Critic Specification for

Domain-Specific Visual Language Tools

Norhayati Mohd Ali

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in Computer Science,
The University of Auckland, 2010

Abstract

In recent years we have observed the extensive evolution of tools and techniques
that work with the user to achieve a range of computer-mediated tasks. One of these
support techniques is the use of critics. Critics have evolved over the last few years
as specific tool features to support users in computer-mediated tasks by providing
guidelines or suggestions for improvement to designs, code and other digital
artefacts. Some critics may also facilitate semi-automatically improving a design for
the tool user. Although critics have been used widely in very diverse domains, such
as education, programming and product design tools, critic authoring continues to be
a challenge. In addition critic approaches have not been applied within meta-

modelling tools that implement domain-specific visual language (DSVL) tools.

The main research question in this research project is “Can critic specification and
implementation for domain specific visual languages be made accessible to tool end-
users?” Hence, the aim of this research is to design and develop a prototype for a
critic specification tool that allows the end user tool developers to readily express
and construct critics for a DSVL tool. The research involved several steps to attain
the research aim. The initial phase of this research has produced a taxonomy of
computer-supported critic approaches and led to the identification of key
requirements of a critic specification tool. The intermediate phase involved the
incremental development of prototypes demonstrating a proof of concept for a critic
specification tool. A notational representation and a template-based approach were
developed for the final prototype of the critic specification tool and demonstrated via
three different domains of DSVL exemplar tools. The final phase of this research
addresses the evaluation of the critic specification approach via an end user
evaluation which took into account usability aspects and the Cognitive Dimensions

framework.

This research has contributed to the development of a critic specification approach
for DSVL tools based on a notational representation and a critic authoring template-

based approach to support tool end users in specifying critics.

Dedication

[dedicate this thesis to
My late father, who made this entire journey possible
My husband Akramin, son Irfan, and daughters Insyirah and Iffah

My mother, brothers and sisters

“Your love and support are the greatest gift of all”

Acknowledgements

In the Name of Allah, the Most Benificient, the Most Merciful
All the praises and thanks be to Allah, with Whose blessings are completed the righteous
deeds. Peace, Blessings and Graces of Allah be upon our Prophet Muhamad (pbuh), his

family and his companions.

I would like to acknowledge some of the many persons and groups who supported me for
the past four years of my PhD study. Without them, this thesis would never have been
possible. Please accept my apologies if | fail to mention your contribution; | can assure you

that it is only an omission in writing and not in feeling.

Firstly, a special thank to my late-father who has taught me the value of a good education. |
also would like to thank my mother, brothers and sisters for their love, their kind words of
encouragement and advice. | would also like to thank my in-laws family for their

unconditional love and support during these challenging years.

I would like to thank both of my main supervisors, Prof. John Hosking and Prof. John
Grundy (Swinburne Univeristy of Technology) for their constant support and insightful
guidance over the past four years. Both of them are tremendous supervisors, and | feel
incredibly lucky to have been their student. | thank both of them, who generously offered
their precious time in helping me and cheering me when | got stuck. Working with John &
John has indeed been a great pleasure. Their guidance, patience and support during our
discussions have taught me how to enjoy researching though it is a stressful process.
Without their numerous proof reading of my rough drafts and invaluable suggestions for
rewriting, this thesis work would be far worse. I owe limitless gratitude to them. Thank you
for making my graduate research experience one of the most rewarding and defining

moments in my life. To John & John -Thanks for everything.

I would also like to acknowledge the generous financial support and assistance provided for
me by the Ministry of Higher Education (Malaysia), Universiti Putra Malaysia, and
Software Process and Product Improvement Funding (University of Auckland). I am very
grateful to the Postgraduate Research Student Support Account (University of Auckland),
CS Graduate Student Travel fund, U.S National Science Foundation grant and Build IT

travel fund for supporting my conferences travel.
ii

I want to thank my colleagues in John’s research group, Karen, Jun, Richard, Rainbow,
Chris, Masila, Su, Farid, Emily, James, Brian and Rick for listening and discussing my
research progress. A special thank to Jun who helped me a lot in the coding task and to
Karen who proof read my draft and always have a time when | need her to discuss about
my research work. | am very greatful to the group members for participating in the tool’s

evaluation.

I would like to thank the Computer Science Department staff for helping me when | need
their assistance. | would like to thank Robyn, Sithra, Anita, Heather, Keith, Pan, Lei and

many others. Thank you for everything.

I would also like to thank Dr. Susan and her colleagues from the Student Learning Centre
for handling the doctoral skills programme which | found it very helpful for my research
study. I am very grateful to the Doctoral EAL support group that helps me with my thesis

writing.

In general, I would like to thank all my friends around the world who endlessly encouraged
and supported me throughtout these years. A huge thanks to Sarah and Eyad for all the helps
they offered to my family. Thank you for everything. A special thanks to Muhammad and
Mehwish for helping me with the thesis formatting work. I would also like to thank Zakiah,
Ema, Zaidah, Dila, and all MAPSA members for helping and supporting me in whatever

occasions. Thank you all for the friendship that made my life enjoyable.

Last, but certainly not least, 1 want to thank my lovely and wonderful husband, Zainul
Akramin for his love, support, encouragement, understanding and patience throughout these
years. | will never be able to thank him enough for that. 1 will not even be able to express
my gratitude to and love for him. | would also like to thank my son, Irfan, my daughters,
Insyirah and Iffah for their love and patience. They are indispensable for me to accomplish

this work. | could never have enough words to thank my family for what they did for me.

Table of Contents

ADSIIACE. ... i
DAICALION. ...ttt e il
AcCKnOWIedgemEent.ouiiii e il
List Of FIgUIES. ...ttt e Xi
LSt Of Tables. . ..v e e XV
Chapter 1. INtrodUCLION. ..ot e 1
1.1 Research Background ...t 1
1.2 ReSEArCh MOTIVALIONoiiiiiiie e 3
1.3 ReSeArC QUESTIONS.....cc.iiiiiieiiieie ettt nree e 4
1.4 ReSearch ODJECHIVES.....c.ccoviiie et 5
1.5 Research Methodologyccccvoiiiiiiicii s 6
1.6 Research ContribULIONS. ..o 6
1.7 ThesiS OrganiZationcceccuiiieiieie et e e nas 8
Chapter 2. Related RESEAICN............cociiiiiieiieee e 12
2.1 INEFOUUCTION. ...iveeee ettt bbb 12
2.2 Critic s a SUpPPOrting TOOI.......cc.ooiiiiiiiiiieee e 12
2.2.1 Critics in INfOrmation SYSIEMSccoiiiiiiiiie e 13
2.2.2 Critics in Software ENgiNEering........cocvviieiiieieie s 16
2.2.3 Critics in Education ENVIFONMENTccvviriiiiieneieseseeee e 19
2.2.4 Critics in ReCOMMENEr SYSTEMS.......c.viiiieieieierie e 21
2.2.5 Benefits from Critics AppliCation...........cccevvieiiiiiieie e 23
2.3 Constraint Specification in a Meta-Modelling Tool ..., 27
2.3. 1 MELAEAITF ... et 30
2.3.2 POUNAMU ..ottt 32
2.3.3 MATEIMA ...ttt 33

2.3 A DECS ... 35

2.4 Discussion and CONCIUSION..........coeiiiiiiieiieee s 36
Chapter 3. Research Methodology.........cccuvviierieiieii e 38
3.1 INEOTUCTION....cceiiiecei s 38
3.2 MEtNOAOIOQY ...t 39
3.2.1 Literature Review of CritiC TOOIS..........ccoiiiiiiiiiiiecc e 39
3.2.2 Identify a Set of Requirements for Our Critic Specification Tool................ 39

3.2.3 Develop Prototype to Explore Issues in Designing Critic Specification Tool

3.2.4 Identify a Set of Building Blocks Needed for a Critic Specification Tool...42
3.2.5 Proof of concept for the critic specification approach...............ccccceeveinennnne 42
3.2.6 Perform user evaluation of our critic specification approach...................... 42

3.2.7 Draw conclusions from our survey, design, prototyping and evaluation work

... 43
3.3 CONCIUSIONS......cuiite et ettt 43
Chapter 4. A CritiC TAXONOMYccuiitiriiriiriieiesieee ettt 44
4.1 WHhAL IS TAXONOMY? ...ttt b e bbb 44
4.2 Critic Definitions and EXamples.........ccccooeiiiiiiiieieese e 45
4.3 A CIItIC TAXONOMY ..ooiiiiiiiiieiee ettt ettt st et e et e s be e sraeabeesneeereeas 47

4.3.1 CritiC DOMAIN ... 49

4.3.2 Critiquing APPrOaChioiii i 50

4.3.3 Modes of Critic FEedDACK...........cccouiiiiiiiieieee e 53

4.3.4 Critic’s Rule AUthOTINGcoooviiiiiiiiiiii e 54

4.3.5 Critic Realisation APProachccceeveeiiiiiic i 56

4.3.6 CritiC DIMENSION......c.ciiiiiiiiteeis et 61

4.3.7 Types of Critic FEedbaCK...........covvveiiie e 63

G I O 4 | ol I8/ o= S 66

4.4 Applying the TaXONOMYcccueiiieieiieie e re e ns 67

4.4.1 ArgoUML (Robbins and Redmiles, 2000)ccccevveveiieieeiieseese e 67
4.4.2 ABCDE-Critic (de Souza et al., 2000)ccceeveriieriiieiiese e 69
4.4.3 IDEA (Bergenti & Poggi, 2000)ccceeieiierieieiiesie e se e 71
4.4.4 Revdava (FIorijn, 2002)c.coviiieiieieiie e se st 73
4.4.5 DAISY (de Souza et al., 2003)ccoiviieiierieeieceese e 75
4.4.6 Java Critiquer (Qiu and Riesbeck, 2003).........cccccvvevveieiiieiieie e 77
4.4.7 Design Evaluator (Oh et al., 2004)cccooiiiiiiinininieeee e 79
4.4.8 ClassCompass (Coelho & Murphy, 2007)........ccocvriiiniinieieie e 80
4.4.9 FFDC (Oh €t al., 2000)ovveeereeeeeeeeeeeseeeeeeeseesseeeseseeeessesesee e essee 83
4.4.10 HeRA (Knauss et al., 2009)cuoiuiiriiiiiieiesesesiseeee e 85
4.4.11 Summaries 0f COMPATISONcoiiiiiieieie e 86
4.5 CONCIUSTON ...ttt bbbttt bbb 95
Chapter 5. A Visual and Template-based Approach for Critic Specification............ 97
5.1 INErOTUCTION.....oiiiiiiiiiiiit et 97
5.2 Visual Specification APProachcccveviiiiiiiie i 97
5.2.1 Visual Notations Used by the Critic Specification Editor.......................... 101
5.3 Template-Based APPrOaCHccoiiiiiiiiieeee e 104
5.3.1 Introduction to Business Rule Templates...........cccovvvrininieienencienen 106
5.3.2 Critic Authoring TEMPIALESooiiiiiiieeee e 109
5.4 Visual and Template-based Critic Specification for DSVL tools 112
5.5 Analysis of Critic Specification Tool using Physics of Notations 113
5.6 CONCIUSION ...ttt bbb 122
Chapter 6. Initial Prototype for Critic Specification..........c.ccccevcvviveiiiniieieiieseeens 123
6.1 INErOTUCTION....c.eiiiiiiiiee s 123

6.2 Initial Prototype: Specifying Critic in a Marama Metamodel Definer views

124
vii

6.2.1 Background and MOtiVatioNcccccveveiiiiecic e 124

6.2.2 APPIOACH.....ceiiieee et 128
6.2.3 Initial Critic Authoring Templateccccoevveiiiie i 130
6.2.4 IMPIEMENTALION ..o e 131
6.2.5 EXAMPIE USAQEveiiieiiieeceee et 134
6.2.6 Preliminary Results for the Initial Prototype.........ccccoocvvveieeiiiic e, 139
6.4 CONCIUSION ...ttt 141
Chapter 7. Final Prototype for Critic Specification............ccccocevvinieniiiiicienecns 142
7.1 Background and MOtIVALIONccccoiiiiiiiiiiecc s 142
7.2 Final Prototype: the Marama Critic Definer EQitor..........c.ccoovvvviiiiiiciinn, 144
7.2.1 APPIOACH....eeiie s 144
7.2.2 Visual Critic Definer EitOr..........ccooiiieiiiiieeeeeeese e 145
7.2.2.1 CriticShape with Extended Critic Authoring Templates..................... 147
7.2.2.2 Critic Feedback Specification............ccccvveveiviiiicviec e 149

7.2.2.3 Critic dependency, Operator shape, Operator and

OperatorCriticFeedback CONNECTOrSccoviviiiiiiiiecce 152
7.2.2.4 Simple and Complex CritiCS........cccoviiiririiiiiiieiee e 153
7.2.2.5 Critic Template EAITOrccooeieiiiiiiiieseseseeeee e 156
7.2.2.6 Critic Authoring GUIAEIINEcoovviiiiiieiiee e 158
7.2.2.6 Critic and Feedback RepOSITOrY.........cccooiiiiiiiniiieiesce e 162

7.3 Summary of the Implementationccocoeeiinei 162
7.4 CONCIUSION ...ttt 164
Chapter 8. Case STUAIES........cccueiiieiiie e 165
8.1 INErOTUCTION. ...t 165
8.2 Case Study I: A Visual Care Plan Modelling Language (VCPML) Tool 166
8.2.1 Case Study DeSCrIPLION.coiiiiiiie e 166
8.2.2 EXAMPIE USAGEvveiieieee ettt 168

8.3 Case Study Il: A Simplified Marama EML ToOlccccocevvevieiiieieecec, 174

8.3.1 Case Study DeSCIIPLION........ccieieiieii e 175
8.3.2 EXAMPIE USAQEveivieiree ettt 177
8.4 Case Study H1: MaramaUML TOO!cccocoviieiiiiecie e 181
8.4.1 Case Study DeSCIIPLION........ccieieiie e 181
8.4.2 EXAMPIE USAQEveiveeii ettt 184
8.5 Discussions and CONCIUSIONS..........couiiieiiirieieisie e 190
Chapter 9. EVAIUALION..........ooiiiiiiieeee e 193
9.1 INTrOTUCTION. ...ttt bbb 193
9.2 Cognitive Dimensions of Notations framework (CDS)cccccevererenenennnn. 195
9.3 The Four Criteria to Evaluate Usability............ccccooiiiiiiniiiiiece 196
9.4 DeSign OF the SUIVEYcvveiccee e 198
9.4.1 The ObServation DESIQNccvciiiieiierie e 198
9.4.2 The QUESIONNAITE DESIGNccveeviiiieiieee et 199
9.4.3 SUNVEY MELNOU.......cciiiiieicee e 200
9.5 Survey Result and ANalYSIS.........coviieiieiicciie e 201
9.5.1 Analysis of Task List and Observation.............cccccovveveiieieese e, 201
9.5.2 Analysis of Questionnaire RESPONSES.coeivirereririnieee e 205
9.7 CONCIUSION ...ttt bbb 212
Chapter 10. Conclusions and FUture WorkK............ccocooiieiininineiee e 214
10.1 RESEAICh SUMMAIYcuviiiiiiiiee e 214
10.2 Research ContribULIONS..........ccoiiiiiiiiiieieee e 219
10.3 FULUIE WOTK ... 220
10.4 SUMIMAIY ...eeieiiiieeciie ettt e e et e e st e e st e e an b e e snbe e e snb e e e nnaeeenneeeenes 221
Appendix A — Participation Information Sheet (Head of Department)................... 222
Appendix B — Participation Information Sheet (Student)..........ccccoveiiniiiieieennne 224
Appendix C — Consent Form (Head of Department)..........cccccveveviveiieiiesieenesiiennenn 226

iX

Appendix D — Consent FOrm (StUAENL)........ccevriieiieieciece e 227
Appendix E - Survey : Evaluation of Template-based

Critic Authoring for Domain Specific Visual Language ToolS.........ccccccevverieennene. 229
RETEIBNCES. ...ttt ettt et eas 236

List of Figures

Figure 2.1: Screen shot of an expert Critiquing SYStEMccoeiveieieiiiene e 14
Figure 2.2: Example of DSS that employed CritiCSccccceviveviiiieieeie e 15
Figure 2.4; Example of recommender SYStEMccccoveveiiieiiene s 22
Figure 2.5 Example of group recommender SYStEMccovvrieieieieienineseseeeas 23
Figure 2.6: Examples of constraints expressed in OCLcccccoveiiiiieniiinnniens 29
Figure 2.7: Constraint expression using OCL eXpressionccccevvveveiveieereeanenns 30
Figure 2.8: MetaEdit+ architeCturecccccveiviii i 31
Figure 2.9: Constraints definer editor and Graph constraints toolcc.ceeeee. 31
Figure 2.10 Structure of Pounamu SPecifiCationccocvvvrieienene i 32
Figure 2.11: Example of code-based event handler for model constraints 33
Figure 2.12: Constraint specification via MaramaTatau using OCL formula 34
Figure 2.13 Architecture 0F DECSccoooiiiiiiieiieee e 36
Figure 3.1: Prototype development for critic specification toolcc.ccocevvrnnnns 41
Figure 4.1: OUur CritiC taXONOMY.cciveiuiiieiiecie ettt 48
Figure 4.2: Critic rule using pattern-matching approachcccccoeveviiieiecvieennenn, 58
Figure 4.3: Rules for architectural floor plans using predicate stylec.c....... 59
Figure 4.4: Critics written in OCL eXPreSSioNscooevirerinieeiieniese e 60
Figure 4.5: The ArgoUML user iNterface.cccocvvveieeieiic i 67
Figure 4.6: The mapping of the ArgoUML tool to the critic taxonomy................... 69
Figure 4.7: The mapping of the ABCDE-Critic tool to the critic taxonomy............ 71
Figure 4.8: The mapping of the IDEA tool to the critic taxonomyccccevvenens 73
Figure 4.9: ReVJaVA CrIICSccviiiiieiieciie ettt 74
Figure 4.10: The mapping of the RevJava tool to the critic taxonomy. 75
Figure 4.11: The mapping of the DAISY tool to the critic taxonomy...............c...... 76
Figure 4.12: Java Critiquer iNTErfaceccooveieieiiieie e 78
Figure 4.13: The mapping of the Java Critiquer tool to the critic taxonomy. 78
Figure 4.14: The mapping of the Design Evaluator tool to the critic taxonomy......80
Figure 4.15: ClassCompass USer INtErfacecccvvvvereereiie i seese e 82
Figure 4.16: The mapping of the ClassCompass tool to the critic taxonomy........... 82
Figure 4.17: The mapping of the FFDC tool to the critic taxonomy.c..c.c....... 84

Xi

Figure 4.18: The mapping of the HeRA tool to the critic taxonomy........................ 86

Figure 5.1: Visual notations of the visual critic specification editor:..................... 102
Figure 5.2: Meta-model defined for a critic specification toolcc.cocvvenneee. 103
Figure 5.3: Icons for the critic specification editor............cc.coeeiiiiiiiciiieiieen, 104

Figure 5.4: A form-based interface to represent the critic authoring templates.......112

Figure 5.5: The mapping between (a) metamodel of the visual critic definer and (b)

graphical SYMDOIS.ccviiieieee e e 115
Figure 5.6: Element types in the visual critic specification editorcc.ce...... 116
Figure 5.7: Critic specification diagramcccooerirenininienieieeie e 118
Figure 5.8: Integration between critic definer view and critic construction editor, and
integration between critic construction editor and meta elements............cc.ccceveunene 119
Figure 5.9: Textual ENCOUINGcoiiiiiiiiieiee e 120
Figure 6.1: UML class diagramming tool metamodel............ccccoviveiiniiiinnnnnnn 124
Figure 6.2: Simple critic (same named classes) violation in MaramaTatau............ 125
Figure 6.3: Simple critic (class with no name) violation in MaramaTatau 126
Figure 6.4: Critic development approach ..o 128
Figure 6.5: Critics specified in the meta-model definer editor............c.ccccovvrnneee. 129
Figure 6.6: New function added in the Marama meta-model editor........................ 131

Figure 6.7: CriticShape (orange colour) linked with a critic authoring template. ...132

Figure 6.8: Critics store in critictypes fOlder. ... 133
Figure 6.9: Architecture of CritiC ProCeSSINGeoereririririeierere s 134
Figure 6.10: MaramaMTE metamodel definer Viewcccccooovevieiiiciic i, 134
Figure 6.11: Visual CriticShape function associate with the critic authoring
TEMIPIALES. ..o 136
Figure 6.12: Critics for MaramaMTE are stored in critictypes folder..................... 137

Figure 6.13: Critic statement: remote object must have a unique name. Attribute
Constraint template: <entity>must have|may have [unique] <attributeTerm>........ 138
Figure 6.14: Critic statement: remote object must have many services. Relationship
constraint template: <entityl> must have | may have [<cardinality>]<entity2>.....138
Figure 7.2: A new specification tool, Marama Critic Definer..........c.cccoecvienennns 145
Figure 7.3: A visual critic definer editor: (a) Initial notation, (b) Improved notation

Figure 7.4: CriticShape (top) associated with Critic Construction View interface
(020110 1 1) SR 149
Figure 7.5: CriticFeedbackShape associated with Critic feedback view interface..150

Figure 7.6: An example Of PasSIVE CrItICcccooiiiiirininiceeeee e 151
Figure 7.7: A CriticFeedbackConn connector links the critic and feedback........... 152
Figure 7.8: A CriticDependencyLink connects two CrtiCSccccvevvereiieseennens 152
Figure 7.9: Examples of unit/ Simple CritiCS........ccoovviiiiiveii i 153

Figure 7.10: Critics specified in the critic definer editor (bottom) based on the meta-
model of SimplifiedMaramaEML tool defined in the meta-model editor (top)......155

Figure 7.11: A critic specified using an action assertion template.c...c....... 156
Figure 7.12: A new critic template created in the Critic Template editor. 157
Figure 7.13: A guideline for the critic authoring template style............cc.cocvvvnneee. 158

Figure 7.14: Critic (critictypes folder) and feedback (feedbacktypes) repository
0110 =] SRS 162

Figure 7.15: Architecture view of the Marama meta-tools and the extension of

Marama CritiC DefINEr VIEWcccveiviieiie e 163
Figure 8.1: The VCPML meta MOdelccoveiiiiiiiiiiiieeeee e 168
Figure 8.2: An example of the VCPML mModelccccoveviiieiiiiice e 168
Figure 8.3: A CriticFeedbackConn connector links the critic and feedback. 170
Figure 8.4: A uniqueness name critic via the attribute constraint template............. 170

Figure 8.5: A critic on cardinality constraint using the relationship constraint
TEMPIALE. ... 171
Figure 8.6: Critic feedback for the uniqueness name CritiC............ccccccvevvviiiverinennn, 172

Figure 8.7: A critique message is displayed when a uniqueness name critic is

120] = U= o RSOSSN 173
Figure 8.8: A critic feedback with a brief explanation and suggestion 173
Figure 8.9: The fix action for the uniqueness name CritiC.cccceevveiieiieernenn, 173
Figure 8.10: Meta model for the simplified MaramaEMLcc.ccocecniiiincnen. 175
Figure 8.11: University enrollment service model using a simplified MaramaEML
(modified from (Li, et al., 2007D)cceoiiiiiiiie s 177
Figure 8.12: Critics specified in the critic definer editor based on the meta-model of
SimplifiedMaramaEML t0OL.cccoviiiiiece e 178

Xiii

Figure 8.13: A critic specified using an action assertion template.c.cccoc..... 179
Figure 8.14: Action assertion critic execution after the trigger event occurs: a
critique is displayed to Warn the USEI ... 179
Figure 8.15: Feedback of a complex critic using the logical operator OR (top) and

fix action for this critic (DOtOM).ccoeviiecec e 180
Figure 8.15: Metamodel for MaramaUML tool.ccccceevevieieciiciece e 182
Figure 8.16: Class diagram example (left) and Collaboration diagram example
(MIGNE) bbbt 182
Figure 8.17: Graphical representation of a consistency rule between collaboration
diagram (bottom) and class diagram (10P)cccevveeriiereiie i 185
Figure 8.18: A new critic template created in the Critic Template editor. 187

Figure 8.19: New critic authoring template:
<entityl><attributeTerm><relationalOperator><entity2><attributeTerm1> (bottom
(o1 (o USSR 187

Figure 8.20 A critique is displayed when a consistency critic rule is violated........ 188

Figure 8.21: A critic feedback displays a brief explanation and suggestion. 188
Figure 8.22: A fix action to resolve the consistency critic rule...........cc.ccocvvvrnnee. 189
Figure 9.2: Usability reSPONSES.ccviiiiiciie et 207
Figure 9.3: CD questionNaire reSPONSES.cvecveiueeireaieireeireeeesreesieeeesreesresseesreesens 208

Xiv

List of Tables

Table 4.1: Critic defiNitioNS.ooi i 46
Table 4.2: Examples of critic tools and their application domain.c.cc.cceenee. 46
Table 4.3: Critics applied to various domains.ccceoerererieieenenene e 49
Table 4.5: CritiC diMENSIONS.oiviiiiiiieieieee e e 61
TabIE 4.6: CIItIC LYPES...uveitieiieeie ettt ettt te e s re e reenaesneennas 66
Table 5.1: Definition of constraint, action assertion and derivation........................ 107
Table 5.2: Business rule templates ..o 108
Table 5.3. Critic Authoring Templates-constraint and action assertion templates..111
Table 5.4: Association of critic template properties with the tool meta-model....... 111
Table 5.5: Association of metamodel elements and graphical symbol 114
Table 6.1. Critic statement and OCL eXPreSSIONcovrerereeieerieniese e 125
Table 6.2: Attribute and relationship constraint templates............cccccoveveveereennene 130
Table 6.3: Association of tool meta-model with the critic phrase type................... 130
Table 6.4: Lists of critic statements and critic authoring templates for MaramaMTE.
... 135
Table 7.1: Critic Authoring Templateccevveiiiicieee e 148
Table 8.1: Attribute and relationship constraint templates.c.ccccoveveiveieennenn 169
Table 8.2: Examples of critics and feedbacks for VCPML tool..........ccccccoverienneee. 169
Table 8.3: Basic rules of EML tree structure (adopted from (Li, 2010)) 176
Table 8.4: Action assertion templateccceeviiiie i 178
Table 8.5. Attribute constraint templatecccovve i, 180
Table 9.1: The meaning of each dimensions (Blackwell, et al., 2001).................... 196
Table 9.2: Section 1- Background informationccoceovvenninienenc e 205
Table 9.3: Usability r&SPONSEScciuiiiieiiieiiie ettt 207
Table 9.4: Cognitive dimensSion FESPONSESccvveivreirieeiieiiee e eieesre e e seeesiee s 208
Table 9.5: Participants’ COMIMENTccovviirierriiiierie e 212
Table A: CritiC DOMAIN.......coiiiiiiie e 87
Table B: CritiC @pPPrOaCh.......ccviiie et 88
Table C: Modes of critic feedback...........coooveiiiiiiii e 89

Table D: Critic rules autNOriNg.........ccoveiiiieiieiece e 90

Table E: Critic's realisation approach............cccocveveeiieieieeie e see e seenne s 91
Table F: Critic diMENSIONS.ccviiiiie et nreas 92
Table G: Types oOf Critic feedDACK............ccoiieiiiieie s 93
Table H: TYPES OF CIILICS....ccuveiiiieieee e 94

XVi

Chapter 1
Introduction

This chapter presents an overview of the research in this thesis. It describes the
background of the research area and introduces the motivation for this research. The
research questions for this research are summarised as well as the research
objectives. Our methodology to perform this research is outlined, followed by our
expected research contributions. Finally we end this chapter with the outline of our

thesis structure.

1.1 Research Background

In recent years we have observed the extensive evolution of tools and techniques
that work with the user to achieve a range of computer-mediated tasks. One of these
support techniques is the use of critics. The term “critic” was initially used by Miller
(1986) to describe a software program that critiques human-generated solutions.
Critics have evolved in the last several years as specific tool features to support
users in computer-mediated tasks by providing guidelines or suggestions for

improvement to designs, code and other digital artefacts.

The concept of a critic is one that has been adopted in various domains, including
medical systems (Gertner & Webber, 1998; Miller, 1986), programming (Fischer,
1987; Florijn, 2002), design (Fischer, Lemke, & Mastaglio, 1991; Oh, Do, & Gross,
2004), education (Coelho & Murphy, 2007; Qiu & Riesbeck, 2004), expert systems
(Hagglund, 1993; Silverman, 1992), and decision support systems (Gertner &
Webber, 1998; Irandoust, 2006). Research work and efforts from (Fischer, 1987,
1989; Fischer, Lemke, & Mastaglio, 1991; Fischer, Lemke, Mastaglio, & Morch,
1991; Fischer & Mastaglio, 1990; Miller, 1986; Silverman, 1992; Silverman &
Mehzer, 1992) and others have created a wider audience on the use of a critic-based
approach. Furthermore, many studies have found evidence that critiquing tools are
an efficient feedback-providing mechanism. These tools offer several benefits

including a proactive design improvement, early error detection, and heuristic-based

guidance and context-sensitive feedback.

As a simple example consider a software designer manipulating a design artefact in
an editing tool. The tool’s critics analyze the design artefact as it changes and reveal
to the designer some potential problems/errors with the design artefacts e.g. wrong
naming convention, over-complex design relationships, and potential misuse of
design domain concepts. The critic tool will offer feedback, or “critique” the design,
usually proactively as the design evolves. The tool may also suggest alternative
design decisions to the designer to resolve potential problems. The interaction
between designer and critic tool is iterative until the designer is satisfied with the
design artefacts. Typically critic feedback is kept “unobtrusive” to the designer so as

not to overly interfere with the design process.

One of the most significant examples of a critic tool in the software engineering
domain is ArgoUML (Robbins & Redmiles, 2000) an open source Unified Modeling
Language (UML) CASE tool that supports the editing of UML notation diagrams.
Its critics offer suggestions to designers when a software architecture diagram
violates various UML rules (Robbins & Redmiles, 2000). The LISP-Critic (Fischer,
1987), Argo (Robbins & Redmiles, 1998), ABCDE-Critic (Bergenti & Poggi, 2000;
de Souza, Jr., & Goncalves, 2000), IDEA (Bergenti & Poggi, 2000) and RevJava
(Florijn, 2002), are further examples of critic-based tools in the software design
domain. These tools were developed for the domains of LISP programming,
software architecture, object-oriented analysis and design, design patterns and Java
object-oriented software respectively. Oh et al. (Oh, Gross, & Do, 2008) point out
that most rules for critic tools are written in advance and that their customisation is

not easy.

Extending the use of critics into meta-tool environments that implement domain-
specific visual language (DSVL) tools and targeting to support end user tool

developers makes it possible to improve critic specification in DSVL tools.

1.2 Research Motivation

While many studies have reported that critic tools provide an efficient mechanism
for feedback, critic authoring continues to be a challenge i.e. allowing end user tool
developers to customise critic rules. There are various approaches (e.g. rule-based,
knowledge-based, code and predicate logic) that can be applied for specifying
critics, however these approaches are mostly used by skilled developers. A few of
the critic tools (e.g. ArgopUML (Robbins & Redmiles, 2000), ABCDE-Critic (de
Souza, et al., 2000) and IDEA (Bergenti & Poggi, 2000)) allow for critic
customisation but the process of authoring or customising the critics is not easy. The
users have to understand both the tool domain and the critic approach used before

designing and realising critics.

In addition, the use of the critic concept had not to date been applied within meta-
modelling tools that implement DSVL tools. The application of a critic approach is
mostly discussed in application domains as stated in above section. Meta-modelling-
based DSVL specification tools often employ a constraint definition/specification
approach (e.g. MetaEdit+ (Kelly, Lyytinen, & Rossi, 1996), Pounamu (Zhu et al.,
2007), and Marama (Grundy, Hosking, Huh, & Li, 2008)). The process of specifying
constraints for meta-modelling tools is more complex as it requires good knowledge
in programming skills, it uses formal approach and it involves deep cognitive load.
This makes it hard for non-skilled users to understand and use the constraint
approach.

Inspired by the existing critic tools work, we have made an attempt to apply similar
ideas to our meta-modelling tools i.e. Marama (Grundy, et al., 2008). Marama is a
meta-tool implemented as set of Eclipse-plugins and includes meta-tools as well as
modelling tools (Grundy, et al., 2008). Our meta-tools are used to generate complex
visual modelling tools, and these modelling tools could benefit from the addition of
various critics. Thus, we wanted to extend our Marama meta-tools by embedding a
critic specification component. Furthermore, we wanted to assist end-user tool

developers to specify and generate critics efficiently and easily for DSVL tools.

The overall motivation of our research is to be able to provide a critic specification
approach that is accessible to end user tool developers for specifying critics for
DSVL tools. The focus of this research has led to the design and development of a
notational representation and a critic authoring template-based approach for critic

specification approach for DSVL tools.

1.3 Research Questions

The main research question in this research in relation to our research motivation
can be framed as:
“Can critic specification and implementation for domain specific visual
languages be made accessible to end-user tool developers?”
To be able to tackle this question, we divide it into smaller research questions that
enable us to identify possible solutions:

e Can a notation for critic specification be designed that is accessible? This
question aims to address the main topic of our research, so that by reviewing
existing critic approaches, it is possible to understand key critic elements and
how these elements can be supported in designing a notation for our critic
specification tool. In addition, the designed notation for critic specification
should be accessible to end-user tool developers. To answer this question, we
reviewed related research on critics, adapted business rule templates and
used a visual notation-based approach. This question is addressed in Chapter
FOUR (Critic Taxonomy) and Chapter FIVE (A Visual and Template-Based
Approach for Critic Specification).

e Can such a notation be realised as a tool? To answer this question, we
developed a prototype critic specification tool and used an iterative-
incremental approach to allow improvement in the prototype. This question
is addressed in Chapter THREE (Research Methodology), Chapter SIX
(Initial Prototype for Critic Specification Tool) and Chapter SEVEN (Final
Prototype for Critic Specification Tool).

e How can such a tool be integrated with existing tools for domain-specific

visual language design and implementation? This question is to be answered

4

through a proof-of-concept system that identifies technical dependencies
among the tool components. This question is addressed in Chapter SIX
(Initial Prototype for Critic Specification Tool), Chapter SEVEN (Final
Prototype for Critic Specification Tool) and Chapter EIGHT (Case Studies).

e How can such an integrated tool set be evaluated? To answer this question,
we designed a survey to perform an end-user evaluation for the critic
specification tool. We gained ethics approval from the University of
Auckland Human Participants Ethics Committee before conducting an end-
user evaluation for the developed critic specification tool with several target
end users. This question is addressed in Chapter NINE (Evaluation).

In short, to answer these research questions, we adopted a visual language and
template-based approach as our notation for the design and implementation of a
critic specification tool to be accessible by end-user tool developers. We measured
the accessibility issue by performing an end-user evaluation to assess whether our
critic specification approach supports end-user tool developers in the critic-

specification task.

1.4 Research Objectives

The main objective of our research is to provide a critic specification capability that
allows the end-user tool developers to specify and generate critics for domain-
specific visual language tools effectively and easily. In particular, the research aims:
1. To review existing critic approaches used for critic specification and
implementation. These would assist us in identifying key critic elements and
to recognise techniques or methods applied in critics.
2. To design and develop a simple critic specification approach that is
accessible to end-user tool developers.
3. To embed the critic specification approach within a meta-tool environment
that implements domain-specific visual language tools.
4. To provide proof concept of the critic specification approach by applying it

to three different domains of DSVL exemplar tools.

5. To assess how well the critic specification approach supports the end-user

tool developer by performing an end-user evaluation.

1.5 Research Methodology

Our approach to responding to our research question and achieving our objectives

was based on the following methodology:

We conducted a literature review of critic tools, comparing and analysing
their approaches for critic specification and implementation;

We then identified a set of key requirements for a critic specification tool for
domain-specific visual language tools;

We developed a prototype to explore the problems and issues in designing a
critic specification tool. We applied an iterative-incremental approach that
supports refinement and improvement for our prototype development;

We identified from our prototyping experience a core set of building blocks
required for a generic critic specification editor and design notation;

We proved our concept of a visual critic specification approach by applying
it to three different domains of DSVL exemplar tools: health care planning
domain, business process domain and UML design domain;

We performed an end-user evaluation of our critic specification approach to
assess its usability and effectiveness;

Finally, we derived conclusions from our review, design, prototyping and
evaluation work. These are discussed in the final chapter of this thesis i.e.
Chapter TEN.

1.6 Research Contributions

The research discussed in this thesis contributes to the field of software engineering

particularly in the area of critic tools and critiquing systems development. Main

contributions from this research are as follows:

1. This research provides a taxonomy of critics that can assist other

users/designers or developers in obtaining relevant information about

critics. Our critic taxonomy identified eight groups: critic domain,
critiquing approach, modes of critic feedback, critic rule authoring, critic
realisation approach, critic dimension, types of critic feedback, and types of
critic. We believe that our critic taxonomy will be useful to critic
developers in providing a meaningful way of describing and reasoning
about critics. A conference paper describing this taxonomy and titled “A
Taxonomy of Computer-supported Critics” was published in Proceedings

of the 2010 IEEE International Symposium on Information Technology.

2. This research invented a visual way of expressing and constructing critics
for domain-specific visual language (DSVL) tools. Notational
representation of critic authoring facilities is offered to end-user designers
to express critics for their DSVL tools. Furthermore, this research provides
a space for end-user tool developers who want to express critics for their
specific tool without the need to have a comprehensive technical
knowledge on expressing and constructing critics. A conference paper titled
“A Generic Visual Critic Authoring Tool” presented our research proposal
in Proceedings of the 2007 IEEE Symposium on Visual Languages and
Human-Centric Computing. Papers supporting this work were co-authored
and these include:

e A conference paper titled “Critic Authoring Templates for
Specifying Domain-Specific Visual Language Tool Critics”, which
was published in Proceedings of the 20™ Australian Software
Engineering Conference, 2009.

e A conference paper titled “Template-based Critic Authoring for
Domain-Specific Visual Language Tools”, which was published in
Proceedings of the 2009 IEEE Symposium on Visual Languages
and Human-Centric Computing.

3. This research invented a template-based critic authoring approach which is
much easier and quicker to author critics compared to other approaches for

designing and realising the critics. An end-user tool developer uses the

7

critic authoring template to generate critic rule templates. The critic rule
templates (CR) adapt the business rule (BR) templates which are currently
applied in the business process domain. We attempt to apply the critic rule
templates in the software tool domain. By using the critic authoring
templates, it is fairly easy for end-user tool developers to introduce new
critic templates or modify existing critics in the tool. Papers supporting this
work were co-authored and these include:

e A conference paper titled “Critic Authoring Templates for
Specifying Domain-Specific Visual Language Tool Critics”, which
was published in Proceedings of the 20™ Australian Software
Engineering Conference, 2009.

e A conference paper titled “Template-based Critic Authoring for
Domain-Specific Visual Language Tools”, which was published in
Proceedings of the 2009 IEEE Symposium on Visual Languages
and Human-Centric Computing.

. This research developed a prototype of a visual critic authoring tool which

was embedded in the existing Marama meta-tool; which acts as a proof-of-
concept of our approach. We evaluated the prototype using an end user
study conforming to the Cognitive Dimensions (CD) approach (Green &
Blackwell, 1998) and Physics of Notations (PON) principles (Moody,
2008). A conference paper describing this approach titled “End-User
Oriented Critic Specification for Domain-Specific Visual Language Tool”,
will appear in Proceedings of the 25" IEEE/ACM International Conference

on Automated Software Engineering, 2010.

1.7 Thesis Organization

The following chapters are organized as:
Chapter 2: Related Research

This chapter discusses key related research on critic tools (or critiquing

systems) and several meta-modelling tools that have constraint evaluation for

static semantic conformance. Review of these research areas has made it
feasible to develop a generic critic specification editor for domain-specific
visual language tools. This chapter also led us to develop the critic taxonomy
described in Chapter 4.

Chapter 3: Research Methodology

This chapter describes our approach to designing and prototyping a critic

specification tool for domain-specific visual language tools.

Chapter 4: Critic Taxonomy

This chapter describes a new taxonomy for computer-supported critics. We
start with an introduction of what is a taxonomy and then explain the concept
of a computer-supported critic. We then present our surveyed literature
information in terms of our new critic taxonomy. We also describe each of
the elements in the taxonomy using various examples from the surveyed
literature on critics. We then apply the taxonomy to characterise several

exemplar critic tools.

Chapter 5: A Visual and Template-Based Approach for Critic Specification

This chapter explains our visual and template-based approach for the critic-
authoring task of a domain-specific visual language (DSVL) tool. This
chapter begins by introducing the concepts and approaches used for our critic
specification research. We introduce the visualization concept followed by
the visual notations designed for our critic specification tool. Then we
describe the template-based approach, followed by the business rule
templates and critic templates. We also explain the concept of authoring and
the approach of template-based authoring for critics. In the last section, we
present an analysis of the design of our critic specification editor using
Moody’s Physics of Notations principles (Moody, 2008).

Chapter 6: Initial Prototype for Critic Specification Tool

This chapter introduces and explains the development steps of the visual and

template-based approach for our critic specification tool. We explain our first

attempt to employ MaramaTatau (N. Liu, Hosking, & Grundy, 2007) in
specifying critics for Marama-based tools which became our motivation to
develop another prototype for the critic specification tool. We then describe
the second prototype, which specifies critics in the meta-model editor using a
similar visual approach to MaramaTatau however tailored to the critic

specification rather than the constraints domain.

Chapter 7: Final Prototype for Critic Specification Tool

This chapter describes our third prototype for our critic specification tool.
We describe the improvements that we made on the previous prototype that
we have developed for the critic specification tool as a proof-of-concept of

our critic specification approach.

Chapter 8: Case Studies

This chapter describes three case studies that we used to demonstrate and
evaluate the utility of the critic specification editor for Marama DSVL tools.
We begin by introducing and describing the first case study - Marama
VCPM that explains the use of constraint templates provided by our critic
specification editor. We then describe the second case study - MaramaEML
that demonstrates the action assertion templates of our critic specification
editor. We then describe our third case study - MaramaUML that illustrates
the customizing of a critic authoring template via our critic template editor.
The chapter ends with some conclusions based on the results from these case

studies.

Chapter 9: Evaluation

This chapter presents the evaluation of our final critic specification prototype
for domain-specific visual language tools. We begin by introducing the
concepts of evaluations and usability evaluations. Then we introduce the
Cognitive Dimensions of Notations framework (CDs) and describe the
criteria to evaluate a tool’s usability. We then explain the design/method of

our survey carried out to assess whether the visual and template-based critic

10

authoring tool effectively supports end-user developers in specifying critics

for DSVL tools. We analyse the survey results and present our findings.

Chapter 10: Conclusions and Future Work
e This chapter concludes this thesis. It discusses the overall research results
and limitations of the research. This chapter also suggests some future work

that can be performed to extend this body of research work.

11

Chapter 2
Related Research

This chapter discusses key related research on critic tools (or critiquing systems) and
several meta-modelling tools that have constraint evaluation for static semantic
conformance. The review of these research areas has made it feasible to develop a
generic critic specification editor for domain-specific visual language tools. This
chapter also leads us to develop the critic taxonomy which is described in Chapter
FOUR.

2.1 Introduction

The value of having integrated support tools (e.g. ArgoUML, Rational Rose, Visible
Analyst) to assist developers in software development activities has received
significant attention. Some of these integrated support tools have components in the
form of critics, recommenders, or constraint evaluation facilities that can support
the developers while performing their software development tasks. Many
researchers have investigated and developed these support tools. This chapter
however, is focused on reviewing the research concerning the evaluations of critics

and constraints which is explained in the following sections.

2.2 Critic as a Supporting Tool

The term “critic”” was initially used by Miller (1986) to describe a software program
that critiques human-generated solutions (Miller, 1986). A considerable amount of
literature has been published on critic tools, also known as critiquing systems.
Motivations from many efforts such as Miller’s work (1986), Fischer’s endeavour
(1987, 1989-1991), Silverman’s study (1992) and others have attracted a wider
audience on critic-based approaches. Critic tools/systems have been recognized as
an essential support tool in a range of domains. The types of support offered by

these critic tools are certainly in various ways. The following sections discuss the

12

purpose and support provided by the critic tools in diverse

domains/systems/environments.

2.2.1 Critics in Information Systems

The critic concept or critic-based approach was initially introduced in Information
Systems (IS) mainly in the medical domain from the work by (Miller, 1986). Critics
are widely used in expert systems, decision support systems, knowledge-based
systems and other IS applications. We explain a few of these applications below.

According to Silverman and Mehzer (1992) expert critiquing systems are “a class of
program that receive as input the statement of the problem and the user-proposed
solution. They produce as output a critique of the user’s judgement and knowledge
in terms of what the program thinks is wrong with the user-proposed solution.” In
addition, Silverman (1992) reports an illustrative survey on the development of
expert critiquing systems. The survey paper (Silverman, 1992) illustrates several
applications that were developed using the expert critiquing approach (e.g.,
ONCONCIN, ATTENDING, CRITTER, COPE). In 1993, Hagglund published a
paper that introduces the approach of expert critiquing systems. Hagglund (1993)
explains several characteristics that apply to expert critiquing systems and also
distinguishes the use of critics and critiquing based on the work from Fickas (1988),
Fischer (1993) and Rankin (1993). Critics functioned as a mechanism for reasoning
and problem solving, whereas critiquing as a way of offering non-intrusive
recommendations to a user and also as the basis for providing arguments and
explanations in an effective way (Hagglund, 1993). An example of an expert
critiquing system was illustrated by Mehzer et al (1998) in a decision making
problem that was implemented in an automated environment as shown in Figure 2.1.
The application of expert critiquing systems in decision making problems can reduce
human errors (Mehzer, Abdul-Malak, & Maarouf, 1998; Silverman & Mehzer,
1992).

13

Expert Critiquing System | fod I =1

T Compatitive Advanitage
| " Cost Heductlion vs Quality Improyement =~ i Quality Improvement vs Schedule Performance | |
| fet £
f i
How much more strongly Cost Reduction ‘ } How much mote stiongly Quality |
it to Ci itive Advantage {1t improvement contributes to Competitive |

than Quality improvement ? t E Advantage than Schedule Performance 7

Critiquing

The bidding evaluation system incorporates |

 Coat Radacting va
only one parameter (cost)

How much more stro
contiibutes to Comps
than Schedule Perfof

(el 1 : l‘ C Falze

@ Frgn ; .
Cancel E QK ! {
Qﬁe I l Previous E &ﬁ i Next 1 :

Figure 2.1: Screen shot of an expert critiquing system (Mehzer, et al., 1998).

While critics have been used in expert system applications which are known as
expert critiquing systems, they have also been applied in several decision support
systems (DSS). For instance, Gertner and Webber (1998) developed an online
decision support system for trauma management, TraumaTIlQ. TraumaTIQ can help
a physician with treatment planning. It interprets the goal of the physician’s
treatment plan, evaluates the inferred plan structure by comparing it with the
system’s recommended treatment plan, and finally generates a critique that
addresses the potential problem (Gertner & Webber, 1998). Vahidov and Elrod
(1999) introduce a framework for an active DSS based on critiques and
argumentations (Vahidov & Elrod, 1999). They describe the use of positive (‘angel’)
and negative (‘devil’) critiquing agents in a DSS to allow active participations in
decision making processes. Figure 2.2 shows an example of the critiquing DSS from
an investment problem (Vahidov & Elrod, 1999).

14

"

Portfolio

T-Bils Inermed-Term - Long-Term L Cap S.Cap
Bonds Corp. Bonds Stocks Stocks Return Risk
=] fe=] [ox] 5] [Z13%]
-~ DEVIL - =X Dt e
= Roturn [NTEER

* Thiz portfolic yields high roturn
: * This retum is adequate to your
" - expectations _
2 = This is a high-sisk porth : Risk S SRS
St o . £~ This sisK is OK. since you are.a risk
Ej'm:;vc bittle capability to tolerate : o,

ﬁ ‘. 'l'.l:i: risk iz necessary to pmv-de high
: 0 retum .
Liquidity | = = This portiolio bas good liquidity

Figure 2.2: Example of DSS that employed critics (Vahidov & Elrod, 1999)

Irandoust (2006) published a technical report that discusses the critiquing systems
for decision support (Irandoust, 2006). The objective of the report was to explain
critiquing systems and discusses their details as decision support tools (lrandoust,
2006). In fact we used the Irandoust (2006) report as our basis in creating our critic

taxonomy which is explained in Chapter FOUR.

Critics are also employed in knowledge-based systems. Furthermore a conceptual
framework for knowledge-based critic systems has been established by (Fischer &
Mastaglio, 1990) with the aims to support the collaboration between a computer and
a user and to improve problem solving and learning by users. In 1990, Lemke and
Fischer have published an article that describes FRAMER, a knowledge-based
system for windows user interface design using high-level constructs. The purpose
of FRAMER is to ease the knowledge required to design (Lemke & Fischer, 1990)
and help less skilled designers in applying a high-level abstraction-program
frameworks (Fischer, Lemke, Mastaglio, et al., 1991; Lemke & Fischer, 1990).
Critics are a formal knowledge source in FRAMER. Lemke and Fischer (1990)
claim that FRAMER offered mandatory and optional critiques. Mandatory critiques
reflect the system requirements which must be fulfilled for the construction of a
program framework. Optional critiques suggest typical design choices which
15

designers can ignore if necessary (Lemke & Fischer, 1990). In addition, designers
can browse the explanation repository for explanations about the critiques. The
descriptions of FRAMER can be found in (Lemke & Fischer, 1990), (Fischer,
Lemke, Mastaglio, et al., 1991) and (Fischer, Lemke, & Mastaglio, 1991).

In the research by Liu et al (1995), they illustrated a knowledge-based engineering
design system that adopted critics. The system offers a set of critics: expertise
completion, correctness and consistency checking, and alternative solution critics
(H. Liu, Rowles, & Wen, 1995). The critic system is basically to assist the
knowledge engineers in acquiring sufficient knowledge for building a desired
system and employing appropriate knowledge to generating designs (H. Liu, et al.,
1995).

2.2.2 Critics in Software Engineering

The critic-based approach which was well-accepted in Information Systems (IS)
then received a significant attention from the software engineering (SE) community.

Critics are now in wide-spread use in the field of SE.

We identified three examples of critic tools that are recognized to be useful in
software requirement engineering: AIR, Prefer and HeRA. Maiden and Sutcliffe
(1994) describe an Advisor for Intelligent Reuse (AIR), a tool to assist the
requirement engineer during requirements critiquing. They claim that it is essential
to use a critic for intelligent assistance during requirements engineering (Maiden &
Sutcliffe, 1994). They proposed requirements critiquing using domain abstractions
that represent the fundamental behaviour, structure and functions of a domain class
(Maiden & Sutcliffe, 1994). The AIR tool consists of three components known as
capture, match and critic requirements. The capture component performs the
acquiring process of new facts and requirements from the requirement engineer. The
matcher component performs the mappings between abstractions and the new
domain to detect problem situations. The requirements critic supports domain
understanding and critiquing by explaining retrieved domain abstractions and
detected problem situations to the requirement engineer. The good thing about AIR

IS that it provides ‘rollback’ buttons which allows the requirement engineer to undo
16

matching if mistakes are noticed. Therefore it is responsive to requirement
engineers’ needs and can support situated reasoning during requirements

engineering.

@ Guidance For the Rejut-ements Enginesr

Passlve Critiquing and Domaln Salection:
o

One domaln abitraction has begr ralrisved asa partal It
for your domiln. Select or reject this match uslng the buttons provided.
Wy the problem notapad wien comvanbant te reselve peisible problems

S inferred Object Mappings

~ The domain metcher has inferred the following object
+ WADEIngs with the retrisved domain sbstracthon:

¥ etk MAES 10 rE SCrcs dnd the mappiig i very stTeng
2: borrowar maps %o sink and the mappig is sirong

3: domain maps ta world and the mapping is lisely

4: library maps to container and the mapping s strong
P15

Explanation of Object Containing

The Object Containeent Damain Abstraction

This dormudn ahstraction represents conteiement of
are beldin ane

rediieed ks time & they femoved i Be carrsner

to the sink

Stax 0 ebject 5T inthe

cbject comtsinment demain ks showm below:

Aefect Match)

Crapn EFrowser

Animats Domaln) Agres Matche.)

