along with the arguments’ values used. These execution logs attributes are

already abstracted in the system description model. Thus security experts can specify

signatures on such execution traces attributes. This signature locator works in the same

approach like the static signature locator – i.e. it generates the corresponding C# analysis

module that analyses the software model.

 Chapter 8: Cloud Applications Security Analysis

Page 198

- Dynamic Signature Locator: A dynamic signature locator depends on two key attributes of

the software entities (including components, classes, and methods). These attributes are

requests and responses. Each of these attributes has sub-attributes including request time,

values, requester, response time, values, etc. Security experts use these two attributes to

specify signatures of the malicious requests that satisfy specific vulnerabilities or attacks –

e.g. use “’ or 1 =1” as a part of the query string or the http request sent to the server. The

dynamic vulnerability analysis component uses such signatures to generate malicious

requests. Then, the signature locator analyses the software responses looking for flaws in the

software responses. More details are available in the security monitoring work in chapter 9.

8.4 Implementation

To help in developing and testing weaknesses scenarios, metrics and vulnerability signatures,

we have developed a GUI, as shown in Figure 8-7, where security experts can write OCL

expressions, check it for syntax errors, semantic errors (i.e. concepts, attributes, navigations

specified), and test the specified signatures on sample data provided by the tool users. We use

an existing OCL parser [272] to parse and validate signatures against our system description

model. Once validated, signatures are stored in the signatures database.

To parse the given program source code and generate the corresponding Abstract Syntax

Tree (AST), we use existing .NET parser NReFactory Library, which supports parsing VB.NET

and C#. For software systems developed in C, we have used pycparser (a parser written in

python). As a further extension, we plan to incorporate parser for PhP and Java to enable

parsing programs written in these languages as well. For software systems with executable or

binaries only available, we use existing de-compilation tool ILSPY to generate source code from

binaries. This is currently supported for C# and VB.NET only. This generated source code will

be parsed using NReFactory library.

For the system and security models, we assume that all these models will be captured either

using our own system and security modelers developed using Microsoft Visual Studio

(discussed in chapter 6) or by using system models (in UML) developed by any third-party

modeling tool represented in XMI (XML Metadata Interchange).

We have developed a class library to transform the generated source code AST into a more

abstract (summarized) representation as specified in our system description meta-model (shown

in Error! Reference source not found.). This reduces its size and complexity to reflect only

ecessary details required in signatures’ matching. Our class library takes the system and security

models (in XML format) and appends them to the system description model. The output of this

class library is a complete model with all software system and security details.

 Chapter 8: Cloud Applications Security Analysis

Page 199

1

2

3

4

5

6

7

8

9

10

11

12

Figure 8-7. Security analysis signature locaotor UI

1. Open source code file.

2. Parse source code.

3. Check the resulting AST.

4. Extract program model.

5. Load/write OCL

Signature.

6. Parse signature.

7. Select signature AST.

8. Check the generate

signature AST.

9. Generate C# code.

10. Check the generate code

11. Locate program matches

12. Check the matched entities

list.

 Chapter 8: Cloud Applications Security Analysis

Page 200

Program
Representation 1

AST

Program
Representation

……

……

Signature-based Static
Signature Locator

OCL
Functions

Platform
Profile

Weakness
Signatures

(OCL)

Vulnerability List

Program
Source

Figure 8-8. Architecture of our signature-based static analysis

 Context Method::SuspectedList(): Collection(Identifier)

 Let userInputs: Collection(Identifier) = Method. Parameters

 Post:

 result = Method.Body->select(stmt:AssignmentStmt |

 RightPart.Contains(userInputs)->select(id: IdentifierExp))

Figure 8-9. Sample user-defined OCL function for taint-data

<Profile platform="ASP.Net">

 <InputSources>

 <Source> Web.HttpRequest.get_QueryString</Source>

 <Source>Web.HttpRequest.get_Cookies</Source>

 </InputSources>

 <OutputTargets>

 <Target>System.Web.HttpResponse.Write</Target>

 <Target> UI.WebControls.TextBox.set_Text</Target>

 <Target> WebControls.HyperLink.set_NavigateUrl</Target>

 </OutputTargets>

</Profile>

Figure 8-10. Sample of the platform profile for ASP.NET

The signature locator manager is developed as a class loader; it reads the list of registered

signature locators from a configuration file. According to the weakness signature type, it loads

the corresponding signature locator (static, dynamic, etc.) to start analyzing the system

description model. New signature locators can be developed and registered with the security

analysis manager. Any signature locator has access to the system description details (as a

model) as well as the signatures repository. We have developed a signature-based static analysis

component, as shown in Figure 8-8. This component translates the signatures expressed in OCL

 Chapter 8: Cloud Applications Security Analysis

Page 201

to C# code using the OCL parser we discussed above. This C# code is then used by the static

analysis component to traverse the system model looking for matching entities.

The static analysis component supports specifying signatures using some user-defined

functions that are stored as OCL functions including control-flow analysis (CFA), data-flow

analysis (DFA), Tainted-data analysis, etc. The OCL to C# library translates these user-defined

functions as well as new OCL signatures once defined. Program slicing and taint analysis

techniques (core techniques in program and security analysis area) can be easily captured in

OCL. Figure 8-9 shows a sample tainted-data analysis function defined in OCL. This can be

extended to filter sanitized variables (variables processed by sanitization functions). The static

analyzer depends on platform profiles to set the analysis context. A platform profile is an XML

document that contains information about a specific platform. Figure 8-10 shows an example of

a platform profile for ASP.NET. This is different from Java or PHP profiles. These functions

are used by the signature locator as values for the abstract concepts defined in the system meta-

model (input sources, output targets, etc.).

8.5 Evaluation

In this section we summarize evaluation experiments we performed on our security analysis

toolset to assess their capabilities in capturing as well as identifying security flaws and bugs. In

these experiments we applied the set of exemplar OCL-based security attack scenarios, metrics,

and signatures that we introduced in Section 8.3.2.

8.5.1 Evaluation Setup

We could not find a repository or benchmark set of software architectures to evaluate our

approach in security architecture risk analysis. Therefore we decided to use the benchmark

applications we introduced in chapter 4 section 1.3 including Galactic (ERP system developed

for internal testing purposes); SplendidCRM (open source CRM); KOOBOO (open source

Enterprise CMS for websites); BlogEngine (open source ASP.NET 4.0 blogging engine);

BugTracer (open-source, web-based bug tracking); and NopCommerce (open-source

eCommerce solution). Except for our own Galactic exemplar application we did not have

detailed prior knowledge of the architecture, design, and security details of the open source

applications that we analyzed. We used reverse engineering to retrieve parts of the system

description models – SDM - (mainly class diagram, sequence diagram and component diagram)

from the benchmark applications source code using Altova UModel. All of these benchmark

applications were already developed with their own built in security functions. We performed a

detailed, manual analysis to identify security controls used in such systems. We use these details

 Chapter 8: Cloud Applications Security Analysis

Page 202

to develop benchmark applications security specification models and where they currently

applied mappings between security entities and system entities. In our evaluation, we used a set

of effectiveness evaluation metrics including precision and recall discussed in chapter 4.

8.5.2 Experimental Results

8.5.2.1 Architecture Security Risk Analysis

Table 8-2 is divided into two parts: security attack scenarios, and security metrics. Columns

represent the benchmark applications. Rows represent security flaws and metrics. We

summarize for each application and each attack scenario or security metric analyzed the number

of discovered flaws or the metric measured value, number of false positives (our prototype

reported as a flaw but it is not), and number of false negatives (a flaw, but missed by our

prototype). Moreover, for each security scenario or security metric we indicate using (↑ and ↓)

whether it is recommended to minimize or maximize the reported instances. If the indicator is

(↑), it means that the higher the metric value, the more secure the architecture. The (↓) indicator

means that the lower the metric value, the more secure the architecture.

Table 8-2 summarizes the results of our experiments in security scenarios and security

metrics analysis and evaluation. From our experiments we found that our approach achieves on

average a (90%) precision over both security scenarios analysis and security metrics

measurement. This means that in every reported (100) scenario instances (90) scenarios are

valid scenarios. It also has an average (89%) recall rate. This means that in every reported (100)

scenario instances approximately (11) scenarios are not actual cases. These values depend on

the soundness of the scenarios and the metrics’ signatures used to detect them.

Table 8-2 shows that the man-in-the-middle attack is the most frequent attack in the

benchmark applications. We also found a number of injection attack vulnerabilities that include

SQL Injection, OS Command Injection, XPath Injection attacks. The denial-of-service attack

was the least frequent attack. When we compare these results with OWSAP TOP10

vulnerabilities, we found that they reflect closely the same ranking where injection attacks are

ranked number (1) common vulnerability in web applications according to OWSAP Top10.

However, from these experiments and our analysis we note that, simple totaling of the

security metrics has no sensible meaning as they have different units (some count, others use

average or ratio). Although security metrics are helpful in comparing two different architectures

for the same system (trade-off analysis); they are misleading as they depend on the application

scale.

 Chapter 8: Cloud Applications Security Analysis

Page 203

Table 8-2. Results of our OCL-based architecture security analysis

Scenario / Metric Galactic SplendidCRM KOOBOO BlogEngine BugTracer NopCommerce Total

***** Security Scenarios *****

Man-in-The-Middle (↓)

D 1 1 4 8 3 5 22

FP 0 0 0 1 0 0 1

FN 0 0 0 1 0 1 2

Denial of Service (↓)

D 1 1 3 2 1 2 10

FP 0 0 0 0 0 1 1

FN 0 0 0 1 1 0 2

Data Tampering (↓)

D 1 1 3 5 3 3 16

FP 0 0 0 2 0 0 2

FN 0 0 1 0 1 0 2

Injection Attack (↓)

D 2 1 3 5 4 3 18

FP 0 0 1 1 0 1 3

FN 0 1 1 1 0 0 3

Total

D 5 4 13 20 11 13 66

FP 0 0 1 4 0 2 7

FN 0 1 2 3 2 1 9

Average Precision = 90% Average Recall = 87% F-Measure = 88%

 Chapter 8: Cloud Applications Security Analysis

Page 204

***** Security Metrics *****

Attack Surface (↓)

M 8 11 17 23 18 24 101

FP 1 2 2 1 2 4 12

FN 0 0 1 3 2 1 7

Compartmental-ization (↑)

M 1 1 3 3 4 3 14

FP 0 0 0 0 1 0 1

FN 0 0 1 1 0 0 2

Fail Securely (↓)

M 0.3 0.2 0.5 0.5 0.4 0.6 -

FP 2 1 0 0 0 1 4

FN 1 0 0 0 1 1 3

Defence-in-Depth (↑)

M 0.5 0.5 0.8 0.4 0.3 0.5 -

FP 0 1 0 0 1 0 2

FN 0 2 0 1 0 1 4

Average Precision = 91% Average Recall = 89% F-Measure = 90%

 Chapter 8: Cloud Applications Security Analysis

Page 205

-5

3

11

19

Man-in-The-Middle

Denial of Service

Data Tampering

Injection Attack

Attack Surface

Compartmentalization

Fail Securely

Defence-in-Depth

[1]

[3]

[4]

Figure 8-11. Example of radar chart of benchmark applications

0

50

100

150

200

250

1 2 3 4 5 6

Defense-in-depth

Isolation

Least privilege

Compartmental-ization

Attack Surface Metric

System criticality

Figure 8-12. Performance of the security analysis component

Regarding the performance of our approach, Figure 8-12 shows the time (in seconds)

required to analyze the benchmark applications’ architectures to assessing specified security

attack scenarios and metrics using the given set of scenarios and signatures Table 8-1. It is clear

that the defense-in-depth metric takes much more time to identify than other metrics. The

system criticality takes the lowest time. This is because the time required estimating a given

security metric expression depends on the complexity of the specified OCL signature

(transformed into C# code) and system size.

8.5.2.2 Vulnerability Analysis Result

Table 8-3 summarizes the results of our experiments in source code vulnerability analysis

applied on the set of open source benchmark suite against seven of the OWASP Top10 web

applications vulnerabilities. The other three vulnerabilities could not be specified using static

signatures (i.e. could not be analyzed using static program analysis). These vulnerabilities are

 Chapter 8: Cloud Applications Security Analysis

Page 206

security misconfiguration because it requires developing XML parser that can extract entities in

the system configuration file and then we can apply signatures on these entities; insecure

communication because it requires dynamic signatures; and insecure cryptographic storage

because it requires dynamic signatures.

Table 8-3 summarizes, for each application and each vulnerability analyzed, the total time

taken, number of found vulnerability instances in the codebase, FPs (analyzer thought

vulnerability but there is not on manual analysis), and FNs (manual code analysis indicates a

vulnerability but our tool did not discover it). Table 8-3 shows that SQLI represents the most

frequent vulnerability in all applications, then the cross-site reference forgery (CSRF)

vulnerability. After that, cross-site scripting (XSS) and authorization bypassing vulnerabilities

are relatively equal in frequency. These results mostly (in terms of ratios) conform to the

ranking reported by OWSAP2010. Table 8-3 also shows the number of vulnerabilities identified

per application. It is clear that nopCommerce and KOOBOO are the most vulnerable

applications in our benchmark suite using these vulnerability signatures. However, if we

consider the application size factor, we see that the ratio of vulnerabilities discovered compared

to application size is about equal. Moreover, some applications such as BlogEngine use

Microsoft membership for access control, which eliminates the authentication bypassing

vulnerabilities.

Figure 8-13 shows the precision, recall, and F-measure rates for each vulnerability type. This

chart shows that we achieve a high precision rate for most of the vulnerability types. The

precision metric is on average (93%). This means that for each identified (100) vulnerabilities

we have (7) false positives. This chart also shows a good recall rate, although it is relatively

lower than precision rate we achieved. The recall metric is on average (82%). This means that in

every (100) vulnerability instances, we can correctly identify (82) and we missed (18) instances.

This value could be improved if we use a hybrid dynamic and static analysis approach. The

overall effectiveness of our vulnerability analysis approach (F-measure) is around (87%). A key

result from this chart is that the recall metric is higher in SQLI, XSS, Information disclosure,

and URL redirection than in the other vulnerabilities. This justifies our initial supposition that

although we succeeded in developing a static signature for these signatures (CSRF, improper

authorization and authentication bypass), it is difficult to achieve a high correct detection rate

without also utilizing complementary dynamic analysis techniques.

Figure 8-14 shows the time (in seconds) required to analyze the benchmark applications to

locate the existing vulnerabilities’ instances for the given set of vulnerability signatures. It is

clear that the SQLI vulnerability takes much more time to identify than XSS and authorization

bypassing. The authentication bypass takes the lowest time. This is because the time required to

identify a given vulnerability depends on number and complexity of specified OCL signatures.

 Chapter 8: Cloud Applications Security Analysis

Page 207

0%

20%

40%

60%

80%

100%

120%

Precision

Recall

F-Measure

Figure 8-13. Achieved precision, recall, F-measure rates

1

2

4

8

16

32

64

128

XSS

CSRF

URL Redirect.

Authz. Bypass

Info. Expos.

SQL

Figure 8-14. Performance of approach per vulnerability

 Chapter 8: Cloud Applications Security Analysis

Page 208

Table 8-3. Results of our OCL-based security vulnerability analysis

Security Issue Galactic SplendidCRM KOOBOO BlogEngine BugTracer NopCommerce Webgoat Total

SQLI

D 2 12 14 3 9 19 8 67

FP 0 2 2 0 0 2 0 6

FN 0 2 2 1 3 1 1 10

Authentication

Bypass

D 2 2 1 0 0 0 2 7

FP 0 0 0 0 0 0 0 0

FN 0 0 0 0 1 0 1 2

Improper

Authorization

D 2 3 11 4 0 0 3 23

FP 1 0 2 0 0 0 0 3

FN 0 0 2 0 2 3 0 7

XSS

D 3 5 10 2 0 4 5 29

FP 0 1 1 0 0 0 1 3

FN 1 2 2 1 2 1 0 9

CSRF

D 5 6 13 10 0 12 3 49

FP 1 0 1 0 0 1 0 3

FN 0 1 2 0 4 1 0 8

 Chapter 8: Cloud Applications Security Analysis

Page 209

Info.

Expo.

D 3 0 0 10 0 0 3 16

FP 0 0 0 0 0 0 0 0

FN 0 0 0 0 2 1 0 3

URL

Redirect

D 1 0 2 8 0 6 0 17

FP 0 0 0 0 0 0 0 0

FN 0 0 0 0 3 1 0 4

Total

D 18 28 51 37 9 41 24 208

FP 2 3 6 0 0 3 1 15

FN 1 5 8 2 17 8 2 43

 Chapter 8: Cloud Applications Security Analysis

Page 210

8.6 Chapter Summary

In this chapter we introduced a new security analysis approach. Unlike other existing

approaches, ours is signature-based where the security flaws, attacks, vulnerabilities, and

metrics are captured as a set of declarative invariants. When matched, our approach confirms

the existence or absence of the given security flaw in the software under test. We summarized

the key subtasks involved in the security analysis e.g. architecture security threat and threat

analysis, attack analysis and vulnerability analysis. We gave examples of such flaws and

vulnerabilities along with our proposed signatures for such flaws/bugs. We summarized the

experimental evaluation we did to assess the effectiveness of our approach. These experiments

show that our approach can easily analyze software systems against a set of vulnerabilities and

metrics that never seen before, given that we can formulate signatures of such vulnerabilities or

metrics using OCL. Moreover, the experiments show that our approach has a high precision and

recall rates for both architecture risk analysis and system source code vulnerability analysis.

Finally, some of the existing vulnerabilities could be expressed as static signatures, while other

need to be specified in terms of dynamic signatures that can be analyzed using dynamic analysis

of the system under test.

Page 211

 Chapter 9

Cloud Applications Security Monitoring

In previous chapters we introduced our approaches to help stakeholders in analyzing their

services security to identify threats against their assets security objectives. We also introduced

an approach to help in modeling and enforcing security requirements and controls according to

current needs and how these security capabilities could be changed at runtime to reflect or

incorporate new needs. In this chapter, we discuss how cloud stakeholders can assess the

strength and stability of their enforced security controls, where we might need to add security

controls, and where we may need to change deployed security controls with stronger security

controls. It is impossible to assess complex software systems and prove that they meet tenants’

absolute level of required security. However, developing relevant and practical security metrics

that help in abstracting and visualizing system security status is an alternative solution. Security

monitoring is the task of quantifying security using appropriate metrics to help in taking

corrective actions on the identified security weaknesses. Another key aspect of security

monitoring is detecting possible trends of system security status, which helps in taking proactive

actions. Most existing efforts focus on developing security metrics depend on formal languages

to capture properties to be assessed. Such efforts usually require design-time preparation to

support monitoring of system security properties. Our unified monitoring approach enables

enterprise security engineers to specify, update, and remove their security metrics at runtime,

without any design time preparation. Our developed platform is responsible for automatic

conversion of these security metrics’ specifications into security probes and integration of these

metrics within target enterprise IT systems at runtime. Measurements collected are fed into an

analysis component that applies aggregation functions, visualizes metrics, and reports

deviations from expected behaviors, indicating possible vulnerability to attack. We have

validated our approach expressiveness, usability, soundness, and performance overhead. This

chapter is organized as follows. Section 1 gives overview of the security monitoring problem

and key limitations of the existing efforts. Section 2 discusses details of our unified security

monitoring approach. Section 3 discusses architecture and implementation of underlying

security monitoring platform. Section 5 summarizes implementation details of our approach.

Section 6 summarizes the experimental evaluation results. Section 7 discusses capabilities,

limitations, and future work.

Chapter 9: Cloud Applications Security Monitoring

Page 212

9.1 Introduction

Monitoring software systems behaviour is a crucial source of information reflecting details of

the executing system and its operational environment. These information are used in assessing

the satisfaction of system requirements [201, 202, 273], discovering and reporting any system

violations [191, 194], and adapting system behaviour and structure based on current system

context [213] (in case of context-aware and adaptive systems) or through proactive or corrective

actions that involve modifying the system or its operational environment [274].

One of the key attributes that we usually want to monitor is the security status of the

executing system and how it behaves if under attack. Although the area of security monitoring

is not new [275], there is currently no way to prove that a given system is (100%) secure [183].

Using subjective and qualitative approaches usually requires deep involvement of security

experts and is thus usually error prone, time-consuming and difficult to repeat. Security metrics

represent a more quantitative basis for security assurance [275].

There is different categorization of system (and security) monitoring approaches including:

(i) real-time and log-based monitoring; and (ii) active and passive monitoring. Real-time

monitoring approaches focus on reporting the current system status while the system is

executing. On the other hand, log-based approaches focus on using system generated logs and

execution traces to analyse system behavior after events have happened. Active monitoring

efforts intercept system execution to collect necessary measures. Active monitoring blocks

system execution or put it on hold until the monitoring platform verifies the received request is

not an attack. In contrast, passive monitoring efforts focus on collecting measures

asynchronously and cannot take actions on current system requests, but instead inform longer-

term corrective measures.

The area of security metrics (assessing system security using quantitative measures rather

than qualitative measures) is relatively new area [275]. It is challenging in that there is not an

“absolute” level of security [183] – i.e. it is too hard, or mostly impossible, to prove that a given

system is 100% secure. Developing meaningful, relevant, and practical security metrics that

help in abstracting and visualizing system security status is not an easy task. In our literature

review we found relatively few efforts in the area of security monitoring. However, we did find

a number of related efforts in different areas such as requirements monitoring, runtime

verification, and SLA management.

Most existing efforts in the dynamic security metrics and security monitoring area focus on

providing guidelines and frameworks that help in conducting security metrics development and

analysis processes [28-31, 187]. Using such subjective and qualitative approaches usually

Chapter 9: Cloud Applications Security Monitoring

Page 213

requires deep involvement of security experts and again tends to be both time-consuming and

error prone. A number of related efforts have been made in the service level agreement (SLA)

monitoring and management area. These efforts depend on the idea that SLAs are usually

limited in properties to be assessed and thus predefined templates could be used. Moreover,

most of the SLA measurements can be extracted from the hosting service – e.g. service

performance usually measured at the webserver level. Software requirements monitoring efforts

are also relevant to our research, though they focus on assessing certain system properties

(usually developed in event-calculus) that are validated against system execution traces. Jansen

et al [275] introduce a set of security metrics that could be used to assess system security status.

A key problem with these efforts that limits the automation and extensibility of the security

monitoring tools is that they depend on informal metrics’ definitions. Thus, security experts

have to be involved in developing required monitoring tools.

The formality, familiarity, and extensibility of the language used in developing security

properties and metrics to be monitored are key issues in the security monitoring area. In order to

facilitate the automation of the monitoring and analysis tasks, most existing efforts use formal

languages to capture these properties, such as Event-Calculus [188, 191]. The Event-Calculus is

a formalism based on first order logic that helps in representing events and effects [190]. Thus,

most of the existing monitoring efforts are event-based – i.e. they depend on the occurrence of

specific events in the system. Moreover, such languages are hard to use by software developers,

security engineers, and security administrators. New easier domain specific languages have

been introduced to help in capturing system metrics and properties to be monitored and assessed

[203, 205]; however they do not help with security metrics and properties.

