

Critic Specification for

Domain-Specific Visual Language Tools

Norhayati Mohd Ali

A thesis submitted in fulfilment of the requirements

for the degree of Doctor of Philosophy in Computer Science,

The University of Auckland, 2010

i

Abstract

In recent years we have observed the extensive evolution of tools and techniques

that work with the user to achieve a range of computer-mediated tasks. One of these

support techniques is the use of critics. Critics have evolved over the last few years

as specific tool features to support users in computer-mediated tasks by providing

guidelines or suggestions for improvement to designs, code and other digital

artefacts. Some critics may also facilitate semi-automatically improving a design for

the tool user. Although critics have been used widely in very diverse domains, such

as education, programming and product design tools, critic authoring continues to be

a challenge. In addition critic approaches have not been applied within meta-

modelling tools that implement domain-specific visual language (DSVL) tools.

The main research question in this research project is “Can critic specification and

implementation for domain specific visual languages be made accessible to tool end-

users?” Hence, the aim of this research is to design and develop a prototype for a

critic specification tool that allows the end user tool developers to readily express

and construct critics for a DSVL tool. The research involved several steps to attain

the research aim. The initial phase of this research has produced a taxonomy of

computer-supported critic approaches and led to the identification of key

requirements of a critic specification tool. The intermediate phase involved the

incremental development of prototypes demonstrating a proof of concept for a critic

specification tool. A notational representation and a template-based approach were

developed for the final prototype of the critic specification tool and demonstrated via

three different domains of DSVL exemplar tools. The final phase of this research

addresses the evaluation of the critic specification approach via an end user

evaluation which took into account usability aspects and the Cognitive Dimensions

framework.

This research has contributed to the development of a critic specification approach

for DSVL tools based on a notational representation and a critic authoring template-

based approach to support tool end users in specifying critics.

ii

Dedication

I dedicate this thesis to

My late father, who made this entire journey possible

My husband Akramin, son Irfan, and daughters Insyirah and Iffah

My mother, brothers and sisters

“Your love and support are the greatest gift of all”

iii

Acknowledgements

In the Name of Allah, the Most Benificient, the Most Merciful

All the praises and thanks be to Allah, with Whose blessings are completed the righteous

deeds. Peace, Blessings and Graces of Allah be upon our Prophet Muhamad (pbuh), his

family and his companions.

I would like to acknowledge some of the many persons and groups who supported me for

the past four years of my PhD study. Without them, this thesis would never have been

possible. Please accept my apologies if I fail to mention your contribution; I can assure you

that it is only an omission in writing and not in feeling.

Firstly, a special thank to my late-father who has taught me the value of a good education. I

also would like to thank my mother, brothers and sisters for their love, their kind words of

encouragement and advice. I would also like to thank my in-laws family for their

unconditional love and support during these challenging years.

I would like to thank both of my main supervisors, Prof. John Hosking and Prof. John

Grundy (Swinburne Univeristy of Technology) for their constant support and insightful

guidance over the past four years. Both of them are tremendous supervisors, and I feel

incredibly lucky to have been their student. I thank both of them, who generously offered

their precious time in helping me and cheering me when I got stuck. Working with John &

John has indeed been a great pleasure. Their guidance, patience and support during our

discussions have taught me how to enjoy researching though it is a stressful process.

Without their numerous proof reading of my rough drafts and invaluable suggestions for

rewriting, this thesis work would be far worse. I owe limitless gratitude to them. Thank you

for making my graduate research experience one of the most rewarding and defining

moments in my life. To John & John -Thanks for everything.

I would also like to acknowledge the generous financial support and assistance provided for

me by the Ministry of Higher Education (Malaysia), Universiti Putra Malaysia, and

Software Process and Product Improvement Funding (University of Auckland). I am very

grateful to the Postgraduate Research Student Support Account (University of Auckland),

CS Graduate Student Travel fund, U.S National Science Foundation grant and Build IT

travel fund for supporting my conferences travel.

iv

I want to thank my colleagues in John‟s research group, Karen, Jun, Richard, Rainbow,

Chris, Masila, Su, Farid, Emily, James, Brian and Rick for listening and discussing my

research progress. A special thank to Jun who helped me a lot in the coding task and to

Karen who proof read my draft and always have a time when I need her to discuss about

my research work. I am very greatful to the group members for participating in the tool‟s

evaluation.

I would like to thank the Computer Science Department staff for helping me when I need

their assistance. I would like to thank Robyn, Sithra, Anita, Heather, Keith, Pan, Lei and

many others. Thank you for everything.

I would also like to thank Dr. Susan and her colleagues from the Student Learning Centre

for handling the doctoral skills programme which I found it very helpful for my research

study. I am very grateful to the Doctoral EAL support group that helps me with my thesis

writing.

In general, I would like to thank all my friends around the world who endlessly encouraged

and supported me throughtout these years. A huge thanks to Sarah and Eyad for all the helps

they offered to my family. Thank you for everything. A special thanks to Muhammad and

Mehwish for helping me with the thesis formatting work. I would also like to thank Zakiah,

Ema, Zaidah, Dila, and all MAPSA members for helping and supporting me in whatever

occasions. Thank you all for the friendship that made my life enjoyable.

Last, but certainly not least, I want to thank my lovely and wonderful husband, Zainul

Akramin for his love, support, encouragement, understanding and patience throughout these

years. I will never be able to thank him enough for that. I will not even be able to express

my gratitude to and love for him. I would also like to thank my son, Irfan, my daughters,

Insyirah and Iffah for their love and patience. They are indispensable for me to accomplish

this work. I could never have enough words to thank my family for what they did for me.

v

Table of Contents

Abstract………………………………………………………………………………i

Dedication……………………………………………………………………………ii

Acknowledgement…………………………………………………..………………iii

List of Figures……………………………………………………………………….xi

List of Tables……………………………………………………………………….xv

Chapter 1. Introduction……………………………………………….…………..….1

1.1 Research Background ... 1

1.2 Research Motivation ... 3

1.3 Research Questions ... 4

1.4 Research Objectives .. 5

1.5 Research Methodology ... 6

1.6 Research Contributions ... 6

1.7 Thesis Organization ... 8

Chapter 2. Related Research..12

2.1 Introduction .. 12

2.2 Critic as a Supporting Tool .. 12

2.2.1 Critics in Information Systems ... 13

2.2.2 Critics in Software Engineering .. 16

2.2.3 Critics in Education Environment .. 19

2.2.4 Critics in Recommender Systems ... 21

2.2.5 Benefits from Critics Application ... 23

2.3 Constraint Specification in a Meta-Modelling Tool .. 27

2.3.1 MetaEdit+ ... 30

2.3.2 Pounamu ... 32

2.3.3 Marama ... 33

vi

2.3.4 DECS .. 35

2.4 Discussion and Conclusion .. 36

Chapter 3. Research Methodology...38

3.1 Introduction ... 38

3.2 Methodology .. 39

3.2.1 Literature Review of Critic Tools ... 39

3.2.2 Identify a Set of Requirements for Our Critic Specification Tool 39

3.2.3 Develop Prototype to Explore Issues in Designing Critic Specification Tool

 ... 40

3.2.4 Identify a Set of Building Blocks Needed for a Critic Specification Tool ... 42

3.2.5 Proof of concept for the critic specification approach 42

3.2.6 Perform user evaluation of our critic specification approach 42

3.2.7 Draw conclusions from our survey, design, prototyping and evaluation work

 ... 43

3.3 Conclusions.. 43

Chapter 4. A Critic Taxonomy...44

4.1 What is Taxonomy? .. 44

4.2 Critic Definitions and Examples ... 45

4.3 A Critic Taxonomy ... 47

4.3.1 Critic Domain .. 49

4.3.2 Critiquing Approach ... 50

4.3.3 Modes of Critic Feedback ... 53

4.3.4 Critic‟s Rule Authoring .. 54

4.3.5 Critic Realisation Approach ... 56

4.3.6 Critic Dimension ... 61

4.3.7 Types of Critic Feedback .. 63

4.3.8 Critic Types .. 66

vii

4.4 Applying the Taxonomy .. 67

4.4.1 ArgoUML (Robbins and Redmiles, 2000) ... 67

4.4.2 ABCDE-Critic (de Souza et al., 2000) ... 69

4.4.3 IDEA (Bergenti & Poggi, 2000) ... 71

4.4.4 RevJava (Florijn, 2002) .. 73

4.4.5 DAISY (de Souza et al., 2003) ... 75

4.4.6 Java Critiquer (Qiu and Riesbeck, 2003) .. 77

4.4.7 Design Evaluator (Oh et al., 2004) ... 79

4.4.8 ClassCompass (Coelho & Murphy, 2007) .. 80

4.4.9 FFDC (Oh et al., 2009) ... 83

4.4.10 HeRA (Knauss et al., 2009) .. 85

4.4.11 Summaries of Comparison ... 86

4.5 Conclusion ... 95

Chapter 5. A Visual and Template-based Approach for Critic Specification............97

5.1 Introduction ... 97

5.2 Visual Specification Approach .. 97

5.2.1 Visual Notations Used by the Critic Specification Editor 101

5.3 Template-Based Approach .. 104

5.3.1 Introduction to Business Rule Templates ... 106

5.3.2 Critic Authoring Templates .. 109

5.4 Visual and Template-based Critic Specification for DSVL tools 112

5.5 Analysis of Critic Specification Tool using Physics of Notations 113

5.6 Conclusion ... 122

Chapter 6. Initial Prototype for Critic Specification..123

6.1 Introduction ... 123

6.2 Initial Prototype: Specifying Critic in a Marama Metamodel Definer views

 124

viii

6.2.1 Background and Motivation ... 124

6.2.2 Approach ... 128

6.2.3 Initial Critic Authoring Template ... 130

6.2.4 Implementation ... 131

6.2.5 Example Usage ... 134

6.2.6 Preliminary Results for the Initial Prototype .. 139

6.4 Conclusion ... 141

Chapter 7. Final Prototype for Critic Specification...142

7.1 Background and Motivation ... 142

7.2 Final Prototype: the Marama Critic Definer Editor ... 144

7.2.1 Approach ... 144

7.2.2 Visual Critic Definer Editor.. 145

7.2.2.1 CriticShape with Extended Critic Authoring Templates 147

7.2.2.2 Critic Feedback Specification .. 149

7.2.2.3 Critic dependency, Operator shape, Operator and

OperatorCriticFeedback connectors .. 152

7.2.2.4 Simple and Complex Critics .. 153

7.2.2.5 Critic Template Editor ... 156

7.2.2.6 Critic Authoring Guideline .. 158

7.2.2.6 Critic and Feedback Repository ... 162

7.3 Summary of the Implementation ... 162

7.4 Conclusion ... 164

Chapter 8. Case Studies...165

8.1 Introduction ... 165

8.2 Case Study I: A Visual Care Plan Modelling Language (VCPML) Tool 166

8.2.1 Case Study Description... 166

8.2.2 Example Usage ... 168

ix

8.3 Case Study II: A Simplified Marama EML Tool .. 174

8.3.1 Case Study Description... 175

8.3.2 Example Usage ... 177

8.4 Case Study III: MaramaUML Tool ... 181

8.4.1 Case Study Description... 181

8.4.2 Example Usage ... 184

8.5 Discussions and Conclusions ... 190

Chapter 9. Evaluation...193

9.1 Introduction ... 193

9.2 Cognitive Dimensions of Notations framework (CDs) 195

9.3 The Four Criteria to Evaluate Usability... 196

9.4 Design of the Survey ... 198

9.4.1 The Observation Design ... 198

9.4.2 The Questionnaire Design .. 199

9.4.3 Survey Method .. 200

9.5 Survey Result and Analysis ... 201

9.5.1 Analysis of Task List and Observation ... 201

9.5.2 Analysis of Questionnaire Responses ... 205

9.7 Conclusion ... 212

Chapter 10. Conclusions and Future Work..214

10.1 Research Summary ... 214

10.2 Research Contributions .. 219

10.3 Future Work ... 220

10.4 Summary .. 221

Appendix A – Participation Information Sheet (Head of Department)...................222

Appendix B – Participation Information Sheet (Student)..224

Appendix C – Consent Form (Head of Department)...226

x

Appendix D – Consent Form (Student)...227

Appendix E - Survey : Evaluation of Template-based

Critic Authoring for Domain Specific Visual Language Tools...............................229

References...236

xi

List of Figures

Figure 2.1: Screen shot of an expert critiquing system .. 14

Figure 2.2: Example of DSS that employed critics .. 15

Figure 2.4; Example of recommender system .. 22

Figure 2.5 Example of group recommender system ... 23

Figure 2.6: Examples of constraints expressed in OCL ... 29

Figure 2.7: Constraint expression using OCL expression .. 30

Figure 2.8: MetaEdit+ architecture ... 31

Figure 2.9: Constraints definer editor and Graph constraints tool 31

Figure 2.10 Structure of Pounamu specification ... 32

Figure 2.11: Example of code-based event handler for model constraints 33

Figure 2.12: Constraint specification via MaramaTatau using OCL formula 34

Figure 2.13 Architecture of DECS .. 36

Figure 3.1: Prototype development for critic specification tool 41

Figure 4.1: Our critic taxonomy. ... 48

Figure 4.2: Critic rule using pattern-matching approach 58

Figure 4.3: Rules for architectural floor plans using predicate style 59

Figure 4.4: Critics written in OCL expressions 60

Figure 4.5: The ArgoUML user interface. ... 67

Figure 4.6: The mapping of the ArgoUML tool to the critic taxonomy 69

Figure 4.7: The mapping of the ABCDE-Critic tool to the critic taxonomy 71

Figure 4.8: The mapping of the IDEA tool to the critic taxonomy 73

Figure 4.9: RevJava Critics ... 74

Figure 4.10: The mapping of the RevJava tool to the critic taxonomy. 75

Figure 4.11: The mapping of the DAISY tool to the critic taxonomy. 76

Figure 4.12: Java Critiquer interface 78

Figure 4.13: The mapping of the Java Critiquer tool to the critic taxonomy. 78

Figure 4.14: The mapping of the Design Evaluator tool to the critic taxonomy. 80

Figure 4.15: ClassCompass user interface 82

Figure 4.16: The mapping of the ClassCompass tool to the critic taxonomy. 82

Figure 4.17: The mapping of the FFDC tool to the critic taxonomy. 84

xii

Figure 4.18: The mapping of the HeRA tool to the critic taxonomy. 86

Figure 5.1: Visual notations of the visual critic specification editor: 102

Figure 5.2: Meta-model defined for a critic specification tool 103

Figure 5.3: Icons for the critic specification editor .. 104

Figure 5.4: A form-based interface to represent the critic authoring templates 112

Figure 5.5: The mapping between (a) metamodel of the visual critic definer and (b)

graphical symbols. ... 115

Figure 5.6: Element types in the visual critic specification editor 116

Figure 5.7: Critic specification diagram .. 118

Figure 5.8: Integration between critic definer view and critic construction editor, and

integration between critic construction editor and meta elements. 119

Figure 5.9: Textual encoding ... 120

Figure 6.1: UML class diagramming tool metamodel ... 124

Figure 6.2: Simple critic (same named classes) violation in MaramaTatau 125

Figure 6.3: Simple critic (class with no name) violation in MaramaTatau 126

Figure 6.4: Critic development approach .. 128

Figure 6.5: Critics specified in the meta-model definer editor 129

Figure 6.6: New function added in the Marama meta-model editor. 131

Figure 6.7: CriticShape (orange colour) linked with a critic authoring template. ... 132

Figure 6.8: Critics store in critictypes folder. .. 133

Figure 6.9: Architecture of critic processing ... 134

Figure 6.10: MaramaMTE metamodel definer view ... 134

Figure 6.11: Visual CriticShape function associate with the critic authoring

templates. ... 136

Figure 6.12: Critics for MaramaMTE are stored in critictypes folder 137

Figure 6.13: Critic statement: remote object must have a unique name. Attribute

Constraint template: <entity>must have|may have [unique] <attributeTerm> 138

Figure 6.14: Critic statement: remote object must have many services. Relationship

constraint template: <entity1> must have | may have [<cardinality>]<entity2> 138

Figure 7.2: A new specification tool, Marama Critic Definer 145

Figure 7.3: A visual critic definer editor: (a) Initial notation, (b) Improved notation

 ... 146

xiii

Figure 7.4: CriticShape (top) associated with Critic Construction View interface

(bottom) ... 149

Figure 7.5: CriticFeedbackShape associated with Critic feedback view interface. . 150

Figure 7.6: An example of passive critic ... 151

Figure 7.7: A CriticFeedbackConn connector links the critic and feedback. 152

Figure 7.8: A CriticDependencyLink connects two critics 152

Figure 7.9: Examples of unit/ simple critics .. 153

Figure 7.10: Critics specified in the critic definer editor (bottom) based on the meta-

model of SimplifiedMaramaEML tool defined in the meta-model editor (top) 155

Figure 7.11: A critic specified using an action assertion template. 156

Figure 7.12: A new critic template created in the Critic Template editor. 157

Figure 7.13: A guideline for the critic authoring template style. 158

Figure 7.14: Critic (critictypes folder) and feedback (feedbacktypes) repository

browser. ... 162

Figure 7.15: Architecture view of the Marama meta-tools and the extension of

Marama Critic Definer view .. 163

Figure 8.1: The VCPML meta model .. 168

Figure 8.2: An example of the VCPML model ... 168

Figure 8.3: A CriticFeedbackConn connector links the critic and feedback. 170

Figure 8.4: A uniqueness name critic via the attribute constraint template 170

Figure 8.5: A critic on cardinality constraint using the relationship constraint

template. ... 171

Figure 8.6: Critic feedback for the uniqueness name critic 172

Figure 8.7: A critique message is displayed when a uniqueness name critic is

violated .. 173

Figure 8.8: A critic feedback with a brief explanation and suggestion 173

Figure 8.9: The fix action for the uniqueness name critic. 173

Figure 8.10: Meta model for the simplified MaramaEML 175

Figure 8.11: University enrollment service model using a simplified MaramaEML

(modified from (Li, et al., 2007b) .. 177

Figure 8.12: Critics specified in the critic definer editor based on the meta-model of

SimplifiedMaramaEML tool. .. 178

xiv

Figure 8.13: A critic specified using an action assertion template. 179

Figure 8.14: Action assertion critic execution after the trigger event occurs: a

critique is displayed to warn the user .. 179

Figure 8.15: Feedback of a complex critic using the logical operator OR (top) and

fix action for this critic (bottom). .. 180

Figure 8.15: Metamodel for MaramaUML tool. ... 182

Figure 8.16: Class diagram example (left) and Collaboration diagram example

(right) ... 182

Figure 8.17: Graphical representation of a consistency rule between collaboration

diagram (bottom) and class diagram (top) ... 185

Figure 8.18: A new critic template created in the Critic Template editor. 187

Figure 8.19: New critic authoring template:

<entity1><attributeTerm><relationalOperator><entity2><attributeTerm1> (bottom

critic) .. 187

Figure 8.20 A critique is displayed when a consistency critic rule is violated. 188

Figure 8.21: A critic feedback displays a brief explanation and suggestion. 188

Figure 8.22: A fix action to resolve the consistency critic rule 189

Figure 9.2: Usability responses. ... 207

Figure 9.3: CD questionnaire responses. ... 208

xv

List of Tables

Table 4.1: Critic definitions. .. 46

Table 4.2: Examples of critic tools and their application domain. 46

Table 4.3: Critics applied to various domains. .. 49

Table 4.5: Critic dimensions. ... 61

Table 4.6: Critic types .. 66

Table 5.1: Definition of constraint, action assertion and derivation 107

Table 5.2: Business rule templates .. 108

Table 5.3. Critic Authoring Templates-constraint and action assertion templates. . 111

Table 5.4: Association of critic template properties with the tool meta-model 111

Table 5.5: Association of metamodel elements and graphical symbol 114

Table 6.1. Critic statement and OCL expression ... 125

Table 6.2: Attribute and relationship constraint templates 130

Table 6.3: Association of tool meta-model with the critic phrase type 130

Table 6.4: Lists of critic statements and critic authoring templates for MaramaMTE.

 ... 135

Table 7.1: Critic Authoring Template ... 148

Table 8.1: Attribute and relationship constraint templates. 169

Table 8.2: Examples of critics and feedbacks for VCPML tool 169

Table 8.3: Basic rules of EML tree structure (adopted from (Li, 2010)) 176

Table 8.4: Action assertion template ... 178

Table 8.5. Attribute constraint template .. 180

Table 9.1: The meaning of each dimensions (Blackwell, et al., 2001) 196

Table 9.2: Section 1- Background information ... 205

Table 9.3: Usability responses ... 207

Table 9.4: Cognitive dimension responses .. 208

Table 9.5: Participants‟ Comment ... 212

Table A: Critic Domain...87

Table B: Critic approach..88

Table C: Modes of critic feedback...89

xvi

Table D: Critic rules authoring..90

Table E: Critic's realisation approach..91

Table F: Critic dimensions...92

Table G: Types of critic feedback..93

Table H: Types of critics..94

1

Chapter 1

Introduction

This chapter presents an overview of the research in this thesis. It describes the

background of the research area and introduces the motivation for this research. The

research questions for this research are summarised as well as the research

objectives. Our methodology to perform this research is outlined, followed by our

expected research contributions. Finally we end this chapter with the outline of our

thesis structure.

1.1 Research Background

In recent years we have observed the extensive evolution of tools and techniques

that work with the user to achieve a range of computer-mediated tasks. One of these

support techniques is the use of critics. The term “critic” was initially used by Miller

(1986) to describe a software program that critiques human-generated solutions.

Critics have evolved in the last several years as specific tool features to support

users in computer-mediated tasks by providing guidelines or suggestions for

improvement to designs, code and other digital artefacts.

The concept of a critic is one that has been adopted in various domains, including

medical systems (Gertner & Webber, 1998; Miller, 1986), programming (Fischer,

1987; Florijn, 2002), design (Fischer, Lemke, & Mastaglio, 1991; Oh, Do, & Gross,

2004), education (Coelho & Murphy, 2007; Qiu & Riesbeck, 2004), expert systems

(Hagglund, 1993; Silverman, 1992), and decision support systems (Gertner &

Webber, 1998; Irandoust, 2006). Research work and efforts from (Fischer, 1987,

1989; Fischer, Lemke, & Mastaglio, 1991; Fischer, Lemke, Mastaglio, & Morch,

1991; Fischer & Mastaglio, 1990; Miller, 1986; Silverman, 1992; Silverman &

Mehzer, 1992) and others have created a wider audience on the use of a critic-based

approach. Furthermore, many studies have found evidence that critiquing tools are

an efficient feedback-providing mechanism. These tools offer several benefits

2

including a proactive design improvement, early error detection, and heuristic-based

guidance and context-sensitive feedback.

As a simple example consider a software designer manipulating a design artefact in

an editing tool. The tool‟s critics analyze the design artefact as it changes and reveal

to the designer some potential problems/errors with the design artefacts e.g. wrong

naming convention, over-complex design relationships, and potential misuse of

design domain concepts. The critic tool will offer feedback, or “critique” the design,

usually proactively as the design evolves. The tool may also suggest alternative

design decisions to the designer to resolve potential problems. The interaction

between designer and critic tool is iterative until the designer is satisfied with the

design artefacts. Typically critic feedback is kept “unobtrusive” to the designer so as

not to overly interfere with the design process.

One of the most significant examples of a critic tool in the software engineering

domain is ArgoUML (Robbins & Redmiles, 2000) an open source Unified Modeling

Language (UML) CASE tool that supports the editing of UML notation diagrams.

Its critics offer suggestions to designers when a software architecture diagram

violates various UML rules (Robbins & Redmiles, 2000). The LISP-Critic (Fischer,

1987), Argo (Robbins & Redmiles, 1998), ABCDE-Critic (Bergenti & Poggi, 2000;

de Souza, Jr., & Goncalves, 2000), IDEA (Bergenti & Poggi, 2000) and RevJava

(Florijn, 2002), are further examples of critic-based tools in the software design

domain. These tools were developed for the domains of LISP programming,

software architecture, object-oriented analysis and design, design patterns and Java

object-oriented software respectively. Oh et al. (Oh, Gross, & Do, 2008) point out

that most rules for critic tools are written in advance and that their customisation is

not easy.

Extending the use of critics into meta-tool environments that implement domain-

specific visual language (DSVL) tools and targeting to support end user tool

developers makes it possible to improve critic specification in DSVL tools.

3

1.2 Research Motivation

While many studies have reported that critic tools provide an efficient mechanism

for feedback, critic authoring continues to be a challenge i.e. allowing end user tool

developers to customise critic rules. There are various approaches (e.g. rule-based,

knowledge-based, code and predicate logic) that can be applied for specifying

critics, however these approaches are mostly used by skilled developers. A few of

the critic tools (e.g. ArgoUML (Robbins & Redmiles, 2000), ABCDE-Critic (de

Souza, et al., 2000) and IDEA (Bergenti & Poggi, 2000)) allow for critic

customisation but the process of authoring or customising the critics is not easy. The

users have to understand both the tool domain and the critic approach used before

designing and realising critics.

In addition, the use of the critic concept had not to date been applied within meta-

modelling tools that implement DSVL tools. The application of a critic approach is

mostly discussed in application domains as stated in above section. Meta-modelling-

based DSVL specification tools often employ a constraint definition/specification

approach (e.g. MetaEdit+ (Kelly, Lyytinen, & Rossi, 1996), Pounamu (Zhu et al.,

2007), and Marama (Grundy, Hosking, Huh, & Li, 2008)). The process of specifying

constraints for meta-modelling tools is more complex as it requires good knowledge

in programming skills, it uses formal approach and it involves deep cognitive load.

This makes it hard for non-skilled users to understand and use the constraint

approach.

Inspired by the existing critic tools work, we have made an attempt to apply similar

ideas to our meta-modelling tools i.e. Marama (Grundy, et al., 2008). Marama is a

meta-tool implemented as set of Eclipse-plugins and includes meta-tools as well as

modelling tools (Grundy, et al., 2008). Our meta-tools are used to generate complex

visual modelling tools, and these modelling tools could benefit from the addition of

various critics. Thus, we wanted to extend our Marama meta-tools by embedding a

critic specification component. Furthermore, we wanted to assist end-user tool

developers to specify and generate critics efficiently and easily for DSVL tools.

4

The overall motivation of our research is to be able to provide a critic specification

approach that is accessible to end user tool developers for specifying critics for

DSVL tools. The focus of this research has led to the design and development of a

notational representation and a critic authoring template-based approach for critic

specification approach for DSVL tools.

1.3 Research Questions

The main research question in this research in relation to our research motivation

can be framed as:

“Can critic specification and implementation for domain specific visual

languages be made accessible to end-user tool developers?”

To be able to tackle this question, we divide it into smaller research questions that

enable us to identify possible solutions:

 Can a notation for critic specification be designed that is accessible? This

question aims to address the main topic of our research, so that by reviewing

existing critic approaches, it is possible to understand key critic elements and

how these elements can be supported in designing a notation for our critic

specification tool. In addition, the designed notation for critic specification

should be accessible to end-user tool developers. To answer this question, we

reviewed related research on critics, adapted business rule templates and

used a visual notation-based approach. This question is addressed in Chapter

FOUR (Critic Taxonomy) and Chapter FIVE (A Visual and Template-Based

Approach for Critic Specification).

 Can such a notation be realised as a tool? To answer this question, we

developed a prototype critic specification tool and used an iterative-

incremental approach to allow improvement in the prototype. This question

is addressed in Chapter THREE (Research Methodology), Chapter SIX

(Initial Prototype for Critic Specification Tool) and Chapter SEVEN (Final

Prototype for Critic Specification Tool).

 How can such a tool be integrated with existing tools for domain-specific

visual language design and implementation? This question is to be answered

5

through a proof-of-concept system that identifies technical dependencies

among the tool components. This question is addressed in Chapter SIX

(Initial Prototype for Critic Specification Tool), Chapter SEVEN (Final

Prototype for Critic Specification Tool) and Chapter EIGHT (Case Studies).

 How can such an integrated tool set be evaluated? To answer this question,

we designed a survey to perform an end-user evaluation for the critic

specification tool. We gained ethics approval from the University of

Auckland Human Participants Ethics Committee before conducting an end-

user evaluation for the developed critic specification tool with several target

end users. This question is addressed in Chapter NINE (Evaluation).

In short, to answer these research questions, we adopted a visual language and

template-based approach as our notation for the design and implementation of a

critic specification tool to be accessible by end-user tool developers. We measured

the accessibility issue by performing an end-user evaluation to assess whether our

critic specification approach supports end-user tool developers in the critic-

specification task.

1.4 Research Objectives

The main objective of our research is to provide a critic specification capability that

allows the end-user tool developers to specify and generate critics for domain-

specific visual language tools effectively and easily. In particular, the research aims:

1. To review existing critic approaches used for critic specification and

implementation. These would assist us in identifying key critic elements and

to recognise techniques or methods applied in critics.

2. To design and develop a simple critic specification approach that is

accessible to end-user tool developers.

3. To embed the critic specification approach within a meta-tool environment

that implements domain-specific visual language tools.

4. To provide proof concept of the critic specification approach by applying it

to three different domains of DSVL exemplar tools.

6

5. To assess how well the critic specification approach supports the end-user

tool developer by performing an end-user evaluation.

1.5 Research Methodology

Our approach to responding to our research question and achieving our objectives

was based on the following methodology:

 We conducted a literature review of critic tools, comparing and analysing

their approaches for critic specification and implementation;

 We then identified a set of key requirements for a critic specification tool for

domain-specific visual language tools;

 We developed a prototype to explore the problems and issues in designing a

critic specification tool. We applied an iterative-incremental approach that

supports refinement and improvement for our prototype development;

 We identified from our prototyping experience a core set of building blocks

required for a generic critic specification editor and design notation;

 We proved our concept of a visual critic specification approach by applying

it to three different domains of DSVL exemplar tools: health care planning

domain, business process domain and UML design domain;

 We performed an end-user evaluation of our critic specification approach to

assess its usability and effectiveness;

 Finally, we derived conclusions from our review, design, prototyping and

evaluation work. These are discussed in the final chapter of this thesis i.e.

Chapter TEN.

1.6 Research Contributions

The research discussed in this thesis contributes to the field of software engineering

particularly in the area of critic tools and critiquing systems development. Main

contributions from this research are as follows:

1. This research provides a taxonomy of critics that can assist other

users/designers or developers in obtaining relevant information about

7

critics. Our critic taxonomy identified eight groups: critic domain,

critiquing approach, modes of critic feedback, critic rule authoring, critic

realisation approach, critic dimension, types of critic feedback, and types of

critic. We believe that our critic taxonomy will be useful to critic

developers in providing a meaningful way of describing and reasoning

about critics. A conference paper describing this taxonomy and titled “A

Taxonomy of Computer-supported Critics” was published in Proceedings

of the 2010 IEEE International Symposium on Information Technology.

2. This research invented a visual way of expressing and constructing critics

for domain-specific visual language (DSVL) tools. Notational

representation of critic authoring facilities is offered to end-user designers

to express critics for their DSVL tools. Furthermore, this research provides

a space for end-user tool developers who want to express critics for their

specific tool without the need to have a comprehensive technical

knowledge on expressing and constructing critics. A conference paper titled

“A Generic Visual Critic Authoring Tool” presented our research proposal

in Proceedings of the 2007 IEEE Symposium on Visual Languages and

Human-Centric Computing. Papers supporting this work were co-authored

and these include:

 A conference paper titled “Critic Authoring Templates for

Specifying Domain-Specific Visual Language Tool Critics”, which

was published in Proceedings of the 20
th

 Australian Software

Engineering Conference, 2009.

 A conference paper titled “Template-based Critic Authoring for

Domain-Specific Visual Language Tools”, which was published in

Proceedings of the 2009 IEEE Symposium on Visual Languages

and Human-Centric Computing.

3. This research invented a template-based critic authoring approach which is

much easier and quicker to author critics compared to other approaches for

designing and realising the critics. An end-user tool developer uses the

8

critic authoring template to generate critic rule templates. The critic rule

templates (CR) adapt the business rule (BR) templates which are currently

applied in the business process domain. We attempt to apply the critic rule

templates in the software tool domain. By using the critic authoring

templates, it is fairly easy for end-user tool developers to introduce new

critic templates or modify existing critics in the tool. Papers supporting this

work were co-authored and these include:

 A conference paper titled “Critic Authoring Templates for

Specifying Domain-Specific Visual Language Tool Critics”, which

was published in Proceedings of the 20
th

 Australian Software

Engineering Conference, 2009.

 A conference paper titled “Template-based Critic Authoring for

Domain-Specific Visual Language Tools”, which was published in

Proceedings of the 2009 IEEE Symposium on Visual Languages

and Human-Centric Computing.

4. This research developed a prototype of a visual critic authoring tool which

was embedded in the existing Marama meta-tool; which acts as a proof-of-

concept of our approach. We evaluated the prototype using an end user

study conforming to the Cognitive Dimensions (CD) approach (Green &

Blackwell, 1998) and Physics of Notations (PON) principles (Moody,

2008). A conference paper describing this approach titled “End-User

Oriented Critic Specification for Domain-Specific Visual Language Tool”,

will appear in Proceedings of the 25
th

 IEEE/ACM International Conference

on Automated Software Engineering, 2010.

1.7 Thesis Organization

The following chapters are organized as:

Chapter 2: Related Research

 This chapter discusses key related research on critic tools (or critiquing

systems) and several meta-modelling tools that have constraint evaluation for

9

static semantic conformance. Review of these research areas has made it

feasible to develop a generic critic specification editor for domain-specific

visual language tools. This chapter also led us to develop the critic taxonomy

described in Chapter 4.

Chapter 3: Research Methodology

 This chapter describes our approach to designing and prototyping a critic

specification tool for domain-specific visual language tools.

Chapter 4: Critic Taxonomy

 This chapter describes a new taxonomy for computer-supported critics. We

start with an introduction of what is a taxonomy and then explain the concept

of a computer-supported critic. We then present our surveyed literature

information in terms of our new critic taxonomy. We also describe each of

the elements in the taxonomy using various examples from the surveyed

literature on critics. We then apply the taxonomy to characterise several

exemplar critic tools.

Chapter 5: A Visual and Template-Based Approach for Critic Specification

 This chapter explains our visual and template-based approach for the critic-

authoring task of a domain-specific visual language (DSVL) tool. This

chapter begins by introducing the concepts and approaches used for our critic

specification research. We introduce the visualization concept followed by

the visual notations designed for our critic specification tool. Then we

describe the template-based approach, followed by the business rule

templates and critic templates. We also explain the concept of authoring and

the approach of template-based authoring for critics. In the last section, we

present an analysis of the design of our critic specification editor using

Moody‟s Physics of Notations principles (Moody, 2008).

Chapter 6: Initial Prototype for Critic Specification Tool

 This chapter introduces and explains the development steps of the visual and

template-based approach for our critic specification tool. We explain our first

10

attempt to employ MaramaTatau (N. Liu, Hosking, & Grundy, 2007) in

specifying critics for Marama-based tools which became our motivation to

develop another prototype for the critic specification tool. We then describe

the second prototype, which specifies critics in the meta-model editor using a

similar visual approach to MaramaTatau however tailored to the critic

specification rather than the constraints domain.

Chapter 7: Final Prototype for Critic Specification Tool

 This chapter describes our third prototype for our critic specification tool.

We describe the improvements that we made on the previous prototype that

we have developed for the critic specification tool as a proof-of-concept of

our critic specification approach.

Chapter 8: Case Studies

 This chapter describes three case studies that we used to demonstrate and

evaluate the utility of the critic specification editor for Marama DSVL tools.

We begin by introducing and describing the first case study - Marama

VCPM that explains the use of constraint templates provided by our critic

specification editor. We then describe the second case study - MaramaEML

that demonstrates the action assertion templates of our critic specification

editor. We then describe our third case study - MaramaUML that illustrates

the customizing of a critic authoring template via our critic template editor.

The chapter ends with some conclusions based on the results from these case

studies.

Chapter 9: Evaluation

 This chapter presents the evaluation of our final critic specification prototype

for domain-specific visual language tools. We begin by introducing the

concepts of evaluations and usability evaluations. Then we introduce the

Cognitive Dimensions of Notations framework (CDs) and describe the

criteria to evaluate a tool‟s usability. We then explain the design/method of

our survey carried out to assess whether the visual and template-based critic

11

authoring tool effectively supports end-user developers in specifying critics

for DSVL tools. We analyse the survey results and present our findings.

Chapter 10: Conclusions and Future Work

 This chapter concludes this thesis. It discusses the overall research results

and limitations of the research. This chapter also suggests some future work

that can be performed to extend this body of research work.

12

Chapter 2

Related Research

This chapter discusses key related research on critic tools (or critiquing systems) and

several meta-modelling tools that have constraint evaluation for static semantic

conformance. The review of these research areas has made it feasible to develop a

generic critic specification editor for domain-specific visual language tools. This

chapter also leads us to develop the critic taxonomy which is described in Chapter

FOUR.

2.1 Introduction

The value of having integrated support tools (e.g. ArgoUML, Rational Rose, Visible

Analyst) to assist developers in software development activities has received

significant attention. Some of these integrated support tools have components in the

form of critics, recommenders, or constraint evaluation facilities that can support

the developers while performing their software development tasks. Many

researchers have investigated and developed these support tools. This chapter

however, is focused on reviewing the research concerning the evaluations of critics

and constraints which is explained in the following sections.

2.2 Critic as a Supporting Tool

The term “critic” was initially used by Miller (1986) to describe a software program

that critiques human-generated solutions (Miller, 1986). A considerable amount of

literature has been published on critic tools, also known as critiquing systems.

Motivations from many efforts such as Miller‟s work (1986), Fischer‟s endeavour

(1987, 1989-1991), Silverman‟s study (1992) and others have attracted a wider

audience on critic-based approaches. Critic tools/systems have been recognized as

an essential support tool in a range of domains. The types of support offered by

these critic tools are certainly in various ways. The following sections discuss the

13

purpose and support provided by the critic tools in diverse

domains/systems/environments.

2.2.1 Critics in Information Systems

The critic concept or critic-based approach was initially introduced in Information

Systems (IS) mainly in the medical domain from the work by (Miller, 1986). Critics

are widely used in expert systems, decision support systems, knowledge-based

systems and other IS applications. We explain a few of these applications below.

According to Silverman and Mehzer (1992) expert critiquing systems are “a class of

program that receive as input the statement of the problem and the user-proposed

solution. They produce as output a critique of the user‟s judgement and knowledge

in terms of what the program thinks is wrong with the user-proposed solution.” In

addition, Silverman (1992) reports an illustrative survey on the development of

expert critiquing systems. The survey paper (Silverman, 1992) illustrates several

applications that were developed using the expert critiquing approach (e.g.,

ONCONCIN, ATTENDING, CRITTER, COPE). In 1993, Hägglund published a

paper that introduces the approach of expert critiquing systems. Hägglund (1993)

explains several characteristics that apply to expert critiquing systems and also

distinguishes the use of critics and critiquing based on the work from Fickas (1988),

Fischer (1993) and Rankin (1993). Critics functioned as a mechanism for reasoning

and problem solving, whereas critiquing as a way of offering non-intrusive

recommendations to a user and also as the basis for providing arguments and

explanations in an effective way (Hagglund, 1993). An example of an expert

critiquing system was illustrated by Mehzer et al (1998) in a decision making

problem that was implemented in an automated environment as shown in Figure 2.1.

The application of expert critiquing systems in decision making problems can reduce

human errors (Mehzer, Abdul-Malak, & Maarouf, 1998; Silverman & Mehzer,

1992).

14

Figure 2.1: Screen shot of an expert critiquing system (Mehzer, et al., 1998).

While critics have been used in expert system applications which are known as

expert critiquing systems, they have also been applied in several decision support

systems (DSS). For instance, Gertner and Webber (1998) developed an online

decision support system for trauma management, TraumaTIQ. TraumaTIQ can help

a physician with treatment planning. It interprets the goal of the physician‟s

treatment plan, evaluates the inferred plan structure by comparing it with the

system‟s recommended treatment plan, and finally generates a critique that

addresses the potential problem (Gertner & Webber, 1998). Vahidov and Elrod

(1999) introduce a framework for an active DSS based on critiques and

argumentations (Vahidov & Elrod, 1999). They describe the use of positive („angel‟)

and negative („devil‟) critiquing agents in a DSS to allow active participations in

decision making processes. Figure 2.2 shows an example of the critiquing DSS from

an investment problem (Vahidov & Elrod, 1999).

15

Figure 2.2: Example of DSS that employed critics (Vahidov & Elrod, 1999)

Irandoust (2006) published a technical report that discusses the critiquing systems

for decision support (Irandoust, 2006). The objective of the report was to explain

critiquing systems and discusses their details as decision support tools (Irandoust,

2006). In fact we used the Irandoust (2006) report as our basis in creating our critic

taxonomy which is explained in Chapter FOUR.

Critics are also employed in knowledge-based systems. Furthermore a conceptual

framework for knowledge-based critic systems has been established by (Fischer &

Mastaglio, 1990) with the aims to support the collaboration between a computer and

a user and to improve problem solving and learning by users. In 1990, Lemke and

Fischer have published an article that describes FRAMER, a knowledge-based

system for windows user interface design using high-level constructs. The purpose

of FRAMER is to ease the knowledge required to design (Lemke & Fischer, 1990)

and help less skilled designers in applying a high-level abstraction-program

frameworks (Fischer, Lemke, Mastaglio, et al., 1991; Lemke & Fischer, 1990).

Critics are a formal knowledge source in FRAMER. Lemke and Fischer (1990)

claim that FRAMER offered mandatory and optional critiques. Mandatory critiques

reflect the system requirements which must be fulfilled for the construction of a

program framework. Optional critiques suggest typical design choices which

16

designers can ignore if necessary (Lemke & Fischer, 1990). In addition, designers

can browse the explanation repository for explanations about the critiques. The

descriptions of FRAMER can be found in (Lemke & Fischer, 1990), (Fischer,

Lemke, Mastaglio, et al., 1991) and (Fischer, Lemke, & Mastaglio, 1991).

In the research by Liu et al (1995), they illustrated a knowledge-based engineering

design system that adopted critics. The system offers a set of critics: expertise

completion, correctness and consistency checking, and alternative solution critics

(H. Liu, Rowles, & Wen, 1995). The critic system is basically to assist the

knowledge engineers in acquiring sufficient knowledge for building a desired

system and employing appropriate knowledge to generating designs (H. Liu, et al.,

1995).

2.2.2 Critics in Software Engineering

The critic-based approach which was well-accepted in Information Systems (IS)

then received a significant attention from the software engineering (SE) community.

Critics are now in wide-spread use in the field of SE.

We identified three examples of critic tools that are recognized to be useful in

software requirement engineering: AIR, Prefer and HeRA. Maiden and Sutcliffe

(1994) describe an Advisor for Intelligent Reuse (AIR), a tool to assist the

requirement engineer during requirements critiquing. They claim that it is essential

to use a critic for intelligent assistance during requirements engineering (Maiden &

Sutcliffe, 1994). They proposed requirements critiquing using domain abstractions

that represent the fundamental behaviour, structure and functions of a domain class

(Maiden & Sutcliffe, 1994). The AIR tool consists of three components known as

capture, match and critic requirements. The capture component performs the

acquiring process of new facts and requirements from the requirement engineer. The

matcher component performs the mappings between abstractions and the new

domain to detect problem situations. The requirements critic supports domain

understanding and critiquing by explaining retrieved domain abstractions and

detected problem situations to the requirement engineer. The good thing about AIR

is that it provides „rollback‟ buttons which allows the requirement engineer to undo

17

matching if mistakes are noticed. Therefore it is responsive to requirement

engineers‟ needs and can support situated reasoning during requirements

engineering.

