
Improved Usage of Pre-Trained Machine Learning Models
Abstracted through Software Components

Alex Cummaudo
BSc Swinburne, BIT(Hons)
<ca@deakin.edu.au>

A thesis submitted in partial fulfilment of the requirements for the
Doctor of Philosophy

Applied Artificial Intelligence Institute
Deakin University

Melbourne, Australia

January 22, 2021

abstract

Software components hide implementation complexity by exposing a designed interface that
permits easy integration and use. The explosive demand and interest in artificial intelligence
(AI) and deep learning has led to creation of software components that offer various machine
learning (ML) functions. The promise is that these AI components improve productivity
and application developers can use them without a deep understanding of their underlying
mechanics. Application developers currently have access to multiple AI components with a
prominent focus on visual object recognition, natural language processing, audio analysis,
anomaly detection and forecasting from numerical data. Simplified variations of these
components are offered via cloud computing as intelligent web services; these services are
often marketed as ‘developer friendly’ ML with the claim of being just another component
accessible on the cloud through a web-based RESTful API.

A developer’s conceptual understanding of components they use impacts the internal and
external quality of software they produce. Hence, vendors of intelligent web services must
give sufficient level of conceptual detail to enable integration and effective use of their
pre-packaged capabilities, ultimately to help developers who integrate with their services
produce high-quality software.

This thesis investigates these emerging intelligent web services. Based on an analysis of
the observable behaviour of intelligent web services, we show that their probabilistic results
and evolution is not effectively communicated in the documentation. Our work shows that
developers interpret and use these services using anchors built upon their understanding of
traditional (i.e., deterministic and non-probabilistic) software components. We show how
this mismatch results in a weak conceptual understanding of highly-abstracted forms of ML,
impacting software quality. To mitigate documentation issues, we propose a taxonomy of the
key requirements of good API documentation, which we derive from existing literature and
triangulated through a survey with developers. We use this information to assess the value
placed by developers on each API documentation artefact and identify gaps in the services’
documentation, which can be improved to assist conceptual understanding. Additionally, we
propose an architectural tactic designed to reduce and guard against common issues identified
when ML becomes highly-abstracted. The proposed tactic is intended to better integrate
conventional software components with probabilistic and non-deterministic intelligent web
services, ultimately to improve overall solution robustness and, thus, software quality.

This thesis makes a substantial contribution to the software engineering discipline by show-
ing the non-trivial implications to software quality resulting from improper usage of such
services and offers a pathway to safer use of the exciting new advances from the field of AI
and deep learning.

Contents

Abstract iii

Contents v

List of Publications x

List of Abbreviations xi

List of Figures xv

List of Tables xix

List of Listings xxii

I Preface 1

1 Introduction 3
1.1 Research Context . 7
1.2 Motivating Scenarios . 9

1.2.1 Low Risk Motivating Scenario 10
1.2.2 High Risk Motivating Scenario 12

1.3 Research Motivation . 13
1.3.1 Outputs are Probabilities 14
1.3.2 Evolution of Datasets . 14
1.3.3 Selecting Appropriate Decision Boundaries 15
1.3.4 Documentation of the Above Concerns 15

1.4 Research Goals . 16
1.5 Research Methodology . 17
1.6 Thesis Organisation . 18

1.6.1 Part I: Preface . 19

v

vi CONTENTS

1.6.2 Part II: Publications . 19
1.6.3 Part III: Postface . 23
1.6.4 Part IV: Appendices . 23

1.7 Research Contributions . 23
1.7.1 Contribution 1: Landscape Analysis & Preliminary Solutions 24
1.7.2 Contribution 2: Improving Documentation Attributes 25
1.7.3 Contribution 3: Service Integration Architecture 25

1.8 Chapter Summary . 26

2 Background 29
2.1 Software Quality . 30

2.1.1 Validation and Verification 31
2.1.2 Quality Attributes and Models 33
2.1.3 Reliability in Computer Vision 36

2.2 Probabilistic and Non-deterministic Systems 36
2.2.1 Interpreting the Uninterpretable 38
2.2.2 Explanation and Communication 39
2.2.3 Mechanics of Model Interpretation 40

2.3 Application Programming Interfaces 41
2.3.1 Development, Documentation and Usage of Web APIs . . . 41
2.3.2 API Usability . 44

2.4 Chapter Summary . 46

3 Research Methodology 47
3.1 Research Questions Revisited . 47

3.1.1 Empirical Research Questions 48
3.1.2 Non-Empirical Research Questions 49

3.2 Philosophical Stances . 49
3.3 Research Methods . 51

3.3.1 Review of Relevant Research Methods 51
3.3.2 Review of Data Collection Techniques for Field Studies . . . 53

3.4 Research Design . 53
3.4.1 Landscape Analysis of Computer Vision Services 53
3.4.2 Utility of API Documentation in Computer Vision Services 55
3.4.3 Developer Issues concerning Computer Vision Services . . 55
3.4.4 Designing Improved Integration Strategies 56

3.5 Chapter Summary . 56

II Publications 57

4 Identifying Evolution in Computer Vision Services 59
4.1 Introduction . 59
4.2 Motivating Example . 61
4.3 Related Work . 62

4.3.1 External Quality . 62

CONTENTS vii

4.3.2 Internal Quality . 63
4.4 Method . 65
4.5 Findings . 67

4.5.1 Consistency of top labels 67
4.5.2 Consistency of confidence 70
4.5.3 Evolution risk . 70

4.6 Recommendations . 72
4.6.1 Recommendations for IWS users 72
4.6.2 Recommendations for IWS providers 73

4.7 Threats to Validity . 75
4.7.1 Internal Validity . 75
4.7.2 External Validity . 75
4.7.3 Construct Validity . 76

4.8 Conclusions & Future Work . 76

5 Interpreting Pain-Points in Computer Vision Services 79
5.1 Introduction . 80
5.2 Motivation . 82
5.3 Background . 83
5.4 Method . 84

5.4.1 Data Extraction . 84
5.4.2 Data Filtering . 86
5.4.3 Data Analysis . 87

5.5 Findings . 89
5.5.1 Post classification and reliability analysis 89
5.5.2 Developer Frustrations . 90
5.5.3 Statistical Distribution Analysis 92

5.6 Discussion . 93
5.6.1 Answers to Research Questions 93
5.6.2 The Developer’s Learning Approach 94
5.6.3 Implications . 96

5.7 Threats to Validity . 99
5.7.1 Internal Validity . 99
5.7.2 External Validity . 100
5.7.3 Construct Validity . 100

5.8 Conclusions . 100

6 Ranking Computer Vision Service Issues using Emotion 103
6.1 Introduction . 103
6.2 Motivation . 105
6.3 Methodology . 106

6.3.1 Dataset . 106
6.3.2 Additional Dataset Cleansing 107
6.3.3 Automatic Emotion Classification 107
6.3.4 Manual Emotion Classification 108

viii CONTENTS

6.3.5 Comparing Manual and Automatic Classification Methods . 108
6.4 Findings . 108
6.5 Discussion . 110
6.6 Threats to Validity . 112

6.6.1 Internal validity . 112
6.6.2 External validity . 112
6.6.3 Construct validity . 113

6.7 Conclusion . 113

7 Using Emotion Classification Models against Stack Overlow 115
7.1 Introduction . 115
7.2 Motivation . 117
7.3 Method . 117
7.4 Results . 119

7.4.1 Limitations of the Text Classifier 119
7.4.2 Data imbalance . 119
7.4.3 Emotion Labeling Bias . 122
7.4.4 Emotion Labelling and Classification Granularity 122

7.5 Discussion . 123
7.6 Threats to Validity . 124
7.7 Related Work . 125
7.8 Conclusion . 125

8 Better Documenting Computer Vision Services 127
8.1 Introduction . 127
8.2 Related Work . 130

8.2.1 Systematic Reviews in Software Documentation 130
8.2.2 API Usability and Documentation Knowledge 131
8.2.3 Computer Vision Services 133

8.3 Taxonomy Development . 133
8.3.1 Systematic Mapping Study 133
8.3.2 Development of the Taxonomy 138

8.4 A Taxonomy for API Documentation 141
8.5 Validating the Taxonomy . 143

8.5.1 Survey Study . 143
8.5.2 Empirical Application on Computer Vision Services 146

8.6 Taxonomy Analysis . 146
8.6.1 Exploring IPS and ILS Values 147
8.6.2 Triangulating IPS, ILS and Computer Vision 150
8.6.3 Recommendations Resulting from Analysis 152

8.7 Threats to Validity . 156
8.7.1 Internal Validity . 156
8.7.2 External Validity . 156
8.7.3 Construct Validity . 157

8.8 Conclusions & Future Work . 158

CONTENTS ix

9 Using a Facade Pattern to combine Computer Vision Services 161
9.1 Introduction . 161

9.1.1 Motivating Scenario: Intelligent vs Traditional Web Services 162
9.1.2 Research Motivation . 163

9.2 Merging API Responses . 163
9.2.1 API Facade Pattern . 164
9.2.2 Merge Operations . 164
9.2.3 Merging Operators for Labels 165

9.3 Graph of Labels . 166
9.3.1 Labels and synsets . 166
9.3.2 Connected Components 166

9.4 API Results Merging Algorithm 169
9.4.1 Mapping Labels to Synsets 169
9.4.2 Deciding Total Number of Labels 169
9.4.3 Allocating Number of Labels to Connected Components . . 170
9.4.4 Selecting Labels from Connected Components 171
9.4.5 Conformance to properties 171

9.5 Evaluation . 171
9.5.1 Evaluation Method . 171
9.5.2 Naive Operators . 172
9.5.3 Traditional Proportional Representation Operators 174
9.5.4 New Proposed Label Merge Technique 174
9.5.5 Performance . 174

9.6 Conclusions and Future Work . 175

10 An Integration Architecture Tactic to Guard AI-first Components 177
10.1 Introduction . 177
10.2 Motivating Example . 180
10.3 Intelligent Services . 181

10.3.1 ‘Intelligent’ vs ‘Traditional’ Web Services 181
10.3.2 Dimensions of Evolution 181
10.3.3 Limited Configurability 182

10.4 Our Approach . 185
10.4.1 Core Components . 185
10.4.2 Usage Example . 190

10.5 Evaluation . 191
10.5.1 Data Collection and Preparation 192
10.5.2 Results . 192
10.5.3 Threats to Validity . 194

10.6 Discussion . 198
10.6.1 Implications . 198
10.6.2 Limitations . 198
10.6.3 Future Work . 199

10.7 Related Work . 200
10.8 Conclusions . 201

x CONTENTS

11 An Implementation of the Threshold Tuner Component 203
11.1 Introduction . 203
11.2 Motivating Example . 207
11.3 Threshy . 208
11.4 Related work . 209

11.4.1 Decision Boundary Estimation 209
11.4.2 Tooling for ML Frameworks 210

11.5 Conclusions & Future Work . 211

III Postface 213

12 Conclusions & Future Work 215
12.1 Contributions of this Work . 215

12.1.1 Answers to Research Questions 216
12.1.2 Limitations to Research Answers & Future Research 222

12.2 Concluding Remarks . 224

References 247

List of Online Artefacts 249

IV Appendices 253

A Additional Figures 255

B Reference Architecture Source Code 269

C Supplementary Materials to Chapter 8 303
C.1 Detailed Overview of Our Proposed Taxonomy 305
C.2 Sources of Documentation . 309
C.3 List of Primary Sources . 312
C.4 Detailed Suggested Improvements 316

C.4.1 Dimension A Issues . 316
C.4.2 Dimension B Issues . 318
C.4.3 Dimension C Issues . 318
C.4.4 Dimension D Issues . 319

C.5 Survey Questions . 320

D Authorship Statements 325

E Ethics Clearance 365

List of Publications

Below lists publications arising from work completed in this PhD.

1. A. Cummaudo, R. Vasa, J. Grundy, and M. Abdelrazek, “Requirements of API Documentation: A
Case Study into Computer Vision Services,” IEEE Transactions on Software Engineering, pp. 1–1,
2020, DOI 10.1109/TSE.2020.3047088

2. A. Cummaudo, S. Barnett, R. Vasa, J. Grundy, and M. Abdelrazek, “Beware the evolving ‘intel-
ligent’ web service! An integration architecture tactic to guard AI-first components,” in Proceed-
ings of the 28th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering. Virtual Event, USA: ACM, November 2020.
DOI 10.1145/3368089.3409688, pp. 269–280

3. A. Cummaudo, S. Barnett, R. Vasa, and J. Grundy, “Threshy: Supporting Safe Usage of Intelligent
Web Services,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. Virtual Event, USA: ACM,
November 2020. DOI 10.1145/3368089.3417919, pp. 1645–1649

4. A. Cummaudo, R. Vasa, S. Barnett, J. Grundy, and M. Abdelrazek, “Interpreting Cloud Com-
puter Vision Pain-Points: A Mining Study of Stack Overflow,” in Proceedings of the 42nd In-
ternational Conference on Software Engineering. Seoul, Republic of Korea: ACM, June 2020.
DOI 10.1145/3377811.3380404, pp. 1584–1596

5. A. Cummaudo, R. Vasa, J. Grundy, M. Abdelrazek, and A. Cain, “Losing Confidence in Quality:
Unspoken Evolution of Computer Vision Services,” in Proceedings of the 35th IEEE International
Conference on Software Maintenance and Evolution. Cleveland, OH, USA: IEEE, December 2019.
DOI 10.1109/ICSME.2019.00051. ISBN 978-1-72-813094-1 pp. 333–342

6. A. Cummaudo, R. Vasa, and J. Grundy, “What should I document? A preliminary systematic mapping
study into API documentation knowledge,” in Proceedings of the 13th International Symposium on
Empirical Software Engineering andMeasurement. Porto de Galinhas, Recife, Brazil: IEEE, October
2019. DOI 10.1109/ESEM.2019.8870148. ISBN 978-1-72-812968-6. ISSN 1949-3789 pp. 1–6

7. T. Ohtake, A. Cummaudo, M. Abdelrazek, R. Vasa, and J. Grundy, “Merging intelligent API responses
using a proportional representation approach,” in Proceedings of the 19th International Conference
on Web Engineering. Daejeon, Republic of Korea: Springer, June 2019. DOI 10.1007/978-3-030-
19274-7_28. ISBN 978-3-03-019273-0. ISSN 1611-3349 pp. 391–406

xi

https://doi.org/10.1109/TSE.2020.3047088
https://doi.org/10.1145/3368089.3409688
https://doi.org/10.1145/3368089.3417919
https://doi.org/10.1145/3377811.3380404
https://doi.org/10.1109/ICSME.2019.00051
https://doi.org/10.1109/ESEM.2019.8870148
https://doi.org/10.1007/978-3-030-19274-7_28
https://doi.org/10.1007/978-3-030-19274-7_28

List of Abbreviations

A2I2 Applied Artificial Intelligence Institute. 53, 55

AI artificial intelligence. iii, 3–7, 10, 14, 15, 27, 29, 38–40, 49, 51, 59, 60, 63, 64,
74, 77, 80, 82–84, 94, 95, 97, 98, 101, 103, 115–117, 122–125, 127, 128, 158,
159, 163, 164, 177, 178, 181, 194, 201, 204, 220, 222, 224

API application programming interface. iii, 3–18, 20, 22, 25–27, 29, 30, 32, 33,
41, 44–46, 48–50, 52, 55, 60, 61, 64, 66, 73–76, 79–86, 90–94, 96–101, 103,
104, 106–109, 111, 112, 115, 117, 123, 127–133, 135–159, 161–164, 166,
168, 169, 171, 172, 175, 177, 179, 181, 184–186, 192, 198, 201, 204, 210,
211, 215–219, 221, 222

BYOML Build Your Own Machine Learning. 7, 8

CC connected component. 166, 169–171, 175

CDSS clinical decision support system. 9, 12, 32

CNN convolutional neural network. 12, 13, 36, 62

CRUD create, read, update, and delete. 44

CVS computer vision service. 4, 9–14, 16–20, 22–24, 26, 27, 29, 31, 32, 35, 36,
44, 46, 48–50, 52, 53, 55, 59–65, 68, 73, 75, 76, 79, 81, 86, 87, 91, 95, 100,
103, 105, 106, 108, 112, 113, 116, 117, 122, 127–131, 133, 140, 141, 143,
144, 146, 150–153, 155–159, 161, 163, 164, 166, 169, 171, 175, 178, 179,
182, 184, 185, 192, 194, 199, 201, 204, 215–222, 255

DCE distributed computing environment. 41, 42

DSM Distributional Semantic Model. 117

HTML Hypertext Markup Language. 86

xiii

xiv List of Abbreviations

HTTP Hypertext Transfer Protocol. 8, 42–44, 189, 190, 193, 198

IDE integrated development environment. 35

IDL interface definition language. 42, 44

ILS In-Literature Score. 129, 141, 146–150, 155, 157, 158

IPS In-Practice Score. 129, 141, 145–151, 158

IRR inter-rater reliability. 99

IWS intelligent web service. 6, 7, 9–14, 16, 17, 19, 20, 22, 27, 29–33, 35, 36,
41, 45, 46, 59–61, 63, 64, 72, 74, 76, 77, 79–87, 89–91, 93–101, 103, 104,
112, 115, 116, 125, 126, 159, 161–163, 175, 177, 178, 180, 181, 184–187,
198–201, 203, 204, 206, 208–210, 215–217, 219, 220, 222–224, 255

JSON JavaScript Object Notation. 9, 182, 190, 192, 204

ML machine learning. iii, x, 3–8, 10, 11, 13–15, 17, 20, 25, 27, 33, 39, 44, 46, 59,
60, 63, 64, 74, 76, 80–82, 84, 85, 97, 98, 103, 107, 112, 113, 121, 123, 161,
162, 175, 203, 204, 206, 208, 210, 222, 224

NN neural network. 14, 37, 38, 40

PaaS Platform as a Service. 7, 13, 63

QoS quality of service. 42, 63, 64

RAML RESTful API Modeling Language. 44

REST REpresentational State Transfer. iii, 7, 42–44, 60, 79, 80, 100, 127, 162,
177, 201, 222

ROI region of interest. 12, 13

RPC remote procedure call. 41, 42

SDK software development kit. 61, 91, 135, 152

SLA service-level agreement. 42, 63

SMS systematic mapping study. 22, 23, 25, 129–133, 139, 148, 149, 154, 156, 158,
159, 217

SO Stack Overflow. 7, 17, 19, 20, 25, 26, 48, 49, 52, 55, 56, 64, 65, 79, 81–87, 89,
90, 93–100, 103–108, 110, 112, 113, 115–119, 121, 122, 124–126, 220

SOA service-oriented architecture. 42

List of Abbreviations xv

SOAP Simple Object Access Protocol. 7, 42–44

SOLO Structure of the Observed Learning Outcome. 94–100

SQA service quality assurance. 61, 62

SUS System Usability Scale. 18, 55, 129, 143, 145

SVM support vector machine. 38, 40, 117

SWEBOK Software Engineering Body of Knowledge. 135, 136, 139

URI uniform resource identifier. 43

V&V verification & validation. 29–33, 46

WADL Web Application Description Language. 44

WSDL Web Services Description Language. 42

XML eXtendable markup language. 9, 42, 43

List of Figures

1.1 Increasing interest in the developer community of computer vision
services . 4

1.2 Differences between data- and procedural-driven cloud services . . 6
1.3 The spectrum of machine learning 8
1.4 Overview of intelligent web services 9
1.5 Overview publication coherency 24

2.1 Mindset clashes within the development, use and nature of a IWS . . 30
2.2 Leakage of internal and external quality in 33
2.3 Overview of software quality models 34
2.4 Adversarial examples in computer vision 37
2.5 Deterministic versus non-deterministic systems 38
2.6 Theory of AI communication . 40
2.7 SOAP versus REST search interest over time 42

4.1 Consistency of labels in computer vision services is rare 67
4.2 Top labels for images between computer vision services do not intersect 68
4.3 Computer vision services can return multiple top labels 69
4.4 Cumulative distribution of top label confidences 71
4.5 Cumulative distribution of intersecting top label confidences 71
4.6 Agreement of labels between multiple computer vision services do

not share similar confidences . 72

5.1 Traits of intelligent web services compared to DIY ML 82
5.2 Trend of Stack Overflow posts discussing computer vision services . 83
5.3 Comparing documentation-specific and generalised classifications

of Stack Overflow posts . 90
5.4 Alignment of Bloom and SOLO taxonomies against computer vision

issues . 97

6.1 Distributions of the types of questions raised 108

xvii

xviii LIST OF FIGURES

6.2 Proportions of emotions per question type 110

7.1 Emotion classifier training data imbalance 121

8.1 Systematic mapping study search results, by years 134
8.2 Filtering steps used in the systematic mapping study 134
8.3 A systematic map of API documentation studies 139
8.4 Our proposed API documentation taxonomy 142
8.5 Roles and seniority from survey participants 144
8.6 Comparing value of API documentation artefacts to developers vs

research attention . 149
8.7 Comparing value of API documentation artefacts to presence in

Computer Vision Services . 151

9.1 Overview of the proposed facade 164
9.2 Graph of associated synsets against two different endpoints 167
9.3 Label counts per API assessed . 168
9.4 Connected components vs. images 168
9.5 Allocation to connected components 170
9.6 F-measure comparison . 174

10.1 Prominent computer vision service evolution 179
10.2 Dimensions of evolution within computer vision services 182
10.3 Example of substantial confidence change 182
10.4 Directly versus indirectly accessing intelligent services 183
10.5 Sample request and response for intelligent services 184
10.6 State diagram of architecture workflows 188
10.7 Precondition failure taxonomy . 189
10.8 Histogram of confidence variation 193
10.9 Architecture response to substantial confidence evolution 195
10.10Architecture response to label set evolution 196
10.11Architecture response of expected label mismatch 197

11.1 Request and response for computer vision services provide limited
configurability . 204

11.2 Example case study of evaluatingmodel performance in twodifferent
models . 205

11.3 Threshy supports threshold selection and monitoring 206
11.4 Example pipeline of a computer vision system 207
11.5 UI workflow of Threshy . 208
11.6 Architecture of Threshy . 211

12.1 Results from computer vision services can be disparate and non-static217
12.2 Our proposed taxonomy . 218
12.3 Comparing IPS values to ILS and CVS assessments 219
12.4 Distribution of issues on Stack Overflow 221

LIST OF FIGURES xix

A.1 Causal factors that may influence understanding of intelligent web
services . 257

A.2 A proposal technical domain model for intelligent services 258
A.3 Potential questions that can be asked around causal factors of a

developer’s understanding of an intelligent service 259
A.4 Threshy and developer interaction with decision boundaries 259
A.5 Threshy domain model . 260
A.6 Threshy sequence diagram . 260
A.7 High-level overview of our method in Chapter 5 261
A.8 Class diagram of architecture implementation 262
A.9 Creation of a benchmark using the architecture tactic 263
A.10 Making a request via the proxy server facade 264
A.11 High-level workflow of the architectural tactic 265
A.12 Handling of evolution using our architecture (i) 266
A.13 Handling of evolution using our architecture (ii) 267

List of Tables

1.1 Categorisation of AI-based products and services 5
1.2 Differing characteristics of cloud services 6
1.3 Comparison of the machine learning spectrum 8
1.4 Varying confidence changes over time between three computer vi-

sion services . 11
1.5 Definitions of ‘confidence’ in CV documentation 12
1.6 List of publications resulting from this thesis 21

3.1 Classification of research questions in this thesis 48
3.2 Review of field study techniques 54

4.1 Characteristics of data in computer vision evolution assessment . . . 66
4.2 Ratio of consistent labels in computer vision services 67
4.3 Evolution of top labels and confidence values 70

5.1 Taxonomies used in our Stack Overflow mining study 88
5.2 Example Stack Overflow posts aligning to Bloom’s and SOLO tax-

onomies . 96

6.1 Our interpretations from a Stack Overflow question type taxonomy . 106
6.2 Frequency of emotions per question type. 109
6.3 Inter-rater agreement between human and automatic classifiation . . 110
6.4 Sample Stack Overflow questions with emotions identified 111

7.1 Emotion classification frequencies 118
7.2 Reliability Analysis of Emotion Classification 118
7.3 Sample questions comparing automated and human rater classifications120

8.1 Summary of search results in API documentation 136
8.2 Data extraction form used for the systematic mapping study 138
8.3 Intervals assigned to ILS and IPS values 147

xxi

xxii LIST OF TABLES

8.4 Documentation artefacts of high value to developers that are under-
researched and under-documented 153

9.1 Statistics for the number of labels 166
9.2 First allocation iteration . 171
9.3 Second allocation iteration . 171
9.4 Third allocation iteration . 171
9.5 Fourth allocation iteration . 171
9.6 Matching to human-verified labels 173
9.7 Evaluation results of the facade . 173
9.8 Average of evaluation result of the facade 173

10.1 Potential reasons for precondition failure 185
10.2 Rules encoded within behaviour tokens 187
10.3 Variance in ontologies . 194

List of Listings

2.1 An example SOAP request . 43
2.2 An example SOAP response . 43
2.3 An example RESTful request . 44
2.4 An example RESTful response . 44
B.1 Implementation of the architecture module components 269
B.2 Implementation of the architecture facade API 295

xxiii

Part I

Preface

1

CHAPTER1

Introduction

Abstraction layers are the application developer’s productivity powerhouse as de-
velopers need not continuously consider underlying mechanics. The ubiquitous ap-
plication programming interface (API) enables separation of concerns and reusable
component interaction. For example, complex graphics rendering and image ma-
nipulation is all achievable via a half-dozen lines of code with appropriate libraries
and frameworks, such as OpenCV’s API [54].

Machine learning (ML), too, is being abstracted and offered behind APIs. The
2010s have shown an explosion of cloud-based services providingwebAPIs typically
marketed under an artificial intelligence (AI) banner. The ML algorithms, data
processing pipelines, and infrastructure bringing these techniques to life are also
abstracted behind API calls, driven by the motivation to make it easier for developers
to blend AI into their software. There is an explosion of interest from application
developers (see Figure 1.1) that are investigating and exploring how best to infuse
recent advances in AI into their software systems. Combined with an ever-increasing
buffet of AI-based solutions, technologies and products (see Table 1.1) for developers
to choose from, it is evident that we are at the cusp of a new generation of ‘AI-first’
software.

Application developers build procedural and functional applications, where code
typically evaluates deterministically to produce outcomes. Such software does not
rely on probabilistic behaviour. This is unlike AI-first software where, often, ML
techniques are employed. However, application developers, who are accustomed to
such traditional software engineering paradigms, may not be aware of potential side-
effects of those probabilistic techniques. Software that leverages recent advances
in AI—and, more specifically, data-driven ML techniques—will often have a layer
of rules that wrap the ML components. AI-first software is, however, not solely
procedural-driven, and combines large datasets with rules to produce outcomes.
Therefore, they are both data-driven and procedural-driven. The consequence is
that large datasets (that train ML models) combined with the algorithmic techniques

3

4 Introduction

0

20

40

60

80

100

120

140

160

180

200

Q3
2014

Q4
2014

Q1
2015

Q2
2015

Q3
2015

Q4
2015

Q1
2016

Q2
2016

Q3
2016

Q4
2016

Q1
2017

Q2
2017

Q3
2017

Q4
2017

Q1
2018

Q2
2018

Q3
2018

Total 1 1 3 8 18 16 61 101 92 111 126 150 138 149 158 192 201

CloudSight 0 0 1 2 8 5 1 1 0 2 4 1 1 4 0 1 0
Clarifai 0 0 0 0 0 0 0 1 1 10 4 4 6 9 8 7 3

Amazon Rekognition 0 0 0 0 0 0 0 0 0 5 10 8 15 17 20 35 29
IBM Watson 0 0 2 2 5 4 18 31 36 22 16 27 28 19 19 24 41
Google Cloud Vision 0 0 0 0 0 0 29 30 18 26 26 43 42 42 45 45 55

Microsoft Cognitive Services 1 1 0 4 5 7 13 38 37 46 66 67 46 58 66 80 73

Po

st
s

on
 S

ta
ck

 O
ve

rf
lo

w

Figure 1.1: Increasing interest within the developer community for computer vision services
(CVSs) is shown via Stack Overflow posts. These trends of CVS usage were measured as
discussion of posts tagged with the relevant product name.1 This graph is based on data
from Chapter 5.

behind these models result in probabilistic behaviour. Further, since these models
can continually learn from new data with time, existing probabilistic behaviour can
evolve and thus regression testing techniques need to be adjusted as well for new
data.

Developing AI-infused applications requires both code and data, and an appli-
cation developer can approach developing from three perspectives, further expanded
in Section 1.1:

1. The application developer defines anMLmodel from scratch and trains it from
a curated dataset. This approach is laborious in time and demands experience
and knowledge ofMLmethods, but the tradeoff is that they have full autonomy
in the models they create.

2. The application developer downloads a pre-trained model (e.g., YOLO [299]
for computer vision, or GPT-2 [295] for natural language processing) and
‘plugs’ it into an existing ML framework, such as Tensorflow [1] or PyTorch
[277]. This approach removes the time taken to collect data, design and train
the ML model; the developers, still need to know where to find these models,
evaluate them, and then learn the frameworks2 within which they operate to
use them effectively.

3. The application developer uses a cloud-based service. It is fast to integrate
into their applications, and the APIs offered abstract the technical know-how
behind a web call.

While much research has investigated these first two perspectives (see Chapter 2),

2Thus introducing a verbose list of ML terminology to her developer vocabulary. See a list of
328 terms provided by Google here: https://developers.google.com/machine-learning/
glossary/. Last accessed 7 December 2018.

https://developers.google.com/machine-learning/glossary/
https://developers.google.com/machine-learning/glossary/

5

Table 1.1: A broad range of AI-based vendors, products, and services is emerging in recent years. (Adapted from [224].)

Category Sample Vendors & Products Typical Use Cases

Embedded AI:
Expert assistants leverage AI
technology embedded in plat-
forms and solutions.

Amazon: Alexa
Apple: Siri
Facebook: Messenger
Google: Google Assistant
Microsoft: Cortana
Salesforce: MetaMind

Personal assistants for search, simple inquiry, and growing as
expert assistance (composed problems, not just search).
Available on mobile platforms, devices, the internet of things,
and as bots or agents.
Used in voice, image recognition, and various levels of natural
language processing sophistication.

AI point solutions:
Point solutions provide spe-
cialised capabilities for natu-
ral language processing, vision,
speech, and reasoning.

24[7]: 24[7]
Admantx: Admantx
Affectiva: Affdex
Assist: AssistDigital
Automated Insights: Wordsmith
Beyond Verbal: Beyond Verbal
Expert System: Cogito
HPE: Haven OnDemand
IBM: Watson Analytics
Narrative Science: Quill
Nuance: Dragon
Salesforce: MetaMind
Wise.io: Wise Support

Semantic text, facial/visual recognition, voice intonation, in-
telligent narratives.
Various levels of natural language processing, from brief text
messaging, chat/conversational messaging, full complex text
understanding.
Machine learning, predictive analytics, text analytics/mining,
knowledge management and search.
Used as expert advisors, reasoning tools, or in customer ser-
vice.

AI platforms:
Platforms that offer various AI
tech, including (deep) machine
learning, as tools, APIs, or ser-
vices to build solutions.

CognitiveScale: Engage, Amplify
Digital Reasoning: Synthesys
Google: Google Cloud ML
IBM: Watson Knowledge Studio
Intel: Saffron Natural Intelligence
IPsoft: Amelia, Apollo, IP Center
Microsoft: Cortana Intelligence Suite
Nuance: 360 platform
Salesforce: Einstein
Wipro: Holmes

APIs, cloud services, on-premises for developers to build AI
solutions. Insights/advice building and rule-based reasoning.
Vertical domain advisors (e.g., fraud detection in banking,
financial advisors, healthcare). Cognitive services and bots.

6 Introduction

Data-Driven
Systems

Intelligent
Cloud

Services

ML
Frameworks

Prediction
Algorithms

IDEs,
Tooling

SDKs,
Libraries

Typical
Cloud

 Services

Procedural
Systems

Integration ConsumeApplication
Developers

Create &
Maintain

Intelligent
Service

Providers

Figure 1.2: The application developer’s procedural-driven toolchain is distinct from data-
driven toolchain. A developer must consume a typical, data-driven cloud service in a
different way than an intelligent data-driven cloud service as they are not the same type of
system.

the third is yet to be deeply explored, despite the fact that vendors are promoting
new offerings encapsulated under this third perspective. As shown in Table 1.1,
vendors are rapidly pushing out new ML-based offerings in the form of cloud-based
API end-points (AI platforms), where the API abstraction masks away the under-
lying mechanics of the models. Developers that use these cloud-based services
are presented with documentation providing a narrative (i.e., marketing and in the
API documentation) that implies integration of these services are just like other
cloud services. But does this implication, coupled with abstractions that hide the
assumptions made by the AI-service providers, lead to developer pain-points and
miscomprehension? If so, how can the service providers improve their documenta-
tion to alleviate this? Do these data-driven services share similarities to the runtime
behaviour of traditional cloud services? And if not, how best can the application
developer integrate the data-driven service into their a procedural-driven application
to produce AI-first software?

Table 1.2: Differing characteristics of intelligent and typical web services.

Intelligent web service Typical web services

Probabilistic Deterministic
Machine Learnt Human Engineered
Data-Driven Procedural-Driven
Black-Box Black-Box

Figure 1.2 provides an illustrative overview between the context clashing of
procedural-driven applications and data-driven cloud services, and we contrast char-
acteristics of typical cloud systems and data-driven ones in Table 1.2.

1.1 Research Context 7

� In this thesis, we show that (i) developers do not properly understand the
probabilistic data-driven machine-learnt behaviour abstracted behind the
end-points, (ii) the ‘intelligent behaviour’ is not fully contained and leaks
into the applications that make use of these end-points, and finally (iii) we
present how these concerns can be addressed via better documentation and
software architecture.

1.1 Research Context

There are a range of integration techniques available to developers, as reflected by
Google AI’s3machine learning spectrum [209, 236, 270]. This range is grouped into
the three tiers aforementioned, encompassing skills, effort, users, and types of outputs
of integration techniques. At one extreme, this approach involves the academic
research of developing algorithms and self-sourcing data to achieve intelligence—
coined as Build Your Own Machine Learning (BYOML) [182, 236, 270]. The other
extreme involves off-the-shelf, ‘friendlier’ (abstracted) intelligence with easy-to-use
APIs targeted towards application developers. The middle-ground involves a mix of
the two, with varying levels of automation to assist in development, that turns custom
datasets into machine intelligence. We illustrate the slightly varied characteristics
within this spectrum in Table 1.3 and Figure 1.3.

These cloud AI-services are gaining traction within developer circles: we show
an increasing trend of Stack Overflow posts mentioning intelligent computer vi-
sion services in Figure 1.1.4 Academia provides varied nomenclature for these
services, such as Cognitive Applications and Machine Learning Services [369] or
Machine Learning as a Service [302]. For the context of this thesis, we will refer
to such services under the broader term of intelligent web services or IWSs,5 and
diagrammatically express their usage within Figure 1.4.

There are many types of IWSs available to software developers, offering a range
of functions, such as optical character recognition, text-to-speech and speech-to-
text transcription, object categorisation, facial analysis and recognition, and natural
language processing. The general workflow of using an IWS is more-or-less the
same: a developer accesses an IWS component via REST/SOAP API(s), which is
(typically) available as a cloud-based Platform as a Service (PaaS).6,7 Developers

3Google AI was recently rebranded from Google Research, further highlighting how the ‘AI-
first’ philosophy is increasingly becoming embedded in companies’ product lines and research and
development teams. Spearheaded through work achieved at Google, Microsoft and Facebook, the
emphasis on an AI-first attitude we see through Google’s 2018 rebranding of Google Research to
Google AI [166] is evident. A further example includes how Facebook leverage AI at scale within
their infrastructure and platforms [274].

4Query run on 12 October 2018 using StackExchange Data Explorer. Refer to https://data.
stackexchange.com/stackoverflow/query/910188 for full query.

5This term is an extension inspired by the term ‘web service’, as defined by the World Wide Web
Consortium. See https://bit.ly/2CQWJ2Z, last accessed 19 July 2020.

6We note, however, that a development team may use a similar approach internally within a
product line or service that may not necessarily reflect a PaaS model.

7A number of services provide the platform infrastructure to rapidly begin training from custom

https://data.stackexchange.com/stackoverflow/query/910188
https://data.stackexchange.com/stackoverflow/query/910188
https://bit.ly/2CQWJ2Z

8 Introduction

Table 1.3: Comparison of the machine learning spectrum.

Comparator BYOML ML F’work Cloud ML Auto-Cloud ML Cloud API

Hosting
Locally X X
Cloud X X X

Output
Custom Model X X X X
HTTP Response X

Autonomy
Low X
Medium X
High X X
Highest X

Time To Market
Medium X X
High X X
Highest X

Data
Self-Sourced X X X X
Pre-Trained X X

Intended User
Academics X X
Data Scientist X X X X
Developers X X

BYO
Machine
Learning

Fr iendly
Machine
Learning

Complete Verbosity
 Absolute Control
Data Self-Sourced

Academic Research

Fast to Implement
Easy to Write
Pre-Trained Models
Application Developers

R-CNN, Fast R-CNN,

Faster R-CNN, YOLO

TensorFlow, Keras, PyTorch,

Caffee2, MXNet, Gluon

Google MLEngine, Amazon

SageMaker, Azure ML Studio

Google Cloud AutoML

Google Cloud Vision, AWS

Rekognition, Azure Comp Vis

Figure 1.3: Examples within the ML spectrum of computer vision. Colour scales indicates
the benefits (green) and drawbacks (red) of each end of the spectrum.

1.2 Motivating Scenarios 9

Developer

Intelligent Web Service

REST API
Endpoints

Black Box
?Intelligence?

HTTP
Requests/Responses

Intelligence
Component

Figure 1.4: Overview of intelligent web services (IWSs).

send a given request to analyse a specific piece of data (e.g., an image, body of text,
audio file etc.) and receive some intelligence on the data (e.g., object detection, text
sentiment, transcription of audio) in addition to an associated confidence value that
represents the likelihood of that result. This is typically serialised as a JSON/XML
response object.

� Within this thesis, we scope our investigation to a well-established and
mature subset of intelligent web services or IWSs that provide computer
vision intelligence (e.g., [395, 398, 411, 412, 413, 419, 423, 432, 433, 435,
437, 485, 486]). We refer to these as computer vision services or CVSs.

1.2 Motivating Scenarios

The market for computer vision services (CVSs) is expanding (Table 1.1) with a
corresponding interest from developers (Figure 1.1). These services are inherently
probabilistic in their behaviour, in that the end-points always return a response with a
probability. This is unlike a typical API, which either returns a certain response (i.e.,
without a probability), or otherwise, an error. If developers do not fully understand
the nature of these services when integrating with them, there is an impact on the
quality of software they create.

To illustrate the context of use, we present two scenarios of varying risk: (i) a
fictional software developer, named Tom, who wishes to develop an inherently low-
risk photo labelling application for his friends and family; and (ii) a high-risk clinical

datasets, such as Google’s AutoML (https://cloud.google.com/automl/, last accessed 7 De-
cember 2018). Others provide pre-trained datasets ‘ready-for-use’ in production without the need to
train data.

https://cloud.google.com/automl/

10 Introduction

decision support system (CDSS) that uses cancer scans to recommend if surgeons
should send their patients to surgery. Both describe scenarioswhereAI-infused com-
ponents impacts end-users as a result of developer misunderstanding ofML nuances,
thus affecting external quality. Moreover, when developers lack a comprehension
of these services, this hinders their productivity and understanding/appreciation of
AI-based components.