In our research, we focus mainly on the security metrics and monitoring of software systems’

security status. We do not consider collecting measures of other security solutions such as

vulnerability assessment tools or patch management tools, etc. Moreover, we do not address the

managerial or implementation security metrics. We have defined four key research questions we

need to address in order to tackle the security monitoring problem under the cloud computing

umbrella:

– What details do we need to capture to fully describe a given security metric?

– How can we formalize the signatures of such security metrics?

– How can we effectively use such formal specifications in automating the security

monitoring process?

– How can we enable different tenants to specify and notified with their cloud services

security status?

Chapter 9: Cloud Applications Security Monitoring

Page 214

In the next sections we introduce our security monitoring approach and its underlying

security monitoring platform. Our approach is based on using OCL as a formal language to

express and specify formalized security metrics’ signatures. Based on these metrics’ signatures

we generate security probes, deploy at the critical system points, and generate security analysis

procedures/functions that inspect the collected security measures, and generate security status

reports summarizing metrics’ updates. We discuss the key evaluation experiments we did so far

to assess the capabilities of our approach in capturing metrics’ definitions, collecting measures

and analyzing collected measured, and performance overhead of our approach. Finally, we

discuss the limitations of our approach and future work.

9.2 Security Monitoring Process

Before we introduce our refined security monitoring process, it is worth mentioning different

categorization of security metrics. In our approach we focus on dynamic security metrics only;

however, the other metrics still could be supported as we will discuss later. Security metrics are

usually categorized as:

- Static and Dynamic Metrics: Static metrics assess static system structure properties such as

system architecture security [98], system design security [101], security quality of the system

source code [205]. We have addressed this type of security metrics in our security analysis

Chapter 8. On the other hand, dynamic security metrics focus on assessing dynamic security

properties of the system behaviour such as reported attacks, found runtime vulnerabilities

[183, 276].

- Technical, Operational, and Management Metrics [277]: Operational metrics cover risk

assessment metrics, time to patch vulnerabilities, number of stakeholders committed to tasks,

and other day-to-day activities. Technical metrics cover numbers of vulnerabilities and

threats reported by security analysis tools. Management metrics focus on measuring the

effectiveness of the organisational security programs and processes.

- Implementation, Effectiveness and Efficiency, and Impact metrics [275]: Implementation

metrics focus on progress achieved in the implementation of enterprise security program.

The effectiveness and efficiency metrics focus on how the deployed and followed security

programs achieve the defined goals and provide the required protection and how efficient

they are in terms of cost. The impact metrics focus on how the operated security systems

help in achieving organization missions.

From our understanding of the security monitoring area, we highlighted three main tasks that

must be addressed by any software security monitoring platform as shown in Figure 9-1:

Chapter 9: Cloud Applications Security Monitoring

Page 215

Develop
Security
Metrics

Collect
Security

Measurement

Analyse,
Report

Security
Metrics

Figure 9-1. Security metrics realization phases

- Developing Security Metrics: In this phase, key stakeholders including management and

security engineers define what metrics they need to measure about their software systems

behaviour. This task is usually guided by the stakeholders’ goals (in case of security metric,

this should be the security objectives such as confidentiality, integrity, accountability, and

availability). This also includes more details about metrics’ definitions including

frequency, owner (responsible person), unit of measure, etc.

- Collecting Measurements: This phase focuses on how to refine the metrics specified into

necessary security probes (captors) that can collect raw measurements (system events) with

necessary details. Moreover, it focuses on how to deploy these probes in an optimized way

to reduce the performance overhead of the monitoring task. It also focuses on how to

reason and control probes to turn on and off, at what time, and the suitable measurements

rate according to system current system behaviour – adaptive monitoring.

- Analysing Measurements and Improving Metrics: Once the raw measurements have been

collected, the analysis phase starts tracing any deviations or violations of the specified

system metrics’ normal boundaries. Further actions may be required to modify the

specified metrics, or adding new metrics if needed. Analysing these measurements may

range from applying simple set of rules to using some artificial intelligence techniques such

as game theory, case-based reasoning, or fuzzy logic.

9.3 Unified Security Monitoring Platform

In chapter 8 we introduced an OCL-based static security analysis approach supported with a

toolset. Our approach is based on capturing security vulnerabilities and flaws signatures as OCL

invariants. These expressions are used in conducting security analysis of program artifacts

including architecture models, source code, and binaries to identify matches to OCL-specified

Chapter 9: Cloud Applications Security Monitoring

Page 216

signatures. Our approach succeeded in locating static vulnerabilities with high precision and

accuracy rates. In this chapter, we further extend this work to support runtime security

monitoring and dynamic security metrics.

We base our SaaS applications security monitoring approach on (i) a comprehensive security

metric definition schema that captures every detail related to a given security metric. This

security metric definition schema includes a formalized security metric signature specification

approach to help in capturing security metric’s signatures; (ii) externalizing security monitoring

and measurement from the target application(s), such that the application and security

monitoring could be easily changed without a need for customizations; and (iii) automating

security monitoring probes’ generation and deployment at runtime using metric’s attributes.

Stakeholders including service tenants and service providers specify the security metrics they

are interested to measure in their cloud services as a part of their security specification model

(SSM) introduce in Chapter 6.

9.3.1 Security Metric Definition Schema

We studied the key attributes that could be required in developing security metrics and come up

with a security metric definition schema covering all possible attributes, as shown in Figure 9-2.

Managing security metrics’ definitions repository is the responsibility of the cloud service and

platform stakeholders. Our security metric definition schema contains:

Metric Definition

Signature
Frequency

Description

ID

Attributes

Minimum Value

Corrective Actions

Maximum Value

Related Objectives

Metric Category

Related Systems

Figure 9-2. Security metric definition schema

– Metric ID: Every security metric should have a reference ID that helps in linking collected

measurements generated or collected from system(s) together. It also helps in uninstalling

security probes whenever the metric is no longer needed.

– Metric Category: This attribute helps in categorizing enterprise security metrics into e.g.

operational metrics, management metrics, static metrics, dynamic metrics, etc.

Chapter 9: Cloud Applications Security Monitoring

Page 217

– Metric Description: This describes the security metric to be evaluated. This description is

used as a part of the security configuration, status reporting and for reviewing.

– Metric Related Security Objectives: Each security metric should be linked to one or more of

enterprise security objectives that need to be assessed using the security metric. This is also

helpful when assessing satisfaction of security objectives or highlighting issues with

security objectives.

– Metric Related Systems: Enterprise security officers may be interested in applying different

security metrics on different systems. This attribute helps in deciding which enterprise

software systems this metric applies on.

– Metric Signature: The security metric signature specifies the metric formula, property, rule,

or expression to be evaluated. The metric signature helps in identifying which service

objects or security controls to monitor and what aggregation functions to apply e.g.

minimum, maximum, average, top, last, etc. These metrics’ signatures should be extensible

enough to capture different stakeholders’ metrics of interest. We use OCL in our framework

to describe security metric signatures.

– Metric Attributes: Each metric has a list of relevant attributes to be set by the metric user.

These attributes should be calculated by the monitoring platform when generating a new

measurement – i.e. whenever the software system receives a request to access resource X,

the monitoring platform generates a new measurement record. The attributes to be included

in the measurement record should be extensible to support user defined attributes. These

attributes depend on the planned usage of the metric collected measurements. Some of the

key metric attributes to be included in every measurement include: Metric ID, Timestamp,

Source of the measurement (method name, component name, system name, etc.), and

identity of the system user at time of measurement. Other user-defined metric attributes

(such as method input parameters, variables, etc.) should be easy to add, to metric

definition, and collect by the security monitoring platform.

– Metric Frequency: Each security metric definition should include the measurement

frequency required. This may be every X-hours, X-days, X-weeks, X-months, and so on.

The results collected by security monitoring probes are grouped, evaluated, and

consolidated in a security status report to the security metric owner.

– Minimum-Maximum Values: Each security metric should have the minimum and maximum

values that define valid boundaries of the security metric. Whenever the security metric

value becomes (or is forecasted to be) below the minimum value or above the security

metric maximum value, security alerts should be reported to the security metric owner.

– Corrective Actions: Security officers may decide to specify a set of corrective actions to be

fired automatically when the current security metric comes below or above the security

Chapter 9: Cloud Applications Security Monitoring

Page 218

metric boundaries specified above. In our framework, these actions are realized by a set of

model-based configuration specifications as we introduced in [43].

9.3.2 Security Metric Signature Specification

A key problem that limits the capabilities of the existing security monitoring efforts is the lack

of security metric specification language that could be used in capturing security metrics’

details. This problem impacts the whole security monitoring process as it usually requires

manual involvement to help developing and deploying required security probes that measure

and collect required system properties. In our approach, we use Object Constraint Language

(OCL) to specify such security metrics signatures. We use OCL as a well-known, extensible,

and formal language to specify semantic signatures of security metrics. To support specifying

and validating OCL-based signatures, we have reused the system-description meta-model

introduced in the previous chapters and shown in Figure 9-3. The system description meta-

model captures system and security details from the high-level objectives down to the source

code entities and realization security controls. This model captures main entities in an object-

oriented system including components, deployment package, hosting services (web server),

storage, communication channels, classes, instances, inputs, input sources, output, output

targets, methods, method body, method statements e.g. if-else statements, loops, new objects,

objects interactions, etc. Moreover, it captures security concepts such as security objectives,

requirements, architecture, zones, mechanisms, authentication, authorization, audit controls, etc.

Each entity has a set of attributes such as component name, provider, platform used, class name,

accessibility, method name, accessibility, variable name, variable type, method name, etc.

However, these features and concepts represent static details of the application. To capture

the behavior properties of the application and its entities, we extended the system description

meta-model with two concepts (request and response) along with the details involved with such

concepts according to the system entity – i.e. both requests and responses are linked to the

application level, component level, class, method level, security entities. We have defined a set

of attributes related to requests and responses such as input parameters, class and object status,

sender, receiver, timestamp, etc. These attributes are defined in an XML file. Thus, it is easy to

extend according to current needs. This requires specifying how to get request/response new

attribute value. The system description meta-model is also extensible to incorporate new

concepts that need to be analyzed with the same concept.

Chapter 9: Cloud Applications Security Monitoring

Page 219

Figure 9-3. Our system description meta-model

9.3.3 Derived Security Metrics

Developing complex metrics is always a requirement in any monitoring and analysis domain.

To support capturing more complicated security metrics that make use of the deployed security

metrics, we incorporate stakeholders’ specified security metrics into our system description

meta-model. This in turn means that we can use these metrics as if they were system entities and

attributes in developing more complicated metrics. Table 9-2 shows examples of derived

security metrics based on base security metrics introduced in Table 9-1.

9.3.4 Examples of Security MetricsSignatures

Table 9-1 shows some security metrics’ signatures specified in OCL using our system

description meta-model, shown in Figure 9-3. Before we discuss these signatures, it is worth

mentioning that these signatures can be further improved to incorporate different tenants’

security metrics requirements.

Table 9-1. Examples of OCL-specified security metrics signatures

Authenticated Requests Metric

This metric measures the ratio of system requests against number of requests that have been

received by the security authentication control. The higher the ratio, the more secured

(authenticated) the system.

Chapter 9: Cloud Applications Security Monitoring

Page 220

context System inv AuthenticatedRequests:

self.AuthenticationControl.Requests->select()->count()/

 self.Request->select()->count()

Authentic Requests Metric

This metric measures the ratio of invalid authentication requests out of the total number of

requests received by the security authentication control. Any increase in this ratio reflects the

possibility of being under attack to break the application operated authentication control. Some

corrective actions may be to incorporate a more complicate (second stage) authentication

control to block such attacks. Furthermore, we may add the user IP to the authentication control

black list.

context System inv AuthenticRequests:

 self.AuthenticationControl.Response->select(R | R.IsValid = false)->count()/

self.AuthenticationControl.Request->select()->count()

Last(10) Requests to Authorization Control Metric

This metric is used to take a random sample of the recent requests sent to the authorization

security control. This metric could be used by system administrators to check the details (e.g.

identity of requesters) of requests sent to the authorization security control after certain period

of the day – e.g. out of the working hours.

context System inv Last10AuthzCtl:

 self.AuthorizationControl.Requests->select()->Last(10)

Top(10) Request to Authentication Control By Admin Account Metric

This metric could be used by the management to check how frequent administrators login to the

system in the last period, this metric could be detailed as well to reflect details of these requests

sent to the system such as time of these requests, source (IP of the request).

context System inv Top10AuthnCtl:

 self.AuthenticationControl.Responses->select(R | R.UserID = ‘Admin’).count()

Mean Time Between Unauthentic Request Metric

This metric helps in assessing the average time between consecutive unauthentic requests that

have been reported by the authentication control. A high metric value means more stable and

secure the underlying system.

context System inv MTBUnauthenticRequests:

self.AuthenticationControl.Responses->select(R | R.IsValid = false)->

differences(‘Measurementtime’)-> sum() / self.AuthenticationControl.Responses->select(R |

R.IsValid = false)-> count()

Logging Activities

This metric helps in assessing the ratio of logging activities generated by the monitored system

context System inv LoggingActivities:

self.Auditor.Requests->select()->count / self.Requests->select()-> count()

Chapter 9: Cloud Applications Security Monitoring

Page 221

Table 9-2. Examples of derived security metrics

Authenticated Requests Metric Trend

This security metric helps in assessing the trend of metric values over a period of time. Here,

we apply it on the authenticated requests metric. This helps in figuring out whether there is an

increasing or decreasing trend in the number of unauthenticated requests or not.

context System inv Authenticated RequestsTrend:

 self.AuthenticatedRequests.Differences(‘AuthenticatedRequests’)->sum()/

 self.AuthenticatedRequests-> count()

Security Metric over Multiple Systems

This metric helps in following up the security status over multiple systems/services. Here, we

apply it on the average of mean time between unauthentic requests over multiple systems.

context System inv MTBUROverSystems:

 self.MTBUnauthenticRequests->sum()/ self.MTBUnauthenticRequests->count()

9.4 Security monitoring platform

After formalizing security metrics specification, we need to develop the underlying security

monitoring platform which is responsible for realizing these metrics and reporting the

measurements collected to the corresponding metrics’ authors. We have figured out five key

challenges we need to address in our security monitoring platform:

….Service 1 Service 2 Service n

M
et

ri
c

Sp
ec

if
ic

at
io

n

Probe Manager

Probe Generator

System Wrapper

Measures Analysis R
ep

o
rt

in
g

se
rv

ic
e

M
et

ri
cs

’ D
ef

in
it

io
n

s
an

d
 M

ea
su

re
m

en
ts

Probe Probe ProbeProbe

Figure 9-4. Security monitoring platform architecture

Chapter 9: Cloud Applications Security Monitoring

Page 222

– Security probes: How to extract entities to be monitored given the specified metric OCL?

– How to deploy these security probes within the target system at the specified system

entities?

– How to extract metrics’ values from the generated security measurements?

– How to enable/disable security metrics (in case they are no longer used)?

– How to fire security metrics’ analysis service according to metrics’ frequencies?

To address these challenges, our security monitoring platform is designed to be extensible in

supporting new security metrics, new measurement attributes, and new entities to monitor

without a need for patching or maintenance. The architecture of the security monitoring

platform shown in Figure 9-4 and is discussed below.

- Security Metrics Specification: This is a UI where security officers can develop their security

metrics including the metric signature and corrective action specifications. These metrics are

validated against the system description meta-model discussed above. Once validated, the

metric is registered in the metrics repository that is managed by our monitoring platform.

- Probe Manager: Once a security metric is added or updated in the metrics repository, the

security probe manager does the following: (i) Triggers the probe generator component to

generate security probes that collect required measures with corresponding attributes; (ii)

Deploys the generated security probes within the system using system wrapper component

and removes deployed probes if the metric is no longer required; and (iii) Adds a new entry

in the metrics analysis service timer according to the metric specified frequency. This is

responsible for triggering the metric analysis service regularly to analyze new measurements.

- Probe Generator: The main responsibility of the probe generator is to extract security probes

from a given metric definition. The probe generator extracts: (i) entities to be monitored

from the metric signature OCL expression (the context section of the signature); (ii)

attributes to monitor from the attribute list of the metric; (iii) what requests/responses to

monitor (probe filter) from the metric signature OCL expression (conditions part – e.g. only

unauthentic requests). Given a security metric signature “self.Authenitcation

Control.Request…”, will result in a security probe to be deployed in the system

authentication control to intercept and report requests to the authentication control.

Moreover, to optimize the performance of the probes’ reported measurements; we extract the

specified conditions in the security metric signature to use in filtering which requests to

report and log. Measurements generated by a security probe include attributes defined on the

security metric e.g. Metric ID, timestamp, inputs, outputs, user identity, host IP address. The

outcome of the probe generator is a probe class that is managed by the probe manager.

- System Wrapper: The system wrapper is responsible for injecting interceptors (using

dynamic aspect-oriented programming - AOP) within the target system/service at runtime at

Chapter 9: Cloud Applications Security Monitoring

Page 223

the critical points (system entities that have security metrics defined on them). The list of

critical points is managed by the probe manager. The system wrapper supports two modes of

interception: synchronous where the system is intercepted and put on hold until the security

analysis service confirmation (this helps in active monitoring tasks, such as introduction

prevention systems or application firewalls) or asynchronous to reduce the performance

overhead (passive monitoring). The system wrapper that we have implemented currently

supports intercepting requests at the system level, component level, and method level, which

is adequate for our goal of the security monitoring and analysis. However, we plan to extend

this system wrapper to intercept requests on a block of code level (i.e. blocks of code with a

specific signature pattern). This increases the usability of our approach in deep security

analysis and in addressing different QoS attributes other than security.

- Metrics Analysis Service: The analysis service parses the specified security metric signature

developed in OCL and generates a C# analysis class. These security analysis classes are

loaded at runtime according to the metric frequency that is registered (by the probe manager)

in the security metrics analysis and timing service. These security analysis classes check the

measurements repository for metric collected measures. These measures are then analyzed

and aggregated. The outputs of this analysis service are sent back to the repository for further

use by other metrics (e.g. by other derived metrics), for historical analysis, and for the

reporting service that use these metrics’ values to generate status reports.

- Reporting Service: this takes the aggregated results stored in the repository for the target

system and provides a set of visualizations for security and systems engineers. Currently a

set of tabular and chart visualizations are supported and accessed via a web page. A further

extension of our platform is to provide security officers with a visual designer where they

can specify how they want these metrics to be visualized [278].

9.5 Implementation

We briefly describe some implementation details of our automated, formal security monitoring

and analysis tool. First, we developed a UI component, show in Figure 9-5, to assist security

experts in developing their security metrics definitions and signatured using OCL (Figure 9-5-

A). This provides security metric specification and signature editing including checking validity

of OCL expressions (Figure 9-5-B and Figure 9-5-C) and testing of specifications on sample

measurements. We use an existing OCL parser [279] to parse and validate signatures against our

system description model. Once validated, the metric definition and signature is stored in the

signatures database. Second, we developed an OCL-to-C# translator library that transforms the

developed metrics’ signatures into C# analysis classes. Each class has a single static method that

accesses the metrics’ and measurement repository and applies the C# code on these

Chapter 9: Cloud Applications Security Monitoring

Page 224

measurements (Figure 9-5-D). Third, we developed a probe generator library that analyses

OCL-based metric definitions and extracts a list of attributes and list of entities to monitor. Both

lists are used by a probe class template to generate the metric probe class. These are currently

C# implementations that can be deployed at run-time against the target software system. Fourth,

we reused our system wrapper, introduced in Chapter 6, to help in injecting security probes at

the critical system entities. To support runtime system interception, our platform combines both

dependency injection and dynamic-weaving AOP approaches.

The system wrapper supports wrapping of both new developments and existing systems. For

new development, we use the Microsoft Unity application block delivered by Microsoft PnP

team to support intercepting any arbitrary system entity. Unity supports dynamic runtime

injection of interceptors on methods, attributes and class constructors using system

configurations. For existing systems we adopted Yiihaw AOP tool to modify application

binaries (dll and exe files) by adding security aspects at any arbitrary system entity. In the latter

case, we add a call to our system wrapper. The communication between the system wrapper and

security measurements repository are implemented using Microsoft Windows Communication

Foundation (WCF) based services. Figure 9-5-E shows a sample security status report showing

metrics’ values and trends.

9.6 Evaluation

In this section we summarize our evaluation experiments we performed to assess the capabilities

of our approach in capturing, generating, deploying, collecting measures, and analyzing security

metrics details. We apply the OCL-based security metrics signatures as illustrated in Section 3.

We defined three aspects to address in our approach evaluation. This includes expressiveness

and usability, soundness and effectiveness of the approach, and performance overhead. These

aspects are discussed in the next subsections.

9.6.1 Expressiveness and Usability

In this experiment, we assess the expressiveness and usability of our security metrics

specification language in capturing definitions of different security metrics. These range from

simple counting of raw measures collected from certain system entities up to complicated

security metrics that incorporate results from different base metrics. We decided that the best

approach to assess the expressiveness of our approach was to use it in capturing definitions and

signatures of a set of benchmark security metrics. However, we unfortunately could not find

such benchmarks. Currently there is a new project led by OWASP [276] to come up with

critical security metrics to be used in assessing web-based software systems.

Chapter 9: Cloud Applications Security Monitoring

Page 225

A

B

C

D

E

Figure 9-5. Snapshots from our security monitoring tool

Chapter 9: Cloud Applications Security Monitoring

Page 226

Table 9-3. Comparison between metrics specification languages

*: Feature supported through language extensions

Criteria EC-Assertions Our Language PMSL GMSL

Applications
Reasoning and verification of system

properties

System properties + Metrics

specification and evaluation

Parallel systems performance

metrics

Static program quality

metrics

Supported Features Events, properties, relations
Declarative, properties,

relations, set theory

Declarative, Functional, Built-

in attributes and metrics,

statistical fns.

Declarative, built-in code

analysis functions.

Boolean connectives *

Quantifiers *

Modalities * Not Required

Temporal Events *

Preconditions *

Post conditions

Complexity

User-Extensibility

Limitations
No aggregation functions, no

historical data

No control flow, no alterable

state
Work on source code AST

Chapter 9: Cloud Applications Security Monitoring

Page 227

To find a workaround to this problem, we have compared our approach expressiveness and

usability with different system properties and metrics specification languages including the Event

calculus with different extensions as explained in [190], PMSL (performance metrics specification

language) [203] , GMSL (Goanna Metric Specification Language) [205]. Details of these metrics’

and properties’ specification languages are covered in the related work chapter. Table 9-3 shows

that our OCL-based security metrics’ specification language is more rich and expressive in

developing different types of metrics. The main observations from this comparison are: the usability

(complexity feature) and extensibility of our language compared to others mainly event Calculus.

Another key feature is the support of aggregation functions that are mainly used in data reduction

and extraction of meaningful metrics from the collected measurements.

9.6.2 Approach Soundness

In these experiments, we assess our approach accuracy and soundness in two key points: the

security probes automatic generation from the security metrics’ signatures; and analysis results of

the security analysis service which is based on metrics’ signatures. Other relevant points to be

evaluated include the deployment of generated security probes (this depends on the MDSE@R

system wrapper component which is based on Microsoft application blocks), and the extraction of

security measurements from current system requests and status (this depends on accuracy of the

user defined attributes and expressions specified to extract such attributes). Thus, we focus on the

generation of security probes and evaluation of metrics’ expressions.