Figure 2.3: Screen shot of the AIR tool (Maiden & Sutcliffe, 1994)

In another research work, Redmiles (1998) argues the need for cognitive support by

requirements engineers to produce a better requirements design. Requirements

engineers need knowledge of requirements specification method, problem domain,

and other relevant knowledge to create a good requirements design (Redmiles,

1998). Applying design critics to software requirements helps designers to improve

the quality of requirements design. The Prefer tool is used to model state-based

requirements design in the CoRE notation (Redmiles, 1998). Prefer adopted the

common tool infrastructure of Argo/UML. Prefer includes design critics and a

dynamic “to do” list that presents feedback from critics in a systematic way.

Knauss et al‟s (2009) recent research also involves critics in requirements

engineering. It illustrates the Heuristic Requirements Assistant (HeRA) editor,

which offers a heuristic feedback to the requirements analyst on incomplete

requirements specification. The functions of the HeRA editor are to: 1) capture high-

quality requirements at the user goal level; 2) identify contradictions to other user‟s

requirements; and 3) align user goals with the planned business process quickly

18

(Knauss, Luebke, & Meyer, 2009). The HeRA descriptions are explained in Chapter

FOUR.

While critics have been used in the requirements engineering area, critics for object-

oriented modelling heuristics, as well as the UML semantics have also been offered

by several software architecture modelling tools. For example, Robbins and

Redmiles (2000) describe Argo/UML, a tool for object-oriented modeling. This tool

supports the editing of diagrams according to the Unified Modeling Language

(UML) notation and detects common errors made by software designers. Argo/UML

supports the designer with online critics about the design model under construction

(Robbins & Redmiles, 2000). They describe Argo/UML, based on cognitive

theories, to support the development of software architecture models. Argo/UML is

a software architecture design environment that helps architects by focusing on

cognitive challenges of design that introduced by three theories : i) theory of

reflection-in action, ii) theory of opportunistic design and iii) theory of

comprehension and problem solving (Robbins & Redmiles, 2000). More on

Argo/UML descriptions are explained in Chapter 4.

An environment called Annotation Based Cooperative Diagram Editor (ABCDE)-

Critic which was developed by (de Souza, et al., 2000) uses a critic-based approach

to check UML class diagrams. ABCDE-Critic is a Domain Oriented Design

Environment (DODE) for object-oriented analysis and design, which implements a

group critic system. In ABCDE-Critic, feedback is presented as annotations attached

to the diagram elements that trigger the critic to fire (de Souza, et al., 2000). These

annotations are also displayed to all other designers who are owners of these

diagram elements. Developing software systems is a complex task and most of the

software development activities are handled by a group of people. Thus, a team

effort is essential in producing solutions to a complex software problem and also to

ensure it will succeed. Due to this reason, ABCDE-Critic is a useful system because

it supports cooperation among designers as a means of annotation and warns

designers of the occurrence of problems. More detailed description of ABCDE-

Critic is given in Chapter 4.

Another research project (Dashofy, Hoek, & Taylor, 2002) demonstrates the

ArchStudio3 tool that uses design critics for architecture analysis. The design critics

19

monitor changes performed in architecture modelling. The design critics check any

potential problems that may exist due to the changes and then report to a central

issue database (Dashofy, et al., 2002). Dashofy et al (2002) claims self-healing

systems can be applied by using critics to do „what-if‟ analysis on the affect of a

possible repair.

Grundy and Hosking (2003) explain the SoftArch tool that assists architects in static

validation of their architecture models. SoftArch provides a set of model analysis

agents that monitor changes in architecture models and then offer feedback to

architects in a form of an immediate error report and „error list‟ (Grundy & Hosking,

2003). The agents are actually design „critics‟ where they watch for model changes

and add messages (critique) to a critic message dialogue.

2.2.3 Critics in Education Environment

The education community strives to enhance teaching and learning between students

and educators (e.g., teachers, instructors, lecturers, mentors and others). One of the

most important elements that can improve teaching and learning is by providing

learners with effective and timely feedback (Brown, 1988). Thus to address the key

teaching and learning concern, a computer-supported learning tool using a critic-

based approach has often been adopted in the education area.

For instance, Fischer (1987) implemented the LISP-CRITIC with the aim to support

users on how to improve their LISP code. The LISP-CRITIC is used in an

introductory LISP course which teaches LISP programming. The user‟s code is

matched against a large set of critiquing rules that specify how to improve LISP

code. Any mistakes in the code will cause the tool to offer modification suggestions

(critique) to the user. The user can check the code improvement suggestions and

make a decision on whether to agree or disagree with the suggestion. In addition the

tool provides explanation and justification on its suggestions.

Other research that supports program critiquing in an education environment

includes: Submit! (Pisan, Richards, Sloane, Koncek, & Mitchell, 2003) and Java

Critiquer (Qiu & Riesbeck, 2008). Pisan et al (2003) developed Submit!, a program

critiquing system that provides critical feedback to students about the computer

20

programs they write. Program critiquing refers to the process by which students

obtain critical feedback about their programs. In their approach, students are allowed

to use the critiquing tools before final submission of an assignment. Thus students

can get a formative assessment that supports self-directed learning. Pisan et al

(2003) performs usability evaluations and the results show that Submit! is generally

effective. A preliminary study of the impact of Submit! on student results indicates

that students who apply the system to get feedback on assignment submissions do

better than those who do not apply.

Likewise, Qiu and Riesbeck (2008) demonstrate the development of an educational

critic tool, JavaCritiquer. They created a critiquing tool for Java programming. This

critic tool not only supports the teachers but also the students. Teachers use the Java

Critiquer to critique student java code whereas the students get feedback support

from JavaCritiquer before sending their assignments to their teacher. Their

conclusions identified two main points: 1) the tool is good at providing

individualized feedback to students and 2) the tool is difficult to create and requires

significant development effort (Qiu & Riesbeck, 2008).

Another example of an educational critic tool is ClassCompass (Coelho & Murphy,

2007). Coelho and Murphy (2007) demonstrate ClassCompass that assists students

and instructors in software design activities. The ClassCompass supports the

students by offering an automatic critique that gives suggestion when a potential

error on the design is identified. The instructor can view the student design and can

provide additional feedback via the tool. The tool supports automatic and manual

critiquing of software designs, specifically in UML class diagrams and sequence

diagrams. Descriptions on ClassCompass and Java Critiquer are explained in

Chapter FOUR.

Oh et al (Oh, Gross, Ishizaki, & Do, 2009) present a tool called Flat-pack Furniture

Design Critic (FFDC). The FFDC tool is to support students who are involved in an

architecture design course/program. The motivation from the strength of critiquing

in architectural design studio (Oh, et al., 2009) has led the development of the FFDC

tool which provides students with feedback via five delivery types: interpretation,

21

introduction, example, demonstration, and evaluation, along with three

communication modalities: written comments, graphical annotations, and images. A

student‟s task model is evaluated by the FFDC tool which chooses the delivery type

and modality to offer a critique. Description on the FFDC tool is explained in

Chapter FOUR.

2.2.4 Critics in Recommender Systems

McGinty, Smyth, McCarthy, and Reilly (K. McCarthy, et al. , 2005; K. McCarthy et

al., 2006; McGinty & Smyth, 2003; Reilly, McCarthy, McGinty, & Smyth, 2005)

employ critiquing-based approaches to improve the efficiency of their recommender

systems. Recommender systems are programs that help users by facilitating access

to relevant items. For example, if a user wants to buy a desktop PC through an

online system, he can specify the essential features of the desktop PC, such as

model, price, hard disk capacity, etc. to query a recommender system. Then the

recommender system will provide access to the relevant desktop PC configuration

based on the user‟s specification.

McGinty and Smyth (2003) explain the use of a critiquing system as the main

technique of feedback on reactive recommender systems. Reactive recommender

systems (McGinty & Smyth, 2003) are designed to make recommendations based on

a user‟s query. McGinty and Smyth (2003) made a comprehensive evaluation of

three critiquing techniques in a comparison-based recommender. These three

critiquing techniques are standard critiquing (STD), critiquing with carrying the

preference (CP), and critiquing with adaptive selection (AS) (McGinty & Smyth,

2003). In this evaluation, the performance of these critiquing techniques is compared

and the results indicate that AS significantly improves recommendation efficiency.

The main idea of AS is to increase the degree of diversity among recommended

items to cover more item space in a given cycle and thus increase recommendation

efficiency.

Later, McCarthy et al (2005) presented a dynamic critiquing approach which

supports users in modifying multiple features concurrently by selecting from

compound critics. A live-user evaluation is done and results indicate that users who

22

apply compound critics obtained shorter recommendation sessions that direct to

higher quality purchases (K. McCarthy, et al. , 2005).

Following dynamic critiquing, Reilly et al (2005) describe an incremental critiquing

approach that considers a user‟s critiquing history, as well as their current critic,

when making new recommendations (Reilly, et al., 2005). An evaluation of

incremental critiquing shows that it can deliver significant performance benefits by

reducing session lengths by up to 70%, regardless of whether to use unit or

compound critics. In fact, the dynamic critiquing is combined with incremental

critiquing and it improves the efficiency of critiquing in recommender systems.

Figure 2.4 shows a screen shot of such a recommender system.

Figure 2.4; Example of recommender system (Reilly, et al., 2005)

In another research work, McCarthy et al (2006) describe the use of a critiquing-

based approach for group recommender systems. A group recommender system

called Collaborative Advisory Travel System (CATS) is designed to assist a group

of users in making decision for a vacation (K. McCarthy, et al. , 2005). A

DiamonTouch tabletop device is used to showcase the CATS. The CATS approach

23

is based on collaborative recommendation framework. There is an interaction

component in CATS that consists of an individual or group interaction. There is also

a recommendation component that consists of two parts: 1) an individual

recommendation (system reactively recommends cases to the user), 2) a group

recommendation (system proactively pushes recommendations to the group of

users). Critics made by users are stored in a group user model and this is used as a

basis for recommendations. The contribution of CATS is to enable the user as an

individual or a group to interact simultaneously through recommendation dialogs

and to achieve consensus in their decision making about vacation planning.

Figure 2.5 Example of group recommender system (K. McCarthy, et al., 2006)

2.2.5 Benefits from Critics Application

All of the applications stated above have shown that critics are an efficient feedback-

providing mechanism and offered huge advantages/benefits. Furthermore critics are

applicable to various domains as described above. While critics in these application

domains have its own deficient, the application of critics in diverse domains has

contributed several benefits/advantages including:

 Problem solving and learning improvement;

Critics provide problem solving and learning improvement (Fischer &

Mastaglio, 1990; Fischer, Nakakoji, Ostwald, Stahl, & Sumner, 1993;

Robbins, 1998; Tianfield & Wang, 2004) to users. The critic is like an

24

assistant to the user in the problem solving task because the user is the one

that deals with the problem solving activities. With feedback or critiques

generated by the critic tool it would eventually improve the user‟s skill in

problem solving process in an incremental way. Furthermore, the user‟s

problem learning of domain knowledge would also be improved during the

problem solving process (Robbins, 1998). For instance, Java Critiquer (Qiu

& Riesbeck, 2008) is a critiquing system for educational purposes. The Java

Critiquer helps students to learn and improve their Java programming skills.

Java Critiquer uses passive critiquing so as to allow the students to make

mistakes during the problem solving task without intrusion. It then critiques

any bad programming code made by the students, and offers a suggestion to

improve the code. Thus, the students‟ problem solving and learning skills

will be improved incrementally. Other critic tools including LISP-Critic,

Argo/UML, FFDC, and ClassCompass also contribute to the problem

solving and learning improvement.

 Human errors reduction;

Human errors in whatever task have a variety of causes (Mehzer, et al.,

1998). However, with critics support that provides explanations and

alternative solutions it would help the users to make fewer errors in their

action or decision making tasks. For example, TIME critic (Silverman, 1991)

is an organizational support system that helps generate a document that is

part of the system acquisition milestone or decision process. The application

assists headquarters decision makers to communicate best-practice

information to the field, and also minimizes the number of field-created

errors and biases that headquarters must deal with (Silverman, 1991). Other

examples that contribute to this benefit are expert critiquing systems

(Mehzer, et al., 1998; Silverman & Mehzer, 1992), critics in decision support

systems (Vahidov & Elrod, 1999) and critics in recommender systems (K.

McCarthy, et al., 2006; Reilly, et al., 2005).

 Human-computer interaction enhancement;

25

Critics can effectively facilitate human-computer interactive problem solving

(Fischer, 1989; Fischer, Lemke, & Mastaglio, 1991; Fischer, Lemke,

Mastaglio, et al., 1991; Fischer, et al., 1993; Tianfield & Wang, 2004). It is

almost impossible for a human to have the complete knowledge about a

domain (Robbins, 1998; Tianfield & Wang, 2004). Therefore it is necessary

to have an interaction with a supporting tool, such as critics to assist the user

in activities that the user cannot perform well (Terveen, 1995). Critics can

augment the ability of human to assess their actions/solutions. However, it is

still up to the human to make a decision whether to follow the critic

suggestions or not. For instance, JANUS (Fischer, Lemke, & Mastaglio,

1991) is an integrated design environment for residential kitchen layout

configuration. It allows a designer to construct residential kitchen floor

layout plans and to learn general principles underlying such constructions

(Fischer, Lemke, & Mastaglio, 1991). The knowledge stored in JANUS

includes building codes, safety standards and functional preferences which

improve the interaction of the designers with the system as well as their

learning in design construction.

 Proactive design improvement;

A good sign of how well a design tool/system is developed and knowledge is

used is based on „designs‟ that produced by users (i.e. designers/developers)

(H. Liu, et al., 1995). Poor designs or erroneous designs are normally caused

because the users lack specific knowledge about the design problems or

solution domains (Robbins & Redmiles, 2000). With critics that provide

knowledge support in terms of guidelines or suggestions, the users would be

assisted in achieving improvements in their design tasks and artifacts. For

example, ArgoUML (Robbins & Redmiles, 2000) is a design critiquing tool.

It is an open source UML modelling tool that supports all standard UML 1.4

diagrams (http://argouml.tigris.org/). The ArgoUML critics constantly check

the current model and if the conditions for triggering a critic are met, the

critic will generate a list of items (i.e. critiques) in a dynamic „To do‟ list.

The presentation of a short description of the problem, with the guidelines to

http://argouml.tigris.org/

26

resolve the problem, and a wizard helps ArgoUML users to improve the

design and solve the problem automatically. Examples of other tools that

contribute to this benefit include JANUS, IDEA and HeRA.

 Proactive inconsistency and incompleteness detection;

Critics can help users to detect any inconsistency and incompleteness in

analysis and design situations (de Souza, et al., 2000; de Souza, Oliveira, da

Rocha, Goncalves, & Redmiles, 2003). Critics can offer proactive design

feedback to a user‟s action if the action violates the inconsistency and

incompleteness rules of a design. For instance, DAISY(de Souza, et al.,

2003) is an environment that supports the construction of domain

engineering and application engineering models. It provides consistency

checking of the models via critics. The ArgoUML (Robbins & Redmiles,

2000) advises designers when an inconsistency and incomplete UML models

is detected and feedback is given to resolve the problem. Likewise, the

HeRA (Knauss, et al., 2009) detects any incomplete and inconsistency of

requirements specifications.

 Heuristic-based guidance;

Knowledge support offered by critics is usually in a form of guidelines or

recommendations that are based on certain general principles (e.g., design

principles), standards (e.g., UML standards) or relevant source documents.

However, critics also provide heuristic-based guidance to their users. For

example, HeRA (Knauss, et al., 2009) provides heuristic feedback to

requirement engineers for: 1) capturing high-quality requirements on user

goal level; 2) identifying contradictions to other user‟s requirements; and 3)

aligning user goals to the intended business process (Knauss, et al., 2009).

Similarly ABCDE-Critic (de Souza, et al., 2000) provides critics on UML

class diagrams based on experiences and object-oriented design heuristics.

 Context-sensitive feedback;

27

The feedback provided by critics is often context-sensitive which depends on

a task or situation of the problem domain. This is necessary as to ensure the

human-computer (critic) interaction is achieved and the users can obtain

good feedback for resolving a problem or improve a solution. For instance,

the FFDC (Oh, et al., 2009) is a critic tool that helps the architecture students

to be familiar with the design problem-solving tasks. The FFDC offers

student feedback via five delivery types (interpretation, introduction,

example, demonstration, and evaluation) and three communication

modalities (written comments, graphical annotations, and images). For

example, painting parts that violate a constraint are coloured in red, with

graphic icons such as arrows to represent load placed on a furniture part (Oh,

et al., 2009). Likewise, the ArgoUML offers a constructive and instant

feedback in a non-intrusive manner to designers in solving a problem.

Furthermore, the cognitive features of ArgoUML provide designers with

support for decision-making, decision ordering, and task-specific design

understanding which are believed to be useful in designing contexts and tools

(Robbins & Redmiles, 2000).

2.3 Constraint Specification in a Meta-Modelling Tool

Many meta-tool environments and toolkits have been developed to support the

development of visual language environments. Examples of these tools are:

MetaEdit+ ((Kelly, et al., 1996), ATOM (Lara & Vangheluwe, 2002), KOGGE

(Ebert, Suttenbach, & Uhe, 1997), Pounamu(Zhu, et al., 2007) and Marama

(Grundy, et al., 2008). Meta-tools provide an integrated environment for developing

other tools and often these tools also offer constraints evaluation/checking which are

similar to the critic concepts.

We introduce here some of the views on constraints in software tools. According to

Borning (1986), a constraint “specifies a relation that must be maintained, for

example, that a line be horizontal, that a resistor obey Ohm‟s law…” In contrast,

Balarin et al. (2001) propose performance constraints specification at higher levels

of abstraction, thereby limiting their constraints definition scope to “a representation

28

that is more natural to the designer and that is more computationally tractable.” In

the work by Qattaous (2009), constraints are used for “governing the syntax and

semantics of model elements and the values of their attributes” in meta-CASE tools.

A meta-CASE tool is often concerned with metamodelling processes and techniques.

According to Qattaous (2009), meta-modelling techniques rely on two elements to

identify the domain specific language syntax and semantics: 1) a meta-model and 2)

constraints. The constraints are viewed as indications to lead users to a good design

solution (Qattous, 2009). Cook et al. (2007) also provide similar view about

constraints which are seen as “a way for humans to evaluate the current state of a

model with respect to some criteria; for example, whether all of the web server

configurations are compliant with the corporate standards.” There are various views

on the definition of constraints as mentioned above. One common aspect from the

various views about constraints is that they involve specifying or defining

constraints using some kind of representation/approach with the intention to

establish a set of rules with respect to some criteria that should be compliant to a

particular product/item (e.g., model, design, standard, document, etc).

We are more interested in constraint specification within a meta-tool environment as

our research work also deals with a meta-tool (i.e. the Marama meta tools (Grundy,

et al., 2008)). Specifying or expressing constraints is often applied in the

metamodeling tools (Jaramillo, Vangheluwe, & Moreno, 2003). A constraint

language is added to a meta-model to constrain the structure of a model. Sourrouille

and Caplat (2002) classify constraints as syntactic constraints and semantic

constraints. Syntactic constraints are specified in a formal language, such as OCL,

and can be verified automatically (cf. Sourrouille and Caplat (2002)). Semantic

constraints are specified in natural language and have to be checked manually (cf.

Sourrouille and Caplat (2002)). In another research by Bezivin and Jouault (2006),

constraints can be labelled as a warning, error, or critic. The three labels are used to

describe the severity of a constraint (Bezivin & Jouault, 2006). Examples of these

constraints with their severity labels are shown in Figure 2.6.

29

Figure 2.6: Examples of constraints expressed in OCL (Bezivin & Jouault,

2006)

Constraints also can be categorised as: operational constraints (used to restrict

design space alternatives based upon the operations of a model), composability

constraints (express compatibility between different alternatives), resource

constraints (indicate specific hardware resources that are needed by software

modules) and performance constraints (indicate an end-to-end latency, throughput,

power consumption, and bit precision) (Gray, Bapty, & Neema, 2000). A screen shot

of this is shown in Figure 2.7.

30

Figure 2.7: Constraint expression using OCL expression (Gray, et al., 2000)

All of these constraints regardless of their classifications have to be specified using

some kind of formal representation. There are various approaches that can be used to

express the constraints. Constraints can be expressed or specified using the Object

Constraint Language (OCL) expressions (Gray, et al., 2000; Karsai, Nordstrom,

Ledeczi, & Sztipanovits, 2000) executable scripting language Python (Jaramillo, et

al., 2003), ATL language (Bezivin & Jouault, 2006), programming by example

(Qattous, 2009) and other approaches. Figure 2.6 and Figure 2.7 are examples of

constraints using OCL expressions. We describe a few of the meta-modelling tools

regarding their constraints specification/evaluation in the following sections.

2.3.1 MetaEdit+

MetaEdit+ is a fully configurable multi-user and multi-tool computer-aided system

and method engineering environment (Kelly, et al., 1996). The tool architecture for

MetaEdit+ is shown in Figure 2.8. The tool architecture comprises of five main

tools: 1) environment management tools; 2) model editing tools; 3) model retrieval

tools; 4) model linking and annotation tools; and 5) method management tools.

MetaEdit+ provides a metamodelling language and tool suite for defining the

method concepts, their properties, associated rules, symbols, checking reports, and

generators. MetaEdit+ is based on an implementation of the Graph, Object, Port,

31

Property, Relationship and Role (GOPPRR) metamodeling language and is written

in Smalltalk (Pohjonen, 2005). The main advantage of MetaEdit+ tool is the ability

to quickly specify a tool for a given modeling language (Pohjonen, 2005; Tolvanen,

2004; Tolvanen, Pohjonen, & Kelly, 2007).

Figure 2.8: MetaEdit+ architecture (Kelly, et al., 1996)

According to Tolvanen et al. (2007), rules and constraints are the main components

of a meta model that guide the application of a modeling language. MetaEdit+

provides a Constraints Definer tool as shown in Figure 2.9 (left) to support the

definition of rules that refine and constrain the behaviour and the use of language

(Tolvanen, 2004). Furthermore, to set constraints on design elements‟ occurrence,

connectivity and uniqueness can be defined via the Graph Constraints Tool as shown

in Figure 2.9 (right) (Tolvanen, et al., 2007). The defined rules and constraints are

enforced at run-time to ensure the correctness of the models.

Figure 2.9: Constraints definer editor ((Tolvanen, 2004)) and Graph

constraints tool (Tolvanen, et al., 2007)

32

2.3.2 Pounamu

Pounamu (Zhu, et al., 2007) is a meta-tool developed for building visual design

tools. Pounamu allows users to specify the meta-model, shapes and diagrams for

tools using a variety of visual languages. These elements are shown in Figure 2.10

that represents the structure of Pounamu tool specifications.

Figure 2.10 Structure of Pounamu specification(Grundy, Hosking, Zhu, & Liu,

2006)

The Pounamu meta-tool also includes a visual language to represent events and

associated actions. In Pounamu, the definition and insertion of constraints is

performed via an event handling approach (Zhu, et al., 2007). A visual event handler

definer is used to build both simple and complex event handling functionality for

Pounamu tools. Some of the constraints that can be defined via the event handler

definer are: type checking, model constraints, layout constraints and behaviour,

mapping constraints, and back-end functionality constraints (Zhu, et al., 2007).

These constraints are implemented via hard-coded approach using Java code scripts.

33

Figure 2.11: Example of code-based event handler for model constraints (Zhu,

et al., 2007)

Constraints specified using the event handler approach in Pounamu requires users to

be familiar with the Java code scripts and the Pounamu API (Zhu, et al., 2007). This

provides a difficulty or barrier to the less experienced users in defining constraints

via the event handler definer. Even for expert uses, maintaining complex event

handler code can be time consuming and error-prone. Constraints can be reused by

packaging them as parameterised Java classes in script code files.

2.3.3 Marama

Marama (Grundy, et al., 2008; Grundy, et al., 2006) is an Eclipse based meta-toolset

which was initially generated from the Pounamu (Zhu, et al., 2007) meta-tool

specifications. According to (Grundy, et al., 2008) the goal for the Marama toolset is

to support easy implementation of diagrammatic modelling/MD tools for

experienced modellers with basic modelling concepts. These concepts consist of

Extended Entity Relationship (EER) models, OCL, and the meta-models notion. In

this section we focus our explanation on MaramaTatau which is an extension to the

locally developed Marama metatool set. MaramaTatau offers the ability to specify

behavioural extensions to Marama metamodel (N. Liu, et al., 2007).

MaramaTatau (N. Liu, et al., 2007) provides a declarative constraint/dependency

specification mechanism which focuses on structural constraints for a DSVL

34

metatool. The main notation for constraint representation used by MaramaTatau is

declarative OCL expressions. MaramaTatau allows tool developers to specify

constraints over metamodels using the OCL formula. Figure 2.12 shows the Marama

metamodel editor with its MaramaTatau extensions. A combination of OCL

expressions and a visual notation is used in MaramaTatau. A green coloured circle

represents the OCL formula for specifying a constraint (refer to Figure 2.12). The

green colour circle shape is associated with an interface known as Formula

Construction View which is used to define the required constraints based on the

metamodel elements and OCL expressions that are listed in the view (N. Liu, et al.,

2007). The constraints definition will take effect when a user runs the modeling tool.

Figure 2.12: Constraint specification via MaramaTatau using OCL formula (N.

Liu, et al., 2007)

The MaramaTatau approach was aimed to better support target end users who are

programming literate and familiar with modeling concepts (N. Liu, et al., 2007) who

would be able to specify the model level constraints using the OCL expressions.

While this is a more declarative, high-level approach than Java event handlers used

in Pounamu, we have found OCL constraints are still complex and challenging to

use for many Marama tool developers.

35

2.3.4 DECS

Diagram Editor Constraints System (DECS) is an Eclipse-based meta-tool prototype

developed with the purpose to generate constraint-based domain specific diagram

editors(Qattous, 2009). The research work by (Qattous, 2009) is aim to support and

simplify the process of constraints definition as part of domain specific CASE tool

specification in a meta CASE tool. The work applies a programming by example

approach for a constraint definition. According to Qattous (2009) a DECS user can

define a constraint either using a wizard or by example. With a wizard style, a user

can use several forms to define values to several constraint properties as necessary.

The constraint definition by example approach is performed by allowing a user to

create one or more examples of the required constraint. The system should then be

able to infer the intended constraint based on the examples (Qattous, 2009).

A constraint manager component which is separated from the DECS holds the

XML-based constraint description and expression language. Thus, the constraint

manager component will have a list of constraints and uses these constraints as

assertions for users‟ actions in the modelling environment (Qattous, 2009).

Whenever a tool user modifies the diagram model, it is checked by the constraint

manager. The constraint manager will trigger a warning if there is any violation

detected. Figure 2.13 shows the architecture of DECS. According to Qattous (2009)

the constraint definition by example approach involves a complex inference process

due to the constraints‟ complex nature and various constraint alternatives that an

example could imply. While this approach is more abstract again than Meta-Edit+ or

MaramaTatau, the inference process means tool developers need to understand this

process to express constraints sensibly. Programming by example-based approaches

like this have also been shown to be difficult to describe to end users after

specification, making maintaining and reusing the constraints inferred difficult.

Complex constraints over collections and relationships can also be very difficult to

express with this approach.

36

Figure 2.13 Architecture of DECS(Qattous, 2009)

2.4 Discussion and Conclusion

We have introduced and described several related research areas and applications of

critics in various domains. These include critics in Information Systems, critics in

Software Engineering, critics in education environments and critics in non-software

recommender systems. The concept and application of a critic approach is mostly

discussed in application domains. We then introduced and briefly explained the

concept of constraint definition/specification approaches. Contrasting to the critic

approach, the concept and application of a constraint definition is often described in

meta-modelling tools environment. A few examples of meta-modelling tools are

explained to show the usage of constraint specification approach: MetaEdit+,

Pounamu, Marama, and DECS. It seems that a critic-based approach is widely used

in application domains whereas the constraint-based approach is often used in meta-

modelling tools.

Although critics have been used widely in very diverse domains, to our knowledge,

a critic approach has not been applied for meta-modelling tools that implement

DSVL tools. While constraint specification/evaluation is common for meta-

modelling tools, this is usually at a detailed level, e.g. OCL, scripts or code. The

process of specifying and defining constraints for meta-modelling tools is more

complex as it requires good knowledge in programming skills, it uses formal

approach (e.g. mathematical model), and it involves heavy cognitive load. This

37

would be difficult for non-programmer users to understand and apply the constraint

definition/specification approach.

Therefore, our aim in this research is to extend the capability of our Marama meta-

tool set by adding a “critics” mechanism to a meta-tool specification editor. We

want to replace the lower-level, complex constraints specification with something

more tailored to critic authoring and therefore less general but more user accessible

than typical constraint specification techniques. We improve/extend previous work

by providing a visual interface for end user developers (specifically less experienced

users and, ideally, non-programmers) to author critics for their DSVL tool. Their

needs are rather to provide suggestions and modelling tips, to complete and to

improve models, rather than hard constraints on model correctness.

The basis of our solution is to associate a critic specification approach (i.e. critic

specification editor) with a meta-modelling tool. The critics can be managed in a

simple and effective way, while the checking process can be performed according to

the modelling process of the target language. Critics within application domains

(e.g., FFDC (Oh, et al., 2009), ArgoUML(Robbins & Redmiles, 2000), and

FRAMER(Lemke & Fischer, 1990)) do consider constraints as one of the critic

specification elements. Since there is no clear difference between critic and

constraint, our critic specification approach will consider constraints as one of the

elements that can be defined as a critic. However, our approach will not replace

other constraint specification approaches, like code and OCL, but compliment these.

To help us in designing and developing a critic specification editor for our Marama

meta-tool set, we reviewed the related research on critic approach and managed to

produce a taxonomy of computer-supported critics (Ali, Hosking and Grundy,

2010). The taxonomy is focused on application domains that look at variety of

different features and categories of critics against them. The description on the

taxonomy is described in Chapter FOUR. The following chapter will describe the

steps that we took to achieve our aim that is to develop a critic specification

approach in a meta-tool.

38

Chapter 3

Research Methodology

This chapter describes our approach to designing and prototyping a critic

specification tool for domain-specific visual language (DSVL) tools.

3.1 Introduction

Our aim is to design and develop a prototype for a critic specification tool that

allows the end user (and other) tool developers to readily express and construct

critics. The critic specification tool is embedded within the environment of the

Eclipse-based Marama meta-tool (Grundy, et al., 2008) allowing tool developers to

concurrently develop visual language environments and critic support for them.

Marama is a metatool that is implemented as a set of Eclipse plugins. Our approach

to achieving our aim is based on the following methodological steps:

 Conduct a literature review of critic tools, comparing and analyzing their

approaches for critic specification and implementation;

 Identify a set of key requirements for a critic specification tool for DSVL

tools;

 Develop a prototype to explore the problems and issues in designing a critic

specification tool. An iterative-incremental (Robey, Welke, & Turk, 2001)

approach has been used for the prototype development to allow for its

refinement and improvement;

 Identify from the prototype experience a core set of building blocks needed

for a generic critic specification editor and design notation. Design and

implement the critic specification tool within a meta-tool (specifically the

Marama meta-tool);

 Develop a proof of concept for our critic specification approach by applying

it to three DSVL exemplar tools (specifically Marama-based tools) from

different domains;

 Perform a user evaluation of the critic specification approach to assess its

39

usability and effectiveness;

 Draw conclusions from our survey, design, prototyping and evaluation work.

3.2 Methodology

3.2.1 Literature Review of Critic Tools

The initial step of our research was to review literature concerning critic tools (or

critiquing systems). We gathered many articles and reports that described critic tools

(or critiquing systems) as a supporting tool for a wide range of computer users in a

large variety of domains including education, medicine, CAD and software

development. This step allowed us to compare and analyze various critic approaches

and identify common properties in critic tools. The aim of this task was to assist us

in the development of our own critic specification tool for domain-specific visual

language tools. We needed to identify a set of requirements for our critic

specification tool and the findings from the literature helped us to obtain these.

Furthermore, analysis of the literature led us to generate a taxonomy of computer-

supported critics. The review of critic literature is described in Chapter TWO and

the taxonomical analysis of the critic tool approaches is described in Chapter FOUR.

3.2.2 Identify a Set of Requirements for Our Critic Specification

Tool

Information gathered from the previous stage resulted in the production of a

taxonomy of computer-supported critics. Based on this taxonomy we identified

properties applied in existing critic tools and these were considered for our critic

specification tool. The key critic properties/features are as follows:

i) Critic domain- what domain (s) of discourse is the critic used in (e.g., medical

domain, educational domain, and software engineering domain)?

ii) Critiquing approach- does it compare or analyze target domain elements?

iii) Critic dimension- strategies for when a critic should interrupt the user. Is the

critic active, passive (invoked on user demand), reactive, proactive etc?

40

iv) Critic type- does the critic check for completeness, correctness, consistency,

alternatives, or a mixture?

v) Modes of critic feedback- how does the tool provide end users with feedback?

(e.g., textual representation, graphical representation, 3D-visualization)

vi) Types of critic feedback- suggestions, argument, explanation etc to provide

justifications for each identified critic.

vii) Critic implementation approach- how is the critic built or realized in the target

tool(s)?

viii) Critic rule authoring- how are the rules embodied in the encoded critic?

The above requirements/properties show the concepts presented in our critic

specification tool. These requirements led us to develop a meta-model to describe

the valid critic models that the user can build. This meta-model is expressed using an

Extended Entity Relationship (EER) diagram which specifies entities and

relationships, together with their attributes. The meta-model was then enriched with

additional information and constraints. In addition to the above properties, we also

defined the following requirements for our critic specification tool to be applied in

DSVL tools:

i. A visual construct/abstraction for specifying critics;

ii. A visual construct/abstraction for specifying critic feedback;

iii. A representation for specifying complex critics;

iv. A representation of visual critic specification notation and environment,

embedded within a DSVL tool

The requirements for our critic specification tool are discussed in detail in chapter

FIVE.

3.2.3 Develop Prototype to Explore Issues in Designing Critic

Specification Tool

We took an iterative-incremental (Robey, Welke, & Turk, 2001) approach to

develop prototypes for our critic specification tool. The development of the

41

prototypes helped us to explore issues and problems in designing the critic

specification tool. According to Robey et al. (2001), prototypes are generally

produced quickly, and offer appropriate feedback on the feasibility and usefulness of

a tool‟s design and specifications. We had developed several prototypes for our

critic specification tool (please refer to Figure 3.1). Our initial attempt was to specify

critics using MaramaTatau (Liu, Hosking, & Grundy, 2007), one of the facilities

provided in our Marama meta-tool. The critics were specified using the OCL

expressions. The difficulties we experienced in the initial attempt had motivated us

to develop another prototype. The second prototype was to specify critics at the

meta-model level using a similar visual approach to MaramaTatau. We developed a

new critic-authoring support extension which provides the ability to specify critics in

Marama metamodels. A new functional item, CriticShape was added to the Marama

meta-model editor and associated with a critic authoring template. Here, critics are

specified based on the pre-defined critic authoring template. The limitations we

identified from the second prototype had inspired us to improve the critic

specification approach. We developed another prototype by creating a new critic

specification editor, Marama Critic Definer. This critic specification editor is

integrated with several form-based interfaces to support the task of specifying critics

and feedback. Furthermore, the critic specification editor uses a visual notation

approach. These prototypes are described in Chapter SIX and Chapter SEVEN. All

of these prototypes were created in the Marama meta-tools through meta-modelling

and extended coding, based on which the critic modelling and realisation

environments were automatically generated.

Figure 3.1: Prototype development for critic specification tool

Prototype 1:

Specifying critics

using Marama

Tatau.

Prototype 2:

Specifying critics at

the meta-model editor

(i.e. Marama meta-

model definer view)

via a critic-authoring

support extension

Prototype 3:

Specifying critics and feedback via

critic specification editor

integrated with form-based

interfaces.

Improving the critic specification

editor with visual notation.

42

3.2.4 Identify a Set of Building Blocks Needed for a Critic

Specification Tool

We identified a core set of building blocks needed for a critic specification tool and

designed a notation to represent them. Our use of an iterative-incremental approach

led to cyclical refinement of requirements, solutions and prototype development

plans. We learned early and efficiently about the building blocks needed in our critic

specification tool. Based on the defined building blocks as well as the notation, we

had developed the required critic specification tool for DSVL tools as described in

Chapter SEVEN.

3.2.5 Proof of concept for the critic specification approach

We proved the effectiveness of our critic specification approach by developing

prototypes of visual languages and associated tool support for critic specification for

DSVL tools. The critic specification tool prototype was subsequently applied to

three exemplars of DSVL tools. These three exemplars were Marama-based tools of

different domains: medical (health care planning model, MaramaCPM), business

process (enterprise modelling language, MaramaEML) and software design (UML

design, MaramaUML). The critic specification tool was integrated into each of these

Marama-based tools. The application of the critic specification tool with each of the

three exemplars is demonstrated in Chapter EIGHT.

3.2.6 Perform user evaluation of our critic specification approach

We conducted a formal user evaluation to assess the usability and effectiveness of

our critic specification approach. The evaluation was carried out with targeted

participants who had some basic background knowledge of the Marama meta-tools

and who were interested in modelling and the development of modelling tools to

support their research work. The methods we employed in our evaluation were:

questionnaires, observation and think aloud, and Cognitive Dimensions of Notations

framework (CDs). Before the formal user evaluation took place we gained an ethics

approval from the University of Auckland Human Participants Ethics Committee.

The details of this evaluation are described in Chapter NINE.

43

3.2.7 Draw conclusions from our survey, design, prototyping and

evaluation work

The final step in our research methodology was to draw conclusions from our

survey, design, prototyping and evaluation work. These are described in Chapter

TEN.

3.3 Conclusions

We have described an overview of our methodological steps in achieving our aim to

design and develop a prototype critic specification approach for DSVL tools. Each

step in our methodology produced artefacts. These include the critic taxonomy, the

prototypes, the evaluation results, and so on. Each of these methodological steps is

discussed in details in the following chapters of this thesis.

44

Chapter 4

A Critic Taxonomy

This chapter describes a new taxonomy for computer-supported critics. We start

with an introduction to what a taxonomy is and then explain the concept of a

computer-supported critic. We then present our surveyed literature information in

terms of our new critic taxonomy. We also describe each of the elements in the

taxonomy using various examples from the surveyed literature on critics. We then

apply the taxonomy to characterise several exemplar critic tools.

Information gathered from several research efforts on critics (Fischer, Lemke, &

Mastaglio, 1991; Fischer, Lemke, Mastaglio, et al., 1991; Irandoust, 2006; Miller,

1986; Oh, et al., 2008; Robbins, 1998; Silverman, 1992) were the initial motivation

and basis for the development of our new critic taxonomy. Our contribution is

proposing and producing a more comprehensive taxonomy of critics by carrying out

an analysis with respect to critics that allows us to better group tools, techniques or

formalisms based on their common qualities, features, characteristics and

representative elements.

Our intention was for this taxonomy to assist us in designing and developing our

own design critics for Marama domain-specific visual language tools. However, it

also provides a way to characterise others critics and to compare and contrast a wide

variety of computer-supported critic approaches.

4.1 What is Taxonomy?

In the Cambridge dictionary, a taxonomy is “a system for naming and organizing

things ...into groups which share similar qualities”

(http://dictionary.cambridge.org).The reason for having a taxonomy is to structure

an information repository for browsing. Normally, in a taxonomy, we group

properties that share similar values. This chapter presents a new critic taxonomy.

The purposes of this new taxonomy are:

http://dictionary.cambridge.org/

45

 to provide an overview of the research domain of critics (critiquing systems);

 to capture the features, properties and elements included in the critic domain;

 to characterise concrete critic tools (critiquing systems) and techniques

within critic domain;

 to compare critic tools that share the same or similar purpose;

 to identify the differences, strengths and weaknesses of each critic tool.

The following section introduces some critic definitions and examples from various

domains. We then describe our taxonomy of critics in the subsequent section.

4.2 Critic Definitions and Examples

Before presenting the critic taxonomy, one should understand some definitions of a

critic. The concept of critic is one which has been adopted in various domains,

including: medical applications (ATTENDING, ONCONCIN), programming (Lisp-

Critic, RevJava), design sketching (Design Evaluator), education (Indie, Java

Critiquer, Classcompass), software engineering (Argo, ArgoUML), expert and

decision support systems (TraumaAID and TraumaTIQ). The term „critic‟ was

initially used by Miller (1986) to describe a software program that critiques human-

generated solutions. A “critic” is also often known as a “critiquing system”.

However, throughout this thesis we will use the term critic tool instead of critiquing

system.

Various critic definitions can be found in the literature. Some of these definitions of

a critic are shown in Table 4.1. Those definitions normally reflect the type of critics

involved in a research effort (Bergenti & Poggi, 2000; de Souza, et al., 2000;

Fischer, Lemke, & Mastaglio, 1991; Redmiles, 1998; Robbins, 1998). Each critic

tool provides its own definition, but what these critic tools have in common is that

they provide knowledge support to users who lack specific pieces of knowledge

about their problem or solution domains. These critic tools detect potential

problems; give advice and alternative solutions, and possibly automated or semi-

automated design improvements to the users. Robbins‟s report also lists several

definitions of critics or critiquing systems. Thus, critic tools offer an important

46

approach to facilitating human-computer collaborative problem solving (Tianfield &

Wang, 2004). Table 4.2 shows some examples of critic tools and their domain

applications.

Table 4.1: Critic definitions.

 Definition Defined by (year)

1. “A critic is a system that presents a reasoned opinion about a product or

action generated by a human.”

(Fischer, Lemke, &

Mastaglio, 1991)

2. “A design critic is an intelligent user interface mechanism embedded in

a design tool that analyzes a design in the context of decision-making

and provides feedback to help the designer improve the design.”

(Robbins, 1998)

3. “Critics are agents that watch for specific conditions in the partial design

as it is being constructed and notify the designer when those conditions

are detected.”

(Redmiles, 1998)

4. “Critiquing systems are meant to provide critiques on existing artifacts

to improve their realization. They rely on analyzing existing artifacts

and on suggesting improvement rules.”

(Bergenti & Poggi,

2000)

5. “A critiquing system is a software that monitors the user‟s action and

triggers a signal when any action activates the critic rules of “bad

design”.

(de Souza, et al., 2000)

Table 4.2: Examples of critic tools and their application domain.

Tool Name (year-

based on

published paper)

Description Application

domain

ArgoUML (2000) “Critiquing is done continuously and designers need

not request that critics be applied or even know that

any particular critic exists.” (Robbins & Redmiles,

2000)

Software engineering

(UML designs)

ABCDE-Critic

(2000)

“…implements a construction kit supporting UML

class diagrams, an argumentative hypermedia

system, and a critic system, where the user is able to

define his own critics”(de Souza, et al., 2000)

Software engineering

(Class diagram

design)

IDEA (2000) “…is a critiquing system that we developed to work

in direct interaction with the software architect to

propose pattern-specific critiques” (Bergenti &

Poggi, 2000)

Software engineering

(design patterns)

RevJava (2002) “ it is used to analyze and critique object oriented

software.” (Florijn, 2002)

Software engineering

(object-oriented Java)

DAISY (2003) “…a critiquing system is able to check the

consistency of models created during domain and

application engineering”(de Souza, et al., 2003)

Software engineering

(software modelling)

JavaCritiquer (2003) “ a critiquing system to teach students how to write

clean, maintainable and efficient code.” (Qiu &

Riesbeck, 2003)

Education (Java

programming)

47

Design Evaluator

(2004)

“is a pen-based system that provides designers with

critical feedback on their sketches in various visual

forms.” (Oh, et al., 2004)

Design engineering

(design sketching)

ClassCompass (2007) “an automated software design critique system with

critics that comment on high-level design issues

rather than diagram completeness” (Coelho &

Murphy, 2007)

Education (software

design)

FFDC (2009) “…as a step toward creating computer-based critics

that support design learning in studio setting” (Oh,

et al., 2009)

Education

(Architecture design)

HeRA (2009) “a feedback centric requirements editor to help

analysts to control the information overload”

(Knauss, et al., 2009)

Software engineering

(Requirements

engineering)

4.3 A Critic Taxonomy

Several articles and reports have been published to explain and discuss critics (or

critiquing systems) as a supporting tool for a wide range of computer users. The

process of developing our critic taxonomy began by examining the related literature

in critics (Fischer, Lemke, & Mastaglio, 1991; Fischer, Lemke, Mastaglio, et al.,

1991; Irandoust, 2006; Miller, 1986; Oh, et al., 2008; Robbins, 1998; Silverman,

1992). We classified the information collected from the critic literature in the

following groups, which were tailored to meet our specific needs. Figure 4.1

illustrates the groups and elements that make up our critic taxonomy. The groupings

and their elements are described in detail in the following subsection.