1.2.1 Low Risk Motivating Scenario

Tom wants to develop a social media photo-sharing app on iOS and Android, Photo-
Sharer, that analyses photos taken on smartphones. Tom wants the app to categorise
photos into scenes (e.g., day vs. night, landscape vs. indoors), catalogue photos
of his friends and common objects (e.g., photos with his border collie dog, photos
taken on a beach on a sunny day with his partner), and generate brief descriptions
of each photo (e.g., my border collie at the beach on a sunny afternoon). His app
will shares this analysed photo intelligence with friends on a social-media platform,
where his friends can search and view the photos.

Instead of building a computer vision engine from scratch (taking too much
time and effort) Tom believes he can build the app using an IWS. As Tom comes
from a typical software engineering background, he has insufficient knowledge of
key computer vision terminology and no understanding of its underlying techniques.
However, inspired by easily accessible cloud APIs that offer computer vision anal-
ysis, he opts to use a popular CVS provider. Built upon his experience of using
other similar cloud services, he expects a static result, and consistency between
similar APIs. Analogously, when Tom invokes the iOS Swift substring method
"doggy".prefix(3), he expects it to be consistent with the Android Java equiv-
alent "doggy".substring(0, 2). Consistent, here, means two things: (i) that
calling substring or prefix on ‘dog’ will always return in the same way every
time he invokes the method; and (ii) that the result is always ‘dog’ regardless of the
programming language or string library used, given the deterministic nature of the
‘substring’ construct (i.e., results for substring are API-agnostic).

More concretely, in Table 1.4, we illustrate how three (anonymised) CVS
providers fail to provide similar consistency when compared to the substring ex-
ample. If Tom uploads a photo of a border collie8 to three different providers in
August 2018 and January 2019, he would find that each provider uses varying vo-
cabulary and, even for the same provider, the confidence values and labels can vary
within a matter of five months. The evolution of the confidence changes is not
explicitly documented by the providers (i.e., when the models change) nor do they
document what confidence means. Service providers use a tautological nature when
defining what the confidence values are (as presented in the API documentation).
Moreover, they provide no insight for Tom to understand why there was a change in
confidence, which we show in Table 1.5, unless he knows that the underlying models
change with them. Furthemore, they do not provide detailed understanding on how
to select a threshold cut-off for a confidence value. Therefore, he’s left with no un-

8The image used for these results is https://www.akc.org/dog-breeds/border-collie/.

https://www.akc.org/dog-breeds/border-collie/

1.2 Motivating Scenarios 11

Table 1.4: First six responses of image analysis for a Border Collie sent to three CVS
providers five months apart. The specificity (to 3 s.f.) and vocabulary of each label in the
response varies between all services, and—except for Provider B—changes over time. Any
confidence changes greater than 1 per cent are highlighted in red.

Label Provider A Provider B Provider C
Aug 2018 Jan 2019 Aug 2018 Jan 2019 Aug 2018 Jan 2019

Dog 0.990 0.986 0.999 0.999 0.992 0.970
Dog Like Mammal 0.960 0.962 - - - -
Dog Breed 0.940 0.943 - - - -
Border Collie 0.850 0.852 - - - -
Dog Breed Group 0.810 0.811 - - - -
Carnivoran 0.810 0.680 - - - -
Black - - 0.992 0.992 - -
Indoor - - 0.965 0.965 - -
Standing - - 0.792 0.792 - -
Mammal - - 0.929 0.929 0.992 0.970
Animal - - 0.932 0.932 0.992 0.970
Canine - - - - 0.992 0.970
Collie - - - - 0.992 0.970
Pet - - - - 0.992 0.970

derstanding on how best to tune for image classification for his application domain.
The deterministic problem of a substring compared to the non-deterministic nature
of the IWS is, therefore, non-trivial.

To make an assessment of these APIs, he tries his best to read through the
documentation of different CVS APIs, but he has no guiding framework to help him
choose the right one. A number of questions come to mind:

• What does ‘confidence’ mean?
• Which confidence is acceptable in this scenario?
• Are these APIs consistent in how they respond?
• Are the responses in these APIs static and deterministic?
• Would a combination of multiple CVS APIs improve the response?
• How does he know when there is a defect in the response?
• How does he know what labels the API knows, and what labels it doesn’t?
• How does it describe his photos and detect the faces?
• Does he understand that the API uses a machine learnt model? Does he know
what a ML model is?

• Does he know when models update? What is the release cycle?

Although Tom generally anticipates these CVSs to not be perfect, he has no
prior benchmark to guide him on what to expect. The imperfections appear to be
low-risk, but may become socially awkward when in use; for instance, if Tom’s
friends have low self-esteem and use the app, they may be sensitive to the app not
identifying them or mislabelling them. Privacy issues come into play especially
if certain friends have access to certain photos that they are (supposedly) in; e.g.,

12 Introduction

Table 1.5: Tautological definitions of ‘confidence’ found in the API documentation of three
common CVS providers.

API Provider Definition(s) of Confidence

Provider A “Score is the confidence score, which ranges from 0 (no confidence) to 1
(very high confidence).” [421]

“Deprecated. Use score instead. The accuracy of the entity detection in
an image. For example, for an image in which the ‘Eiffel Tower’ entity is
detected, this field represents the confidence that there is a tower in the
query image. Range [0, 1].” [422]

“The overall score of the result. Range [0, 1]” [422]

Provider B “Confidence score, between 0 and 1... if there insufficient confidence in
the ability to produce a caption, the tags maybe [sic] the only information
available to the caller.” [438]

“The level of confidence the service has in the caption.” [436]

Provider C “The response shows that the operation detected five labels (that is, bea-
con, building, lighthouse, rock, and sea). Each label has an associated
level of confidence. For example, the detection algorithm is 98.4629%
confident that the image contains a building.” [396]

“[ProviderC] also provide[s] a percentage score for howmuch confidence
[Provider C] has in the accuracy of each detected label.” [397]

photos from a holiday with Tom and his partner, however if the API identifies Tom’s
partner as a work colleague, Tom’s partner’s privacy is at risk.

Therefore, the level of risk and the determination of what constitutes an ‘error’ is
dependent on the situation. In the following example, an error caused by the service
may be more dangerous.

1.2.2 High Risk Motivating Scenario

Recent studies in the oncology domain have used deep-learning convolutional neural
networks (CNNs) to detect region of interests (ROIs) in image scans of tissue (e.g.,
[33, 150, 223]), flagging these regions for doctors to review. Trials of such algorithms
have been able to accurately detect cancer at higher rates than humans, and thus
incorporating such capabilities into a CDSS is closer within reach. Studies have
suggested these systems may erode a practitioner’s independent decision-making
[75, 178] due to over-reliance; therefore the risks in developing CDSSs powered by
IWSs become paramount.

As an example implementation of such a CDSS, we present a fictional system
named CancerAssist. A team of busy pathologists utilise CancerAssist to review
patient lymph node scans and discuss/recommend, on consensus, if the patient
requires an operation. When the teammakes a consensus, the lead pathologist enters

1.3 Research Motivation 13

the verdict into CancerAssist—running passively in the background—to ensure there
is no oversight in the team’s discussions. When a conflict exists between the team’s
verdict and CancerAssist’s verdict, the system produces the scan with ROIs it thinks
the team should review. Where the team overrides the output of CancerAssist, this
reinforces CancerAssist’s internal model as a human-in-the-loop learning process.

Powering CancerAssist is Google AI’s Lymph Node Assistant (LYNA) [223],
a CNN based on the Inception-v3 model [206, 348]. To provide intelligence to
CancerAssist, the development team decide to host LYNA as an IWS using a cloud-
based PaaS solution. Thus, CancerAssist provides API endpoints integrated with
patient data and medical history, which produces the verdict. In the case of a positive
verdict, CancerAssist highlights the relevant ROIs found are with their respective
bounding boxes and their respective cancer detection accuracies.

The developers of CancerAssist has no interaction with the data science team
who maintain the IWS hosting LYNA. As a result, they are unaware when updates to
themodel occur, nor do they knowwhat training data they provide to test their system.
The default assumptions are that the training data used to power the intelligence is
near-perfect for universal situations; i.e., the algorithm chosen is the correct one
for every assessable ontology tests in the given use case of CancerAssist. Thus,
unlike deterministic systems—where the developer can manually test and validate
the outcomes of the APIs—this is impossible for non-deterministic systems such
as CancerAssist and its underlying IWS. The ramifications of not being able to test
such a system and putting it out into production may prove fatal to patients.

Certain questions in the production of CancerAssist and its use of an IWS may
come into mind:

• When is the model updated and how do the IWS team communicate these
updates?

• What benchmark test set of data ensures that the changed model doesn’t affect
other results?

• Are assumptions made by the IWS team who train the model correct?

Thus, to improve communication between developers and IWS providers, devel-
opers require enhanced documentation, additional metadata, and guidance tooling.

1.3 Research Motivation

Evermore applications are considering IWSs as demonstrated by ubiquitous exam-
ples: aiding the vision-impaired [95, 300], accounting [231], data analytics [176],
and student education [102]. Our motivating examples illustrate impact on de-
velopers when CVSs encapsulate assumptions and are poorly documented. Such
components are accessible through APIs consisting of ‘black box’ intelligence (Fig-
ure 1.4).9 ML models are inherently probabilistic and stochastic, contributing to

9The ‘black box’ refers to a system that transforms input (or stimulus) to outputs (or response)
without any understanding of the internal architecture by which this transformation occurs. This arises
from a theory in the electronic sciences and adapted to wider applications since the 1950s–60s [17, 65]
to describe “systems whose internal mechanisms are not fully open to inspection” [17].

14 Introduction

four critical issues for developers that motivate this research work: (i) communica-
tion of outputs (as probabilities), (ii) evolution of datasets, (iii) selecting appropriate
decision boundaries, and (iv) the clarity of documentation that address items i–iii.
We detail these four issues in the following subsections.

Ultimately, these four issues present major threats to software reliability if left
unresolved. Given that such substantiative software engineering principles on re-
liability, versioning and quality are under-investigated within the context of IWSs,
we aim to explore guidance from the software engineering literature to investigate
what aspects in the development lifecyle could aide in mitigating these issues when
developing using components that abstract ML, such as IWSs.

1.3.1 Outputs are Probabilities

There is little room for certainty in these results as the insight is purely statisti-
cal and associational [282] against its training dataset. The interface between
AI-components and traditional software components is non-trivial when de-
velopers do not appreciate ML’s nuances, or use the anchors of libraries and
components that have a more traditional behaviour [189, 248, 359, 364]. How-
ever, CVSs return the probability that a particular object exists in an input images’
pixels via confidence values. As an example, consider simple arithmetic represen-
tations: 2 + 2 = 4. The deterministic mindset suggests that the result will always
be 4. However, the non-deterministic (data-driven) mindset suggests that results
are probable: target output (exactly 4) and the output inferred (a likelihood of 4)
matches as a probable percentage (or as an error where it does not match).10 Instead
of an exact output, there is a probabilistic result: 2 + 2 may equal 4 to a confidence
of =. Thus, for a more certain (though not fully certain) distribution of overall con-
fidence returned from the service, a developer must treat the problem stochastically
by testing this case hundreds if not thousands of times to find a richer interpretation
of the inference made and ensure reliability in its outcome.

1.3.2 Evolution of Datasets

Traditional software engineering principles advocate for software systems to be
versioned upon substantial change. Unfortunately, CVS endpoints are not ver-
sioned [89]. In the context of computer vision, new labels may be introduced or
dropped, confidence values may differ, entire ontologoies or specific training pa-
rameters may change, but we hypothesise that is not effectively communicated to
developers. Broadly speaking, this can be attributed to a dichotomy of release cy-
cles from the data science and software engineering communities: the data science
iterations and work by which new models are trained and released runs at a faster
cycle than the maintenance cycle of traditional software engineering. Thus we see
cloud vendors integrating model changes without the need to update the API version
unless substantial code or schema changes are also introduced—the nuance changes

10Blake et al. [44] produces a multi-layer perceptron neural network performing arithmetic repre-
sentation.

1.3 Research Motivation 15

in the internal model does not warrant a shift in the API itself, and therefore the
version shift in a new model does not always propagate to a version shift in the API
endpoint. As demonstrated in Table 1.4, whatever input is uploaded at one time
may not necessarily be the same when uploaded at a later time. This again contrasts
the rule-driven mindset, where 2 + 2 always equals 4. Therefore, in addition to the
certainty of a result in a single instance, the certainty of a result inmultiple instances
may differ with time, which again impacts on the developers notion of reliable soft-
ware. Currently, it is impossible to invoke requests specific to a particular model that
was trained at a particular date in time, and therefore developers need to consider
how evolutionary changes of the services may impact their solutions in production.
Again, whether there is any noticeable behavioural changes from these changes is
dependent on the context of the problem domain—unless developers benchmark
these changes against their own domain-specific dataset and frequently check their
selected service against such a dataset, there is no way of knowing if substantive
errors have been introduced.

1.3.3 Selecting Appropriate Decision Boundaries

As the only response from these computer vision classifiers are a label and confidence
value, the decision boundaries needs to always be appropriately considered by
client code for each use case and each model selected. The external quality of
such software needs to consider reliability in the case of thresholding confidence
values—that is whether the inference has an appropriate level of confidence to justify
a predicted (and reliable) result to end-users. Selecting this confidence threshold
is non-trivial; a ML course from Google suggests that “it is tempting to assume
that [a] classification threshold should always be 0.5, but thresholds are problem-
dependent, and are therefore values that you must tune.” [145]. Approaches to
turning these values are considered for data scientists, but are not yet well-understood
for application developers with little appreciation of the nuances of ML.

1.3.4 Documentation of the Above Concerns

Similarly, developers should consider the internal quality of building AI-first soft-
ware. Reliable API usability and documentation advocate for the accuracy, consis-
tency and completeness of APIs and their documentation [287, 306] and providers
should consider mismatches between a developer’s conceptual knowledge of the
API and its implementation [200]. Unreliable APIs ultimately hinder developer
performance and thus reduces productivity, in addition to producing potentially
unreliable software where documentation is not well-understood (or clear to the
developer).

16 Introduction

1.4 Research Goals

This thesis aims to investigate and better understand the nature of cloud-based
computer vision services (CVSs)11 as a concrete exemplar of intelligent web services
(IWSs). We identify the maturity, viability and risks of CVSs through the anchoring
perspective of reliability that affects the internal and external quality of software.
We adopt the McCall [234] and Boehm [46] interpretations of reliability via the sub-
characteristics of a service’s consistency and robustness (or fault/error tolerance),
and the completeness12 of its documentation. (A detailed discussion is further
provided in Section 2.1.) This thesis explores and contributes towards four key
facets regarding reliability in CVS usage and the completeness of its associated
documentation. We formulate four primary research questions (RQs), based on
both empirical and non-empirical software engineering methodology [244], further
discussed in Chapter 3.

Firstly, we investigate adverse implications that arise when using CVSs that
affects consistency and robustness (Chapter 4). We show how CVSs have a non-
deterministic runtime behaviour and evolve with unintended and non-trivial con-
sequences to developers. We demonstrate that these services have inconsistent
behaviour despite offering the same functionality and pose evolution risk that ef-
fects robustness of consuming applications when responses change given the same
(consistent) inputs.

Formally, we structure the following RQs:

ä RQ1. What is the nature of cloud-based CVSs?

RQ1.1. What is their runtime behaviour?
RQ1.2. What is their evolution profile?

Secondly, we investigate the reliability of the documentation these services of-
fer through the lenses of its completeness. We collate prior knowledge of good
API documentation and assess the efficacy of such knowledge against practition-
ers (Chapter 8). We show that these service’s behaviour and evolution is not
reliably documented adequately against this knowledge. Formally, we develop the
following RQs:

ä RQ2. Are CVS APIs sufficiently documented?

RQ2.1. What API documentation artefacts compromise a ‘complete’
API document, according to both literature and practitioners?

RQ2.2. What additional information or attributes do application de-
velopers need in CVS API documentation to make it more
complete?

11As these services are proprietary, we are unable to conduct source code or model analysis, and
hence are not used in the investigation of this thesis.

12We treat the API documentation of a CVS as a first-class citizen.

1.5 Research Methodology 17

Thirdly, we investigate how software developers approach using these services
and directly assess developer pain-points resulting from the nature of CVSs and
their documentation (Chapter 5). We show that there is a statistically significant
difference in these complaints when contrasted against more established software
engineering domains (such as web or mobile development) as expressed as ques-
tions asked on Stack Overflow. We provide a number of exploratory avenues for
researchers, educators, software engineers and IWS providers to alleviate these com-
plaints based on this analysis. Further, using a data set consisting of 1,245 Stack
Overflow questions, we explore the emotional state of developers to understand
which aspects (i.e., pain-points) developers are most frustrated with (Chapter 6)
and the types of traps developers can fall into when substantial documentation is
not provided for specific pre-trained ML models (Chapter 7). We formulate the
following RQs:

ä RQ3. Are CVSs more misunderstood than conventional software en-
gineering domains?

RQ3.1. What types of issues do application developers facemost when
using CVSs, as expressed as questions on Stack Overflow?

RQ3.2. Which of these issues are application developers most frus-
trated with?

RQ3.3. Is the distribution CVS pain-points different to established
software engineering domains, such as mobile or web devel-
opment?

Lastly, we explore several strategies to help improve CVS reliability. We inves-
tigate whether merging the responses of multiple CVSs can improve their reliability
and propose a novel algorithm—based on the proportional representation method
used in electoral systems—to merge labels and associated confidence values from
three providers (Chapter 9). Secondly, we develop an integration architecture tac-
tic to guard against CVS evolution, and synthesise an integration workflow that
addresses the concerns raised by developers in addition to embedding ‘complete’
documentation artefacts into the workflow’s design (Chapters 10 and 11). Our final
RQ is:

ä RQ4. What strategies can developers employ to integrate their appli-
cations with CVSs while preserving robustness and reliability?

1.5 Research Methodology

This thesis employs a mixed-methods approach using the concurrent triangulation
strategy [58, 233]. The research presented consists of both empirical and non-
empirical research design. This section provides a high-level overview of the re-

18 Introduction

search methodology within this thesis. Further details are provided in Section 1.7
and Chapter 3.

Firstly, RQ1–RQ3 are all empirical, knowledge-based questions [111, 240] that
aim to provide the software engineering community with a greater understanding
of the phenomena surrounding CVSs from three perspectives: (i) the nature of
the services themselves; (ii) how developers perceive these services; and (iii) how
service providers can improve these services. We answer RQ1 using a longitudinal
experiment that assesses both the services’ responses and associated documentation
(complementing RQ2.2). We adopt qualitative and quantitative data collection;
specifically (i) structured observations to quantitatively analyse the results over time,
and (ii) documentary research methods to inspect service documentation. Secondly,
we perform systematic mapping study following the guidelines of Kitchenham and
Charters [196] and Petersen et al. [284] to better understand howAPI documentation
of these services can be improved (i.e., more complete), which targets RQ2. Based on
the findings from this study, we use a systematic taxonomydevelopmentmethodology
specifically targeted toward software engineering [362] that structures scattered
API documentation knowledge into a taxonomy. We then validate this taxonomy
against practitioners using survey research, using a survey instrument inspired by
Brooke’s well-established System Usability Scale [62] and contextualising it within
API documentation utility, which answers RQ3.3. To answer RQ2.2, we perform
an empirical application of the taxonomy to three CVSs, and therefore assess where
improvements can be made. Thirdly, we adopt field survey research using repository
mining of developer discussion forums (i.e., Stack Overflow) to answer RQ3, and
classify these using both manual and automated techniques.

The second aspect of our research design involves non-empirical research, which
explores a design-based question [244] to answer RQ4. As the answers to our
first three RQs establish a greater understanding of the nature behind CVSs from
various perspectives, the strategies we design in RQ4 aims at designingmore reliable
integration methods so that developers can better use these cloud-based services in
their applications.

1.6 Thesis Organisation

We organise the thesis into four parts. Part I (The Preface) includes introduc-
tory, background, and methodology chapters. This is a PhD by Publication, and
Part II (Publications) comprises of eight publications resulting from this work over
Chapters 4 to 11; publications are included verbatim except for terminology and for-
matting changes to better fit the suitability of a coherent thesis. Part III (The Post-
face) includes the conclusion and future works chapter, as well as a list of academic
studies and online artefacts referenced throughout the thesis. Part IV (Appendices)
includes all supplementary material, including mandatory authorship statements
and ethics approval. Details of each chapter following this introductory chapter are
provided in the following section.

1.6 Thesis Organisation 19

1.6.1 Part I: Preface

1.6.1.1 Chapter 2: Background

This chapter provides an overview of prior studies broadly around the development,
usage, and nature of IWSs. We use three perspectives to describe prior work; that
of of software quality (particularly, reliability), probabilistic and non-deterministic
systems, and explanation and communication theory.

1.6.1.2 Chapter 3: Research Methodology

This chapter provides a summative review of research methods and philosophical
stances relevant to software engineering. We illustrate that the methods used within
our publications are sound via an analysis of the methodologies used in seminal
works referenced in this thesis.

1.6.2 Part II: Publications

1.6.2.1 Chapter 4: Exploring the nature of CVSs

This chapter was presented at the 2019 International Conference on Software
Maintenance and Evolution (ICSME) [89]. We describe an 11-month longitudi-
nal experiment assessing the behavioural (run-time) issues of three popular CVSs:
Google Cloud Vision [423], Amazon Rekognition [398] and Azure Computer Vi-
sion [437]. By using three different data sets—two of which we curate as additional
contributions—we demonstrate how the services are inconsistent amongst each other
and within themselves. This study answers RQ1: Despite presenting conceptually-
similar functionality, each service behaves and produces slightly varied (inconsistent)
results and demonstrates non-deterministic runtime behaviour. We discuss poten-
tial evolution risks to consumers of such services as the services provide non-static
outputs for the same inputs, thereby having significant impact to the robustness of
consuming applications. Further details in the study include a brief assessment into
the lack of sufficient detail of these concerns in their documentation.

1.6.2.2 Chapter 5: Understanding developer struggles when using CVSs

This chapter was presented at the 2020 International Conference on Software
Engineering (ICSE) [92]. We conduct a mining study of 1,425 Stack Overflow
questions that provide indications of the types frustrations that developers face when
integrating CVSs into their applications. To gather what their pain-points are, we
use two classification taxonomies that also utilise Stack Overflow to understand
generalised and documentation-specific pain-points in mature software engineering
domains. This study answers RQ3 in detail and provides a validation to our motiva-
tion of RQ2: we validate that the completeness of current CVS API documentation
is a main concern for developers and there is insufficient explanation into the errors
and limitations of the service. We find that the documentation does not adequately
cover all aspects of the technical domain. In terms of integrating with the service,

20 Introduction

developers struggle most with simple errors and ways in which to use the APIs; this
is in stark contrast to mature software domains. Our interpretation is that developers
fail to understand the IWS lifecycle and the ‘whole’ system that wraps such services.
We also interpret that developers have a shallower understanding of the core issues
within CVSs (likely due to the nuances of ML as suggested in a discussion in the
paper), which warrants an avenue for future work in software engineering education.

1.6.2.3 Chapter 6: Ranking CVS pain-points by frustration

This chapter has been published as a technical report pre-print on arXiv and an
extended version is in review for submission to the 2021 International Workshop
on Emotion Awareness in Software Engineering (SEmotion) [87]. In this work,
we use our dataset consisting of the 1,425 Stack Overflow questions from [92] to
interpret the breakdown of emotions developers express per classification of pain-
points conducted in Chapter 5. We find that the distribution of various emotions
differ per question type, and developers are most frustrated when the expectations
of a CVS does not match the reality of what these services actually provide, shaping
our answers for RQ3.2 and thus RQ3.

1.6.2.4 Chapter 7: Lessons in applying pre-trained models to Stack Overflow

This chapter is in review for the 2021 International Conference on Advanced
Information Systems Engineering (CAiSE) [146]. This work presents a deeper
investigation into the classification model used within Chapter 6 to better interpret
the automation effort we conducted, thereby highlighting valuable lessons we learnt
from performing this exercise. Specifically, we find that the classification model
we used in this exercise presented substantial data imbalance, which presented
unexpected results (namely, a high level of Stack Overflow questions that showed
the emotion, ‘love’). We identify how novel documentation tooling such as model
cards [247] or datasheets [135] could have identified risks to our study earlier, and
make suggestions needed into future documentation efforts. This work presents
complementary results to RQ2 to help propose which documentation elements ML
models (and thus IWSs) should provide before diving ‘straight in’.

1.6.2.5 Chapter 8: Investigating improvements to CVS API documentation

This chapter was accepted as a paper at the 2019 International Symposium on
Empirical Software Engineering and Measurement (ESEM) [92]. The extended
version of this chapter will be published in an upcoming issue of the IEEE Trans-
actions on Software Engineering (TSE) [93], currently available as a preprint. To
understand where to improve CVS documentation, we first need to investigate what
makes a good API document. This short paper initially answered one aspect of
RQ2.1: the research effort in academic literature to study various API documenta-
tion artefacts. By conducting an systematic mapping study resulting in 21 primary
studies, we systematically develop a taxonomy that combines documentation arte-
facts studied in scattered work into a structured framework of 5 dimensions and 34

1.6
ThesisO

rganisation
21

Table 1.6: List of publications resulting from this thesis, separated by phenomena exploration (above) and solution design (below).

Ref. Venue Acronym Rank13 Published14 Chapter RQs

[89] 35th International Conference on Software Mainte-
nance and Evolution

ICSME A Sep 2019 Chapter 4 RQ1

[88] 13th International Symposium on Empirical Soft-
ware Engineering and Measurement

ESEM A Sep 2019 Excluded15 RQ2.1

[92] 42nd International Conference on Software Engi-
neering

ICSE A* Jun 2020 Chapter 5 RQ3

[87] 6th International Workshop on Emotion Awareness
in Software Engineering16

SEmotion A* In Review Chapter 6 RQ3.2

[146] 33rd International Conference on Advanced Infor-
mation Systems Engineering

CAiSE A In Review Chapter 7 RQ3.2

[93] IEEE Transactions on Software Engineering TSE Q1 Dec 2020 Chapter 8 RQ2
[267] 13th International Conference on Web Engineering ICWE B Apr 2019 Chapter 9 RQ4
[91] 28th Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Soft-
ware Engineering

FSE A* Nov 2020 Chapter 10 RQ4

[90] 28th Joint European Software Engineering Confer-
ence and Symposium on the Foundations of Soft-
ware Engineering

FSE(d)17 A* Nov 2020 Chapter 11 RQ4

13Measured as at Jan 2020 using CORE Conference (http://www.core.edu.au/conference-portal) and Scimago Rankings (https://scimagojr.com/).
14Date of publication, if applicable.
15The extended version of this conference proceeding is provided in [93], Chapter 8.
16An ICSE 2021 workshop.
17We abbreviate this with an added ‘d’ (for the demonstrations track) to distinguish this paper from our full FSE 2020 paper.

http://www.core.edu.au/conference-portal
https://scimagojr.com/

22 Introduction

weighted categorisations. We then extend this work by triangulating the taxonomy
with opinions from developers using a survey to assess the efficacy of these artefacts
(thereby answering the second aspect of RQ2.1). From this, we assess how well
CVS providers document their APIs via a heuristic validation of the taxonomy, using
the three services from the ICSME publication to make recommendations where
documentation should be more complete, thereby answering RQ2.2 (and thus RQ2).

1.6.2.6 Chapter 9: Merging responses of multiple CVSs

This chapter was presented at the 2019 International Conference on Web Engi-
neering (ICWE) [267]. Early exploration of CVSs showed that multiple services
use vastly different ontologies for the same input. As an initial strategy to improve
the reliability of these services, we explored if merging multiple responses using
WordNet [246] and a novel label merging algorithm based on the proportional rep-
resentation approach used in political voting could make any improvements. While
this approach resulted in a modest improvement to reliability, it did not consider to
the evolution issues or developer pain-points we later identified.

1.6.2.7 Chapter 10: Developing a CVS integration architecture

This chapter was presented at the 2020 Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ES-
EC/FSE) [91]. Based on the findings, we propose a set of new service error codes
for describing the empirically observed error conditions of IWS based on our find-
ings in Chapter 4. To achieve this, we propose a proxy server intermediary that
lies between a client application and a IWS; the proxy server tactic is designed
to return these error codes when substantial evolution occurs against a benchmark
dataset that represents the application domain context. A technical evaluation of our
implementation of this architecture identifies 1,054 cases of substantial evolution in
confidence values and 2,461 cases of evolution in the response label sets when 331
images were sent to a CVS. This study forms a key contribution to answer RQ4 and
improve robustness of integrating conventional software components with IWSs.

1.6.2.8 Chapter 11: Developing a confidence thresholding tool

This chapter is an example implementation of the threshold tuner component dis-
cussed in Chapter 10, and was published under the tool demonstrations track of the
2020 Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE) [90]. When integrating with
a CVS, developers need to select an appropriate confidence threshold suited to their
use case and determine whether a decision should be made. An issue, however, is
that these CVSs are not calibrated to the specific problem-domain datasets and it is
difficult for software developers to determine an appropriate confidence threshold
on their problem domain. This tool presents a workflow and supporting tool for
application developers to select decision thresholds suited to their domain that—
unlike existing tooling—is designed to be used in pre-development, pre-release and

1.7 Research Contributions 23

production. This tooling forms part of a solution to RQ4 for developers to maintain
robustness and reliability in their systems.

1.6.3 Part III: Postface

In Chapter 12, we review the contributions made in this thesis and the relevance
and significance to identifying and resolving key issues when application developers
integrate with CVSs. We evaluate these outcomes with reference to the research
goals, and discuss threats to validity of the work. Lastly, we discuss the various
avenues of research arising from this work. References from literature and a list of
online artefacts are provided after this concluding chapter.

1.6.4 Part IV: Appendices

Chapter A thru Chapter E are appendices. Chapter A provides supplementary figures
to the studies performed in this thesis. The source code for the reference architecture
described in Chapter 10 is reproduced in Chapter B. The supplementary materials
publishedwithChapter 8 are reproduced inChapter C,which also describes the list of
primary sources arising in the systematic mapping study we conducted. We provide
mandatory coauthor declaration forms describing the contribution breakdown for
each publication within Chapter D. Chapter E contains copies of the ethics clearance
for various experiments within this thesis.

1.7 Research Contributions

The outcomes of answering the four primary research questions elaborated in Sec-
tion 1.4 shapes three primary contributions this thesis offers to software engineering
knowledge:

• An improved understanding in the landscape of CVSs, with respect to their
runtime behaviour and evolutionary profiles.

• A novel service integration architecture that helps developers with integrat-
ing their applications with CVSs.

• A key list of attributes that should be documented, to assist CVS providers
to better document their services.

In this section, we detail how each publication forms a coherent body of work
and how each publication relates to the primary contributions made.

After our exploratory analysis on the nature of CVSs (Chapter 4), we proposed
two sets of recommendations targeted towards two stakeholders: (i) the service
consumers (i.e., application developers), and (ii) the service providers. Our sub-
sequent publications arose as a two-fold investigation to develop two strategies in
which developers and providers can, respectively, (i) better integrate these intelli-
gent components into their applications, and (ii) how these services can be better
documented. Table 1.6 provides a tabulated form of the publications and research

24 Introduction

questions addressed within this thesis; for ease of reference, we refer to the publica-
tions in within this section in their abbreviated form as listed in Table 1.6. We also
provide abbreviations for easier reference in this section. A high-level overview of
the cohesiveness of our publications is provided in Figure 1.5.

Contr ibution 1
Landscape Analysis of

Computer Vision Services

Contr ibution 2
Service Integration

Architecture

Contr ibution 3
Attributes to
Document

P
ha

se
 1

P
he

no
nm

en
a

E
xp

lo
ra

tio
n

P
ha

se
 2

So
lu

tio
n

D
es

ig
n

ICSME

ICSE

SEmotion

ESEM

TSEFSE

FSE(d)
ICWE

CAiSE

Figure 1.5: Activity diagram of the coherency of our publications, how our research was
conducted, and relevant connections between publications. Our two-phase structure initial
phenomena exploration and a proposed solutions to issues identified from the exploration.
We map the contributions within each publication to the three primary contributions of the
thesis. Acronyms of each publication are provided in Table 1.6.

1.7.1 Contribution 1: Landscape Analysis & Preliminary Solutions

The first two bodies of work in this paper are the ICSME and ICWE papers. These
two works investigated a landscape analysis CVSs from two perspectives: firstly, we
conducted a longitudinal study to better understand the attributes associated with
these services (ICSME)—particularly their evolution and behavioural profiles, and
their potential impacts to software reliability—and tackled a preliminary solution
facade to ‘merge’ responses of the services together (ICWE).

The ICSME paper confirmed our hypotheses that the services have a non-
deterministic behavioural profile, and that the evolution occurring within the ML
models powering these services are not sufficiently communicated to software en-
gineers. This therefore led to follow up investigation into how developers perceive
these services, and thereby determine if they are frustrated due to this lack of com-
munication.

Our ICWE paper explored one aspect identified from the ICSME paper that we
noticed: that different services use different vocabularies to describe semantically
similar objects but in different ways (e.g., ‘border collie’ vs. ‘collie’), despite of-
fering functionally similar capabilities. We attempted to merge the response labels
from these services using a proportional representation approach, and upon com-

1.7 Research Contributions 25

parison with more naive merge approaches, we improved label-merge performance
by an F-measure of 0.015. However, while this was an interesting outcome for a
preliminary solution design, investigation from our following work suggested that
standardising ontologies between service providers becomes challenging and nor-
malising the entire ontological hierarchy of response labels would need to fall under
the responsibility of a certain body (that does not exist). Further, we did not find suf-
ficient evidence that developers would frequently switch between service providers.
Therefore, we opted for a shielded relay architecture in our later design work.

1.7.2 Contribution 2: Improving Documentation Attributes

As mentioned, our ICSME paper found that evolutionary and non-deterministic
behavioural profile of are not adequately documented in pre-trained ML model API
documentation, and further developers find this frustrating (Chapter 6) and potential
issues can arise as a result (Chapter 7). A recommendation concluding from this
work was that service providers should improve their documentation, however there
lacked a strategy by which they could do this, and our hypotheses that developers
were actually frustrated by this lack of communication was yet to be tested. This led
to two follow-up further investigations as presented in our ICSE and ESEM papers.

One aspect of our ICSE paper was to confirm whether developers are actually
frustrated with the service’s limited API documentation. By mining Stack Overflow
posts with reference to documentation issues, we adopted a 2019 documentation-
related taxonomy by Aghajani et al. [3] to classify posts, and found that 47.87%
of posts classified fell under the ‘completeness’ dimension of Aghajani et al.’s
taxonomy. This interpretation, therefore, warranted the recommendation proposed
in the ICSME paper to improve service documentation.

However, though improvements to more complete documentation was justified
from the ICSE paper, we needed to explore exactly what makes a ‘complete’ API
document. By conducting a systematic mapping study resulting in 4,501 results, we
curated 21 primary studies that outline the facets of API documentation knowledge.
From these studies, we distilled a documentation framework describing a priori-
tised order of the documentation assets API’s should document that is described
in our ESEM short paper. After receiving community feedback, we extended this
short paper with a follow-up experiment submitted to TSE. By conducting a sur-
vey with developers, we assessed our API documentation taxonomy’s efficacy with
practitioner opinions, thereby producing a weighted taxonomy against both literature
and developer sources. Lastly, we triangulated both weightings against a heuristic
evaluation against common CVS providers’ documentation. This allowed us to de-
duce which specific areas in existing CVS providers’ API documentation needed
improvement, which was a primary contribution from our TSE article.

1.7.3 Contribution 3: Service Integration Architecture

Two recommendations from our ICSME study encouraged developers to test their
applications with a representative ontology for their problem domain and to incorpo-
rate a specialised testing and monitoring techniques into their workflow. Strategies

26 Introduction

on how to achieve this were explored in later studies. Following a similar approach
to our solution of improved API documentation, we validated the substantiveness of
our recommendations using our mining study of Stack Overflow (our ICSE paper)
to help inform us of generalised issues developers face whilst integrating CVSs into
their applications. To achieve this, we used a Stack Overflow post classification tax-
onomy proposed by Beyer et al. [40] into seven categories, where 28.9% and 20.37%
of posts asked issues regarding how to use the CVS API and conceptual issues be-
hind CVSs, respectively. Developers presented an insufficient understanding of the
non-deterministic runtime behaviour, functional capability, and limitations of these
services and are not aware of key computer vision terminology. When contrasted
to more conventional domains such as mobile-app development, the spread of these
issues vary substantially.

We proposed two technical solutions in our two FSE papers to help alleviate
this issue. Firstly, our FSE demonstrations paper—FSE(d) for short—provides a
workflow for developers to better select an appropriate confidence threshold, and
thus decision boundary, calibrated for their particular use case. In our ESEC/FSE
paper, we provide a reference architecture for developers to guard against the non-
deterministic issues that may ‘leak’ into their applications. This architecture tactic
proposes a client-server intermediary proxy server, similar to the style proposed in
our ICWE paper. However, unlike the ICWE paper that uses proportional repre-
sentation approach to modify multiple sources, our FSE paper proposes a guarded
relay, whereby a single service is used, and the proxy server maintains a lifecycle to
monitor evolution issues identified in ICSME and should be benchmarked against
the developer’s dataset (i.e., against the particular application domain) as suggested
in FSE(d). For robust component composition, this architecture tactic handles four
key requirements: (i) it clearly defines erroneous conditions that occur when evo-
lution occurs in CVSs; (ii) it notifies of behavioural changes in the service; (iii) it
monitors the service for change and substantial impact this may have to the client
application; and (iv) is flexible enough to be implemented and adaptable to any client
application or specific intelligent service to facilitate reuse. Both FSE papers serve
as two primary contributions to RQ4.

1.8 Chapter Summary

Abstracting software components behind APIs helps to ensure that developers can
easily adopt complex mechanics in their software. In the case for deep-learning, ML
models are no exception, and their necessary complexities have also been abstracted
behind APIs. This decreases the effort and barrier-to-entry needed for software
developers to integrate AI-components into their applications. Cloud vendors have
begun to provide these capabilities on their platforms, as offered through intelligent
web services, or IWSs for short. This chapter has introduced foundational concepts
behind IWSs, and uses a specific subset of these services (computer vision services,
or CVSs) as a concrete domain to explore various issues surrounding their use in
software engineering (Section 1.1). To assist in describing this context, we gave
two illustrative scenarios to help motivate our work (both as low- and high-risk

1.8 Chapter Summary 27

scenarios) in Section 1.2. Furthermore, Section 1.3 discussed important motivat-
ing factors surrounding an IWS’s probabilistic outputs, evolution of its datasets,
decision boundary selection, and relevant documentation issues. We provided an
overview of the primary research goals of this thesis (Section 1.4) to explore CVSs,
the methodology used to achieve those goals (Section 1.5), and discussed how each
chapter forms a coherent body of work to answer these goals and provide contri-
butions to software engineering knowledge (Sections 1.6 and 1.7). The following
chapter explores further background about these types of services, namely issues
regarding their integration with conventional software components and impacts this
has to software quality.