A key problem we faced in this experiment is that we need to consider different variables related

to system usage and our security monitoring soundness including number of concurrent users,

number of requests per second, number of malicious requests sent to the software system, and

system entities to be accessed. A possible solution is to conduct a set of planned experiments with

different sets of variables’ values to assess the security monitoring platform. In our evaluation, we

have used a random number generator to generate random numbers for each of experiment variables

– i.e. number of users, requests, etc. At every time step, we generate a random number that is used

to represent number of concurrent users. Then we generate a random number for the number of

requests to be issued for each concurrent user. The same applies for each experiment variable. For

system entities to be accessed, we generated a hash map of system entities with IDs. Based on the

generated random number we retrieve the system entity to be requested.

Table 9-4 shows the experimental evaluation results of our platform on GalacticERP service (our

motivating example) using a set of four security metrics shown in Table 9-1. We have done three

consecutive trials (time steps). For each experiment we assessed our platform capability in

generating security probes (column “P”), generating metric evaluation expression (column “E”),

Chapter 9: Cloud Applications Security Monitoring

Page 228

and testing the system with the metric deployed using a random number of users, requests, and

malicious requests (column “A”). This column shows the metric value calculated using metric

evaluation expression generated from the metric signature. Each experiment has a set of attributes

including number of concurrent users, number of generated requests, how many of these requests

are malicious. These attributes’ values are set using random number generator. Furthermore, we

assume that all requests are not within the same session. Thus, every request sent by the user need

to be re-authenticated and re-authorized.

The metrics values show that monitoring platform successfully intercepted requests, generated

measurements, and analyzed these measurements correctly. For example the authenticated request

metric value was 100% which means that all system requests have been authenticated. The ratio of

the authentic requests also conforms to the ratio of malicious requests in each experiment. The ratio

of logging activity reflects how many requests were sent to the logging control compared to the

total number of system received requests.

0

0.5

1

1.5

2

2.5

3

3.5

M1 M2 M3 M4 M5 M6

Time - Preparation

Time - Collect Measures (100)

Time - Evaluate Metric (100)

Figure 9-6. Performance overhead grouped by monitoring stage

9.6.3 Performance Overhead

In these experiments, we aimed to assess the performance overhead of our security monitoring

platform in five points: generating security probes and metric evaluation function; deploying probe;

intercepting system execution; extracting system measurements required by specified security

metrics; and evaluating metrics from collected security measurements. The system interception and

measurement collections have impact on systems performance. The other efforts are done offline

without impact on system at all. Table 10-5 summarizes the time taken in each of these points in

milliseconds. It is worth mentioning here that measurements extraction is repeated according to the

usage of the system – i.e. number of system requests. Figure 9-6 summarizes the performance

Chapter 9: Cloud Applications Security Monitoring

Page 229

overhead incurred in the metric preparation step, measurement collection, and metric evaluation.

We measure the performance overhead of the measurement collection with 100 system requests.

The same with the metric evaluation, the input to the evaluation function is (100) measurements.

The time displayed is scaled using (log10) for visualization.

9.7 Discussion

We introduce a security monitoring approach that helps in automating the realization and analysis

of security metrics. Our approach is based on adoption of OCL supported with a system description

meta-model to help in capture security metrics’ signatures. Our platform uses these signatures to

generate probes, deploy probes at critical system entities, and generate security analysis classes that

analyse probes’ generated measurements. We have evaluated the approach expressiveness,

usability, soundness and performance overhead.

Extensibility to support automation of operational and managerial security metrics: enterprises

usually have different systems other than IT systems (either used for operational or managerial

purposes) where security engineers would like to assess their security level as well. Moreover,

different security systems are usually operated in these enterprises where security engineers would

like to aggregate their reported results. A possible way to address this issue in our approach is to

add those systems’ logs to our measurements repository. This enables security engineers to develop

operational and managerial security metrics [275] that work on these measurements. A possibility

for automation is also feasible given that we can develop adaptors that integrate such systems with

our security management platform.

A key further extension of our approach is to develop an automated adaptive security approach

that uses the results of the security monitoring platform along with the corrective actions to address

reported deviations from the normal behavior of the system. Furthermore, we plan to extend our

platform with more abstract metric specification language (may be based on natural language or

using model-driven techniques) to help security engineers in developing metrics without a need to

learn new languages. This will require development of a parser that can extract metric signatures (in

OCL) from such abstract definitions.

Chapter 9: Cloud Applications Security Monitoring

Page 230

Table 9-4. Security monitoring evaluation results

Time Step
1 2 3

P E A P E A P E A

E
x
p

er
im

en
t

A
tt

ri
b

u
te

s

#Users – – 69 – – 56 – – 84

#Requests – – 3429 – – 3180 – – 4455

#Malicious Requests – – 2096 – – 1921 – – 2631

S
ec

u
ri

ty

M
et

ri
cs

Authenticated Requests 100% 100% 100%

Authentic Requests 61% 60% 59%

Mean Time Between Unauthentic Requests (sec) 2 1 2

Logging Activities 85% 87% 88%

Table 9-5. Performance overhead of our security monitoring platform

Aspect / Metric Generate Probe Deploy probe Intercept Exec. Extract Measures Evaluate Metric

Authenticated Requests 10 3 5 6 4

Authentic Requests 11 3 5 7 8

Last(10) Requests to

Authorization Control
5 3 5 6 3

Top(10) Admin Requests to

Authent. Control
5 3 5 5 4

Mean Time Between

Unauthentic Request
14 3 5 5 18

Logging Activities 10 3 5 5 7

Chapter 9: Cloud Applications Security Monitoring

Page 231

9.8 Chapter Summary

In this chapter we introduced our new security monitoring approach that we developed to complete

a full security management cycle, after previously defining security (security analysis and security

models) and enforcing security (security engineering and retrofitting). The security monitoring

component covers the security dynamic analysis part. The security monitoring approach is based on

the same concept used in the system security analysis and security retrofitting which is to abstract

system details in a system description meta-model and using OCL to develop security metrics’

signatures (invariants and constraints) on this abstract level. Using our extension of the OCL parser

we extract security probes and conditions to apply. Furthermore, we extract the security

measurements’ analysis module that analyse and summarize collected metric measurements. We

have evaluated our approach expressiveness, soundness, and performance overhead.

Part 3

Case Studies

Page 235

 Chapter 10

Case Studies

Throughout this thesis, we have explained in detail how our model-based cloud computing security

management approach works and how we evaluated each component individually. In this chapter

we introduce a set of case studies as a part of evaluating our platform. We have selected three

different security problems that arise from the adoption of the cloud computing model. These

problems are critical, and represent hot research areas in the cloud computing area. Moreover, our

approach to address these case studies depend on using multiple components from our platform.

This also justifies why we introduce these case studies in a separate chapter and not as an integrated

part of the approach chapters (5-9):

– Case Study No.1: Online Automated Cloud Applications Security Virtual Patching: This case

study addresses the problem of public accessibility of the cloud platform which increases the

potential of being under attack and exploiting cloud services vulnerabilities. To address this

problem we introduce VAM-aaS as a comprehensive and integrated solution composed of the

vulnerability analysis and MDSE@R components of our security management platform. This

enables VAM-aaS to work as an online vulnerability analysis and mitigation service that keeps

analyzing cloud services looking for vulnerabilities. Whenever a new vulnerability is found a

set of agreed on actions are applied to block such new security hole.

– Case Study No.2: Supporting Multi-tenancy Reengineering using Re-aspects: This case study

addresses the security isolation problem that arises from adopting cloud computing model.

Getting tenants to share the same service instance means that we have to filter data they can

access which is specific to them and according to their assigned roles and permissions. To

address this problem we introduce SMURF as an easy to use tool to help reengineering legacy

applications to support multi-tenancy.

– Case Study No.3: Supporting Multi-tenancy Reengineering using Re-aspects: This case study

addresses the whole problem of getting cloud services to reflect different sets of security

requirements for different tenants and getting these sets to be changed at runtime. Moreover, it

addresses how to adapt security requirements according to current security status. Finally, to

incorporate security controls relevant to mitigate specific vulnerabilities. This case study covers

the whole process of tenant-oriented cloud services security management.

 Chapter 10: Case Studies

Page 236

10.1 Case Study No.1: Online Automated Cloud Applications

Security Virtual Patching

However, the potential benefits reaped from the adoption of the cloud computing model, these are

threatened by the public accessibility of the cloud-hosted services and sharing of resources among

different tenants. This increases the possibility of malicious service attacks. Existing cloud

platforms do not provide a means to validate the security of the offered cloud services. Moreover,

the public accessibility of cloud services increases the potential for exploitation of newly discovered

vulnerabilities that usually take a long time to discover and to mitigate. We introduce VAM-aaS,

Vulnerability Analysis and Mitigation as-a-Service, as a novel, integrated, and online cloud-based

security vulnerability analysis and mitigation service. VAM-aaS performs online service analysis to

pinpoint new vulnerabilities/weaknesses. It then uses this information to generate security control

integration scripts to block these discovered security holes at runtime. Our approach is based on the

vulnerability signature and mitigation-actions specification approach discussed in Chapter 8. This

case study is organized as follows. Section 1 explains why automated vulnerability mitigation

becomes a key requirement. In Section 2, we introduce our approach and the proposed VAM-aaS

architecture details. In Section 3, we summarize evaluation results from evaluating our approach.

10.1.1 Introduction

The cloud model is based on service outsourcing for hosting on third-party platforms outside of the

enterprise network perimeter. However, the cloud model also introduces new opportunities for

attackers to exploit the publicly accessible valuable cloud services. Adopting the multi-tenancy

model increases the exploitability of service vulnerabilities because one of the service tenements

(who has been granted privileged access on the cloud service) may be malicious users. This means

that they can exploit complicated vulnerabilities that require higher privileges rather than being a

public user. Moreover, the number of newly discovered vulnerabilities is increasing rapidly. Web

applications (the prominent application delivery model used in SaaS applications) continue to make

up the largest percentage (63%) of the total reported vulnerabilities [60].

Commercial vulnerability scanners such as IBM-AppScan, HP-Web inspect, McAfee tools focus

mainly on black-box vulnerability analysis to avoid being limited to specific programming language

or platform. However, none of these scanners cover all known vulnerability types [116]. On the

other hand, existing research efforts [60, 109-111, 113, 117] focus on discovering specific

vulnerability types including SQLI [107, 115], XSS [112, 115, 118], or input sanitization [119, 121]

using static analysis [114, 117], dynamic analysis [115], or hybrid techniques [120, 264].

 Chapter 10: Case Studies

Page 237

The key problems with these efforts include: they provide specific techniques for specific

vulnerability types; proposed techniques apply on specific platforms or programming languages;

they do not support analyzing for new vulnerability types. On the other hand, these limitations are

key requirements for cloud services’ vulnerability analysis tools. An online vulnerability analysis

approach that supports locating well-known as well as new vulnerabilities without waiting for new

tool patches is a must to have in the cloud computing environment.

On the other hand, mitigating application vulnerabilities is usually done manually by modifying

application source code and deploying new patches; however, this takes a long time as shown in

Figure 10-1. This lagging time between vulnerability detection and patching means that the service

remains vulnerable to security breaches exploiting such vulnerabilities. The possibility of

vulnerability exploitation increases dramatically in the cloud, given the public accessibility of the

cloud services and sharing of services with multiple tenants. Thus, the cloud computing model

requires an online vulnerability patching approach that can block such vulnerabilities once reported.

92

138

17

160

88

0 50 100 150 200

XSS

SQLI

CSRF

Improper Auth.

Improper Authz.

Avg Time (days)

Avg Time (days)

Figure 10-1. Average time to fix security vulnerabilities (in days)

We introduce VAM-aaS as a new integrated solution to cloud-based services vulnerability

analysis and mitigation problems. VAM-aaS is based on the formalized vulnerability signatures as

well as enumerated mitigation actions to block such vulnerabilities. Vulnerability signatures,

developed using OCL, are specified as invariants, when matched; it means that the specified

vulnerabilities do exist in the application/service under analysis. These signatures are validated

against a comprehensive system description meta-model (represents language semantics) covering

most of the object oriented program concepts/entities. To support locating new types of

vulnerabilities, security experts will need to update the vulnerability analysis service repository with

the OCL-signatures of the new vulnerability.

The vulnerability mitigation actions specify a set of security solutions that can be used to block

“virtual patching” the discovered vulnerabilities reported by the analysis component. It also

specifies the configurations and rules that should be applied when activating security controls. We

 Chapter 10: Case Studies

Page 238

modified MDSE@R to work as a vulnerability mitigation component that uses these vulnerability

mitigation actions (instead of tenants’ security requirements as explained in Chapter 6) to plug-in

the specified mitigation security controls within the target vulnerable service/application online.

Thus, our proposed mitigation component is not limited/hardcoded to specific security controls as it

depends on a simplified security interface that security controls should satisfy in order to be

integrated with our mitigation component explained in Chapter 6.

Hosting Service

Vulnerability Analysis Vulnerability Mitigation

Vulnerability Definition Schema

Reported
Vulnerabilities

Signatures Mitigations

SaaS Application
Vulnerabilities Mitigations

2 5

3

1 4

Figure 10-2. VAM-aaS Key components, relations and possible interactions

10.1.2 VAM-aaS

Our security vulnerability analysis and mitigation approach is based on (i) our formalized

vulnerability signature and potential mitigation actions specification approach; (ii) an extensible

vulnerability analysis tool that performs OCL-based vulnerability signature-based program analysis;

and (iii) a vulnerability mitigation component that blocks service/application security vulnerabilities

by generating configuration and integration scripts that integrate security controls at the

application/service reported vulnerable points. In Figure 10-2, we summarize the possible

interactions between the vulnerabilities definition repository, analysis and mitigation components,

applications/service, and the hosting services (Web Server, Operating System, another PaaS, etc).

10.1.2.1 Vulnerability Definition Schema

Existing software security weaknesses, or vulnerability definitions, in the Common Weakness

Enumeration (CWE) [27] database help in understanding the nature of a given vulnerability.

However, these vulnerabilities’ definitions are informal. This requires manual analysis (by security

experts) to locate such vulnerabilities in the applications under analysis. This is very hard to satisfy

in the cloud computing model as services are already outsourced. Formalizing these vulnerability

definitions helps automating the vulnerability analysis and mitigation process. In chapter 8, we gave

a detailed explanation of our proposed vulnerability definition schema which include vulnerability

signature, category, preconditions, consequences, mitigation and prevention actions, and so on. In

 Chapter 10: Case Studies

Page 239

this case study we focus on the vulnerability signature specification and vulnerability mitigation

actions attributes in a given vulnerability definition.

As we explained before, a formal vulnerability signature should be specified on an abstract level

far from the source code and programming language details, enabling locating of possible

vulnerability instances in different programs written in different programming languages. We use

Object Constraint Language (OCL) as a well-known, extensible, and formal language to specify

semantic rather than syntactical signatures of security weaknesses. To support specifying and

validating OCL-based vulnerabilities’ signatures, we have developed a system-description meta-

model. It captures the main entities in any object-oriented program and relationships between them

including components, classes, instances, inputs, input sources, output, output targets, methods,

method bodies, statements e.g. if-else statements, loops, new objects, etc. Each entity has a set of

attributes such as method name, accessibility, variable name, variable type, method call name. This

model helps conducting semantic analysis of the specified vulnerability signatures.

Discovered application/service security vulnerabilities can be mitigated in different approaches

including: modifying application source code to block the identified problems (patches); however,

this solution is hard to adopt in the cloud model as it may take long time to deliver patched version

as shown in Figure 10-1. A quick solution is to use Web application firewall (WAF) to filter

requests/responses that exploit such vulnerabilities; however, WAF has many limitations including

it does not help in output validation, cryptography storage, and mitigating improper authorization.

We introduce a new approach that supports integration of different security controls including

identity management, authentication controls, authorization controls, input validation, output

encoding, WAF, cryptography controls, etc. Each vulnerability definition has a set of mitigation

actions that specify how to mitigate such vulnerability. Each mitigation action defines a security

control type/family to be used in mitigating the related vulnerability, its required configurations,

and application/service entity where the security control will be integrated with (hosting service

including web servers or operating systems, components, classes, and methods). Thus, a reported

SQLI vulnerability in a method (M) that belongs to component (C) can be mitigated by adding input

sanitization control (Z) on component (C) that filter out SQL keyword from every single request to

the method (M).

Table 10-1 shows examples of mitigation actions for some of the well-known security

vulnerabilities. These actions should be specified in XML and included as a part of the formalized

vulnerability definition. In Chapter 8 we introduced a set of proposed signatures that could be used

to identify vulnerabilities in a given service/application.

 Chapter 10: Case Studies

Page 240

Table 10-1. Examples of vulnerability mitigation actions

Vulnerability Security Control Entity Level

SQLI Input sanitization Method level

XSS Input encoding Component level

Authn. Bypass WAF Component level

Improper Authz. Authorization Method Level

10.1.2.2 OCL-based Vulnerability Analysis

Given that vulnerability signatures become now formally specified using OCL, the static

vulnerability analysis component simply traverses the given program looking for code snippets with

matches to the given vulnerabilities’ signatures. The architecture of our formal and scalable static

vulnerability analysis component, as shown in Figure 10-3, is already explained in Chapter 8.

Program
Representation 1

AST

Program
Representation

……

……

Signature Locator

OCL
Functions

Platform
Profile

Weakness
Signatures

(OCL)

Vulnerability List

Pr
og

ra
m

 S
ou

rc
e

Figure 10-3. OCL-based vulnerability analysis component

A
pp

lic
at

io
n

Application Interceptors

Document

Security Kernel

Security Specification

Document

A
pp

lic
at

io
n

W
ra

pp
er Vulnerability Mitigation Manager

OCL-based Vulnerability

Analysis Component

Vulnerability Definition

Schema

Mitigation ActionsDiscovered Vulnerabilities

Se
cu

ri
ty

 S
er

vi
ce

s

1 2

4 5

3

6

7

8

Figure 10-4. Vulnerability Mitigation Component

 Chapter 10: Case Studies

Page 241

10.1.2.3 Vulnerability Mitigation

The analysis component outputs a list of the newly discovered vulnerabilities in each of the cloud

hosted SaaS applications (Figure 10-4-1). Each entry in this list has a service/application vulnerable

entity (method, class, or component) along with the list of discovered vulnerabilities. Given this list

of vulnerabilities, the security vulnerability mitigation manager queries the vulnerability definition

schema database (Figure 10-4-2) to retrieve the appropriate actions to be taken in order to mitigate

each of such reported vulnerabilities. Examples of the retrieved actions are shown in Table 10-1.

Using these two lists (vulnerable entities and mitigation actions), the vulnerability mitigation

manager (Figure 10-4-3) decides the patching level (component level, class level, or method level)

using e.g. HttpModules, object interceptor using dependency injection, or method level interception

using dynamic weaving AOP respectively. These details are maintained in a security specification

document for each application (Figure 10-4). Moreover, the mitigation manager uses the registered

security services’ properties to decide which security service realizes what security control type

specified in the mitigation action – e.g. the identity and access management control is currently (on

this platform) realized by identity manager. Finally, the vulnerability mitigation manager updates

the security specification document (Figure 10-4-5) with the list of actual security services to be

triggered whenever the application receives request to every vulnerable resource. The application

wrapper (Figure 10-4-6) is responsible for intercepting requests to entities specified in the

application interceptors’ document – i.e. vulnerable entities. These requests will be redirected to the

security kernel (Figure 10-4-7). The security kernel queries the security specification document to

get the security controls/services to be enforced to patch the requested resource. Then, it generates

calls/requests to these security services (Figure 10-4-8). When these services return, the security

kernel returns the control back to the called resource. This is a bit modified version of MDSE@R to

replace secure-system model that is developed by service provider and tenants with vulnerability

list and reference vulnerability definition repository.

10.1.3 Experimental Evaluation

The key objectives of our evaluation experiments are to assess the soundness of our VAM-aaS in

capturing different vulnerabilities’ signatures, detecting these vulnerabilities in given applications,

and in mitigating them. We apply the OCL-based vulnerability signatures examples and mitigation

actions discussed in Chapter 8. We used the full set of benchmark applications (discussed in chapter

4) applied in the security analysis task as explained in Chapter 8. To assess the effectiveness of our

approach we use the same evaluation metrics including precision, recall and f-measure to measure

our approach soundness and completeness. The results of evaluating our analysis component

applied on benchmark suite to identify four of the Top10 web applications vulnerabilities

(OWSAP2010) are already presented in Chapter 8 for the security analysis part.

 Chapter 10: Case Studies

Page 242

Table 10-2. Results of VAM-aaS vulnerability mitigation component

App

SQLI XSS Authn. Bypass Improper Authz.

TP FP FN TP FP FN TP FP FN TP FP FN

Galactic 2 1 0 4 1 0 4 0 0 2 1 0

Splendid 14 0 0 7 1 0 3 2 0 3 0 0

KOOBOO 14 2 0 10 3 0 4 1 0 12 0 0

BlogEngine 4 0 0 4 2 0 0 0 0 4 2 0

BugTracer 10 0 0 1 0 0 4 1 0 1 1 0

NopCommerce 19 0 0 5 0 0 0 0 0 1 0 0

Webgoat 9 0 0 5 1 0 4 2 0 3 1 0

Total 72 3 0 36 8 0 19 8 0 30 5 0

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Precision

Recall

F-Meas.

Figure 10-5 Effectiveness of the security mitigation component

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 5 1 0 5 0 1 0 0 3 5 0 5 0 0 1 0 00 5 0 00 1 0 00 0

1 0 U s e r s

5 0 U s e r s

1 0 0 U s e rs

No. CPs

T
im

e
 i
n

 m
s
e

c

Figure 10-6. Performance overhead of the security mitigation component

 Chapter 10: Case Studies

Page 243

Table 10-2 summarizes our experiments’ results applied on benchmark suite to mitigate the

vulnerabilities reported by the vulnerability analysis component. It shows the number of TP, FP,

and FN. A key observation from this table is that the mitigation component does not have false

negatives which means that no missing points that has not been mitigated.

Figure 10-5 shows precision, recall, and F-measure for the mitigation component, we have

incorporated the results returned from the analysis component with the FN missed vulnerabilities.

Although the recall rate is (100%) which means that we did not miss any of the specified

mitigations, we have an average of (85%) precision – i.e. high FP - as we may secure entities that

have no security problem. This depends on the accuracy of the specified mitigation actions.

Figure 10-6 shows the performance overhead of the mitigation component with different

numbers of concurrent users and numbers of critical/vulnerable points (on a Core2Duo desktop PC

with 4GB Memory). The performance overhead equals the time spent by the security kernel to

query security specification document and get security controls to be employed in securing

intercepted point, and time spent in calling these security controls. The time spent by the security

controls themselves we do not factor in, as this needs to be spent whether using our approach or

traditional hard-coded security. Performance can be further improved using replicas of the

mitigation component with different services and platforms.