 Critic domain

 Critiquing approach

 Critic dimension

 Critic type

 Modalities of critiques

 Types of feedback

 Critic realization approach

 Critic rules authoring

48

Our taxonomy aims to be applicable to critics in general though most of our

motivation, applications and examples come from CSE (Critics in Software

Engineering).

 Critic Groups and Elements

 1. Critic Domain

2. Critiquing

Approach

3. Modes of

Critic

Feedback

4. Critic Rule

Authoring

5. Critic

Realisation

Approach

6. Critic

Dimension

7. Types of

Critic

Feedback

8. Types of

Critic

Comparative

critiquing

Textual Insert new critic

rule

Rule-based Active Explanation Correctness

critics

Analytical

critiquing

Graphical &

3-Dimension

Visualization

Modify critic

rule

Predicates Passive Argumentation Completeness

critics

Multi-modal Delete critic

rule

Knowledge-

based

Reactive Suggestions Consistency

critics

Authoring rule

facility

Pattern-

matching

Proactive Examples (or

precedents)

Optimization

critics

Enable/ disable

critic rules

Programming

code

Local Interpretations Alternative

critics

 Object

constraint

language

(OCL)

Global Positive Evolvability

critics

Negative Presentation

Critics

Constructive Tool critics

Demonstration Experiential

critics

 Organizational

critics

 Pattern critics

 Structure critics

 Naming critics

 Metric critics

Figure 4.1: Our critic taxonomy.

49

4.3.1 Critic Domain

The first group in the critic taxonomy is the Critic Domain. A domain is defined as a

knowledge area characterised by a group of problems with similar techniques,

operational and functional specifications. Usually a domain represents a set of well-

defined and coherent concepts and functions. Examples of domains are medical,

business process, education, software engineering and design environment, among

others. Critics are specified based on the domain knowledge of that particular

environment/area. In order to define and specify critics, it is required that we

understand the domain that we deal with. Only by understanding the domain

knowledge will one be able to define and specify meaningful critics for that

particular context/domain. The use and context of critics varies from one domain to

another. To date, critics have been applied in various domains. Several research

efforts (Fischer, Lemke, & Mastaglio, 1991; Fischer, Lemke, Mastaglio, et al., 1991;

Irandoust, 2006; Miller, 1986; Oh, et al., 2008; Robbins, 1998; Silverman, 1992)

provide either long or short description of critics from different domains. Table 4.3

shows some of the well-known critics from various domains that received much

attention in critic research reports and articles (Fischer, Lemke, & Mastaglio, 1991;

Fischer, Lemke, Mastaglio, et al., 1991; Irandoust, 2006; Miller, 1986; Oh, et al.,

2008; Robbins, 1998; Silverman, 1992). Apart from those domains listed in Table

4.3, critics have also been applied in domains such as education (Indie,

JavaCritiquer); design sketching (Design Evaluator); decision making

(DecisionLab); architectural design (ICADS) and word processing (COPE).

Table 4.3: Critics applied to various domains.

Domain Critic system (year)

Medical ONCOCIN: clinical consultation system (1983)

ATTENDING : medical support (1986)

TraumaTIQ: treatment of medical trauma cases (1993)

AIDA : antibody identification (1995)

Engineering CRITTER: digital circuit design (1985)

Design Advisor: integrated circuit design(1988)

CLEER: placement of antennas on military ships (1992)

SEDAR: civil engineering (1995)

Design environment JANUS: kitchen design (1989)

50

FRAMER: user interface window layout (1989)

KRI/AG: graphical user interface design (1992)

VDDE: voice dialog design (1993)

Programming PROLOG Explaining: explanation of PROLOG code (1984)

Lisp-Critic: writing LISP programs (1987)

GRACE system: COBOL programming (1990)

Software engineering KATE : software specifications (1988)

Argo family: software development (1996)

We will not describe these critics because the details can be found in (Fischer,

Lemke, & Mastaglio, 1991; Fischer, Lemke, Mastaglio, et al., 1991; Irandoust,

2006; Miller, 1986; Oh, et al., 2008; Robbins, 1998; Silverman, 1992). Our

objective is to show that critics are applicable to various domains and problems have

proved to be one of the effective mechanisms in providing feedback to users.

However, in Chapter TWO, we described several key related works in critics.

4.3.2 Critiquing Approach

The Critiquing Approach is the second group our taxonomy. Elements in this group

are comparative and analytical critiquing. Critiquing is a way to generate valid

reasoning about a product or action (Fischer et al. 1991). Reports and articles from

(Fischer, Lemke, & Mastaglio, 1991; Irandoust, 2006; Oh, et al., 2008; Qiu &

Riesbeck, 2008; Robbins, 1998; Silverman, 1992) have identified that critic tools

commonly use a comparative critiquing, analytical critiquing or both as their

critiquing approaches.

In a comparative critiquing approach (Fischer, Lemke, & Mastaglio, 1991; Robbins,

1998) , complete and extensive domain knowledge is essential to generate good

solutions. When a user recognizes potential problems in a design, the critic tool will

then produce an optimal result from the predefined solutions in the system. The

user-proposed design is then compared with the system‟s solution. The comparison

will result in a report of the differences between the two solutions. Robbins (1998)

points out that a comparative approach can cause difficulties when several good

solutions exist and each of the solutions are different from each other. Furthermore,

certain domains allow radically different but equally valid solutions (Fischer et al.,

51

1991). A user also can be discouraged if the system generates its solution without

recognizing the user‟s solution approach. As Fischer et al (1991) point out the critic

can only declare that the system solution accomplishes good results if the user and

system‟s solutions differ in a fundamental way. However, it cannot clarify why the

user‟s solution is less than optimal. In a way, it hinders the exploration of different

alternatives that may be good enough. In addition, Robbins (1998) also states that a

comparative approach can direct users to make their work like the one that the

system proposed (Robbins, 1998). Hence, this approach guides the user to a known

solution (Robbins, 1998). Besides, the critics authoring is relatively intuitive and

straightforward for this approach because it allows authors to write down problems

and answers and the system will takes care of comparison and feedback generation

(Qiu & Riesbeck, 2008). For example, TraumaTIQ (Gertner & Webber, 1998)

supports a physician‟s treatment planning. TraumaTIQ interprets the physician‟s

goal treatment plan, evaluates the inferred plan structure by comparing it to the

system‟s recommended treatment plan, and finally generates a critique that

addresses potential problems (Gertner & Webber, 1998).

In an analytical approach (Fischer, Lemke, & Mastaglio, 1991; Robbins, 1998), as

long as the domain knowledge is sufficient then solutions can be generated. Hence,

this approach can be applied in domains where knowledge is incomplete. In general,

this approach uses rules to detect potential problems in the design and change them

into assistance opportunities (Robbins, 1998). Thus, in a way it guides the user

away from recognised problems (Robbins, 1998). Unlike comparative critiquing,

this approach does not generate solutions on its own but instead analyses the user-

proposed solution to identify any potential problems via set of rules.

It is not easy to author critics in an analytical approach though it is applicable in a

broad range of domains. This is because one needs to write rules for all the problems

in all situations (Qiu and Riesbeck, 2008). Thus, as Fischer et al. (1991) state,

analytical critics can be built incrementally and applied throughout the design

process. According to Oh et al. (2008), analytical critiquing supports exploratory

problem solving better than comparative critiquing does because design problems

rarely have one right answer. For instance, Argo is an analytical critic tool that uses

52

analysis predicates, goal and decision type attributes to identify undesirable designs

and then generates feedback items with more kinds of design context, such as

providing contact information for relevant experts and stakeholders (Robbins &

Redmiles, 1998).

One critic tool that applied both of these critiquing approaches is UIDA (User

Interface Design Assistant). UIDA is a system that critiques user interface window

layouts (Bolcer, 1995). UIDA performs analytical critiquing by applying 72 style

rules written in an OPS5-like language and comparative critiquing via recording and

comparing the particular set of rules satisfied by each layout (Bolcer, 1995).

According to Irandoust (2006), the choice of a critiquing approach depends largely

on application domain, the characteristics of the task it supports and the cognitive

support needs of the user. The differences of these two approaches are summarised

in Table 4.4.

Table 4.4: Differences between comparative and analytical critiquing.

Comparative critiquing Analytical critiquing

 Requires a complete and extensive

domain knowledge to generate a solution

 Does not require a complete domain

knowledge to generate a solution

 Uses a differential analyzer (Silverman,

1992)

 Uses rules to detect potential problems

in user-proposed solution (Robbins,

1998)

 Generates its own optimal solution, then

compares it with the user-proposed

solution (Fischer et al, 1991)

 Critiques the user-proposed solution

with respect to predefined features and

effects (Fischer et al.1991)

 Guides the user to known solution

(Robbins, 1998)

 Guides the user away from the

recognized problems (Robbins, 1998)

 More suitable for well-structured

domains (Oh et al, 2008)

 Can be applied to a broader range of

domains (Robbins, 1998)

 Less intrusive More intrusive

 Easy to author critics It is not easy to author critics

 Example of tools: ATTENDING,

TraumaTIQ

 Example of tools: JANUS, Argo

53

4.3.3 Modes of Critic Feedback

The third group in our taxonomy is the Modes of Critic Feedback. Elements in this

group consist of textual, graphical and 3D visualisation, and multi-modal. Presenting

critic feedback (Irandoust, 2006) (also known as feedback or critiques) is another

element to be considered in the design of a critic tool. Most critics provide critic

feedbacks in textual messages. However, graphics can be used as well for presenting

critic feedback. Silverman and Mehzer (1992) point out that critic feedback should

be textual and visual because it usually provides the most effective results. Thus,

critic designers/developers should use visual wherever possible to deliver critique

instead of text. Oh et al. (2008) recognise three modes used for presenting critic

feedback in existing critic tools: text messages, graphic annotations and three

dimension (3D) visualizations. Text message refers to a critique that is presented in

a written form. Graphic annotation refers to a critique that is presented in a graphical

form. 3D visualizations involve critiques that are presented via images, or diagrams

in a three dimension format. We add another element in this group i.e. multi-modal

mode to include animation, sound, and maybe movies to represent critiques.

Several researchers have explored the combination of textual, graphic and 3D

visualizations for critique presentation in their critic tool. For instance, Oh et al.

(2004) develop Design Evaluator; a pen-based critic tool that generates critiques and

displays them in textual and visual format. The Design Evaluator involves two

design domains: architectural floor plans and Web page layout design. These two

design domains have different methods of displaying critiques. The Architectural

Design Evaluator display critiques in three ways: as text messages, annotated

drawings and texture-mapped 3D models. When a designer selects a text message

critique, the tool shows the critiques in two other forms, such as graphic annotation

on a designer‟s floor plan diagram and generates a 3D texture-mapped VRML

(Virtual Reality Model Language) model that shows the path via the floor plan. The

Web page Design Evaluator also generates text critiques which are linked to visual

critiques via sketch annotation and design examples or cases. Similarly, de Souza et

al., (2000) present the Annotation Based Cooperative Diagram Editor (ABCDE)-

Critic, a system that has a construction kit to support UML class diagrams, a

54

hypermedia system, and a critic system. Apart from the textual critiques, ABCDE-

Critic provides graphic annotation on a UML class diagrams, such as mark (and

unmark) in a different colour on the diagram elements that are detected as

error/problem (de Souza et al., 2000). Stove (1994) developed the PetriNED (Petri

Net EDitor) prototype to prove that visual critiques are possible. PetriNED (Petri

Net EDitor) is a design environment supporting the design of Petri Nets. For

example, a user constructs a Petri net model of a communication protocol. During

the model construction, the user violates the „alignment critics‟. Thus, the tool will

notify the user about the error by drawing lines between the involved objects in the

model.

A number of critic tool researchers argue that communicating design information in

a mixture of graphical critiques with text critiques is likely to be more effective than

selecting one mode (Oh et al., 2004, Silverman & Mehzer, 1991).

4.3.4 Critic’s Rule Authoring

The fourth group in the taxonomy is the Critic Rule Authoring. Elements in this

group are: insert new critic rule, modify critic rule, delete critic rule, enable and

disable critic rule, and critic rule authoring facility. Critic rules are one of the

important components in building critics. In general, critics are composed of a single

rule or groups of rules (or procedures) to evaluate different aspects of a product or

design in a domain (Fischer, Lemke, & Mastaglio, 1991). Thus, critic rules have to

be written for an individual product or design as well as for the critic system as a

whole. According to (Oh, et al., 2008), critic rules are normally written in advance

by the system designers to develop a critic system. It is often hard or impossible for

a user to modify the existing rules or add new critic rules after the critic system is

deployed (Oh, et al., 2008; Qiu & Riesbeck, 2004). However, as Irandoust, (2006)

and Oh et al., (2008) pointed out, critiquing capacity and issues may need to be

adjusted from time to time in various situations. Furthermore, (Fischer, Lemke,

Mastaglio, et al., 1991) emphasis that users should not be required to have

comprehensive programming knowledge in order to perform the modification of

critic rules. For these reasons it is important to allow users to understand the critic

55

rules and be able to modify and expand the rules by authoring new rules to

incorporate in a critic system.

Riesbeck and Dobson (1998) and Qiu and Riesbeck (2003, 2004, and 2008) have

explored the issue of authoring critic rules for educational critic system. Riesbeck

and Dobson (1998) developed INDIE (Investigate and Decide) systems, an

authoring tool for intelligent interactive education and training environments. It

allows users (teachers) to author and control the critic rules (Riesbeck and Dobson,

1998). Qiu and Riesbeck (2004) developed an educational critic tool for Java

programming, called Java Critiquer. They explored the question of how users can

author critic rules. Their Java Critiquer system provides authoring capability, so that

users (teacher) can check or modify the critiques in addition to the feedback that

Java Critiquer generates (Qiu & Riesbeck, 2004). The tool also allows teachers to

gradually enter and update critic knowledge during real use of the system.

Some of the tools that allow for customization of critic rules include ArgoUML,

IDEA, Design Evaluator, and ABCDE-Critic. For instance, ArgoUML (Robbins and

Redmiles, 1998) provides a class framework, source code templates and examples to

support critic implementers. Authoring a new critic requires selecting a starting

template, filling in relevance and timeliness attributes, coding an analysis predicates

and writing a headline and brief description (Robbins & Redmiles, 1998). In IDEA

(Bergenti & Poggi, 2000), the engineer can provide new patterns and new rules to

select and fire new critics. Similarly, the Design Evaluator (Oh et al., 2004) allows

an end-user (designer) to inspect and edit the rule expressions which are stored in a

list. ABCDE-Critic (de Souza, et al., 2000) also allows the user themselves to add

critics to the critic system, through its first-order production system.

The capability of rule authoring is to enable end-user designers to construct and

store their own critic rules (Oh, et al., 2008). A rule authoring facility will allow

critics to deal with various conditions and authorises end-user designers to add to the

system‟s feedback process (Oh, et al., 2008).

56

4.3.5 Critic Realisation Approach

The Critic Realisation Approach is the fifth group in our taxonomy. This group is

about implementing critics by using specific approaches. In order to support critic

development, several approaches have been applied to designing and realising

critics. Critics implementation in various domains uses a variety of approaches as

outlined below.

 Rule-based approach.

Critics implemented with a rule-based approach consist of a condition and an

action. Rules are defined using the IF-THEN format. The IF part of a rule is

a condition (also called a premise or an antecedent), which tests the truth

value of a set of facts. If the condition is true, then the THEN part of the rule

(also called the action) is performed. Actions can include suggestions,

explanations, argumentations, messages or precedents of problems. Rules in

a rule-based approach are also known as production rules. They tends to be

easy to use and to understand once implemented(Tyugu, 2007).

For instance, ABCDE-Critic (de Souza, et al., 2000) uses rule-based

expression to specify critics that comment on UML class diagram-based

designs. The critic tool invokes critics when a condition clause is found to be

true in the current design parts warning a user that the design possibly have

error (de Souza, et al., 2000). It was stated that the rules can be coded in

Java, JEOPS (Java Embedded Object Production System), or Prolog,

according to the critic type (de Souza, et al., 2000).

 Knowledge-based approach.

In general, a knowledge base contains set of rules and associations of

compiled data which most often take the form of IF-THEN rules (production

rules). The knowledge base represents the most important component of a

knowledge-based system. The format of the knowledge refers to how this

knowledge is represented internally within the knowledge base system so

that it can be used in problem-solving. Several knowledge representation

schemes that are commonly used: predicate, rules, frames, associative

networks and object.

57

For instance, FRAMER (Robbins, 1998) enables designers to develop

window-based user interfaces on Symbolics Lisp machines. FRAMER‟s

knowledge base contains design rules for evaluating the completeness and

syntactic correctness of the design as well as its consistency with interface

style guidelines. In another example, the IDEA (Interactive Design Assistant)

tool (Bergenti & Poggi, 2000) produces design pattern critics implemented

with Prolog rules that are directly integrated with a knowledge base. Bergenti

and Poggi (2000) stated that the knowledge base of IDEA is comprised of a

set of design rules, corresponding critics, and a set of consolidation rules.

However, the rules for creating the pattern-specific critics are not easy as it

requires a high-level of understanding of design patterns and detailed

knowledge of the Prolog and knowledge base structures. Furthermore,

Robbins and Redmiles (1998) point out that a knowledge-based approach is

more appropriate for design support where the user may lack needed

knowledge.

 Pattern-matching approach.

According to (Trochim, 1989), a pattern “is any arrangement of objects or

entities.” A pattern matching process often involves an attempt to relate two

patterns where one is a theoretical pattern and the other is an operational one

(Trochim, 1989) or it can consists of left-hand side and right-hand side rules.

The most common form of pattern matching involves strings of characters.

In many programming languages, a particular syntax of string is used to

represent regular expressions, which are patterns describing string characters.

For instance, the Java Critiquer tool performs automatic critiquing using a

pattern matching approach (Qiu & Riesbeck, 2008). When a pattern is

matched, its corresponding critique is inserted right below the problematic

Java source code. Two types of patterns are supported in this tool: general

regular expressions and JavaML patterns. Regular expression patterns are

practical for short text segments and can be used directly to the Java source

code. However, according to (Qiu & Riesbeck, 2008), regular expressions

can become quite difficult. Thus, a built-in pattern editor is provided to

support teachers in the incremental authoring of patterns. The authoring of

58

JavaML patterns can be more direct and simpler compared to regular

expression. Qiu and Riesbeck (2008) claim that the critic rules in the Java

Critiquer are written in a type of XML format called LMX (language for

Mapping XML). The left-hand side of a rule is a LMX pattern and the right-

hand side of a rule is a critique. The “pattern matcher” matches the patterns

in the rules against the JavaML code, and returns a list of triggered critiques

(Qiu & Riesbeck, 2008).

Figure 4.2 shows an example of a critic rule written using this pattern

matching approach.

Figure 4.2: Critic rule using pattern-matching approach (Qiu&Riesbeck 2008).

 Predicate Logic.

According to Tyugu (2007), predicate logic is based on the idea that

“sentences (propositions) really express relationships between objects as well

as qualities and attributes of such objects (can be people, other physical

objects, or concepts).” Such relationships or attributes are called predicates.

The objects are called the arguments or terms of the predicate. The use of

terms allows a predicate to express a relationship about many different

<lmx:pattern>
 <lmx:lhs>
 <if srcEnd=”$srcEnd1;”>
 <test srcBegin=”$srcBegin;” srcEnd=”$srcEnd;”>
 <lmx:extension class=”lmx.extension.SegmentMatch”/>
 </test>
 <true-case>
 <return><literal-boolean value= “true”/></return>
 <true-case>
 <false-case>
 <return><literal-boolean value= “false”/></return>
 <false-case>
 </if>
<lmx:lhs>
<lmx:rhs>
 <critique pos= “$srcEnd1;”>
 <text>
 There is more code than you need to write. You already have a boolean value. Just write
<code>return <srcCode srcBegin= “$srcBegin;” srcEnd= “$srcEnd;”/>;</code> instead. You never
need to write an IF to return true in one case and false in the other.
 <text>
 </critique>
 </lmx:rhs>
</lmx:pattern>

59

objects rather than just a simple object (Tyugu, 2007). By using predicates

we can express more complex statements about the world than we could with

propositions. Predicates can also be used to represent an action or an action

relationship between two objects (Tyugu, 2007).

One example of critic tools that applies predicates approach is the Design

Evaluator (Oh et al., 2004). The Design Evaluator contains three layers

known as Description, Evaluation, and Visualization. The Evaluation layer

evaluates sketches with predicates that embody design rules. The tool

compares the recognized spatial information with each rule. If it finds a rule

violation, it generates a design critique to be displayed in the Visualization

layer (Oh et al., 2004).

In the Evaluation layer, rules are coded as Lisp predicates that apply to the

design objects. The rule expressions are stored in a list that the end user

(designer) can inspect and edit. Figure 4.3 shows the example of a rule for

architectural floor plans domain.

Figure 4.3: Rules for architectural floor plans using predicate style (Oh, et al.,

2004).

 Rule statement: A ward be no smaller than 10,000 area units

A minimum area rule: express a minimum area requirement about a
specific room.
(<Minimum-area><room><minimum-size>)

(<MINIMUM-AREA WARD 10000)

 Rule Statement: typical room placement in hospital design that states
ER, TRIAGE, CLINICAL-FOR-OUTPATIENT, and DAYWARD should be
placed in the CLINICAL-ZONE

A room placement rule: all rooms in the list inside the inner
parentheses should be in (or not in) the given zone.
 (<Placement-rule>

<Zone>(<Room><Room><Room>...))

60

 Object constraint language (OCL) expressions

According to (Kleppe & Warmer, 2002), Object Constraint Language (OCL)

is a language that offers ways to specify the semantics of an object-oriented

model in a very accurate style. The semantics are expressed in invariants and

pre-and-post conditions, which are all types of constraints (Kleppe &

Warmer, 2002). OCL can be used to construct logical expressions that access

attributes, invoke operations, navigate along associations, and manipulate

collections (Cook et al., 1999). A research of model checking by (Bezivin &

Jouault, 2006) demonstrates the use of OCL to express constraints via a

simple domain-specific language (DSL) called Class Diagrams (CD).

(Bezivin & Jouault, 2006) argue that OCL needs extensions to support

additional elements such as the severity of a constraint attached to

constraints. A severity is a representation of a flaw degree in a problem that

can be classified either as an error, a warning or a critic (Bezivin & Jouault,

2006). Thus, in their CD example, they show how a critic is expressed using

an OCL expression. Figure 4.4 shows the examples of critics using OCL

expressions (Bezivin & Jouault, 2006).

Figure 4.4: Critics written in OCL expressions (Bezivin & Jouault, 2006).

 Critic statement: the name of Classifier must be unique within its package

OCL expression:

Context Classifier

Inv: not self.package.contents->exists (e|(e <> self) and (e.name =

self.name))

 Critic statement: the name of a Classifier should begin with an upper case

letter.

OCL expression:

Context Classifier

Inv: not (let firstChar: String = self.name.substring(1,1) in firstChar <>

firstChar.toUpper())

61

 Programming code.

Critics can also be designed and realised through the use of programming

code. For instance, critics in Argo/UML (Robbins & Redmiles, 2000) are

coded as Java classes sub-classed from class Critic. Class Critic defines

several methods that may be overridden to define and customize a new critic.

Each critic‟s constructor specifies the headline, problem description, and

relevant decision categories. The central method is a predicate that accepts a

design element to be critiqued and returns true if a problem is found

(Robbins and Redmiles, 2000). RevJava (Florijn, 2002) is another tool that

implements critics via programming code, i.e. Java class files. The tool is

used to analyse and critique object oriented software.

4.3.6 Critic Dimension

The sixth group in our critic taxonomy is the Critic Dimension. Critics can be

classified by various dimensions. The elements within this group are based on

Fischer‟s suggestion (Fischer, 1989). Report and articles from Qiu and Riesbeck

(2008), Oh et al. (2008), Irandoust (2006) and Robbins (1998) support Fischer‟s

suggestions on critic classification dimensions. Our taxonomy‟s critic classification

dimensions are shown in Table 4.5.

Table 4.5: Critic dimensions (Fischer, 1989).

Critic dimension Brief description

Active critics Continuously critique the user‟s design/work

Passive critics Wait until the user asks for a critique

Reactive critics Critique the design/work that the user has done

Proactive critics Guide the user by presenting guidelines before

the user makes a decision

Local critics Critics that evaluate individual design elements

Global critics Critics that consider interactions between most

or all of the elements in a design

In a critic development, a critic designer has to consider using active critics, passive

critics or both in their tool. An active critic (Fischer, 1989) usually continuously

62

monitors user tasks, warns the user as soon as a critic rule is violated and then offers

critic feedback (a critique). An active critic makes users aware of their unsatisfactory

design/work when the potential problem is easy to correct. However some users may

find it a distraction to have something continuously criticise them without giving

them a chance to develop their own design/work and corrections.

In contrast to active critics, a passive critic (Fischer, 1989) only works when a user

asks for a check of critic rule violation. In this scenario, after the user completes

preliminary design/work, the user then asks for evaluation of the design/work.

Passive critics are less intrusive compared to active critics because they allow the

user to control when to activate the critics. The problem with passive critics is that

most of the time, the user does not activate them early enough to prevent potential

problems (Qiu&Riesbeck, 2008). Fischer (1989) remarks that active critics are

suitable for guiding novice users and passive critics seem to be good for

intermediate users.

ArgoUML provides active critics when a user attempts to draw a design diagram.

For example, when a user selects a new class to place in the class diagram design,

several critics fire to indicate that part of the design has been started, but not yet

finished. Java Critiquer uses passive critics because as Qiu and Riesbeck (2008)

stated that it is not a requirement to avoid students from making mistakes. Thus,

Java Critiquer provides such an opportunity for learning and allows students to

concentrate on their programming tasks without interruption (Qiu and Riesbeck,

2008).

Apart from active and passive critics, there are critic tools that use either reactive or

proactive critics. A reactive critic (Fischer, 1989) provides critiques on the user‟s

accomplished design/work, whereas a proactive critic attempts to lead the user

before the user makes a specific decision. Similar to these two critics are the critic

dimensions suggested by Silverman (1992): before, during and after. Silverman‟s

before critic is similar to Fischer‟s proactive critic. During and after critics can be

viewed as Fischer‟s reactive critics. However, a during and after critic is different in

terms of whether a user‟s work is completed or not. The SEDAR (Fu et al., 1997)

63

tool adopts Silverman‟s dimensions and takes all three strategies: before (error

prevention), during (design review critic, design decision) and after (error

detection). The HeRA tool (Knauss, et al., 2009) provides proactive support because

while a user is typing the requirements, it analyzes the input and warns the user of

any ambiguities or incomplete specification detected.

Finally, critics can be classified as either local or global critics. Local critics

(Fischer, 1989) are critics that evaluate individual design elements and global critics

(Fischer, 1989) involve the interactions between most or all of the elements in a

design. For instance, the HeRA tool (Knauss, et al., 2009) provides users with local

and global critics. According to ((Knauss, et al., 2009), the local critics of the tool is

concerned with the current focus of the requirements editor (i.e. requirements, use

cases, and a glossary), while global critics allow users to analyse a global

perspective in terms of list of all critiques and inference of global process diagrams

(i.e. UML Use Case Diagram, Event-driven Process Chain models, and Use Case

Point View).

4.3.7 Types of Critic Feedback

The next group in our taxonomy is the Types of Critic Feedback. There are ten

elements in this group: explanation, argumentation, suggestion, example (or

precedent), interpretation, simulation, demonstration, positive feedback, negative

feedback, and constructive feedback. There are many ways to present critic feedback

(Irandoust, 2006) (also known as feedback) in a critic tool. Oh et al., (2008)

describes the types of critic feedback as one aspect of the critic‟s intervention

techniques. Critic tools can offer critic feedback to users by choosing the appropriate

techniques from the ten elements. However, the most widely used techniques are

explanation, suggestion, and argumentation.

The explanations technique is widely used in most critic tools. Explanation as

defined in the Cambridge dictionary is “details or reasons that someone gives to

make something clear or easy to understand”. Thus, critiques provided by a critic

tool must produce explanations so that user has the chance to assess the details and

reasons before making a decision as whether to accept the critique generated by the

64

tool. The explanations can be focused on the violations of general guidelines or the

differences between the user‟s design solution and system‟s solution (Fischer et al,

1991). Having an explanation facility is also needed to show the correctness and

usefulness of the critic tool‟s recommendation (Irandoust, 2006). Furthermore, it is

essential to validate a critique via explanation because without valid details or

reasons, a user will not accept the critique. In a way, it shows the user acceptance

towards the critiques generated by the critic tool.

The explanation provided by a critic tool can be in simple or in-depth explanations.

A simple explanation component normally provides pre-stored text explanations. In

detailed explanations, hypertext techniques have been shown to be very efficient for

providing contextualization explanations (cf. Irandoust, 2006). Fischer and

colleagues contribute the incorporation of hypertext into critic‟s feedback loop and

the creation of what they call “minimalist explanation”(Fischer et al., 1990). Via

hypertext jumps, the user can obtain more in-depth explanations. Explanations too

can be represented textually visually or both.

Argumentation is another option for offering critic feedback. It is also another

mechanism for explanation where it can contain issues, answers, and arguments

about a product or design domain. A user, who may not understand critiques offered

by a critic tool, may want to know more information about the critiques. Thus, via

an argumentation component, the user can obtain the required information to justify

the critique. Examples of critic tools that provide an argumentation style are Indie

(Riesbeck & Dobson, 1998), ABCDE-Critic (de Souza et al., 2000) and HeRA

(Knauss et al., 2009). These tools are developed for the domains of education

learning, object-oriented analysis and design, and requirements engineering.

Indie (Investigation and Decide) is an authoring tool that provides support for the

intelligent interactive education and training environments. The authoring tool helps

authors (i.e. teachers) to create knowledge bases for critiquing student arguments.

Basically the student‟s argument is compared against the argument model via the

Indie Critiquer modules. One of the knowledge bases in the Indie tool has argument

models with the purpose of describing what makes good and bad arguments for

65

every possible decision. The argument contains a claim about a scenario, and a set of

evidence which hold scenario facts. The ABCDE-Critic (de Souza et al., 2000)

incorporates an argumentative hypermedia system to provide in-depth explanation

for user that does not understand or wants more information about critics. The

argumentation component contains issues, answers and arguments about the design

domain (de Souza et al., 2000). Likewise, HeRA (Knauss et al., 2009) facilitates its

computer-based critiques via the argumentation component. The argument

component allows users to adhere to warnings or to argue against them (Knauss, et

al., 2009).

Some critics offer suggestions to change the user‟s solution. The suggestion style

approach is also known as solution-generating critics (Fischer, Lemke, & Mastaglio,

1991) which are capable of suggesting alternatives to the user‟s solution. An

example is the JANUS system, where a simple problem detecting critic points out

that there is a stove close to a door. Another option is to provide examples

(precedents) to support critics. Examples are a way of helping users to understand

something by showing them how it is used. For example, the Design Evaluator (Oh

et al., 2004) provides an exemplar Web page for the designer to look at when a

critique is selected.

Another option for presenting critic feedback is either to provide positive or negative

feedback. A positive feedback provides a critique in a praising way when a user

produces a good design/solution. A negative feedback is a complaint when a user

produces a poor design/solution. Positive and negative feedback is actually related to

how humans make decisions because humans tend to judge/evaluate something

based on advantages and disadvantages, pros and cons. In PetriNED (Stolze, 1992),

positive critiques are delivered in a graphical way and close to the user‟s focus of

attention. This is helpful to those users who are interested in obtaining positive

feedback.

Apart from the styles stated above, critic feedback can be presented through the use

of a simulation component or demonstration (e.g. JANUS, HeRA), interpretation

(Nakakoji et al. 1993), and constructive feedback (ArgoUML). A mixture of styles

66

in presenting critic feedback (critique) certainly facilitates users/designers to clarify

their understanding, as well as improve their knowledge.

4.3.8 Critic Types

Finally, the last group in our taxonomy is the Types of Critic. Critics can be

classified according to the type of domain knowledge that they present (Robbins &

Redmiles (1998); Robbins (1998)). Thus, the Critic Domain group and this group

complement to each other. Table 4.6 shows a list of critic types we define in our

taxonomy.

Table 4.6: Critic types

Critic type Description

Correctness critics detect syntactic and semantic flaws (Robbins & Redmiles, 1998)

Completeness critics remind the designer to complete design tasks (Robbins & Redmiles,

1998)

Consistency critics point out contradictions within the design (Robbins & Redmiles,

1998)

Optimization critics suggest better values for design parameters (Robbins & Redmiles,

1998)

Alternative critics prompt the architect to consider alternatives to a given design

decision (Robbins & Redmiles, 1998)

Evolvability critics address issues such as modularization, that affect the effort needed to

change the design over time (Robbins & Redmiles, 1998)

Presentation critics Look for awkward use of notation that reduces readability (Robbins

& Redmiles, 1998)

Tool critics inform the designer of other available design tools at the times when

those tools are useful (Robbins & Redmiles, 1998)

Experiential critics provide reminders of past experiences with similar designs or design

elements (Robbins & Redmiles, 1998)

Organization critics express the interest of other stakeholders in the development

organization (Robbins & Redmiles, 1998)

Pattern critics Improve a design via design patterns (Bergenti & Poggi, 2000)

Structure critics detect problems that involves structural properties (Coelho &

Murphy, 2007)

Naming critics identify potential sources of confusion introduced by names (Coelho

& Murphy, 2007)

Metric critics Report when the number of occurrences of some aspect of a design is

beyond normal values (Coelho & Murphy, 2007)

67

According to Robbins (1998) critic types are descriptive rather than definitive. In

fact, new categories can be defined based on the application domain. For instance,

IDEA (de Souza et al., 2000) offers pattern-specific critiques to assist the architects

in finding and improving the realisations of design patterns in UML designs.

Similarly, (Coelho & Murphy, 2007) define three categories of critics: structure

critics, naming critics and metric critics for the ClassCompass tool.

4.4 Applying the Taxonomy

In this section, we apply our new critic taxonomy to position several critic tools

within the critic domain. Several systems and tools that adopt or implement the critic

concept have been identified and selected randomly regardless of whether they are

research prototype tools, commercial tools or open source tools. We apply our

taxonomy to this set of tools which has been shown previously in Table 4.2. We

briefly explain each of the tools in the following section and characterise them with

our taxonomy dimensions.

4.4.1 ArgoUML (Robbins and Redmiles, 2000)

ArgoUML (Robbins&Redmiles, 2000, http://argouml.tigris.org) is an object-

oriented design tool using the Unified Modeling Language (UML) design notation.

It is a design critic tool that supports several identified cognitive needs of software

designers. Figure 4.5 shows the ArgoUML user interface.

Figure 4.5: The ArgoUML user interface.

http://argouml.tigris.org/

68

As Robbins and Redmiles (2000) state “design critics are agents that check the

design for potential problem” (Robbins & Redmiles, 2000). Thus, ArgoUML has

predefined agents, called critics, that are constantly checking the current model

designed by software designers. The critic will generate a ToDo Item (as a critic

feedback item or a critique) in the ToDo list if the conditions for causing a critic

occurred. The ToDo Item (as shown in Figure 4.5) is presented in a constructive

manner and this is very helpful to software designers because it contains an

explanation of the problem, some suggestions about how to resolve the problem, and

if there exists one, a wizard which assists the designer resolve the problem

automatically. In addition, a ToDo item generated by a critic will remain in the

ToDO list until the cause of the problem is removed either manually by the designer

or by following the actions suggested by the tool‟s wizard. We can say that,

Argo/UML‟s ToDo list is practical because it reduces the designer‟s reliance on

short-term memory and offers convenient ways to organise and browse items.

The critics in ArgoUML are not intrusive, since the user can disregard them

completely or disable one or all of them via the critics‟ configuration menu. Critics

in ArgoUML are not user defined, since they all are implemented as Java classes and

are compiled as part of the tool. However it does provides a class framework, source

code templates and examples to facilitate the critic implementation process (Robbins

& Redmiles, 2000). Thus, adding new critics is done by modifying the source code

and this will require Java expertise. Details of ArgoUML can be found at this link:

http://argouml.tigris.org/. Figure 4.6 shows the mapping of the ArgoUML tool to the

critic taxonomy. Items in blue represent the element supported by the ArgoUML

tool.

http://argouml.tigris.org/

69

Critic

Domain:

Software

engineering

(UML

designs)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension

visualisation

modify critic

rule

knowledge-
based

passive argumentation completeness

multi-modal delete critic
rule

predicates reactive suggestion consistency

 enable/disable

critic rule

pattern-

matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive

feedback
tool

 negative
feedback

experiential

 constructive

feedback

organisation

 design

pattern

 structural

 naming

 metric

Figure 4.6: The mapping of the ArgoUML tool to the critic taxonomy

4.4.2 ABCDE-Critic (de Souza et al., 2000)

An environment called Annotation Based Cooperative Diagram Editor (ABCDE)-

Critic (de Souza et al., 2000), adopts critics to check UML class diagrams. ABCDE-

Critic is a Domain Oriented Design Environment (DODE) for object-oriented

analysis and design, which implements a group critic system. The environment

implements a construction kit supporting UML class diagrams, an argumentative

hypermedia system, and a critic system. ABCDE-Critic uses rule-based expressions

to specify critics that comment on UML class diagram-based designs. The critic

system in ABCDE-Critic fires critics when the condition clauses are found to be true

in the current design parts warning the designer that the design may possibly have a

problem/error. The critic‟s properties in ABCDE-Critic are: 1) critic‟s name, 2)

critic state (active, passive, disable), 3) a quick critic explanation, 4) an

70

argumentation which is a critic more in-depth explanation, 5) critic importance, 6) a

set of rules, and 7) a set of solutions.

In ABCDE-Critic, critic feedbacks are presented as annotations attached to the

diagram elements that trigger the critic to fire. These annotations are also displayed

to all other designers who are owners of these diagram elements. The critic feedback

in ABCDE-Critic is displayed in two views. The first view is where the “Things to

take care of” window pops up and display the critic name and its quick explanation

in a list box. The second view is where the annotations created for the diagrams

being constructed are displayed in the graphics interface component known as

annotation column. The ABCDE-Critic uses a Design Rationale (DR) model to

record the justification behind the design decision made during object-oriented

analysis and design activities. Designers can define and control the critic‟s state

(active, passive, disable) when necessary. ABCDE-Critic allows the designers

themselves to add critics to the critic tool via its first-order production system.

Critics in ABCDE-Critic are normally defined by the critic‟s author or extracted

from the object-oriented design heuristics.

ABCDE-Critic is good critic system in the sense that it supports cooperation among

designers as a means of annotation and warns designers that are involved in the

problem. ABCDE-Critic also allows other designers to just add another alternative

to the set solution of one critic. Thus, designers can communicate with the critiquing

system as a true partner. Figure 4.7 shows the mapping of the ABCDE-Critic tool to

the critic taxonomy. Items in blue represent the element supported by the ABCDE-

Critic tool.

71

Critic

Domain:

Software

engineering

(UML class

diagrams)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension

visualisation

modify critic

rule

knowledge-

based
passive argumentation completeness

multi-modal delete critic

rule

predicates reactive suggestion consistency

 enable/disable

critic rule

pattern-
matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive
feedback

tool

 negative

feedback

experiential

 constructive

feedback

organisation

 design
pattern

 structural

 naming

 metric

Figure 4.7: The mapping of the ABCDE-Critic tool to the critic taxonomy

4.4.3 IDEA (Bergenti & Poggi, 2000)

Interactive DEsign Assistant (IDEA) is a critic system that performs direct

communication with the software architect to propose pattern-specific critiques

(Bergenti and Poggi, 2000). The development of IDEA is designed for automating

the task of finding the realisations of design patterns used in UML diagrams and

then improving the diagrams. The improvement of the design is made through

critics that are presented to software architects. IDEA produces design pattern-based

critics implemented with Prolog rules that are directly integrated with a knowledge

base.

The IDEA approach is that the UML design which is under construction is analyzed

in XMI format and then class and collaboration diagrams are employed to detect all

pattern realisations. If a pattern is detected then it is called detectable, otherwise it is

called undetectable because of incomplete information on the diagrams. When a

72

pattern realisation is discovered, IDEA then examines pattern-specific rules to select

a set of critics to improve the design realisation.

IDEA provides the architect with two lists, the “pattern list” and the “to-do list”. The

“pattern list” contains all patterns that IDEA found in the UML model. There are

eleven patterns detected by IDEA: Template Method, Proxy, Adapter, Bridge,

Composite, Decorator, Factory Method, Abstract Factory, Iterator, Observer and

Prototype. The “to-do list” (the critic feedback) is the list of all selected critics

organized by their importance (high, medium, and low). IDEA allows architects to

control the pattern detection directly through these lists.

As Bergenti and Poggi (2000) point out that the knowledge base of IDEA is

comprised with a set of design rules, corresponding critics, and a set of consolidation

rules. These are maintained dynamically where patterns and rules can be added and

removed when required. However, the rules for creating the pattern-specific critics

are not easy to understand or author as this requires a high-level of understanding of

a design patterns and detailed knowledge of the Prolog and knowledge base

structures. Figure 4.8 shows the mapping of the IDEA tool to the critic taxonomy.

Items in blue represent the element supported by the IDEA tool.

73

Critic

Domain:

Software

engineering

(Design

patterns)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension

visualisation

modify critic

rule

knowledge-

based

passive argumentation completeness

multi-modal delete critic

rule

predicates reactive suggestion consistency

 enable/disable

critic rule

pattern-

matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive

feedback

tool

 negative

feedback

experiential

 constructive
feedback

organisation

 design

pattern

 structural

 naming

 metric

Figure 4.8: The mapping of the IDEA tool to the critic taxonomy

4.4.4 RevJava (Florijn, 2002)

RevJava (Florijn, 2002,) is a tool used to analyse and critique object-oriented

software. According to Florijn (2002), the Revjava design is quite generic and the

implementation operates on compiled Java class files. RevJava acts as an assistant to

Java coders by examining critics that can identify potential design and style

improvements of the Java code. Figure 4.9 shows the interface of RevJava critics.

RevJava components consist of: a model reader, repository, meta-model, property

definitions, critic definitions, property evaluator, metrics database, reporting and

visualisation. The model reader reads in the Java code and saves it in a repository.

The repository is arranged based on a meta-model that identifies all relevant entities

in an OO/Java program. For each meta-model type, information about a model

element (property and critic) can be defined and derived. The property and critic

definition is then loaded into RevJava and can be obtained on request. For example,

74

when a user loads a program, some of the properties are treated as “critics” and

“metrics”. The information collected via critics and metrics then can be manipulated

in different kinds of reporting and visualisations tools. According to Florijn (2002),

visualisations that highlight specific violations in large collections of classes have

been produced. In addition, RevJava also allows Java users to enable and disable

critics by configuring the setting menu. Details of RevJava can be found at this link:

http://www.serc.nl/people/florijn/work/designchecking/RevJava.htm. Figure 4.10

shows the mapping of the RevJava tool to the critic taxonomy. Items in blue

represent the element supported by the RevJava tool.

Figure 4.9: RevJava Critics

(http://www.serc.nl/people/florijn/work/designchecking/RevJavaScreenShots.htm)

http://www.serc.nl/people/florijn/work/designchecking/RevJava.htm
http://www.serc.nl/people/florijn/work/designchecking/RevJavaScreenShots.htm

75

Critic

Domain:

Software

engineering

(Java coding)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension

visualisation

modify critic

rule

knowledge-

based
passive argumentation completeness

multi-modal delete critic

rule

predicates reactive suggestion consistency

 enable/disable

critic rule

pattern-
matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive
feedback

tool

 negative

feedback

experiential

 constructive

feedback

organisation

 design
pattern

 structural

 naming

 metric

Figure 4.10: The mapping of the RevJava tool to the critic taxonomy.