= ssage Fram Displey Gueries

" & EASIET oA
b wctain0C
nt rellback tims “wow is:
0C in (hjmcteindC wmth

hasobject |

Figure 2.3: Screen shot of the AIR tool (Maiden & Sutcliffe, 1994)

In another research work, Redmiles (1998) argues the need for cognitive support by
requirements engineers to produce a better requirements design. Requirements
engineers need knowledge of requirements specification method, problem domain,
and other relevant knowledge to create a good requirements design (Redmiles,
1998). Applying design critics to software requirements helps designers to improve
the quality of requirements design. The Prefer tool is used to model state-based
requirements design in the CoRE notation (Redmiles, 1998). Prefer adopted the
common tool infrastructure of Argo/UML. Prefer includes design critics and a

dynamic “to do” list that presents feedback from critics in a systematic way.

Knauss et al’s (2009) recent research also involves critics in requirements
engineering. It illustrates the Heuristic Requirements Assistant (HeRA) editor,
which offers a heuristic feedback to the requirements analyst on incomplete
requirements specification. The functions of the HeRA editor are to: 1) capture high-
quality requirements at the user goal level; 2) identify contradictions to other user’s

requirements; and 3) align user goals with the planned business process quickly

17

(Knauss, Luebke, & Meyer, 2009). The HeRA descriptions are explained in Chapter
FOUR.

While critics have been used in the requirements engineering area, critics for object-
oriented modelling heuristics, as well as the UML semantics have also been offered
by several software architecture modelling tools. For example, Robbins and
Redmiles (2000) describe Argo/UML, a tool for object-oriented modeling. This tool
supports the editing of diagrams according to the Unified Modeling Language
(UML) notation and detects common errors made by software designers. Argo/UML
supports the designer with online critics about the design model under construction
(Robbins & Redmiles, 2000). They describe Argo/UML, based on cognitive
theories, to support the development of software architecture models. Argo/UML is
a software architecture design environment that helps architects by focusing on
cognitive challenges of design that introduced by three theories : i) theory of
reflection-in action, ii) theory of opportunistic design and iii) theory of
comprehension and problem solving (Robbins & Redmiles, 2000). More on
Argo/UML descriptions are explained in Chapter 4.

An environment called Annotation Based Cooperative Diagram Editor (ABCDE)-
Critic which was developed by (de Souza, et al., 2000) uses a critic-based approach
to check UML class diagrams. ABCDE-Critic is a Domain Oriented Design
Environment (DODE) for object-oriented analysis and design, which implements a
group critic system. In ABCDE-Critic, feedback is presented as annotations attached
to the diagram elements that trigger the critic to fire (de Souza, et al., 2000). These
annotations are also displayed to all other designers who are owners of these
diagram elements. Developing software systems is a complex task and most of the
software development activities are handled by a group of people. Thus, a team
effort is essential in producing solutions to a complex software problem and also to
ensure it will succeed. Due to this reason, ABCDE-Ceritic is a useful system because
it supports cooperation among designers as a means of annotation and warns
designers of the occurrence of problems. More detailed description of ABCDE-
Critic is given in Chapter 4.

Another research project (Dashofy, Hoek, & Taylor, 2002) demonstrates the

ArchStudio3 tool that uses design critics for architecture analysis. The design critics

18

monitor changes performed in architecture modelling. The design critics check any
potential problems that may exist due to the changes and then report to a central
issue database (Dashofy, et al., 2002). Dashofy et al (2002) claims self-healing
systems can be applied by using critics to do ‘what-if* analysis on the affect of a
possible repair.

Grundy and Hosking (2003) explain the SoftArch tool that assists architects in static
validation of their architecture models. SoftArch provides a set of model analysis
agents that monitor changes in architecture models and then offer feedback to
architects in a form of an immediate error report and ‘error list’ (Grundy & Hosking,
2003). The agents are actually design ‘critics’ where they watch for model changes

and add messages (critique) to a critic message dialogue.

2.2.3 Critics in Education Environment

The education community strives to enhance teaching and learning between students
and educators (e.g., teachers, instructors, lecturers, mentors and others). One of the
most important elements that can improve teaching and learning is by providing
learners with effective and timely feedback (Brown, 1988). Thus to address the key
teaching and learning concern, a computer-supported learning tool using a critic-

based approach has often been adopted in the education area.

For instance, Fischer (1987) implemented the LISP-CRITIC with the aim to support
users on how to improve their LISP code. The LISP-CRITIC is used in an
introductory LISP course which teaches LISP programming. The user’s code is
matched against a large set of critiquing rules that specify how to improve LISP
code. Any mistakes in the code will cause the tool to offer modification suggestions
(critique) to the user. The user can check the code improvement suggestions and
make a decision on whether to agree or disagree with the suggestion. In addition the

tool provides explanation and justification on its suggestions.

Other research that supports program critiquing in an education environment
includes: Submit! (Pisan, Richards, Sloane, Koncek, & Mitchell, 2003) and Java
Critiquer (Qiu & Riesbeck, 2008). Pisan et al (2003) developed Submit!, a program

critiquing system that provides critical feedback to students about the computer
19

programs they write. Program critiquing refers to the process by which students
obtain critical feedback about their programs. In their approach, students are allowed
to use the critiquing tools before final submission of an assignment. Thus students
can get a formative assessment that supports self-directed learning. Pisan et al
(2003) performs usability evaluations and the results show that Submit! is generally
effective. A preliminary study of the impact of Submit! on student results indicates
that students who apply the system to get feedback on assignment submissions do

better than those who do not apply.

Likewise, Qiu and Riesbeck (2008) demonstrate the development of an educational
critic tool, JavaCritiquer. They created a critiquing tool for Java programming. This
critic tool not only supports the teachers but also the students. Teachers use the Java
Critiquer to critique student java code whereas the students get feedback support
from JavaCritiquer before sending their assignments to their teacher. Their
conclusions identified two main points: 1) the tool is good at providing
individualized feedback to students and 2) the tool is difficult to create and requires
significant development effort (Qiu & Riesbeck, 2008).

Another example of an educational critic tool is ClassCompass (Coelho & Murphy,
2007). Coelho and Murphy (2007) demonstrate ClassCompass that assists students
and instructors in software design activities. The ClassCompass supports the
students by offering an automatic critique that gives suggestion when a potential
error on the design is identified. The instructor can view the student design and can
provide additional feedback via the tool. The tool supports automatic and manual
critiquing of software designs, specifically in UML class diagrams and sequence
diagrams. Descriptions on ClassCompass and Java Critiquer are explained in
Chapter FOUR.

Oh et al (Oh, Gross, Ishizaki, & Do, 2009) present a tool called Flat-pack Furniture
Design Critic (FFDC). The FFDC tool is to support students who are involved in an
architecture design course/program. The motivation from the strength of critiquing
in architectural design studio (Oh, et al., 2009) has led the development of the FFDC
tool which provides students with feedback via five delivery types: interpretation,

20

introduction, example, demonstration, and evaluation, along with three
communication modalities: written comments, graphical annotations, and images. A
student’s task model is evaluated by the FFDC tool which chooses the delivery type
and modality to offer a critique. Description on the FFDC tool is explained in
Chapter FOUR.

2.2.4 Critics in Recommender Systems

McGinty, Smyth, McCarthy, and Reilly (K. McCarthy, et al. , 2005; K. McCarthy et
al., 2006; McGinty & Smyth, 2003; Reilly, McCarthy, McGinty, & Smyth, 2005)
employ critiquing-based approaches to improve the efficiency of their recommender
systems. Recommender systems are programs that help users by facilitating access
to relevant items. For example, if a user wants to buy a desktop PC through an
online system, he can specify the essential features of the desktop PC, such as
model, price, hard disk capacity, etc. to query a recommender system. Then the
recommender system will provide access to the relevant desktop PC configuration
based on the user’s specification.

McGinty and Smyth (2003) explain the use of a critiquing system as the main
technique of feedback on reactive recommender systems. Reactive recommender
systems (McGinty & Smyth, 2003) are designed to make recommendations based on
a user’s query. McGinty and Smyth (2003) made a comprehensive evaluation of
three critiquing techniques in a comparison-based recommender. These three
critiquing techniques are standard critiquing (STD), critiquing with carrying the
preference (CP), and critiquing with adaptive selection (AS) (McGinty & Smyth,
2003). In this evaluation, the performance of these critiquing techniques is compared
and the results indicate that AS significantly improves recommendation efficiency.
The main idea of AS is to increase the degree of diversity among recommended
items to cover more item space in a given cycle and thus increase recommendation

efficiency.

Later, McCarthy et al (2005) presented a dynamic critiquing approach which
supports users in modifying multiple features concurrently by selecting from

compound critics. A live-user evaluation is done and results indicate that users who
21

apply compound critics obtained shorter recommendation sessions that direct to

higher quality purchases (K. McCarthy, et al. , 2005).

Following dynamic critiquing, Reilly et al (2005) describe an incremental critiquing
approach that considers a user’s critiquing history, as well as their current critic,
when making new recommendations (Reilly, et al., 2005). An evaluation of
incremental critiquing shows that it can deliver significant performance benefits by
reducing session lengths by up to 70%, regardless of whether to use unit or
compound critics. In fact, the dynamic critiquing is combined with incremental
critiquing and it improves the efficiency of critiquing in recommender systems.

Figure 2.4 shows a screen shot of such a recommender system.

HOME : RBOUT THIS PROJECT : CONTRCT

Shop for: Diaital Cameras, Holidavs, PCs

Adjust your preferences in real time and let us find the right
product for you!

Manufacturer _-"J Canon =
Mode| #| | Eos-300D][]
Price (%) #8710 1 [#] \
Format %] [sw | 2] Unit
Resolution (M Pixels) |*| [6.29 | 2] C"t“lues
Item Found: CASE2 >
Spadifications Optical Zoom (X) 4] [10.0 _]
6.3 Meqgapixel CMOS sensar Digital Zoom (%) _I 00 !
7-point wide-area AF
High-performance DIGIC processor Weight (grams) il 645.0 \.ﬂ
100-1600 150 speed range
Compatible with all Canon EF Storage Type _-!] Compact Flash _ﬂ
lenses and EX Speedlites :
PictBridge, Canon Direct Print and Storage Included (MB) 0.0 |+
Bubble Jet Direct compatible - na _] S _I
PC required

We have more matching products with the following..

.......

7% ADD TO BASKET J 1. Less Optical Zoom & More Digital Zoom & & Different

Storage Type (139)

m‘j 2. AlLoarrResolution & A Different Farmat & Cheaper (163)

3. A& Different Manufacturer & Less Qptical Zonm & Mare
Storage (167)

Figure 2.4; Example of recommender system (Reilly, et al., 2005)

In another research work, McCarthy et al (2006) describe the use of a critiquing-
based approach for group recommender systems. A group recommender system
called Collaborative Advisory Travel System (CATYS) is designed to assist a group
of users in making decision for a vacation (K. McCarthy, et al. , 2005). A
DiamonTouch tabletop device is used to showcase the CATS. The CATS approach

22

is based on collaborative recommendation framework. There is an interaction
component in CATS that consists of an individual or group interaction. There is also
a recommendation component that consists of two parts: 1) an individual
recommendation (system reactively recommends cases to the user), 2) a group
recommendation (system proactively pushes recommendations to the group of
users). Critics made by users are stored in a group user model and this is used as a
basis for recommendations. The contribution of CATS is to enable the user as an
individual or a group to interact simultaneously through recommendation dialogs

and to achieve consensus in their decision making about vacation planning.

| Group Preference|

[Individual Personal Space| Group Space

Figure 2.5 Example of group recommender system (K. McCarthy, et al., 2006)

2.2.5 Benefits from Critics Application

All of the applications stated above have shown that critics are an efficient feedback-
providing mechanism and offered huge advantages/benefits. Furthermore critics are
applicable to various domains as described above. While critics in these application
domains have its own deficient, the application of critics in diverse domains has
contributed several benefits/advantages including:
e Problem solving and learning improvement;

Critics provide problem solving and learning improvement (Fischer &

Mastaglio, 1990; Fischer, Nakakoji, Ostwald, Stahl, & Sumner, 1993;

Robbins, 1998; Tianfield & Wang, 2004) to users. The critic is like an

23

assistant to the user in the problem solving task because the user is the one
that deals with the problem solving activities. With feedback or critiques
generated by the critic tool it would eventually improve the user’s skill in
problem solving process in an incremental way. Furthermore, the user’s
problem learning of domain knowledge would also be improved during the
problem solving process (Robbins, 1998). For instance, Java Critiquer (Qiu
& Riesbeck, 2008) is a critiquing system for educational purposes. The Java
Critiquer helps students to learn and improve their Java programming skills.
Java Critiquer uses passive critiquing so as to allow the students to make
mistakes during the problem solving task without intrusion. It then critiques
any bad programming code made by the students, and offers a suggestion to
improve the code. Thus, the students’ problem solving and learning skills
will be improved incrementally. Other critic tools including LISP-Critic,
Argo/UML, FFDC, and ClassCompass also contribute to the problem

solving and learning improvement.

Human errors reduction;

Human errors in whatever task have a variety of causes (Mehzer, et al.,
1998). However, with critics support that provides explanations and
alternative solutions it would help the users to make fewer errors in their
action or decision making tasks. For example, TIME critic (Silverman, 1991)
is an organizational support system that helps generate a document that is
part of the system acquisition milestone or decision process. The application
assists headquarters decision makers to communicate best-practice
information to the field, and also minimizes the number of field-created
errors and biases that headquarters must deal with (Silverman, 1991). Other
examples that contribute to this benefit are expert critiquing systems
(Mehzer, et al., 1998; Silverman & Mehzer, 1992), critics in decision support
systems (Vahidov & Elrod, 1999) and critics in recommender systems (K.
McCarthy, et al., 2006; Reilly, et al., 2005).

Human-computer interaction enhancement;

24

Critics can effectively facilitate human-computer interactive problem solving
(Fischer, 1989; Fischer, Lemke, & Mastaglio, 1991; Fischer, Lemke,
Mastaglio, et al., 1991; Fischer, et al., 1993; Tianfield & Wang, 2004). It is
almost impossible for a human to have the complete knowledge about a
domain (Robbins, 1998; Tianfield & Wang, 2004). Therefore it is necessary
to have an interaction with a supporting tool, such as critics to assist the user
in activities that the user cannot perform well (Terveen, 1995). Critics can
augment the ability of human to assess their actions/solutions. However, it is
still up to the human to make a decision whether to follow the critic
suggestions or not. For instance, JANUS (Fischer, Lemke, & Mastaglio,
1991) is an integrated design environment for residential kitchen layout
configuration. It allows a designer to construct residential kitchen floor
layout plans and to learn general principles underlying such constructions
(Fischer, Lemke, & Mastaglio, 1991). The knowledge stored in JANUS
includes building codes, safety standards and functional preferences which
improve the interaction of the designers with the system as well as their

learning in design construction.

Proactive design improvement;

A good sign of how well a design tool/system is developed and knowledge is
used is based on ‘designs’ that produced by users (i.e. designers/developers)
(H. Liu, et al., 1995). Poor designs or erroneous designs are normally caused
because the users lack specific knowledge about the design problems or
solution domains (Robbins & Redmiles, 2000). With critics that provide
knowledge support in terms of guidelines or suggestions, the users would be
assisted in achieving improvements in their design tasks and artifacts. For
example, ArgoUML (Robbins & Redmiles, 2000) is a design critiquing tool.
It is an open source UML modelling tool that supports all standard UML 1.4

diagrams (http://argouml.tigris.org/). The ArgoUML critics constantly check
the current model and if the conditions for triggering a critic are met, the
critic will generate a list of items (i.e. critiques) in a dynamic ‘To do’ list.

The presentation of a short description of the problem, with the guidelines to

25

http://argouml.tigris.org/

resolve the problem, and a wizard helps ArgoUML users to improve the
design and solve the problem automatically. Examples of other tools that
contribute to this benefit include JANUS, IDEA and HeRA.

Proactive inconsistency and incompleteness detection;

Critics can help users to detect any inconsistency and incompleteness in
analysis and design situations (de Souza, et al., 2000; de Souza, Oliveira, da
Rocha, Goncalves, & Redmiles, 2003). Critics can offer proactive design
feedback to a user’s action if the action violates the inconsistency and
incompleteness rules of a design. For instance, DAISY(de Souza, et al.,
2003) is an environment that supports the construction of domain
engineering and application engineering models. It provides consistency
checking of the models via critics. The ArgoUML (Robbins & Redmiles,
2000) advises designers when an inconsistency and incomplete UML models
is detected and feedback is given to resolve the problem. Likewise, the
HeRA (Knauss, et al., 2009) detects any incomplete and inconsistency of

requirements specifications.

Heuristic-based guidance;

Knowledge support offered by critics is usually in a form of guidelines or
recommendations that are based on certain general principles (e.g., design
principles), standards (e.g., UML standards) or relevant source documents.
However, critics also provide heuristic-based guidance to their users. For
example, HeRA (Knauss, et al., 2009) provides heuristic feedback to
requirement engineers for: 1) capturing high-quality requirements on user
goal level; 2) identifying contradictions to other user’s requirements; and 3)
aligning user goals to the intended business process (Knauss, et al., 2009).
Similarly ABCDE-Critic (de Souza, et al., 2000) provides critics on UML

class diagrams based on experiences and object-oriented design heuristics.

Context-sensitive feedback;

26

The feedback provided by critics is often context-sensitive which depends on
a task or situation of the problem domain. This is necessary as to ensure the
human-computer (critic) interaction is achieved and the users can obtain
good feedback for resolving a problem or improve a solution. For instance,
the FFDC (Oh, et al., 2009) is a critic tool that helps the architecture students
to be familiar with the design problem-solving tasks. The FFDC offers
student feedback via five delivery types (interpretation, introduction,
example, demonstration, and evaluation) and three communication
modalities (written comments, graphical annotations, and images). For
example, painting parts that violate a constraint are coloured in red, with
graphic icons such as arrows to represent load placed on a furniture part (Oh,
et al., 2009). Likewise, the ArgoUML offers a constructive and instant
feedback in a non-intrusive manner to designers in solving a problem.
Furthermore, the cognitive features of ArgoUML provide designers with
support for decision-making, decision ordering, and task-specific design
understanding which are believed to be useful in designing contexts and tools
(Robbins & Redmiles, 2000).

2.3 Constraint Specification in a Meta-Modelling Tool

Many meta-tool environments and toolkits have been developed to support the
development of visual language environments. Examples of these tools are:
MetaEdit+ ((Kelly, et al., 1996), ATOM (Lara & Vangheluwe, 2002), KOGGE
(Ebert, Suttenbach, & Uhe, 1997), Pounamu(zZhu, et al., 2007) and Marama
(Grundy, et al., 2008). Meta-tools provide an integrated environment for developing
other tools and often these tools also offer constraints evaluation/checking which are

similar to the critic concepts.

We introduce here some of the views on constraints in software tools. According to

Borning (1986), a constraint “specifies a relation that must be maintained, for

example, that a line be horizontal, that a resistor obey Ohm’s law...” In contrast,

Balarin et al. (2001) propose performance constraints specification at higher levels

of abstraction, thereby limiting their constraints definition scope to “a representation
27

that is more natural to the designer and that is more computationally tractable.” In
the work by Qattaous (2009), constraints are used for “governing the syntax and

semantics of model elements and the values of their attributes” in meta-CASE tools.

A meta-CASE tool is often concerned with metamodelling processes and techniques.
According to Qattaous (2009), meta-modelling techniques rely on two elements to
identify the domain specific language syntax and semantics: 1) a meta-model and 2)
constraints. The constraints are viewed as indications to lead users to a good design
solution (Qattous, 2009). Cook et al. (2007) also provide similar view about
constraints which are seen as “a way for humans to evaluate the current state of a
model with respect to some criteria; for example, whether all of the web server
configurations are compliant with the corporate standards.” There are various views
on the definition of constraints as mentioned above. One common aspect from the
various views about constraints is that they involve specifying or defining
constraints using some kind of representation/approach with the intention to
establish a set of rules with respect to some criteria that should be compliant to a

particular product/item (e.g., model, design, standard, document, etc).

We are more interested in constraint specification within a meta-tool environment as
our research work also deals with a meta-tool (i.e. the Marama meta tools (Grundy,
et al., 2008)). Specifying or expressing constraints is often applied in the
metamodeling tools (Jaramillo, Vangheluwe, & Moreno, 2003). A constraint
language is added to a meta-model to constrain the structure of a model. Sourrouille
and Caplat (2002) classify constraints as syntactic constraints and semantic
constraints. Syntactic constraints are specified in a formal language, such as OCL,
and can be verified automatically (cf. Sourrouille and Caplat (2002)). Semantic
constraints are specified in natural language and have to be checked manually (cf.
Sourrouille and Caplat (2002)). In another research by Bezivin and Jouault (2006),
constraints can be labelled as a warning, error, or critic. The three labels are used to
describe the severity of a constraint (Bezivin & Jouault, 2006). Examples of these

constraints with their severity labels are shown in Figure 2.6.

28

-- (C1) Error: the name of a Classifier must
-- be unique within its package.
context Classifier inv:
not self.package.contents->exists(e |
(e <> self) and (e.name = self.name))

-- (C2) Error: the name of a StructuralFeature must
-- be unique within its Class and its supertypes.
context StructuralFeature inv:
not self.owner.allStructuralFeatures()->exists(e |
(e <> self) and (e.name = self.name))

-- (C3) Warning: an abstract class should have children.
context Class inv:
not (self.isAbstract and
(Class.alllnstances()->select(e |
e.supertypes->includes(self)
)->size() = 0))

-- (C4) Critic: the name of a Classifier should
-- begin with an upper case letter.
context Classifier inv:
not (let firstChar : String =
self.name.substring(1l, 1) in
firstChar <> firstChar.toUpper())

Figure 2.6: Examples of constraints expressed in OCL (Bezivin & Jouault,
2006)
Constraints also can be categorised as: operational constraints (used to restrict
design space alternatives based upon the operations of a model), composability
constraints (express compatibility between different alternatives), resource
constraints (indicate specific hardware resources that are needed by software
modules) and performance constraints (indicate an end-to-end latency, throughput,
power consumption, and bit precision) (Gray, Bapty, & Neema, 2000). A screen shot

of this is shown in Figure 2.7.

29

e GME - alr_.gme - [Tracking_ShortRange] =] |
File Edit Options Yiew Window Help == x|

=@l vl] plele] 2ol r|w®E] SlTcls|]|

I Y Name: |Track|ng_ShnrtFia I_BehaviuvalModel |Typa Aspec!:IBehaworAspecl 'ﬂBehavioral

N
= o S o
= IN LowLatencyTracking ouT
&
T i Attributes of Lowl atencyTracking B3
Enter OCL Expression:
constraint LowLatencyT racking() {
[systemMode() = self] implies
ATR_TopLevelRef [project().processes("ATR_TopLevel"].latency() < 100]
}
Choose Category: IDperational 3
Compositional
OK
_J Performance
Resource

l;;ielp, press F1 [EDIT |75% |ACS_v30 [235 PM

Figure 2.7: Constraint expression using OCL expression (Gray, et al., 2000)

All of these constraints regardless of their classifications have to be specified using
some kind of formal representation. There are various approaches that can be used to
express the constraints. Constraints can be expressed or specified using the Object
Constraint Language (OCL) expressions (Gray, et al., 2000; Karsai, Nordstrom,
Ledeczi, & Sztipanovits, 2000) executable scripting language Python (Jaramillo, et
al., 2003), ATL language (Bezivin & Jouault, 2006), programming by example
(Qattous, 2009) and other approaches. Figure 2.6 and Figure 2.7 are examples of
constraints using OCL expressions. We describe a few of the meta-modelling tools

regarding their constraints specification/evaluation in the following sections.

2.3.1 MetaEdit+

MetaEdit+ is a fully configurable multi-user and multi-tool computer-aided system
and method engineering environment (Kelly, et al., 1996). The tool architecture for
MetaEdit+ is shown in Figure 2.8. The tool architecture comprises of five main
tools: 1) environment management tools; 2) model editing tools; 3) model retrieval
tools; 4) model linking and annotation tools; and 5) method management tools.
MetaEdit+ provides a metamodelling language and tool suite for defining the
method concepts, their properties, associated rules, symbols, checking reports, and

generators. MetaEdit+ is based on an implementation of the Graph, Object, Port,

30

Property, Relationship and Role (GOPPRR) metamodeling language and is written
in Smalltalk (Pohjonen, 2005). The main advantage of MetaEdit+ tool is the ability
to quickly specify a tool for a given modeling language (Pohjonen, 2005; Tolvanen,
2004; Tolvanen, Pohjonen, & Kelly, 2007).

network

Repository

Figure 2.8: MetaEdit+ architecture (Kelly, et al., 1996)

According to Tolvanen et al. (2007), rules and constraints are the main components
of a meta model that guide the application of a modeling language. MetaEdit+
provides a Constraints Definer tool as shown in Figure 2.9 (left) to support the
definition of rules that refine and constrain the behaviour and the use of language
(Tolvanen, 2004). Furthermore, to set constraints on design elements’ occurrence,
connectivity and uniqueness can be defined via the Graph Constraints Tool as shown
in Figure 2.9 (right) (Tolvanen, et al., 2007). The defined rules and constraints are

enforced at run-time to ensure the correctness of the models.

e

In each graph of this type, these constraints apply:

Y] Graph Constraints Tool

') Constraints Definer

Muli_query may be in at mast 1 From role

. Menu may be in at most arget role
Note may be in at most 1 From rale ST) 0 A8 0t) el

Popup_menu may be in at most 1 Back fiom role

[Query may be in at most 1 Back from role v Add Constraint For:

Add Constraint For: |<:c-nnectivity bt I Add]

Edit [Delete { ’ Close l

’ Edit I [Eonnectivitpl ’ Ports I [Delete}

Figure 2.9: Constraints definer editor ((Tolvanen, 2004)) and Graph
constraints tool (Tolvanen, et al., 2007)

31

2.3.2 Pounamu

Pounamu (Zhu, et al., 2007) is a meta-tool developed for building visual design
tools. Pounamu allows users to specify the meta-model, shapes and diagrams for
tools using a variety of visual languages. These elements are shown in Figure 2.10

that represents the structure of Pounamu tool specifications.

Entities.zml |
-name, type 1
-attributes |
_| Meta-model(s) '—
Associations.xml
-ngme, type
-entities
—| -attributes
-constraints
Shapes.xml
- i -names, ypes
Toel project.xml —sub-shapes
-name - -properties
-meta-models View elements
-view types
- T
-shapes, commectors Connectors.xml
-event handlers -DAMES, TYPes
-shapes
-properties

View typeis)

-name

-chapes, connectors

-entities, associations

-mappings: shape-=
entiry etc

-event handlers

Event handlers Handlers.xzml
-nanme,

description
-Java code

Figure 2.10 Structure of Pounamu specification(Grundy, Hosking, Zhu, & Liu,
2006)
The Pounamu meta-tool also includes a visual language to represent events and
associated actions. In Pounamu, the definition and insertion of constraints is
performed via an event handling approach (Zhu, et al., 2007). A visual event handler
definer is used to build both simple and complex event handling functionality for
Pounamu tools. Some of the constraints that can be defined via the event handler
definer are: type checking, model constraints, layout constraints and behaviour,
mapping constraints, and back-end functionality constraints (Zhu, et al., 2007).

These constraints are implemented via hard-coded approach using Java code scripts.

32

YisualEventHandler0

Please specify the events this visual handler will response to

|7 NewShapeEvent [V NewConnectorEvent I RemoveShapeEvent
[V RemoveConnectorEvent ™ MoveShapeEvent I”" ResizeShapeEvent
I”" ChangePropertyEvent [~ al

Please import any class you want here

java.util.*; =
Bl i

Please input the action code here

if (entities.contains(entity)) i
selectedIcon.setColor(jave.awt.Color.blue) ;

else
selectedIcon.setColor(jave.awt.Color.xed);

harbrralsril ;,
ki) e
Figure 2.11: Example of code-based event handler for model constraints (Zhu,
et al., 2007)

Constraints specified using the event handler approach in Pounamu requires users to
be familiar with the Java code scripts and the Pounamu API (Zhu, et al., 2007). This
provides a difficulty or barrier to the less experienced users in defining constraints
via the event handler definer. Even for expert uses, maintaining complex event
handler code can be time consuming and error-prone. Constraints can be reused by

packaging them as parameterised Java classes in script code files.

2.3.3 Marama
Marama (Grundy, et al., 2008; Grundy, et al., 2006) is an Eclipse based meta-toolset

which was initially generated from the Pounamu (Zhu, et al., 2007) meta-tool
specifications. According to (Grundy, et al., 2008) the goal for the Marama toolset is
to support easy implementation of diagrammatic modelling/MD tools for
experienced modellers with basic modelling concepts. These concepts consist of
Extended Entity Relationship (EER) models, OCL, and the meta-models notion. In
this section we focus our explanation on MaramaTatau which is an extension to the
locally developed Marama metatool set. MaramaTatau offers the ability to specify

behavioural extensions to Marama metamodel (N. Liu, et al., 2007).

MaramaTatau (N. Liu, et al., 2007) provides a declarative constraint/dependency

specification mechanism which focuses on structural constraints for a DSVL

33

metatool. The main notation for constraint representation used by MaramaTatau is
declarative OCL expressions. MaramaTatau allows tool developers to specify
constraints over metamodels using the OCL formula. Figure 2.12 shows the Marama
metamodel editor with its MaramaTatau extensions. A combination of OCL
expressions and a visual notation is used in MaramaTatau. A green coloured circle
represents the OCL formula for specifying a constraint (refer to Figure 2.12). The
green colour circle shape is associated with an interface known as Formula
Construction View which is used to define the required constraints based on the
metamodel elements and OCL expressions that are listed in the view (N. Liu, et al.,

2007). The constraints definition will take effect when a user runs the modeling tool.

[, Marquee
[Sketching tool
(= Shapes »
M EntityShape Tvpe
R Attribute name String key
B ModelEventHandl. ..
B ModellserHandle. ..
I Formnula [whole
M Focus numParts int nonkey [
Wl AssocistionShape wvolurme double nonkey Q
[Cannectors - price double nonkey _‘::E !
1 AttrLink big boolean nonkey [| [Pat
1 subbypeLink partsList MultiLinesTaxt nonke (g areadouble nonkey
} FormulaLink | depth double nonkey
l RelationLink walume double nonkey
cost double nonkey
markup double nonkey
big boolean nonkey

[Formula Construction Wiew 52 Model Instances | Console | Formula Debugger | Gutline

===Reference-based===
Select aFormula: (B self

self parts- >collect{cost™ (1. 04+markup))- =sum(} alllnstances(}
===Collection-based===
-=sizel)
->su[n()

Figure 2.12: Constraint specification via MaramaTatau using OCL formula (N.
Liu, et al., 2007)

The MaramaTatau approach was aimed to better support target end users who are
programming literate and familiar with modeling concepts (N. Liu, et al., 2007) who
would be able to specify the model level constraints using the OCL expressions.
While this is a more declarative, high-level approach than Java event handlers used
in Pounamu, we have found OCL constraints are still complex and challenging to
use for many Marama tool developers.

34

2.3.4 DECS

Diagram Editor Constraints System (DECS) is an Eclipse-based meta-tool prototype
developed with the purpose to generate constraint-based domain specific diagram
editors(Qattous, 2009). The research work by (Qattous, 2009) is aim to support and
simplify the process of constraints definition as part of domain specific CASE tool
specification in a meta CASE tool. The work applies a programming by example
approach for a constraint definition. According to Qattous (2009) a DECS user can
define a constraint either using a wizard or by example. With a wizard style, a user
can use several forms to define values to several constraint properties as necessary.
The constraint definition by example approach is performed by allowing a user to
create one or more examples of the required constraint. The system should then be

able to infer the intended constraint based on the examples (Qattous, 2009).

A constraint manager component which is separated from the DECS holds the
XML-based constraint description and expression language. Thus, the constraint
manager component will have a list of constraints and uses these constraints as
assertions for users’ actions in the modelling environment (Qattous, 2009).
Whenever a tool user modifies the diagram model, it is checked by the constraint
manager. The constraint manager will trigger a warning if there is any violation
detected. Figure 2.13 shows the architecture of DECS. According to Qattous (2009)
the constraint definition by example approach involves a complex inference process
due to the constraints’ complex nature and various constraint alternatives that an
example could imply. While this approach is more abstract again than Meta-Edit+ or
MaramaTatau, the inference process means tool developers need to understand this
process to express constraints sensibly. Programming by example-based approaches
like this have also been shown to be difficult to describe to end users after
specification, making maintaining and reusing the constraints inferred difficult.
Complex constraints over collections and relationships can also be very difficult to

express with this approach.

35

Defines vericss,

. . edges, 2nd consyails
Reass and Wriles AelaModeling Q
< process =3
(wzards) /k
Ediltor Designer
e Reads
C(r;’.' ,:”S - Genaated Develogs models
Por) fon DagamEdur

Corfra’s Modeling
Bebasiowr and Shows

" EdtorUser
Raals Consirairt

4
=
¥

d&'
%

Figure 2.13 Architecture of DECS(Qattous, 2009)

2.4 Discussion and Conclusion

We have introduced and described several related research areas and applications of
critics in various domains. These include critics in Information Systems, critics in
Software Engineering, critics in education environments and critics in non-software
recommender systems. The concept and application of a critic approach is mostly
discussed in application domains. We then introduced and briefly explained the
concept of constraint definition/specification approaches. Contrasting to the critic
approach, the concept and application of a constraint definition is often described in
meta-modelling tools environment. A few examples of meta-modelling tools are
explained to show the usage of constraint specification approach: MetaEdit+,
Pounamu, Marama, and DECS. It seems that a critic-based approach is widely used
in application domains whereas the constraint-based approach is often used in meta-

modelling tools.

Although critics have been used widely in very diverse domains, to our knowledge,
a critic approach has not been applied for meta-modelling tools that implement
DSVL tools. While constraint specification/evaluation is common for meta-
modelling tools, this is usually at a detailed level, e.g. OCL, scripts or code. The
process of specifying and defining constraints for meta-modelling tools is more
complex as it requires good knowledge in programming skills, it uses formal

approach (e.g. mathematical model), and it involves heavy cognitive load. This

36

would be difficult for non-programmer users to understand and apply the constraint

definition/specification approach.

Therefore, our aim in this research is to extend the capability of our Marama meta-
tool set by adding a “critics” mechanism to a meta-tool specification editor. We
want to replace the lower-level, complex constraints specification with something
more tailored to critic authoring and therefore less general but more user accessible
than typical constraint specification techniques. We improve/extend previous work
by providing a visual interface for end user developers (specifically less experienced
users and, ideally, non-programmers) to author critics for their DSVL tool. Their
needs are rather to provide suggestions and modelling tips, to complete and to

improve models, rather than hard constraints on model correctness.

The basis of our solution is to associate a critic specification approach (i.e. critic
specification editor) with a meta-modelling tool. The critics can be managed in a
simple and effective way, while the checking process can be performed according to
the modelling process of the target language. Critics within application domains
(e.g., FFDC (Oh, et al., 2009), ArgoUML(Robbins & Redmiles, 2000), and
FRAMER(Lemke & Fischer, 1990)) do consider constraints as one of the critic
specification elements. Since there is no clear difference between critic and
constraint, our critic specification approach will consider constraints as one of the
elements that can be defined as a critic. However, our approach will not replace

other constraint specification approaches, like code and OCL, but compliment these.

To help us in designing and developing a critic specification editor for our Marama
meta-tool set, we reviewed the related research on critic approach and managed to
produce a taxonomy of computer-supported critics (Ali, Hosking and Grundy,
2010). The taxonomy is focused on application domains that look at variety of
different features and categories of critics against them. The description on the
taxonomy is described in Chapter FOUR. The following chapter will describe the
steps that we took to achieve our aim that is to develop a critic specification

approach in a meta-tool.

37

Chapter 3
Research Methodology

This chapter describes our approach to designing and prototyping a critic
specification tool for domain-specific visual language (DSVL) tools.

3.1 Introduction

Our aim is to design and develop a prototype for a critic specification tool that
allows the end user (and other) tool developers to readily express and construct
critics. The critic specification tool is embedded within the environment of the
Eclipse-based Marama meta-tool (Grundy, et al., 2008) allowing tool developers to
concurrently develop visual language environments and critic support for them.
Marama is a metatool that is implemented as a set of Eclipse plugins. Our approach
to achieving our aim is based on the following methodological steps:

e Conduct a literature review of critic tools, comparing and analyzing their
approaches for critic specification and implementation;

e |dentify a set of key requirements for a critic specification tool for DSVL
tools;

e Develop a prototype to explore the problems and issues in designing a critic
specification tool. An iterative-incremental (Robey, Welke, & Turk, 2001)
approach has been used for the prototype development to allow for its
refinement and improvement;

e Identify from the prototype experience a core set of building blocks needed
for a generic critic specification editor and design notation. Design and
implement the critic specification tool within a meta-tool (specifically the
Marama meta-tool);

e Develop a proof of concept for our critic specification approach by applying
it to three DSVL exemplar tools (specifically Marama-based tools) from
different domains;

e Perform a user evaluation of the critic specification approach to assess its

38

usability and effectiveness;

e Draw conclusions from our survey, design, prototyping and evaluation work.

3.2 Methodology

3.2.1 Literature Review of Critic Tools

The initial step of our research was to review literature concerning critic tools (or
critiquing systems). We gathered many articles and reports that described critic tools
(or critiquing systems) as a supporting tool for a wide range of computer users in a
large variety of domains including education, medicine, CAD and software
development. This step allowed us to compare and analyze various critic approaches
and identify common properties in critic tools. The aim of this task was to assist us
in the development of our own critic specification tool for domain-specific visual
language tools. We needed to identify a set of requirements for our critic
specification tool and the findings from the literature helped us to obtain these.
Furthermore, analysis of the literature led us to generate a taxonomy of computer-
supported critics. The review of critic literature is described in Chapter TWO and
the taxonomical analysis of the critic tool approaches is described in Chapter FOUR.

3.2.2 ldentify a Set of Requirements for Our Critic Specification
Tool

Information gathered from the previous stage resulted in the production of a
taxonomy of computer-supported critics. Based on this taxonomy we identified
properties applied in existing critic tools and these were considered for our critic

specification tool. The key critic properties/features are as follows:

i) Critic domain- what domain (s) of discourse is the critic used in (e.g., medical
domain, educational domain, and software engineering domain)?

i) Critiquing approach- does it compare or analyze target domain elements?

iii) Critic dimension- strategies for when a critic should interrupt the user. Is the

critic active, passive (invoked on user demand), reactive, proactive etc?

39

iv) Critic type- does the critic check for completeness, correctness, consistency,

alternatives, or a mixture?

v) Modes of critic feedback- how does the tool provide end users with feedback?
(e.g., textual representation, graphical representation, 3D-visualization)

vi) Types of critic feedback- suggestions, argument, explanation etc to provide

justifications for each identified critic.
vii) Critic implementation approach- how is the critic built or realized in the target
tool(s)?
viii) Critic rule authoring- how are the rules embodied in the encoded critic?
The above requirements/properties show the concepts presented in our critic
specification tool. These requirements led us to develop a meta-model to describe
the valid critic models that the user can build. This meta-model is expressed using an
Extended Entity Relationship (EER) diagram which specifies entities and
relationships, together with their attributes. The meta-model was then enriched with
additional information and constraints. In addition to the above properties, we also

defined the following requirements for our critic specification tool to be applied in
DSVL tools:

i. Avisual construct/abstraction for specifying critics;
ii. Avisual construct/abstraction for specifying critic feedback;
iii. A representation for specifying complex critics;

iv. A representation of visual critic specification notation and environment,
embedded within a DSVL tool

The requirements for our critic specification tool are discussed in detail in chapter
FIVE.

3.2.3 Develop Prototype to Explore Issues in Designing Critic

Specification Tool
We took an iterative-incremental (Robey, Welke, & Turk, 2001) approach to

develop prototypes for our critic specification tool. The development of the

40

prototypes helped us to explore issues and problems in designing the critic
specification tool. According to Robey et al. (2001), prototypes are generally
produced quickly, and offer appropriate feedback on the feasibility and usefulness of
a tool’s design and specifications. We had developed several prototypes for our
critic specification tool (please refer to Figure 3.1). Our initial attempt was to specify
critics using MaramaTatau (Liu, Hosking, & Grundy, 2007), one of the facilities
provided in our Marama meta-tool. The critics were specified using the OCL
expressions. The difficulties we experienced in the initial attempt had motivated us
to develop another prototype. The second prototype was to specify critics at the
meta-model level using a similar visual approach to MaramaTatau. We developed a
new critic-authoring support extension which provides the ability to specify critics in
Marama metamodels. A new functional item, CriticShape was added to the Marama
meta-model editor and associated with a critic authoring template. Here, critics are
specified based on the pre-defined critic authoring template. The limitations we
identified from the second prototype had inspired us to improve the critic
specification approach. We developed another prototype by creating a new critic
specification editor, Marama Critic Definer. This critic specification editor is
integrated with several form-based interfaces to support the task of specifying critics
and feedback. Furthermore, the critic specification editor uses a visual notation
approach. These prototypes are described in Chapter SIX and Chapter SEVEN. All
of these prototypes were created in the Marama meta-tools through meta-modelling
and extended coding, based on which the critic modelling and realisation

environments were automatically generated.

Prototype 2: Prototype 3:
Prototype 1. Specifying critics at Specifying critics and feedback via
Specifying critics the meta-model editor critic specification editor
using Marama (i.e. Marama meta- integrated ~ with form-based
Tatau. model definer view) interfaces.

via a critic-authoring Improving the critic specification

support extension editor with visual notation.

Figure 3.1: Prototype development for critic specification tool

41

3.24 ldentify a Set of Building Blocks Needed for a Critic

Specification Tool

We identified a core set of building blocks needed for a critic specification tool and
designed a notation to represent them. Our use of an iterative-incremental approach
led to cyclical refinement of requirements, solutions and prototype development
plans. We learned early and efficiently about the building blocks needed in our critic
specification tool. Based on the defined building blocks as well as the notation, we
had developed the required critic specification tool for DSVL tools as described in
Chapter SEVEN.

3.2.5 Proof of concept for the critic specification approach

We proved the effectiveness of our critic specification approach by developing
prototypes of visual languages and associated tool support for critic specification for
DSVL tools. The critic specification tool prototype was subsequently applied to
three exemplars of DSVL tools. These three exemplars were Marama-based tools of
different domains: medical (health care planning model, MaramaCPM), business
process (enterprise modelling language, MaramaEML) and software design (UML
design, MaramaUML). The critic specification tool was integrated into each of these
Marama-based tools. The application of the critic specification tool with each of the
three exemplars is demonstrated in Chapter EIGHT.

3.2.6 Perform user evaluation of our critic specification approach

We conducted a formal user evaluation to assess the usability and effectiveness of
our critic specification approach. The evaluation was carried out with targeted
participants who had some basic background knowledge of the Marama meta-tools
and who were interested in modelling and the development of modelling tools to
support their research work. The methods we employed in our evaluation were:
guestionnaires, observation and think aloud, and Cognitive Dimensions of Notations
framework (CDs). Before the formal user evaluation took place we gained an ethics
approval from the University of Auckland Human Participants Ethics Committee.

The details of this evaluation are described in Chapter NINE.

42

3.2.7 Draw conclusions from our survey, design, prototyping and

evaluation work
The final step in our research methodology was to draw conclusions from our

survey, design, prototyping and evaluation work. These are described in Chapter
TEN.

3.3 Conclusions

We have described an overview of our methodological steps in achieving our aim to
design and develop a prototype critic specification approach for DSVL tools. Each
step in our methodology produced artefacts. These include the critic taxonomy, the
prototypes, the evaluation results, and so on. Each of these methodological steps is
discussed in details in the following chapters of this thesis.

43

Chapter 4
A Critic Taxonomy

This chapter describes a new taxonomy for computer-supported critics. We start
with an introduction to what a taxonomy is and then explain the concept of a
computer-supported critic. We then present our surveyed literature information in
terms of our new critic taxonomy. We also describe each of the elements in the
taxonomy using various examples from the surveyed literature on critics. We then

apply the taxonomy to characterise several exemplar critic tools.

Information gathered from several research efforts on critics (Fischer, Lemke, &
Mastaglio, 1991; Fischer, Lemke, Mastaglio, et al., 1991; Irandoust, 2006; Miller,
1986; Oh, et al., 2008; Robbins, 1998; Silverman, 1992) were the initial motivation
and basis for the development of our new critic taxonomy. Our contribution is
proposing and producing a more comprehensive taxonomy of critics by carrying out
an analysis with respect to critics that allows us to better group tools, techniques or
formalisms based on their common qualities, features, characteristics and

representative elements.

Our intention was for this taxonomy to assist us in designing and developing our
own design critics for Marama domain-specific visual language tools. However, it
also provides a way to characterise others critics and to compare and contrast a wide

variety of computer-supported critic approaches.

4.1 What is Taxonomy?

In the Cambridge dictionary, a taxonomy is “a system for naming and organizing
things ...into groups which share similar qualities”

(http://dictionary.cambridge.org).The reason for having a taxonomy is to structure

an information repository for browsing. Normally, in a taxonomy, we group
properties that share similar values. This chapter presents a new critic taxonomy.

The purposes of this new taxonomy are:

44

http://dictionary.cambridge.org/

e to provide an overview of the research domain of critics (critiquing systems);
e to capture the features, properties and elements included in the critic domain;

e to characterise concrete critic tools (critiquing systems) and techniques

within critic domain;
e to compare critic tools that share the same or similar purpose;
¢ to identify the differences, strengths and weaknesses of each critic tool.

The following section introduces some critic definitions and examples from various

domains. We then describe our taxonomy of critics in the subsequent section.

4.2 Critic Definitions and Examples

Before presenting the critic taxonomy, one should understand some definitions of a
critic. The concept of critic is one which has been adopted in various domains,
including: medical applications (ATTENDING, ONCONCIN), programming (Lisp-
Critic, RevJava), design sketching (Design Evaluator), education (Indie, Java
Critiquer, Classcompass), software engineering (Argo, ArgoUML), expert and
decision support systems (TraumaAID and TraumaTIQ). The term ‘critic’ was
initially used by Miller (1986) to describe a software program that critiques human-
generated solutions. A “critic” is also often known as a “critiquing system”.
However, throughout this thesis we will use the term critic tool instead of critiquing

system.

Various critic definitions can be found in the literature. Some of these definitions of
a critic are shown in Table 4.1. Those definitions normally reflect the type of critics
involved in a research effort (Bergenti & Poggi, 2000; de Souza, et al., 2000;
Fischer, Lemke, & Mastaglio, 1991; Redmiles, 1998; Robbins, 1998). Each critic
tool provides its own definition, but what these critic tools have in common is that
they provide knowledge support to users who lack specific pieces of knowledge
about their problem or solution domains. These critic tools detect potential
problems; give advice and alternative solutions, and possibly automated or semi-
automated design improvements to the users. Robbins’s report also lists several

definitions of critics or critiquing systems. Thus, critic tools offer an important
45

approach to facilitating human-computer collaborative problem solving (Tianfield &

Wang, 2004). Table 4.2 shows some examples of critic tools and their domain

applications.

Table 4.1: Critic definitions.

Definition

Defined by (year)

“A critic is a system that presents a reasoned opinion about a product or
action generated by a human.”

(Fischer, Lemke, &
Mastaglio, 1991)

“A design critic is an intelligent user interface mechanism embedded in
a design tool that analyzes a design in the context of decision-making
and provides feedback to help the designer improve the design.”

(Robbins, 1998)

are detected.”

“Critics are agents that watch for specific conditions in the partial design
as it is being constructed and notify the designer when those conditions

(Redmiles, 1998)

“Critiquing systems are meant to provide critiques on existing artifacts
to improve their realization. They rely on analyzing existing artifacts
and on suggesting improvement rules.”

(Bergenti & Poggi,
2000)

design”.

“A critiquing system is a software that monitors the user’s action and
triggers a signal when any action activates the critic rules of “bad

(de Souza, et al., 2000)

Table 4.2: Examples of critic tools and their application domain.

Tool Name (year-
based on
published paper)

Description

Application
domain

ArgoUML (2000) “Critiquing is done continuously and designers need | Software engineering
not request that critics be applied or even know that | (UML designs)
any particular critic exists.” (Robbins & Redmiles,

2000)

ABCDE-Critic “...implements a construction kit supporting UML Software engineering

(2000) class diagrams, an argumentative hypermedia (Class diagram
system, and a critic system, where the user is able to | design)
define his own critics”(de Souza, et al., 2000)

IDEA (2000) “...is a critiquing system that we developed to work | Software engineering
in direct interaction with the software architect to (design patterns)
propose pattern-specific critiques” (Bergenti &

Poggi, 2000)
RevJava (2002) “ it is used to analyze and critique object oriented Software engineering

software.” (Florijn, 2002)

(object-oriented Java)

DAISY (2003)

“...a critiquing system is able to check the
consistency of models created during domain and
application engineering”(de Souza, et al., 2003)

Software engineering
(software modelling)

JavaCritiquer (2003)

“a critiquing system to teach students how to write
clean, maintainable and efficient code.” (Qiu &
Riesbeck, 2003)

Education (Java
programming)

46

Design Evaluator
(2004)

“is a pen-based system that provides designers with
critical feedback on their sketches in various visual
forms.” (Oh, et al., 2004)

Design engineering
(design sketching)

ClassCompass (2007)

“an automated software design critique system with
critics that comment on high-level design issues
rather than diagram completeness” (Coelho &
Murphy, 2007)

Education (software
design)

FFDC (2009)

“...as a step toward creating computer-based critics
that support design learning in studio setting” (Oh,
et al., 2009)

Education
(Architecture design)

HeRA (2009)

“a feedback centric requirements editor to help
analysts to control the information overload”
(Knauss, et al., 2009)

Software engineering
(Requirements
engineering)

4.3 A Critic Taxonomy

Several articles and reports have been published to explain and discuss critics (or

critiquing systems) as a supporting tool for a wide range of computer users. The

process of developing our critic taxonomy began by examining the related literature

in critics (Fischer, Lemke, & Mastaglio, 1991; Fischer, Lemke, Mastaglio, et al.,
1991; Irandoust, 2006; Miller, 1986; Oh, et al., 2008; Robbins, 1998; Silverman,
1992). We classified the information collected from the critic literature in the

following groups, which were tailored to meet our specific needs. Figure 4.1

illustrates the groups and elements that make up our critic taxonomy. The groupings

and their elements are described in detail in the following subsection.

e Critic domain

e Critiquing approach

e Critic dimension

e Critic type

e Modalities of critiques

e Types of feedback

e Critic realization approach

e Critic rules authoring

47

Our taxonomy aims to be applicable to critics in general though most of our

motivation, applications and examples come from CSE (Critics in Software

Engineering).
Critic Groups and Elements
1. Critic Domain
2. Critiquing | 3. Modes of 4. Critic Rule 5. Critic 6. Critic 7. Types of 8. Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
Comparative Textual Insert new critic | Rule-based Active Explanation Correctness
critiquing rule critics
Analytical Graphical & Modify critic Predicates Passive Argumentation Completeness
critiquing 3-Dimension rule critics
Visualization
Multi-modal Delete critic Knowledge- Reactive Suggestions Consistency
rule based critics
Authoring rule Pattern- Proactive Examples (or Optimization
facility matching precedents) critics
Enable/ disable | Programming | Local Interpretations Alternative
critic rules code critics
Object Global Positive Evolvability
constraint critics
language
(ocL)
Negative Presentation
Critics
Constructive Tool critics
Demonstration Experiential
critics

Figure 4.1: Our critic taxonomy.