10.1.4 Discussion

We developed a formal vulnerability definition schema including vulnerability signature and

mitigation actions, extensible vulnerability analyzer based on the proposed signature specification

schema and applied on abstract program representation, and a vulnerability mitigation approach

based on dynamic and runtime injection of security controls into vulnerable entities. Using OCL

allows adoption of existing validation and query parsing tools. Using abstract representation helps

generalizing and abstracting the security analysis task from specific programming languages or

platform details. It also helps making the approach more scalable for larger applications. Use of a

common security interface helps integrating different security controls without a need to develop

new system-security control connectors.

From our experiments with mitigation actions and security controls integration, we found that

although using web application firewalls is a straight forward solution, it is not always a feasible

option to block all discovered vulnerabilities. The selection of the entity level to apply security

controls on (application level, component level, method level, etc.) impacts the application

performance – i.e. instead of securing only vulnerable methods, we intercept and secure (add more

calls) the whole component requests. A key point that worth mentioning is that the administration of

 Chapter 10: Case Studies

Page 244

security controls should be managed by the service/cloud provider administrators. Our focus is

integrating controls within vulnerable entities.

Our vulnerability mitigation component works online without a need for manual integration with

the applications/services under its management. The overhead added by the mitigation action can be

easily saved if the service developers worked out a new service patch. In this case, the vulnerability

analysis component will not report such vulnerability. Thus, the mitigation component will not

inject security controls. Our experimental results show that the OCL-based analysis tool achieves

(90%) precision rate and (92%) recall rate while our mitigation component achieves (100%) recall

and (85%) precision rate.

 Chapter 10: Case Studies

Page 245

10.2 Case Study No. 2: Supporting Multi-tenancy

Reengineering using Re-aspects

In this case study, we address the multi-tenancy reengineering problem that obstacles service

providers from adopting the cloud computing model to host their applications. One of the key issues

that must be addressed in multi-tenancy reengineering is how to support security isolation between

different tenants’ data. To address this problem, we have applied our reengineering aspects “re-

aspects” concept to help in this task. This case study is organized as follows. In Section 1, we

discuss an overview of the multi-tenancy reengineering and security isolation problem. In Section 2

we introduce an analysis of the SaaS multi-tenancy reengineering requirements. Section 3 goes

through usage example. Section 4 shows our experimental evaluation results and discusses

implications of our approach.

10.2.1 Introduction

Multi-tenancy helps in delivering services including infrastructure, platform and software that can

be shared between different tenants. In the IaaS model, multi-tenancy is achieved through using

hypervisors that virtualize the server resources. Thus the Operating System itself does not need to

be modified. Moreover, each customer has a separate instance (VM). However, In the SaaS model,

multi-tenancy has different possible deployment models including a separate instance for each

tenant up to a single instance for multiple tenants. The later deployment model is definitely the

optimal model. However, it requires the SaaS application to handle multi-tenancy and tenants

isolation themselves.

Supporting multi-tenancy requires the SaaS application to support capturing, processing and

storing data of different tenants in the same application instance. Moreover, the SaaS application

should maintain security and performance isolation between its tenants. This requires considering

multi-tenancy as a key requirement from the early stages of the system development process. Many

of the existing well-known, large-scale business applications that are widely used nowadays are

locked-in a high cost business model. This prohibits them from targeting/servicing the “long-tail-

market”. Thus, it becomes a business need to migrate such applications to support multi-tenancy.

Migration of such applications to support multi-tenancy is a very complicated task as it requires a

deep understanding of the application. Moreover, multiple system modifications are required to be

delivered. This requires revising/updating almost all system modules.

Existing multi-tenancy efforts focus either on extending applications to support multi-tenancy by

wrapping a single-tenant application with a platform that manages the multi-tenancy dimension [22-

24, 230, 232, 280]. The same approach has been followed in industrial efforts as well [281]. Using

these approaches, applications are locked-in to cloud platforms that have such multi-tenancy

 Chapter 10: Case Studies

Page 246

platform hosted. Moreover, features such as user interface customization, application model

extension, etc. will not be available for tenants if the original applications do not support them.

Limited efforts targeted conducting real reengineering of applications to support multi-tenancy

[282, 283]. These efforts focus only on providing a systematic process to be followed by system

engineers to support multi-tenancy. They do not provide tool support to facilitate process.

Our multi-tenancy reengineering approach is based on reengineering-aspects “Re-Aspects”

concept where a given system modification (change request) details are captured as a re-aspect. A

re-aspect includes a signature of code snippets to be modified; action to be applied on identified

code matches (instances of these signatures) include inserting, modifying, replacing, or deleting

code parts; and code to modify, replace or insert. We conduct a thorough analysis of the multi-

tenancy pattern for web applications and come up with a set of key requirements/modifications that

should be addressed at the database, data access layer, business logic layer, and presentation layer.

Moreover, we studied the requirements for security and performance isolation.

We developed a set of modification patterns that system engineers can use when reengineering

their applications to support multi-tenancy. Given these modifications specified as re-aspects, we

analyse the system source code to identify code snippets that match specified re-aspect’s signatures,

and then it performs impact analysis to identify matched entities that need to be modified to realize

the given modifications. Finally, we use the specified re-aspect actions to update the identified

matches.

10.2.2 Multi-tenancy Requirements Analysis

We introduce an analysis of the potential modifications that may be required when reengineering an

application to support multi-tenancy. We project our analysis to a typical architecture of a web

application explaining what need to be added, modified, replaced, or deleted during the process of

supporting multi-tenancy. This analysis is also helpful for service providers who plan to develop

new multi-tenant SaaS application. Service providers have to make their own decisions based on

their application architecture and the multi-tenancy paradigm they plan to adopt including single-

instance single tenant, multiple-instance multiple-tenant, and single-instance multiple-tenant.

10.2.2.1 Multi-tenant Data Model

The multi-tenant application’s database has different possible architecture models. The service

provider has to select between these architecture models based on the isolation level they plan to

deliver, scalability of the application, number of tables, expected sizes of the data tables, and impact

on system performance. These architecture models include [13]:

 Chapter 10: Case Studies

Page 247

- Separate Database: In this model, the service provider maintains a separate database for every

tenant. This represents the highest level of isolation of the four models. Moreover, it is the

easiest model for migration. On the other hand, database servers are usually limited in number of

databases that they can host – e.g. SQL Server theoretically can support 32,767, however,

practically it supports up to 2000 database instances with max number of concurrent connections

up to 1000.

- Shared Database but Separate Schema: In this model, all tenants share the same database but

different schemas. Thus each tenant has his own set of tables grouped under one separate

schema. This provides a logical isolation between tenants’ data. However, this approach helps

mitigating limitations in the previous model; it suffers from database backup and restore

problem. Moreover, it is mainly suitable for applications that have small number of tables.

- Shared Database and Shared Schema: In this model, all tenants share the same database and the

same schema. Although this model is considered the most cost effective solution, it highlights

the isolation problem between tenants’ data. Developers have to make sure that every tenant

cannot access other tenants’ data. This may require modifying the whole application to consider

filtering by tenantID in every query. This requires an intensive analysis of every system

function. A simple common solution to this problem is to use database views to perform the

filtering task. This in turn requires modifying all database queries to work on views-level not

tables. A possible tricky solution to save such efforts is to rename all tables to be (initial + table

name) – e.g. rename table Employees to sys_Employees. Then create views for all tables with

the original table name – e.g.

EXECsp_rename‘Employees’,'sys_Employees'

CREATE VIEW Employees AS

SELECT * FROM sys_Employees WHERE TenantID = USERID

Thus all application queries will be projected automatically on views where data are already

filtered by the current tenant. Of course, this requires using security impersonation (to allow the

application to take the identity of the requesting user) when application connects to the database

server. Another possible option is to modify the database connection in the data access layer so

that all requests are redirected to a proxy where queries are validated and filtered before

submitted to the actual database.

- Mixed Model: In this model, the service providers support different data models (of the three

models discussed above) and leave it to tenants to select the model that best fits their needs in

terms of scalability, security, performance and cost – e.g. Tenant T1 may decide to use shared

schema model as it is less expensive and he is not worried about his data security. On the other

hand, Tenant T2 may decide to use separate database model to maintain his data as he is very

 Chapter 10: Case Studies

Page 248

keen about his data security. From the service provider perspective, this model (mixed-model)

requires to support the three data models. Hence, service providers should conduct cost-benefit

analysis (market share gained against cost) before delivering this model. Based on requesting

user’s tenant, the system (data access layer) should either connect to the shared database or to

the tenant separate database.

Another issue that should be considered when architecting application data model is how to

enable data model extensibility – i.e. every tenant may have special fields or data items that they

need to maintain for every operation (record). This is straight forward when maintaining separate

database or separate schema per tenant. However, it still has to be propagated to the next layers.

There are different approaches to realize the data model extensibility including: pre-allocated fields

where service providers define a set of dummy columns in every table they expect that their tenants

may need to extend; Name-value pairs where the service provider defines one or more table to

maintain other tables extensions. This table structure will look like (TableID, TenantID,

attributeName, attributeValue); and XML extension column where every table has a predefined

column of type XML where tenant extension columns can be maintained as one entity that can be

saved and loaded. The selection of the database model and the model extensibility to adopt, impacts

the modifications required in the next layers/tiers.

10.2.2.2 Application Layers

In data access and business logic layers we need to modify public methods’ signatures to expect

tenantID as a parameter. Methods’ bodies should be modified as well to process the tenantID – e.g.

adding tenantID to database queries, file access commands, database connection strings, loading

business rules, loading and initializing workflow engine based on current tenant. TenantID is

usually propagated from the presentation layer to these layers. Both the data access layer and the

business logic layer should handle custom fields (data model extension) based on the model adopted

in the data model. This includes handling load, store, and query of these custom fields. Business

objects’ classes should be modified to include tenant’s specific data members.

In the presentation layer we have a set of potential modifications including user interface

customization and branding (e.g. company logo, styles, themes, etc.), adding TenantID to session

state, modifying calls to business logic layer functions to pass tenantID, modifying used business

objects to set/get tenantID. Moreover, the presentation layer should support displaying different

custom fields based on the current requesting user’s tenant

 Chapter 10: Case Studies

Page 249

using (DbCommand command = db.GetStoredProcCommand("dbo.GetEntityDefFields")) {

 db.AddInParameter(command, "tenantId", DbType.Guid, tenantId);

 db.AddInParameter(command, "entityDefName", DbType.String, entityDefName);

 using (IDataReader reader = db.ExecuteReader(command))

}

Figure 10-7. Example of modifications in the data access layer

Figure 10-8. Examples of required modifications in application logic layers

10.2.2.3 Non-Functional Requirements

A multi-tenant application has to be scalable to support the potential number of tenants and their

workloads. This requires the service providers to deploy their application on web farms and

clusters. SaaS SLAs usually capture tenants’ security, performance, availability, and reliability

objectives requirements that should be satisfied by the SaaS application. This resulted in issues

related to how to maintain performance isolation where the execution flow of a given tenant should

not be impacted by other tenants’. Load balancers with performance controllers can help in solving

this problem. However, it requires applications to be stateless. SaaS applications should maintain

session information either on client side or on a shared server that is accessible to all other servers

in this cluster.

Security is another nonfunctional requirement that should be addressed. A SaaS application

should support customizing applications to support tenants’ security “tenant-oriented security”. This

can be achieved by externalizing the security from the multi-tenant system by calling a standard

library that performs authentication, authorization, etc. based on tenants’ requirements and security

controls. This enables every tenant to use his security controls – e.g. to use his LDAP server to

authenticate and authorize users.

 Chapter 10: Case Studies

Page 250

Table 10-3. Multi-tenancy change requests organized by architecture layer

Layer Change Request

Presentation

Layer

1. All web pages should load layout, localization and menus based on

requesting tenant.

2. Entity extension fields should be loaded based on current tenant.

3. Every page grid-view column, user control should be enabled based on user

security customization for current user’s tenant.

4. All business functions should receive tenantID param.

5. Set tenantID field for every business entity created in the presentation or the

business logic layer.

6. All entities display pages should include the tenant defined custom fields.

7. All entity insert/edit pages should include the tenants’ defined custom

fields.

Business

Layer

8. All workflow definitions should filter by tenantID.

9. Update web services to have tenantID param.

10. Update all business functions to have tenantID param.

Data Access 11. All SQL queries should filter by tenantID.

12. All Linq queries should filter by tenantID.

13. All stored procedures should have parameter tenantID.

14. All business entities should have extra attribute of tenantID.

Database 15. Update all database tables with tenantID column.

16. Add new table for tenants’ data.

QOS 17. User Authentication and Authorization should be done through the

customer security controls, if any.

18. Support Load balancing and meet tenants’ SLA.

10.2.2.4 Tenant On-boarding and Metadata service

The registration of a new tenant should be managed by a separate tenant administration service

(may be an extension of an existing system administration module). This includes batches to restore

a new database instance of the system template if the “separate DB” model is applied, or create a

new schema with necessary tables. This module should also enable specifying security permissions

for users, roles, screens and controls. It may also include screens’ customization and localization.

The metadata service is a key module in a multi-tenant application. It helps tenants and service

providers to customize (branding) the application to match tenants’ business needs. This includes

 Chapter 10: Case Studies

Page 251

customizing the user interface text, fields, visibility, and security capabilities, customizing the

business workflow, business rules, and custom fields. Table 10-3 shows a summary of the

modifications required in reengineering a given system to support multi-tenancy grouped by the

application layer where each modification applied. Table 10-4 shows the re-aspects’ signatures

required to located entities to be modified in relation to the modifications specified in Table 10-3.

Table 10-4. List of re-aspects signatures for modifications in Table 10-3

CR Change Request Signature

1 Context Method inv loadMethods: self.Class.GetBaseType() = “Page” AND self.Name =

“Page_Load”

2 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name =

“Page_Load” AND self.Contains(s : IfElseStatement | s.condition = “Page.IsPostBack”

3 Context Method inv fieldSecurity: self.Class.GetBaseType() = “Page” AND self.Name =

“Page_Load” AND self.Contains(s : IfElseStatement | s.condition = “Page.IsPostBack”)

4 Context Method inv businessfns: self.Contains(s : InvocationExpression |

s.fnName.Contains(“BusinessLayer”))

5 Context Method inv businessentity: self.contains(s : newObjectStatement | s.ClassName =

“businessentity”)

6 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name =

“Page_Load” AND self.Contains(s : IfElseStatement | s.condition = “Page.IsPostBack”)

7 Context Method inv fieldExtension: self.Class.GetBaseType() = “Page” AND self.Name =

“Page_Load” AND self.Contains(s : IfElseStatement | s.condition = “Page.IsPostBack”)

8 Context Method inv wrkflwfns: self.Class.Component = “Workflow”

9 Context Method inv webservicemethods: self.Class.GetBaseType() = “Webservice”

10 Context Method inv businesfns: self.Class.Component = “BusinessLayer”

11 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName =

“ExecuteScalar” OR “ExecuteQuery”)

12 Context Method inv Linqqueries: self.Contains(s: QueryExpression)

13 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName =

“ExecuteScalar” OR “ExecuteQuery”

14 Context Class inv businessentityDef: self.ClassName = “businessentity”

15, 16 DB script

17 Context Method inv sqlqueries: self.Contains(s: InvocationExpression | s.fnName = “Redirect”

AND TargetObject = “Response” AND Arguments.Contains(“Login.aspx”)

18 Context Class inv sessionmgmt: self.GetBaseClassType() = “IHttpModule”

 Chapter 10: Case Studies

Page 252

Table 10-5. Evaluation results of our approach on the benchmark applications

CR Galactic PetShop SplendidCRM NopCommerce BlogEngine

1 √ √ √ √ √

2 √ √ ● √ ×

3 √ √ √ √ √

4 √ √ √ √

5 √ ○ ○ √ √

6 √ √ √ × √

7 √ √ √ × √

8 √ ○ × √ ○

9 √ ○ ○ √ ○

10 √ √ ○ √ ●

11 √ √ √ √ √

12 √ ○ ○ √ √

13 ○ ○ √ √ ○

14 √ √ ○ √ √

Time 8 5 90 205 15

(√) CR successfully implemented, (●) CR Partially succeeded. (×) CR modification

failed, (○) CR is not required

10.2.3 Experimental Results

To evaluate our approach, we have selected a set of our benchmark applications and tried to apply

the set of change requests we identified from our analysis in the previous sections using signature

developed and summarized in Table 10-4.

Table 10-5 shows that we have successfully applied our approach to migrate the benchmark

applications. Some of these applications do not have features that we look for to change (○) – e.g.

an application that does not provide workflow. Our approach failed to apply some changes on a set

of given applications (×). This is specific for BlogEngine as code is mixed with html in the same

file or use MVC pattern as in NopCommerce. Our approach has successfully implemented other

remaining changes (√). We have evaluated our approach performance in locating instances to be

updated for the given changes. Table 10-5 shows the total time taken by our approach to locate

possible matches of the specified signatures.

 Chapter 10: Case Studies

Page 253

10.2.4 Discussion

We introduced a new multi-tenancy reengineering approach that helps software engineers in

migrating their applications to support multi-tenancy. Our re-aspects concept helps automating the

program analysis and system updating (change propagation) phases using re-aspects. Software

engineers model their modifications to be applied on the target application in terms of reengineering

aspects. A re-aspect capture the signature of system entities to be modified in terms of OCL

constraints; actions to be applied including insert, replace, modify, and delete; and code to apply.

Our approach then uses these re-aspects’ signatures to locate system entities to be modified and

applying the actions specified for each re-aspect. We have developed a set of modifications that

may be required to reengineer a given application to multi-tenancy. We used these modifications’

set in validating our approach against a set of five benchmark applications. Our approach

successfully helped in upgrading these applications to support multi-tenancy.

 Chapter 10: Case Studies

Page 254

10.3 Case Study No.3: Supporting Multi-tenancy

Reengineering using Re-aspects

We conclude this thesis with a case study that illustrates how the full platform components integrate

together to deliver model-driven, multi-tenant, adaptive security management for cloud computing

at runtime. To explain how our platform works, we start with an open source multi-tenant SaaS

application, LitwareHR, developed by Microsoft to be used as a sample multi-tenant application.

LitwareHR is a single instance multi-tenant SaaS Human Resources Recruiting SaaS application.

This case study is organized as follows. In Section 1, we introduce the details of this case study and

what scenario we are going to follow during our case study. In Section 2, we give details of the

LitwareHR as our example SaaS application. In Section 3, we discuss the system description and

security specification models that we will depend on through the whole case study. In Section 4, we

introduce details and outcomes of the security analysis task. In Section 5, we explain how we

reengineer LitwareHR to disable the built-in security capabilities of the system. In Section 6, we

introduce different security models developed by different tenants of the service and how we

integrate them using MDSE@R. In Section 7, we introduce a set of security metrics we want to

follow up to conform the security status of our service assets and key mitigation actions.

10.3.1 Case Study Flow

Figure 10-9 shows the main steps, and possible relationships, that we are going to go throw in this

case study. We possibly have two cycles: (1) security analysis, retrofitting, and patching, and (2)

security management process. The first cycle starts with a deep security analysis task. This task

should be a recurring and online task. The identified/reported vulnerabilities could be patched by

modifying the system to patch such vulnerabilities using re-aspects engine, or could be patched

using the MDSE@R “virtual patching”. The reengineering task could be applied as well whenever

we apply our approach on an existing system with built-in security capabilities.

The security management process (2) starts with defining security by service tenants. Then, the

captured security details are realized using MDSE@R. Finally, the operated tenants’ security is then

monitored using our security monitoring approach. The results are fed back to the security

management component to report and update the specification of security to be operated. In this

case study, we start with cycle (1) as a preprocessing step – i.e. to identify and patch existing

vulnerabilities and also to disable the built in security capabilities. Then, we show how the normal

security management process goes including capturing tenants’ security requirements, enforcing

tenants’ security, and finally monitoring service security status.

 Chapter 10: Case Studies

Page 255

Security

Analysis

Defining
Security

Enforcing
Security

Monitoring
Security

Security

Reengineering

Security

Analysis

1

2

Figure 10-9. Steps and relations of case study

10.3.2 LitwareHR

LitwareHR is a sample multi-tenant SaaS application developed by Microsoft architecture strategy

team to be used as guidelines for software vendors and developers who plan to develop SaaS

applications. LitwareHR is based on a single-instance multi-tenant model where all tenants share

the same service instance. LitwareHR uses a set of best practices in architecting and designing

scalable and extensible software systems. Moreover, it uses a set of new technologies that help in

developing such kind of applications. The main business delivered by LitwareHR is a recruitment

management process which represents a key role of the HR department in any company. LitwareHR

enables different tenants (companies) to outsource their recruitment process for third party cloud

platform hosting LitwareHR to fulfill their business. LitwareHR has two key components: public

site (that is used by applicants and employees to search and apply for jobs), and private site (that is

used by employees to customize the application business, UI, and security).

LitwareHR comes with a usage example, Figure 10-10, where two tenants Contoso (retail shoe

chain) and Fabrikam (music school) adopt the software where each tenant has their own business

requirements (workflow, and data), UI (styles, logo, etc.), and security requirements (authentication,

authorization). However, the LitwareHR does not enable using tenants’ security controls. Those

tenants are satisfied with the security requirements delivered by LitwareHR. We have added two

new tenants to the usage example, Swinburne and Swine Market. Both tenants have their own

security requirements and controls to be applied on their outsourced assets as we are going to

discuss in the security engineering section later in this case study.

 Chapter 10: Case Studies

Page 256

Authenticated access

Configuration & Post jobs

Private site

Web Interface

Unauthenticated access

Search & Apply for jobs

Web APIs

Public site

Web Interface

Internet

Music SchoolRetail Shoe Chain

Operational

Platform

“Internal” SaaS Hosting Platform

Provisioning (try before buy)

Billing (not implemented)

Swinburne

University

Swine

Market

Figure 10-10. A simplified LitwareHR usage example

10.3.3 LitwareHR – SDM and SSM

Before we conduct security analysis, reengineering, or multi-tenant security engineering we need to

develop system and security specification models that we can use in these tasks. However, we do

not have any previous experience with LitwareHR. Thus, we had to spend some time (2 days) to

understand the architecture and implementation details in order to figure out the delivered system

functionalities. Fortunately, we found a set of system architecture diagrams that helped with this

task. We deployed the application and used it for a couple of days in order to understand the whole

set of provided LitwareHR features. Below we show and discuss the system and security details of

the LitwareHR.

- LitwareHR Features: LitwareHR delivers a set of features that are related to HR recruitment

process and a set of helping features related to the multi-tenancy concept and how to address the

configurability of tenants’ instances, as shown in Figure 10-11 (we developed from our

understanding of LitwareHR). The main features delivered by LitwareHR includes: manage

tenant instance (this includes customize look-and-feel, customize data-model, and customize

workflow); manage tenant security (this includes mange roles, users and permissions);

manage tenant recruitment (this includes posting jobs, searching for jobs, applying for jobs);

and application evaluation (this includes interview, negotiation, acceptance, and rejection).

LitwareHR is delivered with built-in security capabilities for authentication, authorization and

secure communication channels for security critical capabilities.