4.4.5 DAISY (de Souza et al., 2003)

Following their work on ABCDE-Critic, de Souza et al., (2003) later developed

another environment called Domain and Application engineering using Integrated

critiquing SYstems (DAISY) that supports the construction of domain engineering

and application engineering models. The main goal of their approach is to support

consistency management in these models (de Souza et al., 2003). Domain

engineering comprises three main activities: 1) domain analysis, 2) domain design,

and 3) domain implementation. However their work is more focused on diagrams

and models that are created during domain analysis and domain design. Application

engineering complements the domain engineering process. It produces software

products based on the domain engineering process.

DAISY was built on top of ABCDE-Critic. DAISY supports consistency checking

of these models through the use of three different critics systems. The first critic

76

system assists the development of feature diagrams and defines seven different

critics. The feature diagrams show the architectural structure of software features. In

this work, DAISY deals with software architecture diagrams and class diagrams.

The second critic system is used during application engineering to assess the UML

class diagrams using object-oriented design heuristics and has about twenty critics.

These two critic systems are used to improve the overall quality of the UML models.

The third critic system detects potential inconsistencies and other errors that might

occur in the mapping between domain model and application model. There are seven

different critics implemented.The contribution of DAISY is the inconsistency

detection in a software engineering model through the use of three critic systems.

Though the number of critics implemented is small it could potentially be further

extended. Figure 4.11 shows the mapping of the DAISY tool to the critic taxonomy.

Items in blue represent the element supported by the DAISY tool.

Critic

Domain:

Software

engineering

(feature

diagrams and

class diagrams)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension

visualisation

modify critic

rule

knowledge-
based

passive argumentation completeness

multi-modal delete critic

rule

predicates reactive suggestion consistency

 enable/disable

critic rule

pattern-

matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive

feedback

tool

 negative
feedback

experiential

 constructive

feedback

organisation

 design pattern

 structural

 naming

 metric

Figure 4.11: The mapping of the DAISY tool to the critic taxonomy.

77

4.4.6 Java Critiquer (Qiu and Riesbeck, 2003)

Qiu and Riesbeck (2003-2004, 2008) demonstrate the development of an educational

critic tool. They develop a critic tool for Java programming, called Java Critiquer.

Java Critiquer is developed by using an incremental authoring approach (Qiu and

Riesebck, 2003-2004, 2008). This critic tool not only supports teachers but also

students. Teachers use the Java Critiquer to critique student java code. Student java

code is pasted into a textbox and then the Java Critiquer performs automatic

critiquing which is done via a pattern matching approach. When a pattern is

matched, its corresponding critique is inserted right below the problematic Java

source code. The teacher then validates these critiques by modifying or removing

inappropriate ones as needed. The teacher can then perform manual critiquing on the

code, after reviewing the critiques generated by the tool. The manual critiquing

complements the automatic critiquing to ensure the quality of tool critiquing in the

early development stage. Java Critquer allows teachers to add new critique or use

the existing critiques in the tool. Critiques are stored in a database and this leads to

reusable critiques (Qiu and Riesbeck, 2004).

Java Critiquer is an effective tool because it supports teachers and students. It helps

the teacher to perform automatic program critiquing and this would reduce their

work in reviewing the student java code manually. Students can get support from

Java Critiquer because they get feedback prior to sending their assignments to their

teacher. Furthermore, students can do self-learning through Java Critiquer. Figure

4.12 shows part of Java Critiquer interface. Figure 4.13 shows the mapping of the

Java Critiquer tool to the critic taxonomy. Items in blue represent the element

supported by the Java Critiquer tool.

78

Figure 4.12: Java Critiquer interface (Qiu & Riesbeck, 2008).

Critic

Domain:

 Education (teaching

Java coding)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension
visualisation

modify critic

rule

knowledge-

based
passive argumentation completeness

multi-modal delete critic

rule

predicates reactive suggestion consistency

 enable/disable

critic rule

pattern-

matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive

feedback

tool

 negative

feedback

experiential

 constructive
feedback

organisation

 design

pattern

 structural

 naming

 metric

Figure 4.13: The mapping of the Java Critiquer tool to the critic taxonomy.

79

4.4.7 Design Evaluator (Oh et al., 2004)

The Design Evaluator is a pen-based critic system for design sketching (Oh et al.,

2004). The aim of Design Evaluator is to assist designers who draw and then justify

their drawings to resolve design problems (Oh et al., 2004). Oh et al. (2004)

demonstrated the sketch based critic system with two applications of the Design

Evaluator: 1) architectural floor plan, and 2) web page layout. The Design Evaluator

has two components where the first component is to allow the system to access the

knowledge about the domains and the second component is to make the system be

able to present critic feedbacks in a proper way. The Design Evaluator supports

designers with critical effective feedback and gives reasoning on their design

sketches. A designer receives the feedback in a form of criticism and advice. The

way the Design Evaluator presents the critic feedback is excellent because critiques

are displayed in various formats: textual, graphical annotation, 3D annotated walk-

through models (e.g. architectural floor plan) and case library (e.g. web page layout).

It is more helpful by its use of more than one format to communicate information

about the design.

The Design Evaluator is composed of three layers: description, evaluation and

visualization. These layers offer different activities performed by the designers. The

description layer captures the sketching data from the designer and applies some

preprocessing steps to generate a design representation. The design representation

will then be used by the evaluation layer. The evaluation layer is composed of rules

coded as Lisp predicates that apply to the design objects. These rules are stored in a

list that the designer can check and edit. Each rule expression is associated with a

text critic, as well as code that specify how to annotate the sketch when the critic is

applied. A rule may also carry additional information to be used by auxiliary

visualization routines such as the VRML model creator (for architecture) or the URL

of a representative example case (for web page layout design evaluator). The

visualization layer then presents critiques (critic feedback) in a form of textual and

visual. The good thing about the Design Evaluator in terms of displaying critiques

is that it provides the ability to link the critiques directly on the design sketch and

this is very useful because it makes the designer remain focused on the sketches

she/he is making. Figure 4.14 shows the mapping of the Design Evaluator tool to the

80

critic taxonomy. Items in blue represent the element supported by the Design

Evaluator tool.

Critic

Domain:

 Design

engineering

 (design

sketching)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension

visualisation

modify critic

rule

knowledge-

based

passive argumentation completeness

multi-modal delete critic

rule

predicates reactive suggestion consistency

 enable/disable
critic rule

pattern-
matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive

feedback

tool

 negative

feedback

experiential

 constructive

feedback

organisation

 design

pattern

 structural

 naming

 metric

Figure 4.14: The mapping of the Design Evaluator tool to the critic taxonomy.

4.4.8 ClassCompass (Coelho & Murphy, 2007)

Coelho and Murphy (2007) develop an educational critic tool for software design,

called ClassCompass. They define ClassCompass as “an automated software design

critique system with critics that comment on high-level design issues rather than

diagram completeness.” ClassCompass is considered as a collaborative software

design tool with the purpose to assist the students as well as the instructors in the

software design activities.

Students use the system to produce software designs based on a set of requirements.

The students can obtain automated feedback (critiques) about typical design

problems while they perform their design task. ClassCompass also allows students

to manually critique other student‟s design task via the menus provided in the

81

system. Thus, students can see and learn the design styles from the critiques

generated by the system as well as from other students (Coelho and Murphy, 2007).

Instructors use an extended version that provides additional features for managing

instructional sessions. Instructors use a Web application to configure ClassCompass

before students take part in the collaborative design tasks. Instructors will specify

the design principles that will be used by students to evaluate designs manually.

Then, the instructor uses the ClassCompass client to automatically exchange designs

between groups of students.

As mentioned above, ClassCompass supports automated critiquing and manual

critiquing. The automated critiquing is executed when a user starts creating their

design models in the system. When a critic finds a potential design flaw, an entry is

added to a list of critiques beside the design diagram. The critics in ClassCompass

are not intrusive, since the user can continue their task if they decide to ignore the

automated critic feedbacks. Furthermore, ClassCompass lets the user select the item

of interest in the critiques box. A detailed explanation of that particular critique is

then presented in the Critique Details box. The critique details text in ClassCompass

is arranged into three parts: 1) Critique-describes the design error, 2) Rationale-

explains why the identified error can reduce software quality, and 3) Suggestion-

provides suggestion to correct the identified error. ClassCompass too can highlight

the relevant part of the design diagram structure to get user‟s attention to the

detected problem. Critics in ClassCompass are implemented in Java as pluggable

classes that check for a particular pattern in an object model representing the design

(Coelho & Murphy, 2007). Figure 4.15 shows the user interface of ClassCompass

with automated critiquing. Figure 4.16 shows the mapping of the ClassCompass tool

to the critic taxonomy. Items in blue represent the element supported by the

ClassCompass tool.

82

Figure 4.15: ClassCompass user interface (Coelho & Murphy, 2007).

Critic

Domain:

 Education (teaching

UML class

and sequence

diagrams)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension

visualisation

modify critic
rule

knowledge-
based

passive argumentation completeness

multi-modal delete critic
rule

predicates reactive suggestion consistency

 enable/disable

critic rule
pattern-

matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive

feedback

tool

 negative
feedback

experiential

 constructive

feedback

organisation

 design

pattern

 structural

 naming

 metric

Figure 4.16: The mapping of the ClassCompass tool to the critic taxonomy.

83

4.4.9 FFDC (Oh et al., 2009)

Flat-pack Furniture Design Critic (FFDC) is a computer-based critic tool that

support design learning in studio settings (Oh et al., 2009). Oh et al. (2009) develop

FFDC using a constraint based design critic program that provides students feedback

with five delivery types and three communication modes. The five delivery types are

interpretation, introduction, example, demonstration and evaluation. The three

communication modes are written comments, graphical annotations, and images. Oh

et al. (2009) points out that their FFDC tool selects specific methods to present

feedback by considering a user‟s knowledge and the critiquing methods that the

program has previously used for the user.

The FFDC is written in Macintosh Common Lisp using OpenGL to provide 3D

models and the Lisa (Lisp-based Intelligent Software Agent) production rule system

to justify a planned furniture design using the stored constraints. FFDC has eight

components: Construction Interface, Parser, Pattern Matcher, Design Constraints,

Critiquing Rules, User Model, Pedagogical Module, and Critiquer. The construction

interface allows a user to perform design sketching via a stylus and digitising tablet.

All sketched glyphs are recorded, a Cartesian coordinate system is defined and a 3D

model is generated (Oh et al., 2009). The parser is used to parse the sketched

diagram and the 3D model to generate two kinds of data: 1) parts and their

properties and 2) configuration of parts. A symbolic representation of the designed

furniture is then saved in text file created by the parser. FFDC uses a set of design

constraints to represent the principles that the designers have to know in designing

furniture. FFDC uses 27 structural constraints and 36 functional constraints which

are stored in the program. The pattern matcher component is used to compare the

symbolic representation of the design against the design constraints to detect any

critic violations. The user model component has of short-term user model and long-

term user model. The short-term user model is to store the results of the pattern

matcher and the long-term user model is to store the history of all violated and

satisfied constraints over multiple critiquing sessions. The pedagogical module takes

input from the short-term and long-term user model. From these user models, it then

decides the specific critiquing methods via the critiquing rules. The critiquing rules

determine which delivery types and communication modes are to be used in certain

84

conditions. For instance, when a designer is recognised as a novice designer, the

pedagogical module will choose „demonstration‟ delivery type rather than „example‟

for the reason that novices normally have trouble to use examples in their designs.

After the critiquing method is selected, the critiquer component presents the critique

to the designer. The critiquer component consists of three modules: 1) text critique-

presents written comments, 2) example finder-selects relevant examples, and 3)

graphic critique- highlights relevant furniture parts and draws graphical annotations.

The FFDC tool offers feedback (critiques) in several ways to users based on their

knowledge and previous used feedback. Figure 4.17 shows the mapping of the

FFDC tool to the critic taxonomy. Items in blue represent the element supported by

the FFDC tool.

Critic

Domain:

 Education (teaching

furniture

design)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule
rule-based active explanation correctness

analytical graphical &

3-dimension

visualisation

modify critic

rule

knowledge-

based

passive argumentation completeness

multi-modal delete critic

rule

predicates reactive suggestion consistency

 enable/disable
critic rule

pattern-

matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive

feedback

tool

 negative

feedback

experiential

 constructive

feedback

organisation

 design
pattern

 structural

 naming

 metric

Figure 4.17: The mapping of the FFDC tool to the critic taxonomy.

85

4.4.10 HeRA (Knauss et al., 2009)

Heuristic Requirements Assistant (HeRA) is a feedback centric requirements editor

to support analysts with information based on several feedback facilities (Knauss et

al., 2009). HeRA was developed to assist the requirements analyst with heuristic

feedback. Requirements analysts receive warnings and hints for any detection of

ambiguities or incomplete requirements specification while typing/writing

requirements.

The HeRA tool consists of three editors and two components: 1) general purpose

requirements editor, 2) use case editor, 3) glossary editor, 4) argumentation

component and 5) simulation component. Requirements are constructed using the

three editors and produced domain specific artifacts i.e. requirements, use cases and

a glossary. The HeRA tool lets users argue with the critiques via the argumentation

component. This can help users to clarify their understanding about the requirements

problem and also leads to improved heuristics feedback in future. The simulation

component provides „what-if‟ analysis and derives three models while the user case

is written: UML Use Case Diagrams, EPC Business Processes, and Use Case Points

Estimations. These models can provide extra information (feedback) to the

requirements author regarding the requirements being documented (Knauss et al.,

2009). In HeRA, heuristics rules are defined in JavaScript and can access the data

model of the requirements editor. HeRA also provides wizards that facilitate

requirements author to generate Java script code for a rule. Rules can be changed

and it applied directly. Thus new critiques are shown immediately. HeRA users have

the option to fix or ignore the critiques offered to them. In general, HeRA offers

different levels of feedback to the requirement analyst using the argumentation and

simulation components. Figure 4.18 shows the mapping of the HeRA tool to the

critic taxonomy. Items in blue represent the element supported by the HeRA tool.

86

Critic

Domain:

 Software

engineering

(requirements

engineering)

Critiquing

Approach

Modes of

Critic

Feedback

Critic Rule

Authoring

Critic

Realisation

Approach

Critic

Dimension

Types of

Critic

Feedback

Types of

Critic

comparative textual insert new

critic rule

rule-based active explanation correctness

analytical graphical &

3-dimension
visualisation

modify critic

rule

knowledge-

based

passive argumentation completeness

multi-modal delete critic

rule

predicates reactive suggestion consistency

 enable/disable

critic rule

pattern-
matching

proactive examples optimization

critic rule

authoring

OCL local simulation alternative

programming

code

global demonstration evolvability

 interpretation presentation

 positive
feedback

tool

 negative

feedback

experiential

 constructive

feedback

organisation

 design
pattern

 structural

 naming

 metric

Figure 4.18: The mapping of the HeRA tool to the critic taxonomy.

4.4.11 Summaries of Comparison

We map the properties and features identified in the above surveyed tools to our

critic taxonomy. There are eight elements in the critic taxonomy and we have

developed eight tables (Table A -Table H) to correspond to each element. The

following eight tables present the application of the critic taxonomy to the ten

systems and tools. If a table entry appears to be empty then it means either it is not

stated in a paper describing the tool or not available in the tool as we experimented

with it.

87

Table A: Critic domain

Critic tools Critics domain

ArgoUML

(2000)

Software engineering-UML designs

ABCDE-

Critic (2000)

Software engineering-UML class diagrams

IDEA (2000) Software engineering- design patterns

RevJava

(2003)

Software engineering-Java coding

DAISY (2003) Software engineering-feature diagrams and class
diagrams

Java

Critiquer

(2003)

Education-teaching Java coding

Design

Evaluator

(2004)

Design engineering-design sketching (floor plans and
web pages)

ClassCompass

(2007)

Education-teaching UML class and sequence diagrams

FFDC (2009) Education-furniture design

HeRA (2009) Software engineering -requirements engineering

As we mentioned earlier critics can be applied in various domains. We selected

randomly ten systems and tools that employ critics described in papers ranging from

the year 2000 to 2009. The year represented for the system/tool is based on the

published paper about the system/tool.

Table A shows there are six tools from the software engineering (SE) domain, three

tools from the education domain and one tool from the design

engineering/architecture domain. The six tools from the SE domain involve critic

domains which are either similar or different to each other. Critics domain for this

six tools are: 1)ArgoUML is on UML designs, 2) ABCDE-Critic is on UML class

diagrams, 3) IDEA is on design patterns, 4) RevJava is on Java software, 5) DAISY

is on domain engineering models (feature diagrams) and application engineering

models (class diagrams), and 6)HeRA is on requirements engineering. There are

three education tools, but two of them focus on the SE domain. The critics domain

for these three tools are: 1) Java Critiquer is on Java program/ source code, 2)

88

ClassCompass is on software design (UML class diagrams and sequence diagrams),

and 3) FFDC is on furniture design. These three education tools support the students

and instructors in a learning environment. Finally, the critics‟ domain for the design

engineering/architecture tool, Design Evaluator is on design sketching (i.e.

architectural floor plan and Web page layout design).

Table B: Critiquing approach

Critic tools/ Critiquing Approach Comparative Analytical

ArgoUML (2000) √

ABCDE-Critic (2000) √

IDEA (2000) √

RevJava (2003) √

DAISY (2003) √

Java Critiquer (2003) √

Design Evaluator (2004) √

ClassCompass (2007) √

FFDC (2009) √

HeRA (2009) √

The critiquing approach is the way that a system/tool uses to generate valid

reasoning to detect any potential problems/mistakes/errors in the user‟s work or

design solution. A finding from Table B is that most tools preferred to use the

analytical approach. Thus, by using analytical critiquing, the system/tool designer

would not require to incorporate comprehensive/complete domain knowledge into

their tools in order to generate a solution for the user‟s work or design solution.

89

Table C: Modes of critic feedback

Critic tools/ Modes of Critic Feedback Textual Graphical &

3-dimension

visualisation

Multi-modal (e.g.

sound, animation,

& movies)

ArgoUML (2000) √ √

ABCDE-Critic (2000) √ √

IDEA (2000) √

RevJava (2003) √ √

DAISY (2003) √ √

Java Critiquer (2003) √

Design Evaluator (2004) √ √

ClassCompass (2007) √ √

FFDC (2009) √ √

HeRA (2009) √

The mode of critic feedback (critiques) concerns the format of feedback to be

displayed for users. From Table C we see that most tools applied the textual, and

graphical and 3-dimension visualisation format to present the critiques. Three tools

only use textual format to present critiques to their users: IDEA, Java Critiquer and

HeRA. The Design Evaluator and FFDC have augmented their critiques modes via

3D visualizations. We believe that displaying visual and textual critiques is expected

to be more effective than selecting only one single mode. Though all the above tools

does not applied the „multi-modal element‟ but it can be considered for future

use/work. Furthermore, it is an advantage to offer critiques in various modes.

90

Table D: Critic rules authoring

Critic tools/ Rule

Authoring

Insert

new rule

Modify

rules

Delete

rules

Enable/disable

rules

Critic rule

authoring

facility

ArgoUML (2000) √ √ √

ABCDE-Critic (2000) √ √ √ √ √

IDEA (2000) √ √ √ √ √

RevJava (2003) √

DAISY (2003) √ √ √ √ √

Java Critiquer (2003) √ √ √ √ √

Design Evaluator (2004) √ √ √ √

ClassCompass (2007)

FFDC (2009)

HeRA (2009) √ √ √ √ √

The capability of critic rules authoring refers to the ability to allow users to: 1)

insert or add new critic rules, 2) modify or edit critic rules, 3) delete or remove

critic rules in the system/tool. This also includes a function to allow users to enable

and disable the execution of critic rules incorporated in the system/tool. The main

part in rules authoring is the facility to let the users author and store their own

critic rules in the system/tool. Findings from Table D, shows that FIVE tools

provide the five functions listed in the table: ABCDE-Critic, IDEA, DAISY, Java

Critiquer, and HeRA. ArgoUML allows the end user to enable/disable rules but

new rules have to be added using Java by a tool developer. The Design Evaluator

allows the end user (designer) to inspect and edit the rules, but a function to enable

and disable critics is not provided in the tool. In contrast to RevJava, which allows

the users to enable and disable critics via its menu option. However RevJava does

not provide the ability for users to add and edit critic rules, as well as facility to

author critic rules. Two tools that do not provide these kinds of facilities are

ClassCompass and FFDC. This is because the critic rules are written in advance by

the system/tool designers to develop the system/tool and the facilities to customize

the critic rules are not provided to the users to perform any changes to the critic

rules.

91

Table E: Critic’s realisation approach

Critic tools/ Critic’s

realisation approach

Rule-

based

Knowledge-

based

Predicates Pattern-

matching

OCL Programming

code

ArgoUML (2000) √ √

ABCDE-Critic

(2000)

√ √

IDEA (2000) √ √

RevJava (2003) √

DAISY (2003) √ √

Java Critiquer

(2003)

 √ √

Design Evaluator

(2004)

 √ √ √

ClassCompass

(2007)

 √ √

FFDC (2009) √ √ √

HeRA (2009) √

Critics‟ realisation approach refers to how critics are implemented or specified in a

system/tool. Literature regarding critics shows that there are several ways to specify

and implement critics. Findings from Table E are that most systems/tools implement

critics via programming code. Rule-based and pattern-matching are another widely

used approach to specify critics. Furthermore, most systems/tools apply more than

one approach to implement critics. OCL is widely used in meta-modelling tools to

specify tool constraints and it can be used to specify critics as reported by Bezivin

and Jouault (2006). However due to the fact that the selected tools are not a meta-

modelling tool, OCL has not been used as an approach to implement critics. A

number of software engineering tools do provide OCL-based critic implementations

(Grundy et al., 2008).

92

Table F: Critic dimensions

Critic tools/ Critic

dimension

active passive reactive proactive local global

ArgoUML (2000) √ √ √

ABCDE-Critic

(2000)

√ √ √ √

IDEA (2000) √ √

RevJava (2003) √ √ √

DAISY (2003) √ √ √ √

Java Critiquer

(2003)

 √ √

Design Evaluator

(2004)

√ √

ClassCompass

(2007)

√ √

FFDC (2009) √ √

HeRA (2009) √ √ √

Critic dimension is one of the aspects that critic designers need to consider when

adopting critics in their system/tool. Findings from Table F are that most tools apply

active and passive critics. The Design Evaluator only provides active critics when

any design sketching activities triggers a critic. Java Critiquer prefers to use passive

critics, as they want students to learn from mistakes when they code their Java

programs. Three tools provide the proactive critics to their users: ABCDE-Critic,

IDEA and HeRA. All tools provide local critics and two tools (i.e. DAISY and

HeRA) offer global critics.

93

Table G: Types of critic feedback

Critic tools/ Types of
critic feedback

Explanations Argumentations Suggestions Examples Interpretations Positive
feedback

Negative
feedback

Constructive
feedback

Simulation Demonstration

ArgoUML (2000) √ √ √ √

ABCDE-Critic (2000) √ √ √

IDEA (2000) √ √

RevJava (2003) √ √

DAISY (2003) √ √ √

Java Critiquer (2003) √ √

Design Evaluator

(2004)

√ √ √ √ √

ClassCompass (2007) √ √ √

FFDC (2009) √ √ √ √ √ √ √

HeRA (2009) √ √ √

The Type of critic feedback refers to the techniques used to present critic feedback to users. The term critic feedback is also known as feedback

or critique. When a critic is triggered to show that there is a potential problem in user‟s work/solution, critic designer have to consider

appropriate techniques to present the critic feedback (critique) to the user. Findings from Table G are that various techniques are employed to

present a critic feedback to the user. The most common techniques applied in all tools are explanations, suggestions and argumentations.

However, a few tools add the richness/power of critic feedback in the form of constructive feedback, positive and negative feedback, examples,

interpretations, simulation and demonstration. Tools that provide multiple critic feedbacks to users are: ArgoUML, Design Evaluator, FFDC, and

HeRA.

94

Table H: Types of critics

Critic tools/
Types of
critic
feedback

Correctness Completeness Consistency Optimisat
ion

Alterna
tive

Evolvabi
lity

Presenta
tion

Tool Experienti
al

Organi
sation

Design
pattern

Structural Naming Metric

ArgoUML
(2000)

√ √ √

ABCDE-
Critic
(2000)

√ √

IDEA
(2000)

√ √ √

RevJava
(2003)

√ √ √

DAISY
(2003)

√ √ √

Java
Critiquer
(2003)

√ √

Design
Evaluator
(2004)

√ √

ClassComp
ass (2007)

√ √ √ √

FFDC
(2009)

√ √

HeRA
(2009)

 √ √

The types of critics refer to the type of critics that are offered by a system/tool to their users. Findings from Table H are that most tools offered

correctness and completeness critics. DAISY, FFDC and HeRA tools provide consistency critics. Tool critics are offered by the ArgoUML and

pattern critics are offered by the IDEA tool. The ClassCompass presents structural, naming and metric critics. The types of critics depend on the

critic domain defined by a system/tool. For that reason, appropriate and relevant critics have to be designed by the critic designer to incorporate

in the system/tool for the user benefit.

95

4.5 Conclusion

We proposed and illustrated a new critic taxonomy based on several aspects that

characterize critics (or critiquing systems). These aspects are gathered widely from

the critic literature. Our critic taxonomy identifies eight groups: critic domain,

critiquing approach, modes of critic feedback, critic rule authoring, critic realization

approach, critic dimension, types of critic feedback, and types of critic.

The utility of our critic taxonomy is manifold: to provide an overview of critic

research, to identify and distinguish key critic elements, and to recognize techniques

or methods applied in critics. We believe that this taxonomy provides meaningful

way of describing and reasoning about critics. We also believe that our critic

taxonomy is useful in guiding the critic developer towards realizing robust critic

capabilities by comparing and contrasting different critic dimensions. We have

applied our taxonomy to ten tools that have critic support. The mapping of the tools

to our critic taxonomy shows that the practice of critics is supported by the critic

taxonomy.

Providing users with a facility to author or customize critic rules is a useful element

to be considered. Realising that critiquing capacity and issues may change from time

to time, it is worth allowing users to author or customise (add, delete, modify) their

own critic rules for a particular critic domain. However, some kinds of critic tools,

critic rule approaches, tool users and domains are more amenable to this than others.

Type of critic feedback appears to be another useful element as it shows the range of

techniques that can be applied to present critic feedbacks to users. Furthermore, this

element is related to the critiques modes. Conventional critics normally provide only

a textual critique but realising the benefit of combining several modes in presenting

critiques has augment the visual or graphical critiques and 3D visualizations

critiques in critic tools and systems.

The critics‟ implementation element facilitates tool developers in applying an

appropriate approach to realise their critics. Each approach has pros and cons in

specifying critics which a critic designer has to take into account. How critics are

implemented closely relates to the critiquing approach used in the system. Thus

carefully considering the critiquing approach is also a useful dimension that assists

96

the critic designer in deciding either comparative, analytical or both approaches be

used in critic‟ development.

Critic dimensions are another element that can guide the critic designer in building a

critic tool. A critic either provides intervention strategies, activation strategies or

timing strategies. The results of mapping the ten tools with this element suggested

that there are ranges of critic dimensions that can be used in enhance/improve critic

development.

Critic types from the taxonomy are also helpful in guiding what type of critics that

can be considered by a critic designer apart from the common critic types i.e.

correctness and completeness critics. Thus, critic designers may consider

incorporating other types of critics in a system.

Finally, though we selected only ten tools to present in our taxonomy application

example, and most of these are from the software engineering domain, our critic

taxonomy is applicable to critics in other domains. We showed this through

characterising the Design Evaluator, FFDC, ClassCompass and Java Critiquer tools.

97

Chapter 5

A Visual and Template-Based

Approach for Critic Specification

This chapter explains our visual and template-based approach for the critic-

authoring task of a domain-specific visual language (DSVL) tool. This chapter

begins by introducing the concepts and approaches used for our critic specification

research. We introduce the visualization concept followed by the visual notations

designed for our critic specification tool. Then we describe the template-based

approach, followed by the business rule templates and critic templates. We also

explain the concept of authoring and the approach of template-based authoring for

critics. In the last section, we present an analysis of the design of our critic

specification editor using Moody‟s Physics of Notations principles (Moody, 2008).

5.1 Introduction

The concepts of critiquing, visual representation, and templates are not new. These

three concepts have been applied in various software development activities for

various domains. The concept and use of critics (or critiquing) has been explained in

the previous chapters (i.e. Chapter TWO and FOUR). The concept and application

of a visual approach and a template-based approach is explained in the following

section as we describe the design of our critic specification approach for domain-

specific visual language (DSVL) tools. These concepts have formed the basis of our

visual and template-based critic specification tool.

5.2 Visual Specification Approach

Visualization approaches are increasingly prevalent in modern software engineering.

Many visualization research studies have been carried out, such as visual

representations (Barton & Barton, 1987; G. L. Lohse, Biolsi, Walker, & Reuter,

1994; J. Lohse, Reuter, Biolsi, & Walker, 1990), diagrammatic representations

98

(Catarci, Massari, & Santucci, 1991; Gurr & Tourlas, 2000), visual environments

for visual languages (Bardohl, 2002), visual notations (Costagliola, Lucia, Ferrucci,

Gravino, & Scanniello, 2008; Moody, 2008) and others. However, the details of this

body of research are not discussed in this chapter. The key elements that we are

concerned for are the application of the visual approach and how it motivates and

guides us in our critic specification development.

Before presenting and explaining the chosen visual approach, one should understand

a few definitions of visualization in general. McCormick, DeFanti, and Brown

(McCormick, DeFanti, & Brown, 1987) define visualization as the study of “

mechanisms in computers and in humans which allow them in concert to perceive,

use, and communicate visual representation.” They suggest that visualization

includes the study of both image understanding and image synthesis (McCormick, et

al., 1987). Petre and Quincey (2006) view visualization as “the graphical (or semi-

graphical) representation of information in order to assist human comprehension of

and reasoning about that information.” A similar definition of visualization is also

provided in Guimaraes et al. (2008) where visualization is termed as “a process of

transforming information into a visual form to help users to understand its

meaning.” Guimaraes et al. (2008) point out that visualization offers a visual

interface between two main information processing systems: the computer and

human. Their research involves the development of visual approaches to support the

information communication between human and computer through direct

manipulation (Guimaraes, Neto, & Soares, 2008). Thus, it is very clear from these

definitions that the key aspects in visualization are:

1) to represent data and information visually;

2) to support the interaction between humans (users) and computers via a visual

approach; and

3) to facilitate human (user) understanding through a visual approach.

There are many aspects that should be considered when developing a system or an

application that incorporates visualization. Some of these include: visual

techniques/methods; visual representations; visual notations; visual data,

99

information and knowledge; visual languages; and many others. Some of these

aspects are addressed in our critic specification development.

Lohse et al. (1994) consider visual representations as data structures for expressing

knowledge. In their research, Lohse et al. (G. L. Lohse, et al., 1994; J. Lohse, et al.,

1990) have identified six basic categories of visual representations: graphs, tables,

maps, diagrams, networks and icons. According to Lohse et al. (1990, 1994) visual

representations contain semantic information that communicates a purpose or

graphical message. Visual representations carry no meaning without the translation

processes that interprets the visual representation. There have to be rules to interpret

features of visual representations (G. L. Lohse, et al., 1994; J. Lohse, et al., 1990).

From the six categories, diagrams and icons are two categories that are related to our

research.

A diagram is a sentence in a graphical language (Mackinlay, 1986) that can describe

the structure of physical objects, interrelationships and processes associated with

them (J. Lohse, et al., 1990) . Lohse et al. (1990) define structure diagrams as a

static description of reality and process diagrams that express dynamic

interrelationships among components of the diagram. According to Gurr (2001),

diagrams are well-accepted, because many users realize that diagrams are more

readily accessible compared to other forms of representation. Furthermore, Moody

(2006) emphasizes that a good diagram is one which communicates effectively and

is believed to be more effective than text for interacting with end users (Moody,

2006). Thus, Gurr (2000) points out that an effective diagram is normally the one

that is “well matched” to what it represents. In general, the most effective diagrams

are those which are very simple (Barton & Barton, 1987; Gurr & Tourlas, 2000). An

example of a diagrammatic form is the popular UML diagram that consists of 13

types of diagrams (or models), all of which are represented in a graphical form.

Another type of visual representation is icons, which can convey a general

understanding or meaning for a picture (J. Lohse, et al., 1990). Lohse et al. (1990)

suggest that each icon assigns a unique label for a visual representation. Catarci et

al. (1991) also gives a similar view about icons. According to Catarci et al. (1991),

100

icons are mainly used to represent a pictorial symbol of an object or an abstract

concept which sometimes can involve an action. Icons that represent objects are

easily understood because they are a stylized imitation of the real-world objects.

Icons that represent actions and processes are generally harder to understand because

they are more abstract (Catarci, et al., 1991). Thus, to present an effective icon, it

should be clearly understandable by the majority of the users (Catarci, et al., 1991; J.

Lohse, et al., 1990). Examples are the universal set of traffic icons and the icons

used to represent several services and locations in an airport. However, as Catarci et

al. (1991) point out, users can tailor their own icon shape based on their specific

requirements and mental representation of the tasks and methods they want to carry

out.

Visual and diagrammatic representations play a central role in several application

domains since they are recognised to be important tools for describing and reasoning

(Costagliola et al, 2008). Their employment allows us to improve productivity of

expert and non-expert users in several application domains. This is because they

provide a means to easily capture and model difficult concepts. This visual approach

is advantageous due to the reduction of mental load and the immediate availability

of descriptions of the computation processes and their interrelationships (Catarci, et

al., 1991).

For these reasons, we have been motivated to develop our critic specification

approach for DSVL tools with visual and diagrammatic representations.

Additionally, we wanted to add our critic specification support to a Domain-Specific

Visual Language (DSVL) meta-tool, Marama, which itself extensively employs

visual notations to specify DSVL tools. Thus choosing a visual specification

approach for critics allows us to leverage benefits of visual approaches to

specification and to seamlessly integrate our critic designer into the Marama toolset.

The next section explains the visual notation aspects that comprise in the visual and

diagrammatic representations of our critic specification tool.

101

5.2.1 Visual Notations Used by the Critic Specification Editor

We introduce a few definitions of visual notations before explaining the visual

notation of our critic specification editor. Visual notations have played a significant

role in communicating with end-users, as they are believed to express information

more effectively to non-technical users than text (Moody, 2008). There are several

definitions of a visual notation. However, we only choose the definition of a visual

notation from (Costagliola et al, 2004) and (Moody, 2008). According to Costagliola

et al. (2004) a visual notation “is a visual language, since it is formed by a set of

visual symbols from an alphabet and a set of feasible visual sentences over these

symbols.” Whereas Moody (Moody, 2008) describes the visual notation as “a visual

notation (or visual language, graphical notation, diagramming notation) consists of

a set of graphical symbols, a set of compositional rules for how to form a valid

visual sentences, and definitions of their meanings (visual semantics).”

We applied an incremental approach towards the development of a new critic

specification editor for the Marama meta-tools and this has resulted in several

developments/improvements of prototypes (this is explained in the following

chapters- Chapter SIX and SEVEN). However, for conciseness and simplicity this

section only describes the final prototype of our critic specification editor.

In this section, we describe the visual notation of the critic specification editor that

we call the “Marama Critic Definer view”. This new designer has been developed to

allow end-user developers to specify and generate Marama DSVL tool critics. The

critic specification editor is an extension to our existing Marama meta-tools

(Grundy, et al., 2008). Using it, end user tool developers can specify and generate

tool critics more efficiently and easily than using Marama‟s existing facilities of

OCL and/or Java-based event handlers.

There are seven items provided by the editor to support critic specification. The

symbols used in the critic specification editor include CriticShape,

CriticFeedbackShape, Operator, CriticFeedbackConn, CriticDependencyLink,

OperatorConn and OperatorCriticFeedbackConn as shown in Figure 1. There are

three shapes and four connectors to represent visually the critic specification. The

102

three shapes are: 1) CriticShape represented by an orange rounded square shape, 2)

CriticFeedbackShape represented by a green oval shape, and 3) Operator

represented by a grey diamond shape. The four connectors are: 1)

CriticFeedbackConn represented by a black arrow line that connects critic (s) and

feedback, 2) CriticDependencyLink represented by an orange arrow line that links

two critics, 3) OperatorConn represented by a grey line linking two critics and an

operator, and 4) OperatorCriticFeedbackConn represented by a black arrow line

linking operator and feedback. The editor‟s toolbar comprises seven icons to

represent the shapes and the connectors. This is shown in the left side of the diagram

in Figure 5.1.

The visual notations of the critic specification editor represent key elements in the

meta-model that was defined for our critic specification tool. These critic meta-

model entities, attributes and associations were defined based on our initial critic

taxonomy creation. However, not all elements in the critic taxonomy are used to

define the meta-model. We only selected the necessary elements to describe the

critic specification task that we want to incorporate in the Marama meta-tools. The

meta-model could be extended in future to incorporate more of our critic taxonomy

features. Figure 5.2 shows the new meta-model defined for our Marama critic

specification tool.

Figure 5.1: Visual notations of the visual critic specification editor:

toolbar (left side) and diagram (right side)

103

Figure 5.2: Meta-model defined for a critic specification tool

Generally, the core elements that end user tool developers should know when it

comes to specifying critics for a DSVL tool are critic and critic feedback (fix

action). These two elements are then presented to the tool users. The critic element

contains information/statements regarding to detected errors, such as structural

incorrectness, structural incompleteness, and constraint violations, whereas the critic

feedback is about the suggestion to resolve the detected errors. Thus, end user tool

developers should be able to recognise the sort of critics to be defined for their

DSVL tool. The critic specification task involves the definition of a critic and also

the critic feedback (suggestion to fix the problem identified by the critic). We

explain the critic specification task through the icons that were designed for the

critic specification editor.

The function of a CriticShape icon is to specify and define a critic. We use a

mnemonic, Cr to mean „critic‟ and this can help the end user tool developers to

remember easily the function of the icon. Similar styles are used for the other icons.

Once a critic has been specified and defined, the next step is to define a critic

feedback, i.e. a suggestion to fix the critic. Thus, the CriticFeedbackShape icon with

a mnemonic, Fb to denote „critic feedback‟ is selected to specify the necessary fix

action for the particular critic. However, the specification of a critic and a critic

feedback involves an association with form-based interfaces that need to be filled in

104

by the end user tool developers. The critic element is associated with a critic

authoring template designed in a form-based interface. The critic authoring template

is discussed in the following section. Similarly, the critic feedback element has a

link to a form-based interface in order to specify the critic feedback. To support end

user tool developers to specify more than just simple critics, we provide a logical

operator that consists of OR, AND, and XOR to link between two critics. These two

critics possibly have/share the same critic feedback. Thus, we design an operator

icon, Op to hold these logical operators value-OR AND XOR. These elements are

shown in Figure 5.3 (on the first row).

A specified and defined critic should be connected to a critic feedback. The

CriticFeedbackConn icon is designed to implement this connection. Hence, for

every critic that has been specified and defined it will have a solution to fix the

problem specified by the critic. In a situation where a critic can be dependent on

another critic, in order to show the critic execution sequence we have created a

CriticDependencyLink icon to represent this. Since we have created an operator icon

to link two critics and with a feedback, we need to have connectors that can realize

this situation: the OperatorConn icon and OperatorCriticFeedbackConn. The four

connectors are shown in Figure 5.3 (on the second row).

CriticShape CriticFeedbackShape Operator

CriticFeedbackConn

CriticDependencyLi

nk

OperatorCon

n

OperatorCriticFeedbackCo

nn

Figure 5.3: Icons for the critic specification editor

5.3 Template-Based Approach

A template is defined in the online Cambridge dictionary as “something that is used

as a pattern for producing other similar things.” However, the meanings of the term

template from a researcher‟s point of view are numerous. We quote here, some of

the definitions of a template from several studies. In 2003, Czarnecki and Helson

published an article in which they described model transformation approaches. They

105

described template-based approaches as one of the methods to perform the model-to-

code transformation (Czarnecki & Helson, 2003). They state a template “usually

consists of the target text containing splices of meta-code to access information from

the source and to perform code selection and iterative expansion”(Czarnecki &

Helson, 2003). In another study by Xiyong and Xingwang (2006), they proposed a

template-based approach for the mass customization of service-oriented e-business

applications (Xiyong & Xingwang, 2006). They define a template as“ a nearly

complete application where the completed parts include an application‟s architecture

and reusable components.” (Xiyong & Xingwang, 2006). They claimed that the use

of a template-based approach has reduced the complex development of the e-

business applications. A recent study by Hill et al. (2010) defines a template as “an

abstraction that captures the fixed and variable portions of a context,”(Hill, Gokhale,

& Schmidt, 2010). They presented four template patterns for improving testing and

experimentation (T&E) configurability and scalability for enterprise distributed real-

time and embedded (DRE) systems (Hill, et al., 2010).

Although these definitions of a template come from only three studies, a template-

based approach is in fact widely employed in numerous research domains. The

usage of the template-based approach in various application domains helps users to

use their application context in an easy way (Czarnecki & Helson, 2003; Hill, et al.,

2010; Xiyong & Xingwang, 2006). This has motivated us to apply a template-based

approach for our critic specification task.

This section introduces the template-based approach we used which helps end user

tool developers to perform the critic specification task. However, before we describe

our critic authoring templates, we first introduce business rule (BR) templates

(Loucopoulos & Kadir, 2008) from the business process domain. The introduction

of this template is necessary as it has inspired us to adapt its concept to the critic

authoring domain.

106

5.3.1 Introduction to Business Rule Templates

There has been an increasing interest in using business rules modelling in software

development environments. Various approaches of business rule modelling exist

today (e.g. BROCOM (Herbst, 1997), BRG (Hay & Healy, 2000),

BROOD(Loucopoulos & Kadir, 2008), etc). However, the one which has motivated

our research in specifying critics for DSVL tools is the Business Rules-driven

Object Oriented Design (BROOD) approach (Loucopoulos & Kadir, 2008).

The BROOD approach proposes simple templates for specification of a restricted

typology of business rules and a simple object-oriented development process that

improves UML by allowing for business rules as an integral part of an object-

oriented development (Loucopoulos & Kadir, 2008). The BROOD process is

supported by a tool which was developed on top of the Generic Modelling

Environment (GME). The BROOD metamodel and business rule (BR) templates

were applied to implement the BROOD tool environment. The BROOD metamodel

is complemented by a language definition based on the context-free grammar EBNF.

EBNF is a meta syntax notation used to express context-free grammar: that is, a

formal way to describe computer programming languages and other formal

languages (Wang, 2009). The details of the BROOD approach can be found in

(Loucopoulos & Kadir, 2008). Loucopoulos and Kadir (2008) described several

concerns with the BROOD approach in their published article (Loucopoulos &

Kadir, 2008). However, one of the concerns that has motivated our research in

specifying critics for DSVL tools is the BR templates.

Business rule templates come from the business rule typology and consist of three

main types: constraint, action assertion and derivation (Loucopoulos & Kadir, 2008).

The definition and brief description of these three types is shown in Table 5.1 below.

107

Table 5.1: Definition of constraint, action assertion and derivation (adopted

from BROOD approach (Loucopoulos & Kadir, 2008))

Type Definition and description

Constraints “… specify the static characteristics of business entities,

their attributes, and their relationships. They can be further

divided into attribute and relationship constraints. The

former specifies the uniqueness, optionality (null), and value

check of an entity attribute. The latter asserts the

relationship types, as well as the cardinality and roles of

each entity participating in a particular relationship.”