48

Organizational

critics

Pattern critics

Structure critics

Naming critics

Metric critics

4.3.1 Critic Domain

The first group in the critic taxonomy is the Critic Domain. A domain is defined as a
knowledge area characterised by a group of problems with similar techniques,
operational and functional specifications. Usually a domain represents a set of well-
defined and coherent concepts and functions. Examples of domains are medical,
business process, education, software engineering and design environment, among
others. Critics are specified based on the domain knowledge of that particular
environment/area. In order to define and specify critics, it is required that we
understand the domain that we deal with. Only by understanding the domain
knowledge will one be able to define and specify meaningful critics for that
particular context/domain. The use and context of critics varies from one domain to
another. To date, critics have been applied in various domains. Several research
efforts (Fischer, Lemke, & Mastaglio, 1991; Fischer, Lemke, Mastaglio, et al., 1991;
Irandoust, 2006; Miller, 1986; Oh, et al., 2008; Robbins, 1998; Silverman, 1992)
provide either long or short description of critics from different domains. Table 4.3
shows some of the well-known critics from various domains that received much
attention in critic research reports and articles (Fischer, Lemke, & Mastaglio, 1991;
Fischer, Lemke, Mastaglio, et al., 1991; Irandoust, 2006; Miller, 1986; Oh, et al.,
2008; Robbins, 1998; Silverman, 1992). Apart from those domains listed in Table
4.3, critics have also been applied in domains such as education (Indie,
JavaCritiquer); design sketching (Design Evaluator); decision making
(DecisionLab); architectural design (ICADS) and word processing (COPE).

Table 4.3: Critics applied to various domains.
Domain Critic system (year)
Medical ONCOCIN: clinical consultation system (1983)
ATTENDING : medical support (1986)
TraumaTIQ: treatment of medical trauma cases (1993)
AIDA : antibody identification (1995)
Engineering CRITTER: digital circuit design (1985)
Design Advisor: integrated circuit design(1988)

CLEER: placement of antennas on military ships (1992)
SEDAR: civil engineering (1995)
Design environment JANUS: kitchen design (1989)

49

FRAMER: user interface window layout (1989)

KRI/AG: graphical user interface design (1992)

VDDE: voice dialog design (1993)

Programming PROLOG Explaining: explanation of PROLOG code (1984)
Lisp-Critic: writing LISP programs (1987)

GRACE system: COBOL programming (1990)

Software engineering KATE : software specifications (1988)

Argo family: software development (1996)

We will not describe these critics because the details can be found in (Fischer,
Lemke, & Mastaglio, 1991; Fischer, Lemke, Mastaglio, et al., 1991; Irandoust,
2006; Miller, 1986; Oh, et al., 2008; Robbins, 1998; Silverman, 1992). Our
objective is to show that critics are applicable to various domains and problems have
proved to be one of the effective mechanisms in providing feedback to users.
However, in Chapter TWO, we described several key related works in critics.

4.3.2 Critiquing Approach

The Critiquing Approach is the second group our taxonomy. Elements in this group
are comparative and analytical critiquing. Critiquing is a way to generate valid
reasoning about a product or action (Fischer et al. 1991). Reports and articles from
(Fischer, Lemke, & Mastaglio, 1991; Irandoust, 2006; Oh, et al., 2008; Qiu &
Riesbeck, 2008; Robbins, 1998; Silverman, 1992) have identified that critic tools
commonly use a comparative critiquing, analytical critiquing or both as their

critiquing approaches.

In a comparative critiquing approach (Fischer, Lemke, & Mastaglio, 1991; Robbins,
1998) , complete and extensive domain knowledge is essential to generate good
solutions. When a user recognizes potential problems in a design, the critic tool will
then produce an optimal result from the predefined solutions in the system. The
user-proposed design is then compared with the system’s solution. The comparison
will result in a report of the differences between the two solutions. Robbins (1998)
points out that a comparative approach can cause difficulties when several good
solutions exist and each of the solutions are different from each other. Furthermore,

certain domains allow radically different but equally valid solutions (Fischer et al.,

50

1991). A user also can be discouraged if the system generates its solution without
recognizing the user’s solution approach. As Fischer et al (1991) point out the critic
can only declare that the system solution accomplishes good results if the user and
system’s solutions differ in a fundamental way. However, it cannot clarify why the
user’s solution is less than optimal. In a way, it hinders the exploration of different
alternatives that may be good enough. In addition, Robbins (1998) also states that a
comparative approach can direct users to make their work like the one that the
system proposed (Robbins, 1998). Hence, this approach guides the user to a known
solution (Robbins, 1998). Besides, the critics authoring is relatively intuitive and
straightforward for this approach because it allows authors to write down problems
and answers and the system will takes care of comparison and feedback generation
(Qiu & Riesbeck, 2008). For example, TraumaTIQ (Gertner & Webber, 1998)
supports a physician’s treatment planning. TraumaTIQ interprets the physician’s
goal treatment plan, evaluates the inferred plan structure by comparing it to the
system’s recommended treatment plan, and finally generates a critique that

addresses potential problems (Gertner & Webber, 1998).

In an analytical approach (Fischer, Lemke, & Mastaglio, 1991; Robbins, 1998), as
long as the domain knowledge is sufficient then solutions can be generated. Hence,
this approach can be applied in domains where knowledge is incomplete. In general,
this approach uses rules to detect potential problems in the design and change them
into assistance opportunities (Robbins, 1998). Thus, in a way it guides the user
away from recognised problems (Robbins, 1998). Unlike comparative critiquing,
this approach does not generate solutions on its own but instead analyses the user-

proposed solution to identify any potential problems via set of rules.

It is not easy to author critics in an analytical approach though it is applicable in a
broad range of domains. This is because one needs to write rules for all the problems
in all situations (Qiu and Riesbeck, 2008). Thus, as Fischer et al. (1991) state,
analytical critics can be built incrementally and applied throughout the design
process. According to Oh et al. (2008), analytical critiquing supports exploratory
problem solving better than comparative critiquing does because design problems

rarely have one right answer. For instance, Argo is an analytical critic tool that uses

o1

analysis predicates, goal and decision type attributes to identify undesirable designs
and then generates feedback items with more kinds of design context, such as
providing contact information for relevant experts and stakeholders (Robbins &
Redmiles, 1998).

One critic tool that applied both of these critiquing approaches is UIDA (User
Interface Design Assistant). UIDA is a system that critiques user interface window
layouts (Bolcer, 1995). UIDA performs analytical critiquing by applying 72 style
rules written in an OPS5-like language and comparative critiquing via recording and

comparing the particular set of rules satisfied by each layout (Bolcer, 1995).

According to Irandoust (2006), the choice of a critiquing approach depends largely
on application domain, the characteristics of the task it supports and the cognitive
support needs of the user. The differences of these two approaches are summarised
in Table 4.4.

Table 4.4: Differences between comparative and analytical critiquing.

Comparative critiquing Analytical critiquing

e Requires a complete and extensive | e Does not require a complete domain

domain knowledge to generate a solution knowledge to generate a solution

e Uses a differential analyzer (Silverman, | e Uses rules to detect potential problems

1992) in user-proposed solution (Robbins,
1998)

e Generates its own optimal solution, then | e Critiques the user-proposed solution
compares it with the user-proposed with respect to predefined features and
solution (Fischer et al, 1991) effects (Fischer et al.1991)

e Guides the user to known solution | e Guides the wuser away from the
(Robbins, 1998) recognized problems (Robbins, 1998)

e More suitable for well-structured | e Can be applied to a broader range of
domains (Oh et al, 2008) domains (Robbins, 1998)

e Less intrusive e More intrusive

e Easy to author critics e Itis not easy to author critics

e Example of tools: ATTENDING, | e Example of tools: JANUS, Argo
TraumaTIQ

52

4.3.3 Modes of Critic Feedback

The third group in our taxonomy is the Modes of Critic Feedback. Elements in this
group consist of textual, graphical and 3D visualisation, and multi-modal. Presenting
critic feedback (Irandoust, 2006) (also known as feedback or critiques) is another
element to be considered in the design of a critic tool. Most critics provide critic
feedbacks in textual messages. However, graphics can be used as well for presenting
critic feedback. Silverman and Mehzer (1992) point out that critic feedback should
be textual and visual because it usually provides the most effective results. Thus,
critic designers/developers should use visual wherever possible to deliver critique
instead of text. Oh et al. (2008) recognise three modes used for presenting critic
feedback in existing critic tools: text messages, graphic annotations and three
dimension (3D) visualizations. Text message refers to a critique that is presented in
a written form. Graphic annotation refers to a critique that is presented in a graphical
form. 3D visualizations involve critiques that are presented via images, or diagrams
in a three dimension format. We add another element in this group i.e. multi-modal

mode to include animation, sound, and maybe movies to represent critiques.

Several researchers have explored the combination of textual, graphic and 3D
visualizations for critique presentation in their critic tool. For instance, Oh et al.
(2004) develop Design Evaluator; a pen-based critic tool that generates critiques and
displays them in textual and visual format. The Design Evaluator involves two
design domains: architectural floor plans and Web page layout design. These two
design domains have different methods of displaying critiques. The Architectural
Design Evaluator display critiques in three ways: as text messages, annotated
drawings and texture-mapped 3D models. When a designer selects a text message
critique, the tool shows the critiques in two other forms, such as graphic annotation
on a designer’s floor plan diagram and generates a 3D texture-mapped VRML
(Virtual Reality Model Language) model that shows the path via the floor plan. The
Web page Design Evaluator also generates text critiques which are linked to visual
critiques via sketch annotation and design examples or cases. Similarly, de Souza et
al., (2000) present the Annotation Based Cooperative Diagram Editor (ABCDE)-
Critic, a system that has a construction kit to support UML class diagrams, a

53

hypermedia system, and a critic system. Apart from the textual critiques, ABCDE-
Critic provides graphic annotation on a UML class diagrams, such as mark (and
unmark) in a different colour on the diagram elements that are detected as
error/problem (de Souza et al., 2000). Stove (1994) developed the PetriNED (Petri
Net EDitor) prototype to prove that visual critiques are possible. PetriNED (Petri
Net EDitor) is a design environment supporting the design of Petri Nets. For
example, a user constructs a Petri net model of a communication protocol. During
the model construction, the user violates the ‘alignment critics’. Thus, the tool will
notify the user about the error by drawing lines between the involved objects in the

model.

A number of critic tool researchers argue that communicating design information in
a mixture of graphical critiques with text critiques is likely to be more effective than
selecting one mode (Oh et al., 2004, Silverman & Mehzer, 1991).

4.3.4 Critic’s Rule Authoring

The fourth group in the taxonomy is the Critic Rule Authoring. Elements in this
group are: insert new critic rule, modify critic rule, delete critic rule, enable and
disable critic rule, and critic rule authoring facility. Critic rules are one of the
important components in building critics. In general, critics are composed of a single
rule or groups of rules (or procedures) to evaluate different aspects of a product or
design in a domain (Fischer, Lemke, & Mastaglio, 1991). Thus, critic rules have to
be written for an individual product or design as well as for the critic system as a
whole. According to (Oh, et al., 2008), critic rules are normally written in advance
by the system designers to develop a critic system. It is often hard or impossible for
a user to modify the existing rules or add new critic rules after the critic system is
deployed (Oh, et al., 2008; Qiu & Riesbeck, 2004). However, as Irandoust, (2006)
and Oh et al., (2008) pointed out, critiquing capacity and issues may need to be
adjusted from time to time in various situations. Furthermore, (Fischer, Lemke,
Mastaglio, et al.,, 1991) emphasis that users should not be required to have
comprehensive programming knowledge in order to perform the modification of

critic rules. For these reasons it is important to allow users to understand the critic

54

rules and be able to modify and expand the rules by authoring new rules to

incorporate in a critic system.

Riesbeck and Dobson (1998) and Qiu and Riesbeck (2003, 2004, and 2008) have
explored the issue of authoring critic rules for educational critic system. Riesbeck
and Dobson (1998) developed INDIE (Investigate and Decide) systems, an
authoring tool for intelligent interactive education and training environments. It
allows users (teachers) to author and control the critic rules (Riesbeck and Dobson,
1998). Qiu and Riesbeck (2004) developed an educational critic tool for Java
programming, called Java Critiquer. They explored the question of how users can
author critic rules. Their Java Critiquer system provides authoring capability, so that
users (teacher) can check or modify the critiques in addition to the feedback that
Java Critiquer generates (Qiu & Riesbeck, 2004). The tool also allows teachers to

gradually enter and update critic knowledge during real use of the system.

Some of the tools that allow for customization of critic rules include ArgoUML,
IDEA, Design Evaluator, and ABCDE-Critic. For instance, ArgoUML (Robbins and
Redmiles, 1998) provides a class framework, source code templates and examples to
support critic implementers. Authoring a new critic requires selecting a starting
template, filling in relevance and timeliness attributes, coding an analysis predicates
and writing a headline and brief description (Robbins & Redmiles, 1998). In IDEA
(Bergenti & Poggi, 2000), the engineer can provide new patterns and new rules to
select and fire new critics. Similarly, the Design Evaluator (Oh et al., 2004) allows
an end-user (designer) to inspect and edit the rule expressions which are stored in a
list. ABCDE-Critic (de Souza, et al., 2000) also allows the user themselves to add

critics to the critic system, through its first-order production system.

The capability of rule authoring is to enable end-user designers to construct and
store their own critic rules (Oh, et al., 2008). A rule authoring facility will allow
critics to deal with various conditions and authorises end-user designers to add to the

system’s feedback process (Oh, et al., 2008).

55

4.3.5 Critic Realisation Approach

The Critic Realisation Approach is the fifth group in our taxonomy. This group is

about implementing critics by using specific approaches. In order to support critic

development, several approaches have been applied to designing and realising

critics. Critics implementation in various domains uses a variety of approaches as

outlined below.

Rule-based approach.

Critics implemented with a rule-based approach consist of a condition and an
action. Rules are defined using the IF-THEN format. The IF part of a rule is
a condition (also called a premise or an antecedent), which tests the truth
value of a set of facts. If the condition is true, then the THEN part of the rule
(also called the action) is performed. Actions can include suggestions,
explanations, argumentations, messages or precedents of problems. Rules in
a rule-based approach are also known as production rules. They tends to be
easy to use and to understand once implemented(Tyugu, 2007).

For instance, ABCDE-Critic (de Souza, et al., 2000) uses rule-based
expression to specify critics that comment on UML class diagram-based
designs. The critic tool invokes critics when a condition clause is found to be
true in the current design parts warning a user that the design possibly have
error (de Souza, et al., 2000). It was stated that the rules can be coded in
Java, JEOPS (Java Embedded Object Production System), or Prolog,
according to the critic type (de Souza, et al., 2000).

Knowledge-based approach.

In general, a knowledge base contains set of rules and associations of
compiled data which most often take the form of IF-THEN rules (production
rules). The knowledge base represents the most important component of a
knowledge-based system. The format of the knowledge refers to how this
knowledge is represented internally within the knowledge base system so
that it can be used in problem-solving. Several knowledge representation
schemes that are commonly used: predicate, rules, frames, associative

networks and object.
56

For instance, FRAMER (Robbins, 1998) enables designers to develop
window-based user interfaces on Symbolics Lisp machines. FRAMER’s
knowledge base contains design rules for evaluating the completeness and
syntactic correctness of the design as well as its consistency with interface
style guidelines. In another example, the IDEA (Interactive Design Assistant)
tool (Bergenti & Poggi, 2000) produces design pattern critics implemented
with Prolog rules that are directly integrated with a knowledge base. Bergenti
and Poggi (2000) stated that the knowledge base of IDEA is comprised of a
set of design rules, corresponding critics, and a set of consolidation rules.
However, the rules for creating the pattern-specific critics are not easy as it
requires a high-level of understanding of design patterns and detailed
knowledge of the Prolog and knowledge base structures. Furthermore,
Robbins and Redmiles (1998) point out that a knowledge-based approach is
more appropriate for design support where the user may lack needed

knowledge.

Pattern-matching approach.

According to (Trochim, 1989), a pattern “is any arrangement of objects or
entities.” A pattern matching process often involves an attempt to relate two
patterns where one is a theoretical pattern and the other is an operational one
(Trochim, 1989) or it can consists of left-hand side and right-hand side rules.
The most common form of pattern matching involves strings of characters.
In many programming languages, a particular syntax of string is used to
represent regular expressions, which are patterns describing string characters.
For instance, the Java Critiquer tool performs automatic critiquing using a
pattern matching approach (Qiu & Riesbeck, 2008). When a pattern is
matched, its corresponding critique is inserted right below the problematic
Java source code. Two types of patterns are supported in this tool: general
regular expressions and JavaML patterns. Regular expression patterns are
practical for short text segments and can be used directly to the Java source
code. However, according to (Qiu & Riesbeck, 2008), regular expressions
can become quite difficult. Thus, a built-in pattern editor is provided to

support teachers in the incremental authoring of patterns. The authoring of
57

JavaML patterns can be more direct and simpler compared to regular
expression. Qiu and Riesbeck (2008) claim that the critic rules in the Java
Critiquer are written in a type of XML format called LMX (language for
Mapping XML). The left-hand side of a rule is a LMX pattern and the right-
hand side of a rule is a critique. The “pattern matcher” matches the patterns
in the rules against the JavaML code, and returns a list of triggered critiques
(Qiu & Riesbeck, 2008).

Figure 4.2 shows an example of a critic rule written using this pattern
matching approach.

<Imx:pattern>

<Imx:lhs>
<Imx:rhs>

<code>return <srcCode srcBegin= “SsrcBegin;” srcEnd= “SsrcEnd;”/>;</code> instead. You never
need to write an IF to return true in one case and false in the other.

</Imx:pattern>

<Imx:lhs>
<if srcEnd="SsrcEnd1;”>
<test srcBegin="$srcBegin;” srcEnd="S$srcEnd;”>
<Imx:extension class="Imx.extension.SegmentMatch”/>
</test>
<true-case>
<return><literal-boolean value= “true”/></return>
<true-case>
<false-case>
<return><literal-boolean value= “false”/></return>
<false-case>
</if>

<critique pos= “SsrcEnd1;”>
<text>
There is more code than you need to write. You already have a boolean value. Just write

<text>
</critique>
</Imx:rhs>

Figure 4.2: Critic rule using pattern-matching approach (Qiu&Riesbeck 2008).

Predicate Logic.

According to Tyugu (2007), predicate logic is based on the idea that
“sentences (propositions) really express relationships between objects as well
as qualities and attributes of such objects (can be people, other physical
objects, or concepts).” Such relationships or attributes are called predicates.
The objects are called the arguments or terms of the predicate. The use of
terms allows a predicate to express a relationship about many different

58

objects rather than just a simple object (Tyugu, 2007). By using predicates
we can express more complex statements about the world than we could with
propositions. Predicates can also be used to represent an action or an action
relationship between two objects (Tyugu, 2007).

One example of critic tools that applies predicates approach is the Design
Evaluator (Oh et al., 2004). The Design Evaluator contains three layers
known as Description, Evaluation, and Visualization. The Evaluation layer
evaluates sketches with predicates that embody design rules. The tool
compares the recognized spatial information with each rule. If it finds a rule
violation, it generates a design critique to be displayed in the Visualization
layer (Oh et al., 2004).

In the Evaluation layer, rules are coded as Lisp predicates that apply to the
design objects. The rule expressions are stored in a list that the end user
(designer) can inspect and edit. Figure 4.3 shows the example of a rule for

architectural floor plans domain.

e Rule statement: A ward be no smaller than 10,000 area units

A minimum area rule: express a minimum area requirement about a
specific room.
(<Minimum-area><room><minimum-size>)

(<MINIMUM-AREA WARD 10000)

e Rule Statement: typical room placement in hospital design that states
ER, TRIAGE, CLINICAL-FOR-OUTPATIENT, and DAYWARD should be
placed in the CLINICAL-ZONE

A room placement rule: all rooms in the list inside the inner
parentheses should be in (or not in) the given zone.
(<Placement-rule>

<Zone>(<Room><Room><Room>...))

Figure 4.3: Rules for architectural floor plans using predicate style (Oh, et al.,
2004).

59

Object constraint language (OCL) expressions

According to (Kleppe & Warmer, 2002), Object Constraint Language (OCL)
is a language that offers ways to specify the semantics of an object-oriented
model in a very accurate style. The semantics are expressed in invariants and
pre-and-post conditions, which are all types of constraints (Kleppe &
Warmer, 2002). OCL can be used to construct logical expressions that access
attributes, invoke operations, navigate along associations, and manipulate
collections (Cook et al., 1999). A research of model checking by (Bezivin &
Jouault, 2006) demonstrates the use of OCL to express constraints via a
simple domain-specific language (DSL) called Class Diagrams (CD).
(Bezivin & Jouault, 2006) argue that OCL needs extensions to support
additional elements such as the severity of a constraint attached to
constraints. A severity is a representation of a flaw degree in a problem that
can be classified either as an error, a warning or a critic (Bezivin & Jouault,
2006). Thus, in their CD example, they show how a critic is expressed using
an OCL expression. Figure 4.4 shows the examples of critics using OCL

expressions (Bezivin & Jouault, 2006).

o Critic statement: the name of Classifier must be unique within its package
OCL expression:

Context Classifier
Inv: not self.package.contents->exists (e|(e <> self) and (e.name =

self.name))

o Critic statement: the name of a Classifier should begin with an upper case
letter.
OCL expression:

Context Classifier
Inv: not (let firstChar: String = self.name.substring(1,1) in firstChar <>
firstChar.toUpper())

Figure 4.4: Critics written in OCL expressions (Bezivin & Jouault, 2006).

60

e Programming code.
Critics can also be designed and realised through the use of programming
code. For instance, critics in Argo/UML (Robbins & Redmiles, 2000) are
coded as Java classes sub-classed from class Critic. Class Critic defines
several methods that may be overridden to define and customize a new critic.
Each critic’s constructor specifies the headline, problem description, and
relevant decision categories. The central method is a predicate that accepts a
design element to be critiqued and returns true if a problem is found
(Robbins and Redmiles, 2000). RevJava (Florijn, 2002) is another tool that
implements critics via programming code, i.e. Java class files. The tool is

used to analyse and critique object oriented software.

4.3.6 Critic Dimension

The sixth group in our critic taxonomy is the Critic Dimension. Critics can be
classified by various dimensions. The elements within this group are based on
Fischer’s suggestion (Fischer, 1989). Report and articles from Qiu and Riesbeck
(2008), Oh et al. (2008), Irandoust (2006) and Robbins (1998) support Fischer’s

suggestions on critic classification dimensions. Our taxonomy’s critic classification

dimensions are shown in Table 4.5.

Table 4.5: Critic dimensions (Fischer, 1989).

Critic dimension

Brief description

Active critics

Continuously critique the user’s design/work

Passive critics

Wait until the user asks for a critique

Reactive critics

Critique the design/work that the user has done

Proactive critics

Guide the user by presenting guidelines before

the user makes a decision

Local critics

Critics that evaluate individual design elements

Global critics

Critics that consider interactions between most

or all of the elements in a design

In a critic development, a critic designer has to consider using active critics, passive

critics or both in their tool. An active critic (Fischer, 1989) usually continuously

61

monitors user tasks, warns the user as soon as a critic rule is violated and then offers
critic feedback (a critique). An active critic makes users aware of their unsatisfactory
design/work when the potential problem is easy to correct. However some users may
find it a distraction to have something continuously criticise them without giving

them a chance to develop their own design/work and corrections.

In contrast to active critics, a passive critic (Fischer, 1989) only works when a user
asks for a check of critic rule violation. In this scenario, after the user completes
preliminary design/work, the user then asks for evaluation of the design/work.
Passive critics are less intrusive compared to active critics because they allow the
user to control when to activate the critics. The problem with passive critics is that
most of the time, the user does not activate them early enough to prevent potential
problems (Qiu&Riesbeck, 2008). Fischer (1989) remarks that active critics are
suitable for guiding novice users and passive critics seem to be good for

intermediate users.

ArgoUML provides active critics when a user attempts to draw a design diagram.
For example, when a user selects a new class to place in the class diagram design,
several critics fire to indicate that part of the design has been started, but not yet
finished. Java Critiquer uses passive critics because as Qiu and Riesbeck (2008)
stated that it is not a requirement to avoid students from making mistakes. Thus,
Java Critiquer provides such an opportunity for learning and allows students to
concentrate on their programming tasks without interruption (Qiu and Riesbeck,
2008).

Apart from active and passive critics, there are critic tools that use either reactive or
proactive critics. A reactive critic (Fischer, 1989) provides critiques on the user’s
accomplished design/work, whereas a proactive critic attempts to lead the user
before the user makes a specific decision. Similar to these two critics are the critic
dimensions suggested by Silverman (1992): before, during and after. Silverman’s
before critic is similar to Fischer’s proactive critic. During and after critics can be
viewed as Fischer’s reactive critics. However, a during and after critic is different in

terms of whether a user’s work is completed or not. The SEDAR (Fu et al., 1997)

62

tool adopts Silverman’s dimensions and takes all three strategies: before (error
prevention), during (design review critic, design decision) and after (error
detection). The HeRA tool (Knauss, et al., 2009) provides proactive support because
while a user is typing the requirements, it analyzes the input and warns the user of

any ambiguities or incomplete specification detected.

Finally, critics can be classified as either local or global critics. Local critics
(Fischer, 1989) are critics that evaluate individual design elements and global critics
(Fischer, 1989) involve the interactions between most or all of the elements in a
design. For instance, the HeRA tool (Knauss, et al., 2009) provides users with local
and global critics. According to ((Knauss, et al., 2009), the local critics of the tool is
concerned with the current focus of the requirements editor (i.e. requirements, use
cases, and a glossary), while global critics allow users to analyse a global
perspective in terms of list of all critiques and inference of global process diagrams
(i.e. UML Use Case Diagram, Event-driven Process Chain models, and Use Case
Point View).

4.3.7 Types of Critic Feedback

The next group in our taxonomy is the Types of Critic Feedback. There are ten
elements in this group: explanation, argumentation, suggestion, example (or
precedent), interpretation, simulation, demonstration, positive feedback, negative
feedback, and constructive feedback. There are many ways to present critic feedback
(Irandoust, 2006) (also known as feedback) in a critic tool. Oh et al., (2008)
describes the types of critic feedback as one aspect of the critic’s intervention
techniques. Critic tools can offer critic feedback to users by choosing the appropriate
techniques from the ten elements. However, the most widely used techniques are

explanation, suggestion, and argumentation.

The explanations technique is widely used in most critic tools. Explanation as
defined in the Cambridge dictionary is “details or reasons that someone gives to
make something clear or easy to understand”. Thus, critiques provided by a critic
tool must produce explanations so that user has the chance to assess the details and

reasons before making a decision as whether to accept the critique generated by the

63

tool. The explanations can be focused on the violations of general guidelines or the
differences between the user’s design solution and system’s solution (Fischer et al,
1991). Having an explanation facility is also needed to show the correctness and
usefulness of the critic tool’s recommendation (Irandoust, 2006). Furthermore, it is
essential to validate a critique via explanation because without valid details or
reasons, a user will not accept the critique. In a way, it shows the user acceptance

towards the critiques generated by the critic tool.

The explanation provided by a critic tool can be in simple or in-depth explanations.
A simple explanation component normally provides pre-stored text explanations. In
detailed explanations, hypertext techniques have been shown to be very efficient for
providing contextualization explanations (cf. Irandoust, 2006). Fischer and
colleagues contribute the incorporation of hypertext into critic’s feedback loop and
the creation of what they call “minimalist explanation”(Fischer et al., 1990). Via
hypertext jumps, the user can obtain more in-depth explanations. Explanations too
can be represented textually visually or both.

Argumentation is another option for offering critic feedback. It is also another
mechanism for explanation where it can contain issues, answers, and arguments
about a product or design domain. A user, who may not understand critiques offered
by a critic tool, may want to know more information about the critiques. Thus, via
an argumentation component, the user can obtain the required information to justify
the critique. Examples of critic tools that provide an argumentation style are Indie
(Riesbeck & Dobson, 1998), ABCDE-Critic (de Souza et al., 2000) and HeRA
(Knauss et al., 2009). These tools are developed for the domains of education

learning, object-oriented analysis and design, and requirements engineering.

Indie (Investigation and Decide) is an authoring tool that provides support for the
intelligent interactive education and training environments. The authoring tool helps
authors (i.e. teachers) to create knowledge bases for critiquing student arguments.
Basically the student’s argument is compared against the argument model via the
Indie Critiquer modules. One of the knowledge bases in the Indie tool has argument

models with the purpose of describing what makes good and bad arguments for

64

every possible decision. The argument contains a claim about a scenario, and a set of
evidence which hold scenario facts. The ABCDE-Critic (de Souza et al., 2000)
incorporates an argumentative hypermedia system to provide in-depth explanation
for user that does not understand or wants more information about critics. The
argumentation component contains issues, answers and arguments about the design
domain (de Souza et al., 2000). Likewise, HeRA (Knauss et al., 2009) facilitates its
computer-based critiqgues via the argumentation component. The argument
component allows users to adhere to warnings or to argue against them (Knauss, et
al., 2009).

Some critics offer suggestions to change the user’s solution. The suggestion style
approach is also known as solution-generating critics (Fischer, Lemke, & Mastaglio,
1991) which are capable of suggesting alternatives to the user’s solution. An
example is the JANUS system, where a simple problem detecting critic points out
that there is a stove close to a door. Another option is to provide examples
(precedents) to support critics. Examples are a way of helping users to understand
something by showing them how it is used. For example, the Design Evaluator (Oh
et al., 2004) provides an exemplar Web page for the designer to look at when a

critique is selected.

Another option for presenting critic feedback is either to provide positive or negative
feedback. A positive feedback provides a critique in a praising way when a user
produces a good design/solution. A negative feedback is a complaint when a user
produces a poor design/solution. Positive and negative feedback is actually related to
how humans make decisions because humans tend to judge/evaluate something
based on advantages and disadvantages, pros and cons. In PetriNED (Stolze, 1992),
positive critiques are delivered in a graphical way and close to the user’s focus of
attention. This is helpful to those users who are interested in obtaining positive
feedback.

Apart from the styles stated above, critic feedback can be presented through the use
of a simulation component or demonstration (e.g. JANUS, HeRA), interpretation
(Nakakoji et al. 1993), and constructive feedback (ArgoUML). A mixture of styles

65

in presenting critic feedback (critique) certainly facilitates users/designers to clarify

their understanding, as well as improve their knowledge.

4.3.8 Critic Types

Finally, the last group in our taxonomy is the Types of Critic. Critics can be
classified according to the type of domain knowledge that they present (Robbins &
Redmiles (1998); Robbins (1998)). Thus, the Critic Domain group and this group
complement to each other. Table 4.6 shows a list of critic types we define in our

taxonomy.

Table 4.6: Critic types

Critic type

Description

Correctness critics

detect syntactic and semantic flaws (Robbins & Redmiles, 1998)

Completeness critics

remind the designer to complete design tasks (Robbins & Redmiles,
1998)

Consistency critics

point out contradictions within the design (Robbins & Redmiles,
1998)

Optimization critics

suggest better values for design parameters (Robbins & Redmiles,
1998)

Alternative critics

prompt the architect to consider alternatives to a given design
decision (Robbins & Redmiles, 1998)

Evolvability critics

address issues such as modularization, that affect the effort needed to
change the design over time (Robbins & Redmiles, 1998)

Presentation critics

Look for awkward use of notation that reduces readability (Robbins
& Redmiles, 1998)

Tool critics

inform the designer of other available design tools at the times when
those tools are useful (Robbins & Redmiles, 1998)

Experiential critics

provide reminders of past experiences with similar designs or design
elements (Robbins & Redmiles, 1998)

Organization critics

express the interest of other stakeholders in the development
organization (Robbins & Redmiles, 1998)

Pattern critics

Improve a design via design patterns (Bergenti & Poggi, 2000)

Structure critics

detect problems that involves structural properties (Coelho &
Murphy, 2007)

Naming critics

identify potential sources of confusion introduced by names (Coelho
& Murphy, 2007)

Metric critics

Report when the number of occurrences of some aspect of a design is
beyond normal values (Coelho & Murphy, 2007)

66

According to Robbins (1998) critic types are descriptive rather than definitive. In
fact, new categories can be defined based on the application domain. For instance,
IDEA (de Souza et al., 2000) offers pattern-specific critiques to assist the architects
in finding and improving the realisations of design patterns in UML designs.
Similarly, (Coelho & Murphy, 2007) define three categories of critics: structure

critics, naming critics and metric critics for the ClassCompass tool.

4.4 Applying the Taxonomy

In this section, we apply our new critic taxonomy to position several critic tools
within the critic domain. Several systems and tools that adopt or implement the critic
concept have been identified and selected randomly regardless of whether they are
research prototype tools, commercial tools or open source tools. We apply our
taxonomy to this set of tools which has been shown previously in Table 4.2. We
briefly explain each of the tools in the following section and characterise them with

our taxonomy dimensions.

4.4.1 ArgoUML (Robbins and Redmiles, 2000)
ArgoUML (Robbins&Redmiles, 2000, http://argouml.tigris.org) is an object-
oriented design tool using the Unified Modeling Language (UML) design notation.

It is a design critic tool that supports several identified cognitive needs of software

designers. Figure 4.5 shows the ArgoUML user interface.
[(R e Arg_ ‘ ol 0

File Edit View Create Arrange Generation Critigue Tools Help

PEEEE BOEE D EEEEEREE

= -
E‘F‘m:kaue-centm: |v:i_| BB —-e=|+- ,_? = a A- EEE o = |O[--| (O~
|0r(|er By Type, Name |v |
o 3 Profile Configuration DLIIE:
o 3 untitiedModel 4 Course
Stereotype Visualization ¥
|: Apply Stereotypes »
Critiques ¥ Add Instance Variables to Course
Ordering ¥ Add Associations to Course
Show H Add Operations to Course
Add } Consider Using Singleton Pattern for Course
Modifiers 3 L
Il T ; Visibility 3] ’|-
a i Remove From Diagram
TR AT i Delete From Model S A3 o .
By Priority ‘v‘ﬂtems ‘_ 4 ToDoltem [Properties [Documentation | Presemtation | Source [Constraints T’SI&\emype rTm_u_leH Values ”Eheckhsl
=3 High] ‘ou have notyet specified instance variables for Course. Mormally classes have instance variables that store state information for each
g :
o[£ Medium |-=*linstancs. Classes that provids only static atributes and methods should be stersotyped <<utitys>.

1 Revise Package Mame untitledModel : Eﬁ'
[Add Associations to Course ;
£ Add Opsrations to Courss] 0 address this, press the "Neuts" bution, or add instancs variables by double clicking on Course in the navigatar pans and using the
[Add Instance Variables to Course : Create menu to make a new atiributs

o[Low

Defining instance variables is nesdsd to complets the information representation part of your design
1| G2

Figure 4.5: The ArgoUML user interface.
67

http://argouml.tigris.org/

As Robbins and Redmiles (2000) state “design critics are agents that check the
design for potential problem” (Robbins & Redmiles, 2000). Thus, ArgoUML has
predefined agents, called critics, that are constantly checking the current model
designed by software designers. The critic will generate a ToDo Item (as a critic
feedback item or a critique) in the ToDo list if the conditions for causing a critic
occurred. The ToDo Item (as shown in Figure 4.5) is presented in a constructive
manner and this is very helpful to software designers because it contains an
explanation of the problem, some suggestions about how to resolve the problem, and
if there exists one, a wizard which assists the designer resolve the problem
automatically. In addition, a ToDo item generated by a critic will remain in the
ToDO list until the cause of the problem is removed either manually by the designer
or by following the actions suggested by the tool’s wizard. We can say that,
Argo/UML’s ToDo list is practical because it reduces the designer’s reliance on

short-term memory and offers convenient ways to organise and browse items.

The critics in ArgoUML are not intrusive, since the user can disregard them
completely or disable one or all of them via the critics’ configuration menu. Critics
in ArgoUML are not user defined, since they all are implemented as Java classes and
are compiled as part of the tool. However it does provides a class framework, source
code templates and examples to facilitate the critic implementation process (Robbins
& Redmiles, 2000). Thus, adding new critics is done by modifying the source code
and this will require Java expertise. Details of ArgopUML can be found at this link:

http://argouml.tigris.org/. Figure 4.6 shows the mapping of the ArgoUML tool to the

critic taxonomy. Items in blue represent the element supported by the ArgoUML
tool.

68

http://argouml.tigris.org/

code

Critic Software (UML
Domain: engineering designs)
Critiquing | Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration evolvability

interpretation

presentation

positive tool
feedback

negative experiential
feedback

constructive organisation
feedback

design
pattern

structural

naming

metric

Figure 4.6: The mapping of the ArgoUML tool to the critic taxonomy

4.4.2 ABCDE-Critic (de Souza et al., 2000)

An environment called Annotation Based Cooperative Diagram Editor (ABCDE)-
Critic (de Souza et al., 2000), adopts critics to check UML class diagrams. ABCDE-
Critic is a Domain Oriented Design Environment (DODE) for object-oriented
analysis and design, which implements a group critic system. The environment
implements a construction kit supporting UML class diagrams, an argumentative
hypermedia system, and a critic system. ABCDE-Critic uses rule-based expressions
to specify critics that comment on UML class diagram-based designs. The critic
system in ABCDE-Ceritic fires critics when the condition clauses are found to be true
in the current design parts warning the designer that the design may possibly have a
problem/error. The critic’s properties in ABCDE-Critic are: 1) critic’s name, 2)

critic state (active, passive, disable), 3) a quick critic explanation, 4) an

69

argumentation which is a critic more in-depth explanation, 5) critic importance, 6) a

set of rules, and 7) a set of solutions.

In ABCDE-Critic, critic feedbacks are presented as annotations attached to the
diagram elements that trigger the critic to fire. These annotations are also displayed
to all other designers who are owners of these diagram elements. The critic feedback
in ABCDE-Ceritic is displayed in two views. The first view is where the “Things to
take care of” window pops up and display the critic name and its quick explanation
in a list box. The second view is where the annotations created for the diagrams
being constructed are displayed in the graphics interface component known as
annotation column. The ABCDE-Critic uses a Design Rationale (DR) model to
record the justification behind the design decision made during object-oriented
analysis and design activities. Designers can define and control the critic’s state
(active, passive, disable) when necessary. ABCDE-Critic allows the designers
themselves to add critics to the critic tool via its first-order production system.
Critics in ABCDE-Critic are normally defined by the critic’s author or extracted

from the object-oriented design heuristics.

ABCDE-Critic is good critic system in the sense that it supports cooperation among
designers as a means of annotation and warns designers that are involved in the
problem. ABCDE-Critic also allows other designers to just add another alternative
to the set solution of one critic. Thus, designers can communicate with the critiquing
system as a true partner. Figure 4.7 shows the mapping of the ABCDE-Critic tool to
the critic taxonomy. Items in blue represent the element supported by the ABCDE-

Critic tool.

70

Critic Software (UML class
Domain: engineering diagrams)
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration evolvability
code
interpretation presentation
positive tool
feedback
negative experiential
feedback
constructive organisation
feedback
design
pattern
structural
naming
metric

Figure 4.7: The mapping of the ABCDE-Critic tool to the critic taxonomy

4.4.3 IDEA (Bergenti & Poggi, 2000)

Interactive DEsign Assistant (IDEA) is a critic system that performs direct
communication with the software architect to propose pattern-specific critiques
(Bergenti and Poggi, 2000). The development of IDEA is designed for automating
the task of finding the realisations of design patterns used in UML diagrams and
then improving the diagrams. The improvement of the design is made through
critics that are presented to software architects. IDEA produces design pattern-based
critics implemented with Prolog rules that are directly integrated with a knowledge

base.

The IDEA approach is that the UML design which is under construction is analyzed
in XMI format and then class and collaboration diagrams are employed to detect all
pattern realisations. If a pattern is detected then it is called detectable, otherwise it is
called undetectable because of incomplete information on the diagrams. When a

71

pattern realisation is discovered, IDEA then examines pattern-specific rules to select

a set of critics to improve the design realisation.

IDEA provides the architect with two lists, the “pattern list” and the “to-do list”. The
“pattern list” contains all patterns that IDEA found in the UML model. There are
eleven patterns detected by IDEA: Template Method, Proxy, Adapter, Bridge,
Composite, Decorator, Factory Method, Abstract Factory, Iterator, Observer and
Prototype. The “to-do list” (the critic feedback) is the list of all selected critics
organized by their importance (high, medium, and low). IDEA allows architects to

control the pattern detection directly through these lists.

As Bergenti and Poggi (2000) point out that the knowledge base of IDEA is
comprised with a set of design rules, corresponding critics, and a set of consolidation
rules. These are maintained dynamically where patterns and rules can be added and
removed when required. However, the rules for creating the pattern-specific critics
are not easy to understand or author as this requires a high-level of understanding of
a design patterns and detailed knowledge of the Prolog and knowledge base
structures. Figure 4.8 shows the mapping of the IDEA tool to the critic taxonomy.

Items in blue represent the element supported by the IDEA tool.

72

Critic Software (Design
Domain: engineering patterns)
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration evolvability
code
interpretation presentation
positive tool
feedback
negative experiential
feedback
constructive organisation
feedback
design
pattern
structural
naming
metric

Figure 4.8: The mapping of the IDEA tool to the critic taxonomy

4.4.4 RevJava (Florijn, 2002)

RevJava (Florijn, 2002,) is a tool used to analyse and critique object-oriented
software. According to Florijn (2002), the Revjava design is quite generic and the
implementation operates on compiled Java class files. RevJava acts as an assistant to
Java coders by examining critics that can identify potential design and style
improvements of the Java code. Figure 4.9 shows the interface of RevJava critics.
RevJava components consist of: a model reader, repository, meta-model, property
definitions, critic definitions, property evaluator, metrics database, reporting and
visualisation. The model reader reads in the Java code and saves it in a repository.
The repository is arranged based on a meta-model that identifies all relevant entities
in an OO/Java program. For each meta-model type, information about a model
element (property and critic) can be defined and derived. The property and critic

definition is then loaded into RevJava and can be obtained on request. For example,
73

when a user loads a program, some of the properties are treated as “critics” and
“metrics”. The information collected via critics and metrics then can be manipulated
in different kinds of reporting and visualisations tools. According to Florijn (2002),
visualisations that highlight specific violations in large collections of classes have
been produced. In addition, RevJava also allows Java users to enable and disable
critics by configuring the setting menu. Details of RevJava can be found at this link:

http://www.serc.nl/people/florijn/work/designchecking/RevJava.htm. Figure 4.10

shows the mapping of the RevJava tool to the critic taxonomy. Items in blue
represent the element supported by the RevJava tool.

R=IEY
File View Help

Types

system

package

class

interface

method

field

Critics Description

SREULEEL Ly Mixing event listeners with regular classes adds complexty;

Datarecard - 2 congider factaring them outto Separate objects using inner
Define hashcode when defining equals - 0| ar anonymaous classes.

Empty intetface - 0

Exposed inner clags- 0
Exposes collection structure - 0
Factor out event listeners - 2
Factory candidate - 0

God Class - 2

lllegally instantiated singleton - 0 -

Details

Class [Class gl.Graph] appears to implernent one or more event listener roles itself. Consider introducing
lacal handler objects for: [[Typeref java awt event ActionListener], [Typeref java. awt event ltemlistenear] |

| »

Occurrences

E= | [Criticism Factor out event listeners for [Class gl.Graph]]
[Criticism Factor out event listeners for [Class gl.GraphPanel]

[Tl

Figure 4.9: RevJava Critics
(http://mww.serc.nl/people/florijn/work/designchecking/RevJavaScreenShots.htm)

74

http://www.serc.nl/people/florijn/work/designchecking/RevJava.htm
http://www.serc.nl/people/florijn/work/designchecking/RevJavaScreenShots.htm

Critic Software (Java coding)
Domain: engineering
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration | evolvability
code
interpretation presentation
positive tool
feedback
negative experiential
feedback
constructive organisation
feedback
design
pattern
structural
naming
metric

Figure 4.10: The mapping of the RevJava tool to the critic taxonomy.

4.4.5 DAISY (de Souza et al., 2003)

Following their work on ABCDE-Critic, de Souza et al., (2003) later developed
another environment called Domain and Application engineering using Integrated
critiquing SYstems (DAISY) that supports the construction of domain engineering
and application engineering models. The main goal of their approach is to support
consistency management in these models (de Souza et al., 2003). Domain
engineering comprises three main activities: 1) domain analysis, 2) domain design,
and 3) domain implementation. However their work is more focused on diagrams
and models that are created during domain analysis and domain design. Application
engineering complements the domain engineering process. It produces software

products based on the domain engineering process.

DAISY was built on top of ABCDE-Critic. DAISY supports consistency checking

of these models through the use of three different critics systems. The first critic
75

system assists the development of feature diagrams and defines seven different
critics. The feature diagrams show the architectural structure of software features. In
this work, DAISY deals with software architecture diagrams and class diagrams.
The second critic system is used during application engineering to assess the UML
class diagrams using object-oriented design heuristics and has about twenty critics.
These two critic systems are used to improve the overall quality of the UML models.
The third critic system detects potential inconsistencies and other errors that might
occur in the mapping between domain model and application model. There are seven
different critics implemented.The contribution of DAISY is the inconsistency
detection in a software engineering model through the use of three critic systems.
Though the number of critics implemented is small it could potentially be further
extended. Figure 4.11 shows the mapping of the DAISY tool to the critic taxonomy.
Items in blue represent the element supported by the DAISY tool.

Critic Software (feature
Domain: engineering diagrams anc
class diagrams)
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration evolvability
code
interpretation presentation
positive tool
feedback
negative experiential
feedback
constructive organisation
feedback
design pattern
structural
naming
metric

Figure 4.11: The mapping of the DAISY tool to the critic taxonomy.

76

4.4.6 Java Critiquer (Qiu and Riesbeck, 2003)

Qiu and Riesbeck (2003-2004, 2008) demonstrate the development of an educational
critic tool. They develop a critic tool for Java programming, called Java Critiquer.
Java Critiquer is developed by using an incremental authoring approach (Qiu and
Riesebck, 2003-2004, 2008). This critic tool not only supports teachers but also
students. Teachers use the Java Critiquer to critique student java code. Student java
code is pasted into a textbox and then the Java Critiquer performs automatic
critiquing which is done via a pattern matching approach. When a pattern is
matched, its corresponding critique is inserted right below the problematic Java
source code. The teacher then validates these critiques by modifying or removing
inappropriate ones as needed. The teacher can then perform manual critiquing on the
code, after reviewing the critiques generated by the tool. The manual critiquing
complements the automatic critiquing to ensure the quality of tool critiquing in the
early development stage. Java Critquer allows teachers to add new critique or use
the existing critiques in the tool. Critiques are stored in a database and this leads to

reusable critiques (Qiu and Riesbeck, 2004).

Java Critiquer is an effective tool because it supports teachers and students. It helps
the teacher to perform automatic program critiquing and this would reduce their
work in reviewing the student java code manually. Students can get support from
Java Critiquer because they get feedback prior to sending their assignments to their
teacher. Furthermore, students can do self-learning through Java Critiquer. Figure
4.12 shows part of Java Critiquer interface. Figure 4.13 shows the mapping of the
Java Critiquer tool to the critic taxonomy. Items in blue represent the element
supported by the Java Critiquer tool.

77

2} Java Critic - Micrasoft Internet Explorer

| g Edt yow Favortes Tods e

~ridi,
FILI

U el
i A

op

public

4

class Circle {

private double i,

Use more descriptive variable names

public vnid changeRadius(double i) {

if ((i >0)

== true){

this.i = i:

3
}

public void IncreaseRadius() {

i=3+ 13

L

In Java, stat method names with lowercase

Best praciice. Instead of var = var + 1, use ++var

You should follow standard JavaBean naming conventions, i.e., getXxx() and setXxx()

The form if ((i > 0) == true)... misses the power of Boolean values. Just write if (i >
0)..

| o

Clear Text

——

Search |

Show Text

Help

7—‘ .[l.wi'»‘:zr & Ne|
[jave =] | NewSet I

null aray elements
object

operators: +=
operators: f nstead of ™

|

o cver specific

=
=

lui ﬂ_' Show All

Save | Delete

|operators. +-

Best practice: Ins

var = var + 1;

use

++Var;

tead of =

Use| Olear | Unuse | Unuse Al {

Short: I

+\s*1\s

Notes:

_EstPotem |

Figure 4.12: Java Critiquer interface (Qiu & Riesbeck, 2008).

code

Critic Education (teaching
Domain: Java coding)
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration | evolvability

interpretation

presentation

positive tool
feedback

negative experiential
feedback

constructive organisation
feedback

design
pattern

structural

naming

metric

Figure 4.13: The mapping of the Java Critiquer tool to the critic taxonomy.

78

4.4.7 Design Evaluator (Oh et al., 2004)

The Design Evaluator is a pen-based critic system for design sketching (Oh et al.,
2004). The aim of Design Evaluator is to assist designers who draw and then justify
their drawings to resolve design problems (Oh et al., 2004). Oh et al. (2004)
demonstrated the sketch based critic system with two applications of the Design
Evaluator: 1) architectural floor plan, and 2) web page layout. The Design Evaluator
has two components where the first component is to allow the system to access the
knowledge about the domains and the second component is to make the system be
able to present critic feedbacks in a proper way. The Design Evaluator supports
designers with critical effective feedback and gives reasoning on their design
sketches. A designer receives the feedback in a form of criticism and advice. The
way the Design Evaluator presents the critic feedback is excellent because critiques
are displayed in various formats: textual, graphical annotation, 3D annotated walk-
through models (e.g. architectural floor plan) and case library (e.g. web page layout).
It is more helpful by its use of more than one format to communicate information
about the design.

The Design Evaluator is composed of three layers: description, evaluation and
visualization. These layers offer different activities performed by the designers. The
description layer captures the sketching data from the designer and applies some
preprocessing steps to generate a design representation. The design representation
will then be used by the evaluation layer. The evaluation layer is composed of rules
coded as Lisp predicates that apply to the design objects. These rules are stored in a
list that the designer can check and edit. Each rule expression is associated with a
text critic, as well as code that specify how to annotate the sketch when the critic is
applied. A rule may also carry additional information to be used by auxiliary
visualization routines such as the VRML model creator (for architecture) or the URL
of a representative example case (for web page layout design evaluator). The
visualization layer then presents critiques (critic feedback) in a form of textual and
visual. The good thing about the Design Evaluator in terms of displaying critiques
is that it provides the ability to link the critiques directly on the design sketch and
this is very useful because it makes the designer remain focused on the sketches

she/he is making. Figure 4.14 shows the mapping of the Design Evaluator tool to the

79

critic taxonomy. Items

Evaluator tool.

in blue represent the element supported by the Design

Critic Design (design
Domain: engineering sketching)
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration | evolvability
code
interpretation presentation
positive tool
feedback
negative experiential
feedback
constructive organisation
feedback
design
pattern
structural
naming
metric

Figure 4.14: The mapping of the Design Evaluator tool to the critic taxonomy.

4.4.8 ClassCompass (Coelho & Murphy, 2007)

Coelho and Murphy (2007) develop an educational critic tool for software design,
called ClassCompass. They define ClassCompass as “an automated software design
critique system with critics that comment on high-level design issues rather than
diagram completeness.” ClassCompass is considered as a collaborative software
design tool with the purpose to assist the students as well as the instructors in the

software design activities.

Students use the system to produce software designs based on a set of requirements.