CHAPTER2

Background

In Chapter 1, we defined attributes of a common set of AI-based cloud services that
we label intelligent web services (IWSs). Specifically, we scope the primary body of
this study’s work on a mature subset of IWSs providing computer vision—computer
vision services (CVSs)—such as Google Cloud Vision [423], AWS Rekognition
[398], Azure Computer Vision [437], and Watson Visual Recognition [433]. We
claim developers have not yet internalised the nuances of working with components
that have a probabilistic behaviour (2 + 2 always equals 4) whereas an IWS’s ‘intel-
ligence’ component (a black box) returns probabilistic results (2 + 2 might equal 4
with a confidence of 95%). Thus, there is a mindset mismatch between probabilistic
results (from the API provider) and results interpreted with certainty (from the API
consumer).

What effect does this anchor mismatch have on the developer’s approach towards
building probabilistic software? What can we learn from common software engi-
neering practices (e.g., [290, 337]) that apply to resolve this mismatch and thereby
improve quality, such as verification & validation (V&V)? Chiefly, we consider this
question around three lenses of software engineering: creating an IWS, using an
IWS, and the nature of IWSs themselves.

Our chief concern lies with interaction and integration between IWS providers
and consumers, the nature of applications built using an IWS, and the impact this
has on software quality. We triangulate this around three pillars, which we diagram-
matically represent in Figure 2.1.

(1) The development of the IWS. We investigate the internal quality attributes
of creating an IWS from the IWS provider’s perspective. That is, we ask if
existing verification techniques are sufficient enough to ensure that the IWS
being developed actually satisfies the IWS consumer’s needs and if the internal
perspective of creating the system with a procedural mindset clashes with the
outside perspective (i.e., pillar 2).

(2) The usage of the IWS.We investigate the external quality attributes of using

29

30 Background

an IWS from the IWS consumer’s perspective. That is, we ask if existing
validation techniques are sufficient enough to ensure that the end-users can
actually use an IWS to build their software in the ways they expect the IWS to
work.

(3) The nature of an IWS. We investigate what standard software engineering
practices applywhen developing probabilistic systems. That is, we tackle what
best practices exist when developing systems that are inherently stochastic and
probabilistic, i.e., the ‘black box’ intelligence itself.

IWS ConsumerIWS Provider

Outside Perspective
External Quality: using the IWS.

Procedural
mindset

Black Box
Intelligence

 Inside Perspective
 Internal Quality: developing the IWS

IWS API Consumer App

Probabilistic
mindset

1 2

3
Figure 2.1: The three pillars by which we anchor the background: (1) developing an IWS
with a probabilistic mindset by the IWS provider; (2) the use of a IWS with a procedural
mindset by the IWS consumer; (3) the nature of a IWS itself.

Does a clash of procedural consumer mindsets who use a IWS and the proba-
bilistic provider mindsets who develop them exist? And what impact does this have
on the inside and outside perspective? Throughout this chapter, we will review these
three core pillars due to such mindset mismatch from the anchoring perspective of
software quality, particularly around verification & validation (V&V) and related
quality attributes, probabilistic and non-deterministic software, and the nature of
APIs.

2.1 Software Quality

“Quality... you know what it is, yet you don’t know what it is.”
Robert Pirsig, 1974 [288]

The philosophical viewpoint of ‘quality’ remains highly debated and there are mul-
tiple facets to perceive this complex concept [134]. Transcendentally, a viewpoint
like that of Pirsig’s above shows that quality is not tangible but still recognisable; it’s
hard to explicitly define but you know when it’s missing. The International Orga-
nization for Standardization provides a breakdown of seven universally-applicable
principles that defines quality for organisations, developers, customers and training
providers [173]. More pertinently, the 1986 ISO standard for quality was simply

2.1 Software Quality 31

“the totality of characteristics of an entity that bear on its ability to satisfy stated or
implied needs” [172].

Using this sentence, what characteristics exist for non-deterministic IWSs like
that of a CVS? How do we know when the system has satisfied its ‘stated or implied
needs’ when the system can only give us uncertain probabilities in its outputs? Such
answers can be derived from related definitions—such as ‘conformance to specifica-
tion or requirements’ [86, 140], ‘meeting or exceeding customer expectation’ [37],
or ‘fitness for use’ [186]—but these then still depend on the solution description or
requirements specification, and thus the same questions still apply.

Software quality is somewhat more concrete. Pressman [290] adapted the
manufacturing-oriented view of quality from [38] and phrased software quality
under three core pillars:

• effective software processes, where the infrastructure that supports the cre-
ation of quality software needs is effective, i.e., poor checks and balances,
poor change management and a lack of technical reviews (all that lie in the
process of building software, rather than the software itself) will inevitably
lead to a poor quality product and vice-versa;

• building useful software, where quality software has fully satisfied the end-
goals and requirements of all stakeholders in the software (be it explicit or
implicit requirements) in addition to delivering these requirements in reliable
and error-free ways; and lastly

• adding value to both the producer anduser, where quality software provides
a tangible value to the community or organisation using it to expedite a
business process (increasing profitability or availability of information) and
provides value to the software producers creating it whereby customer support,
maintenance effort, and bug fixes are all reduced in production.

In the context of a non-deterministic IWS, however, are any of the above actually
guaranteed? Given that the core of a system built using an IWS is fully dependent
on the probability that an outcome is true, what assurances must be put in place to
provide developers with the checks and balances needed to ensure that their software
is built with quality? For this answer, we re-explore the concept of verification &
validation (V&V).

2.1.1 Validation and Verification

To explain V&V, we analogously recount a tale given by Pham [286] on his works
on reliability. A high-school student sat a standardised test that was sent to 350,000
students [349]. A multiple-choice algebraic equation problem used a variable, 0,
and intended that students assume that the variable was non-negative. Without
making this assumption explicit, there were two correct answers to the multiple
choice answer. Up to 45,000 students had their scores retrospectively boosted by up
to 30 points for those who ‘incorrectly’ answered, however, outcomes of a student’s
higher education were, thereby, affected by this one oversight in quality assessment.
The examiners wrote a poor question due to poor process standards to check if

32 Background

their ‘correct’ answers were actually correct. The examiners “didn’t build the right
product” nor did they “build the product right” by writing a poor question and failing
to ensure quality standards, in the phrases Boehm [48] coined.

This story describes the issues with the cost of quality [47] and the importance
of V&V; just as the poorly written exam question had such a high toll on the 45,000
unlucky students, so does poorly written software in production. As summarised by
Pressman [290], data sourced from Cigital [80] in a large-scale application showed
that the difference in cost to fix a bug in development versus system testing is $6,159
per error. In safety-critical systems, such as self-driving cars or clinical decision
support system, this cost skyrockets due to the extreme discipline needed tominimise
error [352].

Formally, we refer to the IEEE Standard Glossary of Software Engineering
Terminology [169] to define V&V:

verification The process of evaluating a system or component to determine
whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.

validation The process of evaluating a system or component during or at the
end of the development process to determine whether it satisfies
specified requirements.

Thus, in the context of an IWS, we have two perspectives on V&V: that of the API
provider and consumer (Figure 2.2).

The verification process of API providers ‘leak’ out to the context of the de-
veloper’s project dependent on the IWS. Poor verification in the internal quality
of the IWS will entail poor process standards, such as poor definitions and termi-
nology used, support tooling, and description of documentation [337]. Though
it is commonplace for providers to have a ‘ship-first-fix-later’ mentality of ‘good-
enough’ software [365], the consequence of doing so leads to consumers absorb-
ing the cost. Thus API providers must ensure that their verification strategies
are rigorous enough for the consumers in the myriad contexts they wish to use
it in. Studies have considered V&V in the context of web services on the cloud
[21, 70, 71, 122, 158, 257, 259, 388], though little have recently considered how
adding ‘intelligence’ to these services affects existing proposed frameworks and
solutions. For a CVS, what might this entail? Which assurances are given to the
consumers, and how is that information communicated? To verify if the service is
working correctly, does that mean that we need to deploy the system first to get a
wider range of data, given the stochastic nature of the black box?

Likewise, the validation perspective comes from that of the consumer. While the
former perspective is of creation, this perspective comes from end-user (developer)
expectation. As described in Chapter 1, a developer calls the IWS component using
an API endpoint. Again, the mindset problem arises; does the developer know what
to expect in the output? What are their expectations for their specific context? In
the area of non-deterministic systems of probabilistic output, can the developer be
assured that what they enter in a testing phase outcome the same result when in
production?

2.1 Software Quality 33

IWS ConsumerIWS Provider

Internal Quality

External Quality

Validation:
Does this API conform to the
way I expect it to conform to?

Verification:
Are my processes rigourous enough for

consumers to work with my API?

Figure 2.2: The ‘leakage’ of internal quality into the API consumer’s product and external
quality imposing on the API provider.

Therefore, just as the test answers with were both correct and incorrect at the
same time, so is the same with IWSs returning a probabilistic result: no result is
certain. While V&V has been investigated in the area of mathematical and earth
sciences for numerical probabilistic models and natural systems [269, 315], from
the software engineering literature, little work has been achieved to look at the
surrounding area of probabilistic systems hidden behind API calls.

Now that a developer is using a probabilistic system behind a deterministic API
call, what does it mean in the context of V&V? Do current verification approaches
and tools suffice, and if not, how do we fix it? From a validation perspective of
ML and end-users, after a model is trained and an inference is given and if the
output data point is incorrect, how will end users report a defect in the system?
Compared to deterministic systems where such tooling as defect reporting forms are
filled out (i.e., given input data in a given situation and the output data was G), how
can we achieve similar outputs when the system is not non-deterministic? A key
problem with the probabilistic mindset is that once a model is ‘fixed’ by retraining
it, while one data-point may be fixed, others may now have been effected, thereby
not ensuring 100% validation. Thus, due to the unpredictable and blurry nature of
probabilistic systems, V&V must be re-thought out extensively.

2.1.2 Quality Attributes and Models

Similarly, quality models are used to capture internal and external quality attributes
via measurable metrics. Is a similar issue reflected from that of V&V due to non-
deterministic systems? As there is no ‘one’ definition of quality, there have been
differing perspectives with literature placing varying value on disparate attributes.

Quality attribute assessment models (like those shown in Figure 2.3) are an early
concept in software engineering, and systematically evaluating software quality ap-
pears as early as 1968 [314]. Rubey andHartwick’s 1968 study introduced the phrase
‘attributes’ as a “prose expression of the particular quality of desired software” (as
worded by Boehm et al. [46]) and ‘metrics’ as mathematical parameters on a scale

34
Background

(a)McCall’s quality software factors (1977) [234]. (b) Bohem’s software quality characteristics tree (1976) [46].

(c) Dromey’s quality-carrying properties and programming languages (1995) [108]. (d) ISO/IEC software product evaluation characteristics (1999) [174].

Figure 2.3: A brief overview of the development of software quality models since 1977.

2.1 Software Quality 35

of 0 to 100. Early attempts to categorise wider factors under a framework was
proposed by McCall, Richards, and Walters in the late 1970s [74, 234]. This model
described quality from the three perspectives of product revision (how can we keep
the system operational?), transition (how can we migrate the system as needed?),
and operation (how effective is the system at achieving its tasks?) (Figure 2.3a). The
model also introduced 11 attributes alongside numerous direct and indirect measures
to help quantify quality. This model was further developed by Boehm et al. [46] who
independently developed a similar model, starting with an initial set of 11 software
characteristics. It further defined candidate measurements of Fortran code to such
characteristics, taking shape in a tree-like structure as in Figure 2.3b. In the mid-
1990s, Dromey’s interpretation [108] defined a set of quality-carrying properties
with structural forms associated to specific programming languages and conventions
(Figure 2.3c). The model also supported quality defect identification and proposed
an improved auditing method to automate defect detection for code editors in inte-
grated development environments (IDEs). As the need for quality models became
prevalent, the International Organization for Standardization standardised software
quality under ISO/IEC-9126 [174] (the Software Product Evaluation Characteris-
tics, Figure 2.3d), which has since recently been revised to ISO/IEC-25010 with
the introduction of the Systems and software Quality Requirements and Evaluation
(SQuaRE) model [171], separating quality into Product Quality (consisting of eight
quality characteristics and 31 sub-characteristics) and Quality In Use (consisting of
five quality characteristics and 9 sub-characteristics). An extensive review on the
development of quality models in software engineering is given in [6].

Of all the models described, there is one quality attribute that relates most
with our narrative of IWS quality: reliability. Reliability is the primary quality
factor investigated within this thesis (see Section 1.4). Both McCall and Boehm’s
quality models have sub-characteristics of reliability relating to the primary research
questions that investigate the robustness, consistency and completeness1 of CVSs
and its associated documentation. Moreover, the definition of reliability is similar
among all quality models:

McCall et al. Extent to which a program can be expected to perform its in-
tended function with required precision [234].

Boehm et al. Code possesses the characteristic reliability to the extent that
it can be expected to perform its intended functions satisfacto-
rily [46].

Dromey Functionality implies reliability. The reliability of software is
therefore dependent on the same properties as functionality, that
is, the correctness properties of a program [108].

ISO/IEC-9126 The capability of the software product to maintain a specified
level of performancewhen used under specified conditions [174].

1In McCall’s model, completeness is a sub-characteristic of the ‘correctness’ quality factor;
however in Boehm’s model it is a sub-characteristic of reliability. For consistency in this thesis,
completeness is referred in the Boehm interpretation.

36 Background

These definitions strongly relate to the system’s solution description in that
reliability is the ability to maintain its functionality under given conditions. But what
defines reliability when the nature of an IWS in itself is inherently unpredictable
due to its probabilistic implementation? Can a non-deterministic system ever be
considered reliable when the output of the system is uncertain? How do developers
perceive these quality aspects of reliability in the context of such systems? A system
cannot be perceived as ‘reliable’ if the system cannot reproduce the same results due
to a probabilistic nature. Therefore, we believe the literature of quality models does
not suffice in the context of IWS reliability; a CVS can interpret an image of a dog
as a ‘Dog’ one day, but what if the next it interprets such image more specifically to
the breed, such as ‘Border Collie’? Does this now mean the system is unreliable?

Moreover, defining these systems in themselves is challenging when require-
ments specifications and solution descriptions are dependent on non-deterministic
and probabilistic algorithms. We discuss this further in Section 2.2.

2.1.3 Reliability in Computer Vision

Testing computer vision deep-learning reliability is an area explored typically
through the use of adversarial examples [347]. These input examples are where
images are slightly perturbed to maximise prediction error but are still interpretable
to humans. Refer to Figure 2.4.

GoogleCloudVision, for instance, fails to correctly classify adversarial examples
when noise is added to the original images [164]. Rosenfeld et al. [312] illustrated
that inserting synthetic foreign objects to input images (e.g., a cartoon elephant)
can alter classification output. Wang et al. [368] performed similar attacks on a
transfer-learning approach of facial recognition by modifying pixels of a celebrity’s
face to be recognised as a different celebrity, all while still retaining the same human-
interpretable original celebrity. Su et al. [342] used the ImageNet dataset [99] to
show that 41.22% of images drop in confidence when just a single pixel is changed
in the input image; and similarly, Eykholt et al. [115] recently showed similar results
that made a CNN interpret a stop road-sign (with mimicked graffiti) as a 45mph
speed limit sign.

Thus, the state-of-the-art computer vision techniques may not be reliable enough
for safety critical applications (such as self-driving cars) as they do not handle inten-
tional or unintentional adversarial attacks. Moreover, as such adversarial examples
exist in the physical world [115, 208], “the real world may be adversarial enough”
[285] to fool such software.

2.2 Probabilistic and Non-deterministic Systems

Probabilistic and non-deterministic systems are those by which, for the same given
input, different outcomes may result. The underlying models that power an IWS
are treated as though they are non-deterministic; Chapter 2 introduces IWSs as
essentially black-box behaviour that can change over time. As such, we adopt the
non-deterministic behaviour that they present.

2.2 Probabilistic and Non-deterministic Systems 37

(a) Adding 10% impulse noise to an im-
age of a teapot changes Google Cloud
Vision’s label from teapot (above) to bi-
ology (below) [164].

(b) One-pixel attacks applied to three
neural network (NN): AllConv, NiN and
VGG [342].

(c)Adversarial examples to trick face recognition from the source to target images
[368].

Figure 2.4: Sample adversarial examples in state-of-the-art computer vision studies.

38 Background

Figure 2.5: A deterministic system (left) always returns the same result in the same amount
of steps. A non-deterministic system does not guarantee the same outcome, even with the
same input data. Source: [119].

2.2.1 Interpreting the Uninterpretable

As the rise of applied AI increases, the need for engineering interpretability around
models becomes paramount, chiefly from an external quality perspective that the
reliability of the system can be inspected by end-users. Model interpretability has
been stressed since early machine learning research in the late 1980s and 1990s (such
as Quinlan [292] and Michie [245]), and although there has since been a significant
body of work in the area [19, 35, 53, 67, 98, 117, 128, 138, 184, 217, 221, 232, 280,
301, 313, 334, 363, 366], it is evident that ‘accuracy’ or model ‘confidence’ is still
used as a primary criterion for AI evaluation [167, 177, 336]. Much research into
neural network (NN) or support vector machine (SVM) development stresses that
‘good’ models are those with high accuracy. However, is accuracy enough to justify
a model’s quality?

To answer this, we revisit what it means for a model to be accurate. Accuracy
is an indicator for estimating how well a model’s algorithm will work with future
or unforeseen data. It is quantified in the AI testing stage, whereby the algorithm
is tested against cases known by humans to have ground truth but such cases are
unknown by the algorithm. In production, however, all cases are unknown by both
the algorithm and the humans behind it, and therefore a single value of quality is “not
reliable if the future dataset has a probability distribution significantly different from
past data” [124], a problem commonly referred to as the datashift problem [319].
Analogously, Freitas [124] provides the following description of the problem:

The military trained [a NN] to classify images of tanks into enemy
and friendly tanks. However, when the [NN] was deployed in the field
(corresponding to “future data”), it had a poor accuracy rate. Later,
users noted that all photos of friendly (enemy) tanks were taken on a
sunny (overcast) day. I.e., the [NN] learned to discriminate between
the colors of the sky in sunny vs. overcast days! If the [NN] had

2.2 Probabilistic and Non-deterministic Systems 39

output a comprehensible model (explaining that it was discriminating
between colors at the top of the images), such a trivial mistake would
immediately be noted. [124]

So, why must we interpret models? While the formal definition of what it means
to be interpretable is still somewhat disparate (though some suggestions have been
proposed [221]), what is known is (i) there exists a critical trade-off between accuracy
and interpretability [104, 123, 147, 183, 191, 390], and (ii) a single quantifiable value
cannot satisfy the subjective needs of end-users [124]. As ever-growing domains
ML become widespread,2, these applications engage end-users for real-world goals,
unlike the aims in early ML research where the aim was to get AI working in the
first place. In safety-critical systems where AI provide informativeness to humans
to make the final call (see [72, 168, 194]), there is often a mismatch between the
formal objectives of the model (e.g., to minimise error) and complex real-world
goals, where other considerations (such as the human factors and cognitive science
behind explanations3) are not realised: model optimisation is only worthwhile if they
“actually solve the original [human-centred] task of providing explanation” [258]
to end-users. Therefore, when human-decision makers must be interpretable
themselves [304], any AI they depend on must also be interpretable.

Recently, discussion behind such a notion to provide legal implications of in-
terpretability is topical. Doshi-Velez et al. [107] discuss when explanations are not
provided from a legal stance—for instance, those affected by algorithmic-based de-
cisions have a ‘right to explanation’ [229, 367] under the European Union’s GDPR.4
But, explanations are not the only way to ensure AI accountability: theoretical guar-
antees (mathematical proofs) or statistical evidence can also serve as guarantees
[107], however, in terms of explanations, what form they take and how they are
proven correct are still open questions [221].

2.2.2 Explanation and Communication

From a software engineering perspective, explanations and interpretability are, by
definition, inherently communication issues: what lacks here is a consistent interface
between the AI system and the person using it. The ability to encode ‘common
sense reasoning’ [235] into programs today has been achieved, but decoding that
information is what still remains problematic. At a high level, Shannon andWeaver’s
theory of communication [327] applies, just as others have donewith similar issues in
the software engineering realm [249, 379] (albeit to the domain of visual notations).
Humansmap theworld in higher-level concepts easily when compared toAI systems:
while we think of a tree first (not the photons of light or atoms that make up the
tree), an algorithm simply sees pixels, and not the concrete object [107] and the AI
interprets the tree inversely to humans. Therefore, the interpretation or explanation
is done inversely: humans do not explain the individual neurons fired to explain their

2In areas such as medicine [34, 67, 113, 178, 184, 212, 281, 303, 363, 385, 393] bioinformatics
[103, 125, 180, 190, 346], finance [19, 101, 168] and customer analytics [217, 366].

3Interpretations and explanations are often used interchangeably.
4https://www.eugdpr.org last accessed 13 August 2018.

https://www.eugdpr.org

40 Background

Tree: y
information

source

Pixels: x
message

AI
transmitter

Prediction:
 ?

signalencoding decoding

Explanation system
ex(x, ?)
receiver

User
desination

Channel
AI Pipeline

Explanation:
y

message

~

 y y ~

Figure 2.6: Theory of AI communication from information source, H, to intended user as
explanations, H̃.

predictions, and therefore the algorithmic transparent explanations of AI algorithms
(“which neurons were fired to make this AI think this tree is a tree?”) do not work
here.

Therefore, to the user (as mapped using Shannon and Weaver’s theory), an AI
pipeline (the communication channel) begins with a real-world concept, H, that acts
as an information source. This information source is fed in as amessage, G, (as pixels)
to an AI system (the transmitter). The transmitter encodes the pixels to a prediction,
Ĥ, the signal of the message. This signal is decoded by the receiver, an explanation
system, 4G (G, Ĥ), that tailors the prediction with the given input data to the intended
end user (the destination) as an explanation, H̃, another type of message. Therefore,
the user only sees the channel as an input/output pipeline of real-world objects, H,
and explanations, H̃, tailored to them, without needing to see the inner-mechanics of
a prediction Ĥ. We present this diagrammatically in Figure 2.6.

2.2.3 Mechanics of Model Interpretation

How dowe interpret models? Methods for developing interpretationmodels include:
decision trees [60, 84, 155, 226, 293], decision tables [20, 217] and decision sets
[210, 258]; input gradients, gradient vectors or sensitivity analysis [19, 214, 301,
313, 324]; exemplars [126, 195]; generalised additive models [72]; classification
(if-then) rules [56, 81, 272, 356, 382] and falling rule lists [334]; nearest neighbours
[232, 296, 325, 377, 391] and Naïve Bayes analysis [34, 76, 116, 127, 159, 202, 212,
393].

Cross-domain studies have assessed the interpretability of these techniques
against end-users, measuring response time, accuracy in model response and user
confidence [7, 125, 156, 168, 232, 318, 343, 366], although it is generally agreed
that decision rules and decision tables provide the most interpretation in non-linear
models such as SVMs or NNs [125, 232, 366]. For an extensive survey of the benefits
and fallbacks of these techniques, we refer to Freitas [124], Doshi-Velez et al. [107],
and Doshi-Velez and Kim [106].

2.3 Application Programming Interfaces 41

An important factor in model interpretation is to avoid over-reliance, and thus,
one mechanism of model interpretation is to reduce explanations altogether. For
example, Bussone et al. [67] showed that, in clinical decision support systems,
confidence values alone only results in a slight effect on trust and reliance of a
system. However, having overly detailed explanations may also cause over-reliance
on systems if explanations are detailed but not necessarily true [67]. Hence, a
mechanism of model interpretation for the purpose of ensuring trust and reliance is
to deliberately show fewer explanations or incorrect explanations, thereby avoiding
over-reliance. A balance between under-explained and overly-explained models is
required. This is to encourage intuition in users of a system; similarly, in Ribeiro et al.
[301], it was shown that accuracy alone is not always the best way to ascertain trust.
Thus, intuitive factors are also mechanisms that can be encoded into explainable
models.

2.3 Application Programming Interfaces

Application programming interfaces (APIs) are the interface between a developer
needs and the software components at their disposal [14] by abstracting the underly-
ing component behind a subroutine, protocol or specific tool. Therefore, it is natural
to assess internal quality (and external quality if the software is in itself a service to
be used by other developers—in this case an IWS) is therefore directly related to the
quality the API offers [201].

Good APIs are known to be intuitive and require less documentation browsing
[287], thereby increasing developer productivity. Conversely, poor APIs are those
that are hard to interpret, thereby reducing developer productivity and product qual-
ity. The consequences of this have shown a higher demand of technical support (as
measured in [160]) that, ultimately, causes the maintenance to be far more expensive,
a phenomenon widely known in software engineering economics (see Section 2.1.1).

While there are different types of APIs, such as software library/framework
APIs for building desktop software, operating system APIs for interacting with the
operating system, remote APIs for communication of varying technologies through
common protocols, we focus on web APIs for communication of resources over the
web (being the common architecture of cloud-based services). Being our primary
focus, further information on the development, usage and documentation of web
APIs is provided in the below subsection, with a background into API usability in
the subsection following.

2.3.1 Development, Documentation and Usage of Web APIs

The development of web APIs (commonly referred to as a web service) traces its
roots back to the early 1990s, where the Open Software Foundation’s distributed
computing environment (DCE) introduced a collection of services and tools for de-
veloping andmaintaining distributed systems using a client/server architecture [311].
This framework used the synchronous communication paradigm, remote procedure
calls (RPCs), that was first introduced by Nelson [260]. It allows procedures to be

42 Background

called in a remote address space, as if it were local. Its communication paradigm,
DCE/RPC [268], enables developers to write distributed software with underlying
network code abstracted away. To bridge remote DCE/RPCs over components of
different operating systems and languages, an interface definition language (IDL)
document served as the common service contract or service interface for software
components.

This important leap toward language-agnostic distributed programming paved
way for XML-RPC, enabling RPCs over HTTP (and thus the Web) encoded using
XML (instead of octet streams [268]). As new functionality was introduced, this
led to the development of the Simple Object Access Protocol (SOAP). This is a
backbone messaging connector for web service applications and a realisation of the
service-oriented architecture (SOA) [73] pattern. The SOA pattern prescribes that
services are offered by service providers and consumed by service consumers in
a platform- and language-agnostic manner, useful in large-scale enterprise systems
(e.g., banking, health). Key to the SOA pattern is that a service’s quality attributes
(see Section 2.1) can be specified and guaranteed using a service-level agreement
(SLA) whereby the consumer and provider agree upon a set level of service, which in
some cases are legally binding [31]. This agreement can be measured using quality
of service (QoS) parameters met by the service provider during the transportation
layer (e.g., response time, cost of leasing resources, reliability guarantees, system
availability and trust/security assurance [369, 375]). These attributes are included
within SOAP headers; thus, QoS aspects are independent from the transport layer
and instead exist at the application layer [279]. The IDL of SOAP is Web Services
Description Language (WSDL), providing a description of how the web service is
invoked, what parameters to expect, and what data structures are returned.

Month

R
el

at
iv

e
In

te
re

st
 (%

)

0

25

50

75

100

 Jan 2004 Jan 2006 Jan 2008 Jan 2010 Jan 2012 Jan 2014 Jan 2016 Jan 2018

Figure 2.7: Worldwide search interest for SOAP (blue) and REST (red) since 2004. Source:
Google Trends.

While it is rich in metadata and verbosity, discussions on whether this was a
benefit or drawback came about themid-2000s [279, 394]. Namely, it was questioned
whether the amount of data transfer happening was worth the verbosity, especially
in increasing use of mobile web clients, where data usage over cellular networks
was (at the time) scarce and costly. Developer usability for debugging the SOAP
‘envelopes’ (messages POSTed over HTTP to the service provider component) was

2.3 Application Programming Interfaces 43

difficult, both due to the nature of XML’s wordiness and difficulty to test (by sending
POST requests) in-browser. As a simple example, 25 lines (794 bytes) of HTTP
communication is transferred to request a customer’s name from a record using
SOAP (Listings 2.1 and 2.2).

Listing 2.1: A SOAP HTTP POST consumer request to retrieve customer record #43456
from a web service provider. Source: [23].

1 POST /customers HTTP/1.1
2 Host: www.example.org
3 Content-Type: application/soap+xml; charset=utf-8
4
5 <?xml version="1.0"?>
6 <soap:Envelope
7 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
8 <soap:Body>
9 <m:GetCustomer
10 xmlns:m="http://www.example.org/customers">
11 <m:CustomerId>43456</m:CustomerId>
12 </m:GetCustomer>
13 </soap:Body>
14 </soap:Envelope>

Listing 2.2: The SOAP HTTP service provider response for Listing 2.1. Source: [23].

1 HTTP/1.1 200 OK
2 Content-Type: application/soap+xml; charset=utf-8
3
4 <?xml version='1.0' ?>
5 <env:Envelope
6 xmlns:env="http://www.w3.org/2003/05/soap-envelope" >
7 <env:Body>
8 <m:GetCustomerResponse
9 xmlns:m="http://www.example.org/customers">
10 <m:Customer>Foobar Quux, inc</m:Customer>
11 </m:GetCustomerResponse>
12 </env:Body>
13 </env:Envelope>

SOAP uses the architectural principle that web services (or the applications they
provide) should remain outside the web, using HTTP only as a tunnelling protocol to
enable remote communication [279]. That is, the HTTP is considered as a transport
protocol solely. In 2000, Fielding [118] introduced REpresentational State Transfer
(REST), which instead approaches the web as a medium to publish data (i.e., HTTP
is part of the application layer instead). Hence, applications become amalgamated
into the web. Fielding bases REST on four key principles:

• URIs identify resources. Resources and services have a consistent global
address space that aides in their discovery via URIs [36].

44 Background

• HTTP verbs manipulate those resources. Resources are manipulated using
the four consistent CRUD verbs provided by HTTP, such as POST, GET, PUT,
and DELETE.

• Self-descriptive messages. Each request provides enough description and
context for the server to process that message.

• Resources are stateless. Every interaction with a resource is stateless.

Consider the equivalent example of Listings 2.1 and 2.2 but in a RESTful architecture
(Listings 2.3 and 2.4) and it is clear why this style has grown more popular with
developers (as we highlight in Figure 2.7). Developers have since embraced RESTful
API development, though the major drawback of RESTful services is its lack of a
uniform IDL to facilitate development (though it is possible to achieve this using
Web Application Description Language (WADL) [230]). Therefore, no RESTful
service uses a standardised response document or invocation syntax. While there
are proposals, such as WADL [149], RAML,5 API Blueprint,6 and the OpenAPI7
specification (initially based on Swagger8), there is still no consensus as there was
for SOAP and convergence of these IDLs is still underway.

Listing 2.3: An equivalent HTTP consumer request to that of Listing 2.1, but using REST.
Source: [23].

1 GET /customers/43456 HTTP/1.1
2 Host: www.example.org

Listing 2.4: The REST HTTP service provider response for Listing 2.3.

1 HTTP/1.1 200 OK
2 Content-Type: application/json; charset=utf-8
3
4 {"Customer": "Foobar Quux, inc"}

2.3.2 API Usability

If a developer doesn’t understand the overarching concepts of the context behind
the API they wish to use, then they cannot formulate what gaps in their knowledge
is missing. For example, a developer that knows nothing about ML techniques in
computer vision cannot effectively formulate queries to help bridge those gaps in
their understanding to figure out more about the CVS they wish to use.

Balancing the understanding of the information need (both conscious and un-
conscious), how to phrase that need, and how to query it in an information retrieval
system is concept long studied in the information sciences [354]. In API design,

5https://raml.org last accessed 25 January 2019.
6https://apiblueprint.org last accessed 25 January 2019.
7https://www.openapis.org last accessed 25 January 2019.
8https://swagger.io last accessed 25 January 2019.

https://raml.org
https://apiblueprint.org
https://www.openapis.org
https://swagger.io

2.3 Application Programming Interfaces 45

the most common form to convey knowledge to developers is through annotated
code examples and overviews to a platform’s architectural and design decisions
[57, 105, 255, 307] though these studies have not effectively communicated why
these artefacts are important. What makes the developer conceptually understand
these artefacts?

Robillard and Deline [307] conducted a multi-phase, mixed-method approach to
create knowledge grounded in the professional experience of 440 software engineers
at Microsoft of varying experience. This was to determine what makes APIs hard
to learn [306]. Their results demonstrate that ‘documentation-related obstacles’
are the biggest hurdle in learning new APIs. One of these implications are the
intent documentation of an API (i.e., what is the intent for using a particular API?).
Such documentation is required only where correct API usage is not self-evident,
where advanced uses of the API are documented (but not the intent), and where
performance aspects of the API impact the application developed using it. They
conclude that professional developers do not struggle with learning the mechanics
of the API, but in the understanding of how the API fits in upwards to its problem
domain and downward to its implementation:

In the upwards direction, the study found that developers need help
mapping desired scenarios in the problem domain to the content of the
API, and in understanding what scenarios or usage patterns the API
provider intends and does not intend to support. In the downwards
direction, developers want to understand how the API’s implementation
consumes resources, reports errors and has side effects. [307]

These results corroborate previous studies, where developers quote that they feel
that existing learning content currently focuses on “how to do things, not necessarily
why” [266]. This thereby reiterates the conceptual understanding of an API as
paramount.

A later study by Ko and Riche [200] assessed the importance of a programmer’s
conceptual understanding of the background behind the task before implementing the
task itself, a notion that we findmost relevant for users of IWSAPIs. While the study
did not focus on developing web APIs (rather implementing a Bluetooth application
using platform-agnostic terminology), the study demonstrated how developers show
little confidence in their own metacognitive judgements to understand and assess the
feasibility of the intent of the API and understand the vocabulary and concepts within
the domain (i.e., wireless connectivity). This indecision over what search results
were relevant in their searches ultimately hindered their progress implementing
the functionality, again decreasing productivity. To improve API usability and
productivity, Ko and Riche’s suggest introducing the background of the API and its
relevant concepts via glossaries linked to tutorials to each of the major concepts,
and then relate it back to implementation of particular functionalities. Thus, an
analysis of the conceptual understanding of IWS APIs by a range of developers
(from beginner to professional) is critical to best understand any differences between
existing studies and those that are non-deterministic.

46 Background

2.4 Chapter Summary

This background chapter explored nuances of interacting and integrating with proba-
bilistic components, namely IWSs, and the impacts this may have to software quality.
Firstly, we explored both internal and external quality attributes of IWSs and how
leakage of internal quality may affect the external quality of client applications.
We discussed how V&V approaches can assist in improving quality assurance of
probabilistic components, and reviewed how various software quality attributes and
models emphasise reliability of systems and their associated documentation (namely,
through the sub-characteristics of robustness, consistency and completeness). We
applied this context to CVSs, giving examples where these cloud services may not
be reliable. Lastly, we applied the narrative of reliability to the overarching nature
of computer vision itself, exploring how the underlying ML models behind a CVS
can potentially fail, and discussed how any such ML model should be explainable
to ensure its reliability and trustworthiness. Lastly, we discussed the impact an API
can have when it is of poor quality, again impacting the internal quality of a system.
In the next chapter, we propose several research strategies in the search for further
insight into the developer’s approach toward existing IWS APIs.

CHAPTER3

Research Methodology

Investigating software engineering practices is often a complex task as it is imper-
ative to understand the social and cognitive processes around software engineers
and not just the tools and processes used [111]. This chapter explores our research
methodology by exploring five key elements of empirical software engineering re-
search: firstly, (i) we provide an extended focus to the study by reviewing our research
questions (see Section 1.4) anchored under the context of an existing research ques-
tion classification taxonomy, (ii) characterise our research goals through an explicit
philosophical stance, (iii) explain how the stance selected impacts our selection of
research methods and data collection techniques (by dissecting our choice of meth-
ods used to reach these research goals), (iv) discuss a set of criteria for assessing the
validity of our study design and the findings of our research, and lastly (v) discuss
the practical considerations of our chosen methods.

The foundations for developing this research methodology has been expanded
from that proposed by Easterbrook et al. [111], Wohlin and Aurum [383], Wohlin
et al. [384] and Shaw [329].

3.1 Research Questions Revisited

To discuss our research strategy, we revisit our four primary and seven secondary
research questions (RQs) through the classification technique discussed by Easter-
brook et al. [111], a technique originally proposed in the field of psychology by
Meltzoff and Cooper [240] but adapted to software engineering. A summary of the
classifications made to our research questions are presented in Table 3.1.

Our research study involves a mix of nine empirical1 RQs, that focus on observ-
ing and analysing existing phenomena, and two non-empirical RQs, that focuses
on designing better approaches to solve software engineering tasks [244]. The use

1Or ‘knowledge’ questions, that extend our knowledge on certain phenomena.

47

48 Research Methodology

of empirical and non-empirical RQs are best combined in long-term software en-
gineering research studies where the phenomena are under-explored, as is the case
with CVSs. Further, these approaches help propose solutions to issues found in the
phenomena studied [380]. We discuss both our empirical and non-empirical RQs in
Sections 3.1.1 and 3.1.2 below.

Table 3.1: A summary of our research questions classified using the strategies presented by
Easterbrook et al. [111] and Meltzoff and Cooper [240].

RQ Primary/
Secondary

RQ Classification

RQ1 What is the nature of cloud-based CVSs? Primary Empirical
↩→ Exploratory
↩→ Description/Classification

RQ1.1 What is their runtime behaviour? Secondary Empirical
↩→ Exploratory
↩→ Description/Classification

RQ1.2 What is their evolution profile? Secondary Empirical
↩→ Exploratory
↩→ Description/Classification

RQ2 Are CVS APIs sufficiently documented? Primary Empirical
↩→ Exploratory
↩→ Existence

RQ2.1 What API documentation artefacts compromise a
‘complete’ API document, according to both liter-
ature and practitioners?

Secondary Empirical
↩→ Exploratory
↩→ Composition

RQ2.2 What additional information or attributes do appli-
cation developers need in CVS API documentation
to make it more complete?

Secondary Non-Empirical
↩→ Design

RQ3 Are CVSs more misunderstood than conventional
software engineering domains?

Primary Empirical
↩→ Exploratory
↩→ Descriptive-Comparative

RQ3.1 What types of issues do application developers face
most when using CVSs, as expressed as questions
on Stack Overflow?

Secondary Empirical
↩→ Base-Rate
↩→ Frequency/Distribution

RQ3.2 Which of these issues are application developers
most frustrated with?

Secondary Empirical
↩→ Exploratory
↩→ Description/Classification

RQ3.3 Is the distribution CVS pain-points different to es-
tablished software engineering domains, such as
mobile or web development?

Secondary Empirical
↩→ Base-Rate
↩→ Frequency/Distribution

RQ4 What strategies can developers employ to integrate
their applications with CVSs while preserving ro-
bustness and reliability?

Primary Non-Empirical
↩→ Design

3.1.1 Empirical Research Questions

In total, we pose nine empirically-based RQs to help us understand the way develop-
ers currently interact and work with web services that provide computer vision. The
majority of these questions are exploratory questions that contribute to a landscape
analysis of these services (RQ1), how well they are documented (RQ2), and the
issues developers currently face when using them (RQ3). Our other exploratory

3.2 Philosophical Stances 49

questions complement the answers to these questions. For instance, to understand
if CVSs are sufficiently documented (an existence exploratory question posed in
RQ2), we need to understand the components of a ‘sufficient’ or ‘complete’ API
document (via RQ2.1) as proposed in both the literature (i.e., where the majority of
research effort has been placed by the research community) and by software devel-
opers (i.e., by directly asking which aspects are needed to developers themselves).
While RQ2.1 does not directly relate to CVSs, answering it gives us an understanding
of the components of complete API documentation, and therefore, we assess what
documentation artefacts are missing and where improvements can be made (RQ2.2).
These are descriptive and classification questions that help describe and classify
what practices are in use for existing CVS API documentation and the nature behind
these services. Answering these exploratory questions assists in refining preciser
terms of the phenomena, ways in which we find evidence for them, and ensuring the
data found is valid.