(Loucopoulos & Kadir, 2008)

Action Assertion “…concerns a behavioral aspect of the business. Action

assertion specifies the action that should be activated on the

occurrence of a certain event and possibly on the satisfaction

of certain conditions.” (Loucopoulos & Kadir, 2008)

Derivation “…derives a new fact based on existing facts. It can be of

one of two types i.e. computation, which uses a

mathematical calculation or algorithm, to derive a new

arithmetic value, or inference, which uses logical deduction

or induction to derive a new fact.” (Loucopoulos & Kadir,

2008)

The BROOD approach provides rule templates to allow the expression of business

process rules in the business process domain. The rule templates are a formal

sentence pattern that act as a guideline to capture and specify business rules

(Loucopoulos & Kadir, 2008). Loucopoulos and Kadir (2008) also claim that rule

templates offer a way to structure business rule statements. Furthermore, language

templates identify the acceptable sentence patterns for business rules statements and

express the elements linking business rules and related software design elements

(Loucopoulos & Kadir, 2008). In general, rule templates are applied to business

process meta-model elements to constrain the target business process model

instances.The BR templates that correspond to the three types of business rule

typology are shown in Table 5.2.

108

Table 5.2: Business rule templates (Loucopoulos & Kadir, 2008)

Types Templates

Attribute

Constraint

<entity> must have | may have a [unique] <attributeTerm>

<attributeTerm1>must be | may be <relationalOperator> <value> | <attributeTerm2>

<attributeTerm> must be in <list>

Relationship

Constraint

[<cardinality>]<entity1> is a/an <role> of [<cardinality>]<entity2>

[<cardinality>]<entity1> is associated with [<cardinality>]<entity2>

<entity1> must have | may have [<cardinality>]<entity2>

<entity1> is a/an <entity2>

Action

Assertion

When <event> [if <condition>] then <action>

The templates of <event>:

<attributeTerm> is updated

<entity> is deleted | is created

<operation>|<rule> is triggered

The current date/time is <dateTime>

<number><timeUnit>time interval from<dateTime> is reached

<number><timeUnit>after<dateTime>

<userEvent>

The templates of <condition>:

<attributeTerm1><relationalOperator><value | attributeTerm2>

<attributeTerm> [not] in <list>

The templates of <action>:

trigger <process> | <operation> | <rule>

set <attributeTerm> to <value>

create | delete <entity>

<userAction>

Computation <attributeTerm> is computed as <algorithm>

Derivation If <condition> then <fact>

The templates of <fact>:

<entity> | <attributeTerm> is [not] a <value>

<entity> may [not] <action>

Inspired by the BROOD approach we have attempted to utilize the BR templates

concept in the software tool domain, specifically for our critic specification editor.

This was due to the following reasons (Loucopoulos & Kadir, 2008):

109

 The templates use a language definition based on the context-free grammar

EBNF that defines sentence patterns for rule statements;

 The templates use natural language that is easily understood to represent the

rules;

 The templates provide guidance for users to help determine the rules;

 The available templates assist the inexperienced user to easily produce

consistent rule statements;

 The templates provide a way to construct the rule statements;

 The templates facilitate the linking of rule statements to software design

elements.

Inspired by the BR templates approach we adapted this concept to apply it to the

critic specification domain, forming a set of reusable critic templates. However, it is

essential to note here that not all of the defined BR templates are used for our critic

specification purposes. We explain our critic templates in the following section.

5.3.2 Critic Authoring Templates

The motivation for our research in specifying critics for DSVL tools is to provide a

development environment whereby tool/end-user developers are supported by Critic

Authoring Templates (CATs) by facilitating/supporting simple and more effective

critic authoring task.

Our approach to supporting the critic-authoring task is to adapt the concept of

“business rule templates” to critic authoring. We took this approach because it has

some common points with our research efforts, i.e. development of modelling

environments tailored for specific domains and the properties defined in the

“business rule templates” match with the description of Marama metamodel

elements which is expressed using the Extended Entity Relationship (EER)

descriptions. We also chose the BR templates approach to allow end users with

limited programming capability to define and author critics for software tools much

more easily than using OCL expressions and Java event handlers in Marama.

110

According to Ginige et al. (1995), authoring “involves identifying structure for the

information that supports appropriate accessibility and manipulation.” (Ginige,

Lowe, & Robertson, 1995) The term authoring also refers to the process of creating

and save the information in a proper manner (Ginige, et al., 1995). With that, we

define our critic authoring as a process of specifying and defining a critic and then

saving it in a proper way that provides for accessibility and manipulation. This

requires adopting suitable approaches for generating these critic structures. As we

mentioned previously, we adapted the “business rule templates” approach to our

critic authoring templates. We created a simplified set of Critic Authoring Templates

(CATs) that allows easier input of critic rules into a DSVL tool environment.

Our CATs are applied to a target DSVL tool‟s metamodel to constrain and/or reason

about its target model instances. Our CATs do not utilize the complete BR templates

approach; they only consist of two types: constraint templates and action assertion

templates. Constraint templates specify desired or undesired states of models while

action assertion templates specify what to do when an undesired state is detected

(including critique generation and possible resolution actions). CATs can be chained

together to specify complex patterns over a meta-tool‟s model instances and

complex critique/resolution strategies. Constraint templates are further divided into

two types: attribute constraint and relationship constraint templates. The former are

used to specify desired or undesired properties around uniqueness, optionality (null),

and value check of an entity‟s attributes (Loucopoulos & Kadir, 2008). The latter

assert the relationship types, as well as the cardinality and roles of each entity

participating in a particular relationship (Loucopoulos & Kadir, 2008). Chaining a

mixture of attribute and relationship templates together allows a tool designer to

specify complex detection patterns over their tool meta-model.

Action assertion templates specify an action to be activated on the occurrence of

certain event or on the satisfaction of certain conditions. These include critique

message generation for the tool user and/or “fix up” operations to apply to resolve

detected design problem(s). These templates are shown in Table 1.

111

Table 5.3. Critic Authoring Templates-constraint and action assertion

templates (Loucopoulos & Kadir, 2008).

Types Templates

Attribute

Constraint

<entity> must have | may have a [unique] <attributeTerm>

<attributeTerm1>must be | may be <relationalOperator> <value> |

<attributeTerm2>

Relationship

Constraint

[<cardinality>]<entity1> is a/an <role> of [<cardinality>]<entity2>

[<cardinality>]<entity1> is associated with [<cardinality>]<entity2>

 <entity1> must have | may have [<cardinality>]<entity2>

<entity1> is a/an <entity2>

Action

Assertion

When <event> [if <condition>] then <action>

In Marama, a domain-specific visual language tool meta-model is expressed using

an Extended Entity Relationship (EER) diagram which specifies entities and

relationships, together with their attributes. When the meta-model is equipped with

sufficient information, a critic can be specified via CATs. Thus, each of the

templates has a range of properties that specify the meta-model elements and

associations they refer to, critique message(s) to generate for the tool user, and

model update operations that need to be performed to resolve problems.

To support the critic authoring task, we have designed a form-based interface to

represent the CATs. This form-based interface allows easier input of critic templates

into a DSVL tool environment. The association of critic templates with the

corresponding tool meta-model element is shown in Table 5.4, whereas the form-

based interface to support the critic authoring task in shown in Figure 5.4. The usage

of the CATs in a DSVL tool, specifically our Marama metatools are described and

illustrated in Chapter SEVEN and Chapter EIGHT.

Table 5.4: Association of critic template properties with the tool meta-model

Critic template properties Tool meta-model elements

<entity> Entity

<attributeTerm> Attribute

<cardinality> end1Multiplicity, end2Multiplicity

<role > associationEndName

112

Figure 5.4: A form-based interface to represent the critic authoring templates

5.4 Visual and Template-based Critic Specification for

DSVL tools

The combination of the concepts explained in the previous sections results in our

combined visual (high level) and template-based (lower level) approach for

specifying critics for DSVL tools. Thus, to achieve a „simple‟ representation (Barton

& Barton, 1987) and an „intuitive‟ representation (Gurr & Tourlas, 2000), we have

defined the following requirements for our tool to allow its application in DSVL

tools (in our case the Marama meta tools):

1. Simple and intuitive critic specifications, with the necessary

constructs/abstractions for the specification of critics;

113

2. Simple and intuitive critic feedback specifications, with the necessary

constructs/abstractions for the specification of critic feedbacks;

3. Simple and intuitive representations in specifying complex critics;

4. Simple and intuitive visual critic specification notation and environment,

embedded within a DSVL tool (Marama meta-tool);

5. Simple reuse of common critics and feedbacks, to avoid repeating

specification of similar critics for different domains.

The application and examples of this visual and template-based approach for our

critic specification editor/tool is described and illustrated in Chapter SEVEN and

EIGHT. The following section discusses our analysis of this new critic specification

editor approach from Moody‟s visual language design perspectives.

5.5 Analysis of Critic Specification Tool using Physics of

Notations

This section presents the outcome of a brief/partial analysis of our visual notations

for the critic specification editor, i.e. Marama Critic definer view. The analysis is

based on Moody‟s new theory of visual notation design, the Physics of Notations

(Moody, 2008). Our analysis of the visual critic specification editor with the

Moody‟s principles is as follows:

1. Semiotic clarity.

This principle indicates “there should be a one-to-one correspondence

between semantic constructs and graphical symbols used in a notation”

(Moody, 2008). Assessing the semiotic clarity of a notation involves doing a

mapping between the metamodel of the visual critic definer and its symbol

set (visual vocabulary). When there is not a 1:1 correspondence, the

following anomalies can happen: 1) symbol deficit- when a construct is not

represented by any symbol, 2) symbol redundancy- when a single construct

is represented by multiple symbols, 3)symbol overload- when a single

symbol is used to represent multiple constructs, and 4) symbol excess- when

a symbol does not represent any construct (Moody, 2008). The mapping

114

between the metamodel of the critic specification editor and its graphical

symbols is shown in Figure 5.5. Table 5.5 shows the mappings between the

metamodel constructs and the symbol set.

Table 5.5: Association of metamodel elements and graphical symbol

Metamodel element/construct Graphical symbol

CriticShape CriticShape,

CriticFeedbackShape CriticFeedbackShape,

Operator
Operator,

CriticShape_CriticFeedbackShape CriticFeedbackConn,

CriticShape_CriticShape CriticDependencyLink,

CriticShape_Operator OperatorConn,

Operator_CriticFeedbackShape
OperatorCriticFeedbackConn,

115

Figure 5.5: The mapping between (a) metamodel of the visual critic definer and

(b) graphical symbols.

Each symbol in the visual critic specification editor provides a single

meaning, defined in an advanced and independent context. The number of

semantic constructs for the critic specification editor is small, so we are able

to maintain a 1:1 correspondence between the constructs and the graphical

symbols (i.e. a different symbol for each element). Overall, there is no

symbol deficit, symbol excess, symbol redundancy, or symbol overload in

the critic specification editor. This is shown in Figure 5.5.

2. Perceptual discriminability.

This principle suggests that “different symbols should be clearly

distinguishable from each other” (Moody, 2008). Figure 5.5 obviously shows

that the symbols for the critic specification editor can be clearly

differentiated from each other. We used different shapes to represent critic,

critic feedback, operator, and connectors and different icons and colours for

different visual appearance. In general, the greater the visual distance

between symbols, the faster and more accurately they will be recognised

(a) metamodel (b) graphical

symbols

116

(Winn, 1993). If there are slight differences, errors in interpretation can

result (Moody, 2008; Moody, Heymans, & Matulevicius, 2009).

According to Moody (2008), shape plays a privileged role in perceptual

discrimination, because it denotes the key basis on which objects are

classified in the real world. Moody (2008) also claims, shapes that are used

to represent different constructs have to be differentiated clearly. Figure 5.6

shows the different types of elements used in the critic specification editor.

Three of the shapes are 2 dimensional geometric shapes, with very obvious

differences between them. In particular, the shapes used to represent critic,

feedback and logical operator are very different. Whereas, the other four

shapes that represent semantic relationships use textual differentiation of

relationships to distinguish between relationship types. Textual

differentiation will be mentioned in the Principle of Dual Coding). The

relationship types are shown in Figure 6 (the second row).

CriticShape CriticFeedbackShape Operator

CriticFeedbackConn

CriticDependencyLink

OperatorConn

OperatorCriticFeedbackConn

Figure 5.6: Element types in the visual critic specification editor

3. Semantic transparency.

Semantic transparency is regarded as the “extent to which the meaning of a

symbol can be inferred from its appearance” (Moody, 2008). This principle

requires that symbols provide indications to their meaning. According to

Moody (2008) a symbol is semantically transparent if a novice user/reader

can guess the meaning only from the look of the graphical symbol (e.g. a

stick figure to present a person).

The main constructs in the critic specification editor are: critic and critic

feedback. We use icons to represent the two constructs. We have already

explained the icons concept in an earlier section: replacing the abstract

shapes with icons can improve the understanding of models by the novice

users/readers (Masri, Parker, & Gemino, 2008). Furthermore, icons improve

117

likeability and accessibility (Bar & Neta, 2006; Petre, 1995). The icons for

critic and critic feedback are distinguished based on colour and shape. Text is

also used to clarify the meaning of the two constructs. This is shown in

Figure 5.6. However, the symbols for the critic specification editor do not

support the principle of semantic transparency. We can consider this aspect

in our future work for the improvement of the critic specification tool.

4. Complexity management.

This principle refers to the “ability of a visual notation to represent

information without overloading the human mind” (Moody, 2008). Moody

(2008) refers to “complexity” as “diagram complexity: the number of

elements (symbol instances) on a diagram.” It is very important to have an

effective complexity management specially when dealing with novice users

who are incapable of managing complexity (Sweller, 1994). There are

claims, that excessive complexity is one of the main difficulties for end user

understanding of software engineering diagrams (Moody, 2002; Shanks &

Darke, 1998). Thus, to effectively represent complex situations, visual

notations must provide mechanisms for modularisation and hierarchical

structure (Moody, 2008).

We noted in the earlier section that our critic specification editor is an

extension of our Marama meta-tools. Currently Marama-based tools are

defined and developed using three metatool editors: 1) the metamodel

definer, defining a tool‟s information model; 2) the shape designer view,

defining visual notational elements; and 3) the viewtype definer view to

specify mappings of meta-elements to visual representations ("Marama meta-

tools," 2008).

The newly created view/editor, i.e. critic definer view permits specification

of a DSVL tool‟s critics. Hence, we could say that these four different

editors/views together supported the complexity management mechanism

and also modularisation because problems are represented in multiple

diagrams. The critic specification editor (i.e. critic definer view) by itself

however do not support the complexity management mechanisms, which

means that critic model must be represented as single monolithic diagram, no

118

matter how complex it becomes. The critic specification editor also has no

modularisation mechanisms. Again, this aspect can be considered in our

future work if there is a need to allow for multiple critic specification

diagrams which of course would provides complexity management. Figure

5.7 shows an example of critics and feedbacks modelled in one diagram.

Figure 5.7: Critic specification diagram

5. Cognitive integration.

This principle suggests including “explicit mechanisms to support integration

of information from different diagrams” (Moody, 2008). Moody (2008)

reported that, when multiple diagrams are employed to represent a system

then the cognitive integration role is necessary. This principle is closely

related to the previous one-Complexity management. Siau (2004) argues if

multiple diagrams are used to represent the systems, then a reader/user is

required to be able to keep track of the diagrams flow and manage to

integrate the information from several diagrams, and this requires additional

cognitive demands (processing) on the reader/user (Siau, 2004).

In our case, the critic specification editor/view provides a diagram that

models critic specification for a DSVL tool. Thus, in order to specify the

tool‟s critics, the information expressed in a meta-diagram (i.e. metamodel

definer view (1)) is used as an input to the critic specification editor (i.e critic

definer view (2)). The critic input process is performed via a form-based

119

critic construction editor interface, i.e. Critic Construction view (3). The list

of available critic authoring templates is designed in a drop-down menu. A

user needs to select from the drop-down menu the required critic template

and the properties of that particular template are accessed from the meta-

model elements. Thus, a user will only select the required property value that

is shown in the drop down menu list, which can avoid the error proneness

from the user when entering an input. The integration mechanism is

illustrated in Figure 5.8. The defined critics can then be realized in another

diagram i.e. Marama Diagram. Furthermore, the critic specification editor is

integrated with the other views (i.e. the shape designer view, and viewtype

view) to support the critic specification diagram.

Figure 5.8: Integration between critic definer view and critic construction

editor, and integration between critic construction editor and meta elements.

6. Visual expressiveness.

Visual expressiveness is related to the “number of visual variables used in a

notation” (Moody, 2008). Moody (2008) points out that visual

expressiveness measures the visual variation for the complete visual

vocabulary. This principle measures the “utilisation of the graphic design

space.” (Moody, et al., 2009).

1) meta elements

2) visual critic definer editor

3) critic construction editor

120

Our critic specification editor uses only two visual variables: shape and

colour. We do not use all the 8 visual variables (horizontal and vertical

position, size, brightness, color, texture, shape and orientation) as the number

of our graphical symbols is small (i.e. only 7 symbols/icons). Although shape

is considered as one of the least powerful visual variables (G. L. Lohse, Min,

& Olson, 1995) we manage to use different shapes and icons to represent the

critic, critic feedback, operator, and the four connectors

(CriticFeedbackConn, CriticDependenyLink, OperatorConn and

OperatorCriticFeedbackConn). We also apply colour to the symbols to

increase the visual expressiveness for our critic specification notation. This is

shown in Figure 5.7. In fact, (Mackinlay, 1986; Winn, 1993) reported that

the human visual system is very sensitive to variations in colour and easily

can differentiate the colours. Thus, we believe that the shape, iconic and

colour elements provide sufficient visual expressiveness.

7. Dual coding.

This principle suggests “using text to complement graphics” (Moody, 2008).

Our critic specification editor uses text to define the properties of critic, critic

feedback and operator, as shown in Figure 7. We use colour, icon and shape

to differentiate these three elements, but we also complement them with

textual annotation. This supports Moody‟s (2008) assertion that text can be

“usefully used as a form of redundant coding to reinforce and clarify

meaning”. Also, one of the four connectors which represent the critic

dependency relationship, i.e. the CriticDependencyLink is supplemented with

a text name as shown in Figure 5.9.

Figure 5.9: Textual encoding

121

8. Graphic economy.

This principle indicates that the “number of different graphical symbols

should be cognitively manageable” (Moody, 2008). Only seven different

symbols are used in the critic specification editor notation. These symbols

are shown in Figure 5.7. Thus, our critic specification editor has a very

simple and highly discriminable visual vocabulary which supports usability

and end user interaction.

9. Cognitive fit.

This principle is related to the “use of different visual dialects for different

tasks and audiences” (Moody, 2008). We do address this principle in terms

of having multiple representations for different tasks. We stated previously

that we have three other editors, namely the metamodel definer, shape

designer view, and viewtype view within the Marama meta-tool set. We then

create a new view - critic specification editor that offers simple and intuitive

representations with the aim to assist especially the end user tool developers

(i.e novice developers) in specifying tool‟s critics. We also provide several

other editors that are linked with the critic specification editor. These include

the critic construction editor, critic feedback editor, and critic template

editor. Ideally we provide a visual critic specification tool for authoring and

generating Marama design critic implementations. This also fits well with the

other visual meta-tool editors within Marama.

Analysis using Moody‟s Physics of Notations principles can be used to improve the

usability and effectiveness of the critic specification editor. The improvement is

mainly for the purpose of interacting with end user tool developers. Thus, we will

improve any minor mistakes and eliminate any potential difficulties to its usage in

practice.

122

5.6 Conclusion

We have described our approach for specifying critics for a DSVL tool environment.

The two main approaches that we employed are: visual approach and template-based

approach. We introduce these concepts and then relate them to our critic

specification development. The combination of these two approaches forms what we

call a „visual and template-based approach in specifying critics for DSVL tools‟.

We have explained and demonstrated the visual notations of the critic specification

editor. Following that, we described our adaptation of the business rule templates to

the software tool domain, specifically our critic authoring domain. We then

explained the critic authoring templates that assist the end user tool developers to

specify critics.

Applying the two approaches in our critic specification development has led us to

carry out a brief analysis based on the Moody‟s principles. We can say that we do

satisfy most of the Moody‟s principles (Moody, 2008) for designing effective visual

notations. We demonstrate this with a target end user evaluation in Chapter NINE

and we believe that with the visual and template-based approach applied to the critic

specification development, end user tool developers can be supported to specify

critics for a DSVL tool in a simple and effective way.

123

Chapter 6

Initial Prototype for

Critic Specification Tool

This chapter introduces and explains the development steps of the visual and

template-based approach for our critic specification tool. We explain our first

attempt to employ MaramaTatau (N. Liu, et al., 2007) in specifying critics for

Marama-based tools which became our motivation to develop another prototype for

the critic specification tool. We then describe the second prototype, which specifies

critics in the meta-model editor using a similar visual approach to MaramaTatau

however tailored to the critic specification rather than the constraints domain.

6.1 Introduction

Inspired by the existing research about critic specification tools, we made an attempt

to apply similar ideas to our meta-modelling tools, called Marama (Grundy, et al.,

2008). Marama is a meta-tool implemented as set of Eclipse plug-ins. It includes

both meta-tools and generated modelling tools (Grundy, et al., 2008). Most of the

existing critic tools that we reviewed are not developed within the context of a meta-

modelling tool. Our meta-tools are used to generate complex visual modelling tools,

and these modelling tools could benefit from the addition of various critics. Thus,

we wanted to extend our Marama meta-tools by embedding a critic design and

generation component. The main purpose of our work is to assist end-user tool

developers to specify and generate critics efficiently and easily. We demonstrated a

proof-of-concept of our visual critic specification approach by developing a set of

incremental prototypes within the Marama meta-tool.

In this chapter we present the background and motivation of our critic development

approach. We describe the design and implementation of our approach for

specifying DSVL tool critics via the following incremental prototypes: 1) Specifying

critics using Object Constraint Language (OCL) formulas via MaramaTatau; and 2)

Specifying critics at the Marama meta-model editor by creating a new functional

124

item, CriticShape associated with critic-authoring templates. These prototypes are

explained and evaluated in the following sections.

6.2 Initial Prototype: Specifying Critic in a Marama

Metamodel Definer views

6.2.1 Background and Motivation

The motivation for the initial prototype emerges from the work of Liu et al. on

MaramaTatau (N. Liu, et al., 2007), an extension to the developed Marama metatool

set (Grundy, et al., 2008). MaramaTatau offers the facility to specify behavioural

extensions to Marama metamodels. The main notation used in MaramTatau is

declarative Object Constraint Language (OCL) expressions. A complete description

of MaramaTatau is in (N. Liu, et al., 2007).

Our initial approach (as labelled Prototype 1 in Figure 3.1) was to experiment with

applying the OCL expressions used in MaramaTatau (N. Liu, et al., 2007) to specify

and implement critics for a Marama-based tool. To provide a basis for our

experimentation, we developed a very simple UML class diagramming tool using

Marama. The tool metamodel is defined in Marama metamodel editor, as shown in

Figure 6.1.

Figure 6.1: UML class diagramming tool metamodel

125

We identified and translated several critics for UML class design into the OCL

expressions using MaramaTatau and associated them with the UML tool metamodel.

A green circle annotation shown in Figure 6.1 indicates that an OCL expression has

been defined to specify a critic for the UML tool. Examples of the critic statement

and OCL expression in specifying critics for the UML class diagramming tool are

shown in Table 6.1. These critics are then applied in the executing tool, which is at

the Marama diagram level, as shown in Figure 6.2 and Figure 6.3.

Table 6.1. Critic statement and OCL expression
Critic Statement OCL expression

Class must have a unique name Class.allInstances()->forAll(c1,c2 | c1 < > c2

implies c1.name < > c2.name

Class with no name self.name< >‟‟

Class name should begin with a capital

letter

not(let

firstChar:string=self.name.substring(1,1) in

firstChar < > firstChar.toUpper())

Figure 6.2: Simple critic (same named classes) violation in MaramaTatau

126

Figure 6.3: Simple critic (class with no name) violation in MaramaTatau

Our experience gained from this initial attempt demonstrated some difficulties,

particularly for novice tool developers. OCL expressions are a powerful technique

for expressing constraints in a meta-tool. However, some of the barriers in

expressing critics using such OCL expressions include:

 OCL is not easy to understand and even harder to write (Sourrouille &

Caplat, 2002) specifically for many novice users and tool developers ;

 Users who lack knowledge of OCL will have problems in specifying critics

using OCL expressions. This reflects the hard mental operations dimension

from the CDs framework (Green & Blackwell, 1998) that suggests the

demand for cognitive resources. Users must remember what function is

appropriate (Liu, 2007) for specifying a given critic. This argument supports

previous observations made by (Sourrouille & Caplat, 2002);

 Difficulty in expressing (Sourrouille & Caplat, 2002) meaningful critics due

to unfamiliarity with OCL can lead to error proneness as suggested by the

error proneness dimension from the CDs framework (Green & Blackwell,

1998). The error proneness dimension refers to the ability of the tool to

induce „careless mistakes‟ (Green & Blackwell, 1998) . Users will make

careless mistakes if they have a difficulty when specifying critics using OCL

expressions. This dimension has a similar issue with the hard mental

operations dimension;

127

 Specifying critics via OCL expressions provides a high abstraction gradient

(Green & Blackwell, 1998) for novice users as they need to learn how to use

OCL with a meta-modelling approach. As mentioned by the author of

MaramaTatau (N. Liu, et al., 2007), the combination of OCL formula and

spreadsheet interfaces was designed to support the target end users who are

programming literate and familiar with modelling concepts for

constraint/dependency specification (Liu, 2007).

 OCL is a general purpose constraint specification language, which is not

designed for use in a meta-tool specification environment. It is not designed

to express DSVL tool critics at all i.e. generating or enforcing design idioms

for DSVL tools. Thus it lacks a “closeness of mapping” to the target domain

of critic specification and implementation.

 Our assessment above was demonstrated by using Marama in two advanced

software engineering courses at the University of Auckland in 2007, 2008

and 2009. In our experiments, final year Software Engineering undergraduate

students and first year Computer Science post-graduate students used

Marama to build simple DSVL tools with critics and constraints expressed in

OCL. Most indicated in their reports that it is difficult to use OCL constraints

as implemented via MaramaTatau to specify even very simple critics in their

tools.

However, the attempt proved a useful stepping stone towards our understanding of

the necessary building blocks for the critic specification tool. We prefer a visual

specification tool for authoring and generating a Marama design critic

implementation. This would then fit well with the other visual meta-tools we have

developed for the Marama platform.

Due to the barriers noted above, we see an opportunity for a visual design notation

to represent critics. The need to specify critics in a simple way by using an easy to

use, high-level language is the motivation for our research in visual critic-authoring

for domain-specific visual language tools. We also wanted a visual language with

128

good “closeness of mapping” to the critic authoring domain of discourse, and

associated IDE support in the Marama meta-tool environment.

6.2.2 Approach

We developed a new critic-authoring support extension (as labelled Prototype 2 in

Figure 3.1) to the previously-developed Marama metatool set and applied a similar

visual approach as MaramaTatau. This provides a new meta-tool facility for our

Marama-based tools. The new visual critic-authoring support provides the ability to

simply specify critics to Marama metamodels. Figure 6.4 illustrates the process of

constructing and using critics in Marama-based tools using this approach.

Figure 6.4: Critic development approach

Initially a target end-user developer uses the Marama meta-tools to develop a

Marama-based tool (1). A set of core Eclipse plug-ins provides diagram and model

management support for Marama modelling tools. The development of a new

Marama tool starts by specifying the tool metamodel via Marama Metamodel

Definer views. A meta-model for the tool specifies entities and relationships,

together with their attributes. Once the meta-model is defined, shapes and

connectors are specified via the Marama Shape Designer views to provide visual

representations of the tool.

The next step is to specify the “view type” (i.e. specific diagram type specification)

for the tool via the Marama Viewtype Definer views. This describes the mapping of

meta-model elements to visual representations. This results in a new Marama tool

129

for which the tool or end-user developer can specify critics. Critics are specified in

the Marama metamodel definer views (2) via a new CriticShape function that we

have added to the metamodel editor. Once the critics are defined, a tool user can

open or create new modelling projects and diagrams using the plug-ins. Critics for

the tool are applied when a diagram is created. If the user creates a diagram that

violates the design rules of the tool, then a critique will be displayed to notify the

user about the potential errors or problems in the diagram (3).

As stated above, a new functional item, CriticShape (please refer to Figure 6.5) was

added to the existing Marama meta-model editor to provide the visual critic-

authoring support extension. This function allows end-user developers to specify and

define critics based on the tool specification. It also has an appropriate underlying

infrastructure allowing the critic to be generated by Marama. We associate the

CriticShape function with a critic authoring template using a form-based style to

facilitate tool and end-user developers to construct relevant critics for the new

Marama tool. Critic shapes are linked to relevant tool specification elements to show

users the items they are dependent on. The following section explains the creation of

our initial critic authoring template.

Figure 6.5: Critics specified in the meta-model definer editor

associationEndName

entity

attribute

end2Multiplicity

end1Multiplicity

130

6.2.3 Initial Critic Authoring Template

Our initial attempt in specifying critic at a Marama metamodel definer view only

involves the creation of a critic authoring template that focuses on two constraints

from the business rule template. These two constraints are attribute constraint

templates and relationship constraint templates. Table 6.2 shows the templates for

each constraint. Thus, the creation of critic authoring templates adopts the attribute

and relationship constraints as shown in Table 6.2. We assist the tool/end-user

developers to specify critics for Marama-based tools by using these critic authoring

templates via the attribute and relationship constraints.

Table 6.2: Attribute and relationship constraint templates (adopted from

(Loucopoulos & Kadir, 2008)

Type Template

Attribute

Constraint

<entity> must have |may have a [unique]<attributeTerm>.

<attributeTerm1> must be| may be <relationalOperator> <value> |

<attributeTerm2>.

Relationship

Constraint

[<cardinality>]<entity1> is a/an <role> of [<cardinality>]<entity2>.

[<cardinality>]<entity1> is associated with [<cardinality>]<entity2>.

<entity1>must have|may have [<cardinality>]<entity2>.

<entity1> is a/an <entity2>.

Critics for Marama-based tools are specified using the Marama meta-model definer

view. The tool meta-model is expressed using an Extended Entity Relationship

(EER) description. This is shown in Figure 6.5. The tool meta-model elements

match the properties defined in the attribute and relationship constraint templates.

The association of the tool meta-model element with the critic phrase type is shown

in Table 6.3.

Table 6.3: Association of tool meta-model with the critic phrase type

Tool meta-model elements Critic phrase type

Entity <entity>

attribute <attributeTerm>

end1Multiplicity, end2Multiplicity <cardinality>

associationEndName <role>

131

The following section describes the implementation of the visual critic authoring

support extension via the attribute and relationship constraint templates.

6.2.4 Implementation

We implemented our visual critic authoring approach by adding a new functional

item to the Marama meta-model editor. This new function is called CriticShape

with a connector, CriticLink. The new function provides the end-user/tool

developer with a way to add several critics to a tool specification. Figure 6.6 shows

the new function. Associated with the CriticShape is a critic authoring template. We

designed a form-based interface to facilitate the critic-authoring task by end-

user/tool developers. Figure 6.7 shows the association of CriticShape with the critic

authoring template.

Figure 6.6: New function added in the Marama meta-model editor.

New

functional

items

added to

the

Marama

meta-

model

editor

132

Figure 6.7: CriticShape (orange colour) linked with a critic authoring template.

The CriticShape and CriticLink functions are connected to relevant tool

specification elements that represent the critic of that particular tool. The critic

authoring template for this initial prototype of our visual critic authoring tool only

covers the attribute and relationship constraint templates. A tool/end-user developer

specifies critics by selecting the CriticShape function and then constructing and

defining the relevant critic for the tool via the Critic Construction View interface.

This is shown in Figure 6.7. The CriticLink function is used in critic authoring

especially for the attribute constraint templates, where the <entity> is not stated. An

example of this is shown in Figure 6.6, where a dotted orange line is connected to

one of the entities defined in the meta-model editor.

We added a critic type folder to the Marama meta-model folder as a repository to

store the list of critics that are defined for the new Marama tool. Thus, when a

tool/end-user developer specifies and defines critics, these will then be shown in the

critictypes folder as shown in Figure 6.8. Each critic is stored as an XML data file. A

„critic engine‟ loads the XML save files and instantiates and runs an „event listener‟

133

in Marama for each of the critics defined for the new Marama tool. This event

listener receives model update events and fires the critic implementation to

implement the critic behaviour when appropriate.

Figure 6.8: Critics store in critictypes folder.

In our initial prototype we only applied the attribute and relationship constraint

templates for the critic-authoring task. There are two templates for the attribute

constraints and four templates for the relationship constraints. Each of these

templates represents a critic event. Thus, a „critic processor‟ is assigned to each

critic event. Whenever a model is created or changed, an event listener receives this

event and decides if a particular critic is interested in the event and what action to

perform.

Each critic template represents a critic type and we implement each critic as a

concrete class. A critic processor class is instantiated using the stored XML

information to decide which model element events it is interested in; patterns to

match in terms of model state; and its action when receiving change events and

matching part of the model state.

134

Figure 6.9: Architecture of critic processing

6.2.5 Example Usage

We demonstrate our initial prototype of visual critic authoring capabilities by

applying it to an existing Marama-based tool, the MaramaMTE software architecture

design tool (Grundy, Hosking, Li & Liu, 2006). Initially a tool/end-user developer

specifies a design tool using a set of visual Marama meta-tools. For the

MaramaMTE example, a tool developer has specified a variety of entities and

associations to represent the structure of software architecture e.g. remote objects,

clients, servers, services, requests, databases and various relationships. The meta-

model of MaramaMTE is shown in Figure 6.10.

Figure 6.10: MaramaMTE metamodel definer view

Critic

processing

 Specify Critics

Attribute constraint templates

Relationship constraint templates

Critic event

Critic

processor

Model is created or changed

Event Handlers

Actio

n

Critic1

Critic2

Critic6

XML information

<critic>

 <name>

 <attribute>

Meta model editor Model/Diagram

Critic

Class

135

The tool developer has also specified using the shape designer and view designer of

MaramaMTE tool the various shapes, connectors and view (diagram) types for

MaramaMTE. We then specify the relevant critics using a basic understanding and

knowledge of MaramaMTE in order to generate a new version of the MaramaMTE

tool with additional design critic support features. We list several critic statements

that are pertinent to MaramaMTE domain and map these critic statements to critic

authoring templates. Table 6.4 lists several examples of critic statements using the

critic authoring templates for the MaramaMTE tool.

Table 6.4: Lists of critic statements and critic authoring templates for

MaramaMTE.

Critic Statement Critic authoring template Template

type

1.Remote object must have a unique

name

<Entity> must have a [unique]

<attributeTerm>

Attribute

constraint

2. Threads must be greater than 3 <threads> must be <greater than> <3> Attribute

constraint

3. Remote object must have or may

have many services

<entity1> must have | may have

<cardinality><entity2>

Relationship

constraint

4. Application server is associated

with many remote objects.

[<one>]<application server> is associated

with [<many>]<remote object>.

Relationship

constraint

The critics for MaramaMTE include completeness of the architecture design e.g. all

elements linked by appropriate relationships; correctness of the architecture design

e.g. no same-named services for the same remote object or same-named tables for

the database; and “quality” of the architecture design i.e. checking for particular

architecture styles e.g. if all services are in a single remote object; if redundancy is

supported; and so on.

We specify critics for MaramaMTE via the visual CriticShape function from the

Marama meta-model editor. Selecting the visual CriticShape function causes a critic

authoring template in a form-based style to come into view. This view, Critic

Construction View is displayed to guide the critic authoring task. This is shown in

Figure 6.11.

136

Figure 6.11: Visual CriticShape function associate with the critic authoring

templates.

We specify the critics for MaramaMTE tool based on the critic authoring templates

provided in the critic construction view interface. Once a critic is specified based on

the selected critic template, the properties of the critic template are then selected and

finally a „define critic‟ button is clicked (refer to Figure 6.11). For example, in

Figure 6.11, a critic for RemoteObject entity is being specified using an attribute

uniqueness pattern to ensure RemoteObjects have a unique name. The critic shapes

that represent the defined critic then appear in the meta-model editor together with

other visual shapes i.e. entity shapes, association shapes, and formula shapes

(MaramaTatau). The list of defined critics is then stored in a repository called

critictypes, as shown in Figure 6.12.

137

Figure 6.12: Critics for MaramaMTE are stored in critictypes folder

These critics are then applied when loading and running a Marama tool i.e. at the

model or Marama diagram level. When Marama loads the definition of a tool it also

loads the critic definitions. It then instantiates the generated “event listeners” on the

tool meta-model elements so that when these are changed, the „critic engine‟ is

informed of the changed state. The critic engine then determines which critic(s) are

associated with the change and whether the critic action criteria have been met by

the current state of the design. If so, the critic action is invoked via a message to the

user.

In Figure 6.13, a critic monitors and detects violation of the uniqueness constraint

specified for a remote object. This is an example of a correctness critic using the

attribute constraint template critic. In Figure 6.14, a critic is detecting the lack of a

service for a remote object. This is an example of implementing a “completeness”

critic on the design for the remote service using the relationship constraint template

critic.

138

Figure 6.13: Critic statement: remote object must have a unique name.

Attribute Constraint template: <entity>must have|may have [unique]

<attributeTerm>

Figure 6.14: Critic statement: remote object must have many services.

Relationship constraint template: <entity1> must have | may have

[<cardinality>]<entity2>

Whenever a tool user creates or modifies one or more diagram elements that result

in their design violating any design rules that were stored as critics, a critique

message is displayed to warn the user about the potential problem. These messages

can also be shown in an Eclipse Problem view pane making them less intrusive to

the designer.

139

6.2.6 Preliminary Results for the Initial Prototype

We have used Cognitive Dimensions (Green & Blackwell, 1998; Green & Petre,

1996) to continuously evaluate our design. This leads to the following observations

about the tradeoffs we have made in this initial prototype critic designer.

We have focused on reducing the hard mental operations and error-proneness that

we experienced in the first prototype. This was achieved by simplifying critic

customisation and using the more accessible business rule (BR) template approach.

The BR template approach is employed for the critic authoring task. The information

expressed in a meta-diagram (i.e. metamodel definer view) is used as an input for

defining a critic. The critic input process is performed via a form-based critic

construction editor interface, i.e. Critic Construction view. The list of available critic

authoring templates is designed in a drop-down menu. A user needs to select from

the drop-down menu the required critic template and the properties of that particular

template are accessed from the meta-model elements. A user will select the required

property value that is shown in the drop down menu list, which reduces the error

proneness from the user when an input needs to be keyed-in.

We employed only the attribute constraint templates and the relationship constraint

templates for the critic authoring task. The fact that the structure of the templates is

easy to understand in representing a critic rule statement reduces the hard mental

operations for users in specifying a critic compared to OCL expressions. This is of

course, because the available critic templates are not as many as the OCL functions.

The CriticShape notation also exhibits a better closeness of mapping because the

critic specification/definition imitates the critic statement that the users specified

according to the given critic authoring templates.

The potential benefits of the second prototype include the manner in which it

provides a simple way to specify critic rule/phrase and resultant actions. A novice

end-user developer can easily construct and specify critics using the critic authoring

templates. Similar to the business rule templates, the critic authoring templates also

offer a structured form for expressing the critic rule/phrase. Marama instantiates

140

critic rule processors when opening a tool and uses Marama‟s built-in event handler

mechanism to proactively check design changes.

However, the main limitations of this initial approach are that it currently only

supports the construction of fairly simple design critics. Critics can only be defined

based upon the available templates and pattern match a limited part of the model as

supported in the template definition. Very complex critics are not able to be

specified via the attribute and relationship constraint templates. Only limited actions

are supported: notifying the user of critic feedback and undoing the previous editing

operation. The critic engine implemented in Marama uses a simple approach to

determine interested design critics which would need to be made more efficient if a

large number of critics exist in a tool.

We also analysed our design based on Physics of Notations (Moody, 2008). Our

attempt to create a new functional item, CriticShape at the meta-model editor which

follow similar approach to MaramaTatau, introduced a diagram complexity within

the meta-model diagram. This is against the Moody‟s (2008) principle on

complexity management that refers to “the ability of a visual notation to represent

information without overloading the human mind”. By adding another visual

functional item (i.e. CriticShape) in the meta-model diagram it increased the number

of visual representations needed in the meta-model diagram to convey information

to the users. This would cause difficulty especially for novice users to comprehend

the diagram elements. Furthermore, according to Sweller (1994), novice users are

often incapable of managing diagram complexity.

The aim of this second prototype development was to gain initial experience with

implementing the business rule (BR) template concept as an alternative approach to

specify and author critics. To mitigate the problems/limitations that we experienced

in this prototype, we have proposed another approach which deconstructs the critic

specification process into multiple design perspectives. This has meant we have

ended up with several editors in place of the single combined editor we had.

141

 6.4 Conclusion

We have described our initial prototypes to support end-user tool developers to

specify critics in a simple way. Our first attempt was to experiment with the OCL

expressions used in MaramaTatau to specify critics for Marama-based tools. The

barriers of OCL expressions were the stepping stone to the development of an initial

prototype of visual critic specification tool. Our initial prototype development for

the visual critic specification tool was concerned with specifying critics at the

Marama meta-model level and experimenting with the BR template approach. We

recognized some problems with the initial prototype and we then developed a new

approach from the initial prototype. The improvement we made in our next

prototype was to specify critics in a new specification tool, called the Marama Critic

Definer editor rather than in the meta-model editor. This new approach which is our

third prototype is described in the following chapter- Chapter SEVEN.

142

Chapter 7

Final Prototype for

Critic Specification Tool

This chapter describes our third prototype for our critic specification tool. We

describe the improvements that we made based on the previous proof-of-concept

prototypes that we have developed for our critic specification approach.

7.1 Background and Motivation

We outlined several problems about our initial attempts for a critic specification tool

in the previous chapter (Chapter SIX). Following to the failure of our second

prototype which was proved to be a non-scalable approach, we developed another

prototype (we have labelled as Prototype 3 in Figure 3.1) with several

improvements that represent the requirements of the new design choice for our critic

specification tool. These include:

1. Deconstructing the process of critic specification into multiple design

perspectives. With this new approach, we ended up with several editors in

place of the single combined editor which we had in the second prototype.

While this is contrary to some design approaches, such as representational

epistemology (REEP)(Barone & Cheng, 2004), it has meant we have been

able to apply appropriate abstractions for each part of the process that we

considered as the key requirements for our critic specification approach:

o A high-level visual overview of the critics designed for a tool;

o Highly user accessible form-based rule template interfaces for

detailed critic specification and customisation;

o Some extensibility options for more experienced tool users via the

rule template textual DSL

2. We were well aware that choosing to have multiple design perspectives

would introduce a hidden dependency issue (Green & Blackwell, 1998). The

hidden dependency issue can interfere with comprehension, however an

143

argument by Moody in his Principal of Cognitive Integration (Moody, 2008)

is that multiple views with an integrative mechanism is good and necessary.

Accordingly, we would need to support juxtaposition of different

perspectives in our critic specification tool.

3. Expanding the critic authoring template by considering user-specified actions

via the use of an action assertion template to enable the specification of more

complex critics.

4. Considering more aspects of critic feedback needed in this new approach.

The new approach would enable the tool and end-user tool developers to

identify and construct appropriate feedback to tool users.

5. Combining the several concepts discussed in Chapter FOUR and Chapter

FIVE, it has led to the following set of requirements for our final critic

specification approach:

o Simple and intuitive critic specifications, with the necessary

construct/abstraction for the specification of critics;

o Simple and intuitive critic feedback specifications, with the necessary

construct/abstraction for the specification of critic feedbacks;

o Simple and intuitive representations in specifying complex critics;

o Simple and intuitive visual critic specification notation and

environment, embedded with a DSVL tool (Marama meta-tool);

o Simple reuse of common critics and feedbacks, to avoid repeating

specification of similar critics for different domains.

Thus, with our third prototype, we developed a new editor called Marama Critic

Definer specifically to support the end user tool developers to specify and author

critics for their DSVL tool. The following section explains our third prototype that

we used to prove the concept of our critic specification approach.