The students can obtain automated feedback (critiques) about typical design

problems while they perform their design task. ClassCompass also allows students

to manually critique other student’s design task via the menus provided in the
80

system. Thus, students can see and learn the design styles from the critiques
generated by the system as well as from other students (Coelho and Murphy, 2007).
Instructors use an extended version that provides additional features for managing
instructional sessions. Instructors use a Web application to configure ClassCompass
before students take part in the collaborative design tasks. Instructors will specify
the design principles that will be used by students to evaluate designs manually.
Then, the instructor uses the ClassCompass client to automatically exchange designs

between groups of students.

As mentioned above, ClassCompass supports automated critiquing and manual
critiquing. The automated critiquing is executed when a user starts creating their
design models in the system. When a critic finds a potential design flaw, an entry is
added to a list of critiques beside the design diagram. The critics in ClassCompass
are not intrusive, since the user can continue their task if they decide to ignore the
automated critic feedbacks. Furthermore, ClassCompass lets the user select the item
of interest in the critiques box. A detailed explanation of that particular critique is
then presented in the Critique Details box. The critique details text in ClassCompass
is arranged into three parts: 1) Critique-describes the design error, 2) Rationale-
explains why the identified error can reduce software quality, and 3) Suggestion-
provides suggestion to correct the identified error. ClassCompass too can highlight
the relevant part of the design diagram structure to get user’s attention to the
detected problem. Critics in ClassCompass are implemented in Java as pluggable
classes that check for a particular pattern in an object model representing the design
(Coelho & Murphy, 2007). Figure 4.15 shows the user interface of ClassCompass
with automated critiquing. Figure 4.16 shows the mapping of the ClassCompass tool
to the critic taxonomy. Items in blue represent the element supported by the

ClassCompass tool.

81

:B‘Cln!l.'mm ["_TIEJE
File Edit Align Critique Session
ol DOERNNEE
 Sessian Information | Creatn it Design | Crlique Design | View Session Designs
Rbsatv AP
Liis [PayliThePurngSystem | etate
[Class Raferences Superclass pumpE -
selPricad
sedEnabled() e Jetvuli=
gedDmaibySalssmouni() gelTobas)
gedDaikel sl ebinhim e setItatad
gutStatel
4
CustomerActiatedTerminal 4
selEnabbed) KrausePurmgy M‘_l &
SRMCIEE TR [ataiia: f !l\\ sendGmdToFumpd | Imﬂﬂ'l'rlfl'nf‘lll"mﬁl
Catligue: |
The Diszsiyaynefump clazs IH.
raTRERrER g I LR A, hevsPressed \\ [LCD Diplay |
AlatractPisnp, thrnugh an sasnciatinn getinputdl
- Slomiepus) \ bort it or f
Raticnale: | |=etEnabledd
Bince classes mhent the functionality of \ 2
Iheir superelass, it is normally fot
o refe & B I CardFeadar @ sandCmdToFump(
nstance (unless pow an wsing an E——
n ne sulEnableg)| [haspapery
 Subei Dosign | st
I
{==saction Tool

Figure 4.15: ClassCompass user interface (Coelho & Murphy, 2007).

Critic Education (teaching
Domain: UML class
and sequence
diagrams)
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration evolvability
code
interpretation presentation
positive tool
feedback
negative experiential
feedback
constructive organisation
feedback
design
pattern
structural
naming
metric

Figure 4.16: The mapping of the ClassCompass tool to the critic taxonomy.

82

4.49 FFDC (Oh et al., 2009)

Flat-pack Furniture Design Critic (FFDC) is a computer-based critic tool that
support design learning in studio settings (Oh et al., 2009). Oh et al. (2009) develop
FFDC using a constraint based design critic program that provides students feedback
with five delivery types and three communication modes. The five delivery types are
interpretation, introduction, example, demonstration and evaluation. The three
communication modes are written comments, graphical annotations, and images. Oh
et al. (2009) points out that their FFDC tool selects specific methods to present
feedback by considering a user’s knowledge and the critiquing methods that the

program has previously used for the user.

The FFDC is written in Macintosh Common Lisp using OpenGL to provide 3D
models and the Lisa (Lisp-based Intelligent Software Agent) production rule system
to justify a planned furniture design using the stored constraints. FFDC has eight
components: Construction Interface, Parser, Pattern Matcher, Design Constraints,
Critiquing Rules, User Model, Pedagogical Module, and Critiquer. The construction
interface allows a user to perform design sketching via a stylus and digitising tablet.
All sketched glyphs are recorded, a Cartesian coordinate system is defined and a 3D
model is generated (Oh et al., 2009). The parser is used to parse the sketched
diagram and the 3D model to generate two kinds of data: 1) parts and their
properties and 2) configuration of parts. A symbolic representation of the designed
furniture is then saved in text file created by the parser. FFDC uses a set of design
constraints to represent the principles that the designers have to know in designing
furniture. FFDC uses 27 structural constraints and 36 functional constraints which
are stored in the program. The pattern matcher component is used to compare the
symbolic representation of the design against the design constraints to detect any
critic violations. The user model component has of short-term user model and long-
term user model. The short-term user model is to store the results of the pattern
matcher and the long-term user model is to store the history of all violated and
satisfied constraints over multiple critiquing sessions. The pedagogical module takes
input from the short-term and long-term user model. From these user models, it then
decides the specific critiquing methods via the critiquing rules. The critiquing rules

determine which delivery types and communication modes are to be used in certain
83

conditions. For instance, when a designer is recognised as a novice designer, the
pedagogical module will choose ‘demonstration’ delivery type rather than ‘example’
for the reason that novices normally have trouble to use examples in their designs.
After the critiquing method is selected, the critiquer component presents the critique
to the designer. The critiquer component consists of three modules: 1) text critique-
presents written comments, 2) example finder-selects relevant examples, and 3)
graphic critique- highlights relevant furniture parts and draws graphical annotations.
The FFDC tool offers feedback (critiques) in several ways to users based on their
knowledge and previous used feedback. Figure 4.17 shows the mapping of the
FFDC tool to the critic taxonomy. Items in blue represent the element supported by
the FFDC tool.

Critic Education (teaching
Domain: furniture
design)
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation completeness
3-dimension | rule based
visualisation
multi-modal | delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration | evolvability
code
interpretation | presentation
positive tool
feedback
negative experiential
feedback
constructive organisation
feedback
design
pattern
structural
naming
metric

Figure 4.17: The mapping of the FFDC tool to the critic taxonomy.

84

4.4.10 HeRA (Knauss et al., 2009)

Heuristic Requirements Assistant (HeRA) is a feedback centric requirements editor
to support analysts with information based on several feedback facilities (Knauss et
al., 2009). HeRA was developed to assist the requirements analyst with heuristic
feedback. Requirements analysts receive warnings and hints for any detection of
ambiguities or incomplete requirements specification while typing/writing

requirements.

The HeRA tool consists of three editors and two components: 1) general purpose
requirements editor, 2) use case editor, 3) glossary editor, 4) argumentation
component and 5) simulation component. Requirements are constructed using the
three editors and produced domain specific artifacts i.e. requirements, use cases and
a glossary. The HeRA tool lets users argue with the critiques via the argumentation
component. This can help users to clarify their understanding about the requirements
problem and also leads to improved heuristics feedback in future. The simulation
component provides ‘what-if” analysis and derives three models while the user case
is written: UML Use Case Diagrams, EPC Business Processes, and Use Case Points
Estimations. These models can provide extra information (feedback) to the
requirements author regarding the requirements being documented (Knauss et al.,
2009). In HeRA, heuristics rules are defined in JavaScript and can access the data
model of the requirements editor. HeRA also provides wizards that facilitate
requirements author to generate Java script code for a rule. Rules can be changed
and it applied directly. Thus new critiques are shown immediately. HeRA users have
the option to fix or ignore the critiques offered to them. In general, HeRA offers
different levels of feedback to the requirement analyst using the argumentation and
simulation components. Figure 4.18 shows the mapping of the HeRA tool to the

critic taxonomy. Items in blue represent the element supported by the HeRA tool.

85

code

Critic Software (requirements
Domain: engineering engineering)
Critiquing Modes of | Critic Rule | Critic Critic Types of | Types of
Approach Critic Authoring Realisation Dimension | Critic Critic
Feedback Approach Feedback
comparative | textual insert new | rule-based active explanation correctness
critic rule
analytical graphical & | modify critic | knowledge- passive argumentation | completeness
3-dimension | rule based
visualisation
multi-modal delete critic | predicates reactive suggestion consistency
rule
enable/disable | pattern- proactive examples optimization
critic rule matching
critic rule | OCL local simulation alternative
authoring
programming | global demonstration evolvability

interpretation

presentation

positive tool
feedback

negative experiential
feedback

constructive organisation
feedback

design
pattern

structural

naming

metric

Figure 4.18: The mapping of the HeRA tool to the critic taxonomy.

4.4.11 Summaries of Comparison

We map the properties and features identified in the above surveyed tools to our
critic taxonomy. There are eight elements in the critic taxonomy and we have
developed eight tables (Table A -Table H) to correspond to each element. The
following eight tables present the application of the critic taxonomy to the ten
systems and tools. If a table entry appears to be empty then it means either it is not

stated in a paper describing the tool or not available in the tool as we experimented

with it.

86

Table A: Critic domain

Critic tools Critics domain

ArgoUML Software engineering-UML designs
(2000)

ABCDE- Software engineering-UML class diagrams

Critic (2000)

IDEA (2000) Software engineering- design patterns

RevJava Software engineering-Java coding

(2003)

DAISY (2003) | Software engineering-feature diagrams and class
diagrams

Java Education-teaching Java coding

Critiquer

(2003)

Design Design engineering-design sketching (floor plans and

Evaluator web pages)

(2004)

ClassCompass | Education-teaching UML class and sequence diagrams

(2007)

FFDC (2009) | Education-furniture design

HeRA (2009) | Software engineering -requirements engineering

As we mentioned earlier critics can be applied in various domains. We selected
randomly ten systems and tools that employ critics described in papers ranging from
the year 2000 to 2009. The year represented for the system/tool is based on the
published paper about the system/tool.

Table A shows there are six tools from the software engineering (SE) domain, three
tools from the education domain and one tool from the design
engineering/architecture domain. The six tools from the SE domain involve critic
domains which are either similar or different to each other. Critics domain for this
six tools are: 1)ArgoUML is on UML designs, 2) ABCDE-Critic is on UML class
diagrams, 3) IDEA is on design patterns, 4) RevJava is on Java software, 5) DAISY
is on domain engineering models (feature diagrams) and application engineering
models (class diagrams), and 6)HeRA is on requirements engineering. There are
three education tools, but two of them focus on the SE domain. The critics domain

for these three tools are: 1) Java Critiquer is on Java program/ source code, 2)

87

ClassCompass is on software design (UML class diagrams and sequence diagrams),
and 3) FFDC is on furniture design. These three education tools support the students
and instructors in a learning environment. Finally, the critics’ domain for the design
engineering/architecture tool, Design Evaluator is on design sketching (i.e.

architectural floor plan and Web page layout design).

Table B: Critiquing approach

Critic tools/ Critiquing Approach | Comparative | Analytical
ArgoUML (2000) N
ABCDE-Critic (2000)
IDEA (2000)

RevJava (2003)

DAISY (2003)

Java Critiquer (2003)
Design Evaluator (2004)
ClassCompass (2007)
FFDC (2009) N
HeRA (2009) N

2] 2 2] 21 <] 2] 2]

The critiquing approach is the way that a system/tool uses to generate valid
reasoning to detect any potential problems/mistakes/errors in the user’s work or
design solution. A finding from Table B is that most tools preferred to use the
analytical approach. Thus, by using analytical critiquing, the system/tool designer
would not require to incorporate comprehensive/complete domain knowledge into

their tools in order to generate a solution for the user’s work or design solution.

88

Table C: Modes of critic feedback
Critic tools/ Modes of Critic Feedback | Textual Graphical & | Multi-modal (e.g.

3-dimension sound, animation,

visualisation | & movies)
\/

\/

ArgoUML (2000)
ABCDE-Critic (2000)
IDEA (2000)

RevJava (2003)
DAISY (2003)
Java Critiquer (2003)

Design Evaluator (2004)
ClassCompass (2007)
FFDC (2009)

HeRA (2009)

2] 2] 2] 2] 2] 2 2 21 2| 2]

The mode of critic feedback (critiques) concerns the format of feedback to be
displayed for users. From Table C we see that most tools applied the textual, and
graphical and 3-dimension visualisation format to present the critiques. Three tools
only use textual format to present critiques to their users: IDEA, Java Critiquer and
HeRA. The Design Evaluator and FFDC have augmented their critiques modes via
3D visualizations. We believe that displaying visual and textual critiques is expected
to be more effective than selecting only one single mode. Though all the above tools
does not applied the ‘multi-modal element’ but it can be considered for future

use/work. Furthermore, it is an advantage to offer critiques in various modes.

89

Table D: Critic rules authoring

Critic tools/ Rule | Insert Modify Delete Enable/disable | Critic rule

Authoring new rule | rules rules rules authoring
facility

ArgoUML (2000) N ~ |

ABCDE-Critic (2000) N N N J 7

IDEA (2000) v v 3 N]

RevJava (2003) N

DAISY (2003) N N N N N

Java Critiquer (2003) N N N J 7

Design Evaluator (2004) \/ N N 7

ClassCompass (2007)

FFDC (2009)

HeRA (2009) N N N | |

The capability of critic rules authoring refers to the ability to allow users to: 1)
insert or add new critic rules, 2) modify or edit critic rules, 3) delete or remove
critic rules in the system/tool. This also includes a function to allow users to enable
and disable the execution of critic rules incorporated in the system/tool. The main
part in rules authoring is the facility to let the users author and store their own
critic rules in the system/tool. Findings from Table D, shows that FIVE tools
provide the five functions listed in the table: ABCDE-Critic, IDEA, DAISY, Java
Critiquer, and HeRA. ArgoUML allows the end user to enable/disable rules but
new rules have to be added using Java by a tool developer. The Design Evaluator
allows the end user (designer) to inspect and edit the rules, but a function to enable
and disable critics is not provided in the tool. In contrast to RevJava, which allows
the users to enable and disable critics via its menu option. However RevJava does
not provide the ability for users to add and edit critic rules, as well as facility to
author critic rules. Two tools that do not provide these kinds of facilities are
ClassCompass and FFDC. This is because the critic rules are written in advance by
the system/tool designers to develop the system/tool and the facilities to customize
the critic rules are not provided to the users to perform any changes to the critic

rules.

90

Table E: Critic’s realisation approach

Critic tools/ Critic’s | Rule- | Knowledge- | Predicates | Pattern- | OCL Programming
realisation approach | based | based matching code
ArgoUML (2000) N N
ABCDE-Critic v N
(2000)

IDEA (2000) N N

RevJava (2003) v
DAISY (2003) N N
Java Critiquer N N
(2003)

Design Evaluator N N N
(2004)

ClassCompass N N
(2007)

FFDC (2009) N N N
HeRA (2009) N

Critics’ realisation approach refers to how critics are implemented or specified in a

system/tool. Literature regarding critics shows that there are several ways to specify

and implement critics. Findings from Table E are that most systems/tools implement

critics via programming code. Rule-based and pattern-matching are another widely

used approach to specify critics. Furthermore, most systems/tools apply more than

one approach to implement critics. OCL is widely used in meta-modelling tools to

specify tool constraints and it can be used to specify critics as reported by Bezivin

and Jouault (2006). However due to the fact that the selected tools are not a meta-

modelling tool, OCL has not been used as an approach to implement critics. A

number of software engineering tools do provide OCL-based critic implementations
(Grundy et al., 2008).

91

Table F: Critic dimensions

Critic tools/ Critic | active | passive | reactive | proactive | local | global
dimension

ArgoUML (2000) N N N
ABCDE-Critic v v N N

(2000)

IDEA (2000) N N
RevJava (2003) N N N

DAISY (2003) N N N N
Java Critiquer N N

(2003)

Design Evaluator | < N

(2004)

ClassCompass N N

(2007)

FFDC (2009) N N

HeRA (2009) N N N

Critic dimension is one of the aspects that critic designers need to consider when
adopting critics in their system/tool. Findings from Table F are that most tools apply
active and passive critics. The Design Evaluator only provides active critics when
any design sketching activities triggers a critic. Java Critiquer prefers to use passive
critics, as they want students to learn from mistakes when they code their Java
programs. Three tools provide the proactive critics to their users: ABCDE-Critic,
IDEA and HeRA. All tools provide local critics and two tools (i.e. DAISY and
HeRA) offer global critics.

92

Table G: Types of critic feedback

Critic tools/ Types of Explanations | Argumentations | Suggestions | Examples | Interpretations | Positive Negative | Constructive Simulation | Demonstration
critic feedback feedback | feedback | feedback

ArgoUML (2000) N N N N

ABCDE-Critic (2000) N N N

IDEA (2000) N N

RevJava (2003) N N

DAISY (2003) N N N

Java Critiquer (2003) N N

Design Evaluator N N N N N

(2004)

ClassCompass (2007) \/ N N

FFDC (2009) v v v v v v v
HeRA (2009) N N N

The Type of critic feedback refers to the techniques used to present critic feedback to users. The term critic feedback is also known as feedback
or critique. When a critic is triggered to show that there is a potential problem in user’s work/solution, critic designer have to consider
appropriate techniques to present the critic feedback (critique) to the user. Findings from Table G are that various techniques are employed to
present a critic feedback to the user. The most common techniques applied in all tools are explanations, suggestions and argumentations.
However, a few tools add the richness/power of critic feedback in the form of constructive feedback, positive and negative feedback, examples,
interpretations, simulation and demonstration. Tools that provide multiple critic feedbacks to users are: ArgoUML, Design Evaluator, FFDC, and
HeRA.

93

Table H: Types of critics

Critic tools/ Correctness Completeness | Consistency Optimisat | Alterna | Evolvabi | Presenta | Tool Experienti | Organi | Design Structural Naming Metric
Types of ion tive lity tion al sation pattern
critic

feedback
ArgoUML Vv v v
(2000)
ABCDE- V' Vv
Critic
(2000)
IDEA ' v Vv
(2000)
Revlava ' v v
(2003)
DAISY v v \'
(2003)
Java V' Vv
Critiquer
(2003)

Design \ V'
Evaluator
(2004)

ClassComp ' v v v
ass (2007)
FFDC \ \
(2009)
HeRA v \'
(2009)

The types of critics refer to the type of critics that are offered by a system/tool to their users. Findings from Table H are that most tools offered
correctness and completeness critics. DAISY, FFDC and HeRA tools provide consistency critics. Tool critics are offered by the ArgoUML and
pattern critics are offered by the IDEA tool. The ClassCompass presents structural, naming and metric critics. The types of critics depend on the
critic domain defined by a system/tool. For that reason, appropriate and relevant critics have to be designed by the critic designer to incorporate

in the system/tool for the user benefit.

94

4.5 Conclusion

We proposed and illustrated a new critic taxonomy based on several aspects that
characterize critics (or critiquing systems). These aspects are gathered widely from
the critic literature. Our critic taxonomy identifies eight groups: critic domain,
critiquing approach, modes of critic feedback, critic rule authoring, critic realization
approach, critic dimension, types of critic feedback, and types of critic.

The utility of our critic taxonomy is manifold: to provide an overview of critic
research, to identify and distinguish key critic elements, and to recognize techniques
or methods applied in critics. We believe that this taxonomy provides meaningful
way of describing and reasoning about critics. We also believe that our critic
taxonomy is useful in guiding the critic developer towards realizing robust critic
capabilities by comparing and contrasting different critic dimensions. We have
applied our taxonomy to ten tools that have critic support. The mapping of the tools
to our critic taxonomy shows that the practice of critics is supported by the critic

taxonomy.

Providing users with a facility to author or customize critic rules is a useful element
to be considered. Realising that critiquing capacity and issues may change from time
to time, it is worth allowing users to author or customise (add, delete, modify) their
own critic rules for a particular critic domain. However, some kinds of critic tools,
critic rule approaches, tool users and domains are more amenable to this than others.
Type of critic feedback appears to be another useful element as it shows the range of
techniques that can be applied to present critic feedbacks to users. Furthermore, this
element is related to the critiques modes. Conventional critics normally provide only
a textual critique but realising the benefit of combining several modes in presenting
critiques has augment the visual or graphical critiques and 3D visualizations
critiques in critic tools and systems.

The critics’ implementation element facilitates tool developers in applying an
appropriate approach to realise their critics. Each approach has pros and cons in
specifying critics which a critic designer has to take into account. How critics are
implemented closely relates to the critiquing approach used in the system. Thus

carefully considering the critiquing approach is also a useful dimension that assists

95

the critic designer in deciding either comparative, analytical or both approaches be
used in critic’ development.

Critic dimensions are another element that can guide the critic designer in building a
critic tool. A critic either provides intervention strategies, activation strategies or
timing strategies. The results of mapping the ten tools with this element suggested
that there are ranges of critic dimensions that can be used in enhance/improve critic
development.

Critic types from the taxonomy are also helpful in guiding what type of critics that
can be considered by a critic designer apart from the common critic types i.e.
correctness and completeness critics. Thus, critic designers may consider
incorporating other types of critics in a system.

Finally, though we selected only ten tools to present in our taxonomy application
example, and most of these are from the software engineering domain, our critic
taxonomy is applicable to critics in other domains. We showed this through

characterising the Design Evaluator, FFDC, ClassCompass and Java Critiquer tools.

96

Chapter 5
A Visual and Template-Based
Approach for Critic Specification

This chapter explains our visual and template-based approach for the critic-
authoring task of a domain-specific visual language (DSVL) tool. This chapter
begins by introducing the concepts and approaches used for our critic specification
research. We introduce the visualization concept followed by the visual notations
designed for our critic specification tool. Then we describe the template-based
approach, followed by the business rule templates and critic templates. We also
explain the concept of authoring and the approach of template-based authoring for
critics. In the last section, we present an analysis of the design of our critic

specification editor using Moody’s Physics of Notations principles (Moody, 2008).

5.1 Introduction

The concepts of critiquing, visual representation, and templates are not new. These
three concepts have been applied in various software development activities for
various domains. The concept and use of critics (or critiquing) has been explained in
the previous chapters (i.e. Chapter TWO and FOUR). The concept and application
of a visual approach and a template-based approach is explained in the following
section as we describe the design of our critic specification approach for domain-
specific visual language (DSVL) tools. These concepts have formed the basis of our
visual and template-based critic specification tool.

5.2 Visual Specification Approach

Visualization approaches are increasingly prevalent in modern software engineering.
Many visualization research studies have been carried out, such as visual
representations (Barton & Barton, 1987; G. L. Lohse, Biolsi, Walker, & Reuter,
1994; J. Lohse, Reuter, Biolsi, & Walker, 1990), diagrammatic representations

97

(Catarci, Massari, & Santucci, 1991; Gurr & Tourlas, 2000), visual environments
for visual languages (Bardohl, 2002), visual notations (Costagliola, Lucia, Ferrucci,
Gravino, & Scanniello, 2008; Moody, 2008) and others. However, the details of this
body of research are not discussed in this chapter. The key elements that we are
concerned for are the application of the visual approach and how it motivates and

guides us in our critic specification development.

Before presenting and explaining the chosen visual approach, one should understand
a few definitions of visualization in general. McCormick, DeFanti, and Brown
(McCormick, DeFanti, & Brown, 1987) define visualization as the study of
mechanisms in computers and in humans which allow them in concert to perceive,
use, and communicate visual representation.” They suggest that visualization
includes the study of both image understanding and image synthesis (McCormick, et
al., 1987). Petre and Quincey (2006) view visualization as “the graphical (or semi-
graphical) representation of information in order to assist human comprehension of
and reasoning about that information.” A similar definition of visualization is also
provided in Guimaraes et al. (2008) where visualization is termed as “a process of
transforming information into a visual form to help users to understand its
meaning.” Guimaraes et al. (2008) point out that visualization offers a visual
interface between two main information processing systems: the computer and
human. Their research involves the development of visual approaches to support the
information communication between human and computer through direct
manipulation (Guimaraes, Neto, & Soares, 2008). Thus, it is very clear from these
definitions that the key aspects in visualization are:

1) to represent data and information visually;

2) to support the interaction between humans (users) and computers via a visual

approach; and

3) to facilitate human (user) understanding through a visual approach.

There are many aspects that should be considered when developing a system or an
application that incorporates visualization. Some of these include: visual

techniques/methods; visual representations; visual notations; visual data,

98

information and knowledge; visual languages; and many others. Some of these

aspects are addressed in our critic specification development.

Lohse et al. (1994) consider visual representations as data structures for expressing
knowledge. In their research, Lohse et al. (G. L. Lohse, et al., 1994; J. Lohse, et al.,
1990) have identified six basic categories of visual representations: graphs, tables,
maps, diagrams, networks and icons. According to Lohse et al. (1990, 1994) visual
representations contain semantic information that communicates a purpose or
graphical message. Visual representations carry no meaning without the translation
processes that interprets the visual representation. There have to be rules to interpret
features of visual representations (G. L. Lohse, et al., 1994; J. Lohse, et al., 1990).
From the six categories, diagrams and icons are two categories that are related to our

research.

A diagram is a sentence in a graphical language (Mackinlay, 1986) that can describe
the structure of physical objects, interrelationships and processes associated with
them (J. Lohse, et al., 1990) . Lohse et al. (1990) define structure diagrams as a
static description of reality and process diagrams that express dynamic
interrelationships among components of the diagram. According to Gurr (2001),
diagrams are well-accepted, because many users realize that diagrams are more
readily accessible compared to other forms of representation. Furthermore, Moody
(2006) emphasizes that a good diagram is one which communicates effectively and
is believed to be more effective than text for interacting with end users (Moody,
2006). Thus, Gurr (2000) points out that an effective diagram is normally the one
that is “well matched” to what it represents. In general, the most effective diagrams
are those which are very simple (Barton & Barton, 1987; Gurr & Tourlas, 2000). An
example of a diagrammatic form is the popular UML diagram that consists of 13
types of diagrams (or models), all of which are represented in a graphical form.

Another type of visual representation is icons, which can convey a general
understanding or meaning for a picture (J. Lohse, et al., 1990). Lohse et al. (1990)
suggest that each icon assigns a unique label for a visual representation. Catarci et

al. (1991) also gives a similar view about icons. According to Catarci et al. (1991),

99

icons are mainly used to represent a pictorial symbol of an object or an abstract
concept which sometimes can involve an action. lcons that represent objects are
easily understood because they are a stylized imitation of the real-world objects.
Icons that represent actions and processes are generally harder to understand because
they are more abstract (Catarci, et al., 1991). Thus, to present an effective icon, it
should be clearly understandable by the majority of the users (Catarci, et al., 1991; J.
Lohse, et al., 1990). Examples are the universal set of traffic icons and the icons
used to represent several services and locations in an airport. However, as Catarci et
al. (1991) point out, users can tailor their own icon shape based on their specific
requirements and mental representation of the tasks and methods they want to carry

out.

Visual and diagrammatic representations play a central role in several application
domains since they are recognised to be important tools for describing and reasoning
(Costagliola et al, 2008). Their employment allows us to improve productivity of
expert and non-expert users in several application domains. This is because they
provide a means to easily capture and model difficult concepts. This visual approach
is advantageous due to the reduction of mental load and the immediate availability
of descriptions of the computation processes and their interrelationships (Catarci, et
al., 1991).

For these reasons, we have been motivated to develop our critic specification
approach for DSVL tools with visual and diagrammatic representations.
Additionally, we wanted to add our critic specification support to a Domain-Specific
Visual Language (DSVL) meta-tool, Marama, which itself extensively employs
visual notations to specify DSVL tools. Thus choosing a visual specification
approach for critics allows us to leverage benefits of visual approaches to
specification and to seamlessly integrate our critic designer into the Marama toolset.
The next section explains the visual notation aspects that comprise in the visual and

diagrammatic representations of our critic specification tool.

100

5.2.1 Visual Notations Used by the Critic Specification Editor

We introduce a few definitions of visual notations before explaining the visual
notation of our critic specification editor. Visual notations have played a significant
role in communicating with end-users, as they are believed to express information
more effectively to non-technical users than text (Moody, 2008). There are several
definitions of a visual notation. However, we only choose the definition of a visual
notation from (Costagliola et al, 2004) and (Moody, 2008). According to Costagliola
et al. (2004) a visual notation “is a visual language, since it is formed by a set of
visual symbols from an alphabet and a set of feasible visual sentences over these
symbols.” Whereas Moody (Moody, 2008) describes the visual notation as “a visual
notation (or visual language, graphical notation, diagramming notation) consists of
a set of graphical symbols, a set of compositional rules for how to form a valid

visual sentences, and definitions of their meanings (visual semantics).”

We applied an incremental approach towards the development of a new critic
specification editor for the Marama meta-tools and this has resulted in several
developments/improvements of prototypes (this is explained in the following
chapters- Chapter SIX and SEVEN). However, for conciseness and simplicity this
section only describes the final prototype of our critic specification editor.

In this section, we describe the visual notation of the critic specification editor that
we call the “Marama Critic Definer view”. This new designer has been developed to
allow end-user developers to specify and generate Marama DSVL tool critics. The
critic specification editor is an extension to our existing Marama meta-tools
(Grundy, et al., 2008). Using it, end user tool developers can specify and generate
tool critics more efficiently and easily than using Marama’s existing facilities of

OCL and/or Java-based event handlers.

There are seven items provided by the editor to support critic specification. The
symbols used in the critic specification editor include CriticShape,
CriticFeedbackShape, Operator, CriticFeedbackConn, CriticDependencyLink,
OperatorConn and OperatorCriticFeedbackConn as shown in Figure 1. There are

three shapes and four connectors to represent visually the critic specification. The

101

three shapes are: 1) CriticShape represented by an orange rounded square shape, 2)
CriticFeedbackShape represented by a green oval shape, and 3) Operator
represented by a grey diamond shape. The four connectors are: 1)
CriticFeedbackConn represented by a black arrow line that connects critic (s) and
feedback, 2) CriticDependencyLink represented by an orange arrow line that links
two critics, 3) OperatorConn represented by a grey line linking two critics and an
operator, and 4) OperatorCriticFeedbackConn represented by a black arrow line
linking operator and feedback. The editor’s toolbar comprises seven icons to
represent the shapes and the connectors. This is shown in the left side of the diagram
in Figure 5.1.

The visual notations of the critic specification editor represent key elements in the
meta-model that was defined for our critic specification tool. These critic meta-
model entities, attributes and associations were defined based on our initial critic
taxonomy creation. However, not all elements in the critic taxonomy are used to
define the meta-model. We only selected the necessary elements to describe the
critic specification task that we want to incorporate in the Marama meta-tools. The
meta-model could be extended in future to incorporate more of our critic taxonomy
features. Figure 5.2 shows the new meta-model defined for our Marama critic
specification tool.

k Select
E::_ Marquee
k Sketching tool
= Shapes €0

CriticShape
CriticFeedbackShape

‘z Operator
Critic2
= Connectors 0

Criticl

deperdson

cr—prb CriticFeedbackConn

cr CriticDependencyLink Critic3

~® OperaterConn
Op—mFb OperatorCriticFeedbackConn

Critic4

Figure 5.1: Visual notations of the visual critic specification editor:
toolbar (left side) and diagram (right side)

102

CriticShape
name String key
CriticID String nonkey
critictype String nonkey
entity String nonkey
entityl String nonkey
entity2 String nonkey
attributeTerm String nonkey

CriticFeedbackShape
name String key
FeedbackID String nonkey
criticStrategy String nonkey
modalitiesof Critiques String nonkey
explanation 5tring nonkey
suggestion String nonkey
criticMessage String nonkey

attributeTerml String nonkey
attributeTerm2 String nonkey
relationalOperator String nonkey
value String nonkey

cardinality String nonkey
cardinalityEntityl String nonkey
cardinalityEntity2 String nonkey
role String nonkey

“ CriticShape_CriticFeedbackShape J "Operator,CriticFeedbackShapeJ

kaitiakienabler String nonkey
association String nonkey

event String nonkey

condition String nonkey | Operator

CriticShape_Oper...

action String nonkey type String nonkey

ll CriticShape_CriticShape J

Figure 5.2: Meta-model defined for a critic specification tool

Generally, the core elements that end user tool developers should know when it
comes to specifying critics for a DSVL tool are critic and critic feedback (fix
action). These two elements are then presented to the tool users. The critic element
contains information/statements regarding to detected errors, such as structural
incorrectness, structural incompleteness, and constraint violations, whereas the critic
feedback is about the suggestion to resolve the detected errors. Thus, end user tool
developers should be able to recognise the sort of critics to be defined for their
DSVL tool. The critic specification task involves the definition of a critic and also
the critic feedback (suggestion to fix the problem identified by the critic). We
explain the critic specification task through the icons that were designed for the

critic specification editor.

The function of a CriticShape icon is to specify and define a critic. We use a
mnemonic, Cr to mean ‘critic’ and this can help the end user tool developers to
remember easily the function of the icon. Similar styles are used for the other icons.
Once a critic has been specified and defined, the next step is to define a critic
feedback, i.e. a suggestion to fix the critic. Thus, the CriticFeedbackShape icon with
a mnemonic, Fb to denote ‘critic feedback’ is selected to specify the necessary fix
action for the particular critic. However, the specification of a critic and a critic

feedback involves an association with form-based interfaces that need to be filled in
103

by the end user tool developers. The critic element is associated with a critic
authoring template designed in a form-based interface. The critic authoring template
is discussed in the following section. Similarly, the critic feedback element has a
link to a form-based interface in order to specify the critic feedback. To support end
user tool developers to specify more than just simple critics, we provide a logical
operator that consists of OR, AND, and XOR to link between two critics. These two
critics possibly have/share the same critic feedback. Thus, we design an operator
icon, Op to hold these logical operators value-OR AND XOR. These elements are

shown in Figure 5.3 (on the first row).

A specified and defined critic should be connected to a critic feedback. The
CriticFeedbackConn icon is designed to implement this connection. Hence, for
every critic that has been specified and defined it will have a solution to fix the
problem specified by the critic. In a situation where a critic can be dependent on
another critic, in order to show the critic execution sequence we have created a
CriticDependencyLink icon to represent this. Since we have created an operator icon
to link two critics and with a feedback, we need to have connectors that can realize
this situation: the OperatorConn icon and OperatorCriticFeedbackConn. The four

connectors are shown in Figure 5.3 (on the second row).

CriticShape CriticFeedbackShape Operator

CriticFeedbackConn | CriticDependencyLi | OperatorCon | OperatorCriticFeedbackCo

Cr—Fhb c n ;. o Fb
" nk — nn T *

Figure 5.3: Icons for the critic specification editor

5.3 Template-Based Approach

A template is defined in the online Cambridge dictionary as “something that is used
as a pattern for producing other similar things.” However, the meanings of the term
template from a researcher’s point of view are numerous. We quote here, some of
the definitions of a template from several studies. In 2003, Czarnecki and Helson

published an article in which they described model transformation approaches. They

104

described template-based approaches as one of the methods to perform the model-to-
code transformation (Czarnecki & Helson, 2003). They state a template “usually
consists of the target text containing splices of meta-code to access information from
the source and to perform code selection and iterative expansion”(Czarnecki &
Helson, 2003). In another study by Xiyong and Xingwang (2006), they proposed a
template-based approach for the mass customization of service-oriented e-business
applications (Xiyong & Xingwang, 2006). They define a template as“ a nearly
complete application where the completed parts include an application’s architecture
and reusable components.” (Xiyong & Xingwang, 2006). They claimed that the use
of a template-based approach has reduced the complex development of the e-
business applications. A recent study by Hill et al. (2010) defines a template as “an
abstraction that captures the fixed and variable portions of a context,”(Hill, Gokhale,
& Schmidt, 2010). They presented four template patterns for improving testing and
experimentation (T&E) configurability and scalability for enterprise distributed real-
time and embedded (DRE) systems (Hill, et al., 2010).

Although these definitions of a template come from only three studies, a template-
based approach is in fact widely employed in numerous research domains. The
usage of the template-based approach in various application domains helps users to
use their application context in an easy way (Czarnecki & Helson, 2003; Hill, et al.,
2010; Xiyong & Xingwang, 2006). This has motivated us to apply a template-based

approach for our critic specification task.

This section introduces the template-based approach we used which helps end user
tool developers to perform the critic specification task. However, before we describe
our critic authoring templates, we first introduce business rule (BR) templates
(Loucopoulos & Kadir, 2008) from the business process domain. The introduction
of this template is necessary as it has inspired us to adapt its concept to the critic

authoring domain.

105

5.3.1 Introduction to Business Rule Templates

There has been an increasing interest in using business rules modelling in software
development environments. Various approaches of business rule modelling exist
today (e.g. BROCOM (Herbst, 1997), BRG (Hay & Healy, 2000),
BROOD(Loucopoulos & Kadir, 2008), etc). However, the one which has motivated
our research in specifying critics for DSVL tools is the Business Rules-driven
Object Oriented Design (BROOD) approach (Loucopoulos & Kadir, 2008).

The BROOD approach proposes simple templates for specification of a restricted
typology of business rules and a simple object-oriented development process that
improves UML by allowing for business rules as an integral part of an object-
oriented development (Loucopoulos & Kadir, 2008). The BROOD process is
supported by a tool which was developed on top of the Generic Modelling
Environment (GME). The BROOD metamodel and business rule (BR) templates
were applied to implement the BROOD tool environment. The BROOD metamodel
is complemented by a language definition based on the context-free grammar EBNF.
EBNF is a meta syntax notation used to express context-free grammar: that is, a
formal way to describe computer programming languages and other formal
languages (Wang, 2009). The details of the BROOD approach can be found in
(Loucopoulos & Kadir, 2008). Loucopoulos and Kadir (2008) described several
concerns with the BROOD approach in their published article (Loucopoulos &
Kadir, 2008). However, one of the concerns that has motivated our research in
specifying critics for DSVL tools is the BR templates.

Business rule templates come from the business rule typology and consist of three
main types: constraint, action assertion and derivation (Loucopoulos & Kadir, 2008).
The definition and brief description of these three types is shown in Table 5.1 below.

106

Table 5.1: Definition of constraint, action assertion and derivation (adopted
from BROOD approach (Loucopoulos & Kadir, 2008))

Type Definition and description

Constraints “... specify the static characteristics of business entities,
their attributes, and their relationships. They can be further
divided into attribute and relationship constraints. The
former specifies the uniqueness, optionality (null), and value
check of an entity attribute. The latter asserts the
relationship types, as well as the cardinality and roles of
each entity participating in a particular relationship.”
(Loucopoulos & Kadir, 2008)

Action Assertion “...concerns a behavioral aspect of the business. Action
assertion specifies the action that should be activated on the
occurrence of a certain event and possibly on the satisfaction

of certain conditions.” (Loucopoulos & Kadir, 2008)

Derivation “...derives a new fact based on existing facts. It can be of
one of two types i.e. computation, which uses a
mathematical calculation or algorithm, to derive a new
arithmetic value, or inference, which uses logical deduction
or induction to derive a new fact.” (Loucopoulos & Kadir,
2008)

The BROOD approach provides rule templates to allow the expression of business
process rules in the business process domain. The rule templates are a formal
sentence pattern that act as a guideline to capture and specify business rules
(Loucopoulos & Kadir, 2008). Loucopoulos and Kadir (2008) also claim that rule
templates offer a way to structure business rule statements. Furthermore, language
templates identify the acceptable sentence patterns for business rules statements and
express the elements linking business rules and related software design elements
(Loucopoulos & Kadir, 2008). In general, rule templates are applied to business
process meta-model elements to constrain the target business process model
instances.The BR templates that correspond to the three types of business rule
typology are shown in Table 5.2.

107

Table 5.2: Business rule templates (Loucopoulos & Kadir, 2008)

Types Templates

Attribute <entity> must have | may have a [unique] <attributeTerm>
Constraint <attributeTerm1>must be | may be <relationalOperator> <value> | <attributeTerm2>

<attributeTerm> must be in <list>

Relationship | [<cardinality>]<entityl> is a/an <role> of [<cardinality>]<entity2>
Constraint [<cardinality>]<entityl> is associated with [<cardinality>]<entity2>
<entityl> must have | may have [<cardinality>]<entity2>

<entityl> is a/an <entity2>

Action When <event> [if <condition>] then <action>

Assertion The templates of <event>:
<attributeTerm> is updated
<entity> is deleted | is created
<operation>|<rule> is triggered
The current date/time is <dateTime>
<number><timeUnit>time interval from<dateTime> is reached
<number><timeUnit>after<dateTime>
<userEvent>

The templates of <condition>:
<attributeTerm1><relationalOperator><value | attributeTerm2>
<attributeTerm> [not] in <list>

The templates of <action>:
trigger <process> | <operation> | <rule>
set <attributeTerm> to <value>
create | delete <entity>

<userAction>

Computation | <attributeTerm> is computed as <algorithm>

Derivation If <condition> then <fact>
The templates of <fact>:
<entity> | <attributeTerm> is [not] a <value>

<entity> may [not] <action>

Inspired by the BROOD approach we have attempted to utilize the BR templates
concept in the software tool domain, specifically for our critic specification editor.

This was due to the following reasons (Loucopoulos & Kadir, 2008):

108

e The templates use a language definition based on the context-free grammar
EBNF that defines sentence patterns for rule statements;

e The templates use natural language that is easily understood to represent the
rules;

e The templates provide guidance for users to help determine the rules;

e The available templates assist the inexperienced user to easily produce
consistent rule statements;

e The templates provide a way to construct the rule statements;

e The templates facilitate the linking of rule statements to software design

elements.

Inspired by the BR templates approach we adapted this concept to apply it to the
critic specification domain, forming a set of reusable critic templates. However, it is
essential to note here that not all of the defined BR templates are used for our critic
specification purposes. We explain our critic templates in the following section.

5.3.2 Critic Authoring Templates

The motivation for our research in specifying critics for DSVL tools is to provide a
development environment whereby tool/end-user developers are supported by Critic
Authoring Templates (CATSs) by facilitating/supporting simple and more effective
critic authoring task.

Our approach to supporting the critic-authoring task is to adapt the concept of
“business rule templates™ to critic authoring. We took this approach because it has
some common points with our research efforts, i.e. development of modelling
environments tailored for specific domains and the properties defined in the
“business rule templates” match with the description of Marama metamodel
elements which is expressed using the Extended Entity Relationship (EER)
descriptions. We also chose the BR templates approach to allow end users with
limited programming capability to define and author critics for software tools much
more easily than using OCL expressions and Java event handlers in Marama.

109

According to Ginige et al. (1995), authoring “involves identifying structure for the
information that supports appropriate accessibility and manipulation.” (Ginige,
Lowe, & Robertson, 1995) The term authoring also refers to the process of creating
and save the information in a proper manner (Ginige, et al., 1995). With that, we
define our critic authoring as a process of specifying and defining a critic and then
saving it in a proper way that provides for accessibility and manipulation. This
requires adopting suitable approaches for generating these critic structures. As we
mentioned previously, we adapted the “business rule templates” approach to our
critic authoring templates. We created a simplified set of Critic Authoring Templates

(CATS) that allows easier input of critic rules into a DSVL tool environment.

Our CATs are applied to a target DSVL tool’s metamodel to constrain and/or reason
about its target model instances. Our CATSs do not utilize the complete BR templates
approach; they only consist of two types: constraint templates and action assertion
templates. Constraint templates specify desired or undesired states of models while
action assertion templates specify what to do when an undesired state is detected
(including critique generation and possible resolution actions). CATSs can be chained
together to specify complex patterns over a meta-tool’s model instances and
complex critique/resolution strategies. Constraint templates are further divided into
two types: attribute constraint and relationship constraint templates. The former are
used to specify desired or undesired properties around uniqueness, optionality (null),
and value check of an entity’s attributes (Loucopoulos & Kadir, 2008). The latter
assert the relationship types, as well as the cardinality and roles of each entity
participating in a particular relationship (Loucopoulos & Kadir, 2008). Chaining a
mixture of attribute and relationship templates together allows a tool designer to

specify complex detection patterns over their tool meta-model.

Action assertion templates specify an action to be activated on the occurrence of
certain event or on the satisfaction of certain conditions. These include critique
message generation for the tool user and/or “fix up” operations to apply to resolve

detected design problem(s). These templates are shown in Table 1.

110

Table 5.3. Critic Authoring Templates-constraint and action assertion
templates (Loucopoulos & Kadir, 2008).

Types Templates

Attribute <entity> must have | may have a [unique] <attributeTerm>
Constraint <attributeTerm1>must be | may be <relationalOperator> <value> |

<attributeTerm2>

Relationship | [<cardinality>]<entityl> is a/an <role> of [<cardinality>]<entity2>
Constraint [<cardinality>]<entityl> is associated with [<cardinality>]<entity2>
<entityl> must have | may have [<cardinality>]<entity2>

<entityl> is a/an <entity2>

Action When <event> [if <condition>] then <action>

Assertion

In Marama, a domain-specific visual language tool meta-model is expressed using
an Extended Entity Relationship (EER) diagram which specifies entities and
relationships, together with their attributes. When the meta-model is equipped with
sufficient information, a critic can be specified via CATs. Thus, each of the
templates has a range of properties that specify the meta-model elements and
associations they refer to, critique message(s) to generate for the tool user, and
model update operations that need to be performed to resolve problems.

To support the critic authoring task, we have designed a form-based interface to
represent the CATSs. This form-based interface allows easier input of critic templates
into a DSVL tool environment. The association of critic templates with the
corresponding tool meta-model element is shown in Table 5.4, whereas the form-
based interface to support the critic authoring task in shown in Figure 5.4. The usage
of the CATSs in a DSVL tool, specifically our Marama metatools are described and
illustrated in Chapter SEVEN and Chapter EIGHT.

Table 5.4: Association of critic template properties with the tool meta-model

Critic template properties Tool meta-model elements
<entity> Entity

<attributeTerm> Attribute

<cardinality> end1Multiplicity, end2Multiplicity
<role > associationEndName

111

3 Critic Construction View &3

Attribute Constraint Templates

Select Attribute Constraint Template: -
entity: ~

association: =

attributeTerm: -

attributeTerml: -

attributeTerm2: -

role:
relationalOperator: -
logicalOperator: -

value:

Relationship Constraint Templates

Select Relationship Constraint Template: -
entityl: -

attributeTerm: b

entityz: -

attributeTerml: i

association: -

cardinality: b

cardinalityEntityl: b

cardinalityEntity2: b

Action Assertion Templates

Select Action Assertion Template: -

event: -

Figure 5.4: A form-based interface to represent the critic authoring templates

5.4 Visual and Template-based Critic Specification for
DSVL tools

The combination of the concepts explained in the previous sections results in our
combined visual (high level) and template-based (lower level) approach for
specifying critics for DSVL tools. Thus, to achieve a ‘simple’ representation (Barton
& Barton, 1987) and an ‘intuitive’ representation (Gurr & Tourlas, 2000), we have
defined the following requirements for our tool to allow its application in DSVL
tools (in our case the Marama meta tools):

1. Simple and intuitive critic specifications, with the necessary

constructs/abstractions for the specification of critics;

112

2. Simple and intuitive critic feedback specifications, with the necessary

constructs/abstractions for the specification of critic feedbacks;
3. Simple and intuitive representations in specifying complex critics;

4. Simple and intuitive visual critic specification notation and environment,
embedded within a DSVL tool (Marama meta-tool);

5. Simple reuse of common critics and feedbacks, to avoid repeating

specification of similar critics for different domains.

The application and examples of this visual and template-based approach for our
critic specification editor/tool is described and illustrated in Chapter SEVEN and
EIGHT. The following section discusses our analysis of this new critic specification

editor approach from Moody’s visual language design perspectives.

5.5 Analysis of Critic Specification Tool using Physics of
Notations

This section presents the outcome of a brief/partial analysis of our visual notations
for the critic specification editor, i.e. Marama Critic definer view. The analysis is
based on Moody’s new theory of visual notation design, the Physics of Notations
(Moody, 2008). Our analysis of the visual critic specification editor with the

Moody’s principles is as follows:

1. Semiotic clarity.
This principle indicates “there should be a one-to-one correspondence
between semantic constructs and graphical symbols used in a notation”
(Moody, 2008). Assessing the semiotic clarity of a notation involves doing a
mapping between the metamodel of the visual critic definer and its symbol
set (visual vocabulary). When there is not a 1:1 correspondence, the
following anomalies can happen: 1) symbol deficit- when a construct is not
represented by any symbol, 2) symbol redundancy- when a single construct
is represented by multiple symbols, 3)symbol overload- when a single
symbol is used to represent multiple constructs, and 4) symbol excess- when
a symbol does not represent any construct (Moody, 2008). The mapping
113

between the metamodel of the critic specification editor and its graphical
symbols is shown in Figure 5.5. Table 5.5 shows the mappings between the

metamodel constructs and the symbol set.

Table 5.5: Association of metamodel elements and graphical symbol

Metamodel element/construct Graphical symbol
CriticShape CriticShape, @
CriticFeedbackShape CriticFeedbackShape,
Operator

Operator,
CriticShape_CriticFeedbackShape CriticFeedbackConn,
CriticShape_CriticShape CriticDependencyLink,
CriticShape_Operator OperatorConn,
Operator_CriticFeedbackShape OperatorCriticFeedbackConn,

Op—pFb

114

[}5 Seect

CriticShape
name String key
CriticlD String nonkey
critictypeString nonkey
entity String nonkey
entityl Stringnonkey
entity2 Stringnonkey
attributeTerm String nonkey
attributeTerm] String nonkey
attributeTerm2 String nonkey
relationalOperator String nonkey
valueString nonkey
cardinality String nonkey
cardinalityEntityl String nonkey
cardinalityEntity2 Stringnonkey
role String nonkey
kaitizkienabler String nonkey
association String nonkey
event String nonkey
condition String nonkey

action String nonkey

CriticFeedbackShape
name String key
FeedbacklD String nonkey

criticStrategy String nonkey
modalitiesofCritiques String nonkey
explanation String nonkey
suggestion String nonkey
critichessage String nonkey

| (CriticShape CriticFeedbackShape ‘ Operator CriticFeedhackShape

L Megue

L} Setcfing too
(2 Shapes o
—> @ Cntichape

L (i) CitcesthaciShape

Dpertar
—

(= Comnectars 9

Py CicfeedbackCom

Operator

CriticShape_Oper.. type Stringnonkey

»

—» o CitcDependencylink

,__’ 2 DpsrtorComn

p g OpeenCitcediom

»

CriticShape_CriticShape

(a) metamodel

(b) graphical

Figure 5.5: The mapping between (a) metamodel of the visual critic definer and

(b) graphical symbols.

Each symbol in the visual critic specification editor provides a single
meaning, defined in an advanced and independent context. The number of
semantic constructs for the critic specification editor is small, so we are able
to maintain a 1:1 correspondence between the constructs and the graphical
symbols (i.e. a different symbol for each element). Overall, there is no
symbol deficit, symbol excess, symbol redundancy, or symbol overload in

the critic specification editor. This is shown in Figure 5.5.

Perceptual discriminability.

This principle suggests that “different symbols should be clearly
distinguishable from each other” (Moody, 2008). Figure 5.5 obviously shows
that the symbols for the critic specification editor can be clearly
differentiated from each other. We used different shapes to represent critic,
critic feedback, operator, and connectors and different icons and colours for
different visual appearance. In general, the greater the visual distance

between symbols, the faster and more accurately they will be recognised

115

(Winn, 1993). If there are slight differences, errors in interpretation can
result (Moody, 2008; Moody, Heymans, & Matulevicius, 2009).

According to Moody (2008), shape plays a privileged role in perceptual
discrimination, because it denotes the key basis on which objects are
classified in the real world. Moody (2008) also claims, shapes that are used
to represent different constructs have to be differentiated clearly. Figure 5.6
shows the different types of elements used in the critic specification editor.
Three of the shapes are 2 dimensional geometric shapes, with very obvious
differences between them. In particular, the shapes used to represent critic,
feedback and logical operator are very different. Whereas, the other four
shapes that represent semantic relationships use textual differentiation of
relationships to distinguish between relationship types. Textual
differentiation will be mentioned in the Principle of Dual Coding). The

relationship types are shown in Figure 6 (the second row).