By answering these questions, we have a clearer understanding of the phenom-
ena; we then follow up by posing two additional base-rate questions. These questions
help provide a basis to confirm that the phenomena is normally occurring or whether
it is unusual behaviour. This is done by investigating the patterns of phenomena’s
occurrence against other phenomena. RQ3.1 is a frequency and distribution question
to help us understand what types of issues developers often encounter most, given
a lack of formal extended training in AI. This provides insight into the developer’s
mindset and regular thought patterns toward these APIs. We then contrast this distri-
bution using our second base-rate question (RQ3.3) that assesses the distributional
differences between these intelligent components and non-intelligent (conventional)
software components. Combined, these two questions help us answer how the issues
raised against CVSs are different to normal Stack Overflow issues—our descriptive-
comparative question posed in RQ3—and, similarly, we classify and rank which
issues developers find most frustrating (RQ3.2).

3.1.2 Non-Empirical Research Questions

RQ2.2 andRQ4 are both non-empirically-based design questions; they are concerned
with ways in which we can improve a CVS by investigating what additional attributes
are needed in both the documentation of CVSs and in the integration architectures
developers can employ to improve reliability and robustness in their applications.
They are not classified as empirical questions as we investigate what will be and
not what is. By understanding the process by which developers desire additional
attributes of documentation and integration strategies, we help shape improvements
to the existing designs of using CVSs.

3.2 Philosophical Stances

Philosophical stances guide the researcher’s action by fortifying what constitutes
‘valid truth’ against a fundamental set of core beliefs [305]. In software engineer-
ing, four dominant philosophical stances are commonly characterised [85, 283]:

50 Research Methodology

positivism (or post-positivism), constructivism (or interpretivism), pragmatism, and
critical theory (or advocacy/participatory). To construct such a ‘validity of truth’,
we will review these four philosophical stances in this section, and state the stance
that we explicitly adopt and our reasoning for this.

Positivism

Positivists claim truth to be all observable facts, reduced piece-by-piece to smaller
components which is incrementally verifiable to form truth. We do not base our
work on the positivistic stance as the theories governing verifiable hypothesis must
be precise from the start of the research. Moreover, due to its reductionist approach,
it is difficult to isolate these hypotheses and study them in isolation from context.
As our hypotheses are not context-agnostic, we steer clear from this stance.

Constructivism

Constructivists see knowledge embedded within the human context; truth is the
interpretive observation by understanding the differences in human thought between
meaning and action [199]. That is, the interpretation of the theory is just as important
to the empirical observation itself. We partially adopt a constructivist stance as we
attempt tomodel the developer’s mindset, being an approach that is rich in qualitative
data on human activity.

Pragmistism

Pragmatism is a less dogmatic approach that encourages the incomplete and approx-
imate nature of knowledge. It is dependent on the methods in which the knowledge
was extracted. The utility of consensually agreed knowledge is the key outcome,
and is therefore relative to those who seek utility in the knowledge—what is useful
for one person is not so for the other. While we value the utility of knowledge, it is
difficult to obtain consensus especially on an ill-researched topic such as ours, and
therefore we do not adopt this stance.

Critical Theory

This study chiefly adopts the philosophy of critical theory [11]. A key outcome
of the study is to shift the developer’s restrictive deterministic mindset and shed
light on developing a new framework actively with the developer community. This
framework seeks to improve the process of using suchAPIs. In software engineering,
critical theory is used to “actively [seek] to challenge existing perceptions about
software practice” [111], and this study utilises such an approach to shift the mindset
of CVS consumers and providers alike on how the documentation and metadata
should not be written with the ‘traditional’ deterministic mindset at heart. Thus, our
key philosophical approach is critical theory to seek out what-can-be using partial
constructivism to model the current what-is.

3.3 Research Methods 51

3.3 Research Methods

Research methods are “a set of organising principles around which empirical data is
collection and analysed” [111]. Creswell [85] suggests that strong research design
is reflected when the weaknesses of multiple methods complement each other. Us-
ing a mixed-methods approach is therefore commonplace in software engineering
research, typically due to the human-oriented nature investigating how software en-
gineers work both individually (where methods from psychology may be employed)
and together (where methods from sociology may be employed).

Therefore, studies in software engineering are typically performed as field studies
where researchers and developers (or the artefacts they produce) are analysed either
directly or indirectly [333]. The mixed-methods approach combines five classes
of field study methods (or empirical strategies/studies) most relevant in empirical
software engineering research [111, 188, 384]: controlled experiments, case studies,
survey research, ethnographies, and action research. We chiefly adopt a mixed-
methods approach to our work using the concurrent triangulation mixed-methods
strategy [233] as it best compensates forweaknesses that exist in all researchmethods,
and employs the best strengths of others [85].

3.3.1 Review of Relevant Research Methods

Below we review some of the research methods most relevant to our research ques-
tions as refined in Section 3.1 as presented by Easterbrook et al. [111].

3.3.1.1 Controlled Experiments

A controlled experiment is an investigation of a clear, testable hypothesis that guides
the researcher to decide and precisely measure how at least one independent variable
can be manipulated and effect at least one other dependent variable. They determine
if the two variables are related and if a cause-effect relationship exists between
them. The combination of independent variable values is a treatment. It is common
to recruit human subjects to perform a task and measure the effect of a randomly
assigned treatment on the subjects. However, it is not always possible to achieve
full randomisation in real-life software engineering contexts, in which case a quasi-
experimentmaybe employedwhere subjects are not randomly assigned to treatments.

While we have well-defined RQs, refining them into precise, measurable vari-
ables is challenging due to the qualitative nature they present. A well-defined
population is also critical and must be easily accessible; the varied range of beginner
to expert software engineers with varied understanding of AI concepts is required to
perform controlled experiments, and thus recruitmentmay prove challenging. Lastly,
the controlled experiment is essentially reductionist by affecting a small amount of
variables of interest and controlling all others. This approach is too clinical for the
practical outcomes by which our research goals aim for, and is therefore closely tied
to the positivist stance.

52 Research Methodology

3.3.1.2 Case Studies

Case studies investigate phenomena in their real-life context and are well-suited
when the boundary between context and phenomena is unknown [389]. They of-
fer understanding of how and why certain phenomena occur, thereby investigating
cause-effect relationships. They can be used to test existing theories (confirmatory
case studies) by refuting theories in real-world contexts instead of under labora-
tory conditions or to generate new hypotheses and build theories during the initial
investigation of some phenomena (exploratory case studies).

Case studies are well-suited where the context of a situation plays a role in
the phenomenon being studied. They also lend themselves to purposive sampling
rather than random sampling, and thus it is possible to selectively choose cases that
benefit our research goals and (using our critical theorist stance) select cases that
will actively benefit our participant software engineering audience most, to draw
attention to situations regarded as problematic in CVS.

3.3.1.3 Survey Research

Survey research identifies characteristics of a broad population of individuals. This
may be performed through direct data collection techniques, such as interviews
and questionnaires, or independent techniques, such as data logging. Defining that
well-defined population is critical, and selecting a representative sample from it to
generalise the data gathered usually assists in answering base-rate questions.

By identifying a representative sample of the population, from beginner to ex-
perienced developers with varying understanding of CVS APIs, we can use survey
research to assist in answering our exploratory and base-rate RQs (see Section 3.1.1).
This research determines the qualitative aspects of how individual developers per-
ceive and work with the existing APIs, either by directly asking them, or by mining
third-party discussion websites such as Stack Overflow (SO). Similarly, we can use
this strategy to assess the developer’s understanding on what makes API documenta-
tion sufficient, assessing whether specific factors suggested from literature are useful
according to developers. However, with direct survey research techniques, low re-
sponse rates may prove challenging, especially if no inducements can be offered for
participation.

3.3.1.4 Ethnographies

Ethnographies investigate the understanding of social interaction within commu-
nities through field observation [309]. Resulting ethnographies help understand
how software engineering technical communities build practices, communication
strategies and perform technical work collaboratively.

Ethnographies require the researcher to be highly trained in observational and
qualitative data analysis, especially if the form of ethnography is participant observa-
tion, whereby the researcher is embedded of the technical community for observation.
This may require the longevity of the study to be far greater than a couple of weeks,
and the researcher must remain part of the project for its duration to develop enough

3.4 Research Design 53

local theories about how the community functions. While it assists in revealing
subtle but important aspects of work practices within software teams, this study
does not focus on the study of teams, and is therefore not a research method relevant
to this project.

3.3.1.5 Action Research

Action researchers simultaneously solve real-world problems while studying the
experience of solving the problem [96] by actively seeking to intervene in the
situation for the purpose of improving it. A precondition is to engage with a
problem owner who is willing to collaborate in identifying and solving the problem
faced. The problem must be authentic (a problem worth solving) and must have
new knowledge outcomes for those involved. It is also characterised as an iterative
approach to problem solving, where the knowledge gained from solving the problem
has a desirable solution that empowers the problem owner and researcher.

This research is most associated to our adopted philosophical stance of critical
theory. As this project is being conducted under the Applied Artificial Intelligence
Institute (A2I2) collaboratively with engaged industry clients, we have identified a
need for solving an authentic problem that industry faces. The desired outcome
of this project is to facilitate wider change in the usage and development of CVSs;
thus, engaging action research as a potential method throughout the mixed-methods
approach is used in this research.

3.3.2 Review of Data Collection Techniques for Field Studies

Singer et al. developed a taxonomy [215, 333] showcasing data collection techniques
in field studies that are used in conjunction with a variety of methods based on
the level of interaction between researcher and software engineer, if any. This
taxonomy is reproduced in Table 3.2, where techniques used in this research study
are asterisked.

3.4 Research Design

This section discusses an overview of the design of methods used within the experi-
ments conducted under this thesis. For each experiment, we describe an overview of
the experiment grounded known methods and techniques (Sections 3.3.1 and 3.3.2)
and our approach to analysing the data, as well as relating the selecting method back
to a specific RQ. Details of each experiment presented in this thesis, the coherency
between them, and where they can be found are given in Sections 1.6 and 1.7.

3.4.1 Landscape Analysis of Computer Vision Services

To understand the behavioural and evolutionary profiles of CVSs (i.e., RQ1), we
employed a longitudinal study based around a dynamic system analysis combined
with system instrumentation [333]. Specifically, we used structured observations of
three services using the same dataset to understand how the responses from these

54
Research

M
ethodology

Table 3.2: Questions asked by software engineering researchers (column 2) that can be answered by field study techniques. (Adapted from [333].) Methods
used within this research study are asterisked.

Technique Used by researchers when their goal is to understand... Volume of data Also used by software engineers for...

Direct Techniques

Brainstorming and focus
groups

Ideas and general background about the process and prod-
uct, general opinions (also useful to enhance participant
rapport)

Small Requirements gathering, project planning

Interviews and questionnaires* General information (including opinions) about process,
product, personal knowledge etc.

Small to large Requirements and evaluation

Conceptual modelling* Mental models of product or process. Small Requirements
Work diaries Time spent or frequency of certain tasks (rough approxi-

mation, over days or weeks)
Medium Time sheets

Think-aloud sessions Mental models, goals, rationale and patterns of activities Medium to large UI evaluation
Shadowing and observation Time spent or frequency of tasks (intermittent over rela-

tively short periods), patterns of activities, some goals and
rationale

Small Advanced approaches to use case or task anal-
ysis

Participant observation (join-
ing the team)

Deep understanding, goals and rationale for actions, time
spent or frequency over a long period

Medium to large –

Indirect Techniques

Instrumenting systems* Software usage over a long period, for many participants Large Software usage analysis
Fly on the wall Time spent intermittently in one location, patterns of ac-

tivities (particularly collaboration)
Medium –

Independent Techniques

Analysis of work databases Long-term patterns relating to software evolution, faults
etc.

Large Metrics gathering

Analysis of tool use logs Details of tool usage Large –
Documentation analysis* Design and documentation practices, general understand-

ing
Medium Reverse engineering

Static and dynamic analysis* Design and programming practices, general understanding Large Program comprehension, metrics, testing, etc.

3.4 Research Design 55

services change with time. Lastly, we utilised documentation analysis to assess
the overall ‘picture’ of how these services are documented. Further details on this
experiment is given in Chapter 4, Section 4.4.

3.4.2 Utility of API Documentation in Computer Vision Services

To assess whether these services are sufficiently documented (i.e., RQ2), we con-
ducted a systematic mapping study [196, 284] of the various academic sources
detailing API documentation knowledge.2 We then consolidated this information
into a structured taxonomy following a systematic taxonomy development method
specific to software engineering studies [362].

We followed the triangulation approach proposed by Mayring [233] to validate
the taxonomy by use of a personal opinion survey. Kitchenham and Pfleeger [197]
provide an introduction on methods used to conduct personal opinion surveys which
we adopted as an initial reference in (i) shaping our survey objectives around our
research goals, (ii) designing a cross-sectional survey, (iii) developing and evaluating
our survey instrument, (iv) evaluating our instruments, (v) obtaining the data, and
(vi) analysing the data. We were inspired by Brooke’s System Usability Scale (SUS)
[62] technique, thereby basing our research questions against a known surveying
instrument.

As is good practice in developing questionnaire instruments to evaluate their re-
liability and validity [222], we evaluated our instrument design by asking colleagues
to critique it via pilot studies within A2I2. This assisted in identifying any problems
with the questionnaire itself and with any issues that may have occured with the
response rate and follow-up procedures.

Findings from the pilot study helped inform us for a widely distributed question-
naire using snow-balling sampling. Human ethics approval by the Deakin University
Faculty of Science, Engineering and Built Environment Human Ethics Advisory
Group (SEBE HEAG)3 was attained to externally conduct this survey research (see
Chapter E). Further details on these methods are detailed within Chapter 8, Sec-
tion 8.3.

3.4.3 Developer Issues concerning Computer Vision Services

Developers typically congregate in search of discourses on issues they face in online
forums, such as Stack Overflow (SO) and Quora, as well as writing their experiences
in personal blogs such as Medium. The simplest of these platforms is SO (a sub-
community of the Stack Exchange family of targeted communities) that specifically
targets developer issues on using a simple Q&A interface, where developers can
discuss technical aspects and general software development topics. Moreover, SO
is often acknowledged as the ‘go-to’ place for developers to find high-quality code
snippets that assist in their problems [344].

Thus, to begin understanding the issues developers face when using CVSs and
whether there is a substantial difference to conventional domains (i.e., RQ3), we

2Refer to Chapter 8 for a clear definition of these terms.
3Project identifiers STEC-11-2019-CUMMAUDO and STEC-39-2019-CUMMAUDO.

56 Research Methodology

used repository mining on SO to help answer RQ3. Specifically, we selected SO
due to its targeted community of developers4 and the availability of its publicly
available dataset released as ‘data dumps’ on the Stack Exchange Data Explorer5
and Google BigQuery.6 Studies conducted have also used SO to mine developer
discourse [8, 22, 28, 78, 220, 263, 273, 298, 310, 335, 350, 370]. Further details on
howwe approached the design for this study can be found inChapter 5, Section 5.4,
Chapter 6, Section 6.3, and Chapter 7, Section 7.3

3.4.4 Designing Improved Integration Strategies

Our improved integration strategies (i.e., RQ4) evolved organically over the duration
of this research through the use of industry case studies and action research. We
developed several iterative prototypes to the integration strategies and used a mix
of statistical and technical evaluations to analyse whether our improved integration
strategies can prove useful. Further details about these approaches are detailed in
Chapter 9, Section 9.5.1 and Chapter 10, Section 10.5 and Chapter 11, Sec-
tion 11.3.

3.5 Chapter Summary

This chapter has explored the research methodology and strategy that is adopted
throughout the various studies given within this thesis. We began by revisiting
the four primary research questions that were posited in our introductory chapter
under Section 1.4; as given in Section 3.1, we analysed these questions through the
lenses of an existing research question classification taxonomy applicable to software
engineering research. We identified which of these questions are grounded through
both empirical and non-empirical research, and discussed the underlying reasoning
behind the design of each research question. We provided insight into various
philosophical stances relevant to software engineering research under Section 3.2,
and explained our reasoning for adopting the critical theory worldview in this thesis.
Lastly, we reviewed a number of common software engineering research methods
in Sections 3.3 and 3.4 and those that we adopted in the design of the various
experiments described in Part II of this thesis.

4We also acknowledge that there are other targeted software engineering Stack Exchange
communities such as Stack Exchange Software Engineering (https://softwareengineering.
stackexchange.com), though (as of January 2019) this much smaller community consists of only
52,000 questions versus SO’s 17 million.

5https://data.stackexchange.com/stackoverflow last accessed 17 January 2017.
6https://console.cloud.google.com/marketplace/details/stack-exchange/

stack-overflow last accessed 17 January 2017.

https://softwareengineering.stackexchange.com
https://softwareengineering.stackexchange.com
https://data.stackexchange.com/stackoverflow
https://console.cloud.google.com/marketplace/details/stack-exchange/stack-overflow
https://console.cloud.google.com/marketplace/details/stack-exchange/stack-overflow

Part II

Publications

57

CHAPTER4

Identifying Evolution in Computer Vision Services†

Abstract Recent advances in artificial intelligence (AI) and machine learning (ML), such
as computer vision, are now available as intelligent web services (IWSs) and their acces-
sibility and simplicity is compelling. Multiple vendors now offer this technology as cloud
services and developers want to leverage these advances to provide value to end-users. How-
ever, there is no firm investigation into the maintenance and evolution risks arising from use
of these IWSs; in particular, their behavioural consistency and transparency of their function-
ality. We evaluated the responses of three different IWSs (specifically computer vision) over
11 months using 3 different data sets, verifying responses against the respective documenta-
tion and assessing evolution risk. We found that there are: (1) inconsistencies in how these
services behave; (2) evolution risk in the responses; and (3) a lack of clear communication
that documents these risks and inconsistencies. We propose a set of recommendations to
both developers and IWS providers to inform risk and assist maintainability.

4.1 Introduction

The availability of intelligent web services (IWSs) has made artificial intelligence
(AI) tooling accessible to software developers and promises a lower entry barrier
for their utilisation. Consider state-of-the-art computer vision analysers, which
require either manually training a deep-learning classifier, or selecting a pre-trained
model and deploying these into an appropriate infrastructure. Either are laborious
in time, and require non-trivial expertise along with a large data set when training
or customisation is needed. In contrast, IWSs providing computer vision (i.e.,
computer vision services or CVSs such as [398, 410, 411, 412, 419, 423, 431,

†This chapter is originally based on A. Cummaudo, R. Vasa, J. Grundy, M. Abdelrazek, and
A. Cain, “Losing Confidence in Quality: Unspoken Evolution of Computer Vision Services,” in
Proceedings of the 35th IEEE International Conference on Software Maintenance and Evolution.
Cleveland, OH, USA: IEEE, December 2019. DOI 10.1109/ICSME.2019.00051. ISBN 978-1-72-
813094-1 pp. 333–342. Terminology has been updated to fit this thesis.

59

https://doi.org/10.1109/ICSME.2019.00051

60 Identifying Evolution in Computer Vision Services

432, 433, 437, 451, 452, 485, 486]) abstract these complexities behind a web API
call. This removes the need to understand the complexities required of machine
learning (ML), and requires little more than the knowledge on how to use RESTful
endpoints. The ubiquity of these services is exemplified through their rapid uptake
in applications such as aiding the vision-impaired [95, 300].

While IWSs have seen quick adoption in industry, there has been little work
that has considered the software quality perspective of the risks and impacts posed
by using such services. In relation to this, there are three main challenges: (1)
incorporating stochastic algorithms into software that has traditionally been deter-
ministic; (2) the general lack of transparency associated with the ML models; and
(3) communicating to application developers.

ML typically involves use of statistical techniques that yield components with
a non-deterministic external behaviour; that is, for the same given input, different
outcomesmay result. However, developers, in general, are used to libraries and small
components behaving predictably, while systems that rely on ML techniques work
on confidence intervals1 and probabilities. For example, the developer’s mindset
suggests that an image of a border collie—if sent to three intelligent computer vision
services (CVSs)—would return the label ‘dog’ consistently with time regardless
of which service is used. However, one service may yield the specific dog breed,
‘border collie’, another service may yield a permutation of that breed, ‘collie’, and
another may yield broader results, such as ‘animal’; each with results of varying
confidence values.2 Furthermore, the third service may evolve with time, and
thus learn that the ‘animal’ is actually a ‘dog’ or even a ‘collie’. The outcomes
are thus behaviourally inconsistent between services providing conceptually similar
functionality. As a thought exercise, consider if the sub-string function were created
using ML techniques—it would perform its operation with a confidence where the
expected outcome and the AI inferred output match as a probability, rather than a
deterministic (constant) outcome. How would this affect the developers’ approach
to using such a function? Would they actively take into consideration the non-
deterministic nature of the result?

Myriad software quality models and software engineering practices advocate
maintainability and reliability as primary characteristics; stability, testability, fault
tolerance, changeability and maturity are all concerns for quality in software com-
ponents [163, 290, 337] and one must factor these in with consideration to soft-
ware evolution challenges [143, 144, 242, 243, 355]. However, the effect this
non-deterministic behaviour has on quality when masked behind an IWS is still
under-explored to date in software engineering literature, to our knowledge. Where
software depends on IWSs to achieve functionality, these quality characteristics may
not be achieved, and developers need to be wary of the unintended side effects and
inconsistency that exists when using non-deterministic components. A CVS may
encapsulate deep-learning strategies or stochastic methods to perform image analy-

1Varied terminology used here. Probability, confidence, accuracy and score may all be used
interchangeably.

2Indeed, we have observed this phenomenon using a picture of a border collie sent to various
CVSs.

4.2 Motivating Example 61

sis, but developers are more likely to approach IWSs with a mindset that anticipates
consistency. Although the documentation does hint at this non-deterministic be-
haviour (i.e., the descriptions of ‘confidence’ in various CVSs suggest the they are
not always confident, and thus not deterministic [396, 421, 438]), the integration
mechanisms offered by popular vendors do not seem to fully expose the nuances,
and developers are not yet familiar with the trade-offs.

Do popular CVSs, as they currently stand, offer consistent behaviour, and if not,
how is this conveyed to developers (if it is at all)? If CVSs are to be used in production
services, do they ensure quality under rigorous service quality assurance (SQA)
frameworks [163]? What evolution risk [143, 144, 242, 243] do they pose if these
services change? To our knowledge, few studies have been conducted to investigate
these claims. This paper assesses the consistency, evolution risk and consequent
maintenance issues that may arise when developers use IWSs. We introduce a
motivating example in Section 4.2, discussing related work and our methodology
in Sections 4.3 and 4.4. We present and interpret our findings in Section 4.5. We
argue with quantified evidence that these IWSs can only be considered with a mature
appreciation of risks, and we make a set of recommendations in Section 4.6.

4.2 Motivating Example

Consider Rosa, a software developer, who wants to develop a social media photo-
sharing mobile app that analyses her and her friends photos on Android and iOS.
Rosa wants the app to categorise photos into scenes (e.g., day vs. night, outdoors
vs. indoors), generate brief descriptions of each photo, and catalogue photos of her
friends as well as common objects (e.g., all photos with a dog, all photos on the
beach).

Rather than building a computer vision engine from scratch, Rosa thinks she
can achieve this using one of the popular CVSs (e.g., [398, 410, 411, 412, 419, 423,
431, 432, 433, 437, 451, 452, 485, 486]). However, Rosa comes from a typical
software engineering background with limited knowledge of the underlying deep-
learning techniques and implementations as currently used in computer vision. Not
unexpectedly, she internalises a mindset of how such services work and behave based
on her experience of using software libraries offered by various SDKs. This mindset
assumes that different cloud vendor image processing APIs more-or-less provide
similar functionality, with only minor variations. For example, cloud object storage
for Amazon S3 is both conceptually and behaviourally very similar to that of Google
Cloud Storage or Azure Storage. Rosa assumes the CVSs of these platforms will,
therefore, likely be very similar. Similarly, consider the string libraries Rosa will
use for the app. The conceptual and behavioural similarities are consistent; a string
library in Java (Android) is conceptually very similar to the string library she will
use in Swift (iOS), and likewise both behave similarly by providing the same results
for their respective sub-string functionality. However, unlike the cloud storage and
string libraries, different CVSs often present conceptually similar functionality
but are behaviourally verydifferent. IWSvendors also hide the depth of knowledge
needed to use these effectively—for instance, the training data set and ontologies

62 Identifying Evolution in Computer Vision Services

used to create these services are hidden in the documentation. Thus, Rosa isn’t even
exposed to this knowledge as she reads through the documentation of the providers
and, thus, Rosa makes the following assumptions:

• “I think the responses will be consistent amongst these CVSs.” When Rosa
uploads a photo of a dog, she would expect them all to respond with ‘dog’. If
Rosa decides to switch which service she is using, she expects the ontologies
to be compatible (all CVSs surely return dog for the same image) and therefore
she can expect to plug-in a different service should she feel like it making only
minor code modifications such as which endpoints she is relying on.

• “I think the responses will be constant with time.” When Rosa uploads the
photo of a dog for testing, she expects the response to be the same in 10 weeks
time once her app is in production. Hence, in 10 weeks, the same photo of the
dog should return the same label.

4.3 Related Work

If we were to view CVSs through the lenses of an SQA framework, robustness,
consistency, and maintainability often feature as quality attributes in myriad soft-
ware quality models (e.g., [174]). Software quality is determined from two key
dimensions: (1) in the evaluation of the end-product (external quality) and (2) the
assurances in the development processes (internal quality) [290]. We discuss both
perspectives of quality within the context of our work in this section.

4.3.1 External Quality

4.3.1.1 Robustness for safety-critical applications

A typical focus of recent work has been to investigate the robustness of deep-
learning within computer vision technique implementation, thereby informing the
effectiveness in the context of the end-product. The common method for this has
been via the use of adversarial examples [347], where input images are slightly
perturbed to maximise prediction error but are still interpretable to humans.

GoogleCloudVision, for instance, fails to correctly classify adversarial examples
when noise is added to the original images [164]. Rosenfeld et al. [312] illustrated
that inserting synthetic foreign objects to input images (e.g., a cartoon elephant)
can completely alter classification output. Wang et al. [368] performed similar
attacks on a transfer-learning approach of facial recognition by modifying pixels of
a celebrity’s face to be recognised as a completely different celebrity, all while still
retaining the same human-interpretable original celebrity. Su et al. [342] used the
ImageNet dataset to show that 41.22% of images drop in confidence when just a
single pixel is changed in the input image; and similarly, Eykholt et al. [115] recently
showed similar results that made a convolutional neural network (CNN) interpret a
stop road-sign (with mimicked graffiti) as a 45mph speed limit sign.

The results suggest that current state-of-the-art computer vision techniques may
not be robust enough for safety critical applications as they do not handle intentional

4.3 Related Work 63

or unintentional adversarial attacks. Moreover, as such adversarial examples exist in
the physical world [115, 208], “the natural world may be adversarial enough” [285]
to fool AI software. Though some limitations and guidelines have been explored
in this area, the perspective of Intelligent Web Services is yet to be considered and
specific guidelines do not yet exist when using CVSs.

4.3.1.2 Testing strategies in ML applications

Although much work applies ML techniques to automate testing strategies, there is
only a growing emphasis that considers this in the opposite sense; that is, testing
to ensure the ML product works correctly. There are few reliable test oracles
that ensure if an ML has been implemented to serve its algorithm and use case
purposefully; indeed, “the non-deterministic nature of many training algorithms
makes testing of models even more challenging” [16]. Murphy et al. [252] proposed
a software engineering-based testing approach onML ranking algorithms to evaluate
the ‘correctness’ of the implementation on a real-world data set and problem domain,
whereby discrepancies were found from the formal mathematical proofs of the ML
algorithm and the implementation.

Recently, Braiek and Khomh [55] conducted a comprehensive review of testing
strategies in ML software, proposing several research directions and recommenda-
tions in how best to apply software engineering testing practices in ML programs.
However, much of the area of this work specifically targets ML engineers, and not
application developers. Little has been investigated on how application developers
perceive and understand ML concepts, given a lack of formal training; we note that
other testing strategies and frameworks proposed (e.g., [59, 251, 262]) are targeted
chiefly to the ML engineer, and not the application developer.

However, Arpteg et al. [16] recently demonstrated (using real-worldMLprojects)
the developmental challenges posed to developers, particularly those that arise when
there is a lack of transparency on the models used and how to troubleshoot ML
frameworks using traditional software engineering debugging tools. This said, there
is no further investigations into challenges when using the higher, ‘ML friendly’
layers (e.g., IWSs) of the ‘machine learning spectrum’ [270], rather than the ‘lower
layers’ consisting of existing ML frameworks and algorithms targeted toward the
ML community.

4.3.2 Internal Quality

4.3.2.1 Quality metrics for cloud services

CVSs are based on cloud computing fundamentals under a subset of the Platform as
a Service (PaaS) model. There has been work in the evaluation of PaaS in terms of
quality attributes [131]: these attributes are exposed using service-level agreements
(SLAs) between vendors and customers, and customers denote their demanded
quality of service (QoS) to ensure the cloud services adhere to measurable KPI
attributes.

64 Identifying Evolution in Computer Vision Services

Although, popular services, such as cloud object storage, come with strong QoS
agreement, to date IWSs do not comewith deep assurances around their performance
and responses, but do offer uptime guarantees. For example, how can Rosa demand
a QoS that ensures all photos of dogs uploaded to her app guarantee the specific dog
breeds are returned so that users can look up their other friend’s ‘border collie’s?
If dog breeds are returned, what ontologies exist for breeds? Are they consistent
with each other, or shortened? (‘Collie’ versus ‘border collie’; ‘staffy’ versus
‘staffordshire bull terrier’?) For some applications, these unstated QoS metrics
specific to the ML service may have significant legal ramifications.

4.3.2.2 Web service documentation and documenting ML

From the developer’s perspective, little has been achieved to assess IWS quality
or assure quality of these CVSs. Web services and their APIs are the bridge be-
tween developers’ needs and the software components [14]; therefore, assessing
such CVSs from the quality of their APIs is thereby directly related to the develop-
ment quality [201]. Good APIs should be intuitive and require less documentation
browsing [287], thereby increasing productivity. Conversely, poor APIs that are
hard to understand and work with reduce developer productivity, thereby reducing
product quality. This typically leads to developers congregating on forums such as
Stack Overflow, leading to a repository of unstructured knowledge likely to concern
API design [372]. The consequences of addressing these concerns in development
leads to a higher demand in technical support (as measured in [160]) that, ultimately,
causes the maintenance to be far more expensive, a phenomenon widely known in
software engineering economics [48]. Rosa, for instance, isn’t aware of technicalML
concepts; if she cannot reason about what search results are relevant when brows-
ing the service and understanding functionality, her productivity is significantly
decreased. Conceptual understanding is critical for using APIs, as demonstrated by
Ko and Riche, and the effects of maintenance this may have in the future of her
application is unknown.

Recent attempts to document attributes and characteristics on ML models have
been proposed. Model cards were introduced byMitchell et al. [247] to describe how
particular models were trained and benchmarked, thereby assisting users to reason
if the model is right for their purposes and if it can achieve its stated outcomes.
Gebru et al. [135] also proposed datasheets, a standardised documentation format to
describe the need for a particular data set, the information contained within it and
what scenarios it should be used for, including legal or ethical concerns.

However, while target audiences for these documents may be of a more technical
AI level (i.e., the ML engineer), there is still no standardised communication format
for application developers to reason about using particular IWSs, and the ramifica-
tions this may have on the applications they write is not fully conveyed. Hence, our
work is focused on the application developer perspective.

4.4 Method 65

4.4 Method

This study organically evolved by observing phenomena surrounding CVSs by as-
sessing both their documentation and responses. We adopted a mixed methods
approach, performing both qualitative and quantitative data collection on these two
key aspects by using documentary research methods for inspecting the documen-
tation and structured observations to quantitatively analyse the results over time.
This, ultimately, helped us shape the following research hypotheses which this paper
addresses:

[RH1] CVSs do not respond with consistent outputs between services, given the
same input image.

[RH2] The responses from CVSs are non-deterministic and evolving, and the same
service can change its top-most response over time given the same input
image.

[RH3] CVSs do not effectively communicate this evolution and instability, intro-
ducing risk into engineering these systems.

We conducted two experiments to address these hypotheses against three popular
CVSs: AWS Rekognition [398], Google Cloud Vision [423], Azure Computer
Vision [437]. Specifically, we targeted the AWS DetectLabels endpoint [396],
the Google Cloud Vision annotate:images endpoint [421] and Azure’s analyze
endpoint [438]. For the remainder of this paper, we de-identify our selected CVSs
by labelling them as services A, B and C but do not reveal mapping to prevent
any implicit bias. Our selection criteria for using these particular three services
are based on the weight behind each service provider given their prominence in
the industry (Amazon, Google and Microsoft), the ubiquity of their hosting cloud
platforms as industry leaders of cloud computing (i.e., AWS, Google Cloud and
Azure), being in the top three most adopted cloud vendors in enterprise applications
in 2018 [121] and the consistent popularity of discussion amongst developers in
developer communities such as Stack Overflow. While we choose these particular
cloudCVSs, we acknowledge that similar services [411, 412, 419, 432, 433, 485, 486]
also exist, including other popular services used in Asia [410, 431, 451, 452] (some
offering 3D image analysis [409]). We reflect on the impacts this has to our study
design in Section 4.7.

Our study involved an 11-month longitudinal study which consisted of two 13
week and 17 week experiments from April to August 2018 and November 2018 to
March 2019, respectively. Our investigation into documentation occurred on August
28 2018. In total, we assessed the services with three data sets; we first ran a pilot
study using a smaller pool of 30 images to confirm the end-points remain stable,
re-running the study with a larger pool of images of 1,650 and 5,000 images. Our
selection criteria for these three data sets were that the images had to have varying
objects, taken in various scenes and various times. Images also needed to contain
disparate objects. Our small data set was sourced by the first author by taking photos
of random scenes in an afternoon, whilst our second data set was sourced from
various members of our research group from their personal photo libraries. We also

66 Identifying Evolution in Computer Vision Services

Table 4.1: Characteristics of our datasets and responses.

Data set Small Large COCOVal17

Images/data set 30 1,650 5000
Unique labels found 307 3506 4507
Number of snapshots 9 22 22
Avg. days b/n requests 12 Days 8 Days 8 Days

wanted to include a data set that was publicly available prior to running our study,
so for this data set we chose the COCO 2017 validation data set [219]. We have
made our other two data sets available online ([414]). We collected results and their
responses from each service’s API endpoint using a python script [418] that sent
requests to each service periodically via cron jobs. Table 4.1 summarises various
characteristics about the data sets used in these experiments.

We then performed quantitative analyses on each response’s labels, ensuring all
labels were lowercased as case changed for services A and C over the evaluation
period. To derive at the consistency of responses for each image, we considered only
the ‘top’ labels per image for each service and data set. That is, for the same image 8
over all images in data set � where 8 ∈ � and over the three services, the top labels
per image ()8) of all labels per image !8 (i.e.,)8 ⊆ !8) is that where the respective
label’s confidences are consistently the highest of all labels returned. Typically, the
top labels returned is a set containing only one element—that is, only one unique
label consistently returned with the highest label (|)8 | = 1)—however there are cases
where the top labels contains multiple elements as their respective confidences are
equal (|)8 | > 1).

We measure response consistency under 6 aspects:

(1) Consistency of the top label between each service. Where the same image of,
for example, a dog is sent to the three services, the top label for service A may
be ‘animal’, B ‘canine’ and C ‘animal’. Therefore, service B is inconsistent.

(2) Semantic consistency of the top labels. Where a service has returned multi-
ple top labels (|)8 | > 1), there may lie semantic differences in what the service
thinks the image best represents. Therefore, there is conceptual inconsistency
in the top labels for a service even when the confidences are equal.

(3) Consistency of the top label’s confidence per service. The top label for
an image does not guarantee a high confidence. Therefore, there may be
inconsistencies in how confident the top labels for all images in a service is.

(4) Consistency of confidence in the intersecting top label between each ser-
vice. The spread of a top intersecting label, e.g., ‘cat’, may not have the same
confidences per service even when all three services agree that ‘cat’ is the top
label. Therefore, there is inconsistency in the confidences of a top label even
where all three services agree.

(5) Consistency of the top label over time. Given an image, the top label in one
week may differ from the top label the following week. Therefore, there is
inconsistency in the top label itself due to model evolution.

4.5 Findings 67

Figure 4.1: The only consistent label for the above image is ‘people’ for services C and B.
The top label for A is ‘conversation’ and this label is not registered amongst the other two
services.

Table 4.2: Ratio of the top labels (to images) that intersect in each data set for each
permutation of service.

Service Small Large COCOVal17 ` f

A ∩ B ∩ C 3.33% 2.73% 4.68% 2.75% 0.0100
A ∩ B 6.67% 11.27% 12.26% 10.07% 0.0299
A ∩ C 20.00% 13.94% 17.28% 17.07% 0.0304
B ∩ C 6.67% 12.97% 20.90% 13.51% 0.0713

(6) Consistency of the top label’s confidence over time. The top label of an
image may remain static from one week to the next for the same service, but
its confidence values may change with time. Therefore, there is inconsistency
in the top label’s confidence due to model evolution.

For the above aspects of consistency, we calculated the spread of variation for the
top label’s confidences of each service for every 1 percent point; that is, the frequency
of top label confidenceswithin 100–99%, 99–98%etc. The consistency of top label’s
and their confidences between each service was determined by intersecting the labels
of each service per image and grouping the intersecting label’s confidences together.
This allowed us to determine relevant probability distributions. For reproducibility,
all quantitative analysis is available online [415].

4.5 Findings

4.5.1 Consistency of top labels

4.5.1.1 Consistency across services

Table 4.2 presents the consistency of the top labels between data sets, as measured
by the cardinality of the intersection of all three services’ set of top labels divided
by the number of images per data set. A combination of services present varied
overlaps in their top labels; services A and C provide the best overlap for all three

68 Identifying Evolution in Computer Vision Services

(a) (b)

Figure 4.2: Left: The top labels for each service do not intersect, with each having a varied
ontology:)8 = { A = {‘black’}, B = {‘indoor’}, C = {‘slide’, ‘toy’} }. (Service C returns
both ‘slide’ and ‘toy’ with equal confidence.) Right: The top labels for each service focus on
disparate subjects in the image:)8 = { A = { ‘carrot’ }, B = { ‘indoor’ }, C = { ‘spoon’ } }.

data sets, however the intersection of all three irrespective of data sets is low.

The implication here is that, without semantic comparison (see Section 4.7),
service vendors are not ‘plug-and-play’. If Rosa uploaded the sample images in
this paper to her application to all services, she would find that only Figure 4.1
responds with ‘person’ for services B and C in their respective set of top labels.
However, if she decides to then adopt service A, then Figure 4.1’s top label becomes
‘conversation’; the ‘person’ label does not appear within the top 15 labels for service
A and, conversely, the ‘conversation’ label does not appear in the other services top
15.