144

7.2 Final Prototype: the Marama Critic Definer Editor

7.2.1 Approach

Our final development approach for the visual critic authoring task is illustrated in

Figure 7.1. We created a new specification tool, the Marama Critic Definer. Thus,

the tool/end-user tool developer can specify critics for Marama-based tools via this

new editor. In the existing Marama metatool set, there are three key DSVL tool

specification editors: the metamodel definer view to define a tool‟s information

model; the shape designer view to define the visual notation elements; and the

viewtype definer view to specify the mappings of meta-elements to visual

representations. These three editors are used to develop any new Marama-based

tools (1). Once the new tool is defined and equipped with sufficient information the

tool/end-user designer can then select the new Marama critic definer view to

visually author and realize critics for their target DSVL tool specification (2). The

critic authoring task is supported by two form-based interfaces, the critic

construction editor and the feedback editor. These two editors assist the tool/end-

user tool developers to specify critics and feedbacks in a simple and intuitive way.

Figure 7.1: Marama Critic development approach.

Finally, a new Marama-based tool with a critic support extension is generated by

Marama as a set of plug-ins. A tool end-user can then create new modelling projects

and diagrams using the new tool. When a diagram is created, critics for that

particular tool are instantiated. If a user creates design content that a critic identifies

as problematic then a critique will be generated to notify the user about the potential

145

problems/errors (3). Feedback from the critic is displayed to allow the user to fix the

problem/error.

The main underlying idea in our approach is to use information expressed in a meta-

diagram (i.e. the Marama meta-model diagram) as input for critics to be realized in a

diagram (i.e. a Marama diagram in the realized modeling tool specified by the meta-

model). It is important to mention that our approach is only minimally dependent on

the notation used in the meta-diagram. As we discussed earlier, the Marama meta-

model diagram is expressed using an Extended Entity Relationship (EER) notation.

If a richer notation is used in the future, more information can be extracted from the

meta-model diagram and, thus, can be used for specifying critics and checking user

diagrams. The following section explains the details of our development approach.

7.2.2 Visual Critic Definer Editor

Figure 7.2 shows a user creating a critic specification with our new specification

tool, the Marama Critic Definer. The tool/end-user tool developer will specify

critics for the Marama-based tools via this new editor. Once the editor is selected, a

visual critic definer editor interface is displayed as shown by the example in Figure

7.3.

Figure 7.2: A new specification tool, Marama Critic Definer

146

Figure 7.3: A visual critic definer editor: (a) Initial notation, (b) Improved

notation

Figure 7.3 (a) shows the initial notation used in the visual critic definer editor before

we improved the editor‟s toolbar with icon notation as shown in Figure 7.3 (b). We

added the icon representation to the editor‟s toolbar as to be consistent with other

Marama editors as well as to realise the requirements that we identified. However,

please note that the evaluation survey that we conducted with target end users to

assess our critic specification approach used the initial notation (Figure 7.3(a)). A

few improvements to the critic designer tool were made after the evaluation. The

results of our evaluation are discussed in Chapter NINE.

The visual critic definer editor has three main elements: CriticShape,

CriticFeedbackShape, and Operator, and four connectors: CriticFeedbackConn,

CriticDependencyLink, OperatorConn, and OperatorCriticFeedbackConn. The

CriticShape, orange rounded square shape, is to allow a target end-user tool

developer (or tool developer) to specify critic(s) for the developed Marama tool. The

CriticFeedbackShape, green oval shape, is used to specify the feedback for each

defined critic. After a critic is defined, the tool developer needs to specify an

appropriate feedback for the critic. The grey rhombus shape is the Operator that

holds the AND, OR, and XOR operator. The function of the Operator is to support

the creation of composite/compound critics. The relationship between critic and

(a) (b)

147

feedback is supported by the CriticFeedbackConn connector to indicate that each

defined critic owns a defined feedback. In a case where one critic is dependent on

another, a CriticDependencyLink connector is used to show the visual representation

of the dependency. The OperatorConn connector is used to link a critic to a logical

operator (AND, OR, and XOR), and the OperatorCriticFeedbackConn connector is

used to link an operator to a feedback shape. A composite critic is formed in such a

way. This allows complex critics to be readily built from simpler parts. We explain

the function of each notation element of the visual critic definer editor in the

subsequent sections.

7.2.2.1 CriticShape with Extended Critic Authoring Templates

The critic authoring template in the previous prototype only covers constraint

templates supporting a simple critic specification. In this new development

approach, we have extended the critic authoring templates by adding action

assertion templates. Thus, the critic authoring templates support three types of

template: attribute constraint templates, relationship constraint templates, and action

assertion templates. Attribute constraint templates are used to specify essential

properties around uniqueness, optionality (null), and value check of an entity‟s

attributes (Loucopoulos & Kadir, 2008). The relationship constraint templates assert

relationship type, cardinality and role constraints of each entity participating in a

particular relationship (Loucopoulos & Kadir, 2008). Action assertion templates

specify an action to be activated on the occurrence of a certain event or on the

satisfaction of certain conditions (Loucopoulos & Kadir, 2008). The action assertion

template allows the tool/end-user designer to specify more complex critics. Table

7.1 describes our critic authoring templates adapted from the BR template approach.

The description of these templates is also given in Section 5.6 of Chapter 5. Our

critic authoring templates are applied to a target DSVL tool‟s meta-model to review

its target model instances.

148

Table 7.1: Critic Authoring Template (adapted from (Loucopoulos & Kadir,

2008))

Types Templates

Attribute

Constraint

<entity> must have | may have a [unique] <attributeTerm>

<entity><<attributeTerm1>must be | may be <relationalOperator> <value>

| <attributeTerm2>>

Relationship

Constraint

[<cardinality>]<entity1> is a/an <role> of [<cardinality>]<entity2>

[<cardinality>]<entity1> is associated with [<cardinality>]<entity2>

<entity1> must have | may have [<cardinality>]<entity2>

<entity1> is a/an <entity2>

Action Assertion When <event> [if <condition>] then <action>

The critic specification is defined by selecting a CriticShape in the visual critic

editor as shown in Figure 7.4 (top). The CriticShape is associated with a form-based

interface designed to ease the task of specifying and authoring critics. Figure 7.4

(bottom) shows the associated Critic Construction View interface. The target end-

user tool developers specify their critics by selecting from the available templates

provided in the Critic Construction View interface and completing the form with

required information. Critics are generated automatically after the tool developer

completes the required properties for each critic.

149

Figure 7.4: CriticShape (top) associated with Critic Construction View interface

(bottom)

7.2.2.2 Critic Feedback Specification

Once the critic(s) has been defined in the visual critic definer editor, the next task is

to specify feedback for the defined critic(s). This is done via the

CriticFeedbackShape which is also associated with a form-based interface, the

Critic Feedback View, shown in Figure 7.5.

150

Figure 7.5: CriticFeedbackShape associated with Critic feedback view

interface.

The end-user tool developer needs to specify an appropriate action to resolve the

critic(s) defined for the DSVL tool. The critic feedback view has the following

properties:

(i) Critique strategies that determine the execution mode of the critic. This can

be either active or passive. An active critic will monitor continuously a user‟s

tasks and warns the user as soon as a critic is violated (Fischer, Lemke, &

Mastaglio, 1991; Robbins, 1998) and then provides feedback (a critique). A

passive critic only works when a user asks explicitly to check for a critic

violation (Fischer, Lemke, & Mastaglio, 1991; Robbins, 1998). An example

of a passive critic is shown in Figure 7.6. When the user selects the pop-up

menu item Show Critique the critic checks the design and provides feedback

to the user in the dialogue box.

151

Figure 7.6: An example of passive critic

(ii) Modalities of critiques (Oh, et al., 2008) involve the presentation of the

critique. This can be textual, graphical or a combination of both.

(iii) An explanation to represent a reason/justification of a critique. The tool

developer must provide a relevant explanation to justify the critique so that

the users can accept the critique given to them.

(iv) A suggestion indicates an action to resolve the critic violation. Lists of

actions are provided in the drop-down menu. Hence, the tool developer just

needs to select an appropriate fix action for a specified critic. The suggestion

only involves a simple fix action to resolve the critic.

(v) A critique message specifies a textual message that is displayed for each

critic that has been defined. We allow tool developers to construct their own

critique message for each specified critic.

Feedbacks are generated automatically after the tool developer completes the

required properties for each critic feedback. The execution of these properties is

described in the following chapter- Chapter EIGHT. Once a critic and feedback are

defined, these two elements are linked by the CriticFeedbackConn connector to

indicate that a critic owns a fix action. Although (Fischer et al., 1991) state that a

critic does not necessarily solve a user‟s problems, in our approach we expect the

end-user tool developers to indicate a fix action, where possible, for each critic

152

defined for their DSVL tool. Figure 7.7 shows the relationship between a critic and a

feedback.

Figure 7.7: A CriticFeedbackConn connector links the critic and feedback.

7.2.2.3 Critic dependency, Operator shape, Operator and

OperatorCriticFeedback connectors

Figure 7.8 shows a situation where one critic might be dependent on another critic.

The dependency of critics can be represented visually by using the

CriticDependencyLink connector (the one that takes the „dependsOn‟ role is at the

end of the arrow shape) as shown in Figure 7.8. The critic dependency link implies a

sequence of critic execution between the two critics. A critic that depends on another

critic will only run when the critic it depends on is not violated. For instance, in

Figure 7.8 it shows the critic: “EMLService must have a unique name” is dependent

on a critic: “EMLService name must not be null”. This means that the unique name

critic is executed only if the service name is not null.

Figure 7.8: A CriticDependencyLink connects two critics

153

Apart from the above case, we have identified three logical operators: AND, OR,

and XOR used for combining critics. A combination of critics using the logical

operator AND requires all of the critic condition rules to be true for its critic

feedback (i.e. fix action) to be executed for the critics. A combination of critics

using the logical operator OR requires one of the critic condition rules to be true for

the critic feedback to be executed. Finally the combination of critics using the

logical operator XOR (“exclusive or”) requires at most one critic condition rule to be

true for a critic feedback to be executed. A simple way to state the XOR is “one or

the other but not both”. Figure 7.8 shows an example of the OR operator for two

critic conditions. The two critics are combined with the OR operator via the

OperatorConn connector. The feedback for the linked critics are then specified and

linked with the operator using the OperatorCriticFeedbackConn connector. The

explanation of this kind of critic is provided in the following section.

7.2.2.4 Simple and Complex Critics

We define the critics in our previous prototype development as a “unit” or “simple”

critic. A unit/simple critic is a critic that was specified based on a single design

model feature. Thus, the end-user tool developer constructs one critic at a time based

on one BR-based model condition. For instance, a critic based on a uniqueness

check for one entity can be specified using the attribute constraint template:

<entity> must have a [unique] <attributeTerm>. This is a simple critic because it

only involves a checking for a unique value for one entity. Likewise, a critic that

checks for the existence of an entity can be specified using the relationship

constraint template: [<cardinality>]<entity1> must have [<cardinality>]

<entity2>. It is considered as a simple critic as it only checks based on one

preference that is the existence of one entity. In general, critics specified using the

attribute and relationship constraint templates are considered as simple critics.

Figure 7.9 shows three examples of simple critics.

Figure 7.9: Examples of unit/ simple critics

154

However, in our new development approach, we wanted to allow end-user tool

developers to specify both simple and “complex” critics through the visual critic

definer editor. A “complex” critic is a critic that has multiple features that need to be

considered. In our new approach, the end-user tool developers can construct the

complex (or composite) critics by using the action assertion template and the logical

operators AND, OR and XOR. Hence, end-user tool developers can specify complex

critics with extended expressive power while still retaining the relative simplicity of

the BR template-based approach. In addition, end-user tool developers can specify

complex critics by building them from parts and also reuse simple critic parts.

An example of a complex critic is illustrated by using a simplified MaramaEML tool

(a business process specification tool) as shown in Figure 7.10 (top). For instance,

suppose we specify two critics with a name uniqueness constraint. A logical

operator, OR can be used to link the two critics with both critics sharing a common

feedback (see Figure 7.10 bottom). We consider this to be a “complex” critic

because it involves more than one preference/feature. The execution semantics of

these two critics is that when either one of the critics is violated the critique will be

displayed and the fix action for that critic will be suggested to the user.

155

Figure 7.10: Critics specified in the critic definer editor (bottom) based on the

meta-model of SimplifiedMaramaEML tool defined in the meta-model editor

(top)

The action assertion template specifies an action that needs to be activated due to the

occurrence of a certain event or on the satisfaction of certain conditions. The

template has two options:1) When <event> [If <condition>] then <action> and 2)

When <event> then <action>. These templates can form complex critics as they

involve several aspects to be assessed (that is the event, condition, and action).

For example, suppose we wish to specify a critic that constrains the service entity

(i.e. EMLService) to have no more than four operations (i.e. EMLOperation). Hence,

the features that need to be considered using the action assertion template are:

<event>, <condition> and <action>. The event is concerned with the creation of an

association link (EMLService_EMLOperation) between the service entity

(EMLService) and operation entity (EMLOperation). The condition for the event is

that the cardinality of the association link (EMLService_EMLOperation) is greater

156

than 4 and the action is to delete the new association link between the service entity

and operation entity. This information is shown in Figure 7.11 that indicates there

are more than single features that need to be considered. Thus, when a user runs the

tool, a critique will be displayed if the event occurs to notify the user, followed by

an execution of the action.

Figure 7.11: A critic specified using an action assertion template.

7.2.2.5 Critic Template Editor

In our previous prototype development, we managed to specify tool critics based on

the BR templates. This was because the structure of the templates is straightforward

and easy to understand especially the attribute and relationship constraint templates.

However, the structure of the constraint templates of the BR approach does not

provide the mixture and combination of the attribute and relationship constraint

templates. This limitation is resolved with our new critic authoring templates

through the development of a Critic Template editor.

We mentioned earlier that in specifying critics, end-user tool developers need to

select the appropriate template provided in the Critic Construction View interface

(see Figure 7.4) to define their tool critics. However, we do not limit our critic

authoring templates to the ones proposed in the BR templates. We wanted end-user

tool developers to be able to specify their own critic templates for reuse. Hence, we

157

have developed the Critic Template editor to support the development of new critic

templates. In a case where an available critic template does not provide the desired

critic specification, we allow the end-user tool developer to construct a new critic

template via the Critic Template editor (see Figure 7.12). We also allow the critic

template to have a mixture of attribute and relationship constraint templates.

Figure 7.12: A new critic template created in the Critic Template editor.

The end-user tool developer initially needs to construct the new critic

statement/phrase that describes the critic situation. The critic statement should

reflect the information expressed in the Marama meta-model diagram for that

particular DSVL tool. Based on the critic statement, the developer selects the

necessary properties to form a new critic template that represents the new critic

statement that has been defined. After specification, the new critic template is listed

in the available templates and can be used to specify critics. Thus, the available

template list can be expanded according to the new critic templates created in the

critic template editor. Our critic authoring templates are not as highly expressive as

natural language rule statements, but provide sufficient expressiveness to allow end-

158

user tool developers to understand, modify and possibly author critic rule

expressions with little support from expert tool developers.

We provide a critic authoring guideline to assist end-user tool developers to author

their own critic template if the required template is not available in the critic

template list. The critic authoring guideline shows what phrases are allowed to use

to author/express an appropriate critic rule template that represents a critic

statement. The critic authoring guideline is explained in the following section.

7.2.2.6 Critic Authoring Guideline

Our critic authoring templates are applied to a target DSVL tool‟s meta-model to

review its target model instances. We have developed a general critic authoring

guideline to assist end-user tool developers in specifying their DSVL tool critics.

The description of the critic authoring template guideline is added to the critic

construction editor interface so that the new end-user tool developers can understand

the critic authoring template style and they can use it to specify appropriate critics

for their tool. This is shown in Figure 7.13.

Figure 7.13: A guideline for the critic authoring template style.

159

 Critic Authoring Guideline.

I. Purpose

The purpose of this guideline is to provide guidance to the end-user tool

developers in specifying critics via the critic authoring templates.

II. Scope

This guideline applies to the end-user tool developers who want to add

critic support to their DSVL tool. The development of the DSVL tool is

within the Marama meta-tools environment.

III. Definitions

For the purpose of this guideline, the following definitions shall apply.

Critic phrase

notation

Meaning

<entity>

<entity> is a type of entities defined in the Marama

meta-model diagram

<attributeTerm> <attributeTerm> is a type of an attribute for an entity

<association> <association> is a type of associations defined in the

Marama meta-model diagram

<role> refers to the associationEndName for an association type

defined in the Marama meta-model diagram

<cardinality> refers to the end1Multiplicity and end2Multiplicity

defined for an association type

<relationalOperator> Operators that check relation between two entities or two

attributes. Consists of: equal, not equal, greater than, less

than, equal or greater than, equal or less than.

<logicalOperator> Logical operators that connect two or more

parameters/statements. Consists of: AND, OR, and XOR.

<auxiliary> <auxiliary> is a term functioning to provide semantic

information to a critic statement. Consists of: „has a/an‟,

„is a/an‟, „may be‟, „must be‟, „may have‟, „must have‟

and „unique‟

<value> is a kind of data with a string data type

<event> Event is a part to specify a signal that triggers an

invocation of a critic rule template.

<condition> Condition is a part that provides a logical test causes an

action to be carried out.

<action> Action is a part that consists of updates or invocations on

the entity attributes.

<A> | Choice of A and B. Is either A or B.

[A] A is optional.

160

IV. Guideline

Attribute Constraint Template

1. This template specifies desired and undesired properties as well as

checks constraints on an entity‟s attributes.

2. A critic template must not begin with an <auxiliary>, <value>,

<relationalOperator>, <logicalOperator>, <attributeTerm> ,

<attributeTerm1> , <attributeTerm2> or [unique].

3. A critic template can begin with an <entity> followed by <auxiliary>

and <attributeTerm>.

4. A critic template can begin with an <entity> followed by

<atttibuteTerm> and <auxiliary>, <value>.

5. A critic template can begin with an <entity> followed by

<atttibuteTerm1> and <relationalOperator>, then <value> or

<attributeTerm2>.

6. Available critic templates:

 <entity> must have | may have a [unique] <attributeTerm>.

 <entity><<attributeTerm1>must be | may be <relationalOperator>

<value> | <attributeTerm2>>.

7. Example:

 <Class> must have a [unique] <name>.

 <Class><operation> may be <equal> <2>.

Relationship Constraint Template

8. This template specifies the relationship types, cardinalities, and roles of

each entity involved in a relationship.

9. A critic template must not begin with an <auxiliary>, <value>,

<relationalOperator>, <logicalOperator> or [unique].

10. <entity1> and <entity2> refer to entity one and entity two respectively.

11. cardinalityEntity1 and cardinalityEntity2 refer to the cardinality for

entity one, and that for entity two.

12. A critic template can begin with [<cardinality>] <entity1> followed by

other critic phrase notation.

13. Available critic templates:

 [<cardinality>]<entity1> is a/an <role> of [<cardinality>]<entity2>

 [<cardinality>]<entity1> is associated with

[<cardinality>]<entity2>

 <entity1> must have | may have [<cardinality>]<entity2>

 <entity1> is a/an <entity2>

14. Example:

 <Package> must have [<many>]<Class>

 [<many>]<Request> is associated with [<one>]<Service>

161

Action Assertion Template

15. This template is to specify what action to take when certain event

occurs.

16. Select the „When‟ option.

17. Specify the <event> parameters.

18. Specify the <condition> parameters.

19. Specify the <action> parameters.

20. Example:

 When <event> [If <condition>] then <action>

o <event> = <association> is created

o <condition> = <association> size

<relationalOperator><value>

o <action> = delete <association>

The critic authoring guideline helps to prevent the end-user tool developers from

authoring an invalid critic rule template. The following are some examples of invalid

and valid structures of critic rule templates.

1. Examples of invalid critic rule templates:

 <auxiliary><attributeTerm><entity>

 <relationalOperator><entity1><entity2>

 <value><relationalOperator><attributeTerm>

 <entity1><relationalOperator>

 <logicalOperator><attributeTerm1><attributeTerm2>

2. Examples of valid critic rule templates:

 <entity> <auxiliary><attributeTerm>

 <entity1><attributeTerm><relationalOperator><entity2><attributeTe

rm1>

 [<cardinality>]<entity1> is associated with [<cardinality>]<entity2>

 <entity1><auxiliary><cardinality><entity2>

 <entity1><logicalOperator><entity2><auxiliary><attributeTerm>

162

7.2.2.6 Critic and Feedback Repository

Critics and feedbacks defined for a DSVL tool are stored in an XML format in the

Marama tool repository. Critics are stored in a critictypes folder whereas the

feedbacks are stored in a feedbacktypes folder, as shown in Figure 7.14.

Figure 7.14: Critic (critictypes folder) and feedback (feedbacktypes) repository

browser.

Once critic and feedback mechanisms have been specified, parameters are passed on

to template classes to construct critic and feedback handling objects. They are then

instantiated into the tool when executed.

7.3 Summary of the Implementation

The new approach with the Marama Critic Definer (see Figure 7.2) comprises four

major components to support end-user tool developers to perform a critic

specification task. These four components are the four new specification editors that

we designed and prototyped to support our new critic development approach (refer

to Figure 7.15):

1. Visual critic definer editor

2. Critic construction editor

3. Critic feedback editor

4. Critic template editor

We have described the functions of the four editors in the previous section and

examples of their utility are described in the Case Studies chapter (i.e. Chapter

163

EIGHT). Figure 7.15 shows a high level architecture view of the Marama meta-tools

and the extension of the Marama Critic Definer view.

Figure 7.15: Architecture view of the Marama meta-tools and the extension of

Marama Critic Definer view

Marama Models (data)

Marama Project

Model

Marama

Diagram Model

Marama Meta-tools Application

Specification Tools

Metamodel

Definer

Shape Designer Viewtype Definer Critic Definer

(1)

(2)

(3)

(4)

164

7.4 Conclusion

We have described our final prototype for our critic specification approach to

support end-user tool developers in specifying critics and feedback in a simple way

for DSVL tools. We illustrated our visual and template-based approach to support

the task of end user specification on critics and feedback using examples for

Marama-based DSVL tools. A notational representation is offered to end-user tool

developers to specify critics for their DSVL tools without the need to have an in-

depth technical knowledge of critic construction. We also provide a critic authoring

template-based approach as an alternate style for the critic specification task. Our

tool supports end-user tool developers in customising critics and introduces a new

critic template via a critic authoring guideline and critic template editor. We have

demonstrated a proof-of-concept of our critic specification approach by

implementing a prototype of it within Marama meta-tool. We have evaluated our

resulting prototype with target tool developer end-users. In the following chapter we

describe a more comprehensive set of case studies illustrating the usage of the

approach in Chapter EIGHT. Results of the final prototype evaluation are provided

in Chapter NINE.

165

Chapter 8

Case Studies

This chapter describes three case studies that we used to demonstrate and evaluate

the utility of the critic specification editor for Marama DSVL tools. We begin by

introducing and describing the first case study - Marama VCPM that explains the

use of constraint templates provided by our critic specification editor. We then

describe the second case study - MaramaEML that demonstrates the action assertion

templates of our critic specification editor. We then describe our third case study -

MaramaUML that illustrates the customizing of a critic authoring template via our

critic template editor. The chapter ends with some conclusions based on the results

from these case studies.

8.1 Introduction

Gable (1994) suggests that using a case study approach can help us to understand the

problem being explored (Gable, 1994). Furthermore, according to Perry et al (2006),

case studies are now well-accepted in software engineering and are often used in

research projects “to understand, to explain or to demonstrate the capabilities of a

new technique, method, tool, process, technology or organizational structure”

(Perry, Sim, & Easterbrook, 2006).

Three case studies are described in this chapter. The purpose of using three case

studies is to understand, explain and demonstrate the utilities of our critic

specification editor in three different domains of DSVL tools (specifically Marama-

based tools). These three case studies are: a visual care plan modelling language tool

(medical domain), a simplified MaramaEML tool (business process domain), and a

MaramaUML tool (UML diagramming domain). We chose a diverse set of domains

in order to effectively prove the concept. The tools for these three case studies were

developed using the Marama environment via its three main editors: Marama meta-

model definer, to specify a tool‟s meta-model; the Marama shape designer, to design

the tool‟s visual notational elements; and the Marama viewtype definer, to specify

166

mappings of meta-model elements to visual representations. We then used the newly

developed editor from this thesis research, i.e. the critic specification editor, to

specify a range of critics for these exemplar DSVL tools. The three case studies are

explained in the following sections.

8.2 Case Study I: A Visual Care Plan Modelling Language

(VCPML) Tool

We have chosen the Visual Care Plan Modelling Language (VCPML) tool which

was designed by (Khambati, 2008) as our first case study of adding critics to a

DSVL tool. We chose this tool for the reasons that it was from a medical domain,

specifically the health care planning domain, and it was developed using the

Marama platform. The purpose of this case study is to understand and demonstrate

the utility of our critic specification editor in a medical domain of DSVL tools.

Hence, we applied our critic specification editor to the VCPML tool to see how

critics can be specified. For this case study we explored the Constraint Templates of

the critic specification editor to specify the VCPML tool‟s critics.

8.2.1 Case Study Description

A visual care plan model language (VCPML) was designed to support health care

providers to capture health treatment and management information commonly

contained in guidelines for chronic illness treatment into a more formal, structured

and digital manner (Khambati, Grundy, Warren, & Hosking, 2008). The health care

professionals can model complex health care plans which comprised of different

types of health care activities, performance metrics (goals), assessment modules, and

other sub-care plans using the VCPML (Khambati, 2008). Figure 8.1 shows the

meta-model defined for the VCPML tool with the necessary entities, attributes and

associations. The four main types of components that form a care plan are:

performance metrics, health care activities, assessment modules and other health

care plans. Hence, the care plan entity has association with the performance metric

entity, activity entity, assessment module entity and other care plan entity. Similarly,

the activity entity is composed of other entities: instruction entity, routine entity, and

resource entity. The activity entity can be a simple task, a data collection activity or

167

a review activity. The assessment module entity is a decisional task flow which is

composed of assessment component entity that can be a conditional component,

assessment action, and treatment recommendation. These entities are shown in

Figure 8.1. A detailed explanation on this meta-model can be found in (Khambati,

2008).

The tool is then realized by modelling a care plan for diabetes management and this

is shown in Figure 8.2 (Khambati, 2008). In Figure 8.2, a glucose measurement

activity is modelled for one patient. From that model, it shows that the activity has a

routine to conduct in every 2 days, and also has instructions on how it should be

conducted. In addition, the patient requires certain material resources (i.e. testing

meter, testing strips and testing pen) to perform the activity. The patient also needs

to record his/her blood glucose sugar which is measured in mmol/L data unit.

The original VCPML Marama tool developed by Khambati had very little constraint

support to validate models and no design critic support to provide feedback to users.

Hence, it was an excellent exemplar to explore the utility of our new critic design

meta-tool extension to Marama.

To illustrate our critic specification editor in action, we show several examples of

critics and feedbacks defined using it. As we mentioned in previous chapters, a critic

specification is dependent on the information expressed in the tool‟s meta-model.

We applied the meta-model of the visual care plan modelling language (VCPML)

tool shown in Figure 8.1 to specify the simple critics for the VCPML tool. The

following section demonstrates several examples of critics for the VCPML.

168

Figure 8.1: The VCPML meta model (Khambati, 2008)

Figure 8.2: An example of the VCPML model: A care plan for diabetes

management (Khambati, 2008))

8.2.2 Example Usage

We defined three simple critics for the visual care plan model language (VCPML)

tool based on the constraint templates shown in Table 8.1. The constraint templates

169

used can be divided into attribute constraint templates and relationship constraint

templates. The three examples of critics for the VCPML tool are shown in Table 8.2.

Table 8.2 shows the concerned elements from the tool‟s meta-model, as shown in

Figure 8.1, a critic statement/phrase, critic template syntax, a template type and a

feedback (or fix action) to resolve the specified critic.

Table 8.1: Attribute and relationship constraint templates (Loucopoulos &

Kadir, 2008).

Type Template

Attribute

Constraint

<entity> must have |may have a [unique]<attributeTerm>.

<entity><attributeTerm1> must be| may be <relationalOperator> <value> |

<attributeTerm2>.

Relationship

Constraint

[<cardinality>]<entity1> is a/an <role> of [<cardinality>]<entity2>.

[<cardinality>]<entity1> is associated with [<cardinality>]<entity2>.

<entity1>must have|may have [<cardinality>]<entity2>.

<entity1> is a/an <entity2>.

Table 8.2: Examples of critics and feedbacks for VCPML tool

Tool’s meta-

model element

Critic statement Critic template Type Feedback

Instruction Instruction must

have a unique

InstructionName

<entity> must have |may

have a

[unique]<attributeTerm>.

Attribute

constraint

Rename or

Remove one of the

component

Routine Daily Interval must

be greater than 1

<<attributeTerm1> must

be| may be

<relationalOperator>

<value>

Attribute

constraint

Rename the item

CarePlan Care Plan must have

many performance

metrics

<entity1>must have|may

have [<cardinality>]

<entity2>.

Relationship

constraint

Add the

component

170

Figure 8.3: A CriticFeedbackConn connector links the critic and feedback.

The first critic in Table 8.2 shows the critic statement derived from the attribute

constraint template as “Instruction must have a unique InstructionName.” The

statement „Instruction‟ and „InstructionName‟ are correspondingly associated to

Instruction entity and InstructionName attribute as shown in Figure 8.1. A name

uniqueness constraint has been specified for an Instruction entity using the attribute

constraint template in the CriticConstructionView editor. The Instruction entity and

InstructionName attribute have been selected as the entity and attribute term

respectively. This is shown in Figure 8.4.

Figure 8.4: A uniqueness name critic via the attribute constraint template

171

Another critic is related to a cardinality constraint on the relationship between the

CarePlan and PerfomanceMetric entities, specified in a relationship constraint

template. The critic statement “CarePlan must have many performance metrics”

indicates that the CarePlan and PerformanceMetric are respectively associated to

CarePlan entity and PerformanceMetric entity in the tool‟s meta-model. The

statement „many‟ represents the cardinality of the second entity, i.e. Performance

Metric. This critic specification is shown in Figure 8.5.

Figure 8.5: A critic on cardinality constraint using the relationship constraint

template.

All properties in the tool‟s meta-model are available in the critic construction editor,

selectable via drop down menus.

Feedback actions for each critic have to be specified and defined. We show one

example of the feedback specified for the uniqueness name critic shown in Figure

8.4. The feedback for the defined critic is done via the CriticFeedbackShape (a

green oval shape) which is associated with a form-based interface, the Critic

Feedback View, as shown in Figure 8.6. The critic feedback editor has five

properties as shown in Figure 8.6: critiquing strategies (active/passive); modalities

of critiques (text/graphic/combination of text and graphic); explanation; suggestion

(list of possible actions); and critique message. All of the required properties have to

be filled in. We have described these properties in Chapter SEVEN (section 7.3.3.2).

172

Figure 8.6: Critic feedback for the uniqueness name critic

Once the properties have been specified then a button, Save Feedback (refer to

Figure 8.6) is selected. The feedback specification for other critics goes through the

same process. All critics have been specified as active critics with appropriate

explanation and fix messages to resolve them. Critics are generated automatically

after the end-user developer completes the required properties for each critic.

The execution of a critic specified in Figure 8.4 is shown in Figure 8.7, Figure 8.8

and Figure 8.9. Presentation of the critique message and the fix action are based on

properties that were specified in the critic feedback editor. In Figure 8.7, a

uniqueness name critic is violated for the Instruction entity due to the same name

that existed in the two entities. A critique message is displayed to warn the user

about the error. Furthermore, an explanation and suggestion are offered to the user to

resolve the problem as shown in Figure 8.8 and Figure 8.9. In Figure 8.9, an action

to rename the property value is selected and a new name is given to the Instruction

entity.

173

Figure 8.7: A critique message is displayed when a uniqueness name critic is

violated

Figure 8.8: A critic feedback with a brief explanation and suggestion

Figure 8.9: The fix action for the uniqueness name critic.

174

Specifying these three example critics was very straightforward using our critic

specification tool. Their specifications could not be compared to hard-coded critics

specified using the existing Marama meta-tools as none of them existed for

MaramaVCPML prior to this case study. However, similar critics could be

implemented using the existing Marama meta-tools using a combination of OCL

constraints and Java coded event handlers. These would be much more time

consuming to specify and debug than using our new critic specification tool. In

particular, giving feedback via a dialogue box or problem marker would require

writing Java code. Specifying a unique name property requires careful use of an

OCL constraint in the meta-model editor which we have found to be non-intuitive

for meta-tool users in previous evaluations. Unlike the OCL expressions and event

handlers, our simple critics can be easily packaged and reused or combined into

composite critics in our critic design tool.

8.3 Case Study II: A Simplified Marama EML Tool

The purpose of this second case study is to illustrate the use of our critic

specification editor in a business process modelling domain. We choose to do this

with MaramaEML (Li, Hosking, & Grundy, 2007b) which is a complex visual tool

for business process modelling. The original MaramaEML was previously designed

and developed using the Marama meta-tool (Grundy, et al., 2008; Grundy, et al.,

2006) for creating Enterprise Modelling Language (EML) specifications (Li,

Hosking, & Grundy, 2007a; Li, et al., 2007b). EML uses a tree layout to represent

the basic structure of a service. However, for clarity reasons, we have designed and

developed a simplified version of MaramaEML by highlighting several main

components of the MaramaEML tool. We then applied our critic specification editor

to the simplified MaramaEML tool to see how critics can be specified. For this case

study we explored the complex critic features of the critic specification editor. As

the original MaramaEML tool had a number of constraints and critics specified

using Java event handlers we were able to directly compare the task of designing

critics using this approach to using our new critic design meta-tool. We were able to

interview the original developer of MaramaEML and obtain feedback on the

175

effectiveness and efficiency of specifying critics using our new critic design tool

compared to using the existing Marama meta-tools.

8.3.1 Case Study Description

One of the facilities provided by the simplified MaramaEML tool is to model

business processes. Figure 8.10 shows the simplified meta-model for the

MaramaEML with some of the relevant entities, attributes and associations. As

shown in Figure 8.10, MaramaEML‟s main features include service entity, operation

entity and process entity. A service entity is to imply a task within a business

process of an organization. An operation entity is to represent an atomic activity that

is included in a service. A process entity has two types of entities: process start

entity and process end entity. The process start entity is to represent the start of a

process. The process end entity is to indicate the end of a process. Associations

between the required entities are created so as to support the modelling of the

business process structure. All services, operations and processes are organized in a

tree structure to model a business process system.

Figure 8.10: Meta model for the simplified MaramaEML

We adopted the following basic rules for the EML structure from (Li, 2010).

176

Table 8.3: Basic rules of EML tree structure (adopted from (Li, 2010))

Basic rules:

 An enterprise system must have at least one Service tree.

 Every single service tree must have one and only one service node. It may (or may

not) include an arbitrary number of sub-service nodes (zero or more).

 A service node is always at the top of the single service tree structure. It must include

at least one Operation node (directly or indirectly). It may (or may not) include an

arbitrary number of sub-services.

 A sub-service is inside a service or sub-service node. It must include at least one

Operation (directly or indirectly) and may (or may not) has arbitrary number of sub-

services.

 An Operation is the leaf node of the service tree. It cannot include any service, sub-

service or other operations.

Figure 8.11 shows a simple example of a MaramaEML structure model for a basic

university enrolment service (modified from (Li, et al., 2007b)). We used the

example from (Li, et al., 2007b) however, presenting only a part of the university

enrolment service model. Figure 8.11 shows that the student service, university

service, and StudyLink are sub-services of the university enrolment service. These

are represented in the oval shape. Each service may (or may not) include a sub-

service. The university service includes four embedded services (i.e. enrolment

office, finance office, credit check and department). Each service must include at

least one operation. The operation entity is represented in a rectangle shape. For

instance, the Student Service manages four operations: search courses, apply

enrolment, apply loan and make payment.

To illustrate our critic specification editor in action, we applied the meta-model of

the MaramaEML shown in Figure 8.10 to specify the possible critics for the

simplified MaramaEML tool.

The following section demonstrates several examples of critics for the simplified

MaramaEML tool.

177

Figure 8.11: University enrollment service model using a simplified

MaramaEML (modified from (Li, et al., 2007b)

8.3.2 Example Usage

Figure 8.12 shows several possible critics for the MaramaEML tool. These include

examples of complex critics using action assertion templates and the logical

operators (OR, AND and XOR). The situation that involves the dependency of

critics (i.e. between the second critic and the third critic as shown in Figure 8.12) is

not illustrated here as it is already explained in previous chapter in the section

7.2.2.3.

The action assertion templates specify an action to be activated on the occurrence of

a certain event or on the satisfaction of certain conditions. These include critique

message generation for the tool user and “fix up” actions that can be applied to

resolve detected design problem(s). The action assertion template is as below:

When <event> [if <condition>] then <action>

The bottom-most critic in Figure 8.12 is an example of complex critic using the

action assertion template. Suppose we wish to specify a critic that constrains the

service entity (i.e. EMLService) to have no more than four operations (i.e.

EMLOperation). This might be sensible in order to encourage designers to split large

hierarchies of services into smaller, more manageable and understandable groups as

178

our evaluation of MaramaEML found that service entities with large numbers of

operations look cumbersome to the end users.

The features that need to be considered using the action assertion template are:

<event>, <condition> and <action>. The event is concerned with the creation of an

association link (EMLService_EMLOperation) between the service entity

(EMLService) and operation entity (EMLOperation). The condition for the event is

that the cardinality of the association link (EMLService_EMLOperation) is greater

than 4 and the action is to delete the new association link between service entity and

operation entity. This information is shown in Table 8.4. A critic for this case can be

specified by defining the relevant properties for event, condition and action in an

action assertion template as shown in Figure 8.13 that indicates there are more than

single features that need to be considered. Thus, when a user runs the tool, a critique

is displayed if the event occurs to notify the user, followed by an execution of the

action. The execution of this critic is shown in Figure 8.14.

Figure 8.12: Critics specified in the critic definer editor based on the meta-

model of SimplifiedMaramaEML tool.

Table 8.4: Action assertion template:

when<event>[If<condition>] then <action>.

Template Template instance

<event> = <association> is created <event> = <EMLService_EMLOperation> is created

<condition> = <association> size

<relationalOperator> <value>

<condition> = < EMLService_EMLOperation > size

<greater than> <4>

<action> = delete <association> <action> = delete < EMLService_EMLOperation >

179

Figure 8.13: A critic specified using an action assertion template.

Figure 8.14: Action assertion critic execution after the trigger event occurs: a

critique is displayed to warn the user

Another example of such a complex (or composite) critic is when using the logical

operators AND, OR and XOR. This approach allows users to specify complex critics

by building them from parts. Importantly it also facilitates hierarchical reuse of

simple (or other complex) critic parts. The topmost critic in Figure 8.12 is a complex

critic, where two simple critic conditions, in this case two name uniqueness

constraints, have been connected to OR to share a common feedback element. Table

8.5 shows the specification of the two critics. It is considered as a complex critic

because it involves more than one preference. The execution semantics of these two

critics are that when either one of the critic conditions is violated the critique will be

180

displayed and the fix action for that critic is suggested to the user. The execution of

this critic is shown in Figure 8.15.

 Table 8.5. Attribute constraint template:

<entity> must have a [unique] <attributeTerm>.

Template Template instance

<entity> must have a [unique] <attributeTerm> <EMLService> must have a unique <name>

<entity> must have a [unique] <attributeTerm> <EMLOperation> must have a unique <name>

Figure 8.15: Feedback of a complex critic using the logical operator OR (top)

and fix action for this critic (bottom).

We are able to compare the specification of these critics using our critic

specification tool with specification with the original critics in MaramaEML. The

original MaramaEML used Java event handlers to implement similar constraint

181

testing and feedback to the user. However, it did not generally implement fix-up

options for the end user to invoke. Specifying constraints and feedback was time-

consuming and was difficult to maintain in MaramaEML as the meta-model evolved

over time. Similarly, as MaramaEML has several integrated modelling notations and

a canonical meta-model, it was a complex task to implement inter-notation

constraints. Using our critic designer on the canonical meta-model is straightforward

and implementations of critics that took several hours to specify, test and evolve can

be done in a matter of minutes. Understanding the critics is far easier than browsing

and understanding the previous individual Java event handlers, which comprised

hundreds of lines of Java code with Marama API calls. In contrast, as seen in these

examples, visual and form-based critic specifications are very clear, concise,

understandable, reusable and maintainable.

8.4 Case Study III: MaramaUML Tool

In this section, we present our final case study, a MaramaUML tool to demonstrate

the utility of our critic specification editor in customizing/tailoring critic authoring

templates. The MaramaUML tool provides a simplified Unified Modelling

Language (UML) class diagram view and collaboration diagram view. We designed

and developed a simplified UML tool for the purpose of clarity in explaining the

task of customizing the critic authoring templates.

8.4.1 Case Study Description

The Unified Modeling Language (UML) offers several types of diagrams that can be

employed to model the static structure and dynamic behaviour of a software system.

In this case study, we have chosen a class diagram to represent the static model

structure of a software system and a collaboration diagram to represent the dynamic

behavioural model of a software system. We have designed and developed a simple

MaramaUML tool using the Marama meta-tool editors. In this case study, we

concentrated on class diagrams and collaboration diagrams for the conceptual

perspective. This could be extended to cover other UML diagram types in the future,

but the coverage is sufficient to illustrate the application of our critic approach.

182

We specified several entities and associations to represent the structure of a class

diagram and a collaboration diagram. The basic items of a class diagram are:

package; class with the properties name, attribute and operation; and associations

between these items. Similarly, the collaboration diagram depicts objects and links

between objects. The class of each object included in the collaboration diagram must

be defined and the object may optionally be named. The basic items for a

collaboration diagram are: object with the properties class name and object name;

message; and relationships between these items. The meta-model for the

MaramaUML tool that defines the structure of a class diagram and a collaboration

diagram is shown in Figure 8.15.

Figure 8.15: Metamodel for MaramaUML tool.

Figure 8.16: Class diagram example (left) and Collaboration diagram example

(right)

The MaramaUML tool provides two diagrams: Class diagram view and

Collaboration diagram view. Figure 8.16 (left) shows an example of UML class

diagram modelling the concepts and relationships in a library system. Every class is

183

distinguished by its name, by a collection of properties, and by a collection of

operations provided by the class. The class diagram (left) represents the structure of

an early design-time snapshot of a simplified library system: a Borrower for

borrowing and returning library items, a LibraryCard for certifying the borrower‟s

right to use the library, a LibraryItem for recording the library items, and a Librarian

for processing and verifying the library data. A Borrower class is related to

LibraryCard and LibraryItem classes. A Librarian class is related to LibraryItem

class.

Figure 8.16 (right) shows an example of UML collaboration diagram modeling the

objects interaction in a library system. An early design of a collaboration diagram

(right) is used on the instance level to describe the interaction among the objects

(instances of classes) and messages passes between them (Paige, Ostroff, & Brooke,

2002). The UoALibCard object is an instance of the LibraryCard class, the

storybook object is an instance of the LibraryItem class, the Ali object is an instance

of the Borrower class and the Karen object is an instance of the Librarian class. The

diagram also shows messages being passed between the objects. For instance, the Ali

object passes a message, borrowItem to the storybook object.

The two diagrams: class diagram and collaboration diagram are two fundamental

models that can be used to represent a system as shown in Figure 8.16. Once the

MaramaUML tool was defined, critics and feedbacks were specified via our critic

specification editor. The following section illustrates an example of tailoring the

critic authoring templates via the critic template editor, followed by an example of

using the newly created critic template to specify a critic for the simplified

MaramaUML tool. This shows how users of MaramaUML could tailor critics to

their own preferences and needs using our high-level critic design tool facilities. In

all other UML tools that we are aware of, including the earlier versions of Marama-

implemented UML tools, such tailoring would require expert knowledge of the tool

infrastructure, detailed use of the tool‟s scripting and/or programming language, or

would not be supported at all (the case for most UML tools that we are aware of).