CriticShape CriticFeedbackShape Operator

CriticFeedbackConn | CriticDependencyLink | OperatorConn OperatorCriticFeedbackConn

Cr—pFb Cr ::. [i F b2

Figure 5.6: Element types in the visual critic specification editor

3. Semantic transparency.

Semantic transparency is regarded as the “extent to which the meaning of a
symbol can be inferred from its appearance” (Moody, 2008). This principle
requires that symbols provide indications to their meaning. According to
Moody (2008) a symbol is semantically transparent if a novice user/reader
can guess the meaning only from the look of the graphical symbol (e.g. a
stick figure to present a person).

The main constructs in the critic specification editor are: critic and critic
feedback. We use icons to represent the two constructs. We have already
explained the icons concept in an earlier section: replacing the abstract
shapes with icons can improve the understanding of models by the novice
users/readers (Masri, Parker, & Gemino, 2008). Furthermore, icons improve

116

likeability and accessibility (Bar & Neta, 2006; Petre, 1995). The icons for
critic and critic feedback are distinguished based on colour and shape. Text is
also used to clarify the meaning of the two constructs. This is shown in
Figure 5.6. However, the symbols for the critic specification editor do not
support the principle of semantic transparency. We can consider this aspect

in our future work for the improvement of the critic specification tool.

Complexity management.

This principle refers to the “ability of a visual notation to represent
information without overloading the human mind” (Moody, 2008). Moody
(2008) refers to “complexity” as “diagram complexity: the number of
elements (symbol instances) on a diagram.” It is very important to have an
effective complexity management specially when dealing with novice users
who are incapable of managing complexity (Sweller, 1994). There are
claims, that excessive complexity is one of the main difficulties for end user
understanding of software engineering diagrams (Moody, 2002; Shanks &
Darke, 1998). Thus, to effectively represent complex situations, visual
notations must provide mechanisms for modularisation and hierarchical
structure (Moody, 2008).

We noted in the earlier section that our critic specification editor is an
extension of our Marama meta-tools. Currently Marama-based tools are
defined and developed using three metatool editors: 1) the metamodel
definer, defining a tool’s information model; 2) the shape designer view,
defining visual notational elements; and 3) the viewtype definer view to
specify mappings of meta-elements to visual representations ("Marama meta-
tools," 2008).

The newly created view/editor, i.e. critic definer view permits specification
of a DSVL tool’s critics. Hence, we could say that these four different
editors/views together supported the complexity management mechanism
and also modularisation because problems are represented in multiple
diagrams. The critic specification editor (i.e. critic definer view) by itself
however do not support the complexity management mechanisms, which

means that critic model must be represented as single monolithic diagram, no
117

matter how complex it becomes. The critic specification editor also has no
modularisation mechanisms. Again, this aspect can be considered in our
future work if there is a need to allow for multiple critic specification
diagrams which of course would provides complexity management. Figure

5.7 shows an example of critics and feedbacks modelled in one diagram.

[} Select
i} Marquee

[} Sketching tool

= Shapes &

) CriticShape
@ CriticFeedbackShape

‘ Operator

= Connectors 40
cr_yprn CriticFeedbackConn

~® OperatorConn

op—pre OperatorCriticFeedbackConn

Figure 5.7: Critic specification diagram

Cognitive integration.

This principle suggests including “explicit mechanisms to support integration
of information from different diagrams” (Moody, 2008). Moody (2008)
reported that, when multiple diagrams are employed to represent a system
then the cognitive integration role is necessary. This principle is closely
related to the previous one-Complexity management. Siau (2004) argues if
multiple diagrams are used to represent the systems, then a reader/user is
required to be able to keep track of the diagrams flow and manage to
integrate the information from several diagrams, and this requires additional
cognitive demands (processing) on the reader/user (Siau, 2004).

In our case, the critic specification editor/view provides a diagram that
models critic specification for a DSVL tool. Thus, in order to specify the
tool’s critics, the information expressed in a meta-diagram (i.e. metamodel
definer view (1)) is used as an input to the critic specification editor (i.e critic

definer view (2)). The critic input process is performed via a form-based

118

critic construction editor interface, i.e. Critic Construction view (3). The list
of available critic authoring templates is designed in a drop-down menu. A
user needs to select from the drop-down menu the required critic template
and the properties of that particular template are accessed from the meta-
model elements. Thus, a user will only select the required property value that
is shown in the drop down menu list, which can avoid the error proneness
from the user when entering an input. The integration mechanism is
illustrated in Figure 5.8. The defined critics can then be realized in another
diagram i.e. Marama Diagram. Furthermore, the critic specification editor is

integrated with the other views (i.e. the shape designer view, and viewtype

view) to support the critic specification diagram.

2) visual critic definer editor

[Select
| Marquee

[Sketching toel

CarePlan must ha... ,__.

(= Shapes &

Instruction must have a unique InstructionMame
@ CriticShape a

CriticFeedba...

‘ Qperator

(= Connectors @© CarePlan must have many PerformanceMetric

Cryrb CriticF...

o CriticDepe..

~® OperatorConn

O Critic Construction View &3 . [Critic Feedback View

Daiflnterval must be greater than 1. —b.

‘ 1) meta elements

Attribute Constraint Templates
Select Attribute Constraint Template:
entity:

association: 2

<entity> must have a [unique] <attributeTerm>

Instruction 2

attributeTerm:

Hourlylnter... dou.. nonk.

ActivityHasInstruction ‘ T
arePlan
CarePlan.. Stru ..
Instruction " CarePIanHasAct\wtyJ {Carep\anHasAssessm‘.‘J
InstructionName String k...
Instructi... MultiLin... no...
l Activity
_— ActivityNa... String k..
l ActivityHasRoutine REV‘EWAH'VWHESRE
| o P
I ‘ outne ReviewActivity

Dailylnterval double nonkey

Monthlylnte., dou.. nen. ‘ Tk

Duration double nonkey

attributeTerml:

attributeTerm2;

3) critic construction editor

DataCollectionActivity
DataName String key
DataUnit String nonkey

Figure 5.8: Integration between critic definer view and critic construction
editor, and integration between critic construction editor and meta elements.

6. Visual expressiveness.

Visual expressiveness is related to the “number of visual variables used in a
(Moody, 2008). Moody (2008) points that

expressiveness measures the visual variation for the complete visual

notation” out visual

vocabulary. This principle measures the “utilisation of the graphic design

space.” (Moody, et al., 2009).

119

Our critic specification editor uses only two visual variables: shape and
colour. We do not use all the 8 visual variables (horizontal and vertical
position, size, brightness, color, texture, shape and orientation) as the number
of our graphical symbols is small (i.e. only 7 symbols/icons). Although shape
is considered as one of the least powerful visual variables (G. L. Lohse, Min,
& Olson, 1995) we manage to use different shapes and icons to represent the
critic, critic feedback, operator, and the four connectors
(CriticFeedbackConn, CriticDependenyLink, OperatorConn and
OperatorCriticFeedbackConn). We also apply colour to the symbols to
increase the visual expressiveness for our critic specification notation. This is
shown in Figure 5.7. In fact, (Mackinlay, 1986; Winn, 1993) reported that
the human visual system is very sensitive to variations in colour and easily
can differentiate the colours. Thus, we believe that the shape, iconic and

colour elements provide sufficient visual expressiveness.

Dual coding.

This principle suggests “using text to complement graphics” (Moody, 2008).
Our critic specification editor uses text to define the properties of critic, critic
feedback and operator, as shown in Figure 7. We use colour, icon and shape
to differentiate these three elements, but we also complement them with
textual annotation. This supports Moody’s (2008) assertion that text can be
“usefully used as a form of redundant coding to reinforce and clarify
meaning”. Also, one of the four connectors which represent the critic
dependency relationship, i.e. the CriticDependencyLink is supplemented with

a text name as shown in Figure 5.9.

Package must have a unique na...

deper;.géo
Package must have ll:tang.r Class

Figure 5.9: Textual encoding

120

8. Graphic economy.
This principle indicates that the “number of different graphical symbols
should be cognitively manageable” (Moody, 2008). Only seven different
symbols are used in the critic specification editor notation. These symbols
are shown in Figure 5.7. Thus, our critic specification editor has a very
simple and highly discriminable visual vocabulary which supports usability

and end user interaction.

9. Cognitive fit.
This principle is related to the “use of different visual dialects for different
tasks and audiences” (Moody, 2008). We do address this principle in terms
of having multiple representations for different tasks. We stated previously
that we have three other editors, namely the metamodel definer, shape
designer view, and viewtype view within the Marama meta-tool set. We then
create a new view - critic specification editor that offers simple and intuitive
representations with the aim to assist especially the end user tool developers
(i.e novice developers) in specifying tool’s critics. We also provide several
other editors that are linked with the critic specification editor. These include
the critic construction editor, critic feedback editor, and critic template
editor. Ideally we provide a visual critic specification tool for authoring and
generating Marama design critic implementations. This also fits well with the

other visual meta-tool editors within Marama.

Analysis using Moody’s Physics of Notations principles can be used to improve the
usability and effectiveness of the critic specification editor. The improvement is
mainly for the purpose of interacting with end user tool developers. Thus, we will
improve any minor mistakes and eliminate any potential difficulties to its usage in

practice.

121

5.6 Conclusion

We have described our approach for specifying critics for a DSVL tool environment.
The two main approaches that we employed are: visual approach and template-based
approach. We introduce these concepts and then relate them to our critic
specification development. The combination of these two approaches forms what we

call a ‘visual and template-based approach in specifying critics for DSVL tools’.

We have explained and demonstrated the visual notations of the critic specification
editor. Following that, we described our adaptation of the business rule templates to
the software tool domain, specifically our critic authoring domain. We then
explained the critic authoring templates that assist the end user tool developers to

specify critics.

Applying the two approaches in our critic specification development has led us to
carry out a brief analysis based on the Moody’s principles. We can say that we do
satisfy most of the Moody’s principles (Moody, 2008) for designing effective visual
notations. We demonstrate this with a target end user evaluation in Chapter NINE
and we believe that with the visual and template-based approach applied to the critic
specification development, end user tool developers can be supported to specify

critics for a DSVL tool in a simple and effective way.

122

Chapter 6
Initial Prototype for
Critic Specification Tool

This chapter introduces and explains the development steps of the visual and
template-based approach for our critic specification tool. We explain our first
attempt to employ MaramaTatau (N. Liu, et al., 2007) in specifying critics for
Marama-based tools which became our motivation to develop another prototype for
the critic specification tool. We then describe the second prototype, which specifies
critics in the meta-model editor using a similar visual approach to MaramaTatau

however tailored to the critic specification rather than the constraints domain.

6.1 Introduction

Inspired by the existing research about critic specification tools, we made an attempt
to apply similar ideas to our meta-modelling tools, called Marama (Grundy, et al.,
2008). Marama is a meta-tool implemented as set of Eclipse plug-ins. It includes
both meta-tools and generated modelling tools (Grundy, et al., 2008). Most of the
existing critic tools that we reviewed are not developed within the context of a meta-
modelling tool. Our meta-tools are used to generate complex visual modelling tools,
and these modelling tools could benefit from the addition of various critics. Thus,
we wanted to extend our Marama meta-tools by embedding a critic design and
generation component. The main purpose of our work is to assist end-user tool
developers to specify and generate critics efficiently and easily. We demonstrated a
proof-of-concept of our visual critic specification approach by developing a set of

incremental prototypes within the Marama meta-tool.

In this chapter we present the background and motivation of our critic development
approach. We describe the design and implementation of our approach for
specifying DSVL tool critics via the following incremental prototypes: 1) Specifying
critics using Object Constraint Language (OCL) formulas via MaramaTatau; and 2)

Specifying critics at the Marama meta-model editor by creating a new functional
123

item, CriticShape associated with critic-authoring templates. These prototypes are

explained and evaluated in the following sections.

6.2 Initial Prototype: Specifying Critic in a Marama
Metamodel Definer views

6.2.1 Background and Motivation

The motivation for the initial prototype emerges from the work of Liu et al. on
MaramaTatau (N. Liu, et al., 2007), an extension to the developed Marama metatool
set (Grundy, et al., 2008). MaramaTatau offers the facility to specify behavioural
extensions to Marama metamodels. The main notation used in MaramTatau is
declarative Object Constraint Language (OCL) expressions. A complete description
of MaramaTatau is in (N. Liu, et al., 2007).

Our initial approach (as labelled Prototype 1 in Figure 3.1) was to experiment with
applying the OCL expressions used in MaramaTatau (N. Liu, et al., 2007) to specify
and implement critics for a Marama-based tool. To provide a basis for our
experimentation, we developed a very simple UML class diagramming tool using
Marama. The tool metamodel is defined in Marama metamodel editor, as shown in

Figure 6.1.

T Mavigator &3 = B3 ClassDiagramTool.mara &2 Class5hape.maramaShap Class
= G:b ~ EE Select
=)-1=* ClassDiagramTool A || L i Marquee
+-[= ClassDiagramTool L\\s Sketching tool
5 .project (= Shapes - [Class ()]
I EntityShape name String key

ClassShape.maramashapeType

)) B Attribute newAttr MultiLinesText nonkey
ClassView.maramaViewType
iR e IR * 1| B ModelEventHandl... newOp MultiLinesText nonkey
= outline | = Properties 52 = B || M ModelUserHandle...
I Formula
HEE
I Focus

Property Value B AssodationShape

= Info —_—
derived false L= Connectors £ Class_Class
editable true | AttrLink

last modified August 21, 2008 11:38:04 ... l SubtypeLink
linked false | FormulaLink
location C:\Edipse‘\edipse\MaramaC... l RelationLink
name ClassDiagramTool.maramaT...

path [ClassDiagramTool /ClassDia. ..

size 7458 bytes

Figure 6.1: UML class diagramming tool metamodel

124

We identified and translated several critics for UML class design into the OCL
expressions using MaramaTatau and associated them with the UML tool metamodel.
A green circle annotation shown in Figure 6.1 indicates that an OCL expression has
been defined to specify a critic for the UML tool. Examples of the critic statement
and OCL expression in specifying critics for the UML class diagramming tool are
shown in Table 6.1. These critics are then applied in the executing tool, which is at

the Marama diagram level, as shown in Figure 6.2 and Figure 6.3.

Table 6.1. Critic statement and OCL expression
Critic Statement OCL expression

Class must have a unique name Class.alllnstances()->forAll(cl,c2 | c1 < > ¢2

implies cl.name < > c2.name

Class with no name self.name< >’

Class name should begin with a capital | not(let
letter firstChar:string=self.name.substring(1,1) in
firstChar < > firstChar.toUpper())

ER= || 1} Marguee
5 model [+ Sketching tool Course —
D Jproject [Shapes # courseCode
_ courseName
|=| viewTypes B Class
=) diagram1.maramaDiagram ¥ addCourse
» [~ Connectors » viewCourse -
ul [L]
B f— — Assodiation
= Qutline | £ Properti % g '
|| B Y
Sroperty Value
*Model Elements
Location 200, 43
name Course
newAttr 1
newOp 0
Size 100, 76

o]
Sele -m

Figure 6.2: Simple critic (same named classes) violation in MaramaTatau

125

== A

. L_i Marguee

‘model [Sketching tool Couree
|5 -project = Shapes - courseCode
wiewTypes B Class jcourseMame
diagram 1.maramaDiagram ||y addCourse
e AP B (= Connectors - viewCourse
1= outline | E2| Properties 3 = B | Assodation
BB T name
Property Value
*Model Elements
Location 46, 146
name
newAttr O
newOp O
Size 120, 119 & Class._ with no name. Class must have a name

= Tasks | ® Mod

Calart = Frrmmol a3t L2

Figure 6.3: Simple critic (class with no name) violation in MaramaTatau

Our experience gained from this initial attempt demonstrated some difficulties,

particularly for novice tool developers. OCL expressions are a powerful technique

for expressing constraints in a meta-tool. However, some of the barriers in

expressing critics using such OCL expressions include:

OCL is not easy to understand and even harder to write (Sourrouille &

Caplat, 2002) specifically for many novice users and tool developers ;

Users who lack knowledge of OCL will have problems in specifying critics
using OCL expressions. This reflects the hard mental operations dimension
from the CDs framework (Green & Blackwell, 1998) that suggests the
demand for cognitive resources. Users must remember what function is
appropriate (Liu, 2007) for specifying a given critic. This argument supports

previous observations made by (Sourrouille & Caplat, 2002);

Difficulty in expressing (Sourrouille & Caplat, 2002) meaningful critics due
to unfamiliarity with OCL can lead to error proneness as suggested by the
error proneness dimension from the CDs framework (Green & Blackwell,
1998). The error proneness dimension refers to the ability of the tool to
induce ‘careless mistakes’ (Green & Blackwell, 1998) . Users will make
careless mistakes if they have a difficulty when specifying critics using OCL
expressions. This dimension has a similar issue with the hard mental

operations dimension;

126

e Specifying critics via OCL expressions provides a high abstraction gradient
(Green & Blackwell, 1998) for novice users as they need to learn how to use
OCL with a meta-modelling approach. As mentioned by the author of
MaramaTatau (N. Liu, et al., 2007), the combination of OCL formula and
spreadsheet interfaces was designed to support the target end users who are
programming literate and familiar with modelling concepts for

constraint/dependency specification (Liu, 2007).

e OCL is a general purpose constraint specification language, which is not
designed for use in a meta-tool specification environment. It is not designed
to express DSVL tool critics at all i.e. generating or enforcing design idioms
for DSVL tools. Thus it lacks a “closeness of mapping” to the target domain

of critic specification and implementation.

e Our assessment above was demonstrated by using Marama in two advanced
software engineering courses at the University of Auckland in 2007, 2008
and 2009. In our experiments, final year Software Engineering undergraduate
students and first year Computer Science post-graduate students used
Marama to build simple DSVL tools with critics and constraints expressed in
OCL. Most indicated in their reports that it is difficult to use OCL constraints
as implemented via MaramaTatau to specify even very simple critics in their

tools.

However, the attempt proved a useful stepping stone towards our understanding of
the necessary building blocks for the critic specification tool. We prefer a visual
specification tool for authoring and generating a Marama design critic
implementation. This would then fit well with the other visual meta-tools we have

developed for the Marama platform.

Due to the barriers noted above, we see an opportunity for a visual design notation
to represent critics. The need to specify critics in a simple way by using an easy to
use, high-level language is the motivation for our research in visual critic-authoring

for domain-specific visual language tools. We also wanted a visual language with

127

good “closeness of mapping” to the critic authoring domain of discourse, and

associated IDE support in the Marama meta-tool environment.

6.2.2 Approach

We developed a new critic-authoring support extension (as labelled Prototype 2 in
Figure 3.1) to the previously-developed Marama metatool set and applied a similar
visual approach as MaramaTatau. This provides a new meta-tool facility for our
Marama-based tools. The new visual critic-authoring support provides the ability to
simply specify critics to Marama metamodels. Figure 6.4 illustrates the process of

constructing and using critics in Marama-based tools using this approach.

1 Marama tool development
Marama .| Marama ‘ ‘Marama view |
metamodel definer shape definer | | type definer

] r \d
2 Apply 3 Marama model
critic project

&: 53

| Tool designer / End-User
End-user designer

Figure 6.4: Critic development approach

Initially a target end-user developer uses the Marama meta-tools to develop a
Marama-based tool (1). A set of core Eclipse plug-ins provides diagram and model
management support for Marama modelling tools. The development of a new
Marama tool starts by specifying the tool metamodel via Marama Metamodel
Definer views. A meta-model for the tool specifies entities and relationships,
together with their attributes. Once the meta-model is defined, shapes and
connectors are specified via the Marama Shape Designer views to provide visual

representations of the tool.

The next step is to specify the “view type” (i.e. specific diagram type specification)
for the tool via the Marama Viewtype Definer views. This describes the mapping of

meta-model elements to visual representations. This results in a new Marama tool

128

for which the tool or end-user developer can specify critics. Critics are specified in
the Marama metamodel definer views (2) via a new CriticShape function that we
have added to the metamodel editor. Once the critics are defined, a tool user can
open or create new modelling projects and diagrams using the plug-ins. Critics for
the tool are applied when a diagram is created. If the user creates a diagram that
violates the design rules of the tool, then a critique will be displayed to notify the

user about the potential errors or problems in the diagram (3).

As stated above, a new functional item, CriticShape (please refer to Figure 6.5) was
added to the existing Marama meta-model editor to provide the visual critic-
authoring support extension. This function allows end-user developers to specify and
define critics based on the tool specification. It also has an appropriate underlying
infrastructure allowing the critic to be generated by Marama. We associate the
CriticShape function with a critic authoring template using a form-based style to
facilitate tool and end-user developers to construct relevant critics for the new
Marama tool. Critic shapes are linked to relevant tool specification elements to show
users the items they are dependent on. The following section explains the creation of

our initial critic authoring template.

% Select [RemoteObject must have or may have many Service |
i_i Marquee
[«\> Sketching tool RemoteObject must have unique name |
(= Shapes » RemoteObject [Service ()]
Ed EntityShape name String key id String key
B CriticShape objectind String nonkey (@ name String nonkey o
& Attribute timesToCallint nonkey — end2Multiplicity
%] ModelEventHan... commitAtE... Stri... non...
&4 ModelUserHandl... AT
- el end1Multiplicity
{id] Formula ObjectService
2 Focus- : | ApplicationServer ko3 entity
AssociationShape :
name String key .
(= Connectors o 75 e host String nonkey > attribute
~Q Attrlink serverKind String nonkey
2, Subtypelink
*., FormulaLink —_— = |host must be or may be equal or greater
P | ApplicationClient
M CriticLink .
SRR name String key

™\ RelationLink - e et—

host String nonkey

kind String nonkey O *

Hhseads i nonkey associationEndName

Figure 6.5: Critics specified in the meta-model definer editor

129

6.2.3 Initial Critic Authoring Template

Our initial attempt in specifying critic at a Marama metamodel definer view only
involves the creation of a critic authoring template that focuses on two constraints
from the business rule template. These two constraints are attribute constraint
templates and relationship constraint templates. Table 6.2 shows the templates for
each constraint. Thus, the creation of critic authoring templates adopts the attribute
and relationship constraints as shown in Table 6.2. We assist the tool/end-user
developers to specify critics for Marama-based tools by using these critic authoring

templates via the attribute and relationship constraints.

Table 6.2: Attribute and relationship constraint templates (adopted from
(Loucopoulos & Kadir, 2008)

Type Template
Attribute <entity> must have [may have a [unique]<attributeTerm>.
Constraint <attributeTerm1> must be| may be <relationalOperator> <value> |

<attributeTerm2>.

Relationship [<cardinality>]<entity1> is a/an <role> of [<cardinality>]<entity2>.
Constraint [<cardinality>]<entity1> is associated with [<cardinality>]<entity2>.
<entityl>must have|may have [<cardinality>]<entity2>.

<entityl> is a/an <entity2>.

Critics for Marama-based tools are specified using the Marama meta-model definer
view. The tool meta-model is expressed using an Extended Entity Relationship
(EER) description. This is shown in Figure 6.5. The tool meta-model elements
match the properties defined in the attribute and relationship constraint templates.
The association of the tool meta-model element with the critic phrase type is shown
in Table 6.3.

Table 6.3: Association of tool meta-model with the critic phrase type

Tool meta-model elements Critic phrase type
Entity <entity>
attribute <attributeTerm>
end1Multiplicity, end2Multiplicity <cardinality>
associationEndName <role>

130

The following section describes the implementation of the visual critic authoring

support extension via the attribute and relationship constraint templates.

6.2.4 Implementation

We implemented our visual critic authoring approach by adding a new functional
item to the Marama meta-model editor. This new function is called CriticShape
with a connector, CriticLink. The new function provides the end-user/tool
developer with a way to add several critics to a tool specification. Figure 6.6 shows
the new function. Associated with the CriticShape is a critic authoring template. We
designed a form-based interface to facilitate the critic-authoring task by end-
user/tool developers. Figure 6.7 shows the association of CriticShape with the critic
authoring template.

% Select | RemoteObject must have or may have many Service |

{_i Marquee

Iy Sketching tool RemoteObject must have unique name l

(= Shapes o RemoteObject I Service ()]

&4 EntityShape name String key id String key @
New B CriticSha objectKind String nonkey (@) name String nonkey .
functional / @Attribute timesToCall int nonkey

8] ModelEventHan...) commitAtE... Stri... non...
items ModelUserHandl... '

fftd] Formula | ObjectService
added 10 | | o emeteon [_

— s, abenSh | ApplicationServer
the ssociationShape e Sy
Marama e snnectors & 3 o o host String nonkey

: 2 o Erve

"Q AttrLink serverKind String nonkey
meta- K, Subtypelink

*w FormulaLink — = Ilhost must be or may be equal or greater

2 | ApplicationClient =

M CriticLink——nouo |

TRaTTE Strirrgte
R\ RelationLink TStriTrgkey

host String nonkey =
kind String nonkey @

threads int nonkey

Figure 6.6: New function added in the Marama meta-model editor.

131

[% Select [RemoteObject must have or may have many Service |
i Marquee

k Sketching tool % RemoteObject must have unique name%

L= Shapes 2 | RemoteObject [Service @

@ EntityShape name String key id String key @ ServiceRequests
B CriticShape objectKind String nonkey name String nonkey rer . -
At‘tribute timesToCallint nonkey

a0 Viodelrentt commitAtE... Stri... non...

(= Connectors > 2 d

'\@ AttrLink L ServerDatabase
K Subtypelink)

“s FormulaLink

[ApplicationServer
name String key
2 hnct Strina nankew

[Critic Construction View &3

Select Attribute Constraint Template: <entity> must have [unique] <attributeTerm> -
Select Relationship Constraint Template: >
entity: moteObject ~

'RemoteOb

entityl: ApplicationServer
entity2: Database
DatabaseTable

ApplicationClient

attributeTerm:

attributeTerm1:

attributeTerm2:

relationalOperator: -
value:

cardinality: >
cardinalityEntityl: -
cardinalityEntity2: >

role:

Define Critic } RemoteObject must have unique name

Figure 6.7: CriticShape (orange colour) linked with a critic authoring template.

The CriticShape and CriticLink functions are connected to relevant tool
specification elements that represent the critic of that particular tool. The critic
authoring template for this initial prototype of our visual critic authoring tool only
covers the attribute and relationship constraint templates. A tool/end-user developer
specifies critics by selecting the CriticShape function and then constructing and
defining the relevant critic for the tool via the Critic Construction View interface.
This is shown in Figure 6.7. The CriticLink function is used in critic authoring
especially for the attribute constraint templates, where the <entity> is not stated. An
example of this is shown in Figure 6.6, where a dotted orange line is connected to

one of the entities defined in the meta-model editor.

We added a critic type folder to the Marama meta-model folder as a repository to
store the list of critics that are defined for the new Marama tool. Thus, when a
tool/end-user developer specifies and defines critics, these will then be shown in the
critictypes folder as shown in Figure 6.8. Each critic is stored as an XML data file. A

‘critic engine’ loads the XML save files and instantiates and runs an ‘event listener’

132

in Marama for each of the critics defined for the new Marama tool. This event
listener receives model update events and fires the critic implementation to

implement the critic behaviour when appropriate.

1 Project Explorer £3 . . Navigator = Q ¥ = B 5 MaramaMTEmaramaToolModel [2) RemoteObject must have unique namexm
2 MaramaMTE - <?xml version="1.0" encoding="UTF-8" standalone="no"?>
4 [MaramaMTE <metamodelelement>
(= icons <name>RemoteObject must have unigue name</name>
4 [metamodel <type>critictype</type>
<entity>RemoteObject</entity>

(& associationtypes

4 [critictypes <entityl/>

] host must be or may be equal or greater than zeroxml i
\ e A 4 3 : <attributeTerm>name</attributeTerm>
|5 one ApplicationServer is associated with many RemoteObject.xr g
Ju { : <attributeTerml/>
5] RemoteObject must have or may have many Service.xml B
> - <attributeTerm2/>
=] RemoteObject must have unique namexml i
Mg g <relationalOperator/>
& entitytypes <value/>

B \iiEWt}’PElS A <cardinality/>
|2 ArchitectureDiagramxml <cardinalityEntityl/>

5] MaramaMTExml <cardinalityEntity2/>
= alignShapes.maramaHandler <role/>
= ArchitectureDiagram.maramaViewType <referencedEntities/>
= diagraml.maramaShapeType </metamodelelement>

Figure 6.8: Critics store in critictypes folder.

In our initial prototype we only applied the attribute and relationship constraint
templates for the critic-authoring task. There are two templates for the attribute
constraints and four templates for the relationship constraints. Each of these
templates represents a critic event. Thus, a ‘critic processor’ is assigned to each
critic event. Whenever a model is created or changed, an event listener receives this
event and decides if a particular critic is interested in the event and what action to

perform.

Each critic template represents a critic type and we implement each critic as a
concrete class. A critic processor class is instantiated using the stored XML
information to decide which model element events it is interested in; patterns to
match in terms of model state; and its action when receiving change events and

matching part of the model state.

133

Meta model editor Model/Diagram

Specify Critics Model is created or changed

| :) '
! | | |
! Attribute constraint templates ! : |
! : | |
| I ! !
| I ! !
1 1 ! !
1 1

Relationship constraint templates

\ Actio ,
_____________________}; ________________________________
Critic event = ;
"| Event Handlers <_|_>

Critic v XML information
Criel | 4—— i
C“;'CZ Critic Critic P .| <attribute>
CI’iETiCG processing nrocessr D - H

Figure 6.9: Architecture of critic processing

6.2.5 Example Usage

We demonstrate our initial prototype of visual critic authoring capabilities by
applying it to an existing Marama-based tool, the MaramaMTE software architecture
design tool (Grundy, Hosking, Li & Liu, 2006). Initially a tool/end-user developer
specifies a design tool using a set of visual Marama meta-tools. For the
MaramaMTE example, a tool developer has specified a variety of entities and
associations to represent the structure of software architecture e.g. remote objects,
clients, servers, services, requests, databases and various relationships. The meta-
model of MaramaMTE is shown in Figure 6.10.

[y Select

rq - B Request

{_i Marquee [RemoteObject [Service @ [_d —_ q

[Sketching tool name String key id String key ® ServiceRequests | y ”nsg : <Y = @

- l t

(= Shapes #|| | objectKind String nonkey (@ name String nonkey i o frarme S”"g"‘s’"v i

3 EntityShape timesToCall int nonkey remoteServer String nonk@

B CriticShape CommItAEE... Stri... non... remoteObj... String nonl@)
> remoteServi... String non{@)

B2 Attribute

{88 ModelEventHan. ObjectService ServerDatabase response String nonkey

ModelUserHandl... | ApplicationServer sequen(éStnng ponkey
[fdl] Formula name String key Iequestiind Strng nonk e
<r Focus _ ’ host String nonkey

@ AssociationShape) ’ serverKind String nonkey [Database

(= Connectors » name String key

@ AttrLink | ApplicationClient

s'& Subtypelink name String key

P Fo-rr-nu.IaLink host String nonkey ——
m Cr't'fL'"k kind String nonkey (@) RequestDBTa...
R\ RelationLink threads int nonkey DatabaseTables

| DatabaseTable
name String key

Figure 6.10: MaramaMTE metamodel definer view
134

The tool developer has also specified using the shape designer and view designer of
MaramaMTE tool the various shapes, connectors and view (diagram) types for
MaramaMTE. We then specify the relevant critics using a basic understanding and
knowledge of MaramaMTE in order to generate a new version of the MaramaMTE
tool with additional design critic support features. We list several critic statements
that are pertinent to MaramaMTE domain and map these critic statements to critic
authoring templates. Table 6.4 lists several examples of critic statements using the

critic authoring templates for the MaramaMTE tool.

Table 6.4: Lists of critic statements and critic authoring templates for
MaramaMTE.

Critic Statement Critic authoring template Template

type

1.Remote object must have a unique | <Entity> must have a [unique] | Attribute

name <attributeTerm> constraint
2. Threads must be greater than 3 <threads> must be <greater than> <3> Attribute
constraint
3. Remote object must have or may | <entityl> must have | may have | Relationship
have many services <cardinality><entity2> constraint

4. Application server is associated | [<one>]<application server> is associated | Relationship

with many remote objects. with [<many>]<remote object>. constraint

The critics for MaramaMTE include completeness of the architecture design e.g. all
elements linked by appropriate relationships; correctness of the architecture design
e.g. no same-named services for the same remote object or same-named tables for
the database; and “quality” of the architecture design i.e. checking for particular
architecture styles e.qg. if all services are in a single remote object; if redundancy is

supported; and so on.

We specify critics for MaramaMTE via the visual CriticShape function from the
Marama meta-model editor. Selecting the visual CriticShape function causes a critic
authoring template in a form-based style to come into view. This view, Critic
Construction View is displayed to guide the critic authoring task. This is shown in
Figure 6.11.

135

[% Select RemoteObject must have or may have many Service |
i Marquee

k Sketching tool % RemoteObject must have unique name%

L= Shapes || RemoteObject [Service @

@ EntityShape name String key id String key (.:)" " ServiceRequests
Bl CriticShape objectKind String nonkey name String nonkey R 3
Attribute timesToCallint nonkey

o ModeliwentH commitAtE... Stri... non...

(= Connectors >

@ AttrLink L. ObjectService ServerDatabase
& nype mkc I ApplicationServer =
name String key

P Formulalink

S hnct Strina nankew

[Critic Construction View &3

Select Attribute Constraint Template: <entity> must have [unique] <attributeTerm> -

Select Relationship Constraint Template: -

entity: moteObject ~
RemoteObiect _

ApplicationServer

entity2: Database

DatabaseTable
ApplicationClient

-

entityl:

attributeTerm:

attributeTerm1:

attributeTerm2:

relationalOperator: -
value:

cardinality: >
cardinalityEntityl: -
cardinalityEntity2: >

role:

Define Critic RemoteObject must have unique name
Figure 6.11: Visual CriticShape function associate with the critic authoring
templates.

We specify the critics for MaramaMTE tool based on the critic authoring templates
provided in the critic construction view interface. Once a critic is specified based on
the selected critic template, the properties of the critic template are then selected and
finally a ‘define critic’ button is clicked (refer to Figure 6.11). For example, in
Figure 6.11, a critic for RemoteObject entity is being specified using an attribute
uniqueness pattern to ensure RemoteObjects have a unique name. The critic shapes
that represent the defined critic then appear in the meta-model editor together with
other visual shapes i.e. entity shapes, association shapes, and formula shapes
(MaramaTatau). The list of defined critics is then stored in a repository called

critictypes, as shown in Figure 6.12.

136

1 Project Bxplorer £3 . % Navigator| B S0 MaramaMTE.maramaToolModel 2] RemoteObject must have unique name.ml

=

= MaramaMTE - <?xml version="1.0" encoding="UTF-8" standalone="no"?>
4 [MaramaMTE <metamodelelement>
(& icons <name>RemoteObject must have unique name</name>
4 (% metamodel <type>critictype</type>
(= associationtypes <entity>RemoteObject</entity>
4 (5 critictypes <entityl/>
u host must be or may be equal or greater than zero.xml <entity2/>
N 3 a < s & <attributeTerm>name</attributeTerm>
|| one ApplicationServer is associated with many RemoteQObject.xr g
= { : <attributeTerml/>
|| RemoteObject must have or may have many Service.xml 3 A
= - : <attributeTerm2/>
|5 RemoteObject must have unique namexml
Woe = <relationalQOperator/>
4 O SRyypes <value/>
=4 \IIEW‘typt?S) <cardinality/>
|Z| ArchitectureDiagram.xml <cardinalityEntityl/s
] MaramaMTExml <cardinalityEntity2/>
5 alignShapes.maramaHandler <role/>
|5 ArchitectureDiagram.maramaViewType <referencedEntities/>
| diagraml.maramaShapeType </metamodelelement>

Figure 6.12: Critics for MaramaMTE are stored in critictypes folder

These critics are then applied when loading and running a Marama tool i.e. at the
model or Marama diagram level. When Marama loads the definition of a tool it also
loads the critic definitions. It then instantiates the generated “event listeners” on the
tool meta-model elements so that when these are changed, the ‘critic engine’ is
informed of the changed state. The critic engine then determines which critic(s) are
associated with the change and whether the critic action criteria have been met by
the current state of the design. If so, the critic action is invoked via a message to the

user.

In Figure 6.13, a critic monitors and detects violation of the uniqueness constraint
specified for a remote object. This is an example of a correctness critic using the
attribute constraint template critic. In Figure 6.14, a critic is detecting the lack of a
service for a remote object. This is an example of implementing a “completeness”
critic on the design for the remote service using the relationship constraint template

critic.

137

[\ Sketching tool

(= Shapes »
=% MaramaMTE | -

(= MaramaMTE M ClientShape

= alignShapes.maramaHandler B ObjectShape

|5 ArchitectureDiagram.maramaViewType El I DatabaseShape
5] diagraml.maramaShapeType B TableShape

- diagramDeleted. maramaEventPropagation B ServerShape

|| MaramaMTE.maramaToolModel I ServiceShape

|| moveConnectedShapes.maramaHandler M RequestShape

=/ sampleEH.maramaHandler | || = Connectors ~ #

= mode!UML 7. ClientServerConn
= MTEdiagram M ServiceConn
=4 mter‘r.wdel : _ ~ || M TableConn
Properties EE Outline »ERY 0 W Requetconn

! e B RequestTableCo...
aperty Value || DBConn
*Model Elements || I ServerObjectConn
Location 41,134 |
name FlightService

| Critique:

FlightService

name

==

& RemoteObject with the same name alreadly exist.RemoteObject should have a unique name.

Figure 6.13: Critic statement: remote object must have a unique name.
Attribute Constraint template: <entity>must have|may have [unique]
<attributeTerm>

[% Select

{_3 Marguee

% Sketching tool
(= Shapes

Bl ClientShape

TravelPlanner

Bl ObjectShape

B DatabaseShape name
B TableShape
Bl ServerShape
Bl ServiceShape
B RequestShape
Critique:

= Connectors E

==

B ClientServerConn
B ServiceConn

B TableConn

B RequestConn

A

RemoteObject must have many Service

Bl RequestTableCo...

I DEConn
B ServerCbjectConn

Figure 6.14: Critic statement: remote object must have many services.
Relationship constraint template: <entityl> must have | may have

[<cardinal

ity>]<entity2>

Whenever a tool user creates or modifies one or more diagram elements that result

in their design violating any design rules that were stored as critics, a critique

message is displayed to warn the user about the potential problem. These messages

can also be shown in an Eclipse Problem view pane making them less intrusive to

the designer.

138

6.2.6 Preliminary Results for the Initial Prototype

We have used Cognitive Dimensions (Green & Blackwell, 1998; Green & Petre,
1996) to continuously evaluate our design. This leads to the following observations

about the tradeoffs we have made in this initial prototype critic designer.

We have focused on reducing the hard mental operations and error-proneness that
we experienced in the first prototype. This was achieved by simplifying critic
customisation and using the more accessible business rule (BR) template approach.
The BR template approach is employed for the critic authoring task. The information
expressed in a meta-diagram (i.e. metamodel definer view) is used as an input for
defining a critic. The critic input process is performed via a form-based critic
construction editor interface, i.e. Critic Construction view. The list of available critic
authoring templates is designed in a drop-down menu. A user needs to select from
the drop-down menu the required critic template and the properties of that particular
template are accessed from the meta-model elements. A user will select the required
property value that is shown in the drop down menu list, which reduces the error

proneness from the user when an input needs to be keyed-in.

We employed only the attribute constraint templates and the relationship constraint
templates for the critic authoring task. The fact that the structure of the templates is
easy to understand in representing a critic rule statement reduces the hard mental
operations for users in specifying a critic compared to OCL expressions. This is of
course, because the available critic templates are not as many as the OCL functions.

The CriticShape notation also exhibits a better closeness of mapping because the
critic specification/definition imitates the critic statement that the users specified

according to the given critic authoring templates.

The potential benefits of the second prototype include the manner in which it
provides a simple way to specify critic rule/phrase and resultant actions. A novice
end-user developer can easily construct and specify critics using the critic authoring
templates. Similar to the business rule templates, the critic authoring templates also

offer a structured form for expressing the critic rule/phrase. Marama instantiates

139

critic rule processors when opening a tool and uses Marama’s built-in event handler

mechanism to proactively check design changes.

However, the main limitations of this initial approach are that it currently only
supports the construction of fairly simple design critics. Critics can only be defined
based upon the available templates and pattern match a limited part of the model as
supported in the template definition. Very complex critics are not able to be
specified via the attribute and relationship constraint templates. Only limited actions
are supported: notifying the user of critic feedback and undoing the previous editing
operation. The critic engine implemented in Marama uses a simple approach to
determine interested design critics which would need to be made more efficient if a

large number of critics exist in a tool.

We also analysed our design based on Physics of Notations (Moody, 2008). Our
attempt to create a new functional item, CriticShape at the meta-model editor which
follow similar approach to MaramaTatau, introduced a diagram complexity within
the meta-model diagram. This is against the Moody’s (2008) principle on
complexity management that refers to “the ability of a visual notation to represent
information without overloading the human mind”. By adding another visual
functional item (i.e. CriticShape) in the meta-model diagram it increased the number
of visual representations needed in the meta-model diagram to convey information
to the users. This would cause difficulty especially for novice users to comprehend
the diagram elements. Furthermore, according to Sweller (1994), novice users are
often incapable of managing diagram complexity.

The aim of this second prototype development was to gain initial experience with
implementing the business rule (BR) template concept as an alternative approach to
specify and author critics. To mitigate the problems/limitations that we experienced
in this prototype, we have proposed another approach which deconstructs the critic
specification process into multiple design perspectives. This has meant we have

ended up with several editors in place of the single combined editor we had.

140

6.4 Conclusion

We have described our initial prototypes to support end-user tool developers to
specify critics in a simple way. Our first attempt was to experiment with the OCL
expressions used in MaramaTatau to specify critics for Marama-based tools. The
barriers of OCL expressions were the stepping stone to the development of an initial
prototype of visual critic specification tool. Our initial prototype development for
the visual critic specification tool was concerned with specifying critics at the
Marama meta-model level and experimenting with the BR template approach. We
recognized some problems with the initial prototype and we then developed a new
approach from the initial prototype. The improvement we made in our next
prototype was to specify critics in a new specification tool, called the Marama Critic
Definer editor rather than in the meta-model editor. This new approach which is our

third prototype is described in the following chapter- Chapter SEVEN.

141

Chapter 7
Final Prototype for
Critic Specification Tool

This chapter describes our third prototype for our critic specification tool. We
describe the improvements that we made based on the previous proof-of-concept

prototypes that we have developed for our critic specification approach.

7.1 Background and Motivation

We outlined several problems about our initial attempts for a critic specification tool
in the previous chapter (Chapter SIX). Following to the failure of our second
prototype which was proved to be a non-scalable approach, we developed another
prototype (we have labelled as Prototype 3 in Figure 3.1) with several
improvements that represent the requirements of the new design choice for our critic
specification tool. These include:

1. Deconstructing the process of critic specification into multiple design
perspectives. With this new approach, we ended up with several editors in
place of the single combined editor which we had in the second prototype.
While this is contrary to some design approaches, such as representational
epistemology (REEP)(Barone & Cheng, 2004), it has meant we have been
able to apply appropriate abstractions for each part of the process that we
considered as the key requirements for our critic specification approach:

o A high-level visual overview of the critics designed for a tool;

o Highly user accessible form-based rule template interfaces for
detailed critic specification and customisation;

o Some extensibility options for more experienced tool users via the
rule template textual DSL

2. We were well aware that choosing to have multiple design perspectives
would introduce a hidden dependency issue (Green & Blackwell, 1998). The

hidden dependency issue can interfere with comprehension, however an

142

argument by Moody in his Principal of Cognitive Integration (Moody, 2008)
is that multiple views with an integrative mechanism is good and necessary.
Accordingly, we would need to support juxtaposition of different
perspectives in our critic specification tool.

3. Expanding the critic authoring template by considering user-specified actions
via the use of an action assertion template to enable the specification of more
complex critics.

4. Considering more aspects of critic feedback needed in this new approach.
The new approach would enable the tool and end-user tool developers to
identify and construct appropriate feedback to tool users.

5. Combining the several concepts discussed in Chapter FOUR and Chapter
FIVE, it has led to the following set of requirements for our final critic
specification approach:

o Simple and intuitive critic specifications, with the necessary

construct/abstraction for the specification of critics;

o Simple and intuitive critic feedback specifications, with the necessary

construct/abstraction for the specification of critic feedbacks;
o Simple and intuitive representations in specifying complex critics;

o Simple and intuitive visual critic specification notation and

environment, embedded with a DSVL tool (Marama meta-tool);

o Simple reuse of common critics and feedbacks, to avoid repeating

specification of similar critics for different domains.

Thus, with our third prototype, we developed a new editor called Marama Critic
Definer specifically to support the end user tool developers to specify and author
critics for their DSVL tool. The following section explains our third prototype that

we used to prove the concept of our critic specification approach.

143

7.2 Final Prototype: the Marama Critic Definer Editor

7.2.1 Approach

Our final development approach for the visual critic authoring task is illustrated in
Figure 7.1. We created a new specification tool, the Marama Critic Definer. Thus,
the tool/end-user tool developer can specify critics for Marama-based tools via this
new editor. In the existing Marama metatool set, there are three key DSVL tool
specification editors: the metamodel definer view to define a tool’s information
model; the shape designer view to define the visual notation elements; and the
viewtype definer view to specify the mappings of meta-elements to visual
representations. These three editors are used to develop any new Marama-based
tools (1). Once the new tool is defined and equipped with sufficient information the
tool/end-user designer can then select the new Marama critic definer view to
visually author and realize critics for their target DSVL tool specification (2). The
critic authoring task is supported by two form-based interfaces, the critic
construction editor and the feedback editor. These two editors assist the tool/end-
user tool developers to specify critics and feedbacks in a simple and intuitive way.

Marama tool development

Marama rMarama Marama Marama
metamodel |—» shape | view type | critic
definer, designer definer definer,

1 ——+1
1 2
Tl
H Develop Apply “3_" mi;iTa Construct :
E tool ? critic — critic o H
...
& =1
— - T g =
([L] DR [
= = W
Tool designer & Tool designer §
End-user designer End-User End-user designer

Figure 7.1: Marama Critic development approach.

Finally, a new Marama-based tool with a critic support extension is generated by
Marama as a set of plug-ins. A tool end-user can then create new modelling projects
and diagrams using the new tool. When a diagram is created, critics for that
particular tool are instantiated. If a user creates design content that a critic identifies

as problematic then a critique will be generated to notify the user about the potential

144

problems/errors (3). Feedback from the critic is displayed to allow the user to fix the

problem/error.

The main underlying idea in our approach is to use information expressed in a meta-
diagram (i.e. the Marama meta-model diagram) as input for critics to be realized in a
diagram (i.e. a Marama diagram in the realized modeling tool specified by the meta-
model). It is important to mention that our approach is only minimally dependent on
the notation used in the meta-diagram. As we discussed earlier, the Marama meta-
model diagram is expressed using an Extended Entity Relationship (EER) notation.
If a richer notation is used in the future, more information can be extracted from the
meta-model diagram and, thus, can be used for specifying critics and checking user
diagrams. The following section explains the details of our development approach.

7.2.2 Visual Critic Definer Editor

Figure 7.2 shows a user creating a critic specification with our new specification
tool, the Marama Critic Definer. The tool/end-user tool developer will specify
critics for the Marama-based tools via this new editor. Once the editor is selected, a
visual critic definer editor interface is displayed as shown by the example in Figure
7.3.

D New DX
Select awizard —
Wizards:
type filtes text
& & Narama
Marama Critic Definer ()
Marama Diagram
Marama Event Propagation Definer
Marama Model Project
Marama Shape Deagner
Marama Tool Project
Marama ViewType Definer
Marama Visual Evest Handler Definer -
I) : [Net> | Cancel

Figure 7.2: A new specification tool, Marama Critic Definer

145

[}; Select [; Select
(@) e (b)
14 Marquee

- ‘ Gt %Sketchmg tool
% Sketching tool — (& Shapes p o
cependeCn) CiiticShape 4’.
& Shapes # dependCn

] Criti(Shape @ CriticFeedbackShape

Operat
B CiticPeedbackShape (i perator
Critic
. OPEfEtOr (= Connectors "

[E;Cunnecturs & tryrp CriticFeedbackConn

CriticDependencylink Critic
. ¢ p ¥
B CiticFeedbackConn it ;

¥ OperstorConn N I I

B CiticDependencylink -
Dp—prt OperatorCrticFeedbackConn
B OpertorConn n—
Gitd Criticd

Figure 7.3: A visual critic definer editor: (a) Initial notation, (b) Improved
notation

Figure 7.3 (a) shows the initial notation used in the visual critic definer editor before
we improved the editor’s toolbar with icon notation as shown in Figure 7.3 (b). We
added the icon representation to the editor’s toolbar as to be consistent with other
Marama editors as well as to realise the requirements that we identified. However,
please note that the evaluation survey that we conducted with target end users to
assess our critic specification approach used the initial notation (Figure 7.3(a)). A
few improvements to the critic designer tool were made after the evaluation. The

results of our evaluation are discussed in Chapter NINE.

The visual critic definer editor has three main elements: CriticShape,
CriticFeedbackShape, and Operator, and four connectors: CriticFeedbackConn,
CriticDependencyLink, OperatorConn, and OperatorCriticFeedbackConn. The
CriticShape, orange rounded square shape, is to allow a target end-user tool
developer (or tool developer) to specify critic(s) for the developed Marama tool. The
CriticFeedbackShape, green oval shape, is used to specify the feedback for each
defined critic. After a critic is defined, the tool developer needs to specify an
appropriate feedback for the critic. The grey rhombus shape is the Operator that
holds the AND, OR, and XOR operator. The function of the Operator is to support

the creation of composite/compound critics. The relationship between critic and

146

feedback is supported by the CriticFeedbackConn connector to indicate that each
defined critic owns a defined feedback. In a case where one critic is dependent on
another, a CriticDependencyLink connector is used to show the visual representation
of the dependency. The OperatorConn connector is used to link a critic to a logical
operator (AND, OR, and XOR), and the OperatorCriticFeedbackConn connector is
used to link an operator to a feedback shape. A composite critic is formed in such a
way. This allows complex critics to be readily built from simpler parts. We explain
the function of each notation element of the visual critic definer editor in the
subsequent sections.

7.2.2.1 CriticShape with Extended Critic Authoring Templates

The critic authoring template in the previous prototype only covers constraint
templates supporting a simple critic specification. In this new development
approach, we have extended the critic authoring templates by adding action
assertion templates. Thus, the critic authoring templates support three types of
template: attribute constraint templates, relationship constraint templates, and action
assertion templates. Attribute constraint templates are used to specify essential
properties around uniqueness, optionality (null), and value check of an entity’s
attributes (Loucopoulos & Kadir, 2008). The relationship constraint templates assert
relationship type, cardinality and role constraints of each entity participating in a
particular relationship (Loucopoulos & Kadir, 2008). Action assertion templates
specify an action to be activated on the occurrence of a certain event or on the
satisfaction of certain conditions (Loucopoulos & Kadir, 2008). The action assertion
template allows the tool/end-user designer to specify more complex critics. Table
7.1 describes our critic authoring templates adapted from the BR template approach.
The description of these templates is also given in Section 5.6 of Chapter 5. Our
critic authoring templates are applied to a target DSVL tool’s meta-model to review

its target model instances.