 Chapter 10: Case Studies

Page 257

Li
tw

ar
eH

R

C
us

to
m

iz
e

W
o

rk
fl

o
w

M
an

ag
e

Se
cu

ri
ty

M
an

ag
e

U
se

rs

M
an

ag
e

R
o

le
s

M
an

ag
e

R
ec

ru
it

m
en

t

Se
ar

ch

Jo
bs

A
pp

ly
 f

o
r

Jo
b

A
pp

lic
an

t
Ev

al
ua

ti
o

n

In
te

rv
ie

w
A

cc
ep

ta
nc

e

Po
st

 J
o

b R
ej

ec
ti

o
n

M
an

ag
e

Te
na

n
t

C
us

to
m

iz
e

D
at

am
o

de
l

N
eg

o
ti

at
io

n

M
an

ag
e

Pe
rm

is
si

o
ns

C
us

to
m

iz
e

In
te

rf
ac

e

Figure 10-11. LitwareHR feature model

 Chapter 10: Case Studies

Page 258

Service Layer

Shp.Runtime.Contracts

Shp.Runtime.Services

App.Workflows.Contracts

App.Workflows.Services

App.Workflows DataAcess Block

Definition of

service and data

contracts

Portfolio.Host

Presentation Layer

PublicApp.WebUX PrivateApp.WebUX

PublicApp.Presenters PrivateApp.Presenters

Portfolio.Gateways

Company.Website

CompanyWeb.Presente

rs

Figure 10-12. LitwareHR architecture

 Chapter 10: Case Studies

Page 259

Security

Shp.Security.BrokeredSenderShp.Security.BrokeredReceiver

Presentation Layer

PublicApp.

WebUX

PrivateApp

.WebUX

Service Layer

Portfolio.

Host

Authorization.Host Authentication.Host

Figure 10-13. LitwareHR security architecture

- LitwareHR Architecture and Deployment: Figure 10-12 (provided by LitwareHR application

developers) shows the LitwareHR architecture components with security components used. The

LitwareHRWebsite component is the service provider website (published on the cloud platform)

where tenants can register to use the LitwareHR service. This website is used to create separate

copies of the public and private sites (as we will see later) and add required entries in the

tenants’ database and LitwareHR active directory that is used to authenticate and authorize

tenants and their users. The publicApp website is used to post jobs, search and apply for jobs,

and update applicants’ recruitment process status according to tenant workflow. The privateApp

website is used to configure the application according to tenant needs in terms of UI, security,

data-model, and workflows. The Gateway component provides implementation of all

functionalities used in the privateApp and publicApp components. In fact, the responsibility of

the Gateway component is to delegate request from the presentation layer to the actual

components/services in the business and services layer so that the presentation layer does not

need to know how and who delivers the required functionality. The contracts component defines

functionality interfaces that should be realized by business services. This contract is referenced

by the presentation layer components to avoid being tightly coupled with the realization services

(binding is done using configuration scripts). The services component delivers the realization

services that implement the actual business functionalities used. The services component uses

the Microsoft application blocks “Enterprise Library” to deliver the data access layer using the

“DataAccess” block.

 Chapter 10: Case Studies

Page 260

- LitwareHR Class Diagram: Figure 10-14 shows a part of the LitwareHR class diagram we

extracted using reverse engineering of the system source code using Altova UModel toolset. We

have grouped some of these classes that are related together such as classes used in the contracts

component (1); classes related to workflow entities (2); classes related to authentication service

(3); and classes related to the presentation view and presenter classes (4).

- LitwareHR Security: Figure 10-13 shows the main security components used by LitwareHR to

deliver secure communication channels and interactions between LitwareHR components/layers

and these security components. The main security components of LitwareHR are:

BrokeredSender; BrokeredReceiver; authenticationHost; AuthorizationHost. These components

are used to generate security tokens (BrokeredSender – in this case the presentation layer) and

validate security token (BrokeredReceiver – services layer). Actually, the LitwareHR has other

security components that are developed as part of the LitwareHR including ASP.NET custom

membership feature that is used in authenticating and authorizing users in the publicApp

component; and authentication and authorization services that are delivered by services

component.

10.3.4 Security Analysis

The first step in our case study is to conduct a security analysis of the LitwareHR application to

pinpoint the existing system security threats and vulnerabilities that we should mitigate. The

objective of this task is to mitigate as much vulnerabilities as possible before publishing

LitwareHR. Later on, the security analysis service will work online with the cloud services to report

the existence of any new vulnerability. To fulfill this task we studied the LitwareHR system and

security details covered in the last section. The list of vulnerabilities to test LitwareHR against is the

list of threats and vulnerabilities we discussed in the security analysis chapter. Table 10-6

summarizes the list of threats and vulnerabilities we found in LitwareHR.

10.3.5 LitwareHR – Security Re-engineering

The objective of this security reengineering task is twofold: (i) to reengineer LitwareHR in order to

disable the built-in security capabilities to start using MDSE@R in managing LitwareHR multi-

tenant security; and (ii) to mitigate the reported vulnerabilities and threats from the previous task.

To disable the LitwareHR developed security we have figured out three security properties that we

need to address: secure communication, authentication, and authorization. For the secure

communication, we have come up with two possible solutions: the first one requires modifying

different parts of the system by adding new methods to contracts (interfaces) used in the unsecure

communication and their realizations. At the same time, removing these methods from the

interfaces used in secure communication channels.

 Chapter 10: Case Studies

Page 261

1

2

3

4

Figure 10-14. A part of LitwareHR class diagram

 Chapter 10: Case Studies

Page 262

Table 10-6. LitwareHR found vulnerabilities and threats

Type Name Number/value

Attack scenarios

and metrics

Man-in-The-Middle (↓) 0

Denial of Service (↓) 2

Data Tampering (↓) 2

Injection Attack (↓) 3

Attack Surface (↓) 12

Compartmentalization (↑) 3

Fail Securely (↓) 11

Security

Vulnerabilities

SQLI 3

Authentication Bypass 0

Improper Authorization 3

XSS 3

CSRF 6

Table 10-7. LitwareHR security reengineering re-aspects

Re-aspect Signature Re-aspect Action Re-aspect Advice

AuthenticationGateway.GetUsers Replace Session[“TenantUsers”]

AuthenticationGateway.GetRoles Replace Session[“TenantRoles”]

Table 10-8. Tenants' security control

Security Attribute Contoso Fabrikam Swinburne Swine

Authentication LitwareHR LitwareHR Forms-based LDAP

Authorization LitwareHR LitwareHR Forms-based LDAP

I/Psantization – – – Private Sanitization

Audit – – Private Auditor Private Auditor

Cryptography LitwareHR LitwareHR DES AES

 Chapter 10: Case Studies

Page 263

The second solution, which we applied, is modifying the system configurations by removing the

details of security controls configurations used in the encrypted communication. For the

authentication and authorization properties, we have figured out that these properties are based on

security authentication and authorization controls. Again modifying websites configurations helped

to get rid of these security controls. We also found that authentication and authorization controls are

used in internal business functions such as workflow roles and users. To address these problems, we

have developed re-aspects to modify the LitwareHR source code to replace calls to these

authentication/authorization functions with access to session variables that maintain list of roles and

permissions that are set when the user login or requested from the source of security controls. We

found 14 functions in the authentication service and 5 functions in the authorization service. We

have categorized changes required to update system authentication and authorization into three

categories as follows. Table 10-7 summarizes re-aspects’ details required to update LitwareHR

with modifications we just explained now.

- Functions that are used in managing tenants’ accounts including adding, removing, updating,

deleting tenants, users and roles. We do not need to modify this part. It could still be used for

tenants who do not have new security requirements as we will see in the MDSE@R step.

- Functions used to authenticate and authorize users for certain actions (calls to these functions

should be left out). If the tenant does not want to change the system security capabilities, we will

inject system security controls using MDSE@R. A good point of the LitwareHR is that it is

mostly based on configurations. Authentication and authorization functions are integrated with

the system using configuration functions. Thus, we removed these configurations and will use

MDSE@R to integrate them at runtime whenever needed.

- Functions used in business functions. These functions should be replaced with session-based. To

do this task, we have used our re-aspects approach to modify the system source code. Here we

depend on MDSE@R to fill in these session variables.

10.3.6 LitwareHR - Security Engineering

Now we come to the runtime multi-tenant security engineering task. The first step here is to deliver

a system description model (SDM) that capture system features, architecture, deployment, and

design details. Figure 10-11, Figure 10-12, Figure 10-13, and Figure 10-14 show the SDM and SSM

models of the LitwareHR application. These models should have been delivered by LitwareHR

service providers. However, in our case study, we could not have all these models because the

system was developed beforehand. Thus, we developed some of these models manually by

analyzing the system source code. The other part was developed using reverse engineering

techniques. Next, service tenants (in this case study we have Contoso and Fabrikam) start

developing (and updating whenever needed) their security specification models to define their

 Chapter 10: Case Studies

Page 264

security objectives, requirements, architecture, and controls. As a future work of our approach, we

plan to develop a client extension of MDSE@R where tenants can download the service SDM

model locally – i.e. inside their network perimeter – where they can develop their security model

and perform security-to-system mappings. These mapping are then refined locally – i.e. refining

mapping of high-level security concepts, such as security objectives, or high-level system entities,

such as system components, into security controls and system methods - and sent back to the

MDSE@R platform to update the live system and security specification documents. Thus tenants

can keep their security specification models confidential from hosting on the cloud platform.

In the security engineering chapter 6, we have validated in details the flexibility of MDSE@R to

manage traceability of security details from high-level to detailed-level security (security objectives

to security controls), managing traceability of system details using our UML profile (features to

methods), and the many-to-many mappings between tenants’ SSMs and system SDM. Here we

focus mainly on the key (mandatory) security diagrams required to realize tenants’ security (the

tenant security controls model).

Table 10-8 shows LitwareHR tenants’ security controls models. We consider in our usage

example including Contoso, Fabrikam, Swinburne, and Swin Market. From the usage example, both

Contoso and Fabrikam would like to apply the same set of security controls, while Swinburne and

Swin Market would like to apply different security requirements. The key problem with the

selection of these security controls to apply in our case study is that we have to develop adaptors for

these controls that implement our common security interface introduced in MDSE@R chapter and

integrates with these security controls. Thus, we reused the security controls we applied in the

MDSE@R Chapter. Table 10-9 summarizes mappings done by each tenant between the selected

security controls and system entities on the architecture level.

Table 10-9. Tenants' security-system mappings

Security

Attribute
Contoso Fabrikam Swinburne Swin Market

Authentication
Presentation

layer

Presentation

layer
Presentation layer

Presentation +

Services layer

Authorization
Presentation

layer

Presentation

layer

Presentation +

Services layer

Presentation +

Services layer

I/Psantization – – – Presentation

Audit – –
Presentation +

Services layer

Presentation +

Services layer

Cryptography
Communication

channels

Communication

channels

Presentation +

Services layer

Presentation +

Services layer

 Chapter 10: Case Studies

Page 265

10.3.7 LitwareHR - Security Monitoring

We reuse the set of security metrics we defined in the security metrics and monitoring chapter (such

as Authenticated Requests, Authentic Requests, Last(10) Requests to Authorization Control,

Top(10) Request to Authentication Control By Admin Account, Mean Time Between Unauthentic

Request, etc.) as the set of security metrics to be applied on the LitwareHR instance in this case

study. For each tenant we use random number generator to control number of concurrent users per

tenant, number of requests per tenant(s), number of malicious requests. As a further evaluation of

the security management platform, we have defined a set of mitigation actions to be applied in case

of security metrics’ violations detected as shown in Table 10-10. The possible set of actions to be

taken could range from simple alerts up to getting system offline or even analyzing collected

measures and trying to detect root causes. However, our delivered platform capabilities, so far, is

limited to mitigation actions that could be applied by the MDSE@R enforcement component. A

future work in this point is to develop mitigation actions specification language with the associated

mitigation actions realization components. Table 10-11shows the behavior (values of different

metrics) of the LitwareHR when applying randomly generated requests (experiment attributes) at

different time steps. Figure 10-15 and Figure 10-16 show the trend of the security metrics we have

been monitoring.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Authenticated Requests

Authentic Requests

Logging Activities

Figure 10-15. Base security metrics' status and trend overtime

Figure 10-16. Derived security metrics' status and trend overtime

0

2

4

6

1 2 3 4 5 6 7 8 9 10

Mean Time Between
Unauthentic Requests
(sec)

 Chapter 10: Case Studies

Page 266

Table 10-10. Security metrics' mitigation actions

Metric Conditions Mitigation Actions

Authenticated Requests M < 100% Alert

Authentic Requests
M < 50% Add, AuthenticationControl, LDAP

M < 80% Replace, AuthenticationControl, LDAP

Mean Time Between Unauthentic Requests
M < 1 Add, AuthenticationControl, LDAP

M < 5 Replace, AuthenticationControl, LDAP

Logging Activities M < 100% Alert

Table 10-11. Security metrics' status

Time Step 1 2 3 4 5 6 7 8 9 10

Experiment

Attributes

#Users 67 84 13 60 73 89 23 46 78 98

#Requests 3423 4268 793 3297 4278 4977 1481 1376 4364 5154

#Malicious Requests 2178 2535 356 2071 2697 2995 862 771 2461 2936

Security

Metrics

Authenticated Requests 95% 94% 93% 97% 100% 92% 94% 100% 98% 97%

Authentic Requests 64% 59% 45% 63% 63% 60% 58% 56% 56% 57%

Mean Time Between Unauthentic Requests(sec) 3 5 2 3 3 4 5 1 2 3

Logging Activities 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

 Chapter 10: Case Studies

Page 267

10.4 Chapter Summary

In this chapter, we introduced three case studies we conducted to assess our platform

components and integrations between platform components. The first case study addresses the

automated virtual patching of reported vulnerabilities by our online vulnerability analysis and

MDSE@R security enforcement component. Thus, this case study addresses integration

between security analysis and mitigation components. The second case study addresses

application of our reengineering aspects component in migrating applications to support multi-

tenancy as a key task, beside the security reengineering, in the preprocessing phase before

adopting the cloud computing model. The third case study shows the whole security

management process for different tenants applied on a SaaS application developed as a sample

multi-tenant application. One of the key areas that still need to improve is the mitigation actions

that could be applied with the current metrics’ values. Currently we support only mitigation

actions that are linked to the security enforcement component which may be adding extra

security control, replacing existing security control, or removing an existing security control to a

new or already secured system entity at runtime. Further actions could be updating operated

security controls’ configurations, analyzing root causes of the reported problem (deviation from

the expected behavior), or even taking system offline until further administrative actions are

taken. This may require developing an extension of our OCL-based language to capture such

invariants and metrics.

Page 269

 Chapter 11

Conclusions and Future Work

In this chapter we summarize the key problems we addressed in our research project; key

observations we found throughout the project; key contributions we achieved; key limitations

we figured out in our approach and solutions; and key future work tasks that we plan to work on

as extension of the work introduced in this project and explained throughout this thesis.

11.1 Key Addressed Security Problems

In this research project we addressed a set of important security problems in the cloud

computing domain. This set of problems was identified from our initial cloud computing

security problem analysis that we completed in our first milestone [4]. Below we summarize

this set of problems that we addressed in our research project.

We addressed the Loss-of-Control Security Problem. This is one of the top ranked cloud

consumers’ security concerns about the cloud computing model. This problem arises from three

key factors: Outsourcing IT assets for hosting on third-party cloud platform; The new

responsibility matrix of the cloud computing model that puts cloud consumers out of control

over their assets (e.g. SaaS model); And lack of support to integrate cloud consumers’ security

controls’ with cloud services taking into consideration those different tenants may be sharing

the same service instance.

We addressed the Lack-of-Trust Problem. This is one of the top ranked cloud consumers’

security concerns about the adoption of the cloud computing model. This problem arises from:

The lack of feedback about the operated security, security breaches, and any relevant security

status; Cloud consumers do not trust that the cloud providers really enforce the specified

security controls; lack of security terms in the service level agreements between the cloud

provider, service provider, and cloud consumers; and cloud consumers do not trust that the

cloud provider administrators do not breach their assets security at rest, at processing, or at

transmission.

We addressed the tenants’ Security Integration Problem. Different tenants have their own

security requirements, policies and controls that they operate internally in their network

perimeter. These security controls should be integrated with their cloud-hosted assets as well.

Currently this is not supported by default. Service providers have to prepare a certain interface

or connectors to enable tenants in integrating their controls. Moreover, these tenants’ security

Chapter 11: Conclusions and Future Work

Page 270

requirements could be easily changed at runtime to address new security risks and threats. New

service tenants can register to use the service and apply their security requirements. Existing

tenants can unregister from the service. Those tenants should not be able to access or use the

service anymore.

We addressed the security problems arise from the public accessibility of cloud services.

Cloud-hosted services are publicly accessible to end users who may be malicious users.

Moreover, the cloud services are shared among different tenants. One of those tenants may be

malicious tenant or a competitor who wants to breach other tenants’ security. The key problem

of service sharing is that malicious users are granted high privilege and permissions to perform

more administrative actions. This increases the possibility to exploit more complicated

vulnerabilities and to perform planned attacks. On the other hand, depending on traditional

service patching approaches (through the use of service maintenance) takes a long time that

increases the probability of being under attack by exploiting the reported service vulnerabilities.

We addressed the tenants’ data isolation problem. Supporting multi-tenancy requires cloud

applications to support capturing, processing and storing data of different tenants on the same

application instance. Thus these applications must maintain isolation between different tenants’

data. Many of the existing well-known business applications that are widely used nowadays are

locked-in a high cost business model. This prohibits them from targeting/servicing.

11.2 Key Contributions

In this research project we have introduced a set of solutions to address security problems arise

from the adoption of the cloud computing model summarized in the previous section. Bellow

we summarize the key contributions we did in the cloud computing and security management

area.

We introduced a novel alignment of the NIST-FISMA standard to fit with the cloud

computing model. The existing security management standards are not developed taking into

consideration the multi-tenancy, sharing of cloud services, and outsourcing of the tenants’ assets

out of their network perimeter. Our proposed alignment is based on the joint-collaboration

between different cloud stakeholders (cloud providers, service providers, and cloud consumers)

in securing cloud platforms and services. To deliver this new alignment, we studied the standard

activities and tasks. Then, we developed a new responsibility matrix that shows who is

responsible to fulfill a given task and who are informed with these results. We also introduced a

web-based security management prototype to help in assessing our proposed alignment.

We introduced a novel security management platform for the cloud computing model based

on the use of model-based management concept to overcome the problem of manual

Chapter 11: Conclusions and Future Work

Page 271

customization and engineering efforts required to manage the target cloud-hosted services. The

model-based management is based on automating realization and configuration of the software

systems and security controls based on abstract system and security models. This approach best

fits with the cloud model as we cannot grant service consumers admin privileges to customize

or modify shared cloud services. Our security management model enables realization of both

manual security adaptation through updating system and security models as well as automated

security adaptation through specification of recovery and mitigation actions in case of reported

security vulnerabilities or deviations from the expected behaviors. The proposed model is based

on one of the key security management standards (NIST-FISMA standard) after aligning it to fit

with the cloud computing model. This helps in getting tenants and providers to keep their

security management processes including their cloud hosted assets easily aligned with the

security management standards using our cloud computing security management model.

We introduced a novel security modelling domain-specific visual language SecDSVL to be

used in capturing and modelling their security details. SecDSVL is based on a deep analysis of

the main entities and tasks existing in security management standards (mainly NIST-FISMA

standard). SecDSVL is made of 5 main models including security objectives model, security

requirements, security risks ad threats, security architecture and design, and security controls

model. SecDSVL is designed with the loosely coupling concept where each model addresses

specific perspective of the security management process that usually done by certain process

stakeholders.

We invented a novel, model-driven, tenant-oriented security engineering model compared

with the existing traditional design time, service-oriented, security engineering efforts. We

introduced multi-tenant, model-driven security engineering at runtime approach (MDSE@R).

Our approach enables different cloud and service tenants to manage (define, enforce, and

monitor) their service instances’ security at runtime without a need for service customizations.

MDSE@R introduces a comprehensive system description model (SDM) that captures all

system details (this model is developed by service providers using UML) and security

specification model (SSM) that captures each tenant’s security details (this model is developed

by service tenants using SecDSVL). MDSE@R introduces a common security interface that

helps in integrating third-party security controls with the target IT assets at runtime. Security

vendors need to develop their security services’ adaptor to comply with this security interface.

Thus, they do not need to develop different adaptors for different services.

We developed an extensible online security analysis service. We introduced a security

analysis service that can analyze service architecture, design, source code, and binaries to

identify the existing security design flaws and bugs. The key contributions of the security

analysis service are: integrated security analysis throughout different service artifacts including

Chapter 11: Conclusions and Future Work

Page 272

architecture, design and code; the security analysis service is extensible, thus we can add

different security analysis mechanisms without a need to modify the underlying platform; and

security analysis is signature-based, thus any vulnerability, threat, or system design security

metric could be easily specified and verified against the system without a need for new plugins.

This helps to support online analysis for known and unknown vulnerabilities that arise at

runtime as far as a signature of such vulnerability exists.

We invented a new, extensible security monitoring service. The main contribution of this

security monitoring service is that we did not develop a predefined set of security metrics.

Service users can define their own security metrics they wanted to use in diagnosing the security

status of their cloud assets. The security monitoring service uses these metrics signatures

(definitions) to generate and deploy required security probes that will be responsible for

collecting required measurements from the target cloud assets. Moreover, it uses these

signatures in generating metric evaluation expressions that will be used in analysing the

collected measurements and generating metric values.

We invented a new pre-processing tool to help migrating legacy applications to the cloud

and disabling pre-existing, hardcoded security functionalities. In order to help managing

services security using MDSE@R we need to disable the existing security APIs and functions.

We introduce a novel system and security reengineering approach using a new concept called

reengineering aspects “Re-aspects”. This new concept helps in capturing system modification

details including signature of system entities to modify, actions to apply, advice(s) or code to

use in realizing this change. The re-aspects engine uses these details to realize the captured

change request details. This approach is supported with two signature specification approaches

including code-snippets signatures and OCL-based signatures. We used re-aspects in two

problems: the patching/mitigation of reported vulnerabilities and in migrating legacy

applications that are not designed with multi-tenancy in mind to support cloud multi-tenancy.

We invented a new, automated vulnerability virtual patching approach. This is an integration

of the MDSE@R and vulnerability analysis service. This approach provides an automated

virtual patching where reported vulnerabilities are fed in MDSE@R to inject specified security

controls (as specified in the vulnerability mitigation actions) at the critical (vulnerable) system

entities at runtime without waiting for patches that usually take several weeks.

11.3 Key Limitations

In this section we summarize the key limitations that we determined out in our proposed

solutions and contributions we explained throughout this thesis. Below we summarize these

limitations grouped by the corresponding approach or contribution.

Chapter 11: Conclusions and Future Work

Page 273

MDSE@R does not help in realizing security requirements that should be enforced on the

cloud services’ underlying platforms (e.g. webservers) and operating systems (in case of

separate VMs). Moreover, MDSE@R currently does not support security engineering of

applications developed by languages other than .NET languages because of the currently used

system wrapper. We plan to develop further wrappers for systems developed with Java and

scripting languages.