Should she decide if the performance of a particular service isn’t to her needs,
then the vocabulary used for these labels becomes inconsistent for all other images;
that is, the top label sets per service for Figure 4.2a shows no intersection at all.
Furthermore, the part of the image each service focuses on may not be consistent
for their top labels; in Figure 4.2b, service A’s top label focuses on the vegetable
(‘carrot’), service C focuses on the ‘spoon’, while service B’s focus is that the image
is ‘indoor’s. It is interesting to note that service B focuses on the scene matter
(indoors) rather than the subject matter. (Furthermore, we do not actually know if
the image in Figure 4.2b was taken indoors.)

Hence, developers should ensure that the vocabulary used by a particular service
is right for them before implementation. As each service does not work to the
same standardised model, trained with disparate training data, and tuned differently,
results will differ despite the same input. This is unlike deterministic systems: for
example, switching from AWS Object Storage to Google Cloud Object storage will
conceptually provide the same output (storing files) for the same input (uploading
files). However, CVSs do not agree on the top label for images, and therefore
developers are likely to be vendor locked, making changes between services non-
trivial.

4.5 Findings 69

(a) (b)

Figure 4.3: Left: Service C is 98.49% confident of the following labels: { ‘beverage’,
‘chocolate’, ‘cup’, ‘dessert’, ‘drink’, ‘food’, ‘hot chocolate’ }. However, it is up to the
developer to decide which label to persist with as all are returned. Right: Service B
persistently returns a top label set of { ‘book’, ‘several’ }. Both are semantically correct for
the image, but disparate in what the label is to describe.

4.5.1.2 Semantic consistency where |)8 | > 1

Service C returns two top labels for Figure 4.2a; ‘slide’ and ‘toy’. More than one
top label is typically returned in service C (80.00%, 56.97%, and 81.66% of all
images for all three data sets, respectively) though this also occurs in B in the large
(4.97% of all images) and COCOVal17 data sets (2.38%). Semantic inconsistencies
of what this label conceptually represents becomes a concern as these labels have
confidences of equal highest consistency. Thus, some services are inconsistent in
themselves and cannot give a guaranteed answer of what exists in an image; services
C and B have multiple top labels, but the respective services cannot ‘agree’ on
what the top label actually is. In Figure 4.3a, service C presents a reasonably high
confidence for the set of 7 top labels it returns, however there is too much diversity
ranging from a ‘hot chocolate’ to the hypernym ‘food’. Both are technically correct,
but it is up to the developer to decide the level of hypernymy to label the image as.
We also observe a similar effect in Figure 4.3b, where the image is labelled with
both the subject matter and the number of subjects per image.

Thus, a taxonomy of ontologies is unknown; if a ‘border collie’ is detected in
an image, does this imply the hypernym ‘dog’ is detected, and then ‘mammal’, then
‘animal’, then ‘object’? Only service B documents a taxonomy for capturing what
level of scope is desired, providing what it calls the ‘86-category’ concept as found
in its how-to guide:

“Identify and categorize an entire image, using a category taxonomy
with parent/child hereditary hierarchies. Categories can be used alone,
or with our new tagging models.” [439]

Thus, even if Rosa implemented conceptual similarity analysis for the image, the
top label set may not provide sufficient information to derive at a conclusive answer,
and if simply relying on only one label in this set, information such as the duplicity
of objects (e.g., ‘several’ in Figure 4.3b) may be missed.

70 Identifying Evolution in Computer Vision Services

Table 4.3: Ratio of the top labels (to images) that remained the top label but changed
confidence values between intervals.

Service Small Large COCOVal17 -(%c) 2(%c) Median(%c) Range(%c)

A 53.33% 59.19% 44.92% 9.62e−8 6.84e−8 5.96e−8 [5.96e−8, 6.56e−7]
B 0.00% 0.00% 0.02% - - - -
C 33.33% 41.36% 15.60% 5.35e−7 8.76e−7 3.05e−7 [1.27e−7, 1.13e−5]

4.5.2 Consistency of confidence

4.5.2.1 Consistency of top label’s confidence

In Figure 4.4, we see that there is high probability that top labels have high confi-
dences for all services. In summary, one in nine images uploaded to any service will
return a top label confident to at least 97%. However, there is higher probability for
service A returning a lower confidence, followed by B. The best performing service
is C, with 90% of requests having a top label confident to ' 95%, when compared
to ' 87% and ' 93% for services A and B, respectively.

Therefore, Rosa could generally expect that the top labels she receives in her
images do have high confidence. That is, each service will return a top label that
they are confident about. This result is expected, considering that the ‘top’ label
is measured by the highest confidence, though it is interesting to note that some
services are generally more confident than others in what they present back to users.

4.5.2.2 Consistency of intersecting top label’s confidence

Even where all three services do agree on a set of top labels, the disparity of how
much they agree by is still of importance. Just because three services agree that
an image contains consistent top labels, they do not always have a small spread of
confidence. In Figure 4.6, the three services agree with f = 0.277, significantly
larger than that of all images in general f = 0.0831. Figure 4.5 displays the
cumulative distribution of all intersecting top labels’ confidence values, presenting
slightly similar results to that of Figure 4.4.

4.5.3 Evolution risk

4.5.3.1 Label Stability

Generally, the top label(s) did not evolve in the evaluation period. 16.19% and
5.85% of images did change their top label(s) in the Large and COCOVal17 data sets
in service A. Thus, top labels are stable but not guaranteed to be constant.

4.5.3.2 Confidence Stability

Similarly, where the top label(s) remained the same from one interval to the next,
the confidence values were stable. Table 4.3 displays the proportion of images that
changed their top label’s confidence values with various statistics on the confidence

4.5 Findings 71

Figure 4.4: Cumulative distribution of the top labels’ confidences. One in nine images
return a top label(s) confident to ' 97%, though there is a wider distribution for service A.

Figure 4.5: Cumulative distribution of intersecting top labels’ confidences. The small data
set is intentionally removed due to low intersections of labels (see Table 4.2).

72 Identifying Evolution in Computer Vision Services

Figure 4.6: All three services agree the top label for the above image is ‘food’, but the
confidences to which they agree by vary significantly. Service C is most confident to
94.93% (in addition with the label ‘bread’); service A is the second most confident to
84.32%; service B is the least confident with 41.39%.

deltas between snapshots (X2). However, this delta is so minuscule that we attribute
such changes to statistical noise.

4.6 Recommendations

4.6.1 Recommendations for IWS users

4.6.1.1 Test with a representative ontology for the particular use case

Rosa should ensure that in her testing strategies for the app she develops, there is an
ontology focus for the types of vocabulary that are returned. Additionally, we noted
that there was a sudden change in case for services A and C; for all comparative
purposes of labels, each label should be lower-cased.

4.6.1.2 Incorporate a specialised IWS testing methodology into the development
lifecycle

Rosa can utilise the different aspects of consistency as outlined in this paper as
part of her quality strategy. To ensure results are correct over time, we recommend
developers create a representative data set of the intended application’s data set
and evaluate these changes against their chosen service frequently. This will help
identify when changes, if any, have occurred if vendors do not provide a line of
communication when this occurs.

4.6.1.3 IWSs are not ‘plug-and-play’

Rosa will be locked into whichever vendor she chooses as there is inherent incon-
sistency between these services in both the vocabulary and ontologies that they use.
We have demonstrated that very few services overlap in their vocabularies, chiefly
because they are still in early development and there is yet to be an established,
standardised vocabulary that can be shared amongst the different vendors. Issues
such as those shown in Section 4.5.1 can therefore be avoided.

4.6 Recommendations 73

Throughout this work, we observed that the terminologies used by the vari-
ous vendors are different. Documentation was studied, and we note that there is
inconsistency between the ways techniques are described to users. We note the
disparity between the terms ‘detection’, ‘recognition’, ‘localisation’ and ‘analysis’.
This applies chiefly to object- and facial-related techniques. Detection applies to
facial detection, which gives bounding box coordinates around all faces in an image.
Similarly, localisation applies the samemethodology to disparate objects in an image
and labels them. In the context of facial ‘recognition’, this term implies that a face
is recognised against a known set of faces. Lastly, ‘analysis’ applies in the context
of facial analysis (gender, eye colour, expression etc.); there does not exist a similar
analysis technique on objects.

We notice similar patterns with object ‘tagging’, ‘detection’ and ‘labelling’.
Service A uses ‘Entity Detection’ for object categorisation, service B uses ‘Image
Tagging’, and service C uses the term ‘Detect Labels’ : conceptually, these provide
the same functionality but the lack of consistency used between all three providers is
concerning and leaves room for confusion with developers during any comparative
analyses. Rosa may find that she wants to label her images into day/night scenes, but
this in turn means the ‘labelling’ of varying objects. There is therefore no consistent
standards to use the same terminology for the same concepts, as there are in other
developer areas (such as Web Development).

4.6.1.4 Avoid use in safety-critical systems

Wehave demonstrated in this paper that both labels and confidences are stable but not
constant; there is still an evolution risk posed to developers that may cause unknown
consequences in applications dependent on these CVSs. Developers should avoid
their use in safety critical systems due to the lack of visible changes.

4.6.2 Recommendations for IWS providers

4.6.2.1 Improve the documentation

Rosa does not know that service A returns back ‘carrot’ for its top response, with
service C returning ‘spoon’ (Figure 4.2b). She is unable to tell the service’s API
where to focus on the image. Moreover, how can she toggle the level of specificity
in her results? She is frustrated that service C can detect ‘chocolate’, ‘food’ and also
‘beverage’ all as the same top label in Figure 4.3a: what label is she to choose when
the service is meant to do so for her, and how does she get around this? Thus, we
recommend vendors to improve the documentation of services by making known
the boundary set of the training data used for the algorithms. By making such
information publicly available, developers would be able to review the service’s
specificity for their intended use case (e.g., maybe Rosa is satisfied her app can
catalogue ‘food’ together, and in fact does not want specific types of foods (‘hot
chocolate’) catalogued). We also recommend that vendors publish usage guidelines
should that include details of priors and how to evaluate the specific service results.

74 Identifying Evolution in Computer Vision Services

Furthermore, we did not observe that the vendors documented how some images
may respond with multiple labels of the exact same confidence value. It is not clear
from the documentation that response objects can have duplicate top values, and
tutorials and examples provided by the vendors do not consider this possibility. It
is therefore left to the developer to decide which label from this top set of labels
best suits for their particular use case; the documentation should describe that a rule
engine may need to be added in the developer’s application to verify responses. The
implications this would have on maintenance would be significant.

4.6.2.2 Improve versioning

We recommend introducing a versioning system so that a model can be used from a
specific date in production systems: when Rosa tests her app today, she would like
the service to remain static the same for when her app is deployed in production
tomorrow. Thus, in a request made to the vendor, Rosa could specify what date she
ran her app’s QA testing on so that she knows that henceforth these model changes
will not affect her app.

4.6.2.3 Improve Metadata in Response

Much of the information in these services is reduced to a single confidence value
within the response object, and the details about training data and the internal AI
architecture remains unknown; little metadata is provided back to developers that
encompass such detail. Early work into model cards and datasheets [135, 247]
suggests more can be done to document attributes about ML systems, however at a
minimum from our work, we recommend including a reference point via the form
of an additional identifier. This identifier must also permit the developers to submit
the identifier to another API endpoint should the developer wish to find further
characteristics about the AI empowering the IWS, reinforcing the need for those
presented in model cards and datasheets. For example, if Rosa sends this identifier
she receives in the response object to the IWS descriptor API, she could find out
additional information such as the version number or date when the model was
trained, thereby resolving potential evolution risk, and/or the ontology of labels.

4.6.2.4 Apply constraints for predictions on all inputs

In this study, we used some images with intentionally disparate, and noisy objects. If
services are not fully confident in the responses they give back, a form of customised
error message should be returned. For example, if Rosa uploads an image of 10
various objects on a table, rather than returning a list of top labels with varying
confidences, it may be best to return a ‘too many objects’ exception. Similarly, if
Rosa uploads a photo that the model has had no priors on, it might be useful to return
an ‘unknown object’ exception than to return a label it has no confidence of. We do
however acknowledge that current state of the art computer vision techniques may
have limits in what they can and cannot detect, but this limitation can be exposed in
the documentation to the developers.

4.7 Threats to Validity 75

A further example is sending a one pixel image to the service, analogous to
sending an empty file. When we uploaded a single pixel white image to service A,
we received responses such as ‘microwave oven’, ‘text’, ‘sky’, ‘white’ and ‘black’
with confidences ranging from 51–95%. Prior checks should be performed on all
input data, returning an ‘insufficient information’ error where any input data is below
the information of its training data.

4.7 Threats to Validity

4.7.1 Internal Validity

Not all CVSs were assessed. As suggested in Section 4.4, we note that there are
other CVSs such as IBMWatson. Many services fromAsia were also not considered
due to language barriers (of the authors) in assessing these services. We limited our
study to the most popular three providers (outside of Asia) to maintain focus in this
body of work.

A custom confidence threshold was not set. All responses returned from each of
the services were included for analysis; where confidences were low, they were still
included for analysis. This is because we used the default thresholds of each API to
hint at what real-world applications may be like when testing and evaluating these
services.

The label string returned from each service was only considered. It is common
for some labels to respond back that are conceptually similar (e.g., ‘car’ vs. ‘automo-
bile’) or grammatically different (e.g., ‘clothes’ vs. ‘clothing’). While we could have
employed more conceptual comparison or grammatical fixes in this study, we chose
only to compare lowercased labels and as returned. We leave semantic comparison
open to future work.

Only introductory analysis has been applied in assessing the documentation of
these services. Further detailed analysis of documentation quality against a rigorous
documentation quality framework would be needed to fortify our analysis of the
evolution of these services’ documentation.

4.7.2 External Validity

The documentation and services do change over time and evolve, withmany allowing
for contributions from the developer community via GitHub. We note that our
evaluation of the documentation was conducted on a single date (see Section 4.4)
and acknowledge that the documentation may have changed from the evaluation date
to the time of this publication. We also acknowledge that the responses and labelling
may have evolved too since the evaluation period described and the date of this
publication. Thus, this may have an impact on the results we have produced in this
paper compared to current, real-world results. To mitigate this, we have supplied the
raw responses available online [416].

Moreover, in this paper we have investigated computer vision services. Thus,
the significance of our results to other domains such as natural language processing

76 Identifying Evolution in Computer Vision Services

or audio transcription is, therefore, unknown. Future studies may wish to repeat our
methodology on other domains to validate if similar patterns occur; we remain this
open for future work.

4.7.3 Construct Validity

It is not clear if all the recommendations proposed in Section 4.6 are feasible
or implementable in practice. Construct validity defines how well an experiment
measures up to its claims; the experiments proposed in this paper support our three
hypotheses but these have been conducted in a clinical condition. Real-world case
studies and feedback from developers and providers in industry would remove the
controlled nature of our work.

4.8 Conclusions & Future Work

This study explored three popular CVSs over an 11 month longitudinal experiment
to determine if these services pose any evolution risk or inconsistency. We find that
these services are generally stable but behave inconsistently; responses from these
services do change with time and this is not visible to the developers who use them.
Furthermore, the limitations of these systems are not properly conveyed by vendors.
From our analysis, we present a set of recommendations for both IWS vendors and
developers.

Standardised software quality models (e.g., [174]) target maintainability and
reliability as primary characteristics. Quality software is stable, testable, fault
tolerant, easy to change and mature. These CVSs are, however, in a nascent stage,
difficult to evaluate, and currently are not easily interchangeable. Effectively, the
IWS response objects are shifting in material ways to developers, albeit slowly, and
vendors do not communicate this evolution or modify API endpoints; the endpoint
remains static but the content returned does not despite the same input.

There are many potential directions stemming from this work. To start, we plan
to focus on preparing a more comprehensive datasheet specifically targeted at what
should be documented to application developers, and not data scientists. Reapplying
this work in real-world contexts, that is, to get real developer opinions and study
production grade systems, would also be beneficial to understand these phenomena
in-context. This will help us clarify if such changes are a real concern for developers
(i.e., if they really need to change between services, or the service evolution has real
impact on their applications). We also wish to refine and systematise the method
used in this study and develop change detectors that can be used to identify evolution
in these services that can be applied to specific ML domains (i.e., not just computer
vision), data sets, andAPI endpoints, thereby assisting application developers in their
testing strategies. Moreover, future studies may wish to expand the methodology
applied by refining how the responses are compared. As there does not yet exist a
standardised list of terms available between services, labels could be semantically
compared instead of using exact matches (e.g., by using stem words and synonyms
to compare similar meanings of these labels), similar to previous studies [267].

4.8 Conclusions & Future Work 77

This paper has highlighted only some high-level issues that may be involved
in using these evolving services. The laws of software evolution suggest that for
software to be useful, it must evolve [243, 355]. There is, therefore, a trade-off, as
we have shown, between consistency and evolution in this space. For a component
to be stable, any changes to dependencies it relies on must be communicated. We
are yet to see this maturity of communication from IWS providers. Thus, developers
must be cautious between integrating intelligent components into their applications
at the expense of stability; as the field of AI is moving quickly, we are more likely to
see further instability and evolution in IWSs as a consequence.

CHAPTER5

Interpreting Pain-Points in Computer Vision Services†

Abstract Intelligent web services (IWSs) are becoming increasingly more pervasive; ap-
plication developers want to leverage the latest advances in areas such as computer vision
to provide new services and products to users, and large technology firms enable this via
RESTful APIs. While such APIs promise an easy-to-integrate on-demand machine in-
telligence, their current design, documentation and developer interface hides much of the
underlying machine learning techniques that power them. Such APIs look and feel like
conventional APIs but abstract away data-driven probabilistic behaviour—the implications
of a developer treating these APIs in the same way as other, traditional cloud services, such
as cloud storage, is of concern. The objective of this study is to determine the various
pain-points developers face when implementing systems that rely on the most mature of
these intelligent web services, specifically those that provide computer vision. We use Stack
Overflow to mine indications of the frustrations that developers appear to face when using
computer vision services, classifying their questions against two recent classification tax-
onomies (documentation-related and general questions). We find that, unlike mature fields
like mobile development, there is a contrast in the types of questions asked by developers.
These indicate a shallow understanding of the underlying technology that empower such
systems. We discuss several implications of these findings via the lens of learning tax-
onomies to suggest how the software engineering community can improve these services
and comment on the nature by which developers use them.

†This chapter is originally based on A. Cummaudo, R. Vasa, S. Barnett, J. Grundy, and M. Ab-
delrazek, “Interpreting Cloud Computer Vision Pain-Points: A Mining Study of Stack Overflow,” in
Proceedings of the 42nd International Conference on Software Engineering. Seoul, Republic of
Korea: ACM, June 2020. DOI 10.1145/3377811.3380404, pp. 1584–1596. Terminology has been
updated to fit this thesis.

79

https://doi.org/10.1145/3377811.3380404

80 Interpreting Pain-Points in Computer Vision Services

5.1 Introduction

The availability of recent advances in artificial intelligence (AI) over simple RESTful
end-points offers application developers new opportunities. These new intelligent
web services (IWSs) are AI components that abstract complex machine learning
(ML) and AI techniques behind simpler API calls. In particular, they hide (either
explicitly or implicitly) any data-driven and non-deterministic properties inherent
to the process of their construction. The promise is that software engineers can
incorporate complex machine learnt capabilities, such as computer vision, by simply
calling an API end-point.

The expectation is that application developers can use these AI-powered services
like they use other conventional software components and cloud services (e.g., object
storage like AWS S3). Furthermore, the documentation of these AI components is
still anchored to the traditional approach of briefly explaining the end-points with
some information about the expected inputs and responses. The presupposition
is that developers can reason and work with this high level information. These
services are also marketed to suggest that application developers do not need to fully
understand how these components were created (i.e., assumptions in training data
and training algorithms), the ways in which the components can fail, and when such
components should and should not be used.

The nuances of ML and AI powering IWSs have to be appreciated, as there are
real-world consequences to software quality for applications that depend on them if
they are ignored [89]. This is especially true when ML and AI are abstracted and
masked behind a conventional-looking API call, yet the mechanisms behind the API
are data-dependent, probabilistic and potentially non-deterministic [267]. We are
yet to discover what long-term impacts exist during development and production due
to poor documentation that do not capture these traits, nor do we know the depth of
understanding application developers have for these components. Given the way AI-
powered services are currently presented, developers are also likely to reason about
these new services much like a string library or a cloud data storage service. That
is, they may not fully consider the implications of the underlying statistical nature
of these new abstractions or the consequent impacts on productivity and quality.

Typically, when developers are unable to correctly align to the mindset of the
API designer, they attempt to resolve issues by (re-)reading the API documentation.
If they are still unable to resolve these issues on their own after some internet
searching, they consider online discussion platforms (e.g., Stack Overflow, GitHub
Issues, Mailing Lists) where they seek technological advice from their peers [4].
Capturing what developers discuss on these platforms offers an insight into the
frustrations developers face when using different software components as shown
by recent works [39, 192, 310, 339, 371]. However, to our knowledge, no studies
have yet analysed what developers struggle with when using the new generation of
intelligent services. Given the re-emergent interest in AI and the anticipated value
from this technology [224], a better understanding of issues faced by developers
will help us improve the quality of services. Our hypothesis is that application
developers do not fully appreciate the probabilistic nature of these services, nor do

5.1 Introduction 81

they have sufficient appreciation of necessary background knowledge—however, we
do not know the specific areas of concern. The motivation for our study is to inform
API designers on which aspects to focus in their documentation, education, and
potentially refine the design of the end-points.

This study involves an investigation of 1,825 StackOverflow (SO) posts regarding
one of the most mature types of IWSs—computer vision services (CVSs)—dating
from November 2012 to June 2019. We adapt existing methodologies of prior SO
analyses [39, 350] to extract posts related to CVSs. We then apply two existing SO
question classification schemes presented at ICPCand ICSE in 2018 and 2019 [4, 40].
These previous studies focused on mobile apps and web applications. Although not
a direct motivation, our work also serves as a validation of the applicability of these
two issue classification taxonomies [4, 40] in the context of IWSs (hence potential
for generalisation). Additionally our work is the first—to our knowledge—to test
the applicability of these taxonomies in a new study.

The taxonomies in previous works focus on the specific aspects from the domain
(e.g. API usage, specificity within the documentation etc.) and as such do not
deeply consider the learning gap of an application developer. To explore the API
learning implications raised by our SO analysis, we applied an additional lens of
two taxonomies from the field of pedagogy. This was motivated by the need to offer
an insight into the work needed to help developers learn how to use these relatively
new services.

The key findings of our study are:

• The primary areas that developers raise as issues reflect a relatively primitive
understanding of the underlying concepts of data-drivenML approaches used.
We note this via the issues raised due to conceptual misunderstanding and
confusion in interpreting errors,

• Developers predominantly encounter a different distribution of issue types than
were reported in previous studies, indicating the complexity of the technical
domain has a non-trivial influence on intelligent API usage; and

• Most of these issues can be resolved with better documentation, based on our
analysis.

The paper also offers a data-set as an additional contribution to the research
community and to permit replication [417]. The paper structure is as follows:
Section 5.2 provides motivational examples to highlight the core focus of our study;
Section 5.3 provides a background on prior studies that have mined SO to gather
insight into the software engineering community; Section 5.4 describes our study
design in detail; Section 5.5 presents the findings from the SO extraction; Section 5.6
offers an interpretation of the results in addition to potential implications that arise
from our work; Section 5.7 outlines the limitations of our study; concluding remarks
are given in Section 5.8.

82 Interpreting Pain-Points in Computer Vision Services

Absolute Control
Verbose Codebase
Self-Sourced Data

Detailed Infrastructure
Quick to Write
Easy to Integrate
Pre-Trained Models
Cloud-Based API Calls

M
L

Fr
am

ew
or

ks

In
te

lli
ge

nt
 S

er
vi

ce
s

D
o-

It-
Yo

ur
se

lf
M

L

Figure 5.1: Some traits of Intelligent Services vs. ‘Do-It-Yourself’ML. Green-to-red arrows
indicate the presence of these traits. Adapted from Ortiz [270].

5.2 Motivation

“Intelligent” services are often available as a cloud end-point and provide devel-
opers a friendly approach to access recent AI/ML advances without being experts
in the underlying processes. Figure 5.1 highlights how these services abstract
away much of the technical know-how needed to create and operationalise these
IWSs [270]. In particular, they hide information about the training algorithm and
data-sets used in training, the evaluation procedures, the optimisations undertaken,
and—surprisingly—they often do not offer a properly versioned end-point [89, 267].
That is, the cloud vendorsmay change the behaviour of the services without sufficient
transparency.

The trade-off towards ease of use for application developers, coupled with the
current state of documentation (and assumed developer background) has a cost as
reflected in the increasing discussions on developer communities such as SO (see
Figure 5.2). To illustrate the key concerns, we list below a few up-voted questions:

• unsure of ML specific vocabulary: “Though it’s now not SO clear to me
what ‘score’ actually means.” [462]; “I’m trying out the [IWS], and there’s a
score field that returns that I’m not sure how to interpret [it].” [476]

• frustrated about non-deterministic results: “Often the API has troubles
in recognizing single digits... At other times Vision confuses digits with
letters.” [475]; “Is there a way to help the program recognize numbers better,
for example limit the results to a specific format, or to numbers only?” [472]

• unaware of the limitations behind the services: “Is there any API available
where we can recognize human other body parts (Chest, hand, legs and other
parts of the body), because as per the Google vision API it’s only able to detect
face of the human not other parts.” [456]

• seeking further documentation: “Does anybody know if Google has pub-
lished their full list of labels ([‘produce’, ‘meal’, ...]) and where I
could find that? Are those labels structured in any way? - e.g. is it known
that ‘food’ is a superset of ‘produce’, for example.” [459]

The objective of our study is to better understand the nature of the questions
that developers raise when using IWSs, in order to inform the service designers

5.3 Background 83

Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2
2015 2015 2016 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018 2018 2019 2019

IBM 1 0 4 5 8 7 4 5 9 6 5 6 4 0 5 3
MS 0 2 1 5 5 13 26 23 27 27 33 52 59 43 47 33

GCV 4 3 23 25 36 38 49 71 61 71 80 90 95 71 95 85
AWS 0 0 0 1 0 4 7 10 20 16 13 31 30 16 34 28
Total 5 5 28 36 49 62 86 109 117 120 131 179 188 130 181 149

0

40

80

120

160

200

Figure 5.2: Trend of posts, where IBM = IBM Watson Visual Recognition, MS = Azure
Computer Vision, AWS = AWS Rekognition and GCV = Google Cloud Vision. Three MS
posts from Q4 2012, Q3 2013 and Q4 2013 have been removed for graph clarity.

and documenters. In particular, the knowledge we identify can be used to improve
the documentation, educational material and (potentially) the information contained
in the services’ response objects—these are the main avenues developers have to
learn and reason about when using these services. There is previous work that has
investigated issues raised by developers [4, 40, 350]. We build on top of this work
by adapting the study methodology and apply the taxonomies offered to identify the
nature of the issues and this results in the following research questions in this paper:

RQ1. How do developers mis-comprehend IWSs as presented within SO
pain-points? While the AI community is well aware in the nuances that
empower IWSs, such services are being released for application developers
who may not be aware of their limitations or how they work. This is
especially the case when machine intelligence is accessed via web-based
APIs where such details are not fully exposed.

RQ2. Are the distribution of issues similar to prior studies? We compare
how the distributions of previous studies’ of posts about conventional,
deterministic API services differ from those of IWSs. By assessing the
distribution of IWSs’ issues against similar studies that focus on mobile
and web development, we identify whether a new taxonomy is needed
specific to AI-based services, and if gaps specific to AI knowledge exist
that need to be captured in these taxonomies.

5.3 Background

The primary goal of analysing issues is to better understand the root causes. Hence,
a good issue classification taxonomy should ideally capture the underlying causal
aspects (instead of pure functional groupings) [77]. Although this idea (of cause
related classification) is not new (Chillarege advocated for it in this TSE paper in
1992), this is not a universally followed approach when studying online discussions
and some recent works have largely classified issues into the “what is” and not
“how to fix it” [28, 39, 360]. They typically (manually) classify discussion into
either functional areas (e.g., Website Design/CSS, Mobile App Development, .NET
Framework, Java [28]) or descriptive areas (e.g., Coding Style/Practice, Problem/-
Solution, Design, QA [28, 360]). As a result, many of these studies do not give

84 Interpreting Pain-Points in Computer Vision Services

us a prioritised means of targeted attack on how to resolve these issues with, for
example, improved documentation. Interestingly, recent taxonomies that studied SO
data (Aghajani et al. [4] and Beyer et al. [40]) were causal in nature and developed to
understand discussions related to mobile and web applications. However, issues that
arise when developers use IWSs have not been studied, nor do we know if existing
issue classification taxonomies are sufficient in this domain.

Researchers studying APIs have also attempted to understand developer’s opin-
ions towards APIs [360], categorise the questions they ask about these APIs [28,
30, 40, 310], and understand API related documentation and usage issues [4, 5, 8,
28, 165, 350]. These studies often employ automation to assist in the data analysis
stages of their research. Latent Dirichlet Allocation [8, 28, 310, 360] is applied for
topic modelling and other ML techniques such as Random Forests [40], Conditional
Random Fields [5] or Support Vector Machines [40, 165] are also used.

However, automatic techniques are tuned to classify into descriptive categories,
that is, they help paint a landscape of what is, but generally do not address the
causal factors to address the issues in great detail. For example, functional areas
such as ‘Website Design’ [28], ‘User Interface’ [39] or ‘Design’ [361] result from
such analyses. These automatic approaches are generally non-causal, making it hard
to address reasons for why developers are asking such questions. However, not all
studies in the space use automatic techniques; other studies employ manual thematic
analysis [4, 30, 350] (e.g., card sorting) or a combination of both [39, 40, 310, 357].
Our work uses a manual approach for classification, and we use taxonomies that
are more causally aligned allowing our findings to be directly useful in terms of
addressing the issues.

Evidence-based software engineering [198] has helped shape the last 15 years
worth of research, but the reliability of such evidence has been questioned [185, 187,
330]. Replication studies, especially in empirical works, can give us the confidence
that existing results are adaptable to new domains; in this context, we extend (to
IWSs) and work with study methods developed in previous works.

5.4 Method

5.4.1 Data Extraction

This study initially attempted to capture SO posts on a broad range of many IWSs by
identifying issues related to four popular IWS cloud providers: Google Cloud [423],
AWS [398], Azure [437] and IBM Cloud [433]. We based our selection criteria on
the prominence of the providers in industry (Google, Amazon, Microsoft, IBM) and
their ubiquity in cloud platform services. Additionally, in 2018, these services were
considered the most adopted cloud vendors for enterprise applications [121].

However, during the filtering stage (see Section 5.4.2), we decided to focus on
a subset of these services, computer vision, as these are one of the more mature
and stable ML/AI-based services with widespread and increasing adoption in the
developer community (see Figure 5.2). We acknowledge other services beyond the
four analysed provide similar capabilities [411, 412, 419, 432, 485, 486] and only

5.4 Method 85

English-speaking services have been selected, excluding popular services from Asia
(e.g., [409, 410, 431, 451, 452])—see Section 5.7. For comprehensiveness, we
explain below our initial attempts to extract all IWSs.

5.4.1.1 Defining a list of IWSs

As there exists no global ‘list’ of IWSs to search on, we needed to derive a corpus
of initial terms to allow us to know what to search for on the Stack Exchange Data
Explorer1 (SEDE). We began by looking at different brand names of cloud services
and their permutations (e.g., Google Cloud Services and GCS) as well as various
ML-related products (e.g., Google Cloud ML). To do this, we performed extensive
Google searches2 in addition to manually reviewing six ‘overview’ pages of the
relevant cloud platforms. We identified 91 initial IWSs to incorporate into our
search terms3.

5.4.1.2 Manual search for relevant, related terms

We then ran a manual search2 on each term to determine if these terms were relevant.
We did this by querying each term within SO’s search feature, reviewing the titles
and body post previews of the first three pages of results (we did not review the
answers, only the questions). We also noted down the user-defined Tags of each post
(up to five per question); by clicking into each tag, we could review similar tags (e.g.,
‘project-oxford’ for ‘azure-cognitive-services’) and check if the tag had synonyms
(e.g., ‘aws-lex’ and ‘amazon-lex’). We then compiled a corpus of tags consisting of
31 terms.

5.4.1.3 Developing a search query

We recognise that searching SEDE via Tags exclusively can be ineffective (see [28,
350]). To mitigate this, we produced a corpus of title and body terms. Such terms
are those that exist within the title and body of the posts to reflect the ways in
which individual developers commonly use to refer to different IWSs. To derive
at such a list, we performed a search2,3 of the 31 tags above in SEDE, filtering
out posts that were not answers (i.e., questions only) as we wanted to see how
developers phrase their questions. For each search, we extracted a random sample
of 100 questions (400 total for each service) and reviewed each question. We noted
many patterns in the permutations of how developers refer to these services, such
as: common misspellings (‘bind’ vs. ‘bing’); brand misunderstanding (‘Microsoft
computer vision’ vs. ‘Azure computer vision’); hyphenation (‘Auto-ML’ vs. ‘Auto
ML’); UK and US English (‘Watson Analyser’ vs. ‘Watson Analyzer’); and, the
use of apostrophes, plurals, and abbreviations (‘Microsoft’s Computer Vision API’,
‘Microsoft Computer Vision Services, ‘GCV’ vs. ‘Google Cloud Vision’). We

1http://data.stackexchange.com/stackoverflow
2This search was conducted on 17 January 2019
3For reproducibility, this is available at http://bit.ly/2ZcwNJO.

http://data.stackexchange.com/stackoverflow
http://bit.ly/2ZcwNJO

86 Interpreting Pain-Points in Computer Vision Services

arrived at a final list of 229 terms compromising all of the IWSs provided by
Google, Amazon, Microsoft and IBM as of January 20193.

5.4.1.4 Executing our search query

Our next step was to perform a case-insensitive search of all 229 terms within the
body or title of posts. We used Google BigQuery’s public data-set of SO posts4 to
overcome SEDE’s 50,000 row limit and to conduct a case-insensitive search. This
search was conducted on 10 May 2019, where we extracted 21,226 results. We then
performed several filtering steps to cleanse our extracted data, as explained below.

5.4.2 Data Filtering

5.4.2.1 Refining our inclusion/exclusion criteria

We performed an initial manual filtering of the 50 most recent posts (sorted by
descending CreationDate values) of the 21,226 posts above, assessing the suitability
of the results and to help further refine our inclusion and exclusion criteria. We
did note that some abbreviations used in the search terms (e.g., ‘GCV’, ‘WCS’5),
resulting in irrelevant questions in our result set. We therefore removed abbreviations
from our search query and consolidated all overlapping terms (e.g., ‘Google Vision
API’ was collapsed into ‘Google Vision’).

We also recognised that 21,226 results would be non-trivial to analyse without
automated techniques. As we wanted to do manual qualitative analysis, we reduced
our search space to 27 search terms of just the CVSs within the original corpus of
229 terms. These were Google Cloud Vision [423], AWS Rekognition [398], Azure
Computer Vision [437], and IBM Watson Visual Recognition [433]. This resulted
in 1,425 results that were extracted on 21 June 2019. The query used and raw results
are available online in our supplementary materials [417].

5.4.2.2 Duplicates

Within 1,425 results, no duplicate questions were noted, as determined by unique
post ID, title or timestamp.

5.4.2.3 Automated and manual filtering

To assess the suitability and nature of the 1,425 questions extracted, the first author
beganwith amanual check on a randomised sample of 50 questions. As the questions
were exported in a rawCSV format (with HTML tags included in the post’s body), we
parsed the questions through an ERB templating engine script6 in which the ID, title,
body, tags, created date, and view, answer and comment counts were rendered for
each post in an easily-readable format. Additionally, SQL matches in the extraction
process were also highlighted in yellow (i.e., in the body of the post) and listed at

4http://bit.ly/2LrN7OA
5Watson Cognitive Services
6We make this available for future use at: http://bit.ly/2NqBB70

http://bit.ly/2NqBB70

5.4 Method 87

the top of each post. These visual cues helped to identify 3 false positive matches
where library imports or stack traces included terms within our corpus of 26 CVS
terms. For example, aws-java-sdk-rekognition:jar is falsely matched as a
dependency within an unrelated question. As such exact matches would be hard to
remove without the use of regular expressions, and due to the low likelihood (6%)
of their appearance, we did not perform any followup automatic filtering.

5.4.2.4 Classification

Our 1,425 posts were then split into 4 additional random samples (in addition to the
random sample of 50 above). 475 posts were classified by the first author and three
other research assistants, software engineers with at least 2 years industry experience,
assisted to classify the remaining 900. This left a total of 1,375 classifications
made by four people plus an additional 450 classifications made from reliability
analysis, in which the remaining 50 posts were classified nine times (as detailed in
Section 5.4.3.1). Thus, a total of 1,825 classifications were made from the original
1,425 posts extracted.

Whilst we could have chosen to employ topic modelling, these are too descrip-
tive in nature (as discussed in Section 5.3). Moreover, we wanted to see if prior
taxonomies can be applied to IWSs (as opposed to creating a new one) and compare
if their distributions are similar. Therefore, we applied the two existing taxonomies
described in Section 5.3 to each post; (i) a documentation-specific taxonomy that ad-
dresses issues directly resulting from documentation, and (ii) a generalised taxonomy
that covers a broad range of SO issues in a well-defined software engineering area
(specifically mobile app development). Aghajani et al.’s documentation-specific
taxonomy (Taxonomy A) is multi-layered consisting of four dimensions and 16
sub-categories [4]. Similarly, Beyer’s SO generalised post classification taxonomy
(Taxonomy B) consists of seven dimensions [40]. We code each dimension with
a number, - , and each sub-category with a letter H: (-H). We describe both tax-
onomies in detail within Table 5.1. Where a post was included in our results but
not applicable to IWSs (see Section 5.4.2.3) or not applicable to a taxonomy dimen-
sion/category, then the post was flagged for removal in further analysis. Table 5.1
presents our understanding of the respective taxonomies; our intent is not to method-
ologically replicate Aghajani et al. or Beyer et al.’s studies in the IWS domain, rather
to acknowledge related work in the area of SO classification and reduce the need to
synthesise a new taxonomy. We baseline all coding against our interpretation only.
Our classifications are therefore independent of the previous authors’ findings.

5.4.3 Data Analysis

5.4.3.1 Reliability of Classification

To measure consistency of the categories assigned by each rater to each post, we
utilised both intra- and inter-rater reliability [237]. As verbatim descriptions from
dimensions and sub-categories were considered quite lengthy from their original
sources, all raters met to agree on a shared interpretation of the descriptions, which

88
Interpreting

Pain-Pointsin
Com

puterV
ision

Services

Table 5.1: Descriptions of dimensions (�) and sub-categories (↩→) from both taxonomies used.