147

Table 7.1: Critic Authoring Template (adapted from (Loucopoulos & Kadir,
2008))

Types Templates
Attribute <entity> must have | may have a [unique] <attributeTerm>
Constraint

<entity><<attributeTerm1>must be | may be <relationalOperator> <value>

| <attributeTerm2>>

Relationship [<cardinality>]<entityl> is a/an <role> of [<cardinality>]<entity2>

Constraint [<cardinality>]<entityl> is associated with [<cardinality>]<entity2>

<entityl> must have | may have [<cardinality>]<entity2>

<entityl> is a/an <entity2>

Action Assertion | When <event> [if <condition>] then <action>

The critic specification is defined by selecting a CriticShape in the visual critic
editor as shown in Figure 7.4 (top). The CriticShape is associated with a form-based
interface designed to ease the task of specifying and authoring critics. Figure 7.4
(bottom) shows the associated Critic Construction View interface. The target end-
user tool developers specify their critics by selecting from the available templates
provided in the Critic Construction View interface and completing the form with
required information. Critics are generated automatically after the tool developer

completes the required properties for each critic.

148

% Select
i Marquee

% Sketching tool

== Shapes <=

CriticShape
CriticFeedbackShape

= Connectors Ero)
cr—grb CriticFeedbackConn
or CriticDependencyLink
3 Critic Construction View 2

Attribute Constraint Templates

Select Attribute Constraint Template: -

entity: < attributeTerml> must be <relationalOperator> <attributeTerm2> »
=attributeTerml> must be <relaticnalOperator> <value>

association: <attributeTerm> must not [equal]

<entity> may have <attributeTerm:>

m

attributeTerm: <entity> must have a [unique] <attributeTerm> -

attributeTerml: -

attributeTermz2: -

role:
relationalOperator: -
logicalOperator: -

value:

Relationship Constraint Templates

Select Relationship Constraint Template: -
entityl: =

attributeTerm: =

entity2: =

attributeTerml: &

association: -

cardinality: =

cardinalityEntityl: =

cardinalityEntity2: =

Action Assertion Templates

Select Action Assertion Template: =7

Figure 7.4: CriticShape (top) associated with Critic Construction View interface
(bottom)

7.2.2.2 Critic Feedback Specification
Once the critic(s) has been defined in the visual critic definer editor, the next task is

to specify feedback for the defined critic(s). This is done via the
CriticFeedbackShape which is also associated with a form-based interface, the
Critic Feedback View, shown in Figure 7.5.

149

[*CPMcritic.maramaCriticType &2
% Select

[3 Marquee
% Sketching tool

= Shapes Ee]
. . Instruction must have a unique InstructionMame
(€x) CriticShape

CriticFeedba...
A Operator
op> -

= Connectors 40

crgFb CriticF..

cor CriticDepe...
~® OperatorConn
[Critic Construction View | T Critic Feedback View 3

Select Critiquing Strategies: Active -
Select Modalities of Critiques: | Combination of Text&Graphic -

Explanation: struction cannot have the same name

Suggestion: Remove or Rename -

Critique Message: an with the same name is already exist

Save Feedback

Figure 7.5: CriticFeedbackShape associated with Critic feedback view
interface.
The end-user tool developer needs to specify an appropriate action to resolve the
critic(s) defined for the DSVL tool. The critic feedback view has the following

properties:

(i) Critique strategies that determine the execution mode of the critic. This can
be either active or passive. An active critic will monitor continuously a user’s
tasks and warns the user as soon as a critic is violated (Fischer, Lemke, &
Mastaglio, 1991; Robbins, 1998) and then provides feedback (a critique). A
passive critic only works when a user asks explicitly to check for a critic
violation (Fischer, Lemke, & Mastaglio, 1991; Robbins, 1998). An example
of a passive critic is shown in Figure 7.6. When the user selects the pop-up
menu item Show Critique the critic checks the design and provides feedback

to the user in the dialogue box.

150

*J Undo Set op Property i Marquee
L
‘ [Sketching tool

[Shapes

!. EMLService

g- EMLOperation

| B EMLProcessStart

[
i. EMLProcessEnd

Show Critique ® b Connectors i &J
Hide Differences]I ServiceFlow List of Critique
Difference Diagrams]. OperationFlow EMLServicenamemustnot equalr

Run As Y]‘l ServiceOperati...

Debug As 4 }- OperationProc...
Profile As

" |m OperationProc...

[
>

o ol

Figure 7.6: An example of passive critic

(it) Modalities of critiques (Oh, et al., 2008) involve the presentation of the

critique. This can be textual, graphical or a combination of both.

(iii) An explanation to represent a reason/justification of a critique. The tool
developer must provide a relevant explanation to justify the critique so that

the users can accept the critique given to them.

(iv) A suggestion indicates an action to resolve the critic violation. Lists of
actions are provided in the drop-down menu. Hence, the tool developer just
needs to select an appropriate fix action for a specified critic. The suggestion

only involves a simple fix action to resolve the critic.

(v) A critiqgue message specifies a textual message that is displayed for each
critic that has been defined. We allow tool developers to construct their own

critique message for each specified critic.

Feedbacks are generated automatically after the tool developer completes the
required properties for each critic feedback. The execution of these properties is
described in the following chapter- Chapter EIGHT. Once a critic and feedback are
defined, these two elements are linked by the CriticFeedbackConn connector to
indicate that a critic owns a fix action. Although (Fischer et al., 1991) state that a
critic does not necessarily solve a user’s problems, in our approach we expect the

end-user tool developers to indicate a fix action, where possible, for each critic

151

defined for their DSVL tool. Figure 7.7 shows the relationship between a critic and a
feedback.

Q Sketching tool

(= Shapes 4
@ CriticShape
@ CriticFeedbackShape _.___..-
Operator
trgprn CriticFeedbackConn

~® OperatorConn

Figure 7.7: A CriticFeedbackConn connector links the critic and feedback.

7.2.23 Critic dependency, Operator shape, Operator and
OperatorCriticFeedback connectors

Figure 7.8 shows a situation where one critic might be dependent on another critic.
The dependency of critics can be represented visually by using the
CriticDependencyLink connector (the one that takes the ‘dependsOn’ role is at the
end of the arrow shape) as shown in Figure 7.8. The critic dependency link implies a
sequence of critic execution between the two critics. A critic that depends on another
critic will only run when the critic it depends on is not violated. For instance, in
Figure 7.8 it shows the critic: “EMLService must have a unique name” is dependent
on a critic: “EMLService name must not be null”. This means that the unique name

critic is executed only if the service name is not null.

% Select
::; Marquee

[Sketching tool

(= Shapes @9

e — SR
0 CriticFeedbackShape B
- i)

(== Connectors <«

cr—prb CriticFeedbackConn
cr CriticDependencylink

~® OperatorConn
op—pFb OperatorCriticFeedback...

Figure 7.8: A CriticDependencyLink connects two critics

152

Apart from the above case, we have identified three logical operators: AND, OR,
and XOR used for combining critics. A combination of critics using the logical
operator AND requires all of the critic condition rules to be true for its critic
feedback (i.e. fix action) to be executed for the critics. A combination of critics
using the logical operator OR requires one of the critic condition rules to be true for
the critic feedback to be executed. Finally the combination of critics using the
logical operator XOR (“exclusive or’’) requires at most one critic condition rule to be
true for a critic feedback to be executed. A simple way to state the XOR is “one or
the other but not both”. Figure 7.8 shows an example of the OR operator for two
critic conditions. The two critics are combined with the OR operator via the
OperatorConn connector. The feedback for the linked critics are then specified and
linked with the operator using the OperatorCriticFeedbackConn connector. The
explanation of this kind of critic is provided in the following section.

7.2.2.4 Simple and Complex Critics

We define the critics in our previous prototype development as a “unit” or “simple”
critic. A unit/simple critic is a critic that was specified based on a single design
model feature. Thus, the end-user tool developer constructs one critic at a time based
on one BR-based model condition. For instance, a critic based on a uniqueness
check for one entity can be specified using the attribute constraint template:
<entity> must have a [unique] <attributeTerm>. This is a simple critic because it
only involves a checking for a unique value for one entity. Likewise, a critic that
checks for the existence of an entity can be specified using the relationship
constraint template: [<cardinality>]<entityl> must have [<cardinality>]
<entity2>. It is considered as a simple critic as it only checks based on one
preference that is the existence of one entity. In general, critics specified using the
attribute and relationship constraint templates are considered as simple critics.
Figure 7.9 shows three examples of simple critics.

Figure 7.9: Examples of unit/ simple critics
153

However, in our new development approach, we wanted to allow end-user tool
developers to specify both simple and “complex™ critics through the visual critic
definer editor. A “complex” critic is a critic that has multiple features that need to be
considered. In our new approach, the end-user tool developers can construct the
complex (or composite) critics by using the action assertion template and the logical
operators AND, OR and XOR. Hence, end-user tool developers can specify complex
critics with extended expressive power while still retaining the relative simplicity of
the BR template-based approach. In addition, end-user tool developers can specify
complex critics by building them from parts and also reuse simple critic parts.

An example of a complex critic is illustrated by using a simplified MaramaEML tool
(a business process specification tool) as shown in Figure 7.10 (top). For instance,
suppose we specify two critics with a name uniqueness constraint. A logical
operator, OR can be used to link the two critics with both critics sharing a common
feedback (see Figure 7.10 bottom). We consider this to be a “complex” critic
because it involves more than one preference/feature. The execution semantics of
these two critics is that when either one of the critics is violated the critique will be

displayed and the fix action for that critic will be suggested to the user.

154

I EMLService

narne String key
documentation String nonkey
tree String nenkey
parentService String nonkey
childService String nonkey
operation String nonkey
serviceType String nonkey
status String nonkey

| EMLOperation
name String key
documentation String nonkey
tree String nonkey

service String nonkey
ocperationType String nonkey
input String nonkey

output String nonkey

EMLProcess_E...

name String key

EMLProcess

EMLProcessStart
name String key
startCondition String nonkey

EMLProcess...

|
input String nonkey status String nonkey subProcess String nonkey (EMLP.rn(essEnd
output String nonkey actor String nonkey parentProcess String nonkey endTypeStr!ng nonkey
actor String nonkey - data String nonkey ""‘9“59.95”“"9 nonkey
| error String nonkey
| cancel String nonkey
operation Start subProcessM... Stri.. non..
[o T 509533.\:.57-.5: | subProcessld String nonkey
= mégr subProcessD... Stri.. non...
I .': - complexRes... String nenk...
S

[Select

[:1 Marquee

% Sketching tool
éghapes @ |
CriticShape

@ CriticFeedbackShape

‘: Operator

= Connectors % |

crgrh CriticFeedbackCaonn

or CriticDependencylink

~® OperatorConn

Figure 7.10: Critics specified in the critic definer editor (bottom) based on the
meta-model of SimplifiedMaramaEML tool defined in the meta-model editor

(top)
The action assertion template specifies an action that needs to be activated due to the
occurrence of a certain event or on the satisfaction of certain conditions. The
template has two options:1) When <event> [If <condition>] then <action> and 2)
When <event> then <action>. These templates can form complex critics as they

involve several aspects to be assessed (that is the event, condition, and action).

For example, suppose we wish to specify a critic that constrains the service entity
(i.e. EMLService) to have no more than four operations (i.e. EMLOperation). Hence,
the features that need to be considered using the action assertion template are:
<event>, <condition> and <action>. The event is concerned with the creation of an

association link (EMLService_EMLOperation) between

the service entity
(EMLService) and operation entity (EMLOperation). The condition for the event is

that the cardinality of the association link (EMLService_ EMLOperation) is greater

155

than 4 and the action is to delete the new association link between the service entity
and operation entity. This information is shown in Figure 7.11 that indicates there
are more than single features that need to be considered. Thus, when a user runs the
tool, a critique will be displayed if the event occurs to notify the user, followed by

an execution of the action.

[Critic Construction View £3 . ® Critic Feedback View| €] Error Log

relationalOperator: | greater than hd

logicalOperator: -

value: 4

Relationship Constraint Templates

Select Relationship Constraint Template: ¥
entityl: >

attributeTerm: -

entity2: e

attributeTerm1: -

association: 1LService_EMLOperation ~

cardinality: -

cardinalityEntityl: ¥

cardinalityEntity2: -

Action Assertion Templates

Select Action Assertion Template: | When <event> [If <condition>] then <action> ~
event: <association> is created -

condition <association> size <relationalOperator> <value> -

action: delete <association> -

[Savecritic
Figure 7.11: A critic specified using an action assertion template.

7.2.2.5 Critic Template Editor

In our previous prototype development, we managed to specify tool critics based on
the BR templates. This was because the structure of the templates is straightforward
and easy to understand especially the attribute and relationship constraint templates.
However, the structure of the constraint templates of the BR approach does not
provide the mixture and combination of the attribute and relationship constraint
templates. This limitation is resolved with our new critic authoring templates

through the development of a Critic Template editor.

We mentioned earlier that in specifying critics, end-user tool developers need to
select the appropriate template provided in the Critic Construction View interface
(see Figure 7.4) to define their tool critics. However, we do not limit our critic
authoring templates to the ones proposed in the BR templates. We wanted end-user
tool developers to be able to specify their own critic templates for reuse. Hence, we

156

have developed the Critic Template editor to support the development of new critic
templates. In a case where an available critic template does not provide the desired
critic specification, we allow the end-user tool developer to construct a new critic
template via the Critic Template editor (see Figure 7.12). We also allow the critic
template to have a mixture of attribute and relationship constraint templates.

2 %~

Construct new critic rule staternent: Class name in collaboratien diagram is not equal with the class name that ex
Select the critic rule phrase to construct your new critic template: -
Select the <auxiliary> term te construct your critic phrase: -

Select the operator to censtruct your critic phrase: -

Construct a new event statement:

Select the event template: -
MNew event template :

Construct a new condition staterment:

Select the condition Template: -
New condition template :

Construct a new action statement:

Select the action template: -
New action template :

WNEW CRITIC TEMPLATE: <entityl > <attributeTerm: <relational Operators < entity2> <attributeTerml >

<entity> must have unique <attributeTerm:

<entity> may have <attributeTerm=

<attributeTerm1> must be <relationalOperator> <value>
<attributeTerm1> must belmay be <relational Operator> <attributeTerm2»
[« cardinality=]« entityl » is associated with [« cardinality>]< entity2»

List of Availabe Critic Templates [« cardinality>]<entityl »is a/an <role> of[<cardinality>]<entity2>
<entityl» is afan <entity2>

<entityl > must have [« cardinality>] < entity2>

When <event> then <action»

When <event> [If <condition>] then <action>

Save the new critic template Clear Critic Template

Figure 7.12: A new critic template created in the Critic Template editor.

The end-user tool developer initially needs to construct the new critic
statement/phrase that describes the critic situation. The critic statement should
reflect the information expressed in the Marama meta-model diagram for that
particular DSVL tool. Based on the critic statement, the developer selects the
necessary properties to form a new critic template that represents the new critic
statement that has been defined. After specification, the new critic template is listed
in the available templates and can be used to specify critics. Thus, the available
template list can be expanded according to the new critic templates created in the
critic template editor. Our critic authoring templates are not as highly expressive as

natural language rule statements, but provide sufficient expressiveness to allow end-

157

user tool developers to understand, modify and possibly author critic rule

expressions with little support from expert tool developers.

We provide a critic authoring guideline to assist end-user tool developers to author
their own critic template if the required template is not available in the critic
template list. The critic authoring guideline shows what phrases are allowed to use
to author/express an appropriate critic rule template that represents a critic
statement. The critic authoring guideline is explained in the following section.

7.2.2.6 Critic Authoring Guideline

Our critic authoring templates are applied to a target DSVL tool’s meta-model to
review its target model instances. We have developed a general critic authoring
guideline to assist end-user tool developers in specifying their DSVL tool critics.
The description of the critic authoring template guideline is added to the critic
construction editor interface so that the new end-user tool developers can understand
the critic authoring template style and they can use it to specify appropriate critics

for their tool. This is shown in Figure 7.13.
- -

The general guideline for critic authering task:

There are three templates to help user to construct and define a critic:.
1. Attribute Constraint Template.

2. Relationship Constraint Template.

3. Action Assertion Template

Guideline for Attribute Constraint Template

1.This template is to specify the desired and undesired properties as well as check of an entity's attributes.

2.<entity> refers to the entity defined at the tool's metamodel

3.<attributeTerm> refers to the attribute value of an entity

4.<attributeTerml> and <attributeTerm2> refer to value attribute one and attribute two for an entity

5.<auxiliary> refers to term: must have,may have, must be, is a/an, has a/an, unique

6.<relationalOperator> refer to construct or operator that tests some kind of relation between two attributes for an entity
7.<value> refers to a kind of data with a string data type (e.g. 3 or three)

8.A critic template must not begin with an <ausiliary>, <values, <relationalOperator>, <logicalOperator> and [uniquel.

9.4 critic template can begin with an <entity> and followed by <ausdliary> and <attributeTerms.

10.4 critic template can begin with an <atttibuteTerm> followed by <ausdliany>, <values,

11.A critic template can begin with an <atttibuteTerm1> followed by <relationalOperator>, then <value> or <attributeTerm2>.
12.Available critic templates:

a)<entity> must have | may have a [unique] <attributeTerm:

b)«attributeTerm1 > must be | may be <relationalOperator> <value> | <attributeTerm2>.

13. Example of critic statement:Class must have a unique name and Critic rule template: < entity>must have a[unique]<attributeTerm:

Guideline for Relationhsip Constraint Template

1.This template is to specify the relationship types, cardinality, and roles of each entity involve in a relationship.
2.<entityl> and <entity2> refer to entity cne and entity two.

3.<cardinality> refers to the occurence of an entity: zero, one, many

4.cardinalityEntityl and cardinalityEntity2 refers to cardinality for entity one, and cardinality for entity two.

5.4 critic template must not begins with an <auxiliary>, <value>, <relationalOperator>, <logicalOperator> and [uniquel.
6.4 critic template can begin with [<cardinality>] <entityl> followed by others critic phrase notation.

7.Avalaible critic templates:

a)[« cardinality> 1< entityl > is a/an <role> of [« cardinality>]« entity2>

b)[<cardinality>]< entityl> is associated with [« cardinality>]< entity2>

c)<entityl> must have | may have [« cardinality>]<entity2>

d)<entityl > is afan <entity2>

8.Example of critic statement:Package must have many Classes and Critic rule template:<entityl > must have <cardinality> <entity2>

Guideline for Action Assertion Template

1.This template specify is to specify what action to be taken when certain event occured.

2.5elect the "When' option.

3.5pecify the < event> parameters

4.Specify the <condition> parameters

5.Specify the <action> parameters.

6.Example: When <event> [[f<condition>] then <action>,

<events= <association> is created, <condition> = <association>size <relationalOperator= <value», <action>= <associatio> delete

(oK] [cancel |

Figure 7.13: A guideline for the critic authoring template style.
158

Critic Authoring Guideline.

I. Purpose

The purpose of this guideline is to provide guidance to the end-user tool
developers in specifying critics via the critic authoring templates.

Il. Scope

This guideline applies to the end-user tool developers who want to add
critic support to their DSVL tool. The development of the DSVL tool is
within the Marama meta-tools environment.

[11. Definitions
For the purpose of this guideline, the following definitions shall apply.
Critic phrase Meaning
notation
<entity> <entity> is a type of entities defined in the Marama

meta-model diagram

<attributeTerm>

<attributeTerm> is a type of an attribute for an entity

<association>

<association> is a type of associations defined in the
Marama meta-model diagram

<role>

refers to the associationEndName for an association type
defined in the Marama meta-model diagram

<cardinality>

refers to the end1Multiplicity and end2Multiplicity
defined for an association type

<relationalOperator>

Operators that check relation between two entities or two
attributes. Consists of: equal, not equal, greater than, less
than, equal or greater than, equal or less than.

<logicalOperator>

Logical operators that connect two or more
parameters/statements. Consists of: AND, OR, and XOR.

<auxiliary> <auxiliary> is a term functioning to provide semantic
information to a critic statement. Consists of: ‘has a/an’,
‘is a/an’, ‘may be’, ‘must be’, ‘may have’, ‘must have’
and ‘unique’

<value> is a kind of data with a string data type

<event> Event is a part to specify a signal that triggers an
invocation of a critic rule template.

<condition> Condition is a part that provides a logical test causes an
action to be carried out.

<action> Action is a part that consists of updates or invocations on
the entity attributes.

<A> | Choice of A and B. Is either A or B.

[A] A is optional.

159

IV. Guideline

Attribute Constraint Template

1. This template specifies desired and undesired properties as well as
checks constraints on an entity’s attributes.

2. A critic template must not begin with an <auxiliary>, <value>,
<relationalOperator>, <logicalOperator>, <attributeTerm> :
<attributeTerm1> , <attributeTerm2> or [unique].

3. A critic template can begin with an <entity> followed by <auxiliary>
and <attributeTerm>.

4. A critic template can begin with an <entity> followed by
<atttibuteTerm> and <auxiliary>, <value>.

5. A critic template can begin with an <entity> followed by
<atttibuteTerm1> and <relationalOperator>, then <value> or
<attributeTerm2>.

6. Available critic templates:

e <entity> must have | may have a [unique] <attributeTerm>.
e <entity><<attributeTerm1>must be | may be <relationalOperator>
<value> | <attributeTerm2>>.

7. Example:

e <Class> must have a [unique] <name>.
e <Class><operation> may be <equal> <2>.

Relationship Constraint Template

8. This template specifies the relationship types, cardinalities, and roles of
each entity involved in a relationship.

9. A critic template must not begin with an <auxiliary>, <value>,
<relationalOperator>, <logicalOperator> or [unique].

10. <entity1> and <entity2> refer to entity one and entity two respectively.

11. cardinalityEntityl and cardinalityEntity2 refer to the cardinality for
entity one, and that for entity two.

12. A critic template can begin with [<cardinality>] <entityl> followed by
other critic phrase notation.

13. Available critic templates:
e [<cardinality>] <entityl> is a/an <role> of [<cardinality>]<entity2>
e [<cardinality>]<entityl> IS associated with

[<cardinality>] <entity2>

e <entityl> must have | may have [<cardinality>]<entity2>
e <entityl> is a/an <entity2>

14. Example:
e <Package> must have [<many>]<Class>
¢ [<many>]<Request> is associated with [<one>]<Service>

160

Action Assertion Template

15. This template is to specify what action to take when certain event
occurs.
16. Select the “When’ option.
17. Specify the <event> parameters.
18. Specify the <condition> parameters.
19. Specify the <action> parameters.
20. Example:
eWhen <event> [If <condition>] then <action>
o <event> = <association> is created
o <condition> = <association> size
<relationalOperator><value>
o <action> = delete <association>

The critic authoring guideline helps to prevent the end-user tool developers from
authoring an invalid critic rule template. The following are some examples of invalid
and valid structures of critic rule templates.
1. Examples of invalid critic rule templates:
e <auxiliary><attributeTerm><entity>
e <relationalOperator><entityl><entity2>
e <value><relationalOperator><attribute Term>
e <entityl><relationalOperator>
e <logicalOperator><attributeTerm1><attributeTerm2>
2. Examples of valid critic rule templates:
e <entity> <auxiliary><attributeTerm>

e <entityl><attributeTerm><relationalOperator><entity2><attributeTe

rmi1>
e [<cardinality>]<entityl> is associated with [<cardinality>]<entity2>
e <entityl><auxiliary><cardinality><entity2>

e <entityl><logicalOperator><entity2><auxiliary><attributeTerm>

161

7.2.2.6 Critic and Feedback Repository
Critics and feedbacks defined for a DSVL tool are stored in an XML format in the

Marama tool repository. Critics are stored in a critictypes folder whereas the

feedbacks are stored in a feedbacktypes folder, as shown in Figure 7.14.

4 12 SimplifiedMaramaEML
4 [= SimplifiedMaramakML
4 [~ critics
4 (= critictypes
EMLOperationUniqueAttributeCriticl xml

EMLOperationUniqueAttributeCriticl OREMLSe
EMLService EMLOperationAssertionCritic3 xml

EMLServiceMothullAttributeCritic2 xml

EMLServiceUniquedttributeCriticl aoml
4 (= feedbacktypes

Feedbackl xml

FeedbackZxml

Feedback3 aml

h Select
I} Marquee

h Sketching tool

[~ Shapes)

| CriticShape

@ CriticFeedba...

Operator

= Connectors 4

I

CriticF...
T—pfb
b [icons
» [= metamodel £ o CriticDepe...
[viewtypes
SimplifiedMaramaEMLxml 2 OperatorConn
B MLortc maramaCiicType N P P

Figure 7.14: Critic (critictypes folder) and feedback (feedbacktypes) repository
browser.

Once critic and feedback mechanisms have been specified, parameters are passed on
to template classes to construct critic and feedback handling objects. They are then

instantiated into the tool when executed.

7.3 Summary of the Implementation

The new approach with the Marama Critic Definer (see Figure 7.2) comprises four
major components to support end-user tool developers to perform a critic
specification task. These four components are the four new specification editors that
we designed and prototyped to support our new critic development approach (refer
to Figure 7.15):

1. Visual critic definer editor
2. Critic construction editor
3. Critic feedback editor

4. Critic template editor

We have described the functions of the four editors in the previous section and

examples of their utility are described in the Case Studies chapter (i.e. Chapter
162

EIGHT). Figure 7.15 shows a high level architecture view of the Marama meta-tools

and the extension of the Marama Critic Definer view.

Marama Meta-tools Application

Specification Tools

Metamodel Shape Designer Viewtype Definer Critic Definer

Definer %

v [seect

X
[Varee (15!%""-&»“’_".

Marama Models (data) b St

[EE I e e

. | —
Marama Project [Jrrtmen o]
Coeln. S
Model .
Glometor ¢ encion Gy | [
g (i i i .
Marama gt A‘weﬂi:h”zvngt
» oo = Rermicibiste.
. o) ITRR ———
Diagram Model — =
O Crize Censtruczon Vi T Crtigfeedzack View
Cerbute Condent e o ;‘:g - RevenActity
et Contant Tenpfl <etp misthres o que <ozl Sl oy
aity etuctin E Mo .. nan

. Tk DassCol etonsatty
TR (2) E Duazondpclenonky [—

Dl ietivgronke

aticuteTem -

alfrizuteTennl:
‘ atticuteTem?:
y
p— [Critic Construction View |] Critic Feedback View: £3
bbodfnDizgam
! [}Skekﬂmgtnn Isfucton o
15 PMmode! S Select Critiquing Strategies: Active ~ 3
S GePan Dita Collcion Az, szt Hime
B Pl Bhas ¢ " ! Select Modalities of Critiques: | Combination of Text&Graphic | ~
ine: e ;
2 PMmodeB 5 ety skl Explanation: struction cannot have the sameJname
K W Senicebesour, ‘Ema’.eanmtnmn; 6lucose meze uion et .
decrn marnaliagran - Suggestion: Remove or Rename ~
& P2 LLECES Picjour idecfing Critique Message: on with the same name is alread} exist
1% PMorget W forieSase oz opefbl [Save Feedback
2D i testing mete, rda a 2
W hsesman. el 2 el
2 Pogeres £ g[otie °C A HasFeromince Metics Generd Routne Construct new cric rule statement Class nameiin colaboration diagrdm s ot equal vith the class name that ex
dtonshapz —_—
We P A AT B
T e, —n'm_ < e CE e TS - (4)
retucion
Poty ke [J— il Select the operator to construct your crite phrase: -
Wﬂd&‘ Ham I s Construct a new event statement:
W hsnuctendhepe -
o Mesuinglndfue pe i Iirutnlire Selectthe evet template .
. nite . N -
i | Bl «| || (4 bsntitesmenmeideaon || b e event templte
Construct a new condition statement:
Lgim U318 ! m
. Wi Bt Select the condition Template: -
iE I, I
B Caelr-ash. | New conditon template
Construct a new action statement:
B Cofln-ass,
Select the action template: -
New action template

NEW CRITIC TEMPLATE: <entityl> JationalO)

<entity> must have unique <afiributeTerms

<entity> may have sattributeTemm>

<attributeTerml> must be <relationalOperater> <value>
> must be|may be <relationalOperat

[ty>] <entityl [ty>]<entity
List of Availabe Critic Templates 1 >is a/an <role> J<entity

“<entityl> ic 3/an <entity2>

<entityl> must have [<cardinality>]<entity2>
When <event> then <action>

When <event> [If <condition>] then <action>

Save the new critic template Clear Critic Template

Figure 7.15: Architecture view of the Marama meta-tools and the extension of
Marama Critic Definer view

163

7.4 Conclusion

We have described our final prototype for our critic specification approach to
support end-user tool developers in specifying critics and feedback in a simple way
for DSVL tools. We illustrated our visual and template-based approach to support
the task of end user specification on critics and feedback using examples for
Marama-based DSVL tools. A notational representation is offered to end-user tool
developers to specify critics for their DSVL tools without the need to have an in-
depth technical knowledge of critic construction. We also provide a critic authoring
template-based approach as an alternate style for the critic specification task. Our
tool supports end-user tool developers in customising critics and introduces a new
critic template via a critic authoring guideline and critic template editor. We have
demonstrated a proof-of-concept of our critic specification approach by
implementing a prototype of it within Marama meta-tool. We have evaluated our
resulting prototype with target tool developer end-users. In the following chapter we
describe a more comprehensive set of case studies illustrating the usage of the
approach in Chapter EIGHT. Results of the final prototype evaluation are provided
in Chapter NINE.

164

Chapter 8
Case Studies

This chapter describes three case studies that we used to demonstrate and evaluate
the utility of the critic specification editor for Marama DSVL tools. We begin by
introducing and describing the first case study - Marama VCPM that explains the
use of constraint templates provided by our critic specification editor. We then
describe the second case study - MaramaEML that demonstrates the action assertion
templates of our critic specification editor. We then describe our third case study -
MaramaUML that illustrates the customizing of a critic authoring template via our
critic template editor. The chapter ends with some conclusions based on the results

from these case studies.

8.1 Introduction

Gable (1994) suggests that using a case study approach can help us to understand the
problem being explored (Gable, 1994). Furthermore, according to Perry et al (2006),
case studies are now well-accepted in software engineering and are often used in
research projects “to understand, to explain or to demonstrate the capabilities of a
new technique, method, tool, process, technology or organizational structure”
(Perry, Sim, & Easterbrook, 2006).

Three case studies are described in this chapter. The purpose of using three case
studies is to understand, explain and demonstrate the utilities of our critic
specification editor in three different domains of DSVL tools (specifically Marama-
based tools). These three case studies are: a visual care plan modelling language tool
(medical domain), a simplified MaramaEML tool (business process domain), and a
MaramaUML tool (UML diagramming domain). We chose a diverse set of domains
in order to effectively prove the concept. The tools for these three case studies were
developed using the Marama environment via its three main editors: Marama meta-
model definer, to specify a tool’s meta-model; the Marama shape designer, to design

the tool’s visual notational elements; and the Marama viewtype definer, to specify

165

mappings of meta-model elements to visual representations. We then used the newly
developed editor from this thesis research, i.e. the critic specification editor, to
specify a range of critics for these exemplar DSVL tools. The three case studies are
explained in the following sections.

8.2 Case Study I: A Visual Care Plan Modelling Language
(VCPML) Tool

We have chosen the Visual Care Plan Modelling Language (VCPML) tool which
was designed by (Khambati, 2008) as our first case study of adding critics to a
DSVL tool. We chose this tool for the reasons that it was from a medical domain,
specifically the health care planning domain, and it was developed using the
Marama platform. The purpose of this case study is to understand and demonstrate
the utility of our critic specification editor in a medical domain of DSVL tools.
Hence, we applied our critic specification editor to the VCPML tool to see how
critics can be specified. For this case study we explored the Constraint Templates of

the critic specification editor to specify the VCPML tool’s critics.

8.2.1 Case Study Description

A visual care plan model language (VCPML) was designed to support health care
providers to capture health treatment and management information commonly
contained in guidelines for chronic illness treatment into a more formal, structured
and digital manner (Khambati, Grundy, Warren, & Hosking, 2008). The health care
professionals can model complex health care plans which comprised of different
types of health care activities, performance metrics (goals), assessment modules, and
other sub-care plans using the VCPML (Khambati, 2008). Figure 8.1 shows the
meta-model defined for the VCPML tool with the necessary entities, attributes and
associations. The four main types of components that form a care plan are:
performance metrics, health care activities, assessment modules and other health
care plans. Hence, the care plan entity has association with the performance metric
entity, activity entity, assessment module entity and other care plan entity. Similarly,
the activity entity is composed of other entities: instruction entity, routine entity, and

resource entity. The activity entity can be a simple task, a data collection activity or
166

a review activity. The assessment module entity is a decisional task flow which is
composed of assessment component entity that can be a conditional component,
assessment action, and treatment recommendation. These entities are shown in
Figure 8.1. A detailed explanation on this meta-model can be found in (Khambati,
2008).

The tool is then realized by modelling a care plan for diabetes management and this
is shown in Figure 8.2 (Khambati, 2008). In Figure 8.2, a glucose measurement
activity is modelled for one patient. From that model, it shows that the activity has a
routine to conduct in every 2 days, and also has instructions on how it should be
conducted. In addition, the patient requires certain material resources (i.e. testing
meter, testing strips and testing pen) to perform the activity. The patient also needs

to record his/her blood glucose sugar which is measured in mmol/L data unit.

The original VCPML Marama tool developed by Khambati had very little constraint
support to validate models and no design critic support to provide feedback to users.
Hence, it was an excellent exemplar to explore the utility of our new critic design

meta-tool extension to Marama.

To illustrate our critic specification editor in action, we show several examples of
critics and feedbacks defined using it. As we mentioned in previous chapters, a critic
specification is dependent on the information expressed in the tool’s meta-model.
We applied the meta-model of the visual care plan modelling language (VCPML)
tool shown in Figure 8.1 to specify the simple critics for the VCPML tool. The

following section demonstrates several examples of critics for the VCPML.

167

CarePlanHasCarePlan
ActivityHasInstruction
CarePlan

CarePlan... Str. .

CarePlanHasPerforma...

|PerfurmanceMetnc
Instructi... MultiLin... n... { AssessmentModule MetricN... Stri

| Instruction

” CareP\anHasAct\wtyJ UCarePIanHasAssessm...J
InstructionName String k...

Activity Assessmentbl., St Metri.. do.. no..
_ ActivityNa... Stringk. Metri... Str.. no..
ActivityHasRoutine RW'EWACU""WH“RE
AssessmentModuleHas..,
| Routine ’R_A -
Hourlylnter... dou... nonk... eviewhctity |AssessmentCompon... AssessmentAction
; K
Dailylnterval double nonkey AszessmentCo... St.. Agzessm., S, ..
Monthiylnte... dou.. non.. | Task ‘ DataCollectionActivity ﬂ\ -
Duration double nonkey DataNameSring key Recommendation
Recomm... Su. ...
DataUnit String nonkey
‘ Condition
ActivityHasResource Conditio... 5. ..
| Resource
ResourceMame String key = | NoCondtionalOm
| AssessmentComponent... | VesConditionalOutcome olonditianallutcome
Resource)... do.. no..
|Ser\riceResource “ MaterialResource
Figure 8.1: The VCPML meta model (Khambati, 2008)
Instruction
Data Collection Activity Instruction Nare:
Mame: | Measuring Blood Glucase
Care Plan |G|ucose Measure Instruction Text:
MNarme: Activibr-boro—{Data Name: st Prick. your index finger, using the
Diahetes Monitoring | Blood Ghucose Sugar esting pen, sqesze finger to

obtain a drop of blood on the
testing strip, and insert stripin
besting meter, read and record
results.

Datalinit:

[mmalfL

Routing
—

ﬁour\z Inkerval Ee‘ﬁ. giery 2z hoursa:

Daily Interval (e.g. every 2 days):

Meeds Pesource Meeds Resource Meeds Resource

Matetial Resource Material Resource Material Resource H
Fesource Name: Fesource Name: Resource Name: anthl ; Inkerval Ee'ﬁ' ever ; 3O,
[Testing meter [Testing strips | Testing Pen
Fesource Quantity: Fesource Quantity: Resource Quankity: Duration Ee‘ﬁ' dao for 30 minutesa:
[1 [2 | 1

Figure 8.2: An example of the VCPML model: A care plan for diabetes
management (Khambati, 2008))

8.2.2 Example Usage

We defined three simple critics for the visual care plan model language (VCPML)
tool based on the constraint templates shown in Table 8.1. The constraint templates
168

used can be divided into attribute constraint templates and relationship constraint

templates. The three examples of critics for the VCPML tool are shown in Table 8.2.

Table 8.2 shows the concerned elements from the tool’s meta-model, as shown in

Figure 8.1, a critic statement/phrase, critic template syntax, a template type and a

feedback (or fix action) to resolve the specified critic.

Table 8.1: Attribute and relationship constraint templates (Loucopoulos &

Kadir, 2008).
Type Template
Attribute <entity> must have |may have a [unique]<attributeTerm>.
Constraint <entity><attributeTerm1> must be| may be <relationalOperator> <value> |
<attributeTerm2>.
Relationship [<cardinality>]<entityl> is a/an <role> of [<cardinality>]<entity2>.
Constraint [<cardinality>]<entityl> is associated with [<cardinality>]<entity2>.
<entityl>must have|may have [<cardinality>]<entity2>.
<entityl> is a/an <entity2>.
Table 8.2: Examples of critics and feedbacks for VCPML tool
Tool’s meta- | Critic statement | Critic template Type Feedback
model element
Instruction Instruction must | <entity> must have |may | Attribute Rename or
have a unique | have a | constraint Remove one of the
InstructionName [unique]<attributeTerm>. component
Routine Daily Interval must | <<attributeTerm1> must | Attribute Rename the item
be greater than 1 be| may be | constraint
<relationalOperator>
<value>
CarePlan Care Plan must have | <entityl>must havejmay | Relationship Add the
many performance | have [<cardinality>] | constraint component
metrics <entity2>.

169

[Shapes e
B CriticShape
B CriticFeedback..

B Operator

= Connectors @
B CriticFeedback..

B CriticDepende...
B OperatorConn

Figure 8.3: A CriticFeedbackConn connector links the critic and feedback.

The first critic in Table 8.2 shows the critic statement derived from the attribute
constraint template as “Instruction must have a unique InstructionName.” The
statement ‘Instruction’ and ‘InstructionName’ are correspondingly associated to
Instruction entity and InstructionName attribute as shown in Figure 8.1. A name
uniqueness constraint has been specified for an Instruction entity using the attribute
constraint template in the CriticConstructionView editor. The Instruction entity and
InstructionName attribute have been selected as the entity and attribute term

respectively. This is shown in Figure 8.4.

D& Sketching
tool 3 . . .
E’ Shapes § _
B CriticShape . . .
W TN
% Connectors 0 | 4 | 1 3

SRR T Cvicc Fecdback View|

Attribute Constraint Templates

Select Attribute Constraint Template: | <entity> must have a [unique] <attributeTerm: -
entity: |Instruction - |

association: | - |

attributeTerm: v

attributeTerml: | - |

attributeTerma: | - |

Figure 8.4: A uniqueness name critic via the attribute constraint template

170

Another critic is related to a cardinality constraint on the relationship between the
CarePlan and PerfomanceMetric entities, specified in a relationship constraint
template. The critic statement “CarePlan must have many performance metrics”
indicates that the CarePlan and PerformanceMetric are respectively associated to
CarePlan entity and PerformanceMetric entity in the tool’s meta-model. The
statement ‘many’ represents the cardinality of the second entity, i.e. Performance

Metric. This critic specification is shown in Figure 8.5.

% Sketching tool |= CarePlan must have many PerformanceMetric

(= Shapes £

B CriticShape

| [s |

B P o

T Critic Construction View &2 1 Critic Feedback View

Relationship Constraint Templates

Select Relationship Constraint Template: | <entityl> must have [<cardinality>]<entity2>

entityl: CarePlan -
attributeTerm: -
entity2: PerformanceMetric -
attributeTerml: -
association: -
cardinality: -

cardinalityEntityl: -
cardinalityEntity2: m T

Figure 8.5: A critic on cardinality constraint using the relationship constraint
template.

All properties in the tool’s meta-model are available in the critic construction editor,

selectable via drop down menus.

Feedback actions for each critic have to be specified and defined. We show one
example of the feedback specified for the uniqueness name critic shown in Figure
8.4. The feedback for the defined critic is done via the CriticFeedbackShape (a
green oval shape) which is associated with a form-based interface, the Critic
Feedback View, as shown in Figure 8.6. The critic feedback editor has five
properties as shown in Figure 8.6: critiquing strategies (active/passive); modalities
of critiques (text/graphic/combination of text and graphic); explanation; suggestion
(list of possible actions); and critique message. All of the required properties have to
be filled in. We have described these properties in Chapter SEVEN (section 7.3.3.2).

171

=1 *CPMCritic.maramaCriticType 22
[é Select
H :1 Marquee

[+ Sketching tool

Instruction must have a unigu...
= Shapes Eve]

Bl CriticShape
B CriticFeedbackShape
B Operator

[= Connectors <0
B CriticFeedbackConn
B CriticDependencyLink
B OperatorConn

3 Critic Construction View | [Critic Feedback View &2

Select Critiquing Strategies: Active =
Select Modalities of Critiques: | Combination of Text&Graphic -

Explanation: truction cannot have the same name,

Suggestion: Remowve or Rename =

Critique Message: on with the same name is already exist

Save Feedback
Figure 8.6: Critic feedback for the uniqueness name critic

Once the properties have been specified then a button, Save Feedback (refer to
Figure 8.6) is selected. The feedback specification for other critics goes through the
same process. All critics have been specified as active critics with appropriate
explanation and fix messages to resolve them. Critics are generated automatically

after the end-user developer completes the required properties for each critic.

The execution of a critic specified in Figure 8.4 is shown in Figure 8.7, Figure 8.8
and Figure 8.9. Presentation of the critique message and the fix action are based on
properties that were specified in the critic feedback editor. In Figure 8.7, a
uniqueness name critic is violated for the Instruction entity due to the same name
that existed in the two entities. A critique message is displayed to warn the user
about the error. Furthermore, an explanation and suggestion are offered to the user to
resolve the problem as shown in Figure 8.8 and Figure 8.9. In Figure 8.9, an action
to rename the property value is selected and a new name is given to the Instruction

entity.

172

1= collaborationDiagram

3 % Sketching tool Instruction
& CPMmodel = Care Plan Data Collection Ac... Instruction Name:
1= CPMmedel2 (= Shapes g Name: Name: :
= = : : MeasuringBleodGlucese
CPMmodel3 s coivity o8] | frstroction_s| IG
= = .m° © - M ServiceResourc... | | Diabetes Monitoring [Glucose measure Instruction Ted
=| diagraml.maramaDiagram) nstruction Tegt:
= CPMprj2 B MaterialResour... Pick your index finger, ...
= CPMpraject B RoutineShape obtain ;«ﬂrop of blood...
T2 FDRbA i B AscessmentMo. testing meter, rad and ...
l Properties 23 . oF OUt“"E] -G Has Performgnce Metrics General floutine
=

B ConditionShape
— |+,
-“=|"> & B Recommendat...

< N —
[- Instruction

P Val
ey o B Assessmentict.. ST ﬁ Instruction Name:
“Model Elem B InstructionShape ;
InstructionMz MeasuringBloedGlucose A g)))) Instrue§enhlame
InstructionTe [] (= Connectors p H Instruction with the same name is already exist Instruction Text:

Location 413, 228 B CarePlanHasC...
Size 137,123

B CarePlanHasA...
B CarePlanHasks...

Figure 8.7: A critique message is displayed when a uniqueness name critic is
violated

a— .

[s Sketching tool Instruction
e o Care Plan Data Collection Ac... Instruction Name:
(= Shapes %

= Name: Activity to a3 Name: = IMeasuringBloodGlucose
B ServiceResourc... | Diabetes Monitoring lGlucose measure Instruction Text:

B MaterialResour... Pick your index finger, ...
B RoutineShape obtain a drop of blood...
testing meter, rad and ...

Bl AssessmentMo...
Bl ConditionShape

Has Performgnce Metrics General Routine
B Recommendat...

Bl AssessmentAct... I Performance Metric |

Feedback: L —

Instruction
Instruction Name:

A Instruction cannot have the same name. This will gives conflict in name.
Remove or Rename the item.

(InstructionName
fInstruction Text:

|

Figure 8.8: A critic feedback with a brief explanation and suggestion

Instruction

= Care Plan Data Collection Ac... Instruction Name:
= Name: - Name: . [MeasuringBloodGlucose

= - - SCTvThy To O | Imstroctien——s
| Dizbetes Monitoring Glucose measure Instruction Text:
Pick your index finger, ...
obtain a drop of blocod...
; testing meter, rad and ...
Has Performénce Metrics Generzal Routine

®] Suggestion to fix the problem =

Instruction

‘Which option would you prefer? =
ery 2 hou... Instruction Name:
Bemove the ileo) y | MeasuringBloodGlucose
i " Instruction Text:
T v
Enter new value: (B

MeasuringBloodPressure |

Figure 8.9: The fix action for the uniqueness name critic.

173

Specifying these three example critics was very straightforward using our critic
specification tool. Their specifications could not be compared to hard-coded critics
specified using the existing Marama meta-tools as none of them existed for
MaramaVCPML prior to this case study. However, similar critics could be
implemented using the existing Marama meta-tools using a combination of OCL
constraints and Java coded event handlers. These would be much more time
consuming to specify and debug than using our new critic specification tool. In
particular, giving feedback via a dialogue box or problem marker would require
writing Java code. Specifying a unique name property requires careful use of an
OCL constraint in the meta-model editor which we have found to be non-intuitive
for meta-tool users in previous evaluations. Unlike the OCL expressions and event
handlers, our simple critics can be easily packaged and reused or combined into

composite critics in our critic design tool.

8.3 Case Study I1: A Simplified Marama EML Tool

The purpose of this second case study is to illustrate the use of our critic
specification editor in a business process modelling domain. We choose to do this
with MaramaEML (Li, Hosking, & Grundy, 2007b) which is a complex visual tool
for business process modelling. The original MaramaEML was previously designed
and developed using the Marama meta-tool (Grundy, et al., 2008; Grundy, et al.,
2006) for creating Enterprise Modelling Language (EML) specifications (Li,
Hosking, & Grundy, 2007a; Li, et al., 2007b). EML uses a tree layout to represent
the basic structure of a service. However, for clarity reasons, we have designed and
developed a simplified version of MaramaEML by highlighting several main
components of the MaramaEML tool. We then applied our critic specification editor
to the simplified MaramaEML tool to see how critics can be specified. For this case
study we explored the complex critic features of the critic specification editor. As
the original MaramaEML tool had a number of constraints and critics specified
using Java event handlers we were able to directly compare the task of designing
critics using this approach to using our new critic design meta-tool. We were able to

interview the original developer of MaramaEML and obtain feedback on the

174

effectiveness and efficiency of specifying critics using our new critic design tool

compared to using the existing Marama meta-tools.

8.3.1 Case Study Description

One of the facilities provided by the simplified MaramaEML tool is to model
business processes. Figure 8.10 shows the simplified meta-model for the
MaramaEML with some of the relevant entities, attributes and associations. As
shown in Figure 8.10, MaramaEML’s main features include service entity, operation
entity and process entity. A service entity is to imply a task within a business
process of an organization. An operation entity is to represent an atomic activity that
is included in a service. A process entity has two types of entities: process start
entity and process end entity. The process start entity is to represent the start of a
process. The process end entity is to indicate the end of a process. Associations
between the required entities are created so as to support the modelling of the
business process structure. All services, operations and processes are organized in a

tree structure to model a business process system.

| EMLProcess
| EMLService name String key
name String key EMLOperation

i i nameString k ——
documentation String nonkey g : ey . EMProcenE.
tree String nonkey documentation String nonkey
parentService String nonkey tree String nonkey
childService String nonkey service String nonkey -

operation String nonkey operationType String nonkey EMLProcessStart

service Type String nonkey input String nonkey name String key

status String nonkey output String nonkey startCondition String nenkey

input String nonkey status String nonkey subProcess String nonkey | EMLP.m(essEnd
output String nonkey actor String nonkey parentProcess String nonkey E”dT)‘F'EStff”g nonkey
actor String nonkey data String nonkey message String nonkey

error String nonkey

cancel String nonkey
subProcessN... Stri... non..

subProcessld String nonkey

EMLOperatio... subProcessD... Stri.. non...
EMLService EMLOp... complexRes... String nonk...

EMLService_EMLService EMLOperation_EMLOpe...
EMLOper...

Figure 8.10: Meta model for the simplified MaramaEML

We adopted the following basic rules for the EML structure from (Li, 2010).

175

Table 8.3: Basic rules of EML tree structure (adopted from (Li, 2010))
Basic rules:

e Anenterprise system must have at least one Service tree.

e Every single service tree must have one and only one service node. It may (or may
not) include an arbitrary number of sub-service nodes (zero or more).

e Aservice node is always at the top of the single service tree structure. It must include
at least one Operation node (directly or indirectly). It may (or may not) include an
arbitrary number of sub-services.

e A sub-service is inside a service or sub-service node. It must include at least one
Operation (directly or indirectly) and may (or may not) has arbitrary number of sub-
services.

e An Operation is the leaf node of the service tree. It cannot include any service, sub-

service or other operations.

Figure 8.11 shows a simple example of a MaramaEML structure model for a basic
university enrolment service (modified from (Li, et al., 2007b)). We used the
example from (Li, et al., 2007b) however, presenting only a part of the university
enrolment service model. Figure 8.11 shows that the student service, university
service, and StudyLink are sub-services of the university enrolment service. These
are represented in the oval shape. Each service may (or may not) include a sub-
service. The university service includes four embedded services (i.e. enrolment
office, finance office, credit check and department). Each service must include at
least one operation. The operation entity is represented in a rectangle shape. For
instance, the Student Service manages four operations: search courses, apply

enrolment, apply loan and make payment.

To illustrate our critic specification editor in action, we applied the meta-model of
the MaramaEML shown in Figure 8.10 to specify the possible critics for the
simplified MaramaEML tool.

The following section demonstrates several examples of critics for the simplified
MaramaEML tool.

176

% Select

B =
University Enrollment Service

-1
14 Marquee

k Sketching teol

(= Shapes 4
B EMLService
B EMLOperation
B EMLProcessStart
B EMLProcessEnd

—_—
Student Service

B —
University Service

(= Connectors @ : :
B ServiceF] [Search Courﬁ Enrollment Office
erviceFlow
B OperationFlow 111

B OperationProc

B ServiceOperati “Apply Enrolyn nt “Receive Apy i(‘itiun |
\
Apply Loa i ||CheckAca1emic Records |
|Make Payment |Approve pplication
Reject Application

Figure 8.11: University enrollment service model using a simplified
MaramaEML (modified from (Li, et al., 2007b)

B OperationProc

8.3.2 Example Usage

Figure 8.12 shows several possible critics for the MaramaEML tool. These include
examples of complex critics using action assertion templates and the logical
operators (OR, AND and XOR). The situation that involves the dependency of
critics (i.e. between the second critic and the third critic as shown in Figure 8.12) is
not illustrated here as it is already explained in previous chapter in the section
7.2.2.3.

The action assertion templates specify an action to be activated on the occurrence of
a certain event or on the satisfaction of certain conditions. These include critique
message generation for the tool user and “fix up” actions that can be applied to

resolve detected design problem(s). The action assertion template is as below:
When <event> [if <condition>] then <action>

The bottom-most critic in Figure 8.12 is an example of complex critic using the
action assertion template. Suppose we wish to specify a critic that constrains the
service entity (i.e. EMLService) to have no more than four operations (i.e.
EMLOperation). This might be sensible in order to encourage designers to split large

hierarchies of services into smaller, more manageable and understandable groups as

177

our evaluation of MaramaEML found that service entities with large numbers of

operations look cumbersome to the end users.

The features that need to be considered using the action assertion template are:
<event>, <condition> and <action>. The event is concerned with the creation of an
association link (EMLService EMLOperation) between the service entity
(EMLService) and operation entity (EMLOperation). The condition for the event is
that the cardinality of the association link (EMLService_EMLOperation) is greater
than 4 and the action is to delete the new association link between service entity and
operation entity. This information is shown in Table 8.4. A critic for this case can be
specified by defining the relevant properties for event, condition and action in an
action assertion template as shown in Figure 8.13 that indicates there are more than
single features that need to be considered. Thus, when a user runs the tool, a critique
is displayed if the event occurs to notify the user, followed by an execution of the
action. The execution of this critic is shown in Figure 8.14.