184

8.4.2 Example Usage

One example of the possible critics that can be specified for the MaramaUML tool is

to define a critic rule that checks for elements of consistency between a

collaboration diagram and a class diagram. For instance, the objects in a

collaboration diagram must include/define a class name of classes that are already

defined in a class diagram. In other words, for each object defined in the

collaboration diagram, there should be a class name that belongs to a class diagram,

so that, objects defined in the collaboration diagram have a corresponding class that

has been defined in the class diagram. This description is shown graphically in

Figure 8.17. Thus, we can say that the object‟s class name in a collaboration diagram

must be equal to a class name that has been defined in a class diagram. If a design

violated this critic rule, then a feedback is displayed to warn the tool user about the

consistency error in the diagram design. During exploratory design this critique may

be ignored i.e. the inconsistency tolerated by designers. However, it must be

resolved at some point or otherwise the resultant UML model is, by definition,

incorrect.

185

Figure 8.17: Graphical representation of a consistency rule between

collaboration diagram (bottom) and class diagram (top)

The available critic authoring templates that employ the business rule templates do

not, however, support the above situation. In a case where the available template

does not support the desired critic specification, we allow the end-user tool

developer to construct/customize a new critic template via a Critic Template editor,

shown in Figure 8.18. The following are the steps in constructing a new critic

authoring template:

1. Construct a critic statement/expression in natural language that describes the

critic condition. The critic statement should reflect the information expressed

in the MaramaUML tool‟s meta-model;

New critic rule statement: The Object‟s class name in the collaboration diagram

is not equal to a Class name that has been defined in a class diagram

186

2. Identify the appropriate critic rule phrase that can represent the critic

statement. This is shown below:

The Object’s class name in a collaboration diagram is not equal to a Class name

that has been defined in a class diagram

3. Selected critic rule phrase then form a new critic authoring template to be

used in specifying a critic:

New critic authoring template syntax:

<entity1><attributeTerm><relationalOperator><entity2><attributeTerm1>

4. After specification, the new critic template is listed in the available templates

and can be used to specify critics. Thus, the available templates list can be

expanded according to the new critic templates created in the critic template

editor. Such basic critics can also be used in complex, composite critics as

illustrated in the previous MaramaEML case study.

The steps are shown in Figure 8.18. With the new critic template, the consistency

critic rule to check the existence of classes in a collaboration diagram and a class

diagram can be specified as:

Critic name: <Object><className><not equal><Class><name>

<entity1> <attributeTerm> <attributeTerm1> <entity2> <relationalOperator>

187

Figure 8.18: A new critic template created in the Critic Template editor.

A critic then can be specified using the new critic template as shown in Figure 8.19

(the bottom critic). The other critics in Figure 8.19 have similar characteristics to the

one that we described in the earlier section.

Figure 8.19: New critic authoring template:

<entity1><attributeTerm><relationalOperator><entity2><attributeTerm1>

(bottom critic)

188

The execution of this new critic authoring template is shown in the following

figures: Figure 8.20, Figure 8.21 and Figure 8.22. In Figure 8.20, a critique message

is displayed in the collaboration diagram due to the fact that the class name defined

in the collaboration diagram does not correspond to a class that has been defined in

the class diagram. The critique message warns the user about the error and provides

an explanation together with a suggestion to resolve the error. This is shown in

Figure 8.21. The critique message, explanation, and suggestion to fix the error are

actually based on the properties that were specified in the critic feedback editor.

Figure 8.20 A critique is displayed when a consistency critic rule is violated.

Figure 8.21: A critic feedback displays a brief explanation and suggestion.

In Figure 8.22, it shows an action to resolve the error by renaming the class name in

the collaboration diagram. A new class name that corresponds to an existing class in

a class diagram is then defined in the dialogue box (i.e. Enter new value).

189

Figure 8.22: A fix action to resolve the consistency critic rule

In our earlier versions of MaramaUML tools such a constraint had to be

implemented with a Java event handler. This needed considerable coding and

Marama API calls to fully implement the example shown, around 100 lines of Java

code including supporting feedback to the user and fix-up action support. Writing

such code requires expert knowledge of the Marama APIs, as well as advanced Java

programming skills. It is error-prone, difficult to maintain and very difficult to

abstract and reuse.

In contrast, the critic for the MaramaUML example shown above demonstrates that

the critic specification tool can be extended by adding new design critic templates to

be instantiated for a DSVL domain. The critic template can be reused and any

complex critic built from the template can be composed of multiple reused basic

critics. The visual language and form-based property editors used to specify this

complex critic are easy to understand for tool developers and even for end users in

this example (UML users would find the critic and DVSL tool meta-modelling and

visual language specification straightforward as they are familiar with the class and

collaboration diagram concepts themselves). Finally, the critic template and complex

critic are understandable, maintainable, reusable and ultimately reconfigurable – the

MaramaUML user could switch off the critic or extend it with further constraints,

feedback or alternative fix-up rules using the critic designer tool.

190

8.5 Discussions and Conclusions

We have applied our new critic specification editor to three very different domains

of Marama-based tools, i.e. Marama visual care plan modelling language (VCPML)

- a health care plan modelling tool, a simplified MaramaEML (Enterprise Modelling

Language) – business process modelling tool, and a MaramaUML tool - a class and

collaboration diagramming tool.

We described our approach in specifying critics for Marama-based tools through

three case studies and each of these case studies included critic specifications and

applications as we mentioned previously. We have developed a prototype of a critic

specification editor that consists of two editors, including a Critic Construction

editor that comprises of the critic authoring templates and a critic template editor,

and a Critic Feedback editor to specify a critic feedback (critique). The main aim of

our prototype is to demonstrate the utility of the critic specification editor when

integrated into the Marama meta-tools. We have illustrated the utility of the critic

specification editor with three different case studies. Our purpose of using three

different case studies is to show that the utility of the critic specification editor can

extend to a range of different domains of DSVL tools.

The first case study involves specifying simple critics for a health care plan

modelling tool (i.e. VCPML) using the constraint templates (attribute and

relationship constraint templates). The available templates provided in the Critic

Construction editor are very straightforward to specify a critic. The structured form

of the critic authoring templates makes it easier and quicker to specify critics for the

VCPML tool compared to using OCL and/or Marama event handlers coded in Java.

The syntax of the critic authoring templates matched the information expressed in

the tool‟s meta-model and this makes the critic authoring task much easier for tool

developers. However, the limitation in the first case study is that we did not address

complex critics for the VCPML tool, as the constraint templates only support fairly

simple design critic construction. We speculate that with some training end users of

MaramaVCPML may even be able to understand, reconfigure and specify new

critics i.e. health professionals could extend their MaramaVCPML designer critics.

191

The second case study deals with a business process modelling tool, a simplified

version of an earlier developed MaramaEML tool. The main aim of the second case

study is to demonstrate the utility of the critic specification editor in specifying

complex critics. The specification of complex critics is performed via the action

assertion template. Several properties/features have to be considered and assessed

when specifying a complex critic for the tool and these properties however have to

be matched with the tool‟s meta-model elements. Through the action assertion

template, complex critics can be specified, provided that all the necessary properties

of event, condition and action have been defined. We also show how a complex

critic can be specified through the use of logical operators-OR, AND and XOR. The

logical operators can be used to link several similar critics and provide a common

critic feedback, like the one that we explained in the case study. With the second

case study we managed to show that complex critics are possible to be specified via

the critic specification editor. We were able to compare specification with our critic

designer to earlier implementation of the same critics using existing Marama meta-

tool OCL constraints and Java event handlers. Our critic specification tool approach

was proved far easier, quicker, and maintainable than our existing meta-tool support.

However, the main limitation of our second study is that we did not illustrate many

examples of complex critics from the action assertion template and also the logical

operators that are likely to arise.

Finally, we described a third case study that was concerned with a simplified

MaramaUML tool. The difference of this case study with the previous two is that the

MaramaUML tool provides two diagrams: a class diagram and a collaboration

diagram. The properties of these two diagrams come from one meta-model. The

previous case studies only support one model/diagram of their tools. The main

objective of the third case study is to illustrate the task of customizing the critic

authoring templates when a desired critic specification is not supported by the

existing critic authoring templates. An aim of our research was to enable end user

tool developers to be able to create their own critic template in a situation where the

list of available templates cannot support their desired critic statement. Thus, we

demonstrate in the case study how a critic authoring template can be customized

using a critic template editor. With the critic template editor, new critic templates

192

can be constructed to expand the list of available templates that appear in the critic

construction editor. Once the new critic authoring template is defined, the required

critic statement can then be specified for that tool. In this case study, we show an

example of creating a new critic authoring template which is a consistency critic

template that is concerned with one aspect of the consistencies between a

collaboration diagram and a class diagram. The limitation from the third case study

is that we did not address the issue of expressive power that the critic template editor

provides to the end use tool developers.

In one of the three case studies we did illustrate the critic feedback editor that is used

to provide the feedback information once a critic is defined. The critic feedback

process is applied for the other case studies. The function and properties of the critic

feedback editor are described in the previous chapters. In general, we believe that we

have managed to explain, demonstrate and provide understanding of the utility of

our critic specification editor which we integrated with the Marama meta-tools. It is

important to note that although each case study explains and illustrates a different

utility of the critic specification editor, the utilities of the critic specification editor

actually can be applied across all three different Marama tools. The exactly same

critic specification tool was used for each case study with no tailoring to the target

DSVL tool domain.

193

Chapter 9

Evaluation

This chapter presents the evaluation of our final critic specification prototype for

domain-specific visual language tools. We begin by introducing the concepts of

evaluations and usability evaluations. Then we introduce the Cognitive Dimensions

of Notations framework (CDs) and describe the criteria to evaluate a tool‟s usability.

We then explain the design/method of our survey carried out to assess whether the

visual and template-based critic authoring tool effectively supports end-user

developers in specifying critics for DSVL tools. We analyse the survey results and

present the findings before we conclude the chapter.

9.1 Introduction

Evaluation is an essential activity in software engineering. According to Gena and

Weibelzahl (2007), evaluations are applied in software development to verify the

quality and feasibility of initial products such as mock-ups and prototypes as well as

of the final system/tool (Gena & Weibelzahl, 2007). Conducting an evaluation can

supply direct information about how people use the system/tool and the problems

with a specific interface (Holzinger, 2005). In addition, useful feedback from the

evaluation can help tool developers with redesign of the system/tool (Gena &

Weibelzahl, 2007). There are various types of evaluation and the one that we focus

in this chapter is usability evaluation. We briefly introduce several concepts and

definitions regarding usability evaluation before we describe the methods that we

applied for evaluating our prototype tool, i.e. the critic specification editor (Marama

Critic definer).

A considerable number of studies have discussed and published information on

usability testing/usability evaluation. These include (Blecken & Marx, 2010;

Hartson, Andre, & Williges, 2003; Holzinger, 2005; Jacko & Sears, 2003; Khan,

Israr, & Hassan, 2010; Leventhal & Barnes, 2008; Lund, 1998; Nielson, 1993;

194

Rubin, 1994). Most studies suggest that usability plays an essential task in the

improvement and development of effective and efficient systems/tools.

Rubin (1994) describes the term usability testing as “a process that employs

participants who are representative of the target population to evaluate the degree to

which a product meets specific usability criteria.” Another study which is recently

published in (Hwang & Salvendy, 2010) suggests that usability evaluation is

“essential to make sure that software products newly released are easy to use,

efficient, and effective to reach goals, and satisfactory to users.” Though the

different terms “usability testing” and “usability evaluation” are used here it is very

clear that both focus on the aspect of usability. Leventhal and Barnes (2008) report

the definition of usability from the international standard ISO 9241-11 as:

“Usability: the extent to which a product can be used by specified users to achieve

specified goals with effectiveness, efficiency and satisfaction in a specified context

of use.” In another published article by Holzinger (2005), usability is defined as “the

ease of use and acceptability of a system for a particular class of users carrying out

specific tasks in a specific environment.” Hence, we can say that usability testing

and usability evaluation serve the same role which is to evaluate a system or product

that can be used by the potential users in order to achieve specific usability aims

such as ease of use, efficiency, effectiveness and satisfaction for users. Here we use

the term usability evaluation to describe our evaluation method.

When conducting an evaluation, one has to consider whether it is a formative

evaluation or summative evaluation. Formative evaluations are evaluations that take

place throughout a system‟s or tool‟s development to improve a design. Summative

evaluations are conducted after a system/tool is completed to assess a design

(Blecken & Marx, 2010; Hartson, et al., 2003). In our case, we conducted a

summative evaluation and this is explained in the following sections. There are

several methods for evaluating usability, such as Think Aloud (TA), Heuristic

Evaluation (HE), Cognitive Walkthrough (CW), field observation and

questionnaires. Information on these methods can be found in (Gena & Weibelzahl,

2007; Holzinger, 2005; Hwang & Salvendy, 2010; Nielson, 1993).

195

This chapter describes the methods used to evaluate our prototype tool, which are:

questionnaires, observation and think aloud. We also applied the Cognitive

Dimensions of Notations framework (CDs) for discussing the usability of our tool.

CDs have been used to design a set of generalised questionnaires intended for

system/tool users evaluating the usability of a tool (Blackwell & Green, 2000). We

used some of these to design a questionnaire that integrates with the CDs elements.

We also made use of the USE (Usefulness, Satisfaction, and Ease of Use)

Questionnaire from (Lund, 1998) to design a questionnaire that deals with usability

issues. In addition, we used the observation and think aloud approach while our

participants worked on our prototype tool. All of these are explained in the

following sections.

9.2 Cognitive Dimensions of Notations framework (CDs)

The Cognitive Dimensions of Notations framework (CDs) as reported in (Blackwell

et al., 2001) “is a framework for describing the usability of notational systems ... and

information artifacts ... ”. The CDs are used to support the non-specialists in

evaluating usability of information-based artefacts (Green & Blackwell, 1998).

Many researchers have employed CDs for the purpose of usability evaluation for

their tools, such as (Pereira, Mernik, Cruz, & Henriques, 2008), (Li, et al., 2007b),

(Tukiainen, 2001), (Cox, 2000), (Green & Petre, 1996), and many others. According

to Green and Blackwell (1998), the CDs approach aims to provide surface analysis

rather than extensive analysis. The CDs were proposed to discuss the usability

tradeoffs that occur when designing diverse tools and systems (Green & Blackwell,

1998; Green & Petre, 1996). Table 9.1 presents a brief description of the Cognitive

Dimensions adopted from (Blackwell, et al., 2001). The details of the CDs approach

that comprises these fourteen dimensions can be found in many published articles,

e.g. (Green & Petre, 1996), (Green & Blackwell, 1998), (Blackwell & Green, 2000),

(Blackwell, et al., 2001), (Green, Blandford, Church, Roast, & Clarke, 2006), and

others.

We apply the CDs approach in the form of a questionnaire about our critic

specification editor to review the usability of the editor for specifying critics for the

196

DSVL tools, specifically for our Marama-based tools. However, we do not include

all the dimensions as stated in the CDs. The results from the survey questionnaire

are discussed in section 9.5.

Table 9.1: The meaning of each dimensions (Blackwell, et al., 2001)

Dimension Meaning

Viscosity Resistance to change

Visibility Ability to view components easily

Premature

Commitment

Constraints on the order of doing things

Hidden

Dependencies

Important links between entities are not visible

Role-

Expressiveness

The purpose of an entity is readily inferred

Error-Proneness The notation invites mistakes and the system gives little

protection

Abstraction Types and availability of abstraction mechanisms

Secondary

Notation

Extra information in means other than formal syntax

Closeness of

Mapping

Closeness of representation to domain

Consistency Similar semantics are expressed in similar syntactic forms

Diffuseness Verbosity of language

Hard Mental

Operations

High demand on cognitive resources

Provisionality Degree of commitment to actions or marks

Progressive

Evaluation

Work-to-date can be checked at any time

9.3 The Four Criteria to Evaluate Usability

Another issue that needs to be considered when conducting a usability evaluation is

the criteria or elements that need to be assessed by the potential users of the tool

under evaluation. There are several models that can be employed to perform a

usability evaluation, such as Shackel‟s model of usability, Nielson‟s model of

usability and Eason‟s model of usability (Leventhal & Barnes, 2008). The Shackel

model identifies the four items of usability as effectiveness, learnability, flexibility,

197

and attitude. In the Nielson model, there are five dimensions that are contributed to

usability: easy to learn, efficient to use, easy to remember, few errors, and

subjectively pleasing. Similarly, the Eason model recognises three aspects for

usability: 1) system (user interface) characteristics- ease of use, ease of learning,

task match; 2) task characteristics – frequency and openness, and 3) user

characteristic- knowledge, motivation and discretion. Researchers can adopt those

usability models as their guidelines and create their own criteria to evaluate their

tool. For instance, in (Khan, et al., 2010) studies, they selected five different criteria

to evaluate the usability of their tool, (i.e. ThinkFree doc.). Their criteria are:

effectiveness, efficiency, satisfaction, learnability and utility. We are not adopting

any specific usability models, however, we have used items from the USE

Questionnaire (Lund, 1998) to design our survey questionnaire for evaluating the

usability of our prototype tool.

We defined four elements to evaluate the usability of our prototype tool. These are:

1. Usefulness – refers to how useful the tool is in helping the users to be more

effective and able to accomplish a task in an easier way.

2. Ease of use – refers to how easy the users can work with the tool‟s interface

after they have understood the tool.

3. Ease of Learning – refers to how easy the users can learn and understand the

new/untried tool.

4. Satisfaction – refers to the user‟s satisfaction in using/working with the new

tool.

We designed a short questionnaire that can be used to measure the four elements of

usability for users. We selected several questions from (Lund, 1998) and developed

our survey questionnaire with 12 questions, 3 for each of the usefulness, ease of use,

ease of learning and satisfaction categories. These questions are in Section two of

the questionnaire part of the survey. The results are discussed in the section 9.5.

198

9.4 Design of the Survey

In this section, we present the design of our survey carried out to evaluate the

prototype of our visual language-based tool, critic specification editor (i.e. Marama

Critic definer). The objectives of the survey are:

1. To evaluate the visual design critic authoring tool to test the tool‟s usability

and effectiveness in constructing critics for domain-specific visual language

(DSVL) tools.

2. To obtain qualitative information on user perceptions of the „template-based

critic authoring‟ - whether it is easy and useful for generating critics for their

DSVL tools.

Our survey is structured into two parts. Part one involves a task list and an

observation. The task list contains the tasks needed to be completed by a participant.

The observation was conducted and data was collected while the participant

performed the tasks. Part two provided a questionnaire to be answered by the

participant once he/she had completed the tasks. We asked participants to participate

in this survey on a voluntary basis and their participation was treated anonymously.

In the following, we describe the observation and questionnaire design, the method

used to evaluate the usability of the critic specification editor as well as the end

users‟ subjective comments.

9.4.1 The Observation Design

The observation method was used to achieve the second objective of the survey

stated above. We applied a combination of two methods for the observation: 1)

unobtrusive observation and 2) obtrusive observation. With unobtrusive observation,

the participant was observed in how they used the tool. Thus, we learned whether

the participant could use the tool in an easy and efficient way. The aspects that we

wished to observe from the participants were: 1) how participants defined critics for

the developed tool; 2) did participants managed to complete the critic-authoring task

and 3) how participants navigated different parts of the tool. With obtrusive

observation, participant was asked to speak out what he/she thought while using the

199

tool. Hence, we learned from the participants more about the usefulness and the

acceptance of the tool. These two methods are performed at the same time as the

participants doing their task on the given tool. We wanted the participants to feel

relax while doing the task, so we allowed them to express what they think about the

tool via a think aloud approach. We collected the observation data while the

participants were performing the tasks. We also collected the views/comments

expressed by the participants.

The observation was carried out when a participant performed a set of tasks that

he/she was required to do while interacting with the prototype tool. In both methods,

no personal information about the participant was collected as participation in this

survey was treated anonymously.

9.4.2 The Questionnaire Design

In this section, we describe our questionnaire. According to Blecken and Marx

(2010), questionnaires can be applied for both summative and formative evaluations

and also can assist to acquire quantitative information on user judgement of a system

or tool (Blecken & Marx, 2010). Furthermore, questionnaires can serve to assess an

entire tool or only partial aspects of a tool (Blecken & Marx, 2010). We have used a

questionnaire in our survey to assist us in performing the usability evaluation for our

prototype tool.

We designed our questionnaire based on the CDs approach and the original

Blackwell and Green questionnaire (Blackwell & Green, 2000). The questionnaire

from (Blackwell & Green, 2000) acted as a guideline for us to identify the relevant

items to put in our survey questionnaire.

Our questionnaire has two sections: 1) background information; and 2) prototype

tool information. Section one contains four questions to reflect the background of

the participant. The questions we designed for this were based on the questions from

(Blackwell & Green, 2000). Section two consists of six categories that we classified

as: 1) usefulness; 2) ease of use; 3) ease of learning; 4) satisfaction; 5) cognitive

dimensions of critic authoring task; and 6) open end question to which participants

200

can freely respond. We employed a Likert scale to obtain participants‟ feedback

about the usability of our prototype tool (i.e. critic specification editor). For each

question statement in this section, we classified the responses as 5-point Lickert

rating scales: 1=strongly disagree, 2=disagree, 3= undecided, 4= Agree and

5=strongly agree.

For categories (1) to (4), we designed questions based on the USE questionnaires

(Lund, 1998), whereas category (5) was based on the questionnaire from (Blackwell

& Green, 2000).

Overall, the questionnaire is comprised of twenty seven different questions which

the selected participants filled in to evaluate the usability of the critic specification

editor. Before the end user evaluation took place we gained an ethics approval from

the University of Auckland Human Participants Ethics Committee. Please refer to

Appendix A: Evaluation Survey for the questions.

9.4.3 Survey Method

Invitations to the survey were made to potential participants who had basic

background knowledge of the Marama meta-tools. We managed to gather a group of

12 volunteer researchers and students who met the background requirement and who

were interested in both modelling and the development of modelling tools to support

their work. Four of the participants were computer science researchers, who have

used the Marama meta-tool to develop tools for their research work. Another 8

participants were postgraduate Computer Science students who had taken a course in

which Marama had been introduced and involved in a coursework assessment.

The usability evaluation survey was conducted individually with the volunteer

participants. The participants were given a description of how to use the prototype

tool, i.e. critic specification editor (Marama critic definer) and the functions

involved with it. We then asked the participants to perform five different tasks. The

tasks had to be carried out respecting any constraints. These tasks were:

1. Task 1: Explore the Marama tool that was given;

2. Task 2: Identify critics for the tool;

3. Task 3: Add the critics to the tool using the critic authoring templates;

201

4. Task 4: Run the critics;

5. Task 5: Construct a critic via a formula function.

We also observed how the participants went about using the critic specification

editor. Participants were asked to think aloud and give suggestions about the tool.

After performing all of the five tasks we distributed the survey questionnaire to

participants to collect their responses. Participants filled out the questionnaire at

their own pace without supervision. We then collected the response data for our

analysis. In general, each participant took less than 1 hour to perform the evaluation

survey. The result of the survey and analysis are discussed in the following section.

9.5 Survey Result and Analysis

In this section, we present the survey results and analysis.

9.5.1 Analysis of Task List and Observation

Part one of the evaluation survey was to observe how the participants use/work with

Marama meta-tools and carry out the five tasks that we structured in the survey. As

the participant performed the five tasks, the aspects that we wanted to observe from

the participants were: 1) how participant defined critics for the developed tool; 2)

did participant manage to complete the critic-authoring task and 3) how participant

navigated different parts of the tool. Participants were also encouraged to say aloud

while interacting with the tool.

We mentioned in our observation design that we used a combination of unobtrusive

and obtrusive observation methods. These two methods were performed at the same

time as the participants performing their task on the given tool. While doing their

work, the participants were asked to express what they think about the tool via a

think aloud approach. We collected the required data that we observed while the

participants performed the tasks and also any views/comments expressed by the

participants.

The possible observations for each task are reviewed below:

1. Task 1. Explore the Marama tool that was given to you.

202

The first task was to allow the participants to explore the three main editors

of the Marama meta-tools, i.e. Metamodel definer view, Marama Shape

Designer view, and Marama Viewtype Definer view.

Observation results: All participants appeared to be familiar with the three

editors based on their previous basic knowledge on Marama meta-tools.

They understood the function of each editor and were able to navigate

between the three editors.

2. Task 2. Identify critics for the tool.

The second task was to let the participants think up and list several critic

statements that were relevant to the given Marama-tool. The participants also

needed to identify an appropriate feedback (fix action) for each of the

identified critics. A space is provided in the survey form for them to write

their critic statements in English.

Observation results: With the think aloud approach, the participants

communicate with the researcher/observer to gain an understanding of a

critic statement. All the participants managed to understand a simple critic

statement for the given Marama tool after one or two examples of critic

statements were shown by the observer. However, most of the participants

did not write down the critic statements in the space given in the form, but

instead they preferred to proceed with task 3 to define their critic statements.

Below are the examples of critic statements for a MaramaUML tool written

by one of the participants on their survey form.

Critic Feedback

“- Class should have a unique name property”

“ –Class should not have more than (some limit)

of other classes associated to it”

“-Rename or Remove the class”

“-Remove the association”

203

3. Task 3. Add critics to the tool using the critic authoring templates.

The third task was to allow the participants to implement their chosen

Marama critic by specifying the tool critics via the Marama Critic Definer

views. The participants defined their tool‟s critic by selecting a CriticShape

icon which automatically associated with a form-based interface, the Critic

Construction View. The participants then selected the appropriate templates

from this interface (Attribute constraint template/ Relationship constraint

template/ Action Assertion template) that could represent their critic

statement. Next the participants identified the feedback (fix action) for the

critics that had been defined. The participants then selected the

CriticFeedbackShape icon which is also automatically associated with a

form-based interface, Critic Feedback View. The participants subsequently

selected the necessary fix action listed in the interface. Once the participants

were satisfied with their critics and feedbacks, the participants saved their

work.

Observation results: All participants managed to perform the third task;

however they needed some guidance from the tool developer (i.e. the

researcher who acted as the observer). The critic authoring templates were

not easily understandable by the participants for first time use due to their

unfamiliarity with the critic templates concept. We did provide a critic

authoring template guideline in the tool but it is unreasonable to expect first

time users to pick them up quickly and have a good understanding of the

templates. However, most participants found it interesting to specify critics

just by selecting the appropriate template and then select the necessary fix

action that had been suggested. Overall, the participants managed to

complete the critic-authoring task by specifying simple critics using the

templates and then specifying the fix action for the critics. We got some

useful feedback through the think aloud method and below are some of the

comments.

Participants‟ comments:

204

 “It would be easier to specify critics after the critic authoring

templates are well understood”;

 “It is hard for a first time user to specify critics using the templates.

However, after regular use of the tool it would be easy”;

 “It takes time to understand the templates and also to select the

appropriate templates to represent a critic”.

4. Task 4. Run critics.

The fourth task was to allow participants to see how the critics are

implemented in the Marama Model Project and Marama Diagram for the

given Marama tool. The participants created a simple diagram and tried to

violate the critic rules that they defined in task 3. The participants could see

the critic message and feedback (fix action) which was displayed at the

Marama diagram they created.

Observation results: All of the participants were impressed with the

displayed critic message and feedback that was generated at their Marama

diagram. They found it interesting to use the critic authoring templates to

generate tool‟s critics.

5. Task 5. Critic via formula function.

The fifth task asked participants to construct simple critics using the Object

Constraint Language (OCL) via the Formula icon that already exists in the

Marama meta-tool. The participants then saved the Formula and ran the critic

as per task 4. The participants needed to open the Eclipse-Problem View to

see the response to the critics‟ violation.

Observation results: This task was unfortunately not performed by most of

the participants because they appeared to forget the required OCL

expressions. They had previously learned OCL expressions but they were not

familiar with using OCL to express a critic. Thus, for this last task, the

researcher/observer ended up showing a simple example of an OCL

205

expression to represent a critic. The critics‟ responses were then displayed in

the Eclipse-Problem View when a critic rule was violated in the Marama

diagram. The feedback that we received from most participants through the

think aloud method is as below.

Participants comments:

 “Prefer to use the templates instead of using OCL expression or

through coding in specifying critics”;

 “Using the templates to specify critics are much easier compared to

OCL expression or coding”.

9.5.2 Analysis of Questionnaire Responses

The second part of the survey was to answer the survey questionnaire. The

questionnaire was in two sections. Section one was to obtain the background

information of the participants. The aim of this section was to find out whether the

participant is a skilled, intermediate or novice user of the tool under evaluation, and

whether the participant has experience of other similar tools. The following table

shows the four questions in section one that was answered by the twelve

participants.

Table 9.2: Section 1- Background information

Participants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Participant

type

PS PS PS PS PS PS PS PS Res Res Res Res

Q1. Level

of

proficiency

S N I I I I I I S S S I

Q2. Used

similar

tools?

No No No No No No No Yes Yes Yes Yes Yes

Q3.Develop

ed design

critics

Yes No No No Yes No No No Yes No Yes No

Q4. Name

of the

Marama

tool

Mara

ma

UML

Mara

ma

UML

Mara

ma

UML

Mara

ma

UML

Mara

ma

UML

Mara

ma

UML

Mara

ma

UML

Mara

ma

UML

Marama

W

Marama

X

Mara

maY

Mara

maZ

Note: PS = Postgraduate student, Res = Researcher.

 Q1. S = Skilled, I = Intermediate, N = Novice

206

From the Table 9.2, it shows that seven participants are intermediate users; four

participants are skilled users and one participant is a novice user in using the

Marama meta-tools. From the twelve participants, more than half of them never used

other tools similar to the Marama meta-tools. We then asked whether participants

had experience designing critics for any of their software tools. Only four

participants had done so. The eight postgraduate students were given the same

Marama tool to perform a usability evaluation. However, the researchers were using

their own simplified Marama tool to perform the usability evaluation on the critic

specification editor.

In an earlier section, we mentioned that the participants needed to perform several

tasks before they could answer the questionnaire. The section after the background

information aimed to obtain prototype tool information. There are six categories in

this section, comprising twenty three questions of which three questions were asked

about usefulness, three questions were asked about ease of use, three questions were

asked about ease of learning, three questions were asked about satisfaction, ten

questions were asked about cognitive dimensions of the critic authoring task, and

one open ended question was asked on how the tool could be improved. The

participants‟ responses for the six categories are discussed below.

A. Usefulness, Ease of Use, Ease of Learning and Satisfaction

The questions in this section focused on standard usability questions, such as

usefulness, ease of use, ease of learning and satisfaction. The usability responses

shown in Table 9.3 and Figure 9.1 were highly positive. In all questions by far the

majority of participants answered that they agreed or strongly agreed, indicating the

tool had strong appeal, and was perceived to be highly usable, useful, easy learning

and highly satisfied by our target end users. Please refer to Table 9.3 and Figure 9.1,

which show the participants‟ responses based on a 5 point Lickert scale (1=strongly

disagree, 5=strongly agree).

207

Table 9.3: Usability responses

Section 2- Prototype Tool Information SD(1) D(2) U(3) A(4) SA(5)

A. Usefullness

It is usefull 0 0 0 5 7

It helps me be more effective 0 0 0 7 5

It makes the things I want to accomplish easier to get done 0 0 1 6 5

B. Ease of Use

It is easy to use 0 0 1 8 3

It is user friendly 0 0 2 6 4

I don't notice any inconsistencies as I use it 0 1 2 5 4

C. Ease of Learning

I learned to use it quickly 0 1 0 7 4

I easily remember how to use it 0 0 1 6 5

It is easy to learn to use it 0 1 1 6 4

D. Satisfaction

I am satisfied with it 0 0 0 7 5

I would recommend it to a friend 0 1 1 6 4

It is fun to use 0 0 3 6 3

Legend: SD=Strongly Disagree, D=Disagree, U=Undecided, A=Agree, SA= Strongly Agree

Figure 9.2: Usability responses.

0
1
2
3
4
5
6
7
8
9

Respondent

Questions

Evaluation of Marama Critic Definer View
by Students and Researchers

SD(1)

D(2)

U(3)

A(4)

SA(5)

208

B. Cognitive dimensions analysis of the critic authoring task

We adapted the questionnaire designed by (Blackwell & Green, 2000) based on the

Cognitive Dimensions of Notations (CDs) framework. This provided questions

targeted at each of the cognitive dimensions as we were interested in the tradeoffs

amongst those dimensions that participants observed. For this section too, the

participants answered on a 5-point Lickert scale (1=strongly disagree, 5=strongly

agree). Please refer to Table 9.4 and Figure 9.2 to see the CDs responses.

Table 9.4: Cognitive dimension responses

E. Cognitive Dimensions of Critic-Authoring Task SD(1) D(2) U(3) A(4) SA (5)

It is easy to see various parts of the tool 0 1 0 9 2

It is easy to make changes 0 0 1 7 4

The notation is succinct and not long-winded 0 0 2 7 3

Some things do require hard mental effort 0 4 4 3 1

It is easy to make errors or mistakes 0 5 4 3 0

The notation is closely related to the result 0 0 0 8 4

It is easy to tell what each part is for when reading the notation 1 0 2 5 4

The dependencies are visible 0 0 2 7 3

It is easy to stop and check my work so far 0 0 1 6 5

I can work in any order I like when working with the notation 0 0 0 8 4

Legend: SD=Strongly Disagree, D=Disagree, U=Undecided, A=Agree, SA= Strongly Agree

Figure 9.3: CD questionnaire responses.

0
1
2
3
4
5
6
7
8
9

10

Respondents

Dimensions

CDs of Critic-Authoring Task by Students and Researchers

SD(1)

D(2)

U(3)

A(4)

SA (5)

209

Figure 9.2 shows the responses to the questions concerning each of the cognitive

dimensions. In the following section we discuss each of these in more detail.

Visibility

This CD indicates the ability to view various aspects of the tool easily. Nine out of

the total 12 participants answered that it is easy to see various parts of the tool. The

Marama Critic Definer view shows two simple visual notations to represent critic

(i.e. CriticShape) and critic feedback (i.e. CriticFeedbackShape), and two connectors

to show the link between critic and critic feedback (i.e. CriticFeedbackLink), and

dependency between critics (CriticDependencyLink). The CriticShape and

CriticFeedback Shape are associated with form-based interfaces to assist the user in

specifying a critic and a critic feedback. The only respondent who doubted the

easiness to see various parts of the tool commented that was due to the lack of

understanding of the meta-tool concept and as a novice user it is hard to see the

function of various parts of the tool.

Viscosity

Viscosity reflects a design‟s resistance to change. Eleven participants said that it was

easy to make changes. The user can easily change critics and critic feedback that

have been defined in the Marama Critic Definer view. Only one respondent

answered undecided. This is probably due to the small size of a critic specification

instance.

Diffuseness

Diffuseness refers to the verbosity of language, i.e. the number of symbols required

to express a meaning using the language. Ten participants answered that the notation

is succinct and not long-winded. The participants commented that the notation is a

straightforward representation of a critic and its feedback, as well as the connectors

that link them. A critic is defined via three templates provided in the critic

construction interface. Thus, a user only defines a critic based on the selected

template. Whereas to specify a critic feedback it only requires the user to define five

properties: critiquing strategies, modes of critiques, explanation, suggestion, and

critique message. Two participants replied that they were undecided to this element.

210

Hard Mental Operations

This dimension reflects the degree of demand on cognitive resources. Four

participants disagreed, four participants agreed (3 agree and one strongly agree) and

four were undecided as to whether using the tool required hard mental effort. The

four participants who agreed claimed that they needed to concentrate and think

carefully before using the critic templates to specify a critic. This may be because

the users were unfamiliar with the critic authoring templates. Our aim was to

provide a way of making the critic specification much easier, but at the heart of it,

critic specification task itself is something difficult to do. However, a regular use of

the templates can overcome the cognitive load.

Error Proneness

Error proneness refers to the ability of the tool to induce „careless mistakes‟. Five

participants disagreed, three participants agreed and four were undecided as to

whether the tool was likely to induce mistakes. This dimension has a similar issue as

the hard mental operations dimension. The participants who answered it is easy to

make mistakes raised the issue that unfamiliarity with the templates can cause users

to make mistakes in specifying critics. This is an initial barrier which can be

overcome by more frequent use of the tool. However, five participants found it has

low error proneness as the notation is very straightforward and supported by a form-

based interface which is familiar to most users.

Closeness of Mapping

This dimension reflects the closeness of the representation to the domain it

describes. All of the participants agreed that the Marama Critic definer view

provides a notation that is closely related to the domain. The critic definition closely

relates to the critic statement/phrase that the user specified based on the available

templates. The specification of a critic feedback is straightforward by just clicking

on the required options and adding the explanation and a critique message.

Role Expressiveness

Role expressiveness indicates that the relationships among components should be

obvious. Nine participants answered it is easy to tell what each part is for when

211

reading the notation. Only one respondent disagreed and two participants were

undecided. In the Marama Critic definer view, it is obvious how to specify a critic

and a critic feedback because it only involves two simple notational elements with

each associated with a form-based interface.

Hidden Dependencies

This dimension assesses the existence of hidden links among parts of the tool. Ten

participants said that the dependencies are visible and two participants are

undecided. Hidden dependencies are primarily between the visual critic definer view

and the form based template views. Moody (2008) argues that this type of

hierarchical dependency is of positive benefit in his Principal of Complexity

Management (Moody, 2008).

Progressive Evaluation

Progressive evaluation indicates the ability to test code as it is being developed.

Eleven participants answered it is easy to stop and check work progress. The

Marama Critic definer view allows the critic and critic feedback specifications to be

evaluated at any stage. Partially completed critics and feedbacks for a developed

Marama tool can be executed as well. Critics and Feedbacks properties can be edited

easily and any new changes will take effect during the model execution of the tool.

Premature Commitment

This dimension reflects the order of steps that a user must follow to achieve a

specific outcome. All of the participants agreed that there are no premature

commitments in the Marama Critic Definer view. The user can freely specify a critic

using any templates (attribute, relationship or action assertion). However, the user

does need to define a critic first before a critic feedback can be specified and linked

with the defined critic. This dependency is obviously seen as a natural one by end

users as they do not appear to regard it as forcing them to prematurely commit to

something at a point where they are not ready. The user does not need to have a

complete set of critics and critic feedbacks to be specified in the Marama Critic

definer view. The user can add a critic as well as the critic feedback for the Marama

tool incrementally as he/she encounter new critics.

212

C. Open ended question to improve the tool design

We also provided the participants with an open ended question and space for them to

write comments about how to improve the critic authoring tool. In general, the

comments/feedbacks suggested that specifying critics visually and via a template-

based style is simple and effective. Issues that raised by some participants to

improve the tool are shown in Table 9.5. These issues are discussed in Chapter TEN.

Table 9.5: Participants’ Comment

Participant Comment

1 “Overall, it is pretty cool, maybe HCI is one aspect to improve by using AI

feedbacks.”

2 “I find the tool may be hard to understand initially for a novice user with little

experience with meta-tools. I think it is not easy to learn at first because the critic

definer is a tool for the meta-tool and the levels of abstraction is high. However,

I feel that a regular user of this tool would find the functions easy to remember

after learning it for the first.”

3 “Include the templates as visual entities. Possibly also connect the shapes of

critics with the shapes of the entities they affect (and the other way around)”

4 none

5 “Everything is good”

6 “Templates should be explained better. Some bugs need to be freed”

7 “The view of the feedback critic/critic construction shall be automatically

focused when creating/extending a critic”

8 “UI cleaned up e.g. Criticfeedback toolbar opens when a feedback is selected.

Icons associated with each template appear on the feedback shapes? Form should

be dependent on which template is selected, so user doesn't accidentally fill in

incorrect or unnecessary fields.”

9 “Visual representation relation between critic and tool model, and graphical

notation in critic, e.g., highlight”

10 “It will be nice to involve colours in the screen to show different critics.”

11 “Noticed 1-1 mapping of critic & feedback, suggested adding feedback into

critic shape, with connection & layout automatically created.”

12 none

9.7 Conclusion

In this chapter, we have presented and described a usability evaluation survey of our

prototype tool, i.e. Marama Critic Definer to specify critics for a DSVL tool. Like

most tools or systems, we believe that our critic specification tool can benefit

considerably from end user involvement in evaluation. The evaluation survey is

based on the combined use of two approaches: observation and questionnaires. The

213

Cognitive Dimensions framework and four usability criteria are applied and

specified in the questionnaire form. We conducted our survey with twelve

participants and each participant conducted the evaluation individually. Though the

sample size is small, we complied with the general rule suggested by Hwang and

Salvendy (2010) for usability evaluation: the 10±2 Rule (Hwang & Salvendy, 2010).

The survey results have shown a good degree of satisfaction of our participants with

our critic design tool integrated with the Marama meta-tools. The survey results

demonstrated that for most participants our approach appears to be useful in

assisting these participants in the critic specification task. Our approach also appears

to nicely complement the other components of the Marama meta-tools and is

integrated with these.

However, limitations of the tool are also revealed through the survey results. Thus,

some minor improvements are needed to improve the usability of the critic

specification editor integrated with Marama meta-tools. The evaluation survey has

also provided a number of suggestions to improve the critic specification editor

(Marama Critic Definer). These suggestions are listed in the previous section and are

later considered for our future work.

214

Chapter 10

Conclusions and Future Work

This chapter concludes this thesis by presenting a research summary of the work

carried out in responding to the research question. It discusses the overall research

results as well as the limitations and strengths of the research. This chapter also

suggests some future work to extend the research followed by a brief summary at the

end of this chapter.

10.1 Research Summary

We have described our research work extending the use of “critics” into meta-tool

environments that implement domain-specific visual language tools with an aim to

support end-user tool developers to simply specify critics for domain-specific visual

language (DSVL) tools.

In Chapter 1 of the thesis, we identified that critic authoring continues to be a

challenge despite critics having been recognised as an efficient feedback-providing

mechanism in diverse domains. The process of authoring or customising critics is

not an easy task to be performed especially by novice and end-user tool developers.

Furthermore, we realised that critics have not been adopted within meta-modelling

tools that implement DSVL tools. As a result, we proposed to provide a critic

specification approach within a meta-tool environment that is accessible to end-user

tool developers for specifying critics for DSVL tools. We formulated research

questions that enabled us to identify possible solutions for our proposition.

Through our review of the available literature on critics and constraint specifications

presented in Chapter 2, we showed that the use of critics is often applied in

application domains and constraint specification is common for meta-tool

environments. The process of defining constraints for meta-tool environments is

hard as it requires good knowledge of programming skills, it uses a formal approach

and it involves heavy cognitive load. Thus, we wanted to provide a critic

215

specification that was tailored to critic authoring and user accessible to replace the

complex constraint specification approach.

A methodology to organise this research work was described in Chapter 3. We

identified several important steps that were required to attain the research aim. Each

step in the methodology produced artefacts: critic taxonomy, prototypes, evaluation

results and so on which reflects the following chapters of this thesis.

Review of the related literature concerning critics resulted in a new critic taxonomy

described in Chapter 4. We proposed our critic taxonomy based on several aspects

that characterised critics (or critiquing systems). These aspects are gathered widely

from the critic literature. We identified eight groups for our critic taxonomy: critic

domain, critiquing approach, modes of critic feedback, critic rule authoring, critic

realisation approach, critic dimension, types of critic feedback, and types of critic.

We applied our taxonomy to ten tools that have critic support. The mapping of the

tools to our critic taxonomy shows that the practice of critics is supported by the

critic taxonomy. Furthermore, this critic taxonomy development has assisted us in

identifying the needs of our own critic specification tool.

In Chapter 5 we described our approach for specifying critics for a DSVL tool

environment. A visual and template-based approach was introduced in this chapter.

We described our adaptation of business rule templates to the software tool domain,

specifically our critic authoring domain. We described the visual notation for our

critic specification approach. We also analysed the visual notation design of our

critic specification tool based on the Physics of Notations (Moody, 2008). Our visual

notation design approach satisfied some of Moody‟s principles. The combination of

the two approaches resulted in what we call a “visual and template-based approach

of critic specification for DSVL tools”.