A Documentation-specific classification (Aghajani et al. [4])

A-1 � Information Content (What) Issues related to what is written in the documentation
A-1a ↩→ Correctness . What exists in the documentation actually matches what is implemented in code
A-1b ↩→ Completeness The documentation fully covers all aspects of the API’s components
A-1c ↩→ Up-to-dateness What is documented is accurate to the current version of the API
A-2 � Information Content (How) Issues related to how the document is written and organised
A-2a ↩→Maintainability The upkeep effort to ensure the documentation remains up to date
A-2b ↩→ Readability . The extent to which the documentation is interpretable
A-2c ↩→ Usability . How useable the organisation, look and feel of the documentation is
A-2d ↩→ Usefulness . The usefulness of the documentation, avoiding misinformation.
A-3 � Process-Related Issues related to the documentation process
A-3a ↩→ Internationalisation Translating the documentation into other languages
A-3b ↩→ Contribution-Related Contribution issues encountered when people contribute to the documentation
A-3c ↩→ Configuration-Related Configuration issues of the documentation tool
A-3d ↩→ Implementation-Related Unwanted development issues caused by (poor) documentation
A-3e ↩→ Traceability . Tracing documentation changes (when, when, who and why)
A-4 � Tool-Related . Issues related to documentation tools (e.g., Javadoc)
A-4a ↩→ Tooling Bugs Bugs that exist within the documentation tooling
A-3b ↩→ Tooling Discrepancy Support as expectations not being fulfilled by these documentation tools
A-3c ↩→ Tooling Help Required Help required due to improper usage of the tools
A-3d ↩→ Tooling Migration Issues migrating the tool to a new version or another tool

B Generalised classification (Beyer et al. [40])

B-1 � API usage . Issue on how to implement something using a specific component provided by the API
B-2 � Discrepancy . The questioner’s expected behaviour of the API does not reflect the API’s actual behaviour
B-3 � Errors . Issue regarding some form of error when using theAPI, and provides an exception and/or stack trace to help understand

why it is occurring
B-4 � Review . The questioner is seeking insight from the developer community on what the best practices are using a specific API

or decisions they should make given their specific situation
B-5 � Conceptual . The questioner is trying to ascertain limitations of the API and its behaviour and rectify issues in their conceptual

understanding on the background of the API’s functionality
B-6 � API change . Issue regarding changes in the API from a previous version
B-7 � Learning . The questioner is seeking for learning resources to self-learn further functionality in the API, and unlike discrepancy,

there is no specific problem they are seeking a solution for

5.5 Findings 89

were then paraphrased as discussed in the previous subsection and tabulated in
Table 5.1. To perform statistical calculations of reliability, each category was as-
signed a nominal value and a random sample of 50 posts were extracted. Two-phase
reliability analysis followed.

Firstly, intra-rater agreement by the first author was conducted twice on 28 June
2019 and 9 August 2019. Secondly, inter-rater agreement was conducted with the
remaining four co-authors in addition to three research assistants within our research
group in mid-August 2019. Thus, the 50 posts were classified an additional nine
times, resulting in 450 classifications for reliability analysis. We include these
classifications in our overall analysis.

At first, we followed methods of reliability analysis similar to previous SO
studies (e.g., [350]) using the percentage agreement metric that divides the number
of agreed categories assigned per post by the total number of raters [237]. However,
percentage agreement is generally rejected as an inadequate measure of reliability
analysis [82, 151, 205] in statistical communities. As we used more than 2 coders
and our reliability analysis was conducted under the same random sample of 50
posts, we applied Light’s Kappa [216] to our ratings, which indicates an overall
index of agreement. This was done using the irr computational R package [130]
as suggested in [151].

5.4.3.2 Distribution Analysis

In order to compare the distribution of categories fromour studywith previous studies
we carried out a j2 test. We selected a j2 test as the following assumptions [331]
are satisfied: (i) the data is categorical, (ii) all counts are greater than 5, and (iii)
we can assume simple random sampling. The null hypothesis describes the case
where each population has the same proportion of observations and the alternative
hypothesis is where at least one of the null hypothesis statements is false. We chose
a significance value, U, of 0.05 following a standard rule of thumb. As to the best
of our knowledge this is the first statistical comparison using Taxonomy A and B on
SO posts. To report the effect size we selected Cramer’s Phi, q2 which is well suited
for use on nominal data [331].

5.5 Findings

Wepresent our findings from classifying a total of 1,825 SOposts aimed at answering
RQs 1 and 2. 450 posts were classified using Taxonomies A and B for reliability
analysis as described in Section 5.4.3.1 and the remaining 1,375 posts were classified
as per Section 5.4.2.4. A summary of our classification using Taxonomies A and B
is shown in Figure 5.3.

5.5.1 Post classification and reliability analysis

When undertaking the classification, we found that 238 issues (13.04%) did not
relate to IWSs directly. For example, library dependencies were still included in

90 Interpreting Pain-Points in Computer Vision Services

22
.8

7%

47
.8

7%

4.
26

%

1.
06

%

4.
79

%

5.
32

%

13
.8

3%

6.
87

%

25
.5

7%

18
.1

3%

2.
00

% 10
.2

1%

13
.1

7%

1.
91

%

[A
-1

a]
 C

or
re

ct
ne

ss

[A
-1

b]
 C

om
pl

et
en

es
s

[A
-1

c]
 U

p-
to

-d
at

en
es

s

[A
-2

a]
 M

ai
nt

ai
na

bi
lit

y

[A
-2

b]
 R

ea
da

bi
lit

y

[A
-2

c]
 U

sa
bi

lit
y

[A
-2

d]
 U

se
fu

ln
es

s

Intelligent Services
Aghajani et al. (2019) [1]

22
.2

9%

16
.3

4%

32
.0

5%

15
.1

4%

11
.0

2%

1.
08

%

2.
09

%

28
.9

3%

18
.1

2%

13
.0

6%

11
.1

0%

20
.3

7%

4.
21

%

4.
21

%

[B
-1

]
AP

I U
sa

ge

[B
-2

]
D

is
cr

ep
an

cy

[B
-3

]
Er

ro
rs

[B
-4

]
Re

vi
ew

[B
-5

]
C

on
ce

pt
ua

l

[B
-6

]
AP

I C
ha

ng
e

[B
-7

]
Le

ar
ni

ng

Intelligent Services
Beyer et al. (2018) [9]

Figure 5.3: Left: Documentation-specific classification taxonomy results highlights amostly
similar distribution to that of Aghajani et al.’s findings [4]. Right: Generalised classification
taxonomy results highlight differences from more mature fields (i.e., Android APIs in Beyer
et al. [40]) to less mature fields (i.e., IWSs).

a number of results (see Section 5.4.2.3), and we found there to be many posts
discussing Android’s Mobile Vision API as Google (Cloud) Vision. These issues
were flagged and ignored for further analysis (see Section 5.4.2.4).

For our reliability analysis, we classified a total of 450 posts of which 70 posts
were flagged as irrelevant. Landis and Koch [211] provide guidelines to interpret
kappa reliability statistics, where 0.00 ≤ ^ ≤ 0.20 indicates slight agreement and
0.21 ≤ ^ ≤ 0.40 indicates fair agreement. Despite all raters meeting to agree
on a shared interpretation of the taxonomies (see Section 5.4.3.1) our inter-rater
measures aligned slightly (0.148) for Taxonomy A and fairly (0.295) for Taxonomy
B. We report further in Section 5.7.

5.5.2 Developer Frustrations

We found Beyer et al.’s high-level abstraction taxonomy (Taxonomy B) was able to
classify 86.52% of posts. 10.30% posts were assigned exclusively under Aghajani
et al.’s documentation-specific taxonomy (Taxonomy A). We found that developers
do not generally ask questions exclusive to documentation, and typically either
pair documentation-related issues to their own code or context. The following two
subsections further explain results from both Taxonomy A and B’s perspective.

5.5.2.1 Results from Aghajani et al.’s taxonomy

Results for Aghajani et al.’s low-level documentation taxonomy (Taxonomy A),
indicates that most discussion on SO does not directly relate to documentation about
an IWS. We did not find any process-related (A-3) or tool-related (A-4) questions
as, understandably, the developers who write the documentation of the IWSs would
not be posting questions of such nature on SO. One can infer documentation-related
issues from posts (i.e., parts of the documentation lacking that may cause the issue

5.5 Findings 91

posted). However, there are few questions that directly relate to documentation of
IWSs.

Few developers question or ask questions directly about the API documenta-
tion, but some (47.87%) posts ask for additional information to understand the
API (completeness (A-1b)), for example: “Is there a full list of potential labels
that Google’s Vision API will return?” [459]; “There seems to be very little to no
documentation for AWS iOS text recognition inside an image” [457].

22.87% of posts question the accuracy (A-1a) of certain parts of the cloud docu-
mentation, especially in relation to incorrect quotas and limitations: “Are the Cloud
Vision API limits in documentation correct?” [470], “According to the Google Vision
documentation, the maximum number of image files per request is 16. Elsewhere,
however, I’m finding that the maximum number of requests per minute is as high as
1800.” [455].

There are also many references (23.94%) addressing the confusing nature of
some documentation, indicating that the readability, usability and usefulness of
the documentation (A-2b, A-2c and A-2d) could be improved. For example, “Am
I encoding it correctly? The docs are quite vague.” [453], “The aws docs for this
are really confusing.” [482].

5.5.2.2 Results from Beyer et al.’s taxonomy

We found that a majority (32.05%) of posts are primarily error-related questions
(B-3), including a dump of the stack trace or exception message from the service’s
programming-language SDK (usually Java, Python or C#) that relates to a specific
error. For example: “I can’t fix an error that’s causing us to fall behind.” [479]; “I’m
using the Java Google Vision API to run through a batch of images... I’m now getting
a channel closed and ClosedChannelException error on the request.” [473].

API usage questions (B-1) were the second highest category at 22.29% of
posts. Reading the questions revealed that many developers present an insufficient
understanding of the behaviour, functional capability and limitation of these services
and the need for further data processing. For example, while Azure provides an
image captioning service, this is not universal to all CVSs: “In Amazon Rekognition
for image processing how do I get the caption for an image?” [464]. Similarly,
OCR-related and label-related questions often indicate interest in cross-language
translation, where a separate translation service would be required: “Can Google
Cloud Vision generate labels in Spanish via its API?” [478]; “[How can I] specify
language for response in Google Cloud Vision API” [465]; “When I request a text
detection of an image, it gives only English Alphabet characters (characters without
accents) which is not enough for me. How can I get the UTF-32 characters?” [460].

It was commonplace to see questions that demonstrate a lack of depth in under-
standing and appreciating how these serviceswork, instead posting simple debugging
questions. For instance, in the 11.02% of conceptual-related questions (B-5) that
we categorised, we noticed causal links to a misunderstanding (or lack of aware-
ness) of the vocabulary used within computer vision. For example: “The problem
is that I need to know not only what is on the image but also the position of that

92 Interpreting Pain-Points in Computer Vision Services

object. Some of those APIs have such feature but only for face detection.” [471];
“I want to know if the new image has a face similar to the original image.... [the
service] can identify faces, but can I use it to get similar faces to the identified face
in other images?” [463]. It is evident that some application developers are not aware
of conceptual differences in computer vision such as object/face detection versus
localisation versus recognition.

In the 16.34% of discrepancy-related questions (B-2), we see further unaware-
ness from developers in how the underlying systemswork. In OCR-related questions,
developers do not understand the pre-processing steps required before an OCR is
performed. In instances where text is separated into multiple columns, for example,
text is read top-down rather than left-to-right and segmentation would be required
to achieve the expected results. For example, “it appears that the API is using some
kind of logic that makes it scan top to bottom on the left side and moving to right
side and doing a top to bottom scan.” [477]; “this method returns scanned text in
wrong sequence... please tell me how to get text in proper sequence.” [483].

A number of review-related questions (B-4) (15.14%) seem to provide some
further depth in understanding the context to which these systems work, where train-
ing data (or training stages) are needed to understand how inferences aremade: “How
can we find an exhaustive list (or graph) of all logos which are effectively recognized
usingGoogle Vision logo detection feature?” [481]; “when object banana is detected
with accuracy greater than certain value, then next action will be dispatched... how
can I confidently define and validate the threshold value for each item?” [467].

API change (B-6) was shown in 1.08% of posts, with evolution of the services
occurring (e.g., due to new training data) but not necessarily documented “Recently
something about the Google Vision API changed... Suddenly, the API started to
respond differently to my requests. I sent the same picture to the API today, and I
got a different response (from the past).” [480].

5.5.3 Statistical Distribution Analysis

We obtained the following results j2 = 131.86, U = 0.05, ? E0;D4 = 2.2×10−16 and
q2 = 0.362 from our distribution analysis with Taxonomy A to compare our study
with that of Aghajani et al. [4]. Comparing our study to Beyer et al. [40] produced the
following results j2 = 145.58, U = 0.05, ? E0;D4 = 2.2×10−16 and q2 = 0.252.
These results show that we are able to reject the null hypothesis that the distribution
of posts using each taxonomy was the same as the comparison study. While there are
limited guidelines for interpreting q2 when there is no prior information for effect
size [345], Sun et al. suggests the following: 0.07 ≤ q2 ≤ 0.20 indicates a small
effect, 0.21 ≤ q2 ≤ 0.35 indicates amedium effect, and 0.35 > q2 indicates a large
effect. Based on this criteria we obtained a large effect size for the documentation-
specific classification (Taxonomy A) and a medium effect size for the generalised
classification (Taxonomy B).

5.6 Discussion 93

5.6 Discussion

5.6.1 Answers to Research Questions

5.6.1.1 How do developers mis-comprehend IWSs as presented within SO pain-
points? (RQ1)

Upon meeting to discuss the discrepancies between our categorisation of IWS usage
SO posts, we found that our interpretations of the posts themselves were largely sub-
jective. For example, many posts presented multi-faceted dimensions for Taxonomy
B; Beyer et al. [40] argue that a post can have more than one question category and
therefore multi-label classification is appropriate at times. We highlight this further
in the threats to validity (Section 5.7).

We have to define the context of IWSs to address RQ1. We use the concept
of a “technical domain” [25] to define this context. A technical domain captures
the domain-specific concerns that influence the non-functional requirements of a
system [25]. In the context of IWSs, the technical domain includes exploration, data
engineering, distributed infrastructure, training data, and model characteristics as
first class citizens [25]. We would then expect to see posts on SO related to these
core concerns.

In Figure 5.3, for the documentation-specific classification, the majority of posts
were classified asCompleteness (A1-b) related (47.87%). An interpretation for this
is that the documentation does not adequately cover the technical domain concerns.
Comments by developers such as “I’m searching for a list of all the possible image
labels that the Google Cloud Vision API can return?” [458] indicates the documen-
tation does not adequately describe the training data for the API—developers do
not know the required usage assumptions. Another quote from a developer, “Can
Google Cloud Vision generate labels in Spanish via its API? ... [Does the API]
allow to select which language to return the labels in?” [478] points to a lack of
details relating to the characteristics of the models used by the API. It would seem
that developers are unaware of aspects of the technical domain concerns.

The next most frequent category isCorrectness (A-1a)with 22.87% of posts. In
the context of the technical domain there are many limits that developers need to be
aware of: range and increments of a model score [89]; required data pre-processing
steps for optimal performance; and features provided by the models (as explained in
Section 5.5.2.2). Considering the relation between technical concerns and software
quality, developers are right to question providers on correctness; “Are the Cloud
Vision API limits in documentation correct?” [470].

5.6.1.2 Are the distribution of issues similar to prior studies? (RQ2)

Visual inspection of Figure 5.3 shows that the distributions for the documentation-
specific classification and the generalised classification are different (compared to
prior studies). As a sanity check we conducted a j2 test and calculated the effect
size q2 . We were able to reject the null hypothesis for both classification schemes,
that the distribution of issues were the same as the previous studies (see Section 5.5).

94 Interpreting Pain-Points in Computer Vision Services

We now discuss the most prominent differences between our study and the previous
studies.

In the context of IWS SO posts, Taxonomy B suggests that Errors (B-3) are
discussed most amongst developers. These results are in contrast to similar studies
made inmorematureAPI domains, such asMobileDevelopment [26, 27, 39, 40, 310]
and Web Development [357]. Here, API Usage (B-1) is much more frequently
discussed, followed by Conceptual (B-5), Discrepancy (B-2) and Errors (B-3). We
argue in the following section that an improved developer understanding can be
achieved by educating them about the IWS lifecycle and the ‘whole’ system that
wraps such services.

In the Android study API usage questions (B-1) were the highest category
(28.93% compared to 22.29% in our study). As stated in the analysis of the Error
questions this discrepancy could be due to the maturity of the domain. However,
another explanation could be the scope of the two individual studies. Beyer et al. [40]
used a broad search strategy consisting of posts tagged Android. This search term
fetches issues related to the entire Android platform which is significantly larger
than searching for computer vision APIs using 229 search terms. As a consequence
of more posts and more APIs there would be use cases resulting in additional posts
related to API Usage (B-1).

Applying existing SO taxonomies allowed us to better understand the distribution
of the issues across different domains. In particular, the issues raised around IWSs
appear to be primarily due to poor documentation, or insufficient explanation around
errors and limitations. Hence, many of the concerns could be addressed by adding
more details to the end-point descriptions, and by providing additional information
around how these services are designed to work.

5.6.2 The Developer’s Learning Approach

In this subsection, we offer an explanation as to why developers are complaining
about certain things when trying to use IWSs on SO (RQ1), as characterised through
the use of prior SO classification frameworks (RQ2). This is described through
the theoretical lenses of two learning taxonomies: Bloom’s context complexity and
intellectual ability taxonomy, and the Structure of the Observed Learning Outcome
(SOLO) taxonomy (i.e., the nature by which developer’s learn). We argue that the
issues with using IWSs relating to the lower-levels of these learning taxonomies
are easily solvable by slight fixes and improvements to the documentation of these
services. However, the higher dimensions of these taxonomies demand far more
rigorous mitigation strategies than documentation alone (potentially more structured
education). Thus, many of the questions posted are fromdeveloperswho are learning
to understand the domain of IWSs and AI, and (hence) both SOLO and Bloom’s
taxonomies are applicable for this discussion—as described belowwithin the context
of our domain—as pedagogical aides.

5.6 Discussion 95

5.6.2.1 Bloom’s Taxonomy

The cognitive domain under Bloom’s taxonomy [45] consists of six objectives.
Within the context of IWSs, developers are likely to ask questions due to causal links
that exist in the following layers of Bloom’s taxonomy: (i) knowledge, where the
developer does not remember or know of the basic concepts of computer vision and
AI (in essence, they may think that AI is as smart as a human); (ii) comprehension,
where the developer does not understand how to interpret basic concepts, or they
are mis-understanding how they are used in context; (iii) application, where the
developer is struggling to apply existing concepts within the context of their own
situation; (iv) analysis, where the developer is unable to analyse the results from IWSs
(i.e., understand response objects); (v) evaluation, where the developer is unable to
evaluate issues and make use of best-practices when using IWSs; and (vi) synthesise,
where the developer is posing creative questions to ask if new concepts are possible
with CVSs.

5.6.2.2 SOLO Taxonomy

The SOLO taxonomy [41] consists of five levels of understanding. The causal
links behind the SO questions we have found relate to the following layers of the
SOLO taxonomy: (i) pre-structural, where the developer has a question indicating
incompetence or has little understanding of computer vision; (ii) uni-structural,
where the developer is struggling with one key aspect (i.e., a simple question about
computer vision); (iii) multi-structural, where the developer is questioning multiple
concepts (independently) to understand how to build their system (e.g., system
integration with the IWS); (iv) relational, where the developer is comparing and
contrasting the best ways to achieve something with IWSs; and (v) extended abstract,
where the developer poses a question theorising, formulating or postulating a new
concept within IWSs.

5.6.2.3 Aligning SO taxonomies to Bloom’s and SOLO taxonomies

To understand our findings with the lenses of pedagogical aids, we aligned Tax-
onomies A and B to Bloom’s and the SOLO taxonomies for a random sample of 50
issues described in Section 5.4.3.1. To do this, we reviewed all 50 of these SO posted
questions and applied both the Bloom and SOLO taxonomies. The primary author
assigned each of the 50 questions a level within the Bloom and SOLO taxonomies,
removed out noise (i.e., false positive posts of no relevance to IWSs) and unassigned
dimensions from reliability agreement, and then compared the relevant dimensions
of Taxonomy A and B dimensions (not sub-categories). The comparison of align-
ments of posts to the five SOLO dimensions and six Bloom dimensions are shown
in Figure 5.4. We acknowledge that this is only an approximation of the current
state of the developer’s understanding of IWSs. This early model will require further
studies to perform a more thorough analysis, but we offer this interpretation for early
discussion.

As shown in Figure 5.4, the bulk of the posts fall in the lower constructs of

96 Interpreting Pain-Points in Computer Vision Services

Table 5.2: Example Alignments of SO posts to Bloom’s and the SOLO taxonomy.

Issue Quote Bloom SOLO

“I’m using Microsoft Face API for a small project and I was
trying to detect a face inside a .jpg file in the local system (say,
stored in a directory D:\Image\abc.jpg)... but it does not
work.” [474]

Knowledge Pre-Structural

“The problem is that the response JSON is rather big and con-
fusing. It says a lot about the picture but doesn’t say what the
whole picture is of (food or something like that).” [454]

Comprehension Uni-Structural

“The bounding box around individual characters is sometimes
accurate and sometimes not, often within the same image. Is
this a normal side-effect of a probabilistic nature of the vision
algorithm, a bug in the Vision API, or of course an issue with
how I’m interpreting the response?” [461]

Comprehension Multi-Structural

“I’m working on image processing. SO far Google Cloud Vision
and Clarifai are the best API’s to detect objects from images
and videos, but both API’s doesn’t support object detection from
360 degree images and videos. Is there any solution for this
problem?” [468]

Application Uni-Structural

“Before I train Watson, I can delete pictures that may throw
things off. Should I delete pictures of: Multiple dogs, A dog with
another animal, A dog with a person, A partially obscured dog,
A dog wearing glasses, Also, would dogs on a white background
make for better training samples? Watson also takes negative
examples. Would cats and other small animals be good negative
examples?” [466]

Analysis Relational

Bloom’s and the SOLO taxonomy. This indicates that modification to certain doc-
umentation aspects can address many of these issues. For example, many issues
can be ratified with better descriptions of response data and error messages: “I was
exploring google vision and in the specific function ‘detectCrops’, gives me the crop
hints. what does this means exactly?” [469]; “I am a making a very simple API call
to the Google Vision API, but all the time it’s giving me error that ‘google.oauth2’
module not found.” [484]

However, and more importantly, the higher-construct questions ranging from
the middle of the third dimensions on are not as easily solvable through improved
documentation (i.e., apply and multi-structural) which leaves 34.74% (Bloom’s)
and 11.84% (SOLO) unaccounted for, resolvable only through improved education
practices.

5.6.3 Implications

5.6.3.1 For Researchers

Investigate the evolution of post classification Analysing how the distribution of
the reported issues changes over time would be an important study. This study could
answer questions such as ‘Does the evolution of IWSs follow the same pattern as
previous software engineering trends such as mobile app or web development?’ As
with any new emerging field, it is key to analyse how developers perceive such issues
over time. For instance, early issues with web or mobile app development matured

5.6 Discussion 97

35
.7
9%

29
.4
7%

30
.5
3%

4.
21
%

K
no

w
le
dg

e

C
om

pr
eh

en
si
on

A
pp

lic
at
io
n

A
na

ly
si
s

57
.3
7%

30
.7
9%

5.
26
%

6.
58
%

Pr
e-
St
ru
ct
ur
al

U
ni
-S
tr
uc

tu
ra
l

M
ul
ti-
St
ru
ct
ur
al

Re
la
tio

na
l

Figure 5.4: Alignment of Bloom (Orange) and SOLO (Blue) taxonomies against Taxonomy
A and B dimensions against all 213 classifications made in the random sample of 50 posts.

as their respective domain matured, and we would expect similar results to occur
in the IWSs space. Future researchers could plan for a longitudinal study, such as
a long-term survey with developers to gather their insights in this evolving domain,
reviewing case studies of projects that use intelligent web services from now into
the future, or re-mining SO at a later date and comparing the results to this study.
This will help assess evolving trends and characteristics, and determine how and if
the nature of the developer’s experience with IWSs (and AI in general) changes with
time.

Investigate the impact of technical challenges onAPI usage As discussed above,
IWSs have characteristics that may influence API usage patterns and should be
investigated as a further avenue of research. Further mining of open source software
repositories that make use of IWSs could be assessed, thereby investigating if API
patterns evolve with the rise of AI-based applications.

5.6.3.2 For Educators

Education on high-level aspects of IWSs As demonstrated in our analysis of their
SO posts, many developers appear to be unaware of the higher-level concepts that
exist within the AI and ML realm. This includes the need to pre- and post-process
data, the data dependency and instability that exists in these services, and the specific
algorithms that empower the underlying intelligence and hence their limitations and
characteristics. However, most developers don’t seem to complain about these factors
due to the lack of documentation (i.e., via Taxonomy A). Rather, they are unaware
that such information should be documentation and instead ask generalised and open
questions (i.e., via Taxonomy B). Thus, documentation improvements alone may not
be enough to solve these issues. This results in uncertainty during the preparation
and operation (usage) of such services. Such high-level conceptual information is
currently largely missing in developer documentation for IWSs. Furthermore, many

98 Interpreting Pain-Points in Computer Vision Services

of the background ML and AI algorithm information needed to understand and use
intelligent systems in context are built within data science (not software engineering)
communities. A possible road-map to mitigate this issue would be the development
of a software engineer’s ‘crash-course’ in ML and AI. The aim of such a course
would encourage software engineers to develop an appreciation of the nuances and
the inherent risks and implications that comes with using IWSs. This could be
taught at an undergraduate level to prepare the next generation of developers of a
‘programming 2.0’ era. However, the key aspects and implications that are presented
with AI would need to be well-understood before such a course is developed, and
determining the best strategy to curate the content to developers would be best left
to the software engineering education domain. Further investigation in applying
educational taxonomies in the area (such as our attempts to interpret our findings
using Bloom’s and the SOLO taxonomies) would need to be thoroughly explored
beforehand.

5.6.3.3 For Software Engineers

Better understanding of intelligent API contextual usage Our results show that
developers are still learning to use these APIs. We applied two learning perspectives
to interpret our results. In applying the two pedagogical taxonomies to our findings,
we see that most issues seem to fall into the pre-structural and knowledge-based
categories; little is asked of higher level concepts and a majority of issues do not
offer complex analysis from developers. This suggests that developers are struggling
as they are unaware of the vocabulary needed to actually use such APIs, further
reinforcing the need for API providers to write overview documentation (as noted in
prior work [88]) and not just simple endpoint documentation. This said, improved
documentation isn’t always enough—as suggested by our discussion in Section 5.6.2,
software engineers should explore further education to attain a greater appreciation
of the nuances of ML when attempting to use these services.

5.6.3.4 For Intelligent Service Providers

Clarify use cases for IWSs Inspecting SO posts revealed that there is a level of
confusion around the capabilities of different IWSs. This needs to be clarified in
associated API documentation. The complication with this comes with targeting
the documentation such that software developers (who are untrained in the nuances
of AI and ML as per Section 5.6.3.2) can to digest it and apply it in-context to
application development.

Technical domain matters More needs to be provided than a simple endpoint
description as conventional APIs offer by describing the whole framework by which
the endpoint sits, giving further context. This said, compared to traditional APIs,
we find that developers complain less about the documentation and more about
shallower issues. All expected pre-processing and post-processing needs to be
clearly explained. A possible mitigation to this could be an interactive tutorial that
helps developers fully understand the technical domain using a hands-on approach.

5.7 Threats to Validity 99

For example, websites offer interactive Git tutorials7 to help developers understand
and explore the technical domain matters under version control in their own pace.

Clarify limitations API developers need to add clear limitations of the existing
APIs. Limitations include list of objects that can be returned from an endpoint. We
found that the cognitive anchors of how existing, conventional API documentation
is written has become ‘ported’ to the computer vision realm, however a lot more
overview documentation than what is given at present (i.e., better descriptions of
errors, improved context of how these systems work in etc.) needs to be given. Such
documentation could be provided using interactive tutorials.

5.7 Threats to Validity

5.7.1 Internal Validity

As detailed in Section 5.4.3.1, TaxonomiesA andB present slight and fair agreement,
respectively, when inter-rater reliability was applied. The nature of our disagree-
ments largely fell due to the subjectivity in applying either taxonomies to posts.
Despite all coders agreeing to the shared interpretation of both taxonomies, both
taxonomies are subjective in their application, which was not reported by either
Aghajani et al. or Beyer et al.. In many cases, multi-label classification seemed ap-
propriate, however both taxonomies use single-label mapping which we find results
in too much subjectivity. This subjectivity, therefore, ultimately adversely affects
inter-rater reliability (IRR) analysis. Thus, a future mitigation strategy for similar
work should explore multi-label classification to avoid this issue; Beyer et al., for
example, plan for multi-label classification as future work. However, these studies
would need to consider the statistical challenges in calculating multi-rater, multi-
label IRR for thorough reliability analysis in addressing subjectivity. The selection
of SO posts used for our labelling, chiefly in the subjectivity of our classifications, is
of concern. We mitigate this by an extensive review process assessing the reliability
of our results as per Section 5.4.3.1. The classification of our posts into the SOLO
and Bloom’s taxonomies was performed by the primary author only, and therefore
no inter-rater reliability statistics were performed. However, we used these peda-
gogy related taxonomies as a lens to gain an additional perspective to interpret our
results. Future studies should attempt a more rigorous analysis of SO posts using
Bloom’s and SOLO taxonomies. We only aligned posts to one category for each
taxonomy and did not align these using multi-label classification. This brings more
complexity to the analysis, and our attempts to repeat prior studies’ methodologies
(see Section 5.3). Multi-label classification for IWSs SO posts is an avenue for future
research.

7For example, https://learngitbranching.js.org.

https://learngitbranching.js.org

100 Interpreting Pain-Points in Computer Vision Services

5.7.2 External Validity

While every effort was made to select posts from SO relevant to CVSs, there are
some cases where we may have missed some posts. This is especially due to the
case where some developers mis-reference certain IWSs under different names (see
Section 5.4.2.1).

Our SOLO and Bloom’s taxonomy analysis has only been investigated through
the lenses of IWSs, and not in terms of conventional APIs (e.g., Andriod APIs).
Therefore, we are not fully certain how these results found would compare to other
types of APIs. Two existing SO classification taxonomies were used rather than
developing our own. We wanted to see if previous SO taxonomies could be applied
to IWSs before developing a new, specific taxonomy, and these taxonomies were
applied based on our interpretation (see Section 5.4.2.4) and may not necessarily
reflect the interpretation of the original authors. Moreover, automated techniques
such as topic modelling were not utilised as we found these produce descriptive
classifications only (see Section 5.3). Hence, manual analysis was performed by
humans to ensure categories could be aligned back to causal factors. Only English-
speaking IWSs were selected; the applicability of our analysis to other, non-English
speaking services may affect results. Use of computer vision in this study is an
illustrative example to focus on one area of the IWSs spectrum. While our narrow
scope helps us obtain more concrete findings, we suggest that wider issues exist in
other IWS domains may affect the generalisability of this study, and suggest future
work be explored in this space.

5.7.3 Construct Validity

Some questions extracted from SO produced false positives, as mentioned in Sec-
tions 5.4.2.1, 5.4.2.3 and 5.5. However, all non-relevant posts were marked as noise
for our study, and thus did not affect our findings. Moreover, SO is known to have
issues where developers simply ask basic questions without looking at the actual
documentation where the answer exists. Such questions, although down-voted, were
still included in our data-set analysis, but as these were SO few, it does not have a
substantial impact on categorised posts.

5.8 Conclusions

CVSs offer powerful capabilities that can be added into the developer’s toolkit via
simple RESTful APIs. However, certain technical nuances of computer vision
become abstracted away. We note that this abstraction comes at the expense of a full
appreciation of the technical domain, context and proper usage of these systems. We
applied two recent existing SO classification taxonomies (from 2018 and 2019) to see
if existing taxonomies are able to fully categorise the types of complaints developers
have. IWSs have a diverging distribution of the types of issues developers ask
when compared to more mature domains (i.e., mobile app development and web
development). Developers are more likely to complain about shallower, simple

5.8 Conclusions 101

debugging issues without a distinct understanding of the AI algorithms that actually
empower the APIs they use. Moreover, developers are more likely to complain about
the completeness and correctness of existing IWS documentation, thereby suggesting
that the documentation approach for these services should be reconsidered. Greater
attention to education in the use of AI-powered APIs and their limitations is needed,
and our discussion offered in Section 5.6.2 motivates future work in resolving these
issues in the software engineering education space.

CHAPTER6

Ranking Computer Vision Service Issues using Emotion†

Abstract Software developers are increasingly using intelligent web services to implement
‘intelligent’ features. However, studies show that incorporating machine learning into an
application increases technical debt, creates data dependencies, and introduces uncertainty
due to their non-deterministic behaviour. We know very little about the emotional state of
software developers who have to deal with such issues; a reduced developer experience when
using such services results in productivity loss. In this paper, we conduct a landscape analysis
of emotion found in 1,425 Stack Overflow questions about computer vision services. We
used an existing emotion classifier, EmoTxt, and manually verified its classification results.
We found that the emotion profile varies for different types of questions, and a discrepancy
exists between automatic and manual emotion analysis due to subjectivity.

6.1 Introduction

Recent advances in artificial intelligence (AI) have provided software engineers
with new opportunities to incorporate complex machine learning (ML) capabilities,
such as computer vision, through cloud based intelligent web services (IWSs).
These new set of services, typically offered as API calls are marketed as a way
to reduce the complexity involved in integrating AI-components. However, recent
work shows that software engineers struggle to use these IWSs [92]. Furthermore,
the accompanying documentation fails to address common issues experienced by
software engineers and often, engineers resort to online communication channels,
such as Stack Overflow (SO), to seek advice from their peers [92].

†This chapter is originally based on A. Cummaudo, U. Graetsch, M. Curumsing, S. Barnett,
R. Vasa, and J. Grundy, “Manual and Automatic Emotion Analysis of Computer Vision Service
Pain-Points,” in Proceedings of the Sixth International Workshop on Emotion Awareness in Software
Engineering. Virtual Event, USA: IEEE, 2021, In Review. Terminology has been updated to fit this
thesis.

103

104 Ranking Computer Vision Service Issues using Emotion

While seeking advice on the issues, software engineers tend to express their
emotions (such as frustration or confusion) within the questions. Emotions with
negative sentiment have been shown to have adverse effects to developer productivity,
as shown in [386], and thus—recognising the value of considering emotions—other
literature has investigated how emotions are expressed by software developers within
communication channels [271] including SO [69, 264]. The broad motivation
of these works is to generally understand the emotional landscape and improve
developer productivity [129, 250, 271]. However, previous works have not directly
focused on the nature of emotions expressed in questions related to IWSs. We
also do not know if certain types of questions express stronger emotions. Thus,
understanding the emotional state of developers facing issues with these services
can help shed light into prioritised choices of these services, avoid common issues
which are the most frustrating (and thus highest productivity loss), and ultimately
improve the developer experience (DevX) whilst using these services.

The machine-learnt behaviour of these cloud IWSs is typically non-deterministic
and, given the dimensions of data used, their internal inference process is hard to
reason about [89]. Compounding the issue, documentation of these cloud systems
does not explain the limits, nor how they were created (esp. information about the
datasets used to train them). This lack of transparency makes it difficult for even
senior developers to properly reason about these systems, so their prior experience
and anchors do not offer sufficient support [92]. In addition, adding machine
learned behaviour to a system incurs ongoing maintenance concerns [322]. There is
a need to better understand emotions expressed by developers; as reduced negative
emotions whilst writing software can improve productivity [386] and DevX, we can
use such insight to help cloud vendors make improvement which would generate
the most value, e.g., overall service/API design, documentation of the services or
clarification in error messages.

In our recent work [92], we explored the types of pain-points developers face
when using IWSs through a general analysis of 1,425 SO questions using an existing
SO question type classification taxonomy [40] (presented in Table 6.1). This study
extends this body of work by considering the emotional state expressed within
those same pain-points. We identify the emotion(s) in each SO question (if any),
and investigate if the distribution of these emotions is similar across the various
types of questions. To automate classification of these emotions, we used EmoTxt,
an emotion classifier included in the EMTk toolkit for emotion recognition from
text [68, 69, 264]. EmoTxt has been trained and built on SO posts using the emotion
classification model proposed by Shaver et al. [328]. Additionally, we manually
classified a sample of 300 posts using the same guidelines used to train EmoTxt,
provided in [264] (based on [328]). The key contributions of this study are:

• Identifying that the distribution of emotions is different across the taxonomy
of issues.

• A deeper analysis of the results obtained from the EmoTxt classifier suggests
that the classification model needs further refinement. Love and joy, the
least expected emotions when discussing API issues, are visible across all
categories.

6.2 Motivation 105

• In order to promote future research and permit replication, wemake our dataset
publicly available.1

The paper is structured as follows: Section 6.2 provides an overview on prior
work surrounding the classification of emotions from text; Section 6.3 describes our
research methodology; Section 6.4 presents the results from the EmoTxt classifier;
Section 6.5 provides a discussion of the results obtained; Section 6.6 outlines the
threats to validity; Section 6.7 presents the concluding remarks.

6.2 Motivation

Developing software raises various emotions in developers at different times, includ-
ing enjoyment, frustration, satisfaction, even fear and rage [68, 271, 386, 387]

Studies on the role of emotions within the workplace, including the software
engineering domain, have established a correlation between emotion and productiv-
ity [386, 387]. Negative emotions impact productivity negatively, whilst positive
emotions impact positively. The exception is anger, which was found to generate a
motivating state to “try harder” in a subset of developers (i.e., 13% of respondents in
Wrobel’s study [386] responded that anger had a positive impact to make developers
more motivated. However, overall, anger was still found to have an negative impact
on productivity). In recent years, researchers have focused on identifying the emo-
tions expressed by software engineers within communication channels such as JIRA
to communicate with their peers [129, 250, 264, 271]. Most of these studies make
use of one of the well established emotion classification framework during their
emotion mining process. Murgia et al. [250] and Ortu et al. [271] investigated the
emotions expressed by developers within an issue tracking system, such as JIRA, by
labelling issue comments and sentences written by developers using Parrott’s emo-
tion framework. Gachechiladze et al. [129] applied the Shaver’s emotion framework
to detect anger expressed in comments written by developers in JIRA.

The Collab team [68, 264] extended the work done by Ortu et al. [271] and
developed an emotion mining toolkit, EmoTxt [68] based on a gold standard dataset
collected from 4,800 SO posts (of type questions, question comments, answers and
answer comments). 12 graduate computer science students were recruited as raters
to manually annotate these 4,800 SO posts using the Shaver’s emotion model which
consists of a tree-structured, three level, hierarchical classification of emotions. The
top level consists of six basic emotions namely, love, joy, anger, sadness, fear and
surprise [328]. The work conducted by the Collab team is most relevant to our
study since their focus is on identifying emotion from SO posts and their classifier
is trained on a large dataset of SO posts. Unlike their study, we focus on a single
domain (computer vision services or CVSs) to analysing emotion, as opposed to
a wide spectrum of domains. Further, we validate our work with a smaller group
of people—diverse in age and cultural backgrounds—to gather a wider sense of
emotion classification (i.e., due to the subjective nature of emotions). Lastly, in this

1See https://bit.ly/2RIGQ2N.

https://bit.ly/2RIGQ2N

106 Ranking Computer Vision Service Issues using Emotion

Table 6.1: Descriptions of dimensions from our interpretation of Beyer et al.’s SO question
type taxonomy.