[} Select
{_i Marquee

[} Sketching tool

= Shapes B
B CriticShape
B CriticFeedback...
B Operator

= Connectors 0
M CriticFeedback...
B CriticDepende...
B OperatorConn

Figure 8.12: Critics specified in the critic definer editor based on the meta-
model of SimplifiedMaramaEML tool.

Table 8.4: Action assertion template:
when<event>[If<condition>] then <action>.

Template Template instance

<event> = <association> is created <event> = <EMLService_ EMLOperation> is created
<condition> = <association> size | <condition> = < EMLService EMLOperation > size
<relationalOperator> <value> <greater than> <4>

<action> = delete <association> <action> = delete < EMLService_EMLOperation >

178

[Critic Construction View £3 . ® Critic Feedback View | €] Error Log

relationalOperator: | greater than

logicalOperator:

value: 4

Relationship Constraint Templates

entityl:
attributeTerm:
entity2:
attributeTerml:
association:
cardinality:
cardinalityEntityl:
cardinalityEntity2:

Select Relationship Constraint Template:

ILService_EMLOperation ~

Action Assertion Templates

Select Action Assertion Template: | When <event> [If <condition>] then <action> ~

event: <association> is created -

condition <association> size <relaticnalOperator> <value> -
action: delete <association> -

Save critic

Figure 8.13: A critic specified using an action assertion template.

[+ Sketching tool
= Shapes

B EMLService

B EMLOperation

Bl EMLProcessStart

B EMLProcessEnd
= Connectors

B ServiceFlow

B OperationFlow

Bl SciviceOperati..

BN OperationProc...

B OperationProc...

A

lapply loan

[register...
make payment

Critique:

[

A BEvery service should have maximum of 4 operation only

Figure 8.14: Action assertion critic execution after the trigger event occurs: a

critique is displayed to warn the user

Another example of such a complex (or composite) critic is when using the logical
operators AND, OR and XOR. This approach allows users to specify complex critics
by building them from parts. Importantly it also facilitates hierarchical reuse of
simple (or other complex) critic parts. The topmost critic in Figure 8.12 is a complex
critic, where two simple critic conditions, in this case two name uniqueness
constraints, have been connected to OR to share a common feedback element. Table
8.5 shows the specification of the two critics. It is considered as a complex critic
because it involves more than one preference. The execution semantics of these two

critics are that when either one of the critic conditions is violated the critique will be

179

displayed and the fix action for that critic is suggested to the user. The execution of
this critic is shown in Figure 8.15.

Table 8.5. Attribute constraint template:
<entity> must have a [unique] <attributeTerm>.

Template Template instance
<entity> must have a [unique] <attributeTerm> <EMLService> must have a unique <name>
<entity> must have a [unique] <attributeTerm> <EMLOperation> must have a unique <name>
SRS I | Select
=% EMLUniversityEnrollmentService -

©7} Marquee

EMLUniversitvEnrollmentService.mal I Sketching tool

B ——
University Enroliment Service

aDiagram ~

Properties 52 5= Outline BB YT
B G (= Shapes

operty Value

*Model Elements .

= B EMLOperation

B EMLProcessStart

B EMLProcessEnd

384, 257

[Epply Enmlynfnt | |[Tze<eive Apd|icetion
. | Alieen | &
B OperationProc... A
o o i
qc ==

A This name already exists

Feedback: ===

’ A The Service and Operation must have a unique name.

Remove or Rename the item.

£} Marquee
-+ . Universi ity Enrollment Service
[z Sketching tool

(= Shapes <o
Bl EMLService
Bl EMLOperation
B EMLProcessStart
B EMLProcessEnd

|Student Service

Enrcllment Office | s < |Finance = [Department
I 1
||App|y Enrollf Fr.t | F{ eeeeee Ap,ﬂ.a{t.on |
i}

||Check Aci‘{emlc Records | l; 4'
11
[Make Payment

[2pprove dpplication

Reject Application

.1 Suggestion to fix the problem |='—|$1

1
Which option would you prefer?

Enter new value: ===
Remowve the item
Rename the item

[check credif |

Figure 8.15: Feedback of a complex critic using the logical operator OR (top)
and fix action for this critic (bottom).

We are able to compare the specification of these critics using our critic
specification tool with specification with the original critics in MaramaEML. The

original MaramaEML used Java event handlers to implement similar constraint

180

testing and feedback to the user. However, it did not generally implement fix-up
options for the end user to invoke. Specifying constraints and feedback was time-
consuming and was difficult to maintain in MaramaEML as the meta-model evolved
over time. Similarly, as MaramaEML has several integrated modelling notations and
a canonical meta-model, it was a complex task to implement inter-notation
constraints. Using our critic designer on the canonical meta-model is straightforward
and implementations of critics that took several hours to specify, test and evolve can
be done in a matter of minutes. Understanding the critics is far easier than browsing
and understanding the previous individual Java event handlers, which comprised
hundreds of lines of Java code with Marama API calls. In contrast, as seen in these
examples, visual and form-based critic specifications are very clear, concise,

understandable, reusable and maintainable.

8.4 Case Study Il1: MaramaUML Tool

In this section, we present our final case study, a MaramaUML tool to demonstrate
the utility of our critic specification editor in customizing/tailoring critic authoring
templates. The MaramaUML tool provides a simplified Unified Modelling
Language (UML) class diagram view and collaboration diagram view. We designed
and developed a simplified UML tool for the purpose of clarity in explaining the

task of customizing the critic authoring templates.

8.4.1 Case Study Description

The Unified Modeling Language (UML) offers several types of diagrams that can be
employed to model the static structure and dynamic behaviour of a software system.
In this case study, we have chosen a class diagram to represent the static model
structure of a software system and a collaboration diagram to represent the dynamic
behavioural model of a software system. We have designed and developed a simple
MaramaUML tool using the Marama meta-tool editors. In this case study, we
concentrated on class diagrams and collaboration diagrams for the conceptual
perspective. This could be extended to cover other UML diagram types in the future,

but the coverage is sufficient to illustrate the application of our critic approach.

181

We specified several entities and associations to represent the structure of a class
diagram and a collaboration diagram. The basic items of a class diagram are:
package; class with the properties name, attribute and operation; and associations
between these items. Similarly, the collaboration diagram depicts objects and links
between objects. The class of each object included in the collaboration diagram must
be defined and the object may optionally be named. The basic items for a
collaboration diagram are: object with the properties class name and object name;
message; and relationships between these items. The meta-model for the
MaramaUML tool that defines the structure of a class diagram and a collaboration

diagram is shown in Figure 8.15.

| Package | Class
name 5tring key name 5tring key Class_Class
attribute MultiLlinesText nonkey
operation MultiLinesText nonkey
Package_Class
| Object Message
classMame String key classOp... 5t ..
chjectMame String nonk...
Object_Object e —
Object_Message

Figure 8.15: Metamodel for MaramaUML tool.

[*Classdiagraml.maramaDiagram &% = *Collaborationdiagraml.maramaDiagram %

[} Select % Select
(i Marquee |-} Marquee
[Sketching [LibrarySystem ;s Sketching
tool tool
borrowltem BookiLibran
(= Shapes @ Borrower Libraryltem (= Shapes £ AliBorrower | storyBoakillibraryltem
B Package id itemType B Object
name name
M Class [dditer B Message i
= Connectors < returnitem viewltem 7= Connectors < | |registerCard
terCard
B PackageCl.. [Eser-al B ObjectLink
B Association UoALibCardiLibraryCard KarensLibrarian
LibraryCard Librarian
cardType :ar:e
cardName as.
wverifyltem

Figure 8.16: Class diagram example (left) and Collaboration diagram example
(right)

The MaramaUML tool provides two diagrams:

Collaboration diagram view. Figure 8.16 (left) shows an example of UML class

Class diagram view and

diagram modelling the concepts and relationships in a library system. Every class is
182

distinguished by its name, by a collection of properties, and by a collection of
operations provided by the class. The class diagram (left) represents the structure of
an early design-time snapshot of a simplified library system: a Borrower for
borrowing and returning library items, a LibraryCard for certifying the borrower’s
right to use the library, a Libraryltem for recording the library items, and a Librarian
for processing and verifying the library data. A Borrower class is related to
LibraryCard and Libraryltem classes. A Librarian class is related to Libraryltem

class.

Figure 8.16 (right) shows an example of UML collaboration diagram modeling the
objects interaction in a library system. An early design of a collaboration diagram
(right) is used on the instance level to describe the interaction among the objects
(instances of classes) and messages passes between them (Paige, Ostroff, & Brooke,
2002). The UoALibCard object is an instance of the LibraryCard class, the
storybook object is an instance of the Libraryltem class, the Ali object is an instance
of the Borrower class and the Karen object is an instance of the Librarian class. The
diagram also shows messages being passed between the objects. For instance, the Ali

object passes a message, borrowltem to the storybook object.

The two diagrams: class diagram and collaboration diagram are two fundamental
models that can be used to represent a system as shown in Figure 8.16. Once the
MaramaUML tool was defined, critics and feedbacks were specified via our critic
specification editor. The following section illustrates an example of tailoring the
critic authoring templates via the critic template editor, followed by an example of
using the newly created critic template to specify a critic for the simplified
MaramaUML tool. This shows how users of MaramaUML could tailor critics to
their own preferences and needs using our high-level critic design tool facilities. In
all other UML tools that we are aware of, including the earlier versions of Marama-
implemented UML tools, such tailoring would require expert knowledge of the tool
infrastructure, detailed use of the tool’s scripting and/or programming language, or

would not be supported at all (the case for most UML tools that we are aware of).

183

8.4.2 Example Usage

One example of the possible critics that can be specified for the MaramaUML tool is
to define a critic rule that checks for elements of consistency between a
collaboration diagram and a class diagram. For instance, the objects in a
collaboration diagram must include/define a class name of classes that are already
defined in a class diagram. In other words, for each object defined in the
collaboration diagram, there should be a class name that belongs to a class diagram,
so that, objects defined in the collaboration diagram have a corresponding class that
has been defined in the class diagram. This description is shown graphically in
Figure 8.17. Thus, we can say that the object’s class name in a collaboration diagram
must be equal to a class name that has been defined in a class diagram. If a design
violated this critic rule, then a feedback is displayed to warn the tool user about the
consistency error in the diagram design. During exploratory design this critiqgue may
be ignored i.e. the inconsistency tolerated by designers. However, it must be
resolved at some point or otherwise the resultant UML model is, by definition,

incorrect.

184

|LibrarySystem

Libraryltem
itemType

name

addltemn
viewltermn

Librarian
name
task
verifyltem

registerCard

UohLibCardglibraryCard

Figure 8.17: Graphical representation of a consistency rule between
collaboration diagram (bottom) and class diagram (top)

The available critic authoring templates that employ the business rule templates do
not, however, support the above situation. In a case where the available template
does not support the desired critic specification, we allow the end-user tool
developer to construct/customize a new critic template via a Critic Template editor,
shown in Figure 8.18. The following are the steps in constructing a new critic

authoring template:

1. Construct a critic statement/expression in natural language that describes the
critic condition. The critic statement should reflect the information expressed

in the MaramaUML tool’s meta-model;

New critic rule statement: The Object’s class name in the collaboration diagram

is not equal to a Class name that has been defined in a class diagram

185

2. Identify the appropriate critic rule phrase that can represent the critic

statement. This is shown below:

@. @n a collaboration diagram is (hot equal tp @@
been defindd in a class diagram / /
A 4

\4
<entityl> <attributeTerm> <relationalOperator> <entity2> <attributeTerm1>

3. Selected critic rule phrase then form a new critic authoring template to be
used in specifying a critic:

New critic authoring template syntax:
<entityl><attributeTerm><relationalOperator><entity2><attributeTerm1>

4. After specification, the new critic template is listed in the available templates
and can be used to specify critics. Thus, the available templates list can be
expanded according to the new critic templates created in the critic template
editor. Such basic critics can also be used in complex, composite critics as

illustrated in the previous MaramaEML case study.

The steps are shown in Figure 8.18. With the new critic template, the consistency
critic rule to check the existence of classes in a collaboration diagram and a class

diagram can be specified as:

Critic name: <Object><className><not equal><Class><name>

186

= — L]

Construct new critic rule statement: Class name in collaboration diagram is not equal with the class name that ex

Select the critic rule phrase to construct your new critic template:

Select the <auxiliary> term to construct your critic phrase: A

Select the operator to construct your critic phrase: -

Construct a new event statement:

Select the event template: -

MNew event template :

Construct a new condition statement:

Select the condition Template: -

MNew condition template :

Construct a new action statement:

I Select the action template: -

MNew action template :

MEW CRITIC TEMPLATE: <entityl » <attributeTerm> <relationalOperator> < entity2> < attributeTerml> [

<entity> must have unique <attributeTerm> il
<entity> may have <attributeTerm=

<attributeTerml> must be <relationalOperator> <value»
«<attributeTerml> must be|may be <relationalOperator> <attributeTerm2>
[=cardinality= < entityl »is asseciated with [<cardinality>] <entity2>

List of Availabe Critic Templates [<cardinality>]<entityl »is a/an <role> of[< cardinality>)< entity2>
<entityl» is a/an <entity2>

<entityl > must have [<cardinality>]<entity2»

When <event> then <action>

When <event= [If <condition=] then <action>

Save the new critic template Clear Critic Template

Figure 8.18: A new critic template created in the Critic Template editor.

A critic then can be specified using the new critic template as shown in Figure 8.19
(the bottom critic). The other critics in Figure 8.19 have similar characteristics to the

one that we described in the earlier section.

-
g -

Figure 8.19: New critic authoring template:
<entityl><attributeTerm><relationalOperator><entity2><attributeTerm1>
(bottom critic)

187

The execution of this new critic authoring template is shown in the following
figures: Figure 8.20, Figure 8.21 and Figure 8.22. In Figure 8.20, a critique message
is displayed in the collaboration diagram due to the fact that the class name defined
in the collaboration diagram does not correspond to a class that has been defined in
the class diagram. The critiqgue message warns the user about the error and provides
an explanation together with a suggestion to resolve the error. This is shown in

Figure 8.21. The critique message, explanation, and suggestion to fix the error are

actually based on the properties that were specified in the critic feedback editor.

o UMLModel3 1 Marquee i Marquee
= UMLproject =
. Sketchin barmowltem Sketchin LibrarySystem
= UMLprojectl [%too\ ? \AliiBorrower toryBookilibraryltem %tuol ’ ’YY
. Classdiagraml.maramaDiagr :
= Collaborationdiagraml.mara & hapes <t @shapes <t ‘dorrower !.\braryltem
T kot T WOt B Packge ‘ itemType
Il registerCard name name
= = B Message W Cless P—— o
‘ropettes &3 o Outing| = O eadtem
= = o & Connect.. (= Connec, 4 retumitem Viewltem
BEX B Ojectink UoALibCardlibraryCard B Pickage. festerCerd
Val
fey e B Associati..
Maodel Elements i
dassName Staff Crique: [&J LeranCaro Librarian
_ocation 35,239 objectName;className cardType :3':9
; 2l
objecflame objecthame & The class does not exist in class diagran! cardName
Size 41,9 verifyltem

Figure 8.20 A critique is displayed when a consistency critic rule is violated.

\

£ Properties £ . o= Outline = O/ = Connectors ¢ (= Connectors
S| 7 H Objectlink B PackageClassC...
GEE ' UoALibCardLibraryCard !

Property Value B Association
*Model Elements
className Staff
Location 19,23 objectN... jclassh..
objectName objectName Al l Il I
Size 115,48 Feedback =5

& For each object defined in the collaboration diagram, there should be a class name that belongs to a class diagram.

Rename the item.

Figure 8.21: A critic feedback displays a brief explanation and suggestion.

In Figure 8.22, it shows an action to resolve the error by renaming the class name in
the collaboration diagram. A new class name that corresponds to an existing class in

a class diagram is then defined in the dialogue box (i.e. Enter new value).

188

= UMLModel3 o {1 Marquee

= UMLF":'J_ECt [Sketching tool borrowltem
= UMLprojectl [AlifBorrower story
Classdiagraml.maramaDiagram (= Shapes &
Collaborationdiagraml.maramaDiagrarm B Object
m k
M Message [registerCard
- Oz i =0
| Properties &2 .= Outline (= Connectors <

— | = =
B M Objectlink

UoALibCardiLibraryCard

roperty Value
*Model Elernents
classMame Staff
Location 14, 227 ohjectMamet|St..,
objectMame objectblame L i |
Size 101] B Suggestion to fix the problem ‘:'_lg . - |

|Librarian| |

—

-

Figure 8.22: A fix action to resolve the consistency critic rule

In our earlier versions of MaramaUML tools such a constraint had to be
implemented with a Java event handler. This needed considerable coding and
Marama API calls to fully implement the example shown, around 100 lines of Java
code including supporting feedback to the user and fix-up action support. Writing
such code requires expert knowledge of the Marama APIs, as well as advanced Java
programming skills. It is error-prone, difficult to maintain and very difficult to

abstract and reuse.

In contrast, the critic for the MaramaUML example shown above demonstrates that
the critic specification tool can be extended by adding new design critic templates to
be instantiated for a DSVL domain. The critic template can be reused and any
complex critic built from the template can be composed of multiple reused basic
critics. The visual language and form-based property editors used to specify this
complex critic are easy to understand for tool developers and even for end users in
this example (UML users would find the critic and DVSL tool meta-modelling and
visual language specification straightforward as they are familiar with the class and
collaboration diagram concepts themselves). Finally, the critic template and complex
critic are understandable, maintainable, reusable and ultimately reconfigurable — the
MaramaUML user could switch off the critic or extend it with further constraints,
feedback or alternative fix-up rules using the critic designer tool.

189

8.5 Discussions and Conclusions

We have applied our new critic specification editor to three very different domains
of Marama-based tools, i.e. Marama visual care plan modelling language (VCPML)
- a health care plan modelling tool, a simplified MaramaEML (Enterprise Modelling
Language) — business process modelling tool, and a MaramaUML tool - a class and

collaboration diagramming tool.

We described our approach in specifying critics for Marama-based tools through
three case studies and each of these case studies included critic specifications and
applications as we mentioned previously. We have developed a prototype of a critic
specification editor that consists of two editors, including a Critic Construction
editor that comprises of the critic authoring templates and a critic template editor,
and a Critic Feedback editor to specify a critic feedback (critique). The main aim of
our prototype is to demonstrate the utility of the critic specification editor when
integrated into the Marama meta-tools. We have illustrated the utility of the critic
specification editor with three different case studies. Our purpose of using three
different case studies is to show that the utility of the critic specification editor can

extend to a range of different domains of DSVL tools.

The first case study involves specifying simple critics for a health care plan
modelling tool (i.e. VCPML) using the constraint templates (attribute and
relationship constraint templates). The available templates provided in the Critic
Construction editor are very straightforward to specify a critic. The structured form
of the critic authoring templates makes it easier and quicker to specify critics for the
VVCPML tool compared to using OCL and/or Marama event handlers coded in Java.
The syntax of the critic authoring templates matched the information expressed in
the tool’s meta-model and this makes the critic authoring task much easier for tool
developers. However, the limitation in the first case study is that we did not address
complex critics for the VCPML tool, as the constraint templates only support fairly
simple design critic construction. We speculate that with some training end users of
MaramaVCPML may even be able to understand, reconfigure and specify new
critics i.e. health professionals could extend their MaramaVVCPML designer critics.

190

The second case study deals with a business process modelling tool, a simplified
version of an earlier developed MaramaEML tool. The main aim of the second case
study is to demonstrate the utility of the critic specification editor in specifying
complex critics. The specification of complex critics is performed via the action
assertion template. Several properties/features have to be considered and assessed
when specifying a complex critic for the tool and these properties however have to
be matched with the tool’s meta-model elements. Through the action assertion
template, complex critics can be specified, provided that all the necessary properties
of event, condition and action have been defined. We also show how a complex
critic can be specified through the use of logical operators-OR, AND and XOR. The
logical operators can be used to link several similar critics and provide a common
critic feedback, like the one that we explained in the case study. With the second
case study we managed to show that complex critics are possible to be specified via
the critic specification editor. We were able to compare specification with our critic
designer to earlier implementation of the same critics using existing Marama meta-
tool OCL constraints and Java event handlers. Our critic specification tool approach
was proved far easier, quicker, and maintainable than our existing meta-tool support.
However, the main limitation of our second study is that we did not illustrate many
examples of complex critics from the action assertion template and also the logical

operators that are likely to arise.

Finally, we described a third case study that was concerned with a simplified
MaramaUML tool. The difference of this case study with the previous two is that the
MaramaUML tool provides two diagrams: a class diagram and a collaboration
diagram. The properties of these two diagrams come from one meta-model. The
previous case studies only support one model/diagram of their tools. The main
objective of the third case study is to illustrate the task of customizing the critic
authoring templates when a desired critic specification is not supported by the
existing critic authoring templates. An aim of our research was to enable end user
tool developers to be able to create their own critic template in a situation where the
list of available templates cannot support their desired critic statement. Thus, we
demonstrate in the case study how a critic authoring template can be customized

using a critic template editor. With the critic template editor, new critic templates
191

can be constructed to expand the list of available templates that appear in the critic
construction editor. Once the new critic authoring template is defined, the required
critic statement can then be specified for that tool. In this case study, we show an
example of creating a new critic authoring template which is a consistency critic
template that is concerned with one aspect of the consistencies between a
collaboration diagram and a class diagram. The limitation from the third case study
is that we did not address the issue of expressive power that the critic template editor

provides to the end use tool developers.

In one of the three case studies we did illustrate the critic feedback editor that is used
to provide the feedback information once a critic is defined. The critic feedback
process is applied for the other case studies. The function and properties of the critic
feedback editor are described in the previous chapters. In general, we believe that we
have managed to explain, demonstrate and provide understanding of the utility of
our critic specification editor which we integrated with the Marama meta-tools. It is
important to note that although each case study explains and illustrates a different
utility of the critic specification editor, the utilities of the critic specification editor
actually can be applied across all three different Marama tools. The exactly same
critic specification tool was used for each case study with no tailoring to the target
DSVL tool domain.

192

Chapter 9
Evaluation

This chapter presents the evaluation of our final critic specification prototype for
domain-specific visual language tools. We begin by introducing the concepts of
evaluations and usability evaluations. Then we introduce the Cognitive Dimensions
of Notations framework (CDs) and describe the criteria to evaluate a tool’s usability.
We then explain the design/method of our survey carried out to assess whether the
visual and template-based critic authoring tool effectively supports end-user
developers in specifying critics for DSVL tools. We analyse the survey results and

present the findings before we conclude the chapter.

9.1 Introduction

Evaluation is an essential activity in software engineering. According to Gena and
Weibelzahl (2007), evaluations are applied in software development to verify the
quality and feasibility of initial products such as mock-ups and prototypes as well as
of the final system/tool (Gena & Weibelzahl, 2007). Conducting an evaluation can
supply direct information about how people use the system/tool and the problems
with a specific interface (Holzinger, 2005). In addition, useful feedback from the
evaluation can help tool developers with redesign of the system/tool (Gena &
Weibelzahl, 2007). There are various types of evaluation and the one that we focus
in this chapter is usability evaluation. We briefly introduce several concepts and
definitions regarding usability evaluation before we describe the methods that we
applied for evaluating our prototype tool, i.e. the critic specification editor (Marama
Critic definer).

A considerable number of studies have discussed and published information on
usability testing/usability evaluation. These include (Blecken & Marx, 2010;
Hartson, Andre, & Williges, 2003; Holzinger, 2005; Jacko & Sears, 2003; Khan,
Israr, & Hassan, 2010; Leventhal & Barnes, 2008; Lund, 1998; Nielson, 1993;

193

Rubin, 1994). Most studies suggest that usability plays an essential task in the

improvement and development of effective and efficient systems/tools.

Rubin (1994) describes the term usability testing as “a process that employs
participants who are representative of the target population to evaluate the degree to
which a product meets specific usability criteria.” Another study which is recently
published in (Hwang & Salvendy, 2010) suggests that usability evaluation is
“essential to make sure that software products newly released are easy to use,
efficient, and effective to reach goals, and satisfactory to users.” Though the
different terms “usability testing” and “usability evaluation™ are used here it is very
clear that both focus on the aspect of usability. Leventhal and Barnes (2008) report
the definition of usability from the international standard ISO 9241-11 as:
“Usability: the extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and satisfaction in a specified context
of use.” In another published article by Holzinger (2005), usability is defined as “the
ease of use and acceptability of a system for a particular class of users carrying out
specific tasks in a specific environment.” Hence, we can say that usability testing
and usability evaluation serve the same role which is to evaluate a system or product
that can be used by the potential users in order to achieve specific usability aims
such as ease of use, efficiency, effectiveness and satisfaction for users. Here we use
the term usability evaluation to describe our evaluation method.

When conducting an evaluation, one has to consider whether it is a formative
evaluation or summative evaluation. Formative evaluations are evaluations that take
place throughout a system’s or tool’s development to improve a design. Summative
evaluations are conducted after a system/tool is completed to assess a design
(Blecken & Marx, 2010; Hartson, et al., 2003). In our case, we conducted a
summative evaluation and this is explained in the following sections. There are
several methods for evaluating usability, such as Think Aloud (TA), Heuristic
Evaluation (HE), Cognitive Walkthrough (CW), field observation and
questionnaires. Information on these methods can be found in (Gena & Weibelzahl,
2007; Holzinger, 2005; Hwang & Salvendy, 2010; Nielson, 1993).

194

This chapter describes the methods used to evaluate our prototype tool, which are:
questionnaires, observation and think aloud. We also applied the Cognitive
Dimensions of Notations framework (CDs) for discussing the usability of our tool.
CDs have been used to design a set of generalised questionnaires intended for
system/tool users evaluating the usability of a tool (Blackwell & Green, 2000). We
used some of these to design a questionnaire that integrates with the CDs elements.
We also made use of the USE (Usefulness, Satisfaction, and Ease of Use)
Questionnaire from (Lund, 1998) to design a questionnaire that deals with usability
issues. In addition, we used the observation and think aloud approach while our
participants worked on our prototype tool. All of these are explained in the

following sections.

9.2 Cognitive Dimensions of Notations framework (CDs)

The Cognitive Dimensions of Notations framework (CDs) as reported in (Blackwell
et al., 2001) “is a framework for describing the usability of notational systems ... and
information artifacts ... ”. The CDs are used to support the non-specialists in
evaluating usability of information-based artefacts (Green & Blackwell, 1998).
Many researchers have employed CDs for the purpose of usability evaluation for
their tools, such as (Pereira, Mernik, Cruz, & Henriques, 2008), (Li, et al., 2007b),
(Tukiainen, 2001), (Cox, 2000), (Green & Petre, 1996), and many others. According
to Green and Blackwell (1998), the CDs approach aims to provide surface analysis
rather than extensive analysis. The CDs were proposed to discuss the usability
tradeoffs that occur when designing diverse tools and systems (Green & Blackwell,
1998; Green & Petre, 1996). Table 9.1 presents a brief description of the Cognitive
Dimensions adopted from (Blackwell, et al., 2001). The details of the CDs approach
that comprises these fourteen dimensions can be found in many published articles,
e.g. (Green & Petre, 1996), (Green & Blackwell, 1998), (Blackwell & Green, 2000),
(Blackwell, et al., 2001), (Green, Blandford, Church, Roast, & Clarke, 2006), and
others.

We apply the CDs approach in the form of a questionnaire about our critic
specification editor to review the usability of the editor for specifying critics for the
195

DSVL tools, specifically for our Marama-based tools. However, we do not include
all the dimensions as stated in the CDs. The results from the survey questionnaire
are discussed in section 9.5.

Table 9.1: The meaning of each dimensions (Blackwell, et al., 2001)

Dimension Meaning

Viscosity Resistance to change

Visibility Ability to view components easily

Premature Constraints on the order of doing things
Commitment

Hidden Important links between entities are not visible

Dependencies

Role- The purpose of an entity is readily inferred

Expressiveness

Error-Proneness The notation invites mistakes and the system gives little

protection
Abstraction Types and availability of abstraction mechanisms
Secondary Extra information in means other than formal syntax
Notation
Closeness of | Closeness of representation to domain
Mapping
Consistency Similar semantics are expressed in similar syntactic forms
Diffuseness Verbosity of language
Hard Mental | High demand on cognitive resources
Operations
Provisionality Degree of commitment to actions or marks
Progressive Work-to-date can be checked at any time
Evaluation

9.3 The Four Criteria to Evaluate Usability

Another issue that needs to be considered when conducting a usability evaluation is
the criteria or elements that need to be assessed by the potential users of the tool
under evaluation. There are several models that can be employed to perform a
usability evaluation, such as Shackel’s model of usability, Nielson’s model of
usability and Eason’s model of usability (Leventhal & Barnes, 2008). The Shackel
model identifies the four items of usability as effectiveness, learnability, flexibility,

196

and attitude. In the Nielson model, there are five dimensions that are contributed to
usability: easy to learn, efficient to use, easy to remember, few errors, and
subjectively pleasing. Similarly, the Eason model recognises three aspects for
usability: 1) system (user interface) characteristics- ease of use, ease of learning,
task match; 2) task characteristics — frequency and openness, and 3) user
characteristic- knowledge, motivation and discretion. Researchers can adopt those
usability models as their guidelines and create their own criteria to evaluate their
tool. For instance, in (Khan, et al., 2010) studies, they selected five different criteria
to evaluate the usability of their tool, (i.e. ThinkFree doc.). Their criteria are:
effectiveness, efficiency, satisfaction, learnability and utility. We are not adopting
any specific usability models, however, we have used items from the USE
Questionnaire (Lund, 1998) to design our survey questionnaire for evaluating the

usability of our prototype tool.
We defined four elements to evaluate the usability of our prototype tool. These are:

1. Usefulness — refers to how useful the tool is in helping the users to be more
effective and able to accomplish a task in an easier way.

2. Ease of use — refers to how easy the users can work with the tool’s interface
after they have understood the tool.

3. Ease of Learning — refers to how easy the users can learn and understand the
new/untried tool.

4. Satisfaction — refers to the user’s satisfaction in using/working with the new

tool.

We designed a short questionnaire that can be used to measure the four elements of
usability for users. We selected several questions from (Lund, 1998) and developed
our survey questionnaire with 12 questions, 3 for each of the usefulness, ease of use,
ease of learning and satisfaction categories. These questions are in Section two of

the questionnaire part of the survey. The results are discussed in the section 9.5.

197

9.4 Design of the Survey

In this section, we present the design of our survey carried out to evaluate the
prototype of our visual language-based tool, critic specification editor (i.e. Marama
Critic definer). The objectives of the survey are:
1. To evaluate the visual design critic authoring tool to test the tool’s usability
and effectiveness in constructing critics for domain-specific visual language
(DSVL) tools.

2. To obtain qualitative information on user perceptions of the ‘template-based
critic authoring’ - whether it is easy and useful for generating critics for their
DSVL tools.

Our survey is structured into two parts. Part one involves a task list and an
observation. The task list contains the tasks needed to be completed by a participant.
The observation was conducted and data was collected while the participant
performed the tasks. Part two provided a questionnaire to be answered by the
participant once he/she had completed the tasks. We asked participants to participate
in this survey on a voluntary basis and their participation was treated anonymously.

In the following, we describe the observation and questionnaire design, the method
used to evaluate the usability of the critic specification editor as well as the end

users’ subjective comments.

9.4.1 The Observation Design

The observation method was used to achieve the second objective of the survey
stated above. We applied a combination of two methods for the observation: 1)
unobtrusive observation and 2) obtrusive observation. With unobtrusive observation,
the participant was observed in how they used the tool. Thus, we learned whether
the participant could use the tool in an easy and efficient way. The aspects that we
wished to observe from the participants were: 1) how participants defined critics for
the developed tool; 2) did participants managed to complete the critic-authoring task
and 3) how participants navigated different parts of the tool. With obtrusive

observation, participant was asked to speak out what he/she thought while using the

198

tool. Hence, we learned from the participants more about the usefulness and the
acceptance of the tool. These two methods are performed at the same time as the
participants doing their task on the given tool. We wanted the participants to feel
relax while doing the task, so we allowed them to express what they think about the
tool via a think aloud approach. We collected the observation data while the
participants were performing the tasks. We also collected the views/comments

expressed by the participants.

The observation was carried out when a participant performed a set of tasks that
he/she was required to do while interacting with the prototype tool. In both methods,
no personal information about the participant was collected as participation in this

survey was treated anonymously.

9.4.2 The Questionnaire Design

In this section, we describe our questionnaire. According to Blecken and Marx
(2010), questionnaires can be applied for both summative and formative evaluations
and also can assist to acquire quantitative information on user judgement of a system
or tool (Blecken & Marx, 2010). Furthermore, questionnaires can serve to assess an
entire tool or only partial aspects of a tool (Blecken & Marx, 2010). We have used a
questionnaire in our survey to assist us in performing the usability evaluation for our

prototype tool.

We designed our questionnaire based on the CDs approach and the original
Blackwell and Green questionnaire (Blackwell & Green, 2000). The questionnaire
from (Blackwell & Green, 2000) acted as a guideline for us to identify the relevant
items to put in our survey questionnaire.

Our questionnaire has two sections: 1) background information; and 2) prototype
tool information. Section one contains four questions to reflect the background of
the participant. The questions we designed for this were based on the questions from
(Blackwell & Green, 2000). Section two consists of six categories that we classified
as: 1) usefulness; 2) ease of use; 3) ease of learning; 4) satisfaction; 5) cognitive

dimensions of critic authoring task; and 6) open end question to which participants

199

can freely respond. We employed a Likert scale to obtain participants’ feedback
about the usability of our prototype tool (i.e. critic specification editor). For each
question statement in this section, we classified the responses as 5-point Lickert
rating scales: 1=strongly disagree, 2=disagree, 3= undecided, 4= Agree and

5=strongly agree.

For categories (1) to (4), we designed questions based on the USE questionnaires
(Lund, 1998), whereas category (5) was based on the questionnaire from (Blackwell
& Green, 2000).

Overall, the questionnaire is comprised of twenty seven different questions which
the selected participants filled in to evaluate the usability of the critic specification
editor. Before the end user evaluation took place we gained an ethics approval from
the University of Auckland Human Participants Ethics Committee. Please refer to

Appendix A: Evaluation Survey for the questions.

9.4.3 Survey Method

Invitations to the survey were made to potential participants who had basic
background knowledge of the Marama meta-tools. We managed to gather a group of
12 volunteer researchers and students who met the background requirement and who
were interested in both modelling and the development of modelling tools to support
their work. Four of the participants were computer science researchers, who have
used the Marama meta-tool to develop tools for their research work. Another 8
participants were postgraduate Computer Science students who had taken a course in
which Marama had been introduced and involved in a coursework assessment.
The usability evaluation survey was conducted individually with the volunteer
participants. The participants were given a description of how to use the prototype
tool, i.e. critic specification editor (Marama critic definer) and the functions
involved with it. We then asked the participants to perform five different tasks. The
tasks had to be carried out respecting any constraints. These tasks were:

1. Task 1: Explore the Marama tool that was given;

2. Task 2: Identify critics for the tool;

3. Task 3: Add the critics to the tool using the critic authoring templates;

200

4. Task 4: Run the critics;

5. Task 5: Construct a critic via a formula function.

We also observed how the participants went about using the critic specification
editor. Participants were asked to think aloud and give suggestions about the tool.
After performing all of the five tasks we distributed the survey questionnaire to
participants to collect their responses. Participants filled out the questionnaire at
their own pace without supervision. We then collected the response data for our
analysis. In general, each participant took less than 1 hour to perform the evaluation

survey. The result of the survey and analysis are discussed in the following section.

9.5 Survey Result and Analysis

In this section, we present the survey results and analysis.

9.5.1 Analysis of Task List and Observation

Part one of the evaluation survey was to observe how the participants use/work with
Marama meta-tools and carry out the five tasks that we structured in the survey. As
the participant performed the five tasks, the aspects that we wanted to observe from
the participants were: 1) how participant defined critics for the developed tool; 2)
did participant manage to complete the critic-authoring task and 3) how participant
navigated different parts of the tool. Participants were also encouraged to say aloud

while interacting with the tool.

We mentioned in our observation design that we used a combination of unobtrusive
and obtrusive observation methods. These two methods were performed at the same
time as the participants performing their task on the given tool. While doing their
work, the participants were asked to express what they think about the tool via a
think aloud approach. We collected the required data that we observed while the
participants performed the tasks and also any views/comments expressed by the

participants.

The possible observations for each task are reviewed below:
1. Task 1. Explore the Marama tool that was given to you.
201

The first task was to allow the participants to explore the three main editors
of the Marama meta-tools, i.e. Metamodel definer view, Marama Shape

Designer view, and Marama Viewtype Definer view.

Observation results: All participants appeared to be familiar with the three

editors based on their previous basic knowledge on Marama meta-tools.
They understood the function of each editor and were able to navigate

between the three editors.

Task 2. Identify critics for the tool.

The second task was to let the participants think up and list several critic
statements that were relevant to the given Marama-tool. The participants also
needed to identify an appropriate feedback (fix action) for each of the
identified critics. A space is provided in the survey form for them to write

their critic statements in English.

Observation results: With the think aloud approach, the participants

communicate with the researcher/observer to gain an understanding of a
critic statement. All the participants managed to understand a simple critic
statement for the given Marama tool after one or two examples of critic
statements were shown by the observer. However, most of the participants
did not write down the critic statements in the space given in the form, but
instead they preferred to proceed with task 3 to define their critic statements.
Below are the examples of critic statements for a MaramaUML tool written
by one of the participants on their survey form.

Critic Feedback

“- Class should have a unique name property” “-Rename or Remove the class”
“ —Class should not have more than (some limit) | “-Remove the association”
of other classes associated to it”

202

3. Task 3. Add critics to the tool using the critic authoring templates.

The third task was to allow the participants to implement their chosen
Marama critic by specifying the tool critics via the Marama Critic Definer
views. The participants defined their tool’s critic by selecting a CriticShape
icon which automatically associated with a form-based interface, the Critic
Construction View. The participants then selected the appropriate templates
from this interface (Attribute constraint template/ Relationship constraint
template/ Action Assertion template) that could represent their critic
statement. Next the participants identified the feedback (fix action) for the
critics that had been defined. The participants then selected the
CriticFeedbackShape icon which is also automatically associated with a
form-based interface, Critic Feedback View. The participants subsequently
selected the necessary fix action listed in the interface. Once the participants
were satisfied with their critics and feedbacks, the participants saved their

work.

Observation results: All participants managed to perform the third task;

however they needed some guidance from the tool developer (i.e. the
researcher who acted as the observer). The critic authoring templates were
not easily understandable by the participants for first time use due to their
unfamiliarity with the critic templates concept. We did provide a critic
authoring template guideline in the tool but it is unreasonable to expect first
time users to pick them up quickly and have a good understanding of the
templates. However, most participants found it interesting to specify critics
just by selecting the appropriate template and then select the necessary fix
action that had been suggested. Overall, the participants managed to
complete the critic-authoring task by specifying simple critics using the
templates and then specifying the fix action for the critics. We got some
useful feedback through the think aloud method and below are some of the
comments.

Participants’ comments:

203

e “It would be easier to specify critics after the critic authoring
templates are well understood”;

e “It is hard for a first time user to specify critics using the templates.
However, after regular use of the tool it would be easy”;

o “It takes time to understand the templates and also to select the

appropriate templates to represent a critic”.

4. Task 4. Run critics.

The fourth task was to allow participants to see how the critics are
implemented in the Marama Model Project and Marama Diagram for the
given Marama tool. The participants created a simple diagram and tried to
violate the critic rules that they defined in task 3. The participants could see
the critic message and feedback (fix action) which was displayed at the
Marama diagram they created.

Observation results: All of the participants were impressed with the

displayed critic message and feedback that was generated at their Marama
diagram. They found it interesting to use the critic authoring templates to

generate tool’s critics.

5. Task 5. Critic via formula function.

The fifth task asked participants to construct simple critics using the Object
Constraint Language (OCL) via the Formula icon that already exists in the
Marama meta-tool. The participants then saved the Formula and ran the critic
as per task 4. The participants needed to open the Eclipse-Problem View to

see the response to the critics’ violation.

Observation results: This task was unfortunately not performed by most of

the participants because they appeared to forget the required OCL
expressions. They had previously learned OCL expressions but they were not
familiar with using OCL to express a critic. Thus, for this last task, the
researcher/observer ended up showing a simple example of an OCL

204

expression to represent a critic. The critics’ responses were then displayed in
the Eclipse-Problem View when a critic rule was violated in the Marama
diagram. The feedback that we received from most participants through the
think aloud method is as below.

Participants comments:

o “Prefer to use the templates instead of using OCL expression or
through coding in specifying critics”;
e “Using the templates to specify critics are much easier compared to

OCL expression or coding”.

9.5.2 Analysis of Questionnaire Responses

The second part of the survey was to answer the survey questionnaire. The
questionnaire was in two sections. Section one was to obtain the background
information of the participants. The aim of this section was to find out whether the
participant is a skilled, intermediate or novice user of the tool under evaluation, and
whether the participant has experience of other similar tools. The following table
shows the four questions in section one that was answered by the twelve
participants.

Table 9.2: Section 1- Background information

Participants | P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12
Participant PS PS PS PS PS PS PS PS Res Res Res Res
type

Q1. Level S N | | | | | | S S S |

of

proficiency

Q2. Used No No No No No No No Yes Yes Yes Yes Yes
similar

tools?

Q3.Develop | Yes No No No Yes No No No Yes No Yes No
ed design

critics

Q4. Name Mara Mara | Mara | Mara | Mara | Mara | Mara | Mara | Marama | Marama | Mara Mara
of the ma ma ma ma ma ma ma ma W X mayY maZ
Marama UML | UML | UML | UML | UML | UML | UML | UML

tool

Note: PS = Postgraduate student, Res = Researcher.
Q1. S=Skilled, I = Intermediate, N = Novice

205

From the Table 9.2, it shows that seven participants are intermediate users; four
participants are skilled users and one participant is a novice user in using the
Marama meta-tools. From the twelve participants, more than half of them never used
other tools similar to the Marama meta-tools. We then asked whether participants
had experience designing critics for any of their software tools. Only four
participants had done so. The eight postgraduate students were given the same
Marama tool to perform a usability evaluation. However, the researchers were using
their own simplified Marama tool to perform the usability evaluation on the critic

specification editor.

In an earlier section, we mentioned that the participants needed to perform several
tasks before they could answer the questionnaire. The section after the background
information aimed to obtain prototype tool information. There are six categories in
this section, comprising twenty three questions of which three questions were asked
about usefulness, three questions were asked about ease of use, three questions were
asked about ease of learning, three questions were asked about satisfaction, ten
questions were asked about cognitive dimensions of the critic authoring task, and
one open ended question was asked on how the tool could be improved. The

participants’ responses for the six categories are discussed below.

A. Usefulness, Ease of Use, Ease of Learning and Satisfaction

The questions in this section focused on standard usability questions, such as
usefulness, ease of use, ease of learning and satisfaction. The usability responses
shown in Table 9.3 and Figure 9.1 were highly positive. In all questions by far the
majority of participants answered that they agreed or strongly agreed, indicating the
tool had strong appeal, and was perceived to be highly usable, useful, easy learning
and highly satisfied by our target end users. Please refer to Table 9.3 and Figure 9.1,
which show the participants’ responses based on a 5 point Lickert scale (1=strongly

disagree, 5=strongly agree).

206

Table 9.3: Usability responses

Section 2- Prototype Tool Information SD(1) | D(2) | UB) | A@ SA(5)
A. Usefullness

It is usefull 0 0 0 5 7

It helps me be more effective 0 0 0 7 5

It makes the things | want to accomplish easier to get done 0 0 1 6 5

B. Ease of Use

It is easy to use 0 0 1 8 3
It is user friendly 0 0 2 6 4
| don't notice any inconsistencies as | use it 0 1 2 5 4

C. Ease of Learning

I learned to use it quickly 0 1 0 7 4
| easily remember how to use it 0 0 1 6 5
It is easy to learn to use it 0 1 1 6 4

D. Satisfaction

| am satisfied with it 0 0 0 7 5
| would recommend it to a friend 0 1 1 6 4
It is fun to use 0 0 3 6 3

Legend: SD=Strongly Disagree, D=Disagree, U=Undecided, A=Agree, SA= Strongly Agree

Evaluation of Marama Critic Definer View
by Students and Researchers

9

8

7

6

5

Respondent 4

3 mSD(1)

2
[|

] D(2)

0 u(3)
HA(4)
H SA(5)

Questions

Figure 9.2: Usability responses.

207

B. Cognitive dimensions analysis of the critic authoring task

We adapted the questionnaire designed by (Blackwell & Green, 2000) based on the
Cognitive Dimensions of Notations (CDs) framework. This provided questions
targeted at each of the cognitive dimensions as we were interested in the tradeoffs
amongst those dimensions that participants observed. For this section too, the
participants answered on a 5-point Lickert scale (1=strongly disagree, 5=strongly
agree). Please refer to Table 9.4 and Figure 9.2 to see the CDs responses.

Table 9.4: Cognitive dimension responses

E. Cognitive Dimensions of Critic-Authoring Task SD(1) | D(2) | UB) | A4) | SA(5)
It is easy to see various parts of the tool 0 1 0 9 2
It is easy to make changes 0 0 1 7 4
The notation is succinct and not long-winded 0 0 2 7 3
Some things do require hard mental effort 0 4 4 3 1
It is easy to make errors or mistakes 0 5 4 3 0
The notation is closely related to the result 0 0 0 8 4
It is easy to tell what each part is for when reading the notation 1 0 2 5 4
The dependencies are visible 0 0 2 7 3
It is easy to stop and check my work so far 0 0 1 6 5
I can work in any order | like when working with the notation 0 0 0 8 4
Legend: SD=Strongly Disagree, D=Disagree, U=Undecided, A=Agree, SA= Strongly Agree
CDs of Critic-Authoring Task by Students and Researchers
10
9 -
8 .
7 .
6 -
Respondents 2 .
3 .
7 mSD(1)
5] = D(2)
u3)
© mA(4)
mSA (5)
Dimensions

Figure 9.3: CD questionnaire responses.

208

Figure 9.2 shows the responses to the questions concerning each of the cognitive

dimensions. In the following section we discuss each of these in more detail.

Visibility

This CD indicates the ability to view various aspects of the tool easily. Nine out of
the total 12 participants answered that it is easy to see various parts of the tool. The
Marama Critic Definer view shows two simple visual notations to represent critic
(i.e. CriticShape) and critic feedback (i.e. CriticFeedbackShape), and two connectors
to show the link between critic and critic feedback (i.e. CriticFeedbackLink), and
dependency between critics (CriticDependencyLink). The CriticShape and
CriticFeedback Shape are associated with form-based interfaces to assist the user in
specifying a critic and a critic feedback. The only respondent who doubted the
easiness to see various parts of the tool commented that was due to the lack of
understanding of the meta-tool concept and as a novice user it is hard to see the

function of various parts of the tool.

Viscosity

Viscosity reflects a design’s resistance to change. Eleven participants said that it was
easy to make changes. The user can easily change critics and critic feedback that
have been defined in the Marama Critic Definer view. Only one respondent
answered undecided. This is probably due to the small size of a critic specification

instance.

Diffuseness

Diffuseness refers to the verbosity of language, i.e. the number of symbols required
to express a meaning using the language. Ten participants answered that the notation
is succinct and not long-winded. The participants commented that the notation is a
straightforward representation of a critic and its feedback, as well as the connectors
that link them. A critic is defined via three templates provided in the critic
construction interface. Thus, a user only defines a critic based on the selected
template. Whereas to specify a critic feedback it only requires the user to define five
properties: critiquing strategies, modes of critiques, explanation, suggestion, and

critique message. Two participants replied that they were undecided to this element.

209

Hard Mental Operations

This dimension reflects the degree of demand on cognitive resources. Four
participants disagreed, four participants agreed (3 agree and one strongly agree) and
four were undecided as to whether using the tool required hard mental effort. The
four participants who agreed claimed that they needed to concentrate and think
carefully before using the critic templates to specify a critic. This may be because
the users were unfamiliar with the critic authoring templates. Our aim was to
provide a way of making the critic specification much easier, but at the heart of it,
critic specification task itself is something difficult to do. However, a regular use of

the templates can overcome the cognitive load.

Error Proneness

Error proneness refers to the ability of the tool to induce ‘careless mistakes’. Five
participants disagreed, three participants agreed and four were undecided as to
whether the tool was likely to induce mistakes. This dimension has a similar issue as
the hard mental operations dimension. The participants who answered it is easy to
make mistakes raised the issue that unfamiliarity with the templates can cause users
to make mistakes in specifying critics. This is an initial barrier which can be
overcome by more frequent use of the tool. However, five participants found it has
low error proneness as the notation is very straightforward and supported by a form-

based interface which is familiar to most users.

Closeness of Mapping

This dimension reflects the closeness of the representation to the domain it
describes. All of the participants agreed that the Marama Critic definer view
provides a notation that is closely related to the domain. The critic definition closely
relates to the critic statement/phrase that the user specified based on the available
templates. The specification of a critic feedback is straightforward by just clicking

on the required options and adding the explanation and a critique message.

Role Expressiveness
Role expressiveness indicates that the relationships among components should be

obvious. Nine participants answered it is easy to tell what each part is for when

210

reading the notation. Only one respondent disagreed and two participants were
undecided. In the Marama Critic definer view, it is obvious how to specify a critic
and a critic feedback because it only involves two simple notational elements with
each associated with a form-based interface.

Hidden Dependencies

This dimension assesses the existence of hidden links among parts of the tool. Ten
participants said that the dependencies are visible and two participants are
undecided. Hidden dependencies are primarily between the visual critic definer view
and the form based template views. Moody (2008) argues that this type of
hierarchical dependency is of positive benefit in his Principal of Complexity
Management (Moody, 2008).

Progressive Evaluation

Progressive evaluation indicates the ability to test code as it is being developed.
Eleven participants answered it is easy to stop and check work progress. The
Marama Critic definer view allows the critic and critic feedback specifications to be
evaluated at any stage. Partially completed critics and feedbacks for a developed
Marama tool can be executed as well. Critics and Feedbacks properties can be edited
easily and any new changes will take effect during the model execution of the tool.

Premature Commitment

This dimension reflects the order of steps that a user must follow to achieve a
specific outcome. All of the participants agreed that there are no premature
commitments in the Marama Critic Definer view. The user can freely specify a critic
using any templates (attribute, relationship or action assertion). However, the user
does need to define a critic first before a critic feedback can be specified and linked
with the defined critic. This dependency is obviously seen as a natural one by end
users as they do not appear to regard it as forcing them to prematurely commit to
something at a point where they are not ready. The user does not need to have a
complete set of critics and critic feedbacks to be specified in the Marama Critic
definer view. The user can add a critic as well as the critic feedback for the Marama

tool incrementally as he/she encounter new critics.

211

C. Open ended question to improve the tool design

We also provided the participants with an open ended question and space for them to
write comments about how to improve the critic authoring tool. In general, the
comments/feedbacks suggested that specifying critics visually and via a template-
based style is simple and effective. Issues that raised by some participants to

improve the tool are shown in Table 9.5. These issues are discussed in Chapter TEN.

Table 9.5: Participants’ Comment

Participant Comment
1 “Overall, it is pretty cool, maybe HCI is one aspect to improve by using Al
feedbacks.”
2 “I find the tool may be hard to understand initially for a novice user with little

experience with meta-tools. I think it is not easy to learn at first because the critic
definer is a tool for the meta-tool and the levels of abstraction is high. However,
| feel that a regular user of this tool would find the functions easy to remember
after learning it for the first.”