Our initial attempt at critic specification development was described in Chapter 6.

We developed our first prototype for critic specification using MaramaTatau (N.

Liu, et al., 2007) and this was a useful stepping stone for us to understand the

necessary building blocks for an improved critic specification approach. Experience

gained from prototype 1 led us to develop prototype 2 for our critic specification

216

approach. From prototype 2, we gained experience in applying the business rule

template concept as an alternative approach to specify critics. However, we

recognised some problems with prototype 2 and resolved these with a new approach

by developing prototype 3.

The final development of our critic specification approach, i.e. prototype 3, was

described in Chapter 7. We created a new critic specification tool, Marama Critic

Definer that is accessible to end-user tool developers for critic-specification task.

This new approach comprises four main components: visual critic definer editor,

critic construction editor, critic feedback editor, and critic template editor. The

function of these editors is described in this chapter. We offered a notational

representation and critic authoring templates to end-user tool developers to specify

critics for their DSVL tools without the need to have a deep technical knowledge of

critic construction. We defined a critic authoring guideline to assist end-user tool

developers in specifying critics and authoring a new critic template which can be

done via critic template editor.

The utility of prototype 3, which represents our critic specification approach, is

presented in Chapter 8. We proved our concept for critic specification within three

different domains of DSVL exemplar tools using three case studies. We described a

health care plan modelling tool as our first case study to demonstrate the critic

specification task. The second case study concerned a business process modelling

tool. We illustrated the specification of complex critics for this tool. The final case

study concerned UML design. In this case study, we described the task of

customising the critic authoring template when a desired critic specification is not

defined in critic authoring templates. We also illustrated the function of the critic

feedback editor in one of the case studies. We claimed that our critic specification

approach can be applied across different domains of DSVL tools.

In Chapter 9 we presented an evaluation of our critic specification approach via an

end-user evaluation survey. We defined four usability criteria and ten elements from

the Cognitive Dimensions framework in our questionnaire to evaluate our critic

specification approach and tool. The usability responses that we obtained from the

217

evaluation were highly positive indicating that the critic specification had strong

appeal. The Cognitive Dimensions responses that we received from the evaluation

were also encouraging and each of the dimensions were discussed in this chapter.

Through these evaluations, we were able to establish that critic specification and

implementation for domain specific visual languages can be made accessible to end-

user tool developers. We were also able to show that the combination of a notational

representation and a critic authoring template-based approach was useful, highly

usable, easy to learn and of high satisfaction to our target end-user tool developers.

Limitations of the Research

Not surprisingly, the evaluations exposed some limitations of our research. These

limitations can be ameliorated in future work. These include:

 Critic and feedback specification can only be specified based on the

predefined templates that were implemented for the prototype critic

specification tool. We designed and developed our critic authoring template

based on BR templates (i.e. attribute constraint templates, relationship

constraint templates and action assertion templates) to support/prove the

critic specification process. Similarly, our critic feedback specification only

support limited actions to resolve defined critics;

 Currently the modes of critiques for the critic specification tool only support

a textual style without the use of graphical style. For instance, one

respondent suggested to consider highlighting (e.g. with colour) the design

item that triggered a critic. Similarly, another respondent recommended to

consider colouring to differentiate different types of critic;

 During the tool‟s evaluation, the guideline that provides explanation of the

critic templates developed in the critic construction editor was a minimal

guideline. However, we can easily resolve this issue by providing more

detailed guidelines and examples in the tool to assist user to specify critics;

218

 The critic and critic feedback icons are not automatically associated with the

critic construction editor and critic feedback editor. The user had to select

the required editor to perform the required task;

 In general, a potential weakness of the research is that the presented

approach and tool may be of little interest or benefit to expert tool

developers. However this research would likely provide benefit to the

majority of novice, intermediate and end-user tool developers, which was

our target audience.

These minor limitations observed in our tool can be improved in future work.

Strengths of the Research

The implementation of our critic specification approach and tool contributed several

benefits. These include:

 A simple way to express and define critic condition specifications based on

the structured critic rule templates given, making it easier for end-user tool

developers to author and realise critics;

 A simple way to express and define critic feedback specifications based on

structured templates also making it easier for end-user tool developers to

specify and realise critic feedback;

 The process of authoring critics and their feedback is made easier through

the combination of the visual specification editor (i.e. critic definer editor)

and the two form-based template editors (i.e. critic construction editor and

critic feedback editor);

 The critic specification tool provides guidelines (i.e. critic authoring

guidelines) for the user to customise critic rule templates through the critic

template editor;

219

 The critic authoring templates facilitate the linking of critic statements to

meta-model elements.

10.2 Research Contributions

We have described our critic development approach to support end-user tool

developers to specify critics in an effective and easy way. The research discussed in

this thesis contributes to the field of software engineering particularly in the area of

critic tools and critiquing systems development. The main contributions from this

research are as follows:

5. This research provides a taxonomy of critics that can assist other

users/designers or developers in obtaining relevant information about

critics. Our critic taxonomy identified eight groups: critic domain,

critiquing approach, modes of critic feedback, critic rule authoring, critic

realisation approach, critic dimension, types of critic feedback, and types of

critic. We believe that our critic taxonomy will be useful to critic

developers in providing a meaningful way of describing and reasoning

about critics. We also believe that our critic taxonomy is useful in guiding

the critic developer towards realising robust critic capabilities by comparing

and contrasting different critic dimensions.

6. This research provides a visual way of expressing or constructing critics for

domain-specific visual language (DSVL) tools. Notational representation of

critic authoring facilities is offered to end-user designers to express critics

for their DSVL tools. Furthermore, this research provides support for end-

user tool developers who want to express critics for their specific tool

without the need to have a comprehensive technical knowledge on

expressing and constructing critics.

7. This research provides a critic authoring template-based approach which is

much easier and quicker to author critics compared to other approaches for

designing and realising the critics. An end-user tool developer uses the

critic authoring template to generate critic rule templates. The critic rule

220

templates (CR) adapt the business rule (BR) templates which are currently

applied in the business process domain. We attempted to apply the critic

rule templates in the software tool domain. By using the critic authoring

templates, it is fairly easy for end-user tool developers to introduce new

critic template or modify existing critics in the tool.

8. This research included prototype development of a visual critic authoring

tool which was embedded in the existing Marama meta-tool and which acts

as a proof-of-concept of our approach. We evaluated the prototype using an

end user study conforming to the Cognitive Dimensions (CD) approach

(Green & Blackwell, 1998) and usability aspects. We also analysed our

design notation using the Physics of Notations (PON) principles (Moody,

2008).

10.3 Future Work

Several areas for further research are as follows:

 To extend the critic capabilities by allowing the critics to check the tool‟s

meta-model elements i.e. meta-critic. At present our critic specification

approach only manages critic specification for a DSVL tool which resulted

from a defined meta-model element. Critics that were specified are used to

check any potential problems of a model/diagram for that modelling tool.

Thus, we can expand the critic capabilities by offering critics when defining

meta-model elements. The idea is to construct critics that are able to check

potential problems at the meta-model level. This will allow critics to be

specified for two stages, i.e. critics for the meta-model level and critics for

the model/diagram level.

 To consider including other elements from the taxonomy group. One

limitation in our research is that we have not incorporated as many of the

elements from the taxonomy as is desirable. For instance, in future, we can

expand our critic specification approach to add a graphical style where

221

appropriate to deliver critiques instead of just textual messages. Similarly,

we can consider adding positive and negative critics in the critic specification

tool as another way to provide critics to tool‟s users. However, all these have

to be examined carefully in terms of their relevance to incorporate in the

critic specification tool.

 To improve and provide a better critic authoring template by considering a

visual representation for each of the item/properties in the template. At

present our critic specification approach applies a textual and visual

approach in specifying critics and feedback. In future, we can potentially

replace more elements of the textual approach for the template with visual

notational representations. This will allow new templates to be specified in a

more visual manner, with actions realised using Marama‟s other visual

specification tools.

10.4 Summary

This research arose from the need to have a critic specification approach for domain-

specific visual languages and to provide accessibility for end-user tool developers to

specify critics in an effective and easy way. A combination of a visual notational

representation and a template-based approach were developed for the critic

specification approach and demonstrated via three case studies of different domains

for DSVL exemplar tools. A formal end-user evaluation was employed to evaluate

and proof the concept of a critic specification approach. Thus we can say that critic

specification and implementation for domain specific visual languages can be made

accessible to end-user tool developers. In addition, the combination of a notational

representation and a critic authoring template-based approach is another useful

approach to support end-user tool developers in the critic specification task.

222

Appendix A

Participation Information Sheet

(Head of Department)

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
Private Bag 92019
Auckland

Tel: 09 373 7599

PARTICIPANT INFORMATION SHEET (HEAD OF DEPARTMENT)

Title: Evaluation of Template-based Critic Authoring for

Domain-Specific Visual Language Tools

My name is Norhayati Mohd Ali and I am a PhD student at the Department of Computer Science, The

University of Auckland. I am conducting research on visual design critic authoring template-based

approach that supports end-users or tool designers in the construction of critics for domain-specific

visual language (DSVL) tools. This research is under the supervision of Professor John Hosking and

Professor John Grundy. Our research investigates the ‘Visual design critic authoring template-based

approach’ as an alternative approach for constructing critics in an efficient and simple way. A

prototype of visual design critic authoring tool, called Marama Critic Definer has been developed. Part

of our research involves an evaluation of this prototype regarding its usability and effectiveness for

specifying and constructing critics for DSVL tools.

As a Computer Science Head of Department, we would like to ask your permission to allow us to have

access to students who enrolled in COMPSCI 732 course and SOFTENG 450 course and permit the

students to participate voluntarily in our survey. Participation in this survey is on a voluntary basis and

there will be no financial compensation. The survey is performed in an anonymous way. No personal

information will be collected during the survey. We would like you to provide us the assurance that

neither the students’ grades nor academic relationships with the department staff members will be

affected by either refusal or agreement in students’ participation. Your support would be greatly

appreciated.

This research is funded by the Ministry of Higher Education, Malaysia. If you have any queries

regarding this survey, please do not hesitate to contact me. You can email me at:

nmoh044@aucklanduni.ac.nz. Alternatively, you may phone me at 0210 -2421890. You may also

contact my supervisor, Professor John Hosking at john@cs.auckland.ac.nz or 09 373 7599 ext 88297.

mailto:nmoh044@aucklanduni.ac.nz
mailto:john@cs.auckland.ac.nz

223

For any queries regarding ethical concerns you may contact the Chair, The University of Auckland

Human Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor,

Private Bag 92019, Auckland 1142. Telephone 09 373-7599 extn. 83711.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS

COMMITTEE ON 02 December 2009 for (3) years, Reference Number 2009/492

224

Appendix B

Participation Information Sheet

(Student)

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
Private Bag 92019
Auckland

Tel: 09 373 7599

PARTICIPANT INFORMATION SHEET (STUDENT)

Title: Evaluation of Template-based Critic Authoring for

Domain-Specific Visual Language Tools

My name is Norhayati Mohd Ali and I am a PhD student at the Department of Computer Science, The

University of Auckland. I am conducting research on visual design critic authoring template-based

approach that supports end-users or tool designers in the construction of critics for domain-specific

visual language (DSVL) tools. This research is under the supervision of Professor John Hosking and

Professor John Grundy. Our research investigates the ‘Visual design critic authoring template-based

approach’ as an alternative approach for constructing critics in an efficient and simple way. A

prototype of visual design critic authoring tool, called Marama Critic Definer has been developed. Part

of our research involves an evaluation of this prototype regarding its usability and effectiveness for

specifying and constructing critics for DSVL tools.

You are invited to participate in this survey as you are either postgraduate student who enrolled

COMPSCI 732 course or 4th year undergraduate student who enrolled SOFTENG 450 course. Your

comments and assistance would be greatly appreciated.

Participation in this survey is on a voluntary basis and there will be no financial compensation. The

survey is performed in an anonymous way. No personal information will be collected during the

survey. You can be assured that neither your grades nor academic relationships with the department

staff members will be affected by either refusal or agreement to participate. This assurance is given

by the Computer Science Head of Department. You can withdraw yourself from the survey at any

time. Completing the required tasks in the survey and submitting the evaluation is an indication of

consent but as the evaluation is anonymous, no answers can be withdrawn once the evaluation is

submitted.

225

If you consent to participate in this survey, the participation involves one visit to the Computer

Science Undergraduate Laboratory, approximately 1 hour. You will be given an explanation together

with a demonstration of what need to be done. A task list and questionnaire sheet will be given to

you before you start using the prototype tool. You will be asked to perform a number of tasks on the

prototype tool and once you completed the task, you will be asked to answer the questionnaire sheet

given to you. You also will be observed to allow the researcher to learn whether the tool is easy and

efficient to use and also to know more about the usefulness and acceptance of the tool. You will be

observed based on the following aspects: a) how you manage to complete the task given to you; b)

how you define critics for a tool developed in Marama; c) how you navigate different parts of the tool;

and d) your verbal responses while using the tool. The observations will take place only while you

perform the tasks on the prototype tool. There will be note-taking while you perform the tasks and

also while you are responding or commenting when using the prototype tool. However, no personal

information will be collected in this observation process. Audio-tape, video-tape and any other

electronic means such as Digital Voice Recorders are not used in this survey.

After completing the tasks you will be asked to answer the questionnaire sheet. Once you completed

the questionnaire, you need to put in the box that will be placed in the lab. There will be no coding to

your questionnaire as it is treated anonymously. The observation and questionnaires data will be

compiled and analysed, and the results will be used for a PhD thesis and for other academic

publications. Results also will be available to participants on request. The observation and

questionnaires data will be stored for SIX (6) years for the purpose of peer review and further

research. When the observation and questionnaires data is no longer needed, it will be destroyed

using the paper shredder.

This research is funded by the Ministry of Higher Education, Malaysia. If you have any queries

regarding this survey, please do not hesitate to contact me. You can email me at:

nmoh044@aucklanduni.ac.nz. Alternatively, you may phone me at 0210 -2421890. You may also

contact my supervisor, Professor John Hosking at john@cs.auckland.ac.nz or 09 373 7599 ext 88297,

or the Head of Department, Associate Professor Robert Amor at trebor@cs.auckland.ac.nz or 09 373

7599 ext 83068, or you can write to us at:

 Department of Computer Science,

 The University of Auckland

 Private Bag 92019

 Auckland.

For any queries regarding ethical concerns you may contact the Chair, The University of Auckland

Human Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor,

Private Bag 92019, Auckland 1142. Telephone 09 373-7599 extn. 83711.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS

COMMITTEE ON 02 December 2009 for (3) years, Reference Number 2009/492.

mailto:nmoh044@aucklanduni.ac.nz
mailto:john@cs.auckland.ac.nz
mailto:trebor@cs.auckland.ac.nz

226

Appendix C

Consent Form (Head of Department)

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
Private Bag 92019
Auckland

Tel: 09 373 7599

CONSENT FORM (HEAD OF DEPARTMENT)

This Consent Form will be held for a period of six (6) years.

Title: Evaluation of Template-based Critic Authoring for Domain-Specific Visual Language Tools.

Researcher: Norhayati Mohd.Ali

I have read and understood the Participant Information Sheet. I understand the nature of the

research and why I have been asked for permission and assurance of this research. I have had

the opportunity to ask questions and have them answered. I agree to support the survey.

 I agree to allow the researcher to have access to the students who enrolled in COMPSCI
732 course and SOFTENG 450 course.

 I agree to permit the students to participate voluntarily in the survey.

 I understand there will be no payment to the student who participates in the survey.

 I understand that all of the data collected from the survey will be non-identifying.

 I agree to provide the assurance that neither grades nor academic relationship with any
departmental staff members will be affected by either refusal or agreement to students’
participation in the survey.

Name:___________________________________

Signature & Date: _________________________

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS

COMMITTEE ON 02 December 2009 for 3 years, Reference Number 2009/492.

227

Appendix D

Consent Form (Student)

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
Private Bag 92019
Auckland

Tel: 09 373 7599

CONSENT FORM (STUDENT)

This Consent Form will be held for a period of six (6) years.

Title: Evaluation of Template-based Critic Authoring for Domain-Specific Visual Language

Tools.

Researcher: Norhayati Mohd.Ali

I have read and understood the Participant Information Sheet. I understand the nature of the

research and why I have been selected to participate in this research. I have had the

opportunity to ask questions and have them answered. I understand that I can withdraw at any

time but that data already recorded cannot be withdrawn. I agree to take part in the survey.

 I understand that I will not be paid for the time taken to participate in this survey.

 I understand that all of the data collected from the survey will be non-identifying.

 I understand that I will be observed while doing a task on the prototype tool if I agree to
participate in this survey. No audio-tape, video-tape or any other electronic means such as
Digital Voice Recorders is used in this survey.

 I understand that I will need to fill up a questionnaire at the end of the task if I agree to
participate in this survey.

 I understand that only the researcher and her main supervisor will have access to the
questionnaire and observation data.

 I understand that the observation and questionnaire data may be used to review the
research outcomes both to improve the notation and software tool and in publications about
the survey.

 I understand that data will be archived or stored for six years and then destroyed.

228

 I understand that the Computer Science Head of Department have provides assurance that
neither my grades nor academic relationship with any department staff members will be
affected by either refusal or agreement to participate.

 I understand that at the conclusion of the survey, a summary of the results will be available
from the researcher upon request.

Name:___________________________________

Signature & Date: _________________________

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS

COMMITTEE ON 02 December 2009 for 3 years, Reference Number 2009/492.

229

Appendix E

Survey:Evaluation of Template-based

Critic Authoring for Domain-Specific

Visual Language Tools

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
Private Bag 92019
Auckland

Tel: 09 373 7599

Survey: Evaluation of Template-based Critic Authoring for Domain-

Specific Visual Language Tools

Note: The survey is structured into TWO parts. Part one, provides the task list that

need to be done by you. Observation data will be collected while you are

performing the tasks. Part two, provides a questionnaire that should be answered

by you once you have completed the tasks.

Statement

 I have read the Participant Information Sheet and have understood the nature of

the survey and I agree to take part in this survey. (please tick √)

PART ONE: Task List and Observation

Purpose:To allow the participant to develop a Marama-based tool using the Marama

metatools. After the tool development, the participant needs to add several critics to the

tool. Please take note, that participant will be observed on how he/she use the tool.

Participant can ask question while doing the task. Observation data will be collected

during participant doing his/her task.

Instruction: Please read and perform the following task steps.

Task 1. Explore the Marama tool that was given to you.

1. Metamodel for that tool is on the Marama Metamodel Definer views.
2. Shapes and connectors for that tool are on the Marama Shape Designer views.
3. The mapping of meta-elements to visual representations is on the Marama

Viewtype Definer views.

230

Task 2. Identify critics for the tool.

1. Think and list several critic statements that are relevant to the given Marama-
tool.

2. Identify and list an appropriate feedback (fix action) for each of the critic.
3. Use the following table to list your critic and feedback.

Critic Feedback

Task 3. Add Critics to the tool using the critic authoring templates.

1. Design Marama critic type, by specifying the tool critics via the Marama Critic

Definer views. Refer to Figure 1.

Figure 1: Marama Critic Definer

2. Define a critic for the tool by selecting the CriticShape icon. Associate with this
CriticShape is a form-based interface, called Critic Construction View. Refer to
Figure 2. To open this view, select Window->Show View-> Other->Marama
Editor->Critic Construction View.

231

Figure 2: CriticShape with Critic Construction View interface.

3. To define critic, you can select from the list of available critic authoring
templates- a) Attribute Constraint Template, b) Relationship Constraint
Template, c) Action Assertion Template. After define the critic select „Save Critic‟
button.

4. If the critic that you want to construct is not supported by the available critic

templates, you can select the “Critic Template Editor” button to allow you to

construct new critic template. Then click „OK‟ and get back to Critic Construction
View to define the critic.

5. Define the feedback (fix action) for the critics defined by selecting the
CriticFeedbackShape icon. Associate with this CriticFeedbackShape, is a form-
based interface, called CriticFeedback View. Refer to Figure 3. To open this view,
Window->Show View-> Other->Marama Editor->Critic Feedback View.

232

Figure 3: CriticFeedbackShape with Critic Feedback View interface.

6. Once you satisfied with the critics and feedbacks that you defined, then you can
save it.

Task 4. Run Critics

1. Create a Marama Model Project for your tool
2. Create a Marama diagram.

3. Try to violate the critic rules to see whether critic and feedback is displayed at
the Marama diagram.

4. End of task in specifying critics and feedbacks via critic authoring templates.

Task 5. Critic via formula function

1. Try to construct the same critic using the Object Constraint Language (OCL) via

the formula icon.
2. Save the formula.
3. Run the critic the same way you did in Task 3(1-2-3). However, you need to

open the Problem view to see the critics‟ violation.

End of Task.

After you complete the above task, please answer the questionnaires in PART

TWO.

233

PART TWO: Questionnaire

Instruction:

Please answer the following questions.

Section (1)- Background Information.

1. How do you rate yourself in using Marama metatools? (tick one box)

 Proficient/skilled

 Intermediate

 Novice

2. Have you used similar tools like Marama metatools? If so, please name them.

3. Have you developed a software tool where you add design critics for that tool? If so,
please name the tool and critic types.

4. Name the tool that was given to you using the Marama metatools.

Section (2)- Prototype Tool Information.

Please rate your agreement with the following statements about how you feel in general

when using Marama Critic Definer view (a new specification tool that represents the

visual design critic authoring template approach). Just circle or tick out the level of

agreement that applies using the following scale:

1:Strongly Disagree (SD) 2:Disagree (D) 3:Undecided (U) 4: Agree (A) 5:Strongly Agree

(SA)

A. Usefulness:
It is useful.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It helps me be more effective.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It makes the things I want to accomplish easier to get done.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

234

B. Ease of Use:
It is easy to use.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is user friendly.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I don‟t notice any inconsistencies as I use it.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

C. Ease of Learning:
I learned to use it quickly.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I easily remember how to use it.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to learn to use it.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

D. Satisfaction:
I am satisfied with it.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I would recommend it to a friend.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is fun to use.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

E. Cognitive Dimensions of Critic-Authoring Task:

It is easy to see various parts of the tool.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to make changes.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The notation is succinct and not long-winded.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

235

Some things do require hard mental effort.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to make errors or mistakes.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The notation is closely related to the result.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to tell what each part is for when reading the notation.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The dependencies are visible.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to stop and check my work so far.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I can work in any order I like when working with the notation.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

F. After completing this questionnaire, can you think of obvious ways that the design of
the template-based critic authoring tool could be improved? What are they?

Thank you for your time!

Please let us know if you have any queries about this questionnaire or the survey we are

conducting. Questions or concerns can either be directed to the researcher, Norhayati

(nmoh044@aucklanduni.ac.nz) or to the course lecturer, Professor John Hosking

(john@cs.auckland.ac.nz), Dept. of Computer Science.

mailto:nmoh044@aucklanduni.ac.nz
mailto:john@cs.auckland.ac.nz

236

References

Bar, M., & Neta, M. (2006). Humans Prefer Curved Visual Objects. Psychological

Science, 17(8), 645-648.

Bardohl, R. (2002). A visual environment for visual languages. Science of Computer

Programming, 44, 181-203.

Barton, B. F., & Barton, M. S. (1987). Simplicity in Visual Representation: A

Semiotic Approach. Journal of Business ad Technical Communication, 1(9),

9-26.

Bergenti, F., & Poggi, A. (2000). Improving UML Designs Using Automatic Design

Pattern Detection. International Conference on Software Engineering and

Knowledge Engineering (SEKE 2000), 336--343.

Bezivin, J., & Jouault, F. (2006). Using ATL for Checking Models. Electronic Notes

in Theoretical Computer Science(152), 69-81.

Blackwell, A. F., Britton, C., Cox, A., Green, T. R. G., Gurr, C., Kadoda, G., et al.

(2001). Cognitive Dimensions of Notations: Design Tools for Cognitive

Technology. 4th International Conference on Cognitive Technology, 325-

541.

Blackwell, A. F., & Green, T. R. G. (2000). A Cognitive Dimensions Questionnaire

Optimised for Users. 12th Workshop of the Psychology of Programming

Interest Group, 137-154.

Blecken, A., & Marx, W. (2010). Usability Evaluation of a Learning Management

System. The 43rd International Conference on System Sciences, 1-9.

Brown, A. L. (1988). Motivation to learn and understand: On taking charge of one's

own learning. Cognition and Instruction, 5(4), 311-321.

Catarci, T., Massari, A., & Santucci, G. (1991). Iconic and Diagrammatic Interfaces:

An Integrated Approach. IEEE Workshop on Visual Languages, 199-204.

Coelho, W., & Murphy, G. (2007). ClassCompass: A Software Design Mentoring

System. ACM Journal on Educational Resource in Computing, 7(1), 1-18.

Costagliola, G., Lucia, A. D., Ferrucci, F., Gravino, C., & Scanniello, G. (2008).

Assessing the usability of a visual tool for the definition of e-learning

processes. [Journal]. Journal of Visual Languages and Computing 19, 721-

737.

237

Cox, K. (2000). Cognitive Dimensions of Use Cases- feedback from a student

questionnare. Proceedings of Twelfth Annual Meeting of the Psychology of

Programming Interest Group (PPIG-12), 99-121.

Czarnecki, K., & Helson, S. (2003). Classification of Model Transformation

Approaches. OOPSLA '03 Workshop on Generative Techniques in the

Context of Model_Driven Architecture, 1-17.

Dashofy, E. M., Hoek, A. v. d., & Taylor, R. N. (2002). Towards Architecture-

Based Self-Healing Systems. Proceedings of the First Workshop on Self-

healing Systems, 21-26.

de Souza, C. R. B., Jr., J. S. F., & Goncalves, K. M. (2000). A Group Critic System

for Object-Oriented Analysis and Design. Fifteenth IEEE International

Conference on Automated Software Engineering, 313 - 316

de Souza, C. R. B., Oliveira, H. L. R., da Rocha, C. R. P., Goncalves, K. M., &

Redmiles, D. F. (2003). Using Critiquing Systems for Inconsistency

Detection in Software Engineering Models. International Conference on

Software Engineering and Knowledge Engineering (SEKE 2003), 196-203.

Ebert, J., Suttenbach, R., & Uhe, I. (1997). Meta-CASE in Practice: A Case for

KOGGE. Lecture Notes in Computer Science, 1250/1997, 203-216.

Fischer, G. (1987). A Critic For LISP. 10th International Joint Conference on

Artificial Intelligence, 177-184.

Fischer, G. (1989). Human-Computer Interaction Software: Lessons Learned,

Challenges Ahead. IEEE Software, 6, 44-52.

Fischer, G., Lemke, A. C., & Mastaglio, T. (1991). Critics: An Emerging Approach

to Knowledge-Based Human Computer Interaction. International Journal of

Man-Machine Studies, 35, 695-721.

Fischer, G., Lemke, A. C., Mastaglio, T., & Morch, A. I. (1991). The Role of

Critiquing in Cooperative Problem Solving. ACM Transactions on

Information Systems, 9(3), 123-151.

Fischer, G., & Mastaglio, T. (1990). A conceptual framework for knowledge-based

critic systems. Decision Support Systems, 7, 355-378.

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., & Sumner, T. (1993). Embedding

critics in design environments. The Knowledge Engineering Review, 8(4),

285-307.

Florijn, G. (2002). RevJava-Design critiques and architectural conformance

checking for Java Software: Software Engineering Research Centre.

238

Gable, G. G. (1994). Integrating Case Study and Survey Research Methods: An

Example in Information Systems. European Journal of Information Systems,

3(2), 112-126.

Gena, C., & Weibelzahl, S. (2007). Usability Engineering for the Adaptive Web. In

P. Brusilovsky, A. kobsa & W. Nejdl (Eds.), The Adaptive Web, LNCS (Vol.

4321, pp. 720-762): Springer-Verlag Berlin Heidelberg.

Gertner, A. S., & Webber, B. L. (1998). TraumaTIQ: Online Decision Support for

Trauma Management. IEEE Intelligent Systems, 32-39.

Ginige, A., Lowe, D. B., & Robertson, J. (1995). Hypermedia Authoring. IEEE

Multimedia, 2(4), 24-35.

Gray, J., Bapty, T., & Neema, S. (2000). Aspectifying Constraints in Model-

Integrated Computing. Proceedings of OOPSLA.

Green, T. R. G., & Blackwell, A. F. (1998). Cognitive Dimensions of Information

Artefacts: a tutorial. from

http://www.ndirect.co.uk/~thomas.gree/workStuff/Papers

Green, T. R. G., Blandford, A. E., Church, L., Roast, C. R., & Clarke, S. (2006).

Cognitive dimensions: Achievements, new directions, and open questions.

Journal of Visual Languages and Computing, 17, 328-365.

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual Progamming

Environments: a 'cognitive dimensions' framework. Journal of Visual

Languages and Computing, 7(2), 131-174.

Grundy, J., & Hosking, J. (2003). SoftArch: Tool Support for Integrated Software

Architecture Development. International Journal of Software Engineering

and Knowledge Engineering, 13(2), 125-151.

Grundy, J., Hosking, J., Huh, J., & Li, K. N.-L. (2008). Marama: an Eclipse Meta-

toolset for Generating Multi-view Environments. International Conference

on Software Engineering, 819-822.

Grundy, J., Hosking, J., Zhu, N., & Liu, N. (2006). Generating Domain-Specific

Visual Language Editors from High-Level Tool Specifications. 21st IEEE

International Conference on Automated Software Engineering, 25-36.

Guimaraes, R. L., Neto, C. d. S. S., & Soares, L. F. G. (2008). A Visual Approach

for Modeling Spatiotemporal Relations. DocEng 2008, 285-288.

Gurr, C., & Tourlas, K. (2000). Towards the Principled Design of Software

Engineering Diagrams. International Conference on Software Engineering

509-518.

http://www.ndirect.co.uk/~thomas.gree/workStuff/Papers

239

Hagglund, S. (1993). Introducing expert critiquing systems. The Knowledge

Engineering Review, 8(4), 281-284.

Hartson, H. R., Andre, T. S., & Williges, R. C. (2003). Criteria for Evaluating

Usability Evaluation Methods. International Journal of Human-Computer

Interaction, 15(1), 145-181.

Hill, J. H., Gokhale, A., & Schmidt, D. C. (2010). Template Patterns for Improving

Configurability and Scability of Enterprise Distributed Real-time and

Embedded System Testing and Experimentation. 1-19. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.7040&rep=re

p1&type=pdf.

Holzinger, A. (2005). Usability Engieering Methods for Software Developers.

Communications Of The ACM, 48(1), 71-74.

Hwang, W., & Salvendy, G. (2010). Number of People Required for Usability.

Communications Of The ACM, 53(5), 130-133.

Irandoust, H. (2006). Critiquing systems for decision support (Technical Report No.

DRDC Valcartier TR 2003-321): Defence Research and Development

Canada.

Jacko, J. A., & Sears, A. (2003). The Human-Computer Interaction Handbook. New

Jersey: Lawrence erlbaum Associates, Inc.

Jaramillo, J. d. L., Vangheluwe, H., & Moreno, M. A. (2003). Using Meta-

Modelling and Graph Grammars to Create Modelling Environments. In P.

Bottoni & M. Minas (Eds.), Electronic Notes in Theoretical Computer

Science (Vol. 72, pp. 36-50): Elsevier Science B.V.

Karsai, G., Nordstrom, G., Ledeczi, A., & Sztipanovits, J. (2000). Specifying

Graphical Modeling Systems Using Constraint-based Metamodels. IEEE

International Symposium on Computer-Aided Control System Design, 89-94.

Kelly, S., Lyytinen, K., & Rossi, M. (1996). MetaEdit+: A fully configurable multi-

user and multi-tool CASE and CAME environment Advanced Information

Systems Engineering (Vol. Volume 1080/1996, pp. 1-21): Springer Berlin/

Heidelberg.

Khambati, A. (2008). A model driven care plan modelling system. Unpublished

Master, University of Auckland.

Khambati, A., Grundy, J., Warren, J., & Hosking, J. (2008). Model-driven

Development of Mobile Personal Health Care Applications. The 23rd

IEEE/ACM International Conference on Automated Software Engineering,

467-470.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.7040&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.7040&rep=rep1&type=pdf

240

Khan, M. A., Israr, N., & Hassan, S. (2010). Usability Evaluation of Web Office

Applications. First International Conference on Intelligent Systems,

Modelling and Simulation, 146-151.

Kleppe, A., & Warmer, J. (2002). The Semantics of the OCL Action Clause Object

Modeling with the OCL, Lecture Notes in Computer Science (Vol. 2263, pp.

213-227): Springer-Verlag Berlin Heidelberg.

Knauss, E., Luebke, D., & Meyer, S. (2009). Feedback-Driven Requirements

Engineering: The Heuristic Requirements Assistant. IEEE 31st International

Conference on Software Engineering, 587 - 590.

Lemke, A. C., & Fischer, G. (1990). A Cooperative Problem Solving System for

User Interface Design. Eight National Conference on Artificial Intelligence,

479-484.

Leventhal, L. M., & Barnes, J. A. (2008). Usability Engineering: Process, Products,

and Examples. Upper Saddle River, New Jersey: Pearson Prentice Hall.

Li, L. (2010). An Integrated Visual Approach for Business Process Modelling.

Unpublished PhD, University of Auckland, Auckland.

Li, L., Hosking, J., & Grundy, J. (2007a, 12-16 June). EML: A Tree Overlay-Based

Visual Language For Business Process Modelling. Paper presented at the

Proceeding of ICEIS 2007, Funchal, Madeira, Portugal.

Li, L., Hosking, J., & Grundy, J. (2007b). Visual Modelling of Complex Business

Process with Trees, Overlays and Distortion-based Displays. IEEE

Symposium on Visual Languages and Human-Centric Computing, 137-144.

Liu, H., Rowles, C. D., & Wen, W. X. (1995). Critics for Knowledge-Based Design

Systems. IEEE Transactions on Knowledge and Data Engineering, 7(5),

740-750.

Liu, N., Hosking, J., & Grundy, J. (2007). MaramaTatau: Extending a Domain

Specific Visual Language Meta Tool with a Declarative Constraint

Mechanism. IEEE Symposium on Visual Languages and Human-Centric

Computing 95-103.

Lohse, G. L., Biolsi, K., Walker, N., & Reuter, H. H. (1994). A Classification of

Visual Representations. Communications Of The ACM, 37(12), 36-49.

Lohse, G. L., Min, D., & Olson, J. R. (1995). Cognitive Evaluation of System

Representation Diagrams. Information & Management, 29, 79-94.

Lohse, J., Reuter, H., Biolsi, K., & Walker, N. (1990). Classifying Visual

Knowledge Representations: A Foundation for Visualization Research.

Visualization '90, 131-138.

241

Loucopoulos, P., & Kadir, W. M. N. W. (2008). BROOD: Business Rules-driven

Object Oriented Design. Journal of Database Management, 19(1), 41-73.

Lund, A. (1998). USE Questionnaire Resource Page. from

http://usesurvey.com/IntroductionToUse.html

Mackinlay, J. (1986). Automating the Design of Graphical Presentations of

Relational Information. ACM Transactions on Graphics, 5(2), 110-141.

Maiden, N. A. M., & Sutcliffe, A. G. (1994). Requirements Critiquing Using

Domain Abstractions. First International Conference on Requirements

Engineering, 184-193.

Marama meta-tools. (2008). from

https://wiki.auckland.ac.nz/display/csidst/Marama+Meta-tools

Masri, K., Parker, D., & Gemino, A. (2008). Using Iconic Graphics in Entity

Relationship Diagrams: The Impact on Understanding. Journal of Database

Management, 19(3), 22-41.

McCarthy, K., et al. . (2005). Experiments in Dynamic Critiquing. International

Conference on Intelligent User Interfaces (IUI ’05), 175-182.

McCarthy, K., Salamo, M., Coyle, L., McGinty, L., Smyth, B., & Nixon, P. (2006).

Group Recommender Systems: A Critiquing Based Approach. International

Conference on Intelligent User Interfaces, 267-269.

McCormick, B. H., DeFanti, T. A., & Brown, M. D. (1987). Visualization in

scientific computing-a synopsis. IEEE Computer Graphics And Applications,

7(7), 61-70.

McGinty, L., & Smyth, B. (2003). Tweaking Critiquing. Proceedings of the

Workshop on Personalization and Web.

Mehzer, T., Abdul-Malak, M. A., & Maarouf, B. (1998). Embedding critics in

decision-making environments to reduce human errors. Knowledge-Based

Systems, 11, 229-237.

Miller, P. (1986). Expert Critiquing Systems: Practice-based Medical Consultation

by Computer. New York: Springer-Verlag.

Moody, D. L. (2002). Complexity Effects On End User Understanding Of Data

Models: An Experimental Comparison Of Large Data Model Representation

Methods. Tenth European Conference on Information Systems.

Moody, D. L. (2006). What Makes a Good Diagram? Improving the Cognitive

Effectiveness of Diagrams in IS Development. 15th International

Conference in Information Systems Development (ISD 2006), 481-492.

http://usesurvey.com/IntroductionToUse.html

242

Moody, D. L. (2008). The "Physics" of Notations: Towards a Scientific basis for

Constructing Visual Notations in Software Engineering. IEEE Transactions

on Software Engineering, 35(6), 756-779.

Moody, D. L., Heymans, P., & Matulevicius, R. (2009). Improving the Effectiveness

of Visual Representations in Requirements Engineering: An Evaluation of i*

Visual Syntax. 2009 17th IEEE International Requirements Engineering

Conference, 171-180.

Nielson, J. (1993). Usability Engineering. London: Academic Press Limited.

Oh, Y., Do, E. Y.-L., & Gross, M. D. (2004). Intelligent Critiquing of Design

Sketches.

Oh, Y., Gross, M. D., & Do, E. Y.-L. (2008). Computer-Aided Critiquing System.

Computer Aided Architectural Design and Research in Asia (AADRIA), 161-

167.

Oh, Y., Gross, M. D., Ishizaki, S., & Do, E. Y.-L. (2009). Constraint-based Design

Critic for Flat-pack Furniture Design. 17th International Conference on

Computers in Education, 19-26.

Paige, R. F., Ostroff, J. S., & Brooke, P. J. (2002). Checking the Consistency of

Collaboration and Class Diagrams using PVS. Proceedings of Fourth

Workshop on Rigorous Object-Oriented Methods (ROOM4).

Pereira, M. J. V., Mernik, M., Cruz, D. d., & Henriques, P. R. (2008). Program

Comprehension for Domain-Specific Languages. ComSIS, 5(2).

Perry, D. E., Sim, S. E., & Easterbrook, S. (2006). Case Studies for Software

Engineers. International Conference on Software Engineering 2006, 1045-

1046.

Petre, M. (1995). Why Looking Isn't Always Seeing:Readership Skills and

Graphical Programming. Communications Of The ACM, 38(6), 33-44.

Pisan, Y., Richards, D., Sloane, A., Koncek, H., & Mitchell, S. (2003). Submit! A

Web-Based System for Automatic Program Critiquing. Fifth Australasian

Computing Education Conference (ACE2003), 20, 59-68.

Pohjonen, R. (2005). Metamodeling Made Easy-MetaEdit+ (Tool Demonstration).

In R. Gluck & M. Lowry (Eds.), Lecture Note in Computer Science (Vol.

3676, pp. 442-446): Springer-Verlag Berlin Heidelberg.

Qattous, H. (2009). Constraint Specification by Example in a Meta-CASE Tool.

ESEC/FSE Doctoral symposium 2009, 13-16.

243

Qiu, L., & Riesbeck, C. (2008). An Incremental Model for Developing Educational

Critiquing Systems: Experiences with the Java Critiquer. Journal of

Interactive Learning Research, 19(1), 119-145.

Qiu, L., & Riesbeck, C. K. (2003). Facilitating Critiquing in Education: The Design

and Implementation of the Java Critiquer. International Conference on

Computers in Education (ICCE).

Qiu, L., & Riesbeck, C. K. (2004). An Incremental Model for Developing

Educational Critiquing Systems: Experiences with the Java Critiquer.

Proceedings of World Conference on Educational Multimedia, Hypermedia

and Telecommunications, 908-916.

Redmiles, D. F. (1998). Applying design critics to software requirements

engineering.

Reilly, J., McCarthy, K., McGinty, L., & Smyth, B. (2005). Incremental Critiquing.

Knowledge-Based Systems, 18, 143-151.

Robbins, J. E. (1998). Design Critiquing Systems (Technical Report). Irvine:

Department of Information and Computer Science, University of California.

Robbins, J. E., & Redmiles, D. F. (1998). Software architecture critics in the Argo

design environment. Knowledge-Based Systems, 11(1), 47-60.

Robbins, J. E., & Redmiles, D. F. (2000). Cognitive Support, UML Adherence, and

XMI Interchange in Argo/UML. Journal of Information and Software

Technology, 42(2), 79-89.

Robey, D., Welke, R., & Turk, D. (2001). Traditional, Iterative, and Component-

Based Development: A Social Analysis of Software Development

Paradigms. Information Technology and Management, 2, 53-70.

Rubin, J. (1994). Handbook Of Usability Testing: How to Plan, Design and Conduct

Effective Tests. New York: John Wiley & Sons, Inc.

Shanks, G. G., & Darke, P. (1998). Understanding Corporate Data Models.

Information & Management, 35, 19-30.

Siau, K. (2004). Informational and Computational Equivalence in Comparing

Information Modelling Methods. Journal of Database Management, 15(1),

73-86.

Silverman, B. G. (1992). Survey of Expert Critiquing Systems: Practical and

Theoretical Frontiers. Communications Of The ACM, 35(4).

Silverman, B. G., & Mehzer, T. M. (1992). Expert Critics in Engineering Design:

Lessons Learned and Research Needs. AI Magazine, 13, 45-62.

244

Sourrouille, J. L., & Caplat, G. (2002). Constraint Checking in UML Modeling.

The14th International Conference on Software Engineering and Knowledge

Engineering, 217-224.

Tianfield, H., & Wang, R. (2004). Critic System- Towards Human-Computer

Collaborative Problem Solving. Artificial Intelligence Review, 22, 271-295.

Tolvanen, J.-P. (2004). MetaEdit+: Domain-Specific Modeling for Full Code

Generation Demonstrated [GPCE]. OOPSLA '04, 442-446.

Tolvanen, J.-P., Pohjonen, R., & Kelly, S. (2007). Advanced Tooling for Domain-

Specific Modeling:MetaEdit+. The 7th OOPSLA Workshop on Domain-

Specific Modeling (DSM'07), 243-250.

Trochim, W. M. K. (1989). Outcome Pattern Matching and Program Theory.

Journal of Evaluation and Program Planning, 12(4), 355-366.

Tukiainen, M. (2001). Evaluation of the Cognitive Dimensions Questionnaire and

Some Thoughts about the Cognitive Dimensions of Spreadsheet Calculation.

13th Workshop of the Psychology of Programming Interest Group.

Tyugu, E. (2007). Algorithms and architectures of artificial intelligence, Frontiers

in AI and Applications (Vol. 159): IOS Press.

Vahidov, R., & Elrod, R. (1999). Incorporating critique and argumentation in DSS.

Decision Support Systems, 26, 249-258.

Wang, Y. (2009). A Formal Syntax of Natural Languages and Deductive Grammar.

Fundamenta Informaticae, 90(4), 353-368.

Winn, W. D. (1993). An Account of How Readers Search for Information in

Diagrams. Contemporary Educational Psychology, 18, 162-185.

Xiyong, Z., & Xingwang, Z. (2006). Implementation of a Template-based Approach

for Mass Customization of Service-oriented E-business Applications. 2006

International Conference on Systems, Man, and Cybernetics, 4666-4670.

Zhu, N., Grundy, J., Hosking, J., Liu, N., Cao, S., & Mehra, A. (2007). Pounamu; A

meta-tool for exploratory domain-specific visual language tool development.

The Journal of Systems and Software, 80(8), 1390-1407.