Dimension Our Interpretation

API usage Issue on how to implement something using a specific component
provided by the API

Discrepancy The questioner’s expected behaviour of the API does not reflect the
API’s actual behaviour

Errors. Issue regarding an error when using the API, and provides an excep-
tion and/or stack trace to help understand why it is occurring

Review The questioner is seeking insight from the developer community on
what the best practices are using a specific API or decisions they
should make given their specific situation

Conceptual The questioner is trying to ascertain limitations of the API and its
behaviour and rectify issues in their conceptual understanding on the
background of the API’s functionality

API change Issue regarding changes in the API from a previous version
Learning The questioner is seeking for learning resources to self-learn further

functionality in the API, and unlike discrepancy, there is no specific
problem they are seeking a solution for

work, our intent is to analyse the questions only (not all types of posts) to understand
the frustration faced at the time the developers face an issue with the service.

6.3 Methodology

6.3.1 Dataset

This paper extends our existing work by utilising our previously curated dataset
of 1,425 SO questions on four popular computer vision service (CVS) providers:
Google Cloud Vision, Amazon Rekognition, Azure Computer Vision, and IBM
Watson. Each question is assigned a question type per the taxonomy prescribed in
Beyer et al. [40] (for reference, we provide our interpretation of this taxonomywithin
Table 6.1). For further details on how this dataset was produced, we refer to the
original paper [92].

After performing additional cleansing of this dataset (to remove noise), we
performed both automatic and manual emotion classification based on Shaver et al.’s
emotion taxonomy [328]. Automatic emotion detection was performed using using
the EmoTxt classifer, and manual classification was performed by three co-authors
on a sample of 300 posts. We calculated the inter-rater reliability between EmoTxt
and our manually classified questions in two ways: (i) to see the overall agreement
between the three raters in applying the Shaver et al. emotions taxonomy, and
(ii) to see the overall agreement with EmoTxt’s classifications. Additional dataset
cleansing and results frommanual and automatic emotion classification are available
online at https://bit.ly/2RIGQ2N.

https://bit.ly/2RIGQ2N

6.3 Methodology 107

6.3.2 Additional Dataset Cleansing

As described in [92], the 1,425 questions extracted were split into 5 random samples.
The first author classified the first sample of 475 questions, with three other research
assistants2 classifying the remaining 900 questions over samples of 300 posts. The
remaining 50 posts were used for reliability analysis, whereby these 50 posts were
classified nine times by various researchers in our group, resulting in a total of 450
classifications for the 50 posts.

Each question was classified a question issue type (as described by Table 6.1) or,
where the question was a false-positive resulting from our original search query, we
flagged the post as ‘noise’ and removed them from further classification. 186 posts
were flagged as noise, with a total of 1,239 were successfully assigned a question
type.

To remove duplicity resulting from the reliability analysis, we applied a ‘majority
rules’ technique to each of these 50 posts, in which the issue type most consistent
amongst the nine raters per questionwouldwin. As an example, three raters classified
a post as API Usage, one rater classified the same post as a Review question and five
raters classified the post as Conceptual. Therefore, the question was assigned as a
Conceptual question. However, in four cases, there was a tie in the majority. To
resolve this, we used the issue type that was most assigned within the 50 posts. For
example, in another question, three raters each assigned the same post asDiscrepancy
and Errors, while the remaining three three raters flagged the post as noise. In this
case, the tie was resolved down to Errors as this classification received 72 more
votes than Discrepancy and 88 more votes than noisy posts across all classifications
made in the sample of 50 posts.

6.3.3 Automatic Emotion Classification

After all questions had been classified an issue type, we then piped in the body
of each question into a script developed to remove all HTML tags, code snippets,
blockquotes and hyperlinks, as suggested by Novielli et al. [264]. We replicated and
extended the study conducted by Novielli et al. [264] on our dataset consisting of
questions only. We started with a file containing the 1,239 non-noise SO questions,
each with its associated question type given in Table 6.1. We pre-processed this file
by extracting the question ID and body text to meet the format requirements of the
EmoTxt classifier [68]. This classifier was used as it was trained on SO posts as
discussed in Section 6.2. We ran the classifier for each emotion as this was required
by EmoTxt model. This resulted in six output prediction files (one file for each
emotion: Love, Joy, Surprise, Sadness, Fear, Anger), which referenced a question
ID and a binary value indicating emotion presence. We then merged these emotion
prediction files into an aggregate file with question text and Beyer et al.’s question
type classifications that was performed in [92].

2Software engineers in our research group with at least 2 years industry experience

108 Ranking Computer Vision Service Issues using Emotion

28
7

20
7 38

3

20
3

12
5

12 22

0
100
200

300
400

API U
sa

ge

Disc
rep

an
cy

Erro
rs

Rev
iew

Conc
ep

tu
al

API C
han

ge

Lea
rn

ing

Figure 6.1: Distribution of the types of questions raised.

6.3.4 Manual Emotion Classification

In order to evaluate and also better understand the process used by EmoTxt to classify
emotions, we randomly sampled 300 SO posts of various emotion annotations result-
ing from EmoTxt. Each of these 300 posts were assigned to three raters (co-authors
of this paper) who individually reviewed the question text against each of the six
basic emotions [328] and flag an emotion if deemed present, otherwise flagging No
Emotion instead. Each rater reviewed each question against the guidelines provided
in [264]. We then conducted reliability analysis of all three rater’s results to measure
the similarity in which independent raters classified each emotions against each SO
post. This was done by calculating Cohen’s Kappa (�^) [82] to measure the average
inter-rater agreement between pairs of raters, and then Light’s Kappa (!^) [216]
to measure the overall agreement amongst the three raters. Results are reported in
Table 6.3.

6.3.5 Comparing Manual and Automatic Classification Methods

The next step involved comparing the ratings of the 300 SO posts that were manually
annotated by the three raters against the results obtained for the same set of 300 SO
posts from the EmoTxt classifier. We separated the classifications per emotion and
calculated �^ for each rater against EmoTxt, and then !^ to measure the overall
agreement. The three raters then met together to compare and discuss the ratings
from the EmoTxt classifier against the manual ratings. Results are reported in
Table 6.3.

6.4 Findings

Figure 6.1 displays the overall distribution of question types from the 1,239 posts
after applying noise-filtering and majority ruling to our original 1,425 questions
extracted. It is evident that developers ask issues predominantly related to API errors
when using CVSs and, additionally, how they can use the API to implement specific
functionality. There are few questions related to version issues or self-learning. For
further discussion into these results, we refer to [92].

Table 6.2 displays the frequency of questions that were classified by EmoTxt
when compared to our assignment of question types. Figure 6.2 presents the emotion

6.4 Findings 109

Table 6.2: Frequency of emotions per question type.

Question Type Fear Joy Love Sadness Surprise Anger No Emotion Total

API Usage 47 22 34 17 59 13 136 328
Discrepancy 35 12 17 7 46 20 105 242
Errors 73 34 23 21 47 23 207 428
Review 35 16 15 16 42 14 95 233
Conceptual 27 9 10 8 21 5 61 141
API Change 4 2 2 1 1 1 5 16
Learning 3 4 2 0 4 0 11 24

Total 224 99 103 70 220 76 620 1412

data proportionally across each type of question. In total, 792 emotionswere detected
within the 1,239 non-noisy posts, and 620 questions where EmoTxt predicted No
Emotion for all the emotion classification runs. Of the 792 questions with emotion
detected, 114 questions had two emotions predicted, 28 questions had three emotions
detected, and one question3 had four emotions detected (Surprise, Sadness, Joy and
Fear).

No Emotionwas the most prevalent across all question types, which is consistent
with the findings of the Collab group during the training of the EmoTxt classifier.
Questions classified as API Change had the broadest distribution of emotions, with
EmoTxt reporting 31.25% of these types of questions as No Emotion, compared to
overall average of 42.10%. However, this is likely due to the low sample size of
API Change questions (with only 12 questions assigned this issue type). The next
highest set of emotive questions are found in the second and fourth largest samples
(Review at 203 posts, and API Usage at 287 posts); therefore, higher proportions of
emotion is not necessarily correlated to sample size.

Unsurprisingly, Discrepancy-based questions—indicative of the frustrations de-
velopers face when the API does something unexpected—had the highest proportion
of Anger detected, at 8.26%, compared to Anger’s mean of 4.77%. To our surprise,
Love (which we expected least by software developers when encountering issues)
was present across all of the different question types. On average, this was reported at
8.15%. The two highest emotions, by average, were Fear (` =16.77%)and Surprise
(` =14.82%). In contrast, to our surprise, the two least-detected emotions reported
by EmoTxt were Sadness (` =4.53%) and Anger (` =4.77%%). Joy and Love were
roughly the same, and fell in between the two proportion ends, with means of 8.85%
and 8.15%, respectively.

As shown in Table 6.3, results from our reliability analysis between human raters
indicated subjectivity in emotion interpretation. Guidelines of indicative strengths
of agreement are provided by Landis and Koch [211], where ^ ≤ 0.00 is poor
agreement, 0.00 < ^ ≤ 0.20 is slight agreement and 0.20 < ^ ≤ 0.40 is fair
agreement. Our assessments across the 300 questions indicate slight agreement for
Love, Surprise, Sadness, Anger and No Emotion, and fair agreement for Joy and
Fear. When combining human raters and EmoTxt, the inter-rater agreement was

3See http://stackoverflow.com/q/55464541.

http://stackoverflow.com/q/55464541

110 Ranking Computer Vision Service Issues using Emotion

Table 6.3: Inter-rater agreement between humans ('1..3) and EmoTxt (�) and indicative
guidelines of strength.

Emotion C^ (R1,R2) C^ (R1,R3) C^ (R2,R3) L^ (R1..3) C^ (R1,E) C^ (R2,E) C^ (R3,E) L^ (R1..3,E)

Love 0.30 Fair 0.17 Slight 0.04 Slight 0.17 Slight 0.37 Fair 0.27 Fair 0.05 Slight 0.20 Slight
Joy 0.21 Fair 0.16 Slight 0.57 Fair 0.31 Fair 0.1 Slight 0.07 Slight -0.01 Poor 0.18 Slight
Surprise 0.21 Fair 0.13 Slight 0.15 Slight 0.16 Slight 0.17 Slight 0.04 Slight 0.06 Slight 0.13 Slight
Sadness 0.11 Slight 0.05 Slight 0.01 Slight 0.05 Slight 0.09 Slight 0.04 Slight 0.02 Slight 0.05 Slight
Fear 0.19 Slight 0.22 Fair 0.36 Fair 0.26 Fair -0.02 Poor -0.06 Poor 0.01 Slight 0.12 Slight
Anger 0.19 Slight 0.19 Slight 0.07 Slight 0.15 Slight 0.13 Slight 0.16 Slight 0.03 Slight 0.13 Slight
No Emotion 0.30 Fair 0.16 Slight 0.09 Slight 0.18 Slight 0.25 Fair 0.06 Slight 0.04 Slight 0.15 Slight

slight across all emotions.

14% 14%
17%

15%
19%

25%

13%

7% 5% 8%
7% 6%

13%

17%10% 7% 5%
6% 7%

13%

8%5% 3% 5% 7% 6% 6%

18% 19%
11%

18%
15%

6%
17%

4% 8% 5% 6% 4% 6%

41% 43% 48%
41% 44%

31%
46%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

API U
sa

ge

Disc
rep

an
cy

Erro
rs

Rev
iew

Conc
ep

tu
al

API C
han

ge

Lea
rn

ing

No Emotion Fear Surprise Joy Love Anger Sadness

Figure 6.2: Proportion of emotions per question type.

6.5 Discussion

Our findings from the comparison between the manually annotated SO posts and the
automatic classification revealed substantial discrepancies. Table 6.4 provides some
sample questions4 from our dataset, with the Beyer et al. question classification type
noted with [&], the emotion(s) identified by EmoTxt within the text noted with [�],
and the emotion(s) classified by the three raters indicated with ['1..3]. The subset
of questions analysed by our three raters do not indicate the automatic (EmoTxt)
emotion, and uponmanual inspection of the text after poor results from our reliability
analysis, an introspection of the dataset sheds some light to the discrepancy.

For example, the first question in Table 6.4 shows no indication of Joy, but
EmoTxt classifies it to this emotion. Phrases like “I’m pretty sure...” could be the

4Questions located at https://stackoverflow.com/q/[ID].

6.5
D
iscussion

111

Table 6.4: Sample of various question types ([&]) against emotion(s) identified by EmoTxt ([�]) and the three raters (['1..3]).

Question ID and Quote Classifications

51444352: “I’m pretty sure I set up my IAM role appropriately (I literally attached the ComprehendFullAccess policy to the role) and the Cognito Pool was
also setup appropriately (I know this because I’m also using Rekognition and it works with the IAM Role and Cognito ID Pool I created) and yet every time
I try to send a request to AWS Comprehend I get the error... Any idea of what I can do in this situation?”

[&]: Errors
[�]: Joy
['1]: Surprise
['2]: Surprise
['3]: Anger

53117918: “Ok so I have been stuck here for about more than a week now and I know its some dumb mistake. Just can’t figure it out. I am working on a
project that is available of two platforms, Android & iOS. Its sort of a facial recognition app... Is there anything I need to change? Is there any additional
setup I need to do to make it work?Please let me know. Thanks.”

[&]: Discrepancy
[�]: Love, Surprise, Anger
['1]: Sadness, Anger
['2]: Sadness, Anger
['3]: Anger

52829583: “I was trying to make the google vision OCR regex searchable... it fails when there is the text of other languages.It’s happening because I have
only English characters in google vision word component as follows.As I can’t include characters from all the languages, I am thinking to include the inverse
of above... So where can I find ALL THE SPECIAL CHARACTERS WHICH ARE IDENTIFIED AS A SEPARATE WORD BY GOOGLE VISION? Trial and
error, keep adding the special characters I find is one option. But that would be my last option.”

[&]: Review
[�]: Anger
['1]: Joy, Anger
['2]: Anger
['3]: Surprise

50190527: “I am trying to perform OCR on pdf documents using google cloud vision API, i uploaded a pdf document into a cloud bucket and downloaded
the oauth key file and added it in the script as below. But when i run the file, i get the permission denined: 403 error, can anyone please give me instructions
on how to fix it, i did extensive google search and did not yield any results, i am surely missing something here... I have checked the older stack overflow
questions and the links provided in answers are not active anymore.Thanks in advance for your help.”

[&]: API Usage
[�]: No Emotion
['1]: Sadness
['2]: No Emotion
['3]: Anger

52126752: “I am trying to call google cloud vision api from xamarin C# android application code.I have set environment variable but still I was not able
to call api.So I decided to call it by passing credential json file but now I am getting error deserializing JSON credential datahere is my code”

[&]: Errors
[�]: Surprise
['1]: No Emotion
['2]: No Emotion
['3]: Anger

48145425: “I am Deploying Google cloud vision Ocr in My angular2 webapp. but i am getting many of the errors when i add this code in my webapp code.
please help me to sort out this.”

[&]: Errors
[�]: Fear
['1]: Fear
['2]: No Emotion
['3]: Sadness

112 Ranking Computer Vision Service Issues using Emotion

reason why poor classification occurred, where words like “pretty” are associated
with Joy, albeit in completely different context. It seems likely that the developer is
experiencing a confusing situation when the API throws unexpected errors; thus ['1]
and ['2] noting Surprise. Similarly, in the second question presented in Table 6.4,
EmoTxt classifies Love, Surprise, and Anger. It is difficult to find an element of love
or appreciation elsewhere in this context beyond the closing remarks: “Please let me
know. Thanks.”. Moreover, the disparity between EmoTxt and the agreed emotions
between the first two reviewers shows that EmoTxt cannot detect the frustration
(Anger) in the developer’s tone, which is evident in their opening sentence, “I have
been stuck here for about more than a week and I know it is some dumb mistake.”.

These results indicate that introspection into the behaviour and limitations of
the EmoTxt model is necessary. Our results indicate further work is needed to
refine the ML classifiers that mine emotions in the SO context. The question that
arises is whether the classification model is truly reflective of real-world emotions
expressed by software developers. As highlighted byCurumsing [94], the divergence
of opinions with regards to the emotion classification model proposed by theorists
raises doubts to the foundations of basic emotions. Most of the studies conducted in
the area of emotion mining from text is based on an existing general purpose emotion
framework from psychology [64, 264, 271]—none of which are finely tuned for the
software engineering domain.

6.6 Threats to Validity

6.6.1 Internal validity

The API Change and Learning question types were few in sample size (only 12 and
22 questions, respectively). The emotion proportion distribution of these question
types are quite different to the others. Given the low number of questions, the sample
is too small to make confident assessments. Furthermore, our assignment of Beyer
et al.’s question type taxonomywas single-label; a multi-labelled approachmaywork
better, however analysis of results would become more complex. A multi-labelled
approach would be indicative for future work.

6.6.2 External validity

EmoTxt was trained on questions, answers and comments, however our dataset
contained questions only. It is likely that our results may differ if we included other
discussion items, however we wished to understand the emotion within developers’
questions and classify the question based on the question classification framework
by Beyer et al. [40]. Moreover, this study has only assessed frustrations within
the context of a concrete domain; intelligent CVSs. The generalisability of this
study to other IWSs, such as natural language processing services, or conventional
web services, may be different. Furthermore, we only assessed four popular CVSs;
expanding the dataset to include more services, including non-English ones, would
be insightful. We leave this to future work.

6.7 Conclusion 113

6.6.3 Construct validity

Some posts extracted from SO were false positives. Whilst flagged for removal, we
cannot guarantee that all false positives were removed. Furthermore, SO is known
to have questions that are either poorly worded or poorly detailed, and developers
sometimes ask questions without doing any preliminary investigation. This often
results in down-voted questions. We did not remove such questions from our dataset,
which may influence the measurement of our results.

6.7 Conclusion

We wanted to see how developers emotions are indicated in Stack Overflow (SO)
posts when using CVSs. We analysed 1,425 SO posts about CVSs for emotions
using an automated tool and then cross-checked our results manually. We found
that the distribution of emotion differs across the taxonomy of issues, and that the
current emotion model typically used in recent works is not appropriate for emo-
tions expressed within SO questions. Consistent with prior work [218], our results
demonstrate that ML classifiers for emotion are insufficient; human assessment is
required.

CHAPTER7

Using Emotion Classification Models against Stack Overflow†

Abstract Pre-trained artificial intelligence (AI) models are increasingly available as APIs
and tool-kits to software developers, making complex AI-enabled functionality available
via standard and well-understood methods. However, reusing such models comes with
risks relating to the lack of transparency of the model and training data bias, making it
difficult to confidently employ the toolkit in a new situation. Vendors are responding and
proposing artefacts such as model cards and datasheets to make models and their training
more transparent. But is this enough? As part of an empirical investigation determining if
a cloud-based intelligent web services (IWSs) was ready for production use, we processed
developer questions on Stack Overflow using a published pre-trained classifier that was
specifically tuned for the software engineering domain. In this paper, we present lessons
learnt from this automation effort. We found unexpected results which led us to delve into
model and training data—an option available to us because the information was available
for research. We found that, had a model card and datasheet been prepared, we could
have identified risks to our study much earlier on. However, model cards and datasheet
specifications are not yet mature enough and additional tools and processes are still required
to confirm a decision whether a trained model can be reused with confidence.

7.1 Introduction

Pre-trained artificial intelligence (AI) models are increasingly available to software
developers either directly or wrapped into web-based components and toolkits; for
example, Google’s Cloud AI1 or Microsoft Azure’s Cognitive Services.2 The grand

†This chapter is originally based on U. M. Graetsch, A. Cummaudo, M. K. Curumsing, R. Vasa,
and J. Grundy, “Using Pre-Trained Emotion Classification Models against Stack Overflow Questions,”
in Proceedings of the 33rd International Conference on Advanced Information Systems Engineering.
Melbourne, VIC, Australia: Springer, 2021, In Review. Terminology has been updated to fit this thesis.

1https://bit.ly/2VheoH2 last accessed 29 Nov 2020.
2https://bit.ly/37jiwvU last accessed 29 Nov 2020.

115

https://bit.ly/2VheoH2
https://bit.ly/37jiwvU

116 Using Emotion Classification Models against Stack Overlow

promise is the rapid creation of AI-infused functionality into end-applications as
developers can simply reuse models instead of training them from scratch, as train-
ing is laborious and resource-intensive [297]. Vendors do provide usage guidelines,
component documentation, code examples and a compelling marketing narrative,
although the limitations and risks are not as well-presented in official documenta-
tion [89, 92]. In practice, developers and technical architects study issue trackers
and online forums such as Stack Overflow (SO) to assess and inform their decisions.
Multiple studies highlight the value and insights to be gained from these online
forums [2, 92, 340].

This work began as an investigation determining whether these services are
production-ready for certain industry use cases (e.g., computer vision). Inspired by
the possibility of finding insight from content in the online forums, we wanted to
analyse the issues raised on SO by developers that relate to computer vision-based
intelligent web services (IWSs), i.e., computer vision services (CVSs). Although
manual analysis is feasible for this task, we decided to use a pre-trained natural lan-
guage processing technique for amore automated approach to understand developers’
frustration. This was motivated by (i) the gain from automation—specifically having
an efficient, repeatable process and, more importantly, (ii) to learn about potential
issues when using pre-trained models in a related, but new, contexts. Section 7.2
explains this in further detail.

In our analysis, beyond the direct summative aspects, we focused on emotions
within the content posed on the online forums. This was motivated by work done
by Wrobel [386], who suggested that some negative emotions can pose risk to
developer productivity. However, while anger is a negative emotion, it can (in some
people) generate a motivating response [386]. Our goal was to determine whether
negative emotions (and specifically, which negative emotions) are the predominant
theme within questions on these forums regarding IWSs. The natural expectation
is that developers would not pose questions unless they needed support and help,
and we expected to find a high prevalence of anger-based emotion in the questions
(frustration that the service is not working as they think should), and perhaps surprise
at any unexpected behaviour. Similarly, we would expect the tone of responses to
questions to be neutral, and hopefully supportive. Our focus, however, remains on
the questions posed.

Our findings, elaborated further in Section 7.4, were surprising. While the pre-
trained model we selected was trained specifically on SO and tuned for emotions [68,
264], our results show that 14% issueswere considered by themodel with the positive
emotions of Love or Joy, and only a surprisingly small amount (5%) fell into Anger
(or frustration). A closer examination using multiple human reviewers showed an
even more interesting insight: human reviewers did not agree with the automated
machine classification, and worse, the reviewers did not agree with each other,
suggesting that training machines with a consistent set of labels is a non-trivial
exercise. Finally, we reflected whether the pre-trained classifier could be better
documented. We found vendors are recognising these challenges and are offering
solutions to better document their models [135, 247]. However, when we looked
into the information captured by these solutions, we found their specification to be

7.2 Motivation 117

very broad and additional guidance for completion is required to help evaluate risks
faced in an industry context (discussed in Section 7.5).

7.2 Motivation

The initial context of our work was to explore reusable cloud-based CVSs,3 arising
for use in an industry context on a client project. Our prior research has identified
growth in questions on SO relating to such services [92], thus enabling us to explore
a rich dataset about developers’ concerns about these pre-packaged and cloud-based
AI-components.

Aware that productivity of software developers can be adversely impacted by
negative emotion [386], we decided to explore the emotions within our dataset
expressed by developers through the questions they pose on SO. Our intent was
to identify whether developers are surprised, angry, frustrated, or overall positive
about using these CVSs (as expressed as emotions in their SO questions). This
was motivated by prior work, which shows that—despite their technical nature—SO
questions do exhibit emotion [68, 263]. Although we could have read these posts
manually, for consistency, repeatability, and efficiency, we chose to automate this
process by utilising an emotion-aware text classification system trained specifically
on SO data [264]. Our expectation was that we would gain some insight into
the questions through the emotions, and we hypothesised that we would see a high
proportion of surprise (i.e., the API does not work as expected) and anger (frustration
due to mismatched expectations).

To permit replication, the raw results produced from this case study are made
available online at https://bit.ly/3eSp7ku.

7.3 Method

We selected a classifier included in the EMTk toolkit that was specifically trained
for emotional text classification in the software engineering domain [68]. The
EMTk toolkit is available with a fully labelled training dataset [264], permitting
reuse and analysis of internals. The classifier is based on Shaver et al.’s emotional
hierarchy model [328] and performs binary classifications against text data provided
in input files and an input parameter designating the emotion to be classified—one
of Love, Joy, Surprise, Fear, Sadness or Anger. The classifier utilises support vector
machine (SVM) classification and a Distributional Semantic Model (DSM) built
using Word2Vec. This model is trained on 20 million SO posts. The DSM approach
facilitates classification to take into consideration the surrounding context of the
word, in addition to the polarity of individual words [69].

As input for the classifier, we used a dataset of 1,425 SO questions restricted to
intelligent CVSs, available from Cummaudo et al. [92]. We ran the classifier with
the same input dataset for each of the six emotions. To cross-check classified output,
we manually annotated a random sample of 300 questions with zero or more of the

3Such as Google Cloud Vision, Azure Computer Vision, or Amazon Rekgonition

https://bit.ly/3eSp7ku

118 Using Emotion Classification Models against Stack Overlow

Table 7.1: Emotion classification frequencies.

Emotion Frequency Proportion

Love 103 7.2%
Joy 100 7.0%
Surprise 223 15.6%
Sadness 70 4.9%
Fear 224 15.7%
Anger 76 5.3%
No Emotion 622 43.6%

Table 7.2: Results from Inter-Rater Agreements.

Emotion Three Raters Three Raters + Classifier

Love 0.13 (slight) 0.19 (slight)
Joy 0.23 (fair) 0.13 (slight)
Surprise 0.15 (slight) 0.11 (slight)
Sadness -0.01 (poor) 0.00 (poor)
Fear 0.25 (fair) 0.07 (slight)
Anger 0.05 (slight) 0.04 (slight)
No Emotion 0.09 (slight) 0.10 (slight)

six emotions. Each of these 300 posts were assigned to three raters who individually
carried out the following three steps: (i) identify the presence of emotion(s); (ii) if
emotion(s) exists, classify the emotion(s) under one ormore of the six basic emotions
as per the Shaver framework. The coding guidelines provided by Novielli et al. [264]
were adhered to to assist with emotion classification per post. After collating each
rater’s results, we calculated a Fleiss’ Kappa (^) [120] as a measure of inter-rater
agreement per emotion for each of the three human raters (manual rating), using
the irr computational R package [130] per suggestions provided in [151]. Once
completed, the three raters discussed discrepancies between posts classified with
different emotion where agreement for that emotion was low, however we did not
change any emotions that were initially assigned as this would impact reliability of
our interpretation of Novielli et al. [264]’s guidelines. We then used the results from
the classifier as a ‘fourth’ automated rater, comparing the results with the manual
rating by calculating the agreement for each emotion and Fleiss’ Kappa for further
inter-rater agreement analysis.

Of the 1,425 SO questions, the classifier did not classify any emotion in 622 posts
(labelled No Emotion). The remaining posts were classified as: 224 posts as Fear,
223 as Surprise, 70 as Sadness, 103 as Love, 100 as Joy, and 76 asAnger. Some posts
were classified against two or more emotions, and as a result, the total proportions
do not add up to exactly 100%. See Table 7.1. Results from our inter-rater analysis
are reported in Table 7.2.

Guidelines of indicative strengths of agreement are provided by Landis and Koch
[211], where: ^ ≤ 0 indicates poor agreement; 0 < ^ ≤ 0.2 indicates slight agree-
ment; 0.2 < ^ ≤ 0.4 indicates fair agreement; 0.4 < ^ ≤ 0.6 indicates moderate

7.4 Results 119

agreement; 0.6 < ^ ≤ 0.8 indicates substantial agreement. These interpretations
suggest that, when using the classifier’s output as a fourth ‘rater’, there was slight
agreement on all emotions except Sadness, where agreement was poor. Agreement
amongst the three human raters was slight for Love, Surprise, Anger and No Emotion,
fair for both Joy and Fear, and poor for Sadness.

7.4 Results

In this section, we present our findings with respect to limitations in the classifier
and our investigation of the dataset that was used to train the classifier. Given the
weak results, we then discuss whether model cards [247] and/or datasheets [135]
could have provided a more effective approach to informing the viability and limits
of the pre-trained model.

7.4.1 Limitations of the Text Classifier

The classifier did not assign any emotion to more than 43% of the SO posts. This
result corroborates the findings byMurgia et al., who identified via a manual process
No Emotion as the most prevalent classification [250]. For illustration, we provide
a set of examples in Table 7.3. (The ratings column indicates the emotion labels
assigned by each of the three human raters '1..3 and the label assigned by the
classifier �.) The first example given in Table 7.3 illustrates a neutral example,
where none of the raters, including the classifier identified any emotion. In the
second example, the classifier did not detect any emotion, however all three human
raters agreed that the question indicated Sadness. In the third example, each rater
identified different emotions, thereby indicating complete disagreement. In the
fourth example, the classifier interpreted the question as Joy, whereas the human
raters identified Surprise and Anger. Whilst that question had a word typically
associated with Joy (i.e., “I’m pretty sure...”), the realistic context here is that the
phrase ‘pretty’ indicates no emotion and the wider context of the question shows
how the human raters identified a sense of frustration (anger) and surprise at the
results the developer is finding. Lastly, two, additional examples are presented in
the last and second-last rows of Table 7.3 to highlight different inconsistencies both
between human raters and the classifier.

We investigated our training dataset and related research documentation to see
if that would give us further insights. We found two areas warranting further
exploration—training data balance and training data annotation.

7.4.2 Data imbalance

Wefound that the purpose of the training datasetwas actually to train two classifiers—
a sentiment classifier and an emotional classifier. Each post in the training dataset
was labelled with zero, one or more emotions. In addition, emotions were grouped,
i.e., the positive emotions of Joy and Love were grouped into positive sentiment
while Sadness, Anger and Fear were grouped into negative sentiment. Surprise

120
U
sing

Em
otion

Classification
M
odelsagainstStack

O
verlow

Table 7.3: Human Raters (R1, R2, R3) versus automated classifier (C). Questions located at: https://stackoverflow.com/q/[ID].

Question ID and Quote Ratings

[42375271] “Can we use Microsoft Emotion API in our Android Apps, considering the fact that it’s still in its ’Preview’ mode...can we create
our own customized app using the code of EMOTION API to recognize the moods of users in our own app?”

[�]: No Emotion
['1]: No Emotion
['2]: No Emotion
['3]: No Emotion

[55599305] “I have consumed the google cloud vision api to recognize a document with a table, but sometimes the image will be a little
rotated, im triyng to get the value using theof the key i want, but how do i get it if it’s not on the same.I was thinking of making a ’line’ above
and below the and finding if the point is between that, but i dont know how to do it.”

[�]: No Emotion
['1]: Sadness
['2]: Sadness
['3]: Sadness

[43534783] “Can someone try Google VisionAPI FaceTracker and see if it works? ...All I get when I try running it is a black screen (after
fixing). I don’t get any errors in the logs either.”

[�]: Fear
['1]: Surprise
['2]: No Emotion
['3]: Anger

[51444352] “I’m pretty sure I set up my IAM role appropriately (I literally attached the ComprehendFullAccess policy to the role) and the
Cognito Pool was also setup appropriately (I know this because I’m also using Rekognition and it works with the IAM Role and Cognito ID
Pool I created) and yet every time I try to send a request to AWS Comprehend I get the error... Any idea of what I can do in this situation?”

[�]: Joy
['1]: Surprise
['2]: Surprise
['3]: Anger

[50190527] “I am trying to perform OCR on pdf documents using google cloud vision API, i uploaded a pdf document into a cloud bucket
and downloaded the oauth key file and added it in the script as below. But when i run the file, i get the permission denined: 403 error, can
anyone please give me instructions on how to fix it, i did extensive google search and did not yield any results, i am surely missing something
here... I have checked the older stack overflow questions and the links provided in answers are not active anymore.Thanks in advance for
your help.”

[�]: No Emotion
['1]: Sadness
['2]: No Emotion
['3]: Anger

[48145425] “I am Deploying Google cloud vision Ocr in My angular2 webapp. but i am getting many of the errors when i add this code in
my webapp code. please help me to sort out this.”

[�]: Fear
['1]: Fear
['2]: No Emotion
['3]: Sadness

7.4 Results 121

Love Anger Joy Sadness Fear Surprise
Other Posts 958 631 441 193 66 37
Question Posts 262 251 50 37 40 8
Total 1220 882 491 230 106 45

0

300

600

900

1200

Figure 7.1: The emotion classifier training dataset distribution is largely skewed toward
Love, resulting in data imbalance. (No Emotion labels were removed from this graph.)

was assigned either positive or negative sentiment, depending on context [69, 264].
Figure 7.1 shows the distribution of emotion labels across 4,800 posts in the training
dataset; No Emotion (= = 1959) is removed to emphasise emotion-only results.
Note: some posts in the training data set were classified as more than 1 emotion,
hence the total counts add up to greater than 4800.

Class imbalance and its impact on classifier models is a known problem in ma-
chine learning (ML) [225, 376], where one class (known as the majority, positive
class) significantly outnumbers the other class (known as the minority, negative
class). The impact of class imbalance on classification models results in minority
classes with lower precision and lower recall than the majority class, since the clas-
sifier does not generate rules for the minority class. One set of relevant techniques
for addressing class imbalance is data sampling; including undersampling or sub-
sampling, oversampling and hybrid approaches [225]. Whilst the training dataset
seems balanced for the purpose of sentiment analysis, there is a lack of balance
across individual emotions. The predominant emotion in the training dataset was
No Emotion at 40.8% of total posts. The most dominant emotions were Love and
Anger at 25% and 18% respectively. Less than 1% of posts were labelled with
Surprise. This means that the number of posts falling into some of the categories,
for example, Surprise and Fear (i.e., 45 and 106 posts, respectively) is very low for
training purposes.

Further, the training dataset was spread across different types of SO posts (i.e.,
questions posts, answer posts, question comments, answer comments) to capture
the different emotional language, however our study was interested in classifying
SO question posts only. Of the training dataset’s 4,800 posts, only 1,044 could
be identified as question posts and within that subset of posts, the distribution of
emotions was more polarised than in the overall 4,800 posts. Love and Anger are
the most predominant emotions in the training dataset, however Anger has a higher
proportion (24%) in question posts, as opposed to only 18.4% in the overall dataset.

In summary, the training dataset was not balanced within each emotion category
and some emotions had very low sample numbers, as emphasised in the skew in
Figure 7.1. Proportions of training data examples per question per emotion was very
low for Joy, Surprise, Sadness and Fear. To address this imbalance and achieve

122 Using Emotion Classification Models against Stack Overlow

better performance, training data could be enhanced to include additional samples
or to use an oversampling approach. A recent study into class-balancing approaches
in the context of defect prediction models found that class rebalancing does lead to
a shift in the learned concepts [358].

7.4.3 Emotion Labeling Bias

In software engineering, hierarchical categorical emotional frameworks—including
those featured in Parrott [276], Ekman et al. [112] and Shaver et al. [328]—have
been assessed by researchers and pragmatically selected as the basis for training
emotional classifiers. The chosen emotion framework is then used as the taxonomy
of truth labels for classifier training datasets. Data for labeling is sourced from
systems such as SO and JIRA [129, 250, 264, 271]. In the software engineering
domain, truth labeling of emotions has, to date, been done manually [129, 250, 264].
Emotion annotation involves at least a pair of annotators [12, 139]. For the EMTk
training dataset, annotation was performed manually by a team of 12 coders, divided
into four groups of three with a computer science background [68, 264]. Manual
annotation challenges when coding emotions can be encountered due to different
levels of semantic ambiguity within emotions and how humans express emotions in
text [153].

In the absence of an objective emotional truth, researchers’ consistency is taken
as a measure of correctness—i.e., multiple annotators that agree [250]. A measure
of inter-rater agreement is Cohen’s Kappa [82] (for two raters) or Fleiss’ Kappa [120]
for more raters. For the training dataset, inter-rater agreement ranged from ^ = 0.30
(fair) for Joy to ^ = 0.66 (substantial) for Love. The researchers specifically trained
dataset coders for consistency. The challenge of this approach with a subject such as
emotions is the opportunity for bias. In contrast, in other studies that used annotation,
researchers specifically attempted to reduce the opportunity for biases by including
raters with different nationalities, skills, cultural backgrounds, by increasing the
number of raters [271] and opting against consistency training [9]. As such, the
approach taken to achieve consistency and makeup of label coders is important
information for downstream consumers of an AI model.

7.4.4 Emotion Labelling and Classification Granularity

Training data annotation was performed on SO posts—which included questions,
answers, and comments to questions and answers. Emotion annotation can be
performed at different levels of granularity—word level [341], spans of words in a
sentence [12], sentence level or larger. While a word level or keyword approach is
considered too granular (as it does not capture the emotional context sufficiently),
there is a risk of emotion progression during narratives and alsowithin sentences [12,
250]. Our CVS dataset consisted of questions only as we were seeking to assess
developer emotion expressed at the time of raising the question. Question posts are
typically longer than comments and may contain multiple emotions expressed at
different levels of intensity that are interpreted differently by different readers.

7.5 Discussion 123

For example, see the fifth question in Table 7.3. We see that the first sentence
does not carry any emotion, as the author is stating the steps to reproduce their
issue. However, in the second sentence—where the API generates a “403 error”—
the author expresses a mix of both Sadness and Anger (i.e., frustration) since their
“extensive google search” yielded no results, for which they begin to self-doubt
(“i am surely missing something here”). Lastly, Love is demonstrated in the last
sentence, via appreciation in advance for potential responses to their question.

7.5 Discussion

There is a growing trend emerging from key industry vendors to better document pre-
trainedmodels using various means. For example, Google has proposedmodel cards
to communicate performance characteristics of pre-trained models [247]. Google
has also published sample model cards relating to their Cloud Vision API for face
and object detection4 and, more recently, released a model card tookit5 to encourage
other ML practitioners to produce their own. Furthermore, this toolkit is now
integrated into the Python library scikit-learn to help developers automatically
generate model cards.6 Microsoft has focused on a standardised process of dataset
documentation through datasheets to encourage transparency and accountability by
documenting the motivation, composition, collection process and intended uses of
data [135]. This is a key building block of the ‘Responsible ML’ initiative led by the
partnership on AI,7 which aims to increase the transparency of AI and accountability
of ML system documentation.8 Lastly, IBM too has proposed a ‘FactSheet’ concept
combining model and data information [15].

These tools are being adopted by organisations and researchers; for example,
Open AI has published a basic model card of their generative language model9 and
Google provided a sample model card for its toxicity analyser in its model card
proposal paper [247]. Model cards are also being considered for high stakes envi-
ronments such as clinical decision making [326], where they facilitate overarching
governance regimes on how and when models can be used.

In our case study, the combination of a model card for the classifier as well as a
datasheet for training data would have provided valuable, easy to digest, and initial
support to help evaluate whether the classifier is right for our context. However, the
current specification of datasheet contents is very broad and lacks detailed directions
for those completing required information. The model cards proposed by Google
are focused on performance characteristics and do not sufficiently focus on the
underlying data that was used to train and, hence, define the context of the classifier.

Had all the required information been provided to sufficient detail, including
a highlight of the importance of rater consistency training, we could have better

4https://bit.ly/2IXDLel last accessed 28 November 2020.
5https://bit.ly/3k7rLnk last accessed 28 November 2020.
6https://bit.ly/36bXnEK last accessed 28 November 2020.
7https://bit.ly/33kebYc last accessed 28 November 2020.
8https://bit.ly/3lf8WPD last accessed 28 November 2020.
9https://bit.ly/3o6ECsj last accessed 30 November 2020.

https://bit.ly/2IXDLel
https://bit.ly/3k7rLnk
https://bit.ly/36bXnEK
https://bit.ly/33kebYc
https://bit.ly/3lf8WPD
https://bit.ly/3o6ECsj

124 Using Emotion Classification Models against Stack Overlow

assessed risks and clarified at the outset whether an automated emotion assessment
was an appropriate exercise. Further, with this information, we would be able
perform our study with an more extensive rater consistency training, as well as a
better appreciation of the limits of the classifier.