3 “Include the templates as visual entities. Possibly also connect the shapes of
critics with the shapes of the entities they affect (and the other way around)”

none

“Everything is good”

“Templates should be explained better. Some bugs need to be freed”

~N| o of &~

“The view of the feedback critic/critic construction shall be automatically
focused when creating/extending a critic”

8 “UI cleaned up e.g. Criticfeedback toolbar opens when a feedback is selected.
Icons associated with each template appear on the feedback shapes? Form should
be dependent on which template is selected, so user doesn't accidentally fill in
incorrect or unnecessary fields.”

9 “Visual representation relation between critic and tool model, and graphical
notation in critic, e.g., highlight”

10 “It will be nice to involve colours in the screen to show different critics.”

11 “Noticed 1-1 mapping of critic & feedback, suggested adding feedback into

critic shape, with connection & layout automatically created.”

12 none

9.7 Conclusion

In this chapter, we have presented and described a usability evaluation survey of our
prototype tool, i.e. Marama Critic Definer to specify critics for a DSVL tool. Like
most tools or systems, we believe that our critic specification tool can benefit
considerably from end user involvement in evaluation. The evaluation survey is

based on the combined use of two approaches: observation and questionnaires. The
212

Cognitive Dimensions framework and four usability criteria are applied and
specified in the questionnaire form. We conducted our survey with twelve
participants and each participant conducted the evaluation individually. Though the
sample size is small, we complied with the general rule suggested by Hwang and
Salvendy (2010) for usability evaluation: the 10£2 Rule (Hwang & Salvendy, 2010).

The survey results have shown a good degree of satisfaction of our participants with
our critic design tool integrated with the Marama meta-tools. The survey results
demonstrated that for most participants our approach appears to be useful in
assisting these participants in the critic specification task. Our approach also appears
to nicely complement the other components of the Marama meta-tools and is
integrated with these.

However, limitations of the tool are also revealed through the survey results. Thus,
some minor improvements are needed to improve the usability of the critic
specification editor integrated with Marama meta-tools. The evaluation survey has
also provided a number of suggestions to improve the critic specification editor
(Marama Critic Definer). These suggestions are listed in the previous section and are

later considered for our future work.

213

Chapter 10
Conclusions and Future Work

This chapter concludes this thesis by presenting a research summary of the work
carried out in responding to the research question. It discusses the overall research
results as well as the limitations and strengths of the research. This chapter also
suggests some future work to extend the research followed by a brief summary at the

end of this chapter.

10.1 Research Summary

We have described our research work extending the use of “critics” into meta-tool
environments that implement domain-specific visual language tools with an aim to
support end-user tool developers to simply specify critics for domain-specific visual
language (DSVL) tools.

In Chapter 1 of the thesis, we identified that critic authoring continues to be a
challenge despite critics having been recognised as an efficient feedback-providing
mechanism in diverse domains. The process of authoring or customising critics is
not an easy task to be performed especially by novice and end-user tool developers.
Furthermore, we realised that critics have not been adopted within meta-modelling
tools that implement DSVL tools. As a result, we proposed to provide a critic
specification approach within a meta-tool environment that is accessible to end-user
tool developers for specifying critics for DSVL tools. We formulated research
questions that enabled us to identify possible solutions for our proposition.

Through our review of the available literature on critics and constraint specifications
presented in Chapter 2, we showed that the use of critics is often applied in
application domains and constraint specification is common for meta-tool
environments. The process of defining constraints for meta-tool environments is
hard as it requires good knowledge of programming skills, it uses a formal approach

and it involves heavy cognitive load. Thus, we wanted to provide a critic

214

specification that was tailored to critic authoring and user accessible to replace the

complex constraint specification approach.

A methodology to organise this research work was described in Chapter 3. We
identified several important steps that were required to attain the research aim. Each
step in the methodology produced artefacts: critic taxonomy, prototypes, evaluation

results and so on which reflects the following chapters of this thesis.

Review of the related literature concerning critics resulted in a new critic taxonomy
described in Chapter 4. We proposed our critic taxonomy based on several aspects
that characterised critics (or critiquing systems). These aspects are gathered widely
from the critic literature. We identified eight groups for our critic taxonomy: critic
domain, critiquing approach, modes of critic feedback, critic rule authoring, critic
realisation approach, critic dimension, types of critic feedback, and types of critic.
We applied our taxonomy to ten tools that have critic support. The mapping of the
tools to our critic taxonomy shows that the practice of critics is supported by the
critic taxonomy. Furthermore, this critic taxonomy development has assisted us in

identifying the needs of our own critic specification tool.

In Chapter 5 we described our approach for specifying critics for a DSVL tool
environment. A visual and template-based approach was introduced in this chapter.
We described our adaptation of business rule templates to the software tool domain,
specifically our critic authoring domain. We described the visual notation for our
critic specification approach. We also analysed the visual notation design of our
critic specification tool based on the Physics of Notations (Moody, 2008). Our visual
notation design approach satisfied some of Moody’s principles. The combination of
the two approaches resulted in what we call a “visual and template-based approach

of critic specification for DSVL tools”.

Our initial attempt at critic specification development was described in Chapter 6.
We developed our first prototype for critic specification using MaramaTatau (N.
Liu, et al., 2007) and this was a useful stepping stone for us to understand the
necessary building blocks for an improved critic specification approach. Experience

gained from prototype 1 led us to develop prototype 2 for our critic specification
215

approach. From prototype 2, we gained experience in applying the business rule
template concept as an alternative approach to specify critics. However, we
recognised some problems with prototype 2 and resolved these with a new approach
by developing prototype 3.

The final development of our critic specification approach, i.e. prototype 3, was
described in Chapter 7. We created a new critic specification tool, Marama Critic
Definer that is accessible to end-user tool developers for critic-specification task.
This new approach comprises four main components: visual critic definer editor,
critic construction editor, critic feedback editor, and critic template editor. The
function of these editors is described in this chapter. We offered a notational
representation and critic authoring templates to end-user tool developers to specify
critics for their DSVL tools without the need to have a deep technical knowledge of
critic construction. We defined a critic authoring guideline to assist end-user tool
developers in specifying critics and authoring a new critic template which can be
done via critic template editor.

The utility of prototype 3, which represents our critic specification approach, is
presented in Chapter 8. We proved our concept for critic specification within three
different domains of DSVL exemplar tools using three case studies. We described a
health care plan modelling tool as our first case study to demonstrate the critic
specification task. The second case study concerned a business process modelling
tool. We illustrated the specification of complex critics for this tool. The final case
study concerned UML design. In this case study, we described the task of
customising the critic authoring template when a desired critic specification is not
defined in critic authoring templates. We also illustrated the function of the critic
feedback editor in one of the case studies. We claimed that our critic specification
approach can be applied across different domains of DSVL tools.

In Chapter 9 we presented an evaluation of our critic specification approach via an
end-user evaluation survey. We defined four usability criteria and ten elements from
the Cognitive Dimensions framework in our questionnaire to evaluate our critic

specification approach and tool. The usability responses that we obtained from the

216

evaluation were highly positive indicating that the critic specification had strong
appeal. The Cognitive Dimensions responses that we received from the evaluation
were also encouraging and each of the dimensions were discussed in this chapter.
Through these evaluations, we were able to establish that critic specification and
implementation for domain specific visual languages can be made accessible to end-
user tool developers. We were also able to show that the combination of a notational
representation and a critic authoring template-based approach was useful, highly

usable, easy to learn and of high satisfaction to our target end-user tool developers.

Limitations of the Research
Not surprisingly, the evaluations exposed some limitations of our research. These
limitations can be ameliorated in future work. These include:

e Critic and feedback specification can only be specified based on the
predefined templates that were implemented for the prototype critic
specification tool. We designed and developed our critic authoring template
based on BR templates (i.e. attribute constraint templates, relationship
constraint templates and action assertion templates) to support/prove the
critic specification process. Similarly, our critic feedback specification only

support limited actions to resolve defined critics;

e Currently the modes of critiques for the critic specification tool only support
a textual style without the use of graphical style. For instance, one
respondent suggested to consider highlighting (e.g. with colour) the design
item that triggered a critic. Similarly, another respondent recommended to

consider colouring to differentiate different types of critic;

e During the tool’s evaluation, the guideline that provides explanation of the
critic templates developed in the critic construction editor was a minimal
guideline. However, we can easily resolve this issue by providing more

detailed guidelines and examples in the tool to assist user to specify critics;

217

The critic and critic feedback icons are not automatically associated with the
critic construction editor and critic feedback editor. The user had to select

the required editor to perform the required task;

In general, a potential weakness of the research is that the presented
approach and tool may be of little interest or benefit to expert tool
developers. However this research would likely provide benefit to the
majority of novice, intermediate and end-user tool developers, which was

our target audience.

These minor limitations observed in our tool can be improved in future work.

Strengths of the Research

The implementation of our critic specification approach and tool contributed several

benefits. These include:

A simple way to express and define critic condition specifications based on
the structured critic rule templates given, making it easier for end-user tool

developers to author and realise critics;

A simple way to express and define critic feedback specifications based on
structured templates also making it easier for end-user tool developers to
specify and realise critic feedback;

The process of authoring critics and their feedback is made easier through
the combination of the visual specification editor (i.e. critic definer editor)
and the two form-based template editors (i.e. critic construction editor and

critic feedback editor);

The critic specification tool provides guidelines (i.e. critic authoring
guidelines) for the user to customise critic rule templates through the critic

template editor;

218

e The critic authoring templates facilitate the linking of critic statements to

meta-model elements.

10.2 Research Contributions

We have described our critic development approach to support end-user tool
developers to specify critics in an effective and easy way. The research discussed in
this thesis contributes to the field of software engineering particularly in the area of
critic tools and critiquing systems development. The main contributions from this
research are as follows:

5. This research provides a taxonomy of critics that can assist other
users/designers or developers in obtaining relevant information about
critics. Our critic taxonomy identified eight groups: critic domain,
critiquing approach, modes of critic feedback, critic rule authoring, critic
realisation approach, critic dimension, types of critic feedback, and types of
critic. We believe that our critic taxonomy will be useful to critic
developers in providing a meaningful way of describing and reasoning
about critics. We also believe that our critic taxonomy is useful in guiding
the critic developer towards realising robust critic capabilities by comparing

and contrasting different critic dimensions.

6. This research provides a visual way of expressing or constructing critics for
domain-specific visual language (DSVL) tools. Notational representation of
critic authoring facilities is offered to end-user designers to express critics
for their DSVL tools. Furthermore, this research provides support for end-
user tool developers who want to express critics for their specific tool
without the need to have a comprehensive technical knowledge on

expressing and constructing critics.

7. This research provides a critic authoring template-based approach which is
much easier and quicker to author critics compared to other approaches for
designing and realising the critics. An end-user tool developer uses the

critic authoring template to generate critic rule templates. The critic rule

219

templates (CR) adapt the business rule (BR) templates which are currently
applied in the business process domain. We attempted to apply the critic
rule templates in the software tool domain. By using the critic authoring
templates, it is fairly easy for end-user tool developers to introduce new

critic template or modify existing critics in the tool.

. This research included prototype development of a visual critic authoring

tool which was embedded in the existing Marama meta-tool and which acts
as a proof-of-concept of our approach. We evaluated the prototype using an
end user study conforming to the Cognitive Dimensions (CD) approach
(Green & Blackwell, 1998) and usability aspects. We also analysed our
design notation using the Physics of Notations (PON) principles (Moody,
2008).

10.3 Future Work

Several areas for further research are as follows:

To extend the critic capabilities by allowing the critics to check the tool’s
meta-model elements i.e. meta-critic. At present our critic specification
approach only manages critic specification for a DSVL tool which resulted
from a defined meta-model element. Critics that were specified are used to
check any potential problems of a model/diagram for that modelling tool.
Thus, we can expand the critic capabilities by offering critics when defining
meta-model elements. The idea is to construct critics that are able to check
potential problems at the meta-model level. This will allow critics to be
specified for two stages, i.e. critics for the meta-model level and critics for

the model/diagram level.

To consider including other elements from the taxonomy group. One
limitation in our research is that we have not incorporated as many of the
elements from the taxonomy as is desirable. For instance, in future, we can

expand our critic specification approach to add a graphical style where

220

appropriate to deliver critiques instead of just textual messages. Similarly,
we can consider adding positive and negative critics in the critic specification
tool as another way to provide critics to tool’s users. However, all these have
to be examined carefully in terms of their relevance to incorporate in the

critic specification tool.

e To improve and provide a better critic authoring template by considering a
visual representation for each of the item/properties in the template. At
present our critic specification approach applies a textual and visual
approach in specifying critics and feedback. In future, we can potentially
replace more elements of the textual approach for the template with visual
notational representations. This will allow new templates to be specified in a
more visual manner, with actions realised using Marama’s other visual

specification tools.
10.4 Summary

This research arose from the need to have a critic specification approach for domain-
specific visual languages and to provide accessibility for end-user tool developers to
specify critics in an effective and easy way. A combination of a visual notational
representation and a template-based approach were developed for the critic
specification approach and demonstrated via three case studies of different domains
for DSVL exemplar tools. A formal end-user evaluation was employed to evaluate
and proof the concept of a critic specification approach. Thus we can say that critic
specification and implementation for domain specific visual languages can be made
accessible to end-user tool developers. In addition, the combination of a notational
representation and a critic authoring template-based approach is another useful

approach to support end-user tool developers in the critic specification task.

221

Appendix A
Participation Information Sheet
(Head of Department)

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
The Private Bag 92019
University Auckland
of Auckland

Tel: 09 373 7599

PARTICIPANT INFORMATION SHEET (HEAD OF DEPARTMENT)

Title: Evaluation of Template-based Critic Authoring for

Domain-Specific Visual Language Tools

My name is Norhayati Mohd Ali and I am a PhD student at the Department of Computer Science, The
University of Auckland. I am conducting research on visual design critic authoring template-based
approach that supports end-users or tool designers in the construction of critics for domain-specific
visual language (DSVL) tools. This research is under the supervision of Professor John Hosking and
Professor John Grundy. Our research investigates the ‘Visual design critic authoring template-based
approach’ as an alternative approach for constructing critics in an efficient and simple way. A
prototype of visual design critic authoring tool, called Marama Critic Definer has been developed. Part
of our research involves an evaluation of this prototype regarding its usability and effectiveness for

specifying and constructing critics for DSVL tools.

As a Computer Science Head of Department, we would like to ask your permission to allow us to have
access to students who enrolled in COMPSCI 732 course and SOFTENG 450 course and permit the
students to participate voluntarily in our survey. Participation in this survey is on a voluntary basis and
there will be no financial compensation. The survey is performed in an anonymous way. No personal
information will be collected during the survey. We would like you to provide us the assurance that
neither the students’ grades nor academic relationships with the department staff members will be
affected by either refusal or agreement in students’ participation. Your support would be greatly

appreciated.

This research is funded by the Ministry of Higher Education, Malaysia. If you have any queries
regarding this survey, please do not hesitate to contact me. You can email me at:

nmoh044@aucklanduni.ac.nz. Alternatively, you may phone me at 0210 -2421890. You may also
contact my supervisor, Professor John Hosking at john@cs.auckland.ac.nz or 09 373 7599 ext 88297.

222

mailto:nmoh044@aucklanduni.ac.nz
mailto:john@cs.auckland.ac.nz

For any queries regarding ethical concerns you may contact the Chair, The University of Auckland
Human Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor,
Private Bag 92019, Auckland 1142. Telephone 09 373-7599 extn. 83711.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS
COMMITTEE ON 02 December 2009 for (3) years, Reference Number 2009/492

223

Appendix B
Participation Information Sheet
(Student)

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
The Private Bag 92019
University Auckland
of Auckland

Tel: 09 373 7599

PARTICIPANT INFORMATION SHEET (STUDENT)
Title: Evaluation of Template-based Critic Authoring for

Domain-Specific Visual Language Tools

My name is Norhayati Mohd Ali and I am a PhD student at the Department of Computer Science, The
University of Auckland. I am conducting research on visual design critic authoring template-based
approach that supports end-users or tool designers in the construction of critics for domain-specific
visual language (DSVL) tools. This research is under the supervision of Professor John Hosking and
Professor John Grundy. Our research investigates the ‘Visual design critic authoring template-based
approach’ as an alternative approach for constructing critics in an efficient and simple way. A
prototype of visual design critic authoring tool, called Marama Critic Definer has been developed. Part
of our research involves an evaluation of this prototype regarding its usability and effectiveness for

specifying and constructing critics for DSVL tools.

You are invited to participate in this survey as you are either postgraduate student who enrolled
COMPSCI 732 course or 4™ year undergraduate student who enrolled SOFTENG 450 course. Your

comments and assistance would be greatly appreciated.

Participation in this survey is on a voluntary basis and there will be no financial compensation. The
survey is performed in an anonymous way. No personal information will be collected during the
survey. You can be assured that neither your grades nor academic relationships with the department
staff members will be affected by either refusal or agreement to participate. This assurance is given
by the Computer Science Head of Department. You can withdraw yourself from the survey at any
time. Completing the required tasks in the survey and submitting the evaluation is an indication of
consent but as the evaluation is anonymous, no answers can be withdrawn once the evaluation is

submitted.

224

If you consent to participate in this survey, the participation involves one visit to the Computer
Science Undergraduate Laboratory, approximately 1 hour. You will be given an explanation together
with a demonstration of what need to be done. A task list and questionnaire sheet will be given to
you before you start using the prototype tool. You will be asked to perform a number of tasks on the
prototype tool and once you completed the task, you will be asked to answer the questionnaire sheet
given to you. You also will be observed to allow the researcher to learn whether the tool is easy and
efficient to use and also to know more about the usefulness and acceptance of the tool. You will be
observed based on the following aspects: a) how you manage to complete the task given to you; b)
how you define critics for a tool developed in Marama; c) how you navigate different parts of the tool;
and d) your verbal responses while using the tool. The observations will take place only while you
perform the tasks on the prototype tool. There will be note-taking while you perform the tasks and
also while you are responding or commenting when using the prototype tool. However, no personal
information will be collected in this observation process. Audio-tape, video-tape and any other
electronic means such as Digital Voice Recorders are not used in this survey.

After completing the tasks you will be asked to answer the questionnaire sheet. Once you completed
the questionnaire, you need to put in the box that will be placed in the lab. There will be no coding to
your questionnaire as it is treated anonymously. The observation and questionnaires data will be
compiled and analysed, and the results will be used for a PhD thesis and for other academic
publications. Results also will be available to participants on request. The observation and
questionnaires data will be stored for SIX (6) years for the purpose of peer review and further
research. When the observation and questionnaires data is no longer needed, it will be destroyed

using the paper shredder.

This research is funded by the Ministry of Higher Education, Malaysia. If you have any queries
regarding this survey, please do not hesitate to contact me. You can email me at:

nmoh044@aucklanduni.ac.nz. Alternatively, you may phone me at 0210 -2421890. You may also
contact my supervisor, Professor John Hosking at john@cs.auckland.ac.nz or 09 373 7599 ext 88297,

or the Head of Department, Associate Professor Robert Amor at trebor@cs.auckland.ac.nz or 09 373

7599 ext 83068, or you can write to us at:

Department of Computer Science,

The University of Auckland

Private Bag 92019

Auckland.
For any queries regarding ethical concerns you may contact the Chair, The University of Auckland
Human Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor,
Private Bag 92019, Auckland 1142. Telephone 09 373-7599 extn. 83711.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS
COMMITTEE ON 02 December 2009 for (3) years, Reference Number 2009/492.

225

mailto:nmoh044@aucklanduni.ac.nz
mailto:john@cs.auckland.ac.nz
mailto:trebor@cs.auckland.ac.nz

Appendix C
Consent Form (Head of Department)

Department of Computer Science
Level 3, Science Centre

Building 303

38 Princes St

The University of Auckland
Private Bag 92019

University Auckland

of Auckland

Tel: 09 373 7599

CONSENT FORM (HEAD OF DEPARTMENT)

This Consent Form will be held for a period of six (6) years.
Title: Evaluation of Template-based Critic Authoring for Domain-Specific Visual Language Tools.
Researcher: Norhayati Mohd.Ali
| have read and understood the Participant Information Sheet. | understand the nature of the
research and why | have been asked for permission and assurance of this research. | have had

the opportunity to ask questions and have them answered. | agree to support the survey.

= | agree to allow the researcher to have access to the students who enrolled in COMPSCI
732 course and SOFTENG 450 course.

= | agree to permit the students to participate voluntarily in the survey.

= | understand there will be no payment to the student who participates in the survey.

= | understand that all of the data collected from the survey will be non-identifying.

= | agree to provide the assurance that neither grades nor academic relationship with any
departmental staff members will be affected by either refusal or agreement to students’
participation in the survey.

Name:

Signature & Date:

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS
COMMITTEE ON 02 December 2009 for 3 years, Reference Number 2009/492.

226

Appendix D
Consent Form (Student)

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
The Private Bag 92019
University Auckland
of Auckland

Tel: 09 373 7599

CONSENT FORM (STUDENT)

This Consent Form will be held for a period of six (6) years.

Title: Evaluation of Template-based Critic Authoring for Domain-Specific Visual Language

Tools.

Researcher: Norhayati Mohd.Ali

| have read and understood the Participant Information Sheet. | understand the nature of the
research and why | have been selected to participate in this research. | have had the
opportunity to ask questions and have them answered. | understand that | can withdraw at any

time but that data already recorded cannot be withdrawn. | agree to take part in the survey.

= | understand that | will not be paid for the time taken to participate in this survey.

= | understand that all of the data collected from the survey will be non-identifying.

= | understand that | will be observed while doing a task on the prototype tool if | agree to
participate in this survey. No audio-tape, video-tape or any other electronic means such as
Digital Voice Recorders is used in this survey.

= | understand that | will need to fill up a questionnaire at the end of the task if | agree to
participate in this survey.

= | understand that only the researcher and her main supervisor will have access to the
guestionnaire and observation data.

= | understand that the observation and questionnaire data may be used to review the
research outcomes both to improve the notation and software tool and in publications about
the survey.

= | understand that data will be archived or stored for six years and then destroyed.

227

= | understand that the Computer Science Head of Department have provides assurance that
neither my grades nor academic relationship with any department staff members will be
affected by either refusal or agreement to participate.

= | understand that at the conclusion of the survey, a summary of the results will be available
from the researcher upon request.

Name:

Signature & Date:

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS
COMMITTEE ON 02 December 2009 for 3 years, Reference Number 2009/492.

228

Appendix E
Survey:Evaluation of Template-based
Critic Authoring for Domain-Specific

Visual Language Tools

Department of Computer Science
Level 3, Science Centre

Building 303

38 Princes St

The University of Auckland
Private Bag 92019

Auckland

University
of Auckland

Tel: 09 373 7599

Survey: Evaluation of Template-based Critic Authoring for Domain-

Specific Visual Language Tools

Note: The survey is structured into TWO parts. Part one, provides the task list that
need to be done by you. Observation data will be collected while you are
performing the tasks. Part two, provides a questionnaire that should be answered

by you once you have completed the tasks.

Statement

I have read the Participant Information Sheet and have understood the nature of

the survey and I agree to take part in this survey. (please tick V)

PART ONE: Task List and Observation

Purpose:To allow the participant to develop a Marama-based tool using the Marama
metatools. After the tool development, the participant needs to add several critics to the
tool. Please take note, that participant will be observed on how he/she use the tool.
Participant can ask question while doing the task. Observation data will be collected
during participant doing his/her task.

Instruction: Please read and perform the following task steps.

Task 1. Explore the Marama tool that was given to you.

1. Metamodel for that tool is on the Marama Metamodel Definer views.

2. Shapes and connectors for that tool are on the Marama Shape Designer views.

3. The mapping of meta-elements to visual representations is on the Marama
Viewtype Definer views.

229

Task 2. Identify critics for the tool.

1. Think and list several critic statements that are relevant to the given Marama-
tool.

2. Identify and list an appropriate feedback (fix action) for each of the critic.

3. Use the following table to list your critic and feedback.

Critic Feedback

Task 3. Add Critics to the tool using the critic authoring templates.

1. Design Marama critic type, by specifying the tool critics via the Marama Critic
Definer views. Refer to Figure 1.

= Mew

[(S |

Select a wizard —

Wizards:
type filter text

= GMF-Xpand -
- = Graphical Modeling Framework
. = Java
= Java Emitter Templates
- = JET Transformations
= Marama
Marama Critic Definer
Marama Diagram
Marama Event Propagation Definer
B Marama Model Project
Mararma Shape Designer
Marama Teool Project

Wl]
Y

Figure 1: Marama Critic Definer

2. Define a critic for the tool by selecting the CriticShape icon. Associate with this
CriticShape is a form-based interface, called Critic Construction View. Refer to
Figure 2. To open this view, select Window->Show View-> Other->Marama
Editor->Critic Construction View.

230

= Shapes £
Bl CriticShape
Bl CriticFeedback...
= Connectors <0
Bl CriticFeedback...
Bl CriticDepende... | CriticType

[Critic Construction Wiew &3

Attribute Constraint Termplates

Select Attribute Constraint Template:

entity: Class -
association: Class_Class -
attributeTerm:

attributeTerml:

attributeTerma2:

relationalOperator: -

walue:

Relationship Constraint Templates

Select Relationship Constraint Template:

entityl: Class -
entity2: Class >
association: Class_Class -
role:

cardinality: -
cardinalityEntityl: -
cardinalityEntity2: fu

Figure 2: CriticShape with Critic Construction View interface.

To define critic, you can select from the list of available critic authoring
templates- a) Attribute Constraint Template, b) Relationship Constraint
Template, c) Action Assertion Template. After define the critic select ‘Save Critic’
button.

If the critic that you want to construct is not supported by the available critic
templates, you can select the “Critic Template Editor” button to allow you to
construct new critic template. Then click ‘*OK’ and get back to Critic Construction
View to define the critic.

Define the feedback (fix action) for the critics defined by selecting the
CriticFeedbackShape icon. Associate with this CriticFeedbackShape, is a form-
based interface, called CriticFeedback View. Refer to Figure 3. To open this view,
Window->Show View-> Other->Marama Editor->Critic Feedback View.

231

= S5hapes £
B CriticShape
B CriticFeedback...

= Connectors 40
B CriticFeedback... Class must have a unique ... UnigueMame...
B CriticDepende... - Unl:queName...
Active

£ Critic Construction View | E] Critic Feedback View 22

Select Critiquing Strategies: -

Select Modalities of Critiques: -
Critic Feedback Type: -
Explanation:

Suggestion: -

Critique Message:

Save Feedback

Figure 3: CriticFeedbackShape with Critic Feedback View interface.

6. Once you satisfied with the critics and feedbacks that you defined, then you can
save it.

Task 4. Run Critics

1. Create a Marama Model Project for your tool

2. Create a Marama diagram.

3. Try to violate the critic rules to see whether critic and feedback is displayed at
the Marama diagram.

4. End of task in specifying critics and feedbacks via critic authoring templates.

Task 5. Critic via formula function

1. Try to construct the same critic using the Object Constraint Language (OCL) via
the formula icon.

2. Save the formula.

3. Run the critic the same way you did in Task 3(1-2-3). However, you need to
open the Problem view to see the critics’ violation.

End of Task.
After you complete the above task, please answer the questionnaires in PART
TWO.

232

PART TWO: Questionnaire

Instruction:

Please answer the following questions.

Section (1)- Background Information.

1. How do you rate yourself in using Marama metatools? (tick one box)
Proficient/skilled

Intermediate

Novice

2. Have you used similar tools like Marama metatools? If so, please name them.

3. Have you developed a software tool where you add design critics for that tool? If so,
please name the tool and critic types.

4. Name the tool that was given to you using the Marama metatools.

Section (2)- Prototype Tool Information.

Please rate your agreement with the following statements about how you feel in general
when using Marama Critic Definer view (a new specification tool that represents the
visual design critic authoring template approach). Just circle or tick out the level of

agreement that applies using the following scale:

1:Strongly Disagree (SD) 2:Disagree (D) 3:Undecided (U) 4: Agree (A) 5:Strongly Agree
(SA)

A. Usefulness:
It is useful.

Strongly Disagree 1-------- 2-------- 3-------- 4----m-- 5 Strongly Agree

It helps me be more effective.
Strongly Disagree 1-------- 2-------- 3-------- 4------- 5 Strongly Agree

It makes the things I want to accomplish easier to get done.
Strongly Disagree 1-------- 2-------- 3-------- 4------- 5 Strongly Agree

233

B. Ease of Use:
It is easy to use.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is user friendly.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I don't notice any inconsistencies as I use it.

Strongly Disagree 1-------- 2----=--- 3-------- 4--mmmmm 5 Strongly Agree

C. Ease of Learning:
I learned to use it quickly.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I easily remember how to use it.
Strongly Disagree 1-------- 2-=mmmme= 3mmmmemee Gmmmmmme 5 Strongly Agree

It is easy to learn to use it.
Strongly Disagree 1-------- 2-==mmn= CELEEEEES 4mmmmmme 5 Strongly Agree

D. Satisfaction:
I am satisfied with it.

Strongly Disagree 1-------- 2----==--- 3---mm-- 4-mmmmme- 5 Strongly Agree

I would recommend it to a friend.

Strongly Disagree 1-------- 2---=-=--- 3---mm-- 4-mmmmme- 5 Strongly Agree

It is fun to use.
Strongly Disagree 1-------- 2-------- 3-------- 4----m-- 5 Strongly Agree

E. Cognitive Dimensions of Critic-Authoring Task:

It is easy to see various parts of the tool.

Strongly Disagree 1-------- 2-------- 3------- 4-------- 5 Strongly Agree

It is easy to make changes.
Strongly Disagree 1-------- 2-------- 3------- 4-------- 5 Strongly Agree

The notation is succinct and not long-winded.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

234

Some things do require hard mental effort.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is easy to make errors or mistakes.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

The notation is closely related to the result.

Strongly Disagree 1-------- 2---==--- 3---mm--- 4-mmmmmm- 5 Strongly Agree

It is easy to tell what each part is for when reading the notation.

Strongly Disagree 1-------- 2----=--- 3-------- 4--mmmmm 5 Strongly Agree

The dependencies are visible.

Strongly Disagree 1-------- 2----=--- 3-------- 4--mmmmm 5 Strongly Agree

It is easy to stop and check my work so far.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I can work in any order I like when working with the notation.
Strongly Disagree 1-------- 2-------- 3------- 4-------- 5 Strongly Agree

F. After completing this questionnaire, can you think of obvious ways that the design of
the template-based critic authoring tool could be improved? What are they?

Thank you for your time!

Please let us know if you have any queries about this questionnaire or the survey we are

conducting. Questions or concerns can either be directed to the researcher, Norhayati

(nmoh044@aucklanduni.ac.nz) or to the course lecturer, Professor John Hosking

(john@cs.auckland.ac.nz), Dept. of Computer Science.

235

mailto:nmoh044@aucklanduni.ac.nz
mailto:john@cs.auckland.ac.nz

References

Bar, M., & Neta, M. (2006). Humans Prefer Curved Visual Objects. Psychological
Science, 17(8), 645-648.

Bardohl, R. (2002). A visual environment for visual languages. Science of Computer
Programming, 44, 181-203.

Barton, B. F., & Barton, M. S. (1987). Simplicity in Visual Representation: A
Semiotic Approach. Journal of Business ad Technical Communication, 1(9),
9-26.

Bergenti, F., & Poggi, A. (2000). Improving UML Designs Using Automatic Design
Pattern Detection. International Conference on Software Engineering and
Knowledge Engineering (SEKE 2000), 336--343.

Bezivin, J., & Jouault, F. (2006). Using ATL for Checking Models. Electronic Notes
in Theoretical Computer Science(152), 69-81.

Blackwell, A. F., Britton, C., Cox, A., Green, T. R. G., Gurr, C., Kadoda, G., et al.
(2001). Cognitive Dimensions of Notations: Design Tools for Cognitive
Technology. 4th International Conference on Cognitive Technology, 325-
541.

Blackwell, A. F., & Green, T. R. G. (2000). A Cognitive Dimensions Questionnaire
Optimised for Users. 12th Workshop of the Psychology of Programming
Interest Group, 137-154.

Blecken, A., & Marx, W. (2010). Usability Evaluation of a Learning Management
System. The 43rd International Conference on System Sciences, 1-9.

Brown, A. L. (1988). Motivation to learn and understand: On taking charge of one's
own learning. Cognition and Instruction, 5(4), 311-321.

Catarci, T., Massari, A., & Santucci, G. (1991). Iconic and Diagrammatic Interfaces:
An Integrated Approach. IEEE Workshop on Visual Languages, 199-204.

Coelho, W., & Murphy, G. (2007). ClassCompass: A Software Design Mentoring
System. ACM Journal on Educational Resource in Computing, 7(1), 1-18.

Costagliola, G., Lucia, A. D., Ferrucci, F., Gravino, C., & Scanniello, G. (2008).
Assessing the usability of a visual tool for the definition of e-learning
processes. [Journal]. Journal of Visual Languages and Computing 19, 721-
737.

236

Cox, K. (2000). Cognitive Dimensions of Use Cases- feedback from a student
questionnare. Proceedings of Twelfth Annual Meeting of the Psychology of
Programming Interest Group (PP1G-12), 99-121.

Czarnecki, K., & Helson, S. (2003). Classification of Model Transformation
Approaches. OOPSLA '03 Workshop on Generative Techniques in the
Context of Model_Driven Architecture, 1-17.

Dashofy, E. M., Hoek, A. v. d., & Taylor, R. N. (2002). Towards Architecture-
Based Self-Healing Systems. Proceedings of the First Workshop on Self-
healing Systems, 21-26.

de Souza, C. R. B., Jr., J. S. F., & Goncalves, K. M. (2000). A Group Critic System
for Object-Oriented Analysis and Design. Fifteenth IEEE International
Conference on Automated Software Engineering, 313 - 316

de Souza, C. R. B,, Oliveira, H. L. R., da Rocha, C. R. P., Goncalves, K. M., &
Redmiles, D. F. (2003). Using Critiquing Systems for Inconsistency
Detection in Software Engineering Models. International Conference on
Software Engineering and Knowledge Engineering (SEKE 2003), 196-203.

Ebert, J., Suttenbach, R., & Uhe, I. (1997). Meta-CASE in Practice: A Case for
KOGGE. Lecture Notes in Computer Science, 1250/1997, 203-216.

Fischer, G. (1987). A Critic For LISP. 10th International Joint Conference on
Artificial Intelligence, 177-184.

Fischer, G. (1989). Human-Computer Interaction Software: Lessons Learned,
Challenges Ahead. IEEE Software, 6, 44-52.

Fischer, G., Lemke, A. C., & Mastaglio, T. (1991). Critics: An Emerging Approach
to Knowledge-Based Human Computer Interaction. International Journal of
Man-Machine Studies, 35, 695-721.

Fischer, G., Lemke, A. C., Mastaglio, T., & Morch, A. I. (1991). The Role of
Critiquing in Cooperative Problem Solving. ACM Transactions on
Information Systems, 9(3), 123-151.

Fischer, G., & Mastaglio, T. (1990). A conceptual framework for knowledge-based
critic systems. Decision Support Systems, 7, 355-378.

Fischer, G., Nakakoji, K., Ostwald, J., Stahl, G., & Sumner, T. (1993). Embedding
critics in design environments. The Knowledge Engineering Review, 8(4),
285-307.

Florijn, G. (2002). RevJava-Design critiqgues and architectural conformance
checking for Java Software: Software Engineering Research Centre.

237

Gable, G. G. (1994). Integrating Case Study and Survey Research Methods: An
Example in Information Systems. European Journal of Information Systems,
3(2), 112-126.

Gena, C., & Weibelzahl, S. (2007). Usability Engineering for the Adaptive Web. In
P. Brusilovsky, A. kobsa & W. Nejdl (Eds.), The Adaptive Web, LNCS (Vol.
4321, pp. 720-762): Springer-Verlag Berlin Heidelberg.

Gertner, A. S., & Webber, B. L. (1998). TraumaTIQ: Online Decision Support for
Trauma Management. IEEE Intelligent Systems, 32-309.

Ginige, A., Lowe, D. B., & Robertson, J. (1995). Hypermedia Authoring. IEEE
Multimedia, 2(4), 24-35.

Gray, J., Bapty, T., & Neema, S. (2000). Aspectifying Constraints in Model-
Integrated Computing. Proceedings of OOPSLA.

Green, T. R. G., & Blackwell, A. F. (1998). Cognitive Dimensions of Information
Artefacts: a tutorial. from
http://www.ndirect.co.uk/~thomas.qgree/workStuff/Papers

Green, T. R. G., Blandford, A. E., Church, L., Roast, C. R., & Clarke, S. (2006).
Cognitive dimensions: Achievements, new directions, and open questions.
Journal of Visual Languages and Computing, 17, 328-365.

Green, T. R. G., & Petre, M. (1996). Usability Analysis of Visual Progamming
Environments: a 'cognitive dimensions' framework. Journal of Visual
Languages and Computing, 7(2), 131-174.

Grundy, J., & Hosking, J. (2003). SoftArch: Tool Support for Integrated Software
Architecture Development. International Journal of Software Engineering
and Knowledge Engineering, 13(2), 125-151.

Grundy, J., Hosking, J., Huh, J., & Li, K. N.-L. (2008). Marama: an Eclipse Meta-
toolset for Generating Multi-view Environments. International Conference
on Software Engineering, 819-822.

Grundy, J., Hosking, J., Zhu, N., & Liu, N. (2006). Generating Domain-Specific
Visual Language Editors from High-Level Tool Specifications. 21st IEEE
International Conference on Automated Software Engineering, 25-36.

Guimaraes, R. L., Neto, C. d. S. S., & Soares, L. F. G. (2008). A Visual Approach
for Modeling Spatiotemporal Relations. DocEng 2008, 285-288.

Gurr, C., & Tourlas, K. (2000). Towards the Principled Design of Software

Engineering Diagrams. International Conference on Software Engineering
509-518.

238

http://www.ndirect.co.uk/~thomas.gree/workStuff/Papers

Hagglund, S. (1993). Introducing expert critiquing systems. The Knowledge
Engineering Review, 8(4), 281-284.

Hartson, H. R., Andre, T. S., & Williges, R. C. (2003). Criteria for Evaluating
Usability Evaluation Methods. International Journal of Human-Computer
Interaction, 15(1), 145-181.

Hill, J. H., Gokhale, A., & Schmidt, D. C. (2010). Template Patterns for Improving
Configurability and Scability of Enterprise Distributed Real-time and
Embedded System Testing and Experimentation. 1-19. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.7040&rep=re

pl&type=pdf.

Holzinger, A. (2005). Usability Engieering Methods for Software Developers.
Communications Of The ACM, 48(1), 71-74.

Hwang, W., & Salvendy, G. (2010). Number of People Required for Usability.
Communications Of The ACM, 53(5), 130-133.

Irandoust, H. (2006). Critiquing systems for decision support (Technical Report No.
DRDC Valcartier TR 2003-321): Defence Research and Development
Canada.

Jacko, J. A., & Sears, A. (2003). The Human-Computer Interaction Handbook. New
Jersey: Lawrence erlbaum Associates, Inc.

Jaramillo, J. d. L., Vangheluwe, H., & Moreno, M. A. (2003). Using Meta-
Modelling and Graph Grammars to Create Modelling Environments. In P.
Bottoni & M. Minas (Eds.), Electronic Notes in Theoretical Computer
Science (Vol. 72, pp. 36-50): Elsevier Science B.V.

Karsai, G., Nordstrom, G., Ledeczi, A., & Sztipanovits, J. (2000). Specifying
Graphical Modeling Systems Using Constraint-based Metamodels. IEEE
International Symposium on Computer-Aided Control System Design, 89-94.

Kelly, S., Lyytinen, K., & Rossi, M. (1996). MetaEdit+: A fully configurable multi-
user and multi-tool CASE and CAME environment Advanced Information
Systems Engineering (Vol. Volume 1080/1996, pp. 1-21): Springer Berlin/
Heidelberg.

Khambati, A. (2008). A model driven care plan modelling system. Unpublished
Master, University of Auckland.

Khambati, A., Grundy, J., Warren, J., & Hosking, J. (2008). Model-driven
Development of Mobile Personal Health Care Applications. The 23rd
IEEE/ACM International Conference on Automated Software Engineering,
467-470.

239

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.7040&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.7040&rep=rep1&type=pdf

Khan, M. A., Israr, N., & Hassan, S. (2010). Usability Evaluation of Web Office
Applications. First International Conference on Intelligent Systems,
Modelling and Simulation, 146-151.

Kleppe, A., & Warmer, J. (2002). The Semantics of the OCL Action Clause Object
Modeling with the OCL, Lecture Notes in Computer Science (Vol. 2263, pp.
213-227): Springer-Verlag Berlin Heidelberg.

Knauss, E., Luebke, D., & Meyer, S. (2009). Feedback-Driven Requirements
Engineering: The Heuristic Requirements Assistant. IEEE 31st International
Conference on Software Engineering, 587 - 590.

Lemke, A. C., & Fischer, G. (1990). A Cooperative Problem Solving System for
User Interface Design. Eight National Conference on Artificial Intelligence,
479-484.

Leventhal, L. M., & Barnes, J. A. (2008). Usability Engineering: Process, Products,
and Examples. Upper Saddle River, New Jersey: Pearson Prentice Hall.

Li, L. (2010). An Integrated Visual Approach for Business Process Modelling.
Unpublished PhD, University of Auckland, Auckland.

Li, L., Hosking, J., & Grundy, J. (2007a, 12-16 June). EML: A Tree Overlay-Based
Visual Language For Business Process Modelling. Paper presented at the
Proceeding of ICEIS 2007, Funchal, Madeira, Portugal.

Li, L., Hosking, J., & Grundy, J. (2007b). Visual Modelling of Complex Business
Process with Trees, Overlays and Distortion-based Displays. IEEE
Symposium on Visual Languages and Human-Centric Computing, 137-144.

Liu, H., Rowles, C. D., & Wen, W. X. (1995). Critics for Knowledge-Based Design
Systems. IEEE Transactions on Knowledge and Data Engineering, 7(5),
740-750.

Liu, N., Hosking, J., & Grundy, J. (2007). MaramaTatau: Extending a Domain
Specific Visual Language Meta Tool with a Declarative Constraint
Mechanism. IEEE Symposium on Visual Languages and Human-Centric
Computing 95-103.

Lohse, G. L., Biolsi, K., Walker, N., & Reuter, H. H. (1994). A Classification of
Visual Representations. Communications Of The ACM, 37(12), 36-49.

Lohse, G. L., Min, D., & Olson, J. R. (1995). Cognitive Evaluation of System
Representation Diagrams. Information & Management, 29, 79-94.

Lohse, J., Reuter, H., Biolsi, K., & Walker, N. (1990). Classifying Visual
Knowledge Representations: A Foundation for Visualization Research.
Visualization 90, 131-138.

240

Loucopoulos, P., & Kadir, W. M. N. W. (2008). BROOD: Business Rules-driven
Object Oriented Design. Journal of Database Management, 19(1), 41-73.

Lund, A. (1998). USE Questionnaire ~ Resource Page. from
http://usesurvey.com/IntroductionToUse.html

Mackinlay, J. (1986). Automating the Design of Graphical Presentations of
Relational Information. ACM Transactions on Graphics, 5(2), 110-141.

Maiden, N. A. M., & Sutcliffe, A. G. (1994). Requirements Critiquing Using
Domain Abstractions. First International Conference on Requirements
Engineering, 184-193.

Marama meta-tools. (2008). from
https://wiki.auckland.ac.nz/display/csidst/Marama+Meta-tools

Masri, K., Parker, D., & Gemino, A. (2008). Using Iconic Graphics in Entity
Relationship Diagrams: The Impact on Understanding. Journal of Database
Management, 19(3), 22-41.

McCarthy, K., et al. . (2005). Experiments in Dynamic Critiquing. International
Conference on Intelligent User Interfaces (IUI 05), 175-182.

McCarthy, K., Salamo, M., Coyle, L., McGinty, L., Smyth, B., & Nixon, P. (2006).
Group Recommender Systems: A Critiquing Based Approach. International
Conference on Intelligent User Interfaces, 267-269.

McCormick, B. H., DeFanti, T. A, & Brown, M. D. (1987). Visualization in
scientific computing-a synopsis. IEEE Computer Graphics And Applications,
7(7), 61-70.

McGinty, L., & Smyth, B. (2003). Tweaking Critiquing. Proceedings of the
Workshop on Personalization and Web.

Mehzer, T., Abdul-Malak, M. A., & Maarouf, B. (1998). Embedding critics in
decision-making environments to reduce human errors. Knowledge-Based
Systems, 11, 229-237.

Miller, P. (1986). Expert Critiquing Systems: Practice-based Medical Consultation
by Computer. New York: Springer-Verlag.

Moody, D. L. (2002). Complexity Effects On End User Understanding Of Data
Models: An Experimental Comparison Of Large Data Model Representation
Methods. Tenth European Conference on Information Systems.

Moody, D. L. (2006). What Makes a Good Diagram? Improving the Cognitive
Effectiveness of Diagrams in IS Development. 15th International
Conference in Information Systems Development (ISD 2006), 481-492.

241

http://usesurvey.com/IntroductionToUse.html

Moody, D. L. (2008). The "Physics" of Notations: Towards a Scientific basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions
on Software Engineering, 35(6), 756-779.

Moody, D. L., Heymans, P., & Matulevicius, R. (2009). Improving the Effectiveness
of Visual Representations in Requirements Engineering: An Evaluation of i*
Visual Syntax. 2009 17th IEEE International Requirements Engineering
Conference, 171-180.

Nielson, J. (1993). Usability Engineering. London: Academic Press Limited.
Oh, Y., Do, E. Y.-L., & Gross, M. D. (2004). Intelligent Critiquing of Design
Sketches.

Oh, Y., Gross, M. D., & Do, E. Y.-L. (2008). Computer-Aided Critiquing System.
Computer Aided Architectural Design and Research in Asia (AADRIA), 161-
167.

Oh, Y., Gross, M. D., Ishizaki, S., & Do, E. Y.-L. (2009). Constraint-based Design
Critic for Flat-pack Furniture Design. 17th International Conference on
Computers in Education, 19-26.

Paige, R. F., Ostroff, J. S., & Brooke, P. J. (2002). Checking the Consistency of
Collaboration and Class Diagrams using PVS. Proceedings of Fourth
Workshop on Rigorous Object-Oriented Methods (ROOM4).

Pereira, M. J. V., Mernik, M., Cruz, D. d., & Henriques, P. R. (2008). Program
Comprehension for Domain-Specific Languages. ComSIS, 5(2).

Perry, D. E., Sim, S. E., & Easterbrook, S. (2006). Case Studies for Software
Engineers. International Conference on Software Engineering 2006, 1045-
1046.

Petre, M. (1995). Why Looking Isn't Always Seeing:Readership Skills and
Graphical Programming. Communications Of The ACM, 38(6), 33-44.

Pisan, Y., Richards, D., Sloane, A., Koncek, H., & Mitchell, S. (2003). Submit! A
Web-Based System for Automatic Program Critiquing. Fifth Australasian
Computing Education Conference (ACE2003), 20, 59-68.

Pohjonen, R. (2005). Metamodeling Made Easy-MetaEdit+ (Tool Demonstration).
In R. Gluck & M. Lowry (Eds.), Lecture Note in Computer Science (Vol.
3676, pp. 442-446): Springer-Verlag Berlin Heidelberg.

Qattous, H. (2009). Constraint Specification by Example in a Meta-CASE Tool.
ESEC/FSE Doctoral symposium 2009, 13-16.

242

Qiu, L., & Riesbeck, C. (2008). An Incremental Model for Developing Educational
Critiquing Systems: Experiences with the Java Critiquer. Journal of
Interactive Learning Research, 19(1), 119-145.

Qiu, L., & Riesbeck, C. K. (2003). Facilitating Critiquing in Education: The Design
and Implementation of the Java Critiquer. International Conference on
Computers in Education (ICCE).

Qiu, L., & Riesbeck, C. K. (2004). An Incremental Model for Developing
Educational Critiquing Systems: Experiences with the Java Critiquer.
Proceedings of World Conference on Educational Multimedia, Hypermedia
and Telecommunications, 908-916.

Redmiles, D. F. (1998). Applying design critics to software requirements
engineering.

Reilly, J., McCarthy, K., McGinty, L., & Smyth, B. (2005). Incremental Critiquing.
Knowledge-Based Systems, 18, 143-151.

Robbins, J. E. (1998). Design Critiquing Systems (Technical Report). Irvine:
Department of Information and Computer Science, University of California.

Robbins, J. E., & Redmiles, D. F. (1998). Software architecture critics in the Argo
design environment. Knowledge-Based Systems, 11(1), 47-60.

Robbins, J. E., & Redmiles, D. F. (2000). Cognitive Support, UML Adherence, and
XMI Interchange in Argo/UML. Journal of Information and Software
Technology, 42(2), 79-89.

Robey, D., Welke, R., & Turk, D. (2001). Traditional, Iterative, and Component-
Based Development: A Social Analysis of Software Development
Paradigms. Information Technology and Management, 2, 53-70.

Rubin, J. (1994). Handbook Of Usability Testing: How to Plan, Design and Conduct
Effective Tests. New York: John Wiley & Sons, Inc.

Shanks, G. G., & Darke, P. (1998). Understanding Corporate Data Models.
Information & Management, 35, 19-30.

Siau, K. (2004). Informational and Computational Equivalence in Comparing
Information Modelling Methods. Journal of Database Management, 15(1),
73-86.

Silverman, B. G. (1992). Survey of Expert Critiquing Systems: Practical and
Theoretical Frontiers. Communications Of The ACM, 35(4).

Silverman, B. G., & Mehzer, T. M. (1992). Expert Critics in Engineering Design:
Lessons Learned and Research Needs. Al Magazine, 13, 45-62.

243

Sourrouille, J. L., & Caplat, G. (2002). Constraint Checking in UML Modeling.
Thel4th International Conference on Software Engineering and Knowledge
Engineering, 217-224.

Tianfield, H., & Wang, R. (2004). Critic System- Towards Human-Computer
Collaborative Problem Solving. Artificial Intelligence Review, 22, 271-295.

Tolvanen, J.-P. (2004). MetaEdit+: Domain-Specific Modeling for Full Code
Generation Demonstrated [GPCE]. OOPSLA '04, 442-446.

Tolvanen, J.-P., Pohjonen, R., & Kelly, S. (2007). Advanced Tooling for Domain-
Specific Modeling:MetaEdit+. The 7th OOPSLA Workshop on Domain-
Specific Modeling (DSM'07), 243-250.

Trochim, W. M. K. (1989). Outcome Pattern Matching and Program Theory.
Journal of Evaluation and Program Planning, 12(4), 355-366.

Tukiainen, M. (2001). Evaluation of the Cognitive Dimensions Questionnaire and
Some Thoughts about the Cognitive Dimensions of Spreadsheet Calculation.
13th Workshop of the Psychology of Programming Interest Group.

Tyugu, E. (2007). Algorithms and architectures of artificial intelligence, Frontiers
in Al and Applications (Vol. 159): I10S Press.

Vahidov, R., & Elrod, R. (1999). Incorporating critique and argumentation in DSS.
Decision Support Systems, 26, 249-258.

Wang, Y. (2009). A Formal Syntax of Natural Languages and Deductive Grammar.
Fundamenta Informaticae, 90(4), 353-368.

Winn, W. D. (1993). An Account of How Readers Search for Information in
Diagrams. Contemporary Educational Psychology, 18, 162-185.

Xiyong, Z., & Xingwang, Z. (2006). Implementation of a Template-based Approach
for Mass Customization of Service-oriented E-business Applications. 2006
International Conference on Systems, Man, and Cybernetics, 4666-4670.

Zhu, N., Grundy, J., Hosking, J., Liu, N., Cao, S., & Mehra, A. (2007). Pounamu; A

meta-tool for exploratory domain-specific visual language tool development.
The Journal of Systems and Software, 80(8), 1390-1407.

244