The current signature locator implements static signature analysis of the software source

code and system architecture. This helps in identifying certain types of security vulnerabilities

that have strong signatures in source code. Other vulnerabilities related to dynamic analysis

such as cross site reference forgery (CSRF) could not be addressed with high accuracy using the

static analysis. It is worth mentioning here that our security analysis platform is already

developed with such possible extensions in mind.

Another problem with our security analysis approach is that applications using dynamic

integration of security controls using aspect-oriented programming will result in high false

positives as we cannot trace the existence of security controls’ calls in the system source code.

The same applies with applications that depend on the hosting platform (webserver) deployed

security controls. Furthermore, applications with obfuscated binaries are hard to analyze (given

that we do not have access to the source code) because we cannot reflect source code from

system binaries using the existing reflection techniques.

The accuracy of the security analysis results depends on the specified vulnerabilities, attacks,

and metrics’ signatures. This justifies our assumption that such signatures should be developed

by security experts. As a possible improvement to this problem, we plan to develop an artificial

intelligent extension that can analyze reported vulnerabilities in the National Vulnerabilities

Database (NVD) and come up with the security vulnerabilities’ signatures that represent such

vulnerabilities.

The current implementation of the security monitoring approach supports only security

metrics but not security properties (policies). Moreover, the current approach is limited in terms

of the mitigation actions that could be applied to the capabilities provided by the security

enforcement component (MDSE@R). Thus any further analysis or mitigation actions still not

supported.

The currently used probe generator technology (Roslyn Scripting APIs) result in security

probes with high performance overhead because we compile and run security probe code at

runtime. We are currently investigating in how to integrate newly generated security probes

with the system wrapper without a need to perform online compilation.

Chapter 11: Conclusions and Future Work

Page 274

Our security reengineering approach does not help with system modifications that have

hierarchical impact on system entities – i.e. modifying entity A requires modifying B and C,

modifying B and C requires modifying D, E, and F. our reengineering approach (re-aspects)

supports only one level of the impacted entities. This can be addressed by extending impact re-

aspect to be a complete re-aspect. But this will increase developers’ involvement.

The accuracy of the located entities to be modified, entities that will be impacted, and

validity of the applied modification actions by a given system modification depends on the

signature specified by the re-aspects developer.

Applications with obfuscated binaries are hard to reengineer because we cannot reverse

engineer source code from system binaries using existing reflection techniques.

11.4 Future Work

In this thesis we have introduced an adaptive, model-based cloud computing security

management approach. Our proposed approach focused on delivering a platform that helps

enforcing different sets of security requirements for different tenants that arise at runtime. We

take the single-instance multi-tenant Software-as-a-Service service delivery model as the main

model to be addressed by our approach. This is because it represents the most complicated

service delivery model. The work we did with the software-as-a-service service delivery model

can easily be applied on the platform-as-a-service service delivery model. Below we summarize

future extensions in the proposed approach in general and in specific components of the

delivered platform:

We plan to extend our security management platform to include managing security of the

Infrastructure-as-a-service service delivery model. This helps tenants to extend their security

management capabilities to manage security of their cloud virtual infrastructure (mainly virtual

machines). This enables our security management platform to deliver comprehensive cloud

computing security management platform that could be used to manage cloud platform security

whatever the service delivery model(s) delivered by the cloud platform. It enables mitigating the

cloud consumers’ lack-of-trust problems completely. Moreover, it enables cloud providers to

integrate their security management platforms (used to manage the cloud platform security) with

our platform in one comprehensive and integrated model. A further key point is the adoption of

homo-morphic encryption where tenants’ data are not even decrypted while being processed on

the cloud platform. This helps in addressing concerns related to malicious insiders – i.e. cloud

platform administrators who are expected to have access to the hosting server memory, storage,

and network.

Chapter 11: Conclusions and Future Work

Page 275

We plan to extend our vulnerability analysis platform to support not only static analysis but

also dynamic analysis. This dynamic analysis will be mostly dependent on the security

monitoring platform with a test case generation service. The analysis of application responses

should be automated according to vulnerability specified signature. The security vulnerability

analysis platform is designed with extensibility in mind. Thus, we will not need to modify its

design. We will need to develop the dynamic analysis component as a plugin to be registered

and triggered by the vulnerability analysis platform according to the type of the vulnerability

signature (static or dynamic signature).

We plan to extend the security monitoring platform with mitigation action and analysis

specification language. The objective of this extension is to provide a formal and familiar

language to help in developing expressions that could be used in identifying root causes of

possible system deviations from the normal behavior specified by service tenants. Moreover,

this could help in specifying and applying more complicated mitigation actions on the service or

its underlying platform such as replacing one of the service components with a more secure one,

using components from another service provider in case of mash up applications, or extending

the operated security with more complicated controls.

We plan to conduct multiple large scale industrial case studies with different industrial cloud

platform providers, service providers and a set of SaaS applications hosted on different cloud

platforms and shared among different tenants. We also plan to contact different security vendors

who deliver cloud-based security services (authentication, authorization, etc.) to get involved in

developing a common security interface that facilitates integrating security controls with the

target cloud services.

Page 277

References

[1] National Institute of standards and technology (NIST), "The Federal Information

Security Management Act (FISMA)," Washington: U.S. Government Printing, 2002,

http://csrc.nist.gov/drivers/documents/FISMA-final.pdf, Accessed on August 2010.

[2] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," 2009,

http://www.wheresmyserver.co.nz/storage/media/faq-files/cloud-def-v15.pdf, Accessed

April 2010.

[3] R. Buyya, C. Yeo, and S. Venugopal, "Market-Oriented Cloud Computing: Vision,

Hype, and Reality for Delivering IT Services as Computing Utilities," in Proc. of 9th

IEEE/ACM International Symposium on Cluster Computing and the Grid 2008, p. 1.

[4] M. Almorsy, J. Grundy, and I. Mueller, "An analysis of the cloud computing security

problem," in Proc. 2010 Asia Pacific Cloud Workshop, Colocated with APSEC,

Sydney, Australia, 2010.

[5] International Organization for Standardization (ISO), "ISO/IEC 27000 - Information

technology - Security techniques - Information security management systems -

Overview and vocabulary," ISO/IEC 27001:2005(E), 2009,

http://webstore.iec.ch/preview/info_isoiec27000%7Bed1.0%7Den.pdf, Accessed On

July 2010.

[6] C. Basile, A. Lioy, G. M. Perez, F. J. G. Clemente, and A. F. G. Skarmeta, "POSITIF:

A Policy-Based Security Management System," in Eighth IEEE International

Workshop on Policies for Distributed Systems and Networks, 2007. POLICY '07, 2007,

pp. 280-280.

[7] B. Tsoumas and D. Gritzalis, "Towards an Ontology-based Security Management,"

presented at the Proc. of 20th International Conference on Advanced Information

Networking and Applications - Volume 01, 2006.

[8] J. P. d. Albuquerque, H. Krumm, and P. L. d. Geus, "Model-based management of

security services in complex network environments," in IEEE Network Operations and

Management Symposium, Salvador, Bahia, 2008, pp. 1031-1036.

[9] P. Marek and J. Paulina, "The OCTAVE methodology as a risk analysis tool for

business resources," in Proc. of The 2006 International Multiconference Computer

Science and Information Technology, 2006.

[10] R. Fredriksen, M. Kristiansen, B. Gran, and K. Stølen, "The CORAS Framework for a

Model-Based Risk Management Process," in Computer Safety, Reliability and Security.

vol. 2434, S. Anderson, M. Felici, and S. Bologna, Eds., ed: Springer Berlin /

Heidelberg, 2002, pp. 39-53.

[11] P. Saripalli and B. Walters, "QUIRC: A Quantitative Impact and Risk Assessment

Framework for Cloud Security," in 2010 IEEE 3rd International Conference on Cloud

Computing (CLOUD), 2010, pp. 280-288.

[12] Z. Xuan, N. Wuwong, L. Hao, and Z. Xuejie, "Information Security Risk Management

Framework for the Cloud Computing Environments," in 2010 IEEE 10th International

Conference on Computer and Information Technology (CIT), , 2010, pp. 1328-1334.

[13] S. A. d. Chaves, C. B. Westphall, and F. R. Lamin, "SLA Perspective in Security

Management for Cloud Computing," in Proc. of The 6th International Conference on

Networking and Services, Cancun, Mexico, 2010, pp. 212-217.

[14] J. Jürjens, "Towards Development of Secure Systems Using UMLsec," in Fundamental

Approaches to Software Engineering. vol. 2029, ed: Springer Berlin Heidelberg, 2001,

pp. 187-200.

[15] T. Lodderstedt, D. Basin, and J. Doser, "SecureUML: A UML-Based Modeling

Language for Model-Driven Security," in Proc. of The 5th International Conference on

The Unified Modeling Language, Dresden, Germany, 2002, pp. 426-441.

http://csrc.nist.gov/drivers/documents/FISMA-final.pdf
http://www.wheresmyserver.co.nz/storage/media/faq-files/cloud-def-v15.pdf
http://webstore.iec.ch/preview/info_isoiec27000%7Bed1.0%7Den.pdf

References

Page 278

[16] A. Lamsweerde, S. Brohez, and e. al, "System Goals to Intruder Anti-Goals: Attack

Generation and Resolution for Security Requirements Engineering," in Proc. of the

RE’03 Workshop on Requirements for High Assurance Systems, Monterey, 2003, pp.

49-56.

[17] B. Hashii, S. Malabarba, R. Pandey, and e. al, "Supporting reconfigurable security

policies for mobile programs," in Proc. of the 9th international World Wide Web

conference on Computer networks, Amsterdam, The Netherlands, 2000, pp. 77-93.

[18] K. Scott, N. Kumar, S. Velusamy, and e. al, "Retargetable and reconfigurable software

dynamic translation," in proc. of the international symposium on Code generation and

optimization, San Francisco, California, 2003.

[19] F. Sanchez-Cid, and A. Mana, "SERENITY Pattern-Based Software Development Life-

Cycle," in 19th International Workshop on Database and Expert Systems Application,

2008, pp. 305-309.

[20] B. Morin, T. Mouelhi, and F. Fleurey, "Security-driven model-based dynamic

adaptation," in Proc. of the IEEE/ACM International Conference on Automated

software engineering, Antwerp, Belgium, 2010.

[21] M. Menzel, R. Warschofsky, I. Thomas, C. Willems, and C. Meinel, "The Service

Security Lab: A Model-Driven Platform to Compose and Explore Service Security in

the Cloud," in 2010 6th World Congress on Services (SERVICES-1), 2010, pp. 115-122.

[22] H. Cai, N. Wang, and M. J. Zhou, "A Transparent Approach of Enabling SaaS Multi-

tenancy in the Cloud," in 2010 6th World Congress on Services (SERVICES-1), 2010,

pp. 40-47.

[23] H. Cai, K. Zhang, M. J. Zhou, W. Gong, J. J. Cai, and X. S. Mao, "An End-to-End

Methodology and Toolkit for Fine Granularity SaaS-ization," in Proc. of The IEEE

International Conference on Cloud Computing, 2009, pp. 101-108.

[24] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, "A Framework for Native

Multi-Tenancy Application Development and Management," in Proc. of The 4th IEEE

International Conference on Enterprise Computing, E-Commerce, and E-Services,

2007, pp. 551-558.

[25] Z. Pervez, S. Lee, and Y.-K. Lee, "Multi-tenant, secure, load disseminated SaaS

architecture," in Proc. of 12th international conference on Advanced communication

technology, Gangwon-Do, South Korea, 2010, pp. 214-219.

[26] J. Xu, T. Jinglei, H. Dongjian, Z. Linsen, C. Lin, and N. Fang, "Research and

implementation on access control of management-type SaaS," in Proc. of The The 2nd

IEEE International Conference on Information Management and Engineering (ICIME),

2010, pp. 388-392.

[27] S. Chandra and R. A. Khan, "Software security metric identification framework

(SSM)," in Proc. of the International Conference on Advances in Computing,

Communication and Control, Mumbai, India, 2009, pp. 725-731.

[28] R. M. Savola and H. Abie, "Development of security metrics for a distributed

messaging system," in Proc. of The 2009 International Conference on Application of

Information and Communication Technologies, 2009, pp. 1-6.

[29] R. M. Savola and H. Abie, "Identification of Basic Measurable Security Components

for a Distributed Messaging System," in Proc. of the 2009 Third International

Conference on Emerging Security Information, Systems and Technologies, 2009.

[30] R. M. Savola and P. Heinonen, "Security-Measurability-Enhancing Mechanisms for a

Distributed Adaptive Security Monitoring System," in Proc. of The 2010 4th

International Conference on Emerging Security Information Systems and Technologies

(SECURWARE), 2010, pp. 25-34.

[31] R. M. Savola and P. Heinonen, "A visualization and modeling tool for security metrics

and measurements management," in Proc. of 2011 Conference Information Security

South Africa (ISSA), 2011, pp. 1-8.

[32] X. Jin, R. Krishnan, and R. Sandhu, "A unified attribute-based access control model

covering DAC, MAC and RBAC," in Proc. of the 26th Annual IFIP WG 11.3

References

Page 279

conference on Data and Applications Security and Privacy, Paris, France, 2012, pp. 41-

55.

[33] M. Almorsy, J. Grundy and A. S. Ibrahim, "Collaboration-Based Cloud Computing

Security Management Framework," in Proc. of 2011 IEEE International Conference on

Cloud Computing (CLOUD 2011), Washington DC, USA, 2010, pp. 364 - 371.

[34] M. Almorsy, J. Grundy, and A. S. Ibrahim, "MDSE@R: Model-Driven Security

Engineering at Runtime," in Proc. of the 4th International Symposium on Cyberspace

Safety and Security, Melbourne, Australia, 2012.

[35] M. Almorsy, J. Grundy, and A. S. Ibrahim, "TOSSMA: Tenant-Oriented SaaS

Applications Security Management Architecture," in Proc. of The 5th International

Conference on Cloud Computing, Hawaii, USA, 2012, pp. 981- 988.

[36] C. S. Jr., L. A. Wahsheh, A. Ahmad, J. M. Graham, C. V. Hinds, A. T. Williams, and S.

J. DeLoatch, "Software Security: The Dangerous Afterthought," in Proc. of The 2012

Ninth International Conference on Information Technology: New Generations (ITNG),

2012, pp. 815-818.

[37] S. C. Previtali and T. R. Gross, "Aspect-based dynamic software updating: a model and

its empirical evaluation," in Proc. of 10th international conference on Aspect-oriented

software development, Porto de Galinhas, Brazil, 2011, pp. 105-116.

[38] M. Almorsy, J. Grundy, and A. S. Ibrahim, "SMURF: Supporting Multi-tenancy Using

Re-aspects Framework," in Proc. of The 17th International Conference on Engineering

of Complex Computer Systems (ICECCS), 2012, pp. 361-370.

[39] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting automated software re-

engineering using re-aspects," in Proc. of 27th IEEE/ACM International Conference on

Automated Software Engineering, Essen, Germany, 2012.

[40] OWASP. (2010). The Ten Most Critical Web Application Security Vulnerabilities.

Available: http://www.owasp.org/index.php/OWASP_Top_Ten_Project

[41] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Supporting automated vulnerability

analysis using formalized vulnerability signatures," in Proc. of 27th IEEE/ACM

International Conference on Automated Software Engineering, Essen, Germany, 2012.

[42] M. Almorsy, J. Grundy, and A. S. Ibrahim, "Automated Software Architecture Security

Risk Analysis Using Formalized Signatures," in Proc. of The 36th International

Conference of Software Engineering, San Francisco, 2013, pp. 300-309.

[43] M. Almorsy, J. Grundy, and A. Ibrahim, "VAM-aaS: Online Cloud Services Security

Vulnerability Analysis and Mitigation-as-a-Service," in Web Information Systems

Engineering - WISE 2012, X. S. Wang, I. Cruz, A. Delis, and G. Huang, Eds., ed:

Springer Berlin Heidelberg, 2012, pp. 411-425.

[44] Lamia Youseff, Maria Butrico and Dilma Da Silva, "Toward a Unified Ontology of

Cloud Computing," in Grid Computing Environments Workshop, Austin, TX, 2008, pp.

1-10.

[45] F. Gens, R. P. Mahowald, and R. L. Villars. (2009). IDC Cloud Computing 2010.

[46] Cloud Computing Use Case Discussion Group, "Cloud Computing Use Cases," White

Paper, 2010, Accessed on May 2010.

[47] European Network and Information Security Agency (ENISA), "Cloud computing:

benefits, risks and recommendations for information security," 2009,

http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment,

Accessed On July 2010.

[48] Q. Zhang, L. Cheng, and R. Boutaba, "Cloud computing: state-of-the-art and research

challenges," Journal of Internet Services and Applications, vol. 1, pp. 7-18, 2010/05/01

2010.

[49] B. R. Kandukuri, R. Paturi, and A. Rakshit, "Cloud Security Issues," in Proc. of the

2009 IEEE International Conference on Services Computing, 2009, pp. 517-520.

[50] F. Lombardi and R. Di Pietro, "Secure virtualization for cloud computing," Journal of

Network and Computer Applications, vol. 34, pp. 1113-1122, 2011.

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment

References

Page 280

[51] K. Bernsmed, M. G. Jaatun, P. H. Meland, and A. Undheim, "Security SLAs for

Federated Cloud Services," in Proc. of The 2011 Sixth International Conference on

Availability, Reliability and Security (ARES), 2011, pp. 202-209.

[52] A. Ibrahim, J. Hamlyn-Harris, and J. Grundy, "Emerging Security Challenges of Cloud

Virtual Infrastructure " in Proc. of The Asia Pacific Cloud Workshop (co-located with

apsec2010), Sydney, Australia, 2010.

[53] D. K. Holstein and K. Stouffer, "Trust but Verify Critical Infrastructure Cyber Security

Solutions," in Proc. of 43rd Hawaii International Conference on System Sciences

(HICSS), 2010, pp. 1-8.

[54] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, "Hey, you, get off of my cloud:

exploring information leakage in third-party compute clouds," in Proc. of the 16th ACM

conference on Computer and communications security, Chicago, Illinois, USA, 2009.

[55] A. S. Ibrahim, J. Hamlyn-Harris, J. Grundy, and M. Almorsy, "Supporting

Virtualization-Aware Security Solutions Using a Systematic Approach to Overcome the

Semantic Gap," in Proc. of The 2012 IEEE 5th International Conference on Cloud

Computing (CLOUD), 2012, pp. 836-843.

[56] W. Dawoud, I. Takouna, and C. Meinel, "Infrastructure as a service security:

Challenges and solutions," in Proc. of The 7th International Conference on Informatics

and Systems, Cairo, Eypt, 2010, pp. 1-8.

[57] M. Jensen, N. Gruschka, R. Herkenhoner, and N. Luttenberger, "SOA and Web

Services: New Technologies, New Standards - New Attacks," in Proc. of The 5th

European Conference on Web Services, 2007, pp. 35-44.

[58] Z. Wenjun, "Integrated Security Framework for Secure Web Services," in 2010 Third

International Symposium on Intelligent Information Technology and Security

Informatics (IITSI), 2010, pp. 178-183.

[59] W. Bin, H. H. Yuan, L. X. Xi, and X. J. Min, "Open Identity Management Framework

for SaaS Ecosystem," in Proc. of The 2009 IEEE International Conference on e-

Business Engineering, 2009, pp. 512-517.

[60] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, "Toward automated detection of

logic vulnerabilities in web applications," in Proc. of 19th USENIX conference on

Security, Washington, DC, 2010, pp. 10–10.

[61] P. Angin, B. Bhargava, R. Ranchal, N. Singh, M. Linderman, L. B. Othmane, and L.

Lilien, "An Entity-Centric Approach for Privacy and Identity Management in Cloud

Computing," in 2010 29th IEEE Symposium on Reliable Distributed Systems, 2010, pp.

177-183.

[62] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers, "Format-Preserving Encryption,"

in Selected Areas in Cryptography. vol. 5867, M. Jacobson, Jr., V. Rijmen, and R.

Safavi-Naini, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 295-312.

[63] Z. Brakerski and V. Vaikuntanathan, "Efficient Fully Homomorphic Encryption from

(Standard) LWE," in 2011 IEEE 52nd Annual Symposium on Foundations of Computer

Science (FOCS), 2011, pp. 97-106.

[64] D. Yum and P. Lee, "Identity-Based Cryptography in Public Key Management," in

Public Key Infrastructure. vol. 3093, S. Katsikas, S. Gritzalis, and J. López, Eds., ed:

Springer Berlin Heidelberg, 2004, pp. 71-84.

[65] N. Mead, T Stehney, "Security quality requirements engineering (SQUARE)

methodology," in Proc. of 2005 workshop on Software engineering for secure systems

and building trustworthy applications, Missouri, 2005.

[66] W. D. Yu and K. Le, "Towards a Secure Software Development Lifecycle with

SQUARE+R," in Proc. of IEEE 36th Annual Computer Software and Applications

Conference Workshops (COMPSACW), 2012, pp. 565-570.

[67] C. S. A. (CSA), " Top Threats to Cloud Computing V1.0,", URL:

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf, Accessed March, 2010.

[68] E. Humphreys, "Information security management standards: Compliance, governance

and risk management," Information Security Technical Report, vol. 13, pp. 247-255,

2008.

https://cloudsecurityalliance.org/topthreats/csathreats.v1.0.pdf

References

Page 281

[69] A. Tsohou, S. Kokolakis, C. Lambrinoudakis, and S. Gritzalis, "Information Systems

Security Management: A Review and a Classification of the ISO Standards," in Next

Generation Society. Technological and Legal Issues. vol. 26, A. Sideridis and C.

Patrikakis, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 220-235.

[70] Common Criteria for Information Technology Security Evaluation, "Part 1:

Introduction and general model, Version 3.1," 2006,

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R1.pdf, Accessed on

August 2010.

[71] F. Pattinson, "Security Assurance: Contrasting FISMA and ISO/IEC 27001," 2011,

Available: http://www.atsec.com/downloads/documents/FISMA_27001.pdf, Accessed

May 2012

[72] C. Gikas, "A General Comparison of FISMA, HIPAA, ISO 27000 and PCI-DSS

Standards," Inf. Sec. J.: A Global Perspective, vol. 19, pp. 132-141, 2010.

[73] M. Siponen and R. Willison, "Information security management standards: Problems

and solutions," Information & Management, vol. 46, pp. 267-270, 2009.

[74] M. Al-Morsy and H. Faheem, "A new standard security policy language," IEEE

Potentials, vol. 28, pp. 19-26, 2009.

[75] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, "The Ponder Policy Specification

Language," in Proc. the International Workshop on Policies for Distributed Systems

and Networks, 2001.

[76] J. Lobo, R. Bhatia, and S. Naqvi, "A policy description language," in Proc. of the

sixteenth national conference on Artificial intelligence and the eleventh Innovative

applications of artificial intelligence conference innovative applications of artificial

intelligence, Orlando, Florida, United States, 1999.

[77] C. Basile, A. Lioy, G. M. Perez, and F. J. G. Clemente, "POSITIF: A Policy-Based

Security Management System," in Proc. of 8th IEEE International Workshop on

Policies for Distributed Systems and Networks Bologna, 2007, pp. 280-280.

[78] D. M. T. F.-. DMTF. (2011, July 2012). Common Information Model - CIM Schemas

Version 2.31.0. Available: http://dmtf.org/standards/cim

[79] H. M. Faheem, "A multiagent-based approach for managing security policy," in Proc.

of The Second IFIP International Conference on Wireless and Optical

Communications Networks, 2005, pp. 351-356.

[80] M. Almorsy and H. M. Faheem, "A Multi-agent based Framework for Managing

Security Policy," in Proc. of The 18th International Conference on Computer Theory

and Applications (ICCTA 2008), Alexandria, Egypt, 2008.

[81] J. López de Vergara, A. Guerrero, V. Villagrá, and J. Berrocal, "Ontology-Based

Network Management: Study Cases and Lessons Learned," Journal of Network and

Systems Management, vol. 17, pp. 234-254, 2009/09/01 2009.

[82] J. P. Thompson, "Web-based enterprise management architecture," IEEE

Communications Magazine, vol. 36, pp. 80-86, 1998.

[83] X. Hui, X. Xue, X. Debao, and L. Xuejiao, "Towards Automation for Pervasive

Network Security Management Using an Integration of Ontology-Based and Policy-

Based Approaches," in Proc. of The 3rd International Conference on Innovative

Computing Information and Control, Dalian, Liaoning, 2008, pp. 87-87.

[84] A. Uszok, J. M. Bradshaw, J. Lott, M. Breedy, L. Bunch, P. Feltovich, M. Johnson, and

J. Hyuckchul, "New Developments in Ontology-Based Policy Management: Increasing

the Practicality and Comprehensiveness of KAoS," in Proc. of The 2008 IEEE

Workshop on Policies for Distributed Systems and Networks, 2008, pp. 145-152.

[85] R. S. Ulrich Lang, "Model driven security management: Making security management

manageable in complex distributed systems," in proc. of The Modeling Security

Workshop in Association with MODELS, Toulouse, France, 2008.

[86] A. Syalim, Y. Hori, and K. Sakurai, "Comparison of Risk Analysis Methods: Mehari,

Magerit, NIST800-30 and Microsoft's Security Management Guide," in Proc. of The

2009 International Conference on Availability, Reliability and Security, 2009, pp. 726-

731.

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R1.pdf
http://www.atsec.com/downloads/documents/FISMA_27001.pdf
http://dmtf.org/standards/cim

References

Page 282

[87] K. Djemame, D. J. Armstrong, M. Kiran, and M. Jiang, "A Risk Assessment

Framework and Software Toolkit for Cloud Service Ecosystems," in Proc. of The 2nd

International Conference on Cloud Computing, GRIDs, and Virtualization, Rome, Italy,

2011, pp. pp. 119 - 126.

[88] R. Kazman, L. Bass, M. Klein, T. Lattanze, and L. Northrop, "A Basis for Analyzing

Software Architecture Analysis Methods," Software Quality Journal, vol. 13, pp. 329-

355, 2005.

[89] L. Dobrica and E. Niemela, "A survey on software architecture analysis methods,"

IEEE Transactions on Software Engineering, vol. 28, pp. 638-653, 2002.

[90] M. A. Babar, L. Zhu, and R. Jeffery, "A framework for classifying and comparing

software architecture evaluation methods," in Proc. of the 2004 Australian Software

Engineering Conference, 2004, pp. 309-318.

[91] P. Clements, R. Kazman, and M. Klein, Evaluating software architectures: methods

and case studies: Addison-Wesley Reading, 2002.

[92] F. Faniyi, R. Bahsoon, A. Evans, and R. Kazman, "Evaluating Security Properties of

Architectures in Unpredictable Environments: A Case for Cloud," in Proc. of 9th

Working IEEE/IFIP Conference on Software Architecture, 2011, pp. 127-136.

[93] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides, "Architectural Risk

Analysis of Software Systems Based on Security Patterns," IEEE Transactions on

Dependable and Secure Computing, vol. 5, pp. 129-142, 2008.

[94] M. Abi-Antoun and J. r. M. Barnes, "STRIDE-based security model in Acme,"

Technical Report CMU-ISR-10-106, Carnegie Mellon Univ., 2010.

[95] N. Admodisastro and G. Kotonya, "An architecture analysis approach for supporting

black-box software development," in Proc. of the 5th European conference on Software

architecture, Essen, Germany, 2011, pp. 180-189.

[96] A. Alkussayer and W. H. Allen, "A scenario-based framework for the security

evaluation of software architecture," in Proc. 3rd IEEE International Conference on

Computer Science and Information Technology, 2010, pp. 687-695.

[97] A. Alkussayer and W. H. Allen, "Security risk analysis of software architecture based

on AHP," in Proc. 7th International Conference on Networked Computing, 2011, pp.

60-67.

[98] P. Antonino, S. Duszynski, C. Jung, and M. Rudolph, "Indicator-based architecture-

level security evaluation in a service-oriented environment," in Proc. of the Fourth

European Conference on Software Architecture, Copenhagen, Denmark, 2010.

[99] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. P. Lucena, "On the Modularity

Assessment of Software Architectures: Do my architectural concerns count?," in 6th

International Workshop on Aspect-Oriented Software Development, Vancouver, British

Columbia, 2007, pp. 183-192.

[100] B. Alshammari, C. Fidge, and D. Corney, "A Hierarchical Security Assessment Model

for Object-Oriented Programs," in Proc. of The 11th International Conference on

Quality Software (QSIC), 2011, pp. 218-227.

[101] B. Alshammari, C. Fidge, and D. Corney, "Security Metrics for Object-Oriented Class

Designs," in Proc. 9th International Conference on Quality Software, 2009, pp. 11-20.

[102] T. Heyman, R. Scandariato, C. Huygens, and W. Joosen, "Using Security Patterns to

Combine Security Metrics," in Proc. of The 3rd International Conference on

Availability, Reliability and Security, 2008, pp. 1156-1163.

[103] K. Sohr and B. Berger, "Idea: towards architecture-centric security analysis of

software," in Proc. the 2nd international conference on Engineering Secure Software

and Systems, Pisa, Italy, 2010.

[104] Y. Liu, I. Traore, and A. M. Hoole, "A Service-Oriented Framework for Quantitative

Security Analysis of Software Architectures," in Proc. IEEE 2008 Asia-Pacific

Services Computing Conference, 2008, pp. 1231-1238.

[105] A. M. Willy Jimenez, Ana Cavalli "Software Vulnarabilities, Prevention and Detection

Methods: A Reviw," in Proc. of 2009 European Workshop on Security in Model Driven

Architecture, Enschede, The Netherlands, 2009, p. 6—13.

References

Page 283

[106] NIST, "Source Code Security Analysis Tool Functional Specification Version 1.1,"

URL:http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-

268_v1.1.pdf, May 2007, Accessed 2011.

[107] W. G. J. Halfond, A. Orso, and P. Manolios, "Using positive tainting and syntax-aware

evaluation to counter SQL injection attacks," in Proc. of 14th ACM SIGSOFT

international symposium on Foundations of software engineering, Oregon, USA, 2006,

pp. 175-185.

[108] W. Lei, Z. Qiang, and Z. PengChao, "Automated Detection of Code Vulnerabilities

Based on Program Analysis and Model Checking," in Proc. of 8th IEEE International

Working Conference on Source Code Analysis and Manipulation, 2008, pp. 165-173.

[109] A. Dasgupta, V. Narasayya, and M. Syamala, "A Static Analysis Framework for

Database Applications," in Proc. of 2009 IEEE International Conference on Data

Engineering, 2009, pp. 1403-1414.

[110] M. Martin, B. Livshits, and M. S. Lam, "Finding application errors and security flaws

using PQL: a program query language," in Proc. of the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applications CA,

USA, 2005, pp. 365-383.

[111] M. S. Lam, M. Martin, B. Livshits, and J. Whaley, "Securing web applications with

static and dynamic information flow tracking," in Proc. of 2008 ACM SIGPLAN

symposium on Partial evaluation and semantics-based program manipulation,

California, USA, 2008, pp. 3-12.

[112] G. Wassermann and Z. Su, "Static detection of cross-site scripting vulnerabilities," in

Proc. of 30th international conference on Software engineering, Leipzig, Germany,

2008, pp. 171-180.

[113] N. Jovanovic, C. Kruegel, and E. Kirda, "Pixy: a static analysis tool for detecting Web

application vulnerabilities," in Proc. of 2006 IEEE Symposium on Security and Privacy,

2006, pp. 258-263.

[114] V. Ganesh, A. Kieżun, S. Artzi, P. J. Guo, P. Hooimeijer, and M. Ernst, "HAMPI: a

string solver for testing, analysis and vulnerability detection," in Proc. of 23rd

international conference on Computer aided verification, Snowbird, UT, 2011, pp. 1-

19.

[115] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, "Automatic creation of SQL

Injection and cross-site scripting attacks," in Proc. of 31st International Conference on

Software Engineering, 2009, pp. 199-209.

[116] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, "State of the Art: Automated Black-Box

Web Application Vulnerability Testing," in Proc. of 2010 IEEE Symposium on Security

and Privacy, 2010, pp. 332-345.

[117] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, "SecuBat: a web vulnerability

scanner," in Proc. of 15th international conference on World Wide Web, Edinburgh,

Scotland, 2006.

[118] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song, "A systematic

analysis of XSS sanitization in web application frameworks," in Proc. of 16th European

conference on Research in computer security, Leuven, Belgium, 2011, pp. 150-171.

[119] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, "Fast and precise

sanitizer analysis with BEK," in Proc. of 20th USENIX conference on Security, San

Francisco, CA, 2011.

[120] M. Monga, R. Paleari, and E. Passerini, "A hybrid analysis framework for detecting

web application vulnerabilities," in Proc. of 2009 ICSE Workshop on Software

Engineering for Secure Systems, 2009.

[121] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G.

Vigna, "Saner: Composing Static and Dynamic Analysis to Validate Sanitization in

Web Applications," in Proc. of 2008 IEEE Symposium on Security and Privacy, 2008,

pp. 387-401.

[122] B. Fabian, S. Gürses, M. Heisel, T. Santen, and H. Schmidt, "A comparison of security

requirements engineering methods," Requirements Engineering, vol. 15, pp. 7-40, 2010.

http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf
http://samate.nist.gov/docs/source_code_security_analysis_spec_SP500-268_v1.1.pdf

References

Page 284

[123] R. Anderson, Security Engineering: A Guide to Building Dependable Distributed

Systems: John Wiley and Sons, 2001.

[124] A. Dardenne, A. v. Lamsweerde, and S. Fickas, "Goal-directed requirements

acquisition," in proc. of The Sixth International Workshop on Software Specification

and Design, 1993.

[125] H. S. F. Al-Subaie and T. S. E. Maibaum, "Evaluating the Effectiveness of a Goal-

Oriented Requirements Engineering Method, " in proc. of Fourth International

Workshop on Comparative Evaluation in Requirements, pp.8-19, 2006.

[126] L. Liu, E. Yu, and J. Mylopoulos, "Secure ¡* : Engineering Secure Software Systems

through Social Analysis," International Journal of Software and Informatics, vol. Vol.3,

pp. 89-120, 2009.

[127] L. Liu, E. Yu, and J. Mylopoulos, "Security and Privacy Requirements Analysis within

a Social Setting," in Proc. of The Requirements Engineering Conference, 2003.

[128] H. Mouratidis, and P. Giorgini, "Secure Tropos: A security-oriented Extension of the

Tropos Methodology," International Journal of Software Engineering and knowledge

Engineering, 2007.

[129] H. Mouratidis and J. Jurjens, "From goal-driven security requirements engineering to

secure design," International Journal of Intelligent Systems, vol. 25, pp. 813-840, 2010.

[130] R. Matulevičius, N. Mayer, H. Mouratidis, E. Dubois, P. Heymans, and N. Genon,

"Adapting Secure Tropos for Security Risk Management in the Early Phases of

Information Systems Development," in Proc. of the 20th international conference on

Advanced Information Systems Engineering, 2008, pp. 541-555.

[131] G. Sindre, and A. Opdahl, "Eliciting security requirements with misuse cases," Requir.

Eng., vol. 10, pp. 34-44, 2005.

[132] D. G. Firesmith, "Security Use Cases," JOURNAL OF OBJECT TECHNOLOGY, vol.

Vol. 2, No. 3, pp. pp. 53-64, 2003.

[133] J. Jurjens, J. Schreck, and Y. Yu, "Automated Analysis of Permission-Based Security

using UMLsec," in Proc. of 11th international conference on Fundamental approaches

to software engineering 2008, pp. pp. 292 - 295.

[134] J. Jürjens, "UMLsec: Extending UML for Secure Systems Development," in Proc. of

the 5th International Conference on The Unified Modeling Language, 2002.

[135] L. Montrieux, J. Jurjens, C. B. Haley, Y. Yu, P.-Y. Schobbens, and H. Toussaint, "Tool

support for code generation from a UMLsec property," in Proc. of The 2010 IEEE/ACM

international conference on Automated software engineering, Antwerp, Belgium, 2010.

[136] F. Satoh, Y. Nakamura, N. K. Mukhi, M. Tatsubori, and K. Ono, "Methodology and

Tools for End-to-End SOA Security Configurations," in Proc. of IEEE Congress on

Services - Part I, 2008, pp. 307-314.

[137] Y. Shiroma, H. Washizaki, Y. Fukazawa, and A. Kubo, "Model-Driven Security

Patterns Application Based on Dependences among Patterns," in Proc. of The

International Conference on Availability, Reliability, and Security. , Krakow 2010, pp.

555-559.

[138] N. A. Delessy and E. B. Fernandez, "A Pattern-Driven Security Process for SOA

Applications," in Proc. of The Third International Conference on Availability,

Reliability and Security, 2008, pp. 416-421.

[139] M. Schnjakin, M. Menzel, and C. Meinel, "A pattern-driven security advisor for

service-oriented architectures," in Proc. of 2009 ACM workshop on Secure web

services, Chicago, Illinois, USA, 2009.

[140] M. Hafner, M. Memon, and R. Breu, "SeAAS - A Reference Architecture for Security

Services in SOA " Journal of Universal Computer Science, vol. vol. 15, pp. 2916-2936,

2009.

[141] M. Alam, "Model Driven Security Engineering for the Realization of Dynamic Security

Requirements in Collaborative Systems," in Models in Software Engineering. vol. 4364,

T. Kühne, Ed., ed: Springer Berlin / Heidelberg, 2007, pp. 278-287.

References

Page 285

[142] M. Alam, R. Breu, and M. Hafner, "Modeling permissions in a (U/X)ML world," in

Proc. of The First International Conference on Availability, Reliability and Security,

2006, p. 8 pp.

[143] M. Daniel, F. Eduardo, P., Mario, "Applying a Security Requirements Engineering

Process," in Computer Security – ESORICS 2006. vol. 4189, ed: Springer Berlin /

Heidelberg, 2006, pp. 192-206.

[144] V. Bertocci, Programming Windows Identity Foundation: Microsoft Press, 2010.

[145] L. Peng and Y. Zhao-lin, "Analysis and extension of authentication and authorization of

Acegi security framework on spring," Computer Engineering and Design, 2007.

[146] A. Elkhodary and J. Whittle, "A Survey of Approaches to Adaptive Application

Security," in Int. Workshop on Software Engineering for Adaptive and Self-Managing

Systems, 2007, pp. 1-16.

[147] F. Sanchez-Cid and A. Mana, "Patterns for Automated Management of Security and

Dependability Solutions," in Proc. of the 18th International Conference on Database

and Expert Systems Applications, 2007.

[148] A. Benameur, S. Fenet, A. Saidane, and S. K. Sinha, "A Pattern-Based General Security

Framework: An eBusiness Case Study," in Proc. of The 11th IEEE International

Conference on High Performance Computing and Communications, 2009, pp. 339-346.

[149] Brice Morin, Tejeddine Mouelhi, Franck Fleurey, Yves Le Traon, Olivier Barais, and

Jean-Marc Jézéquel, "Security-Driven Model-Based Dynamic Adaptation," in Proc. of

25nd IEEE/ACM International Conference on Automated Software Engineering,

Antwerp, Belgium, 2010.

[150] M. Brock and A. Goscinski, "Toward a Framework for Cloud Security Algorithms and

Architectures for Parallel Processing." vol. 6082, C.-H. Hsu, L. Yang, J. Park, and S.-S.

Yeo, Eds., ed: Springer Berlin / Heidelberg, 2010, pp. 254-263.

[151] R. Mietzner, F. Leymann, and M. P. Papazoglou, "Defining Composite Configurable

SaaS Application Packages Using SCA, Variability Descriptors and Multi-tenancy

Patterns," in Proc. of The 3rd International Conference on Internet and Web

Applications and Services, 2008, pp. 156-161.

[152] D. Wang, Y. Zhang, B. Zhang, and Y. Liu, "Research and Implementation of a New

SaaS Service Execution Mechanism with Multi-Tenancy Support," in Proc. of the 2009

First IEEE International Conference on Information Science and Engineering, 2009,

pp. 336-339.

[153] X. Zhang, B. Shen, X. Tang, and W. Chen, "From isolated tenancy hosted application to

multi-tenancy: Toward a systematic migration method for web application," in Proc. of

The 2010 IEEE International Conference on Software Engineering and Service

Sciences (ICSESS), 2010, pp. 209-212.

[154] R. Chinchani, A. Iyer, H. Ngo, and S. Upadhyaya, "A target-centric formal model for

insider threat and more," Technical Report 2004-16, University of Buffalo, US2004.

[155] C. Zhong, J. Zhang, Y. Xia, and H. Yu, "Construction of a Trusted SaaS Platform," in

Proc. of Fifth IEEE International Symposium on Service Oriented System Engineering

(SOSE), 2010, pp. 244-251.

[156] M. Menzel, R. Warschofsky, I. Thomas, C. Willems, and C. Meinel, "The Service

Security Lab: A Model-Driven Platform to Compose and Explore Service Security in

the Cloud," in Proc. of The 6th World Congress on Services, 2010, pp. 115-122.

[157] M. Menzel and C. Meinel, "SecureSOA Modelling Security Requirements for Service-

Oriented Architectures," in Proc. of The 2010 IEEE International Conference on

Services Computing (SCC), 2010.

[158] L. A. Abdulkarim and Z. Lukszo, "Information security implementation difficulties in

critical infrastructures: Smart metering case," in Proc. of The International Conference

on Networking, Sensing and Control, 2010, pp. 715-720.

[159] M. Hafiz and R. E. Johnson, "Improving perimeter security with security-oriented

program transformations," in ICSE Workshop on Software Engineering for Secure

Systems, 2009, pp. 61-67.

References

Page 286

[160] M. Hafiz and R. E. Johnson, "Security-oriented program transformations," in Proc. of

5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber

Security and Information Intelligence Challenges and Strategies, Oak Ridge,

Tennessee, 2009.

[161] V. Ganapathy, D. King, T. Jaeger, and S. Jha, "Mining Security-Sensitive Operations in

Legacy Code Using Concept Analysis," in Proc. of the 29th international conference on

Software Engineering, 2007.

[162] V. Ganapathy, T. Jaeger, and S. Jha, "Retrofitting legacy code for authorization policy

enforcement," in 2006 IEEE Symposium on Security and Privacy, 2006, pp. 15 pp.-229.

[163] P. O’Sullivan, K. Anand, A. Kothan, M. Smithson, R. Barua, and A. D. Keromytis,

"Retrofitting Security in COTS Software with Binary Rewriting," in Proc. of the 26th

IFIP International Information Security Conference (SEC), Lucerne, Switzerland, 2011.

[164] I. S. WELCH and R. J. STROUD, "Re-engineering Security as a Crosscutting

Concern," The Computer Journal, vol. 46, pp. PP. 578-589, 2003.

[165] R. S. Pressman, Software Engineering – A Practitioner’s Approach, Sixth Edition ed.:

McGraw-Hill, New York, NY, 2005.

[166] G. Canfora and A. Cimitile, in Software maintenance. Handbook of Software

Engineering and Knowledge Engineering, ed: World Scientific: River Edge NJ, 2001;

1:91–120., 2001.

[167] S. Lehnert, "A Taxonomy for Software Change Impact Analysis," in In Proc. of 12th

International Workshop on Principles of Software Evolution, Szeged, Hungary, 2011.

[168] S. Xiaobing, L. Bixin, T. Chuanqi, W. Wanzhi, and Z. Sai, "Change Impact Analysis

Based on a Taxonomy of Change Types," in Proc. of IEEE 34th Annual Computer

Software and Applications Conference (COMPSAC), 2010, pp. 373-382.

[169] M. Petrenko and V. Rajlich, "Variable granularity for improving precision of impact

analysis," in Proc. of IEEE 17th International Conference on Program Comprehension,

2009, pp. 10-19.

[170] H. Malik and A. E. Hassan, "Supporting software evolution using adaptive change

propagation heuristics," in Proc. of The 2008 IEEE International Conference on

Software Maintenance, 2008, pp. 177-186.

[171] G. M. K. Selim, L. Barbour, S. Weiyi, B. Adams, A. E. Hassan, and Z. Ying, "Studying

the Impact of Clones on Software Defects," in Proc. of The 17th Working Conference

on Reverse Engineering (WCRE), 2010, pp. 13-21.

[172] J. Wloka, R. Hirschfeld, and J. Hnsel, "Tool-supported refactoring of aspect-oriented

programs," in Proc. of 7th international conference on Aspect-oriented software

development, Brussels, Belgium, 2008, pp. 132-143.

[173] M. P. Monteiro and J. M. Fernandes, "An illustrative example of refactoring object-

oriented source code with aspect-oriented mechanisms," Softw. Pract. Exper., vol. 38,

pp. 361-396, 2008.

[174] M. Pukall, C. Kastner, and G. Saake, "Towards Unanticipated Runtime Adaptation of

Java Applications," in Proc. of the 2008 15th Asia-Pacific Software Engineering

Conference, 2008, pp. 85-92.

[175] A. Villazon, W. Binder, D. Ansaloni, and P. Moret, "Advanced runtime adaptation for

Java," in Proc. of 8th international conference on Generative programming and

component engineering, Colorado, USA, 2009, pp. 85-94.

[176] A. Nicoara, G. Alonso, and T. Roscoe, "Controlled, systematic, and efficient code

replacement for running java programs," in Proc. of 3rd ACM SIGOPS/EuroSys

European Conference on Computer Systems, Glasgow, Scotland UK, 2008, pp. 233-

246.

[177] S. P. Reiss, "Semantics-based code search," in Proc. of 31st International Conference

on Software Engineering, 2009, pp. 243-253.

[178] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-Shanker, "Using natural

language program analysis to locate and understand action-oriented concerns," in Proc.

of 6th international conference on Aspect-oriented software development, Vancouver,

Canada, 2007, pp. 212-224.

References

Page 287

[179] M. V. Cengarle and A. Knapp, "OCL 1.4/5 vs. 2.0 Expressions Formal semantics and

expressiveness," Software and Systems Modeling, vol. 3, pp. 9-30, 2004.

[180] N. Heintze and O. Tardieu, "Ultra-fast aliasing analysis using CLA: a million lines of C

code in a second," in Proc. of ACM SIGPLAN 2001 conference on Programming

language design and implementation, Snowbird, USA, 2001, pp. 254-263.

[181] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev, "Static techniques for

concept location in object-oriented code," in Proc. of 13th International Workshop on

Program Comprehension, 2005, pp. 33-42.

[182] C. Zhang and H.-A. Jacobsen, "PRISM is research in aSpect mining," in Proc. of 19th

annual ACM SIGPLAN conference on Object-oriented programming systems,

languages, and applications, Vancouver, CANADA, 2004, pp. 20-21.

[183] S. Stolfo, S. M. Bellovin, and D. Evans, "Measuring Security," Security & Privacy,

IEEE, vol. 9, pp. 60-65, 2011.

[184] M. S. Elizabeth Chew, Kevin Stine, Nadya Bartol, et al, "Performance Measuremenet

Guide for Information Security " National Institute of Standards and Technology2008.

[185] J. Bayuk, "Cloud security metrics," in Proc. of 6th International Conference on System

of Systems Engineering (SoSE), 2011, pp. 341-345.

[186] A. Evesti, E. Ovaska, and R. Savola, "From Security Modelling to Run-time Security

Monitoring," in Proc. of The Security in Model-Driven Architecture Workshop,

Enschede, Netherlands, , 2009.

[187] A. Muñoz, J. Gonzalez, and A. Maña, "A Performance-Oriented Monitoring System for

Security Properties in Cloud Computing Applications," The Computer Journal, vol. 55,

pp. PP. 979-994, 2012.

[188] G. Spanoudakis, C. Kloukinas, and K. Mahbub, "The SERENITY Runtime Monitoring

Framework," Security and Dependability for Ambient Intelligence, Information

Security, vol. 45, pp. pp. 213-238, 2009.

[189] T. Tsigkritis, G. Spanoudakis, C. Kloukinas, and D. Lorenzoli, "Diagnosis and Threat

Detection Capabilities of the SERENITY Monitoring Framework," in Security and

Dependability for Ambient Intelligence. vol. 45, S. Kokolakis, A. M. Gómez, and G.

Spanoudakis, Eds., ed: Springer US, 2009, pp. 239-271.

[190] I. Cervesato, M. Franceschet, and A. Montanari, "A guided tour through some

extensions of the Event Calculus," Computational Intelligence, vol. 16, pp. 307–347,

2000.

[191] D. Lorenzoli and G. Spanoudakis, "EVEREST+: run-time SLA violations prediction,"

presented at the Proceedings of the 5th International Workshop on Middleware for

Service Oriented Computing, Bangalore, India, 2010.

[192] G. Spanoudakis, C. Kloukinas, and K. Androutsopoulos, "Towards security monitoring

patterns," presented at the Proceedings of the 2007 ACM symposium on Applied

computing, Seoul, Korea, 2007.

[193] L. Patzina, S. Patzina, T. Piper, A. Schand, "Monitor petri nets for security monitoring,"

in Proc. of The International Workshop on Security and Dependability for Resource

Constrained Embedded Systems, Vienna, Austria, 2010.

[194] F. Raimondi, J. Skene, and W. Emmerich, "Efficient online monitoring of web-service

SLAs," in Proc. of The 16th ACM SIGSOFT International Symposium on Foundations

of software engineering, Atlanta, Georgia, 2008.

[195] Davide Lamanna, James Skene and Wolfgang Emmerich, "SLAng: a language for

defining service level agreements," in The Ninth IEEE Workshop on Future Trends of

Distributed Computing Systems, London, UK 2003, pp. 100-106.

[196] J. Skene, D. D. Lamanna, and W. Emmerich, "Precise Service Level Agreements," in

Proc. of the 26th International Conference on Software Engineering, 2004, pp. 179-188.

[197] J. Skene, F. Raimondi, and W. Emmerich, "Service-Level Agreements for Electronic

Services," IEEE Transactions on Software Engineering, vol. 36, pp. 288-304, 2010.

[198] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, "Comprehensive QoS

monitoring of Web services and event-based SLA violation detection," in Proc. of the

References

Page 288

4th International Workshop on Middleware for Service Oriented Computing, Urbana

Champaign, Illinois, 2009.

[199] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar, "Monitoring, Prediction and

Prevention of SLA Violations in Composite Services," in Proc. of The 2010 IEEE

International Conference on Web Services (ICWS), 2010, pp. 369-376.

[200] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour, "Establishing and

Monitoring SLAs in Complex Service Based Systems," in Proc. of the 2009 IEEE

International Conference on Web Services, 2009, pp. 783-790.

[201] I. Ben Lahmar, H. Mukhtar, and D. Belaid, "Monitoring of Non-functional

Requirements Using Dynamic Transformation of Components," in Proc. of The 2010

Sixth International Conference on Networking and Services (ICNS), 2010, pp. 61-66.

[202] A. J. Ramirez, B. H. C. Cheng, and P. K. McKinley, "Adaptive monitoring of software

requirements," in Proc. of First International Workshop on Requirements@Run.Time

(RE@RunTime), 2010, pp. 41-50.

[203] B. Baliś, M. Bubak, W. Funika, R. Wismüller, M. Radecki, T. Szepieniec, T. Arodź,

and M. Kurdziel, "Performance Evaluation and Monitoring of Interactive Grid

Applications," in Recent Advances in Parallel Virtual Machine and Message Passing

Interface. vol. 3241, D. Kranzlmüller, P. Kacsuk, and J. Dongarra, Eds., ed: Springer

Berlin Heidelberg, 2004, pp. 345-352.

[204] R. Wismüller, M. Bubak, and W. Funika, "High-Level Application Specific

Performance Analysis Using the G-PM Tool," in Recent Advances in Parallel Virtual

Machine and Message Passing Interface. vol. 3666, B. Martino, D. Kranzlmüller, and J.

Dongarra, Eds., ed: Springer Berlin Heidelberg, 2005, pp. 317-324.

[205] A. Vogelsang, A. Fehnker, R. Huuck, and W. Reif, "Software metrics in static program

analysis," in Proc. of the 12th international conference on Formal engineering methods

and software engineering, Shanghai, China, 2010, pp. 485-500.

[206] W. Iqbal, M. Dailey, and D. Carrera, "SLA-Driven Adaptive Resource Management for

Web Applications on a Heterogeneous Compute Cloud," in Proc. of the 1st

International Conference on Cloud Computing, Beijing, China, 2009, pp. 243-253.

[207] M. Salehie and L. Tahvildari, "Self-adaptive software: Landscape and research

challenges," ACM Trans. Auton. Adapt. Syst., vol. 4, pp. 1-42, 2009.

[208] J. O. Kephart, "Research challenges of autonomic computing," in Proc. of The 27th

International Conference on Software Engineering, 2005, pp. 15-22.

[209] I. A. computing, " Autonomic Computing: IBM's perspective on the state of

information technology," 2001.

[210] J. V. Elarde and G. B. Brewster, "Performance analysis of application response

measurement (ARM) version 2.0 measurement agent software implementations," in

Proc. of The 2000 IEEE International Performance, Computing, and Communications

Conference, 2000, pp. 190-198.

[211] M. Hussein, J. Han, J. Yu, and A. Colman, "Enabling Runtime Evolution of Context-

aware Adaptive Services," in Proc. of The 10th International Conference on Services

Computing, Santa Clara Marriott, CA, USA, 2013.

[212] I. Lanese, A. Bucchiarone, and F. Montesi, "A Framework for Rule-Based Dynamic

Adaptation," in Trustworthly Global Computing. vol. 6084, M. Wirsing, M. Hofmann,

and A. Rauschmayer, Eds., ed: Springer Berlin Heidelberg, 2010, pp. 284-300.

[213] Roland Reichle, Mohammad Ullah Khan and Kurt Geihs, "How to combine parameter

and compositional adaptation in the modelling of self-adaptive applications," in PIK -

Praxis der Informationsverarbeitung und Kommunikation - Special Issue: Modelling of

Self-Organizing Systems, 2008.

[214] M. Hussein, J. Yu, J. Han, and A. Colman, "Scenario-Driven Development of Context-

Aware Adaptive Web Services," in Web Information Systems Engineering - WISE 2012.

vol. 7651, X. S. Wang, I. Cruz, A. Delis, and G. Huang, Eds., ed: Springer Berlin

Heidelberg, 2012, pp. 228-242.

References

Page 289

[215] B. Pernici and S. H. Siadat, "Selection of Service Adaptation Strategies Based on Fuzzy

Logic," in Proc. of 2011 IEEE World Congress on Services (SERVICES), 2011, pp. 99-

106.

[216] A. Sykes, An introduction to regression analysis: Law School, University of Chicago,

1993, URL: http://www.law.uchicago.edu/files/files/20.Sykes_.Regression.pdf

[217] P. Avgeriou and U. Zdun, "Architectural patterns revisited – a pattern language," in

Proc. of 10th European Conference on Pattern Languages of Programs, Irsee,

Germany, 2005, pp. 1--39.

[218] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: Elements of

reusable object-oriented software vol. 49, 1995.

[219] DailyDev.org. (2007). Interceptor Design Pattern. Available:

http://bosy.dailydev.org/2007/04/interceptor-design-pattern.html

[220] A. Mourad, H. Geir, E. Frank, K. MohammadUllah, F. Rolf, and R. Roland, "A

Component-Based Planning Framework for Adaptive Systems," in On the Move to

Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. vol. 4276, R.

Meersman and Z. Tari, Eds., ed: Springer Berlin Heidelberg, 2006, pp. 1686-1704.

[221] A. Popovici, T. Gross, and G. Alonso, "Dynamic weaving for aspect-oriented

programming," in Proc. of The 1st international conference on Aspect-oriented

software development, Enschede, The Netherlands, 2002, pp. 141-147.

[222] Cloud Security Alliance Group (CSA) (2010, Dec 2010). Cloud Security Alliance GRC

Stack. Available: http://www.cloudsecurityalliance.org/grcstack.html

[223] Z. Pervez, S. Lee, and Y.-K. Lee, "Multi-Tenant, Secure, Load Disseminated SaaS

Architecture," in Proc. of The 2010 The 12th International Conference on Advanced

Communication Technology (ICACT), 2010, pp. 214-219.

[224] FedRAMP, URL: http://www.gsa.gov/portal/category/102371, Accessed May 2011.

[225] NIST. Standards for Security Categorization of Federal Information and Information

Systems. FIPS 199, URL: http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-

final.pdf, Accessed August 2011.

[226] Mitre Corporation. Making Security Measurable, URL:

http://measurablesecurity.mitre.org/, Accessed April 2011.

[227] National Institute of Standards and Technology - NIST. (Dec 2010). National

Vulnerabilities Database Home. Available: http://nvd.nist.gov/

[228] A. v. Lamsweerde, Requirements Engineering: From System Goals to UML Models to

Software Specifications. : Wiley, Mar. 2009.

[229] D. Serrano, J. F. Ruiz, A. Munoz, A. Mana, A. Armenteros, and B. G. N. Crespo,

"Development of Applications Based on Security Patterns," in Proc. of The 2nd

International Conference on Dependability, 2009, pp. 111-116.

[230] C. P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. t. Hart, "Enabling

multi-tenancy: An industrial experience report," in Proc. of The 2010 IEEE

International Conference on Software Maintenance (ICSM), 2010, pp. 1-8.

[231] Wei Sun, Xin Zhang, Chang Jie Guo, Pei Sun, and Hui Su, "Software as a Service:

Configuration and Customization Perspectives," in Proc. of IEEE Congress on Services

Part II, 2008, pp. 18-25.

[232] T. Kwok, T. Nguyen, and L. Lam, "A Software as a Service with Multi-tenancy Support

for an Electronic Contract Management Application," in Proc. of The 2008 IEEE

International Conference on Services Computing, 2008, pp. 179-186.

[233] Chen Danwei, Huang Xiuli and Ren Xunyi, "Access Control of Cloud Service Based on

UCON," in Cloud Computing. vol. 5931, M. Jaatun, G. Zhao, and C. Rong, Eds., ed:

Springer Berlin / Heidelberg, 2009, pp. 559-564.

[234] J. M. A. Calero, N. Edwards, J. Kirschnick, L. Wilcock, and M. Wray, "Toward a

Multi-Tenancy Authorization System for Cloud Services," Security & Privacy, IEEE,

vol. 8, pp. 48-55, 2010.

[235] S. Y. Luokai Hu, Xiangyang Jia and Kai Zhao, "Towards an Approach of Semantic

Access Control for Cloud Computing," in Cloud Computing. vol. 5931, M. Jaatun, G.

Zhao, and C. Rong, Eds., ed: Springer Berlin / Heidelberg, 2009, pp. 145-156.

http://www.law.uchicago.edu/files/files/20.Sykes_.Regression.pdf
http://bosy.dailydev.org/2007/04/interceptor-design-pattern.html
http://www.cloudsecurityalliance.org/grcstack.html
http://www.gsa.gov/portal/category/102371
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf
http://measurablesecurity.mitre.org/
http://nvd.nist.gov/

References

Page 290

[236] T. Vogel, A. Seibel, and H. Giese, "The role of models and megamodels at runtime," in

Proc. of the 2010 international conference on Models in software engineering, Oslo,

Norway, 2010.

[237] G. Blair, N. Bencomo, and R. B. France, "Models@ run.time," Computer, vol. 42, pp.

22-27, 2009.

[238] OWASP. Enterprise Security API. Available: http://esapi.org/

[239] NIST, "Underlying Technical Models for Information Technology Security," 2001,

http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf, Accessed on June 2010.

[240] NIST, "Risk Management Guide for Information Technology Systems," 2002,

http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf, Accessed on une 2010.

[241] NIST, Common Configration Enumeration. Available: http://nvd.nist.gov/cce.cfm

[242] S. Thummalapenta, L. Cerulo, L. Aversano, and M. D. Penta, "An empirical study on

the maintenance of source code clones," Empirical Softw. Engg., vol. 15, pp. 1-34,

2010.

[243] M. Pukall, N. Siegmund, and W. Cazzola, "Feature-oriented runtime adaptation," in

Proc. of 2009 ESEC/FSE workshop on Software integration and evolution @ runtime,

Amsterdam, Netherlands, 2009, pp. 33-36.

[244] F. Asadi, M. D. Penta, G. Antoniol, and Y.-G. e. Gu´eh´eneuc, "A Heuristic-Based

Approach to Identify Concepts in Execution Traces," in Proc. of The 14th European

Conference on Software Maintenance and Reengineering (CSMR), 2010, pp. 31-40.

[245] M. L. Bernardi and G. A. Di Lucca, "Model-driven detection of Design Patterns," in

Proc. of The 2010 IEEE International Conference on Software Maintenance (ICSM),

2010, pp. 1-5.

[246] I. Neamtiu, J. S. Foster, and M. Hicks, "Understanding source code evolution using

abstract syntax tree matching," in Proc. of 2005 international workshop on Mining

software repositories, St. Louis, Missouri, 2005, pp. 1-5.

[247] V. C. Garcia, D. Lucredio, and A. F. d. Prado, "Towards an Approach for Aspect-

Oriented Software Reengineering," in Proc. of 7th International Conference on

Enterprise Information Systems (ICEIS’2005), Miami, USA, 2005.

[248] P. Anbalagan and T. Xie, "Clamp: automated joinpoint clustering and pointcut mining

in aspect-oriented refactoring," SIGSOFT Softw. Eng. Notes, vol. 31, pp. 1-2, 2006.

[249] Z. Sai, G. Zhongxian, L. Yu, and Z. Jianjun, "Change impact analysis for AspectJ

programs," in Proc. of IEEE 2008 International Conference on Software Maintenance,

2008, pp. 87-96.

[250] J. Jasz, A. Beszedes, T. Gyimothy, and V. Rajlich, "Static Execute After/Before as a

replacement of traditional software dependencies," in Proc. of The 2008 IEEE

International Conference on Software Maintenance, 2008, pp. 137-146.

[251] M. E. Aho, "Statement annotations for Fine-grained advising. ," in Proc. the 2006

ECOOP Workshop on Reflection, AOP and Meta-Data for Software Evolution, 2006.

[252] E. Bodden, "Closure joinpoints: block joinpoints without surprises," in Proc. of the 10th

international conference on Aspect-oriented software development, Porto de Galinhas,

Brazil, 2011, pp. 117-128.

[253] R. Chitchyan, P. Greenwood, A. Sampaio, A. Rashid, A. Garcia, and L. F. d. Silva,

"Semantic vs. syntactic compositions in aspect-oriented requirements engineering: an

empirical study," in Proc. of The 8th ACM international conference on Aspect-oriented

software development, Charlottesville, Virginia, USA, 2009, pp. 149-160.

[254] M. Eichberg, M. Mezini, and K. Ostermann, "Pointcuts as Functional Queries

Programming Languages and Systems." vol. 3302, W.-N. Chin, Ed., ed: Springer Berlin

/ Heidelberg, 2004, pp. 366-381.

[255] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. d. Moor, D. Sereni, J. Tibble, and M.

Verbaere, "Semantics of static pointcuts in aspectJ," in Proc. of the 34th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, Nice, France,

2007.

http://esapi.org/
http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://nvd.nist.gov/cce.cfm

References

Page 291

[256] D. Alhadidi, A. Boukhtouta, N. Belblidia, M. Debbabi, and P. Bhattacharya, "The

dataflow pointcut: a formal and practical framework," in Proc. of 8th ACM

international conference on Aspect-oriented software development, Charlottesville,

Virginia, USA, 2009.

[257] R. Khatchadourian, P. Greenwood, A. Rashid, and X. Guoqing, "Pointcut Rejuvenation:

Recovering Pointcut Expressions in Evolving Aspect-Oriented Software," in Proc. of

the 24th IEEE/ACM International Conference on Automated Software Engineering,

2009, pp. 575-579.

[258] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold, "An

Overview of AspectJ," in Proc. of the 15th European Conference on Object-Oriented

Programming, 2001.

[259] M. Mezini and K. Ostermann, "Conquering aspects with Caesar," presented at the Proc.

of the 2nd international conference on Aspect-oriented software development, Boston,

Massachusetts, 2003.

[260] H. Malik and A. E. Hassan, "Supporting software evolution using adaptive change

propagation heuristics," in Proc. of The IEEE International Conference on Software

Maintenance, 2008.

[261] Microsoft FxCop. Available: http://msdn.microsoft.com/en-us/library/bb429476.aspx

[262] NIST, National Vulnerability Database (NVD). Available: http://nvd.nist.gov/home.cfm

[263] CVE Security Vulnerability Database. Available: http://cvedetails.com

[264] R. Zhang, S. Huang, Z. Qi, and H. Guan, "Static program analysis assisted dynamic

taint tracking for software vulnerability discovery," Computers & Mathematics with

Application, vol. 63, pp. 469-480, 2012.

[265] P. Bisht and V. Venkatakrishnan, "XSS-GUARD: Precise Dynamic Prevention of

Cross-Site Scripting Attacks," in Detection of Intrusions and Malware, and

Vulnerability Assessment. vol. 5137 ed: Springer Berlin / Heidelberg, 2008, pp. 23-43.

[266] F. Elizabeth and O. Vadim, "Web Application Scanners: Definitions and Functions," in

Proc. of 40th Annual Hawaii International Conference on System Sciences, 2007, pp.

280b-280b.

[267] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna., "Cross-Site

Scripting Prevention with Dynamic Data Tainting and Static Analysis " in Proc. of

Network and Distributed System Security Symposium, San Diego, CA, 2007.

[268] M. Abi-Antoun and J. M. Barnes, "Analyzing security architectures," in Proc. of the

IEEE/ACM international conference on Automated software engineering, Antwerp,

Belgium, 2010, pp. 3-12.

[269] A. Shostack, "Elevation of Privilege: Drawing Developers into Threat Modeling.",

URL: http://www.microsoft.com/en-us/download/details.aspx?id=20303

[270] P. K. Manadhata and J. M. Wing, "An Attack Surface Metric," IEEE Transactions on

Software Engineering, vol. 37, pp. 371-386, 2011.

[271] G. Stoneburner, C. Hayden, and A. Feringa, "Engineering Principles for Information

Technology Security (A Baseline for Achieving Security), Revision A " NIST2004.

[272] T. Levendovszky, L. Lengyel, G. Mezei, and H. Charaf, "A Systematic Approach to

Metamodeling Environments and Model Transformation Systems in VMTS,"

Electronic Notes in Theoretical Computer Science, vol. 127, pp. 65-75, 2005.

[273] T. i. Holmes, E. Mulo, U. Zdun, and S. Dustdar, "Model-Aware Monitoring of SOAs

for Compliance Service Engineering," in Service Engineering, S. Dustdar and F. Li,

Eds., ed: Springer, 2011, pp. 117-136.

[274] A. Amin, L. Grunske, and A. Colman, "An automated approach to forecasting QoS

attributes based on linear and non-linear time series modeling," in Proc. of the 27th

IEEE/ACM International Conference on Automated Software Engineering, Essen,

Germany, 2012, pp. 130-139.

[275] W. Jansen, "Directions in Security Metrics Research," NIST2009, URL:

http://csrc.nist.gov/publications/nistir/ir7564/nistir-7564_metrics-research.pdf.

http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://nvd.nist.gov/home.cfm
http://cvedetails.com/
http://www.microsoft.com/en-us/download/details.aspx?id=20303
http://csrc.nist.gov/publications/nistir/ir7564/nistir-7564_metrics-research.pdf

References

Page 292

[276] OWASP, "Monitor security metrics," URL: https://www.owasp.org/index.php/Monitor_

security_metrics, 2006

[277] R. M. Savola, "Towards a taxonomy for information security metrics," in Proc. of the

2007 ACM workshop on Quality of protection, Alexandria, Virginia, USA, 2007.

[278] I. Avazpour and J. Grundy, "CONVErT: A framework for complex model visualisation

and transformation," in 2012 IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), 2012, pp. 237-238.

[279] T. a. Vajk, G. Mezei, and T. e. Levendovszky, "An Incremental OCL Compiler for

Modelling Environments," In Electronic Communications of the EASST, vol. Volume

15: OCL Concepts and Tools., 2008.

[280] J. W. Dunhui Yu, Bo Hu, Jianxiao Liu, Liang-Jie Zhang,, "A Practical Architecture of

Cloudification of Legacy Applications," in Proc. of IEEE World Congress on Services

(SERVICES), 2011, pp. 17-24.

[281] I. developerWorks. Convert your web application to a multi-tenant SaaS solution. URL:

http://www.ibm.com/developerworks/cloud/library/cl-ultitenantsaas/index.html?ca=drs-

[282] Z. Xuesong, S. Beijun, T. Xucheng, and C. Wei, "From isolated tenancy hosted

application to multi-tenancy: Toward a systematic migration method for web

application," in Proc. of The 2010 IEEE International Conference on Software

Engineering and Service Sciences (ICSESS), 2010, pp. 209-212.

[283] N. Sakamoto, "Construction of Saas-Based e-Learning system in Japan," FUJITSU Sci.

Tech. Journal, vol. 45, pp. 290-298, 2006.

http://www.owasp.org/index.php/Monitor_security_metrics
http://www.owasp.org/index.php/Monitor_security_metrics
http://www.ibm.com/developerworks/cloud/library/cl-multitenantsaas/index.html?ca=drs-