Hence, model cards and datasheets present rich opportunities for improving
confidence and understanding in pre-trained AI technology. Now that toolkits are
becoming increasingly available to make it easier for developers to generate toolkits,
we suggest further research to evaluatemodel cards and datasheets (and combinations
of the two) before pre-trainedmodels are selected for specific tasks. This wouldmake
a valuable case study which we leave open for future work. Further, development
of guidelines for model cards and datasheet creation, use and maintenance based on
empirical evidence is also largely missing in literature; another avenue for potential
research especially for use in industry contexts. A key challenge identified by this
case study was the difficulty of validating results of an emotional classifier. An
additional research study could aim to capture developer emotion directly as they
log questions and facilitate learning of developer emotion classification through this
direct method (e.g., a think-aloud study). This proposed approach to capturing
data may shed further light into the emotional state an individual developer is
experiencing as they write their questions. However, it would be of interest to
assess if it is possible to draw conclusions about emotions that developers feel in
general, due to the subjective nature of emotion. That is, it is possible that different
developers would report a range of emotions even when they write similar posts.

Once validation of the results can be improved, additional improvement could
be considered for the EMTk classifier including training it on questions only and
using some of the identified data balancing techniques to re-balance the dataset.
Another area of potential research is whether providing feedback to developers
about the emotional content in their posts would change what they communicate.
For instance, would it assist developer productivity if they were made aware of the
emotional content of their contributions/posts?

7.6 Threats to Validity

This case study represents only one detailed example of a classifier trained on the
emotional model proposed by Shaver et al. [328], documented in academic articles
aimed to support research [68, 69, 263, 264]. This impacts the external validity of
our study as the results cannot be generalised to other domains or emotion classifiers.
To mitigate this, it would be very useful and informative to compare and validate
our findings across a number of classifiers, however this is challenging since there is
generally a lack of detailed information (i.e., model cards and datasheets) for avail-
able classifiers to support the analysis. This said, even a simple comparative analysis
of emotion classification outputs is difficult because emotional classifiers are typi-
cally trained on a specific emotional model. A mapping between emotional models
would therefore be needed, which demands expertise beyond software engineering
research.

Another key limitation is that our analysis focused on SOquestions on a particular

7.7 Related Work 125

topic, whereas the EMTk had been trained on a mixture of different posts and topics.
This again impacts the external validity of our results. It is not appropriate to draw
a general conclusion from this analysis that emotions cannot be reliably classified
by analysing text. In fact, there were higher inter rater scores achieved for EMTk’s
training dataset. Possibly additional rounds of clarification and moderation would
yield a higher score and higher confidence.

It is common for questions on SO to be duplicates or downvoted, typically due
to poor wording or a lack of detail in the body of the question. Duplicate and
downvoted questions were not removed from our dataset used in the experiment,
and, furthermore, any poorly worded questions may have impacted the automatic
classifier’s emotion labelling. This is likely to have impacted the measurement of
our results.

7.7 Related Work

Emotion detection from text has been explored by researchers in depth. A recent
survey of approaches, including the different emotion models and computational
approaches, can be found in Sailunaz et al. [316] and Alswaidan and Menai [10].
Recently, researchers have also explored deep learning, specifically bidirectional
BLSTM models, to improve emotion detection from text [32]. Most approaches are
supervised learning based, and hence rely on a labelled dataset for training.

Some related work of special interest has been done in the area of sentiment
analysis, where discussions touched on emotion recognition. Novielli et al. [263]
investigated the suitability of using sentiment analysis tools to measure affect in SO
questions and comments. In their analysis, they discussed that developers expressed
negative emotions associated with their technical issues and that developers mainly
express their frustrations for not being able to solve a problem. For questions with
positive sentiment, they found that the positive lexicon did not express emotions, but
rather positive opinions and use of positive speech acts associated with politeness
and gratitude in advance of receiving a response. Also, of interest is the evaluation
of sentiment analysis tools evaluated on SO, JIRA and App Review datasets by Lin
et al. [218]. This study found that the prediction accuracy of the tools that were
evaluated were biased against the majority class (neutral emotion).

The use of biometric sensors is also an area of active research for software de-
veloper emotion recognition. This includes conducting experiments with correlated
sensor data analysing the emotions software developers present whilst working [141].
Further work could include using the biometric-based data as a data source for truth
labels for emotion analysis as developers write their questions on SO, supporting the
proposed studies mentioned in Section 7.5.

7.8 Conclusion

We started this work with an idea to use existing AI techniques to automatically in-
vestigate what other developers think of cloud IWSs. This translated into our attempt

126 Using Emotion Classification Models against Stack Overlow

to use a pre-trained model that learnt from posts provided by software engineers on
SO. Developers learn, improve and deepen their skills from documentation, formal
or self-paced education, experience, and sharing their knowledge. Good documen-
tation often forms the foundation that enables learning and also to create educational
aids.

In this paper, we presented an observation case study that highlights a set of
gaps in how a peer-reviewed model, published in the field of software engineering,
lacks information about the limitations both within the documentation, as well as the
articles published. To resolve these gaps, we investigated if new solutions that are
being proposed (such asmodel cards) would have been of use to us before conducting
our experiment. Model cards and datasheets will be a necessary and helpful first step,
but as such we found their specification to be insufficient and additional guidance
is required for those documenting the models cards and datasheets. Although we
study only one pre-trained model in depth, our analysis shows that there are gaps
in proposed solutions that can be addressed, and our future work will focus on
investigating other models and IWSs to develop a more detailed documentation
approach, specifically those that are being aimed for software engineering.

CHAPTER8

Better Documenting Computer Vision Services†

Abstract Using cloud-based computer vision services (CVSs) is gaining traction, where
developers access AI-powered components through familiar RESTful APIs, not needing
to orchestrate large training and inference infrastructures or curate/label training datasets.
However, while these APIs seem familiar to use, their non-deterministic run-time behaviour
and evolution is not adequately communicated to developers. Therefore, improving these
services’ API documentation is paramount—more extensive documentation facilitates the
development process of intelligent software. In a prior study, we extracted 34 API docu-
mentation artefacts from 21 seminal works, devising a taxonomy of five key requirements to
produce quality API documentation. We extend this study in two ways. Firstly, by surveying
104 developers of varying experience to understand what API documentation artefacts are
of most value to practitioners. Secondly, identifying which of these highly-valued artefacts
are or are not well-documented through a case study in the emerging CVS domain. We
identify: (i) several gaps in the software engineering literature, where aspects of API docu-
mentation understanding is/is not extensively investigated; and (ii) where industry vendors
(in contrast) document artefacts to better serve their end-developers. We provide a set of
recommendations to enhance intelligent software documentation for both vendors and the
wider research community.

8.1 Introduction

Improving API documentation quality is a valuable task for any API. Succinct
API documentation of good quality facilitates productivity [215, 253, 254], and
therefore improved quality is better engineered into a system [239]. Where ap-
plication developers integrate new services into their systems via APIs, their pro-

†This chapter is originally based on A. Cummaudo, R. Vasa, J. Grundy, and M. Abdelrazek, “Re-
quirements of API Documentation: A Case Study into Computer Vision Services,” IEEE Transactions
on Software Engineering, pp. 1–1, 2020, DOI 10.1109/TSE.2020.3047088. Terminology has been
updated to fit this thesis.

127

https://doi.org/10.1109/TSE.2020.3047088

128 Better Documenting Computer Vision Services

ductivity is affected either by inadequate skills (“I’ve never used an API like this,
so must learn from scratch”) or, where their skills are adequate, an imbalanced
cognitive load that causes excessive context switching (“I have the skills for this,
but am confused or misunderstand”). As a real-world use case, consider intel-
ligent computer vision services (CVSs), in which an AI-based component pro-
duces a non-deterministic result based on a machine-learnt data-driven algorithm,
rather than a predictable, rule-driven one [89]. These services use machine intelli-
gence to make predictions on images such as object labelling or facial recognition
[398, 409, 410, 411, 412, 419, 423, 431, 432, 433, 437, 451, 452, 485, 486]. The
impacts of poor and incomplete documentation results in developer complaints on
online discussion forums such as Stack Overflow [92]. Many comments show that
developers do not think in the non-deterministic mental model of the designers who
created the CVSs. They ask many varied questions from their peers to try and clarify
their understanding.

It is therefore important to ensure developers have access to high-quality API
documentation artefacts when consuming these services. Vendors should cover
all documentation artefacts that the wider developer community find valuable, and
the research community should aide in this process by investigating with types of
information that comprise these artefacts, or the aspects of information design to best
present this information. What causes a developer to be confusedwhen using anAPI,
and how to mitigate it via improved documentation, has been largely explored by
researchers for conventional APIs (an overview is provided in Section 8.2). Various
studies provide a myriad of recommendations into the value of API documentation
artefacts based on both qualitative and quantitative analyses, involving developer
opinions (from surveys), observation of developers, event logging or content analysis
(see Figure 8.3). Such guidelines propose ways for developers, managers, and
solution architects can construct systems better with improved documentation.

However, there does not yet exist a consolidated systematic review of this litera-
ture. Further, few studies offer a taxonomy to consolidate these guidelines together,
and there still lacks a consolidated effort to capture guidelines on the requirements
of good quality API documentation. Studies that produce these guidelines from
literature are largely scattered across multiple sources. Investigating the ways by
which these guidelines are produced can provide software engineering researchers
with better insight into the research methods and data collection techniques used to
produce these guidelines. Some studies, for example, use case studies, others use
focus groups and brainstorming, or interviews and surveys. The extent to which re-
searchers rely on developer opinion for API documentation guidelines is evident, and
gaps in the methodological approaches that researchers use should be emphasised
to shine light into new ways of conducting research in this important area. Fur-
thermore, systematically capturing the information distilled from these guidelines
into a readily accessible, consolidated taxonomy (designed to assist writing API
documentation) must be validated in real-world circumstances to assess its efficacy
with practitioners.

In our prior work, we proposed an API documentation taxonomy that was com-
prised of 21 key primary sources [88]. This paper significantly extends our previous

8.1 Introduction 129

work by addressing limitations in the existing taxonomy, thus refining it. Previously,
we developed ametric for each dimension (topmost-layers) and category (leaf nodes)
within the taxonomy [88]. This metric is an indication of the specific areas of API
documentation software engineering researchers have focused their efforts, as mea-
sured by the ratio of papers that investigated or reported various issues concerning
the documentation artefacts defined within our taxonomy. For the context of this
paper, we refer to this metric as an ‘in-literature’ score, or ILS. Within this paper,
we build upon this facet but in-practice by assessing the efficacy of our taxonomy
against developers using a survey instrument inspired by the System Usability Scale
(SUS) [62]. Each artefact within the taxonomy is measured against this instrument
for its utility, and a metric is produced to indicate how well developers value each
of these artefacts. We refer to this metric as an ‘in-practice’ score, or IPS. (Details
for how the IPS is calculated are in given in Section 8.5.1.4.) We then identify the
artefacts that are highly researched, the ones that developers demand the most, and
where gaps in these artefacts remain for future research exploration.

Lastly, while our prior work focused on generalised API documentation, in this
extension, we apply our taxonomy to a case study of interest: i.e., better documenting
CVSs. We empirically assess the taxonomy against three popular CVSs, namely
Google CloudVision [423], Amazon Rekognition [398] and Azure Computer Vision
[437]. For each category in our taxonomy, we assess whether the respective service’s
documentation contains, partially-contains or does not contain the documentation
artefact from our taxonomy, thus determining the extent to which the requirements
of good API documentation are met within the vendors’ own documentation. From
this, we triangulate each ILS and IPS value against the service’s level of inclusion
of its respective documentation artefact, thereby making a judgement as to where
the services can improve their documentation to make them more complete. Lastly,
we present a ranking of each artefact for where research or vendors should be focus
their documentation efforts that is of high value to both developers and to industry
vendors.

Thus, through this triangulation of the taxonomy with existing literature, utility
to practitioners, and application via a case study (CVSs), we summarise three aspects
of API documentation by identifying:

(i) the documentation artefacts that been extensively studied by researchers, and
those that warrant further attention by the software engineering research com-
munity (via high/low ILS values);

(ii) the documentation artefacts that are considered to be the most- and least-
important from a practitioner’s point of view (via high/low IPS values);

(iii) the documentation artefacts that have been well-established by vendors (via
our case study on three prominent CVSs).

To demonstrate how our taxonomy was developed, we include an extended
revision of the systematic mapping study (SMS) from our existing work. The
taxonomy we proposed consists of five key requirements: (1) Descriptions of API
Usage; (2) Descriptions of Design Rationale; (3) Descriptions of Domain Concepts;
(4) Existence of Support Artefacts; and (5) Overall Presentation of Documentation.

130 Better Documenting Computer Vision Services

Following this, we developed a survey instrument to assess the overall utility of each
of the artefacts that contribute towards these five requirements, which consisted of
43 questions of alternating positive and negative sentiment. We then narrow our
focus down to our case study by applying the prioritised documentation artefacts
(as identified by the survey) to three CVSs. Once our surveys were complete, we
provide some general guidelines as to where cloud CVSs can make improvements to
their API documentation. Lastly, we compare and contrast the results from our SMS
to the results of the survey and of our case study, thereby identifying where future
research efforts into API documentation should focus to give the biggest value back
to practitioners.

Our key contributions in this work are:

• a score metric for each category that indicates where the highest research
priorities have been in the existing literature;

• a score metric assessing the efficacy of the 34 categories that empirically
reflects what artefacts are of the highest value from a practitioner point of
view;

• a heuristic validation of each artefact against CVSs, assessing where existing
CVS API documentation needs improvement;

• a number of practical recommendations for CVS vendors to better improve
the quality of their API documentation; and

• an identification of the gaps for future research into API documentation based
on the highest need by developers but, so far, has captured the least attention
by researchers.

This paper is structured as follows: Section 8.2 presents related work; Section 8.3 is
divided into two subsections, the first describing how primary sources were selected
in the SMS with the second describing the development of our taxonomy from these
sources; Section 8.4 presents the taxonomy; Section 8.5 describes howwe developed
a survey instrument of 43 questions to validate the taxonomy against developers, and
assess its efficacy against the three popular CVSs selected; Section 8.6 presents the
findings from our validation analysis; Section 8.7 describes the threats to validity of
this work; and Section 8.8 provides concluding remarks and the future directions of
this study. Additional materials are provided in Chapter C.

8.2 Related Work

8.2.1 Systematic Reviews in Software Documentation

Systematic reviews into how developers produce and use software documentation
gives researchers consolidated insights into the efforts of multiple, disparate API
documentation studies. For example, a recent 2018 study explored 36 API docu-
mentation generation tools and approaches, and analysed the tools developed and
their inputs and documentation outputs [265]. The findings from this study em-
phasise that the largest effort in API documentation tooling is to assist developers

8.2 Related Work 131

to generate either example code snippets and/or templates or natural language de-
scriptions of the API directly from the program’s source code. These snippets or
descriptions can then be placed in the API documentation, thereby increasing the
efficiency at which API documentation can be written. Additionally, tools from 12
studies target the maintainability of existing APIs of existing APIs, while tools from
11 studies target the correctness and accuracy of the documentation by validating
that what is written in the documentation is accurate to the technical structure of
the API. From the end-developer’s perspective, some tools (17 studies) help target
improvements to the developer’s understandability and learnability of new APIs by
linking in examples directly with questions such as on Stack Overflow. However,
the results from this study regards the tooling used to either assist in producing,
validating or learning from API documentation. While this is a systematic study
with key insights into the types of tooling produced, there is still a gap for an SMS in
what guidelines have been produced by the literature in developing natural language
documentation itself—and how well developers agree to those guidelines—which
our work has addressed.

An extensive SMS into studies presented in the overall software documentation
domain was given in ?CITE?]. This study reviewed a set of 69 papers from 1971
to 2011 to develop a systematic map on the various research aspects relating to
documentation cost, benefit and quality, finding that 38% of papers propose novel
techniques while 29% contribute empirical evidence (i.e., validation and evaluation
papers—see Section 8.3.1.4). The authors find that amajority of papers discuss qual-
ity aspects of software documentation, namely the quality attributes of completeness,
consistency and accessibility, and that the main usage of software documentation re-
gards maintenance aid and program comprehension. Another key insight—relevant
to our study—found that, on average, survey-based studies into documentation in-
volved 106 participants and generally these participants were from the same (or only
two) organisations. However, unlike our study, this study formalises the documenta-
tion efforts of any software document, and not exclusively into API documentation
artefacts required to help developers produce software. Further, our study differs in
that the results from our study are consolidated into a structured taxonomy, instead
of a meta-model which ?CITE? perform, which is then triangulated against a
real-world use case (i.e., intelligent CVSs) and software developers via a survey.

8.2.2 API Usability and Documentation Knowledge

API usability and its impact on documentation knowledge is an imperative area of
study, since it provides useful links between API documentation and more technical
issues related to API design or tools. Extensive discussions from Myers and Stylos
[254] and Myers et al. [253] encapsulate a 30-year effort to evaluate and improve
API usability through lenses adapted human-computer interaction research. Es-
sentially, by treating a developer as the ‘end-user’ of an API (i.e., interacting and
programming with the API in their own systems), the authors discuss various case
studies by which API usability was improved by various human-centred approaches,
resulting in improved learnability of the API in addition to improved productivity

132 Better Documenting Computer Vision Services

and effectiveness in using theAPI.While themethods are primarily used for end-user
usability testing, their observations highlight the importance of good aesthetic and
interaction design of developer’s tooling and the need for new tooling to augment
what developers already do to reduce learning overhead. An extensive review of the
usability methods used, and their benefits to API usability, demonstrates how various
techniques—grounded through established usability guidelines and frameworks—
can be used to assess how an API’s usability impacts its key stakeholders (i.e., API
designers, developers, and end-users). The role of API documentation in context to
an API’s overall usability is imperative; for instance, limited documentation on a par-
ticular API (and limited code snippets) is often a key complaint to poor API usability
[254]. Exploring aspects on information design elements within API documentation
is therefore critical to mitigate such complaints.

In Watson [373], the authors performed a heuristic assessment from 35 popular
APIs against 11 high-level universal design elements of API documentation. Of
these 35 APIs, 28 were open-source software repositories and seven came from
commercial independent software vendors. Two coders manually inspected each
API’s respective documentation sets, starting from the documentation’s entry page
and using the navigation features of the documentation to further explore the doc-
umentation. Both coders evaluated each of the 11 heuristics, noting whether they
could be found. This study highlighted how many APIs, even popular ones, fail
to grasp these basic design elements. For example, 25% of the documentation sets
did not provide any basic overview documentation to the API. Therefore, from a
practitioner’s perspective, the study describes a high-level overview of how certain
documentation artefacts address their needs and whether they are typically found in
documentation. However, while the methodological approach used in this study to
assess the heuristics is similar to our approach, the heuristics themselves used within
Watson’s study is based on only three seminal works and only contains 11 design
elements. Our study extends these heuristics and structures them into a consolidated,
hierarchical taxonomy which we then validate against practitioners.

A taxonomy of distinct knowledge patterns within reference documentation by
Maalej and Robillard [228] classified 12 distinct knowledge types. Unlike our work,
which uses an SMS of existing studies as the source of our taxonomy development,
this study uses a groundedmethod via theoretical sampling of theAPI documentation
of two mature (extensively documented) open source systems. This was performed
by each author to elicit a list of knowledge types over an iterative six month process.
The taxonomy was then evaluated against the JDK 6 and .NET 4.0 frameworks
using a sample of 5574 documentation units and 17 trained coders to assign each
knowledge type to the documentation unit. Results showed that the functionality
and structure of these APIs are well-communicated, although core concepts and
rationale about the API are quite rarer to see. The authors also identified low-
value ‘non-information’—described as documentation that provides uninformative
boilerplate text with no insight into theAPI at all—whichwas substantially present in
the documentation of methods and fields in the two frameworks. They recommend
that developers factor their 12 distinct knowledge types into the process of code
documentation, thereby preventing low-value non-information, and thus developers

8.3 Taxonomy Development 133

can use the patterns of knowledge to evaluate the content, organisation, and utility
of their own documentation. The development of their taxonomy consisted of
questions to model knowledge and information, thereby capturing the reason about
disparate information units independent to context; a key difference to this paper
is the systematic taxonomy approach utilised and the source of information of our
taxonomy (i.e., existing literature).

8.2.3 Computer Vision Services

Recent studies into cloud-based CVSs have demonstrated that poor reliability and
robustness in computer vision can ‘leak’ into end-applications if such aspects are
not sufficiently appreciated by developers. A study by Hosseini et al. [164] showed
that Google Cloud Vision’s labelling fails when as little as 10% noise is added to the
image. Facial recognition classifiers are easily confused bymodifying pixels of a face
and using transfer learning to adapt one person’s face into another [368]. Our own
prior work found that the non-deterministic evolution of these types of services is not
adequately communicated to developers [89], resulting in lost developer productivity
whereby developers ask fundamental questions about the concepts behind these
services, how they work, and where better documentation can be found [92]. This
paper continues this line of research by providing a means for service providers to
better document their services using a taxonomy and suggested improvements.

8.3 Taxonomy Development

We developed our taxonomy under two primary phases. First, we conducted an
SMS identifying API documentation studies, following guidelines by Kitchenham
and Charters [196] and Petersen et al. [284] (Section 8.3.1). A high level overview
of this first phase is given in Figure 8.2. Second, we followed a software engineering
taxonomy development method by Usman et al. [362] (Section 8.3.2) based on the
findings of our SMS, which involved an extensive validation involving real-world
developers and contextualised with computer vision APIs (Section 8.5).

8.3.1 Systematic Mapping Study

8.3.1.1 Research Questions (RQs)

The first step in producing our SMS was to pose two RQs:
• RQ1: What documentation ‘knowledge’ do API documentation studies con-
tribute?

• RQ2: How is API documentation studied?
Our intent behind RQ1 was to collect as many studies provided by literature on
how API documentation should be written using natural language, i.e., not using
assistive tooling. In this regard, documentation ‘knowledge’ encompasses any nat-
ural language API documentation artefact associated with the implementation of
an application using a third-party API. As the goals of this study are to arrive at a

134
BetterD

ocum
enting

Com
puterV

ision
Services

77 78 79 80 82 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
Other 0 1 0 0 1 0 1 0 0 0 1 2 1 0 0 1 1 1 0 1 0 0

Book (Chapter) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 1 0 0 4 1 11 12 11 17 15 21 22 13 10 38 19 21 30 14 0

Journal Artic le 2 1 1 0 2 2 5 3 0 2 6 5 3 7 5 11 13 14 7 17 18 25 26 26 37 45 37 37 29 27 50 46 67 78 34 102 108 121 123 176 86

Conference Paper 0 0 0 1 1 0 4 4 1 0 1 1 3 6 7 2 7 7 12 19 13 36 36 47 59 62 103 65 83 103 126 150 172 201 145 208 208 250 303 320 55

0
60

120
180
240
300
360
420
480
540

Figure 8.1: Search results by year and venue type.

Define
research

questions

Develop
search terms

Automatic
filtering

Manual
filtering
using

IC/ ECs

Manual
filtering on
paper body

Extraction &
Analysis

4,501

Manual
filtering to

remove
duplicates

3,987 133 21

Figure 8.2: A high level overview of the filtering steps from defining and executing our search query to the data extraction of our primary studies. Number
of accepted papers resulting from each filtering step is shown.

8.3 Taxonomy Development 135

taxonomy encapsulating the requirements of good API documentation (Section 8.4),
we sought to arrive at studies that provide useful information to developers that
informs the relevance and value of which aspects of API documentation are more
useful than others. This captures the knowledge that developers need to know about
what aspects of their APIs should be documented and the artefacts by which they do
this. This helped us shape and form the taxonomy provided in Section 8.4. Secondly,
RQ2’s intent was to understand how the studies derive at their conclusions, thereby
helping us identify gaps in literature where future studies can potentially focus.

8.3.1.2 Automatic Filtering

As done in similar software engineering studies [133, 142, 362], we explored auto-
matic filtering of online databases. We defined which SWEBOK knowledge areas
[169] were relevant to devise a search query. Our search query was built using re-
lated knowledge areas, relevant synonyms, and the term ‘software engineering’ (for
comprehensiveness) all joined with the OR operator. Due to the lack of a standard
definition of an API, we include the terms: ‘API’ and its expanded term; software
library, component and framework; and lastly SDK and its expanded term. These
too were joined with the OR operator, appended with an AND. Lastly, the term
‘documentation’ was appended with an AND. Our final search string was:

(“software design” OR “software architecture" OR “software construction" OR “software development"
OR “software maintenance" OR “software engineering process" OR “software process" OR “software
lifecycle" OR “software methods" OR “software quality" OR “software engineering professional practice"
OR “software engineering") AND (API OR “application programming interface" OR “software library"
OR “software component" OR “software framework" OR sdk OR “software development kit") AND
(documentation)

We executed the query on all available metadata (title, abstract and keywords) in
May 2019 against Web of Science1 (WoS), Compendex/Inspec2 (C/I) and Scopus3.
We selected three particular primary sources given their relevance in software en-
gineering literature (containing the IEEE, ACM, Springer and Elsevier databases)
and their ability to support advanced queries [61, 196]. A total 4,501 results4 were
found, with 549 being duplicates. Table 8.1 displays our results in further detail (du-
plicates not omitted); Figure 8.1 shows an exponential trend of API documentation
publications produced within the last two decades. (As this search was conducted
in May 2019, results taper in 2019.)

8.3.1.3 Manual Filtering

A follow-up manual filtering stage followed the 4,501 results obtained by automatic
filtering. As described below, we applied the following inclusion criteria (IC) and
exclusion criteria (EC) to each result:

1http://apps.webofknowledge.com last accessed 23 May 2019.
2http://www.engineeringvillage.com last accessed 23 May 2019.
3http://www.scopus.com last accessed 23 May 2019.
4Raw results can be located at http://bit.ly/2KxBLs4.

http://apps.webofknowledge.com
http://www.engineeringvillage.com
http://www.scopus.com
http://bit.ly/2KxBLs4

136 Better Documenting Computer Vision Services

Table 8.1: Search results and publication types

Publication type WoS C/I Scopus Total

Conference Paper 27 442 2353 2822
Journal Article 41 127 1236 1404
Book 23 17 224 264
Other 0 5 6 11

Total 91 591 3819 4501

IC1 Studies must be relevant to API documentation: specifically, we exclude
studies that deal with improving the technical API usability (e.g., improved
usage patterns);

IC2 Studies must discuss artefacts that document APIs;
IC3 Studies must be relevant to software engineering as defined in SWEBOK;

EC1 Studieswhere full-text is not accessible through standard institutional databases;
EC2 Studies that do not propose or extend how to improve the official, natural

language documentation of an API;
EC3 Studies proposing a third-party tool to enhance existing documentation or

generate new documentation using data mining (i.e., not proposing strategies
to improve official documentation);

EC4 Studies not written in English;
EC5 Studies not peer-reviewed.

Each of these ICs and ECs were applied to every paper after exporting all
metadata of our results to a spreadsheet. The first author then curated the publications
using the following revision process.

Firstly, we read the publication source—to rapidly omit non-software engineer-
ing papers—as well as the author keywords, title, and abstract of all 4,501 studies.
As some studies were duplicated between our three primary sources, we needed to
remove any repetitions. We sorted and reviewed any duplicate DOIs and fuzzy-
matched all very similar titles (i.e., changes due to punctuation between primary
sources), thereby retaining only one copy of the paper from a single database. Sim-
ilarly, as there was no limit do our date ranges, some studies were republished in
various venues (i.e., same title but different DOIs). These were also removed using
fuzzy-matching on the title, and the first instance of the paper’s publication was
retained. This second phase resulted in 3,987 papers.

Secondly, we applied our inclusion and exclusion criteria to each of the 3,987
papers by reading the abstract. Where there was any doubt in applying the criteria
to the abstract alone, we automatically shortlisted the study. We rejected 427 studies
that were unrelated to software engineering, 3,235 were not directly related to docu-
menting APIs (e.g., to enhance coding techniques that improve the overall developer
usability of the API), 182 proposed new tools to enhance API documentation or
used machine learning to mine developer’s discussion of APIs, and 10 were not in
English. This resulted in 133 studies being shortlisted to the final phase.

8.3 Taxonomy Development 137

Thirdly, we re-evaluated each shortlisted paper by re-reading the abstract, the
introduction and conclusion. We removed a further 64 studies that were on API
usability or non API-related documentation (i.e., code commenting). At this stage,
we decided to refine our exclusion criteria to better match the research goals of
this study by including the word ‘natural language’ documentation in EC2. This
removed studies where the focus was to improve technical documentation of APIs
such as data types and communication schemas. Additionally, we removed 26
studies as they were related to introducing new tools (EC3), 3 were focused on tools
to mine API documentation, 7 studies where no guidelines were provided, 2 further
duplicate studies, and a further 10 studies where the full text was not available,
not peer reviewed or in English. Books are commonly not peer-reviewed (EC5),
however no books were shortlisted within these results. This final stage resulted in
21 primary studies for further analysis, and the mapping of primary study identifiers
to references S1–21 can be found in Appendix C.3.

As a final phase, we conducted reliability analysis of our shortlisting method.
We conducted intra-rater reliability of our 133 shortlisted papers using the test-
retest approach suggested by Kitchenham and Charters [196]. We re-evaluated a
random sample of 10% of the 133 shortlisted papers a week after initial studies were
shortlisted. This resulted in substantial agreement [211], measured using Cohen’s
kappa (^ = 0.7547).

8.3.1.4 Data Extraction & Systematic Mapping

Of the 21 primary studies, we conducted abstract key-wording adhering to Petersen
et al.’s guidelines [284] to develop a classification scheme. An initial set of key-
words were applied for each paper in terms of their methodologies and research
approaches (RQ2), based on an existing classification schema used in the require-
ments engineering field by Wieringa and Heerkens [380]. These are: evaluation
papers, which evaluates existing techniques currently used in-practice; validation
papers, which investigates proposed techniques not yet implemented in-practice;
experience papers, which are written by practitioners in the field and provide insight
into their experiences of adopting existing techniques; and philosophical papers,
which presents new conceptual frameworks that describes a language by which we
can describes our observations of existing or new techniques, thereby implying a
new viewpoint for understanding phenomena. For example, documentingAPIs using
code snippets is a commonly used practice by developers (see the primary sources
listed in Appendix C.1), and conducting an experiment exploring how quickly prac-
titioners achieve this would be an evaluation paper. In contrast, a validation paper
explores novel techniques that are proposed but not yet implemented in practice;
for example, a paper proposing that APIs should document success stories so that
developers know where, why, and how the API was successfully implemented may
test this novel technique via field study experiments (e.g., interviewing developers
on the new technique) without reference to real-world examples. A paper written
by a group of developers sharing their insights into the improvements of their doc-
umentation before and after providing extensive tutorials would be an experience

138 Better Documenting Computer Vision Services

Table 8.2: Data extraction form

Data item(s) Description

Citation metadata Title, author(s), years, publication venue, publication type
Artefact(s) discussed As per IC2, the studymust identify at least oneAPI documentation artefact
Evaluation method Did the authors evaluate their proposed artefacts? If so, how?
Primary technique The primary technique used to devise the artefact(s)
Secondary technique As above, if a second study was conducted
Tertiary technique As above, if a third study was conducted
Research type The research type employed in the study as defined by Wieringa and

Heerkens’s taxonomy

paper. Philosophical papers may propose entirely new vocabulary to explore API
documentation, devising new frameworks from which other researchers can explore
the field from a new viewpoint.

After all primary studies had been assigned keywords, we noticed that all papers
used field study techniques, and thus we consolidated these keywords using Singer
et al.’s framework of software engineering field study techniques [333]. Singer et al.
captures both study techniques andmethods to collect datawithin the one framework,
namely: direct techniques, including brainstorming and focus groups, interviews and
questionnaires, conceptual modelling, work diaries, think-aloud sessions, shadowing
and observation, participant observation; indirect techniques, including instrument-
ing systems, fly-on-the-wall; and independent techniques, including analysis of work
databases, tool use logs, documentation analysis, and static and dynamic analysis.

Table 8.2 describes our data extraction form, which was used to collect relevant
data from each paper. Figure 8.3 presents our systematic mapping, where each
study is mapped to one (or more, if applicable) of methodologies plotted against
Wieringa and Heerkens’s research approaches. We find that a majority of these
studies survey developers using direct techniques (i.e., interviews and questionnaires)
and some performing structured documentation analysis. Few studies report recent
experiences; literature reports the artefacts that document APIs from evaluation
research, in addition to some validation studies. There are few experience papers
describing anecdotal evidence, and almost no philosophical papers that describe new
conceptual ways at approaching API documentation as a large majority of existing
work either evaluates existing (in-practice) strategies or validates the effectiveness
of new strategies.

8.3.2 Development of the Taxonomy

A majority of taxonomies produced in software engineering studies are often made
extemporaneously [362]. For this reason, we decided to proceed with a systematic
approach to develop our taxonomy using the guidelines provided by Usman et al.
[362], which are extended from lessons learned in more mature domains. In this
subsection, we outline the 4 phases and 13 steps taken to develop our taxonomy
based on Usman et al.’s technique. Usman et al.’s final validation phase is largely
detailed within Section 8.5 after we present our taxonomy in Section 8.4.

8.3 Taxonomy Development 139

2

7 11

2

3

3

1 21

1

1 1

1 411

Analysis Of Work Databases

Brainstorming And Focus Groups

Conceptual Modelling

Documentation Analysis

Interviews And Questionnaires

Participant Observation

Shadowing And Observation

Think-Aloud Sessions

Tool Use Logs

Evaluation Research

Experience Papers

Philosophical Papers

Validation Research

Figure 8.3: Systematic map: field study technique vs research type

Formally, Usman et al. provides guidelines to define these units under the first
six stages under the planning phase. In our study, our preliminary phase involves
answering the following:

(1) define the software engineering knowledge area: The software engineering
knowledge area, as defined by the SWEBOK, is software construction;

(2) define the objective: Themain objective of the proposed taxonomy is to define a
set of categories that enables to classify different facets of natural languageAPI
documentation artefacts (not API usability) as reported in existing literature;

(3) define the subject matter: The subject matter of our proposed taxonomy is
documentation artefacts of APIs;

(4) define the classification structure: The classification structure of our proposed
taxonomy is hierarchical;

(5) define the classification procedure: The procedure used to classify the docu-
mentation artefacts is qualitative;

(6) define the data sources: The basis of the taxonomy is derived from field study
techniques (see Section 8.3.1.4).

8.3.2.1 Identification and extraction phase

The second phase of the taxonomy development involves (7) extracting all terms
and concepts from relevant literature, which we have achieved from our SMS. These
terms are then consolidated by (8) performing terminology control, as some terms
may refer to different concepts and vice-versa. For example, Watson defines one of
the heuristics used in the study’s experiment as “sample apps to understand how to

140 Better Documenting Computer Vision Services

use the elements of an API in context and as another source from which to copy
program code... a sample app is a complete application that includes examples of
the API as well as the other functions that comprise a complete program” [373].
In this case, the term ‘sample app’, ‘program code’, and ‘complete application’
were extracted as a term of interest and noted. Similarly, in Robillard [306], the
phrase ‘applications’ is used to define a category of example code snippets which
“consists of code segments from complete applications” and is generally some form
of “demonstration samples sometimes distributed with an API... that developers can
download from various source code repositories” [306]. Again, the phrase ‘complete
applications’, ‘demonstration samples’, ‘download’, and ‘source code’ was identified
as a terms of interest and noted. Once all papers were read, we consolidated a list of
all of these noted highlights to help consolidate the terms and perform terminology
control. In this example, the phrase ‘Downloadable source code demonstrating
complete sample applications’ was consolidated from both Watson and Robillard’s
studies, which—in addition to the other primary studies that iteratively changed
wording slightly due to steps (9–10)—formed the basis of the taxonomy dimension
[A7].

8.3.2.2 Design phase

The design phase identified the core dimensions and categories within the extracted
data items. The first step is to (9) identify and define taxonomy dimensions; for this
studywe utilised a bottom-up approach to identify each dimension, i.e., extracting the
categories first and then nominating which dimensions these categories fit into using
an iterative approach. As we used a bottom-up approach, step (9) also encompassed
the second stage of the design phase, which is to (10) identify and describe the
categories of each dimension. Thirdly, we (11) identify and describe relationships
between dimensions and categories, which can be skipped if the relationships are
too close together, as is the case of our grouping technique which allows for new
dimensions and categories to be added. The last step in this phase is to (12) define
guidelines for using and updating the taxonomy. The taxonomy is as simple as a
checklist that can be heuristically applied to API documentation, and each dimension
is malleable and covers a broad spectrum of artefacts; while we do not anticipate
any further dimensions to be added, new categories can easily be fitted into one of
the dimensions (see Section 8.8). We provide guidelines for use in our application
of the taxonomy against CVSs within Sections 8.4 and 8.6.

8.3.2.3 Validation phase

In the final phase of taxonomy development, taxonomy designers must (13) validate
the taxonomy to assess its usefulness. Usman et al. [362] describe three approaches to
validate taxonomies: (i) orthogonal demonstration, in which the taxonomy’s orthog-
onality is demonstrated against the dimensions and categories, (ii) benchmarking
the taxonomy against similar classification schemes, or (iii) utility demonstration by
applying the taxonomy heuristically against subject-matter examples. In our study,
we adopt utility demonstration by use of a survey and heuristic application of the

8.4 A Taxonomy for API Documentation 141

taxonomy against real-world case-studies (i.e., within the domain of CVSs). This is
is discussed in greater detail within Section 8.5.

8.4 A Taxonomy for API Documentation

Our taxonomy consists of five dimensions (labelled A–E). These five dimensions
are made of 34 categories, which represent API documentation artefacts that con-
tribute towards these dimensions. In the context of our taxonomy, a category can
represent (i) discrete and self-contained documentation artefacts (e.g., quick start
guides [A1]), (ii) additional information used to describe the API (e.g., licensing
information about the API [D6]), or (iii) aspects regarding the information design of
this documentation (e.g., consistent look and feel [E6]). Collectively, the categories
form the requirements of good quality API documentation, as expressed through the
five dimensions. When worded as questions, each dimension respectively covers the
following:

• [A] Descriptions of API Usage: how does the developer use this API for their
intended use case?

• [B] Descriptions of Design Rationale: when should the developer choose
this particular API for their intended use case?

• [C] Descriptions of Domain Concepts: why does the developer select this
particular API for their application’s domain and does the API’s domain align
with the application’s domain?

• [D] Existence of Support Artefacts: what additional API documentation can
the developer find to aid their productivity?

• [E]Overall Presentation of Documentation: is the visualisation of the above
information well organised and easy for the developer to digest?

Further descriptions of the categories encompassing each dimension are givenwithin
Figure 8.4 and Appendix C.1, coded as [-8], where 8 is the category identifier within
a dimension, - , where - ∈ {�, �, �, �, �}.

Appendix C.1 shows which of the primary sources (S1–21) reports aspects of
the artefacts described as an ‘in-literature score’ (ILS). This score is calculated as
a percentage of the number of primary studies that investigated or reported various
issues regarding the specific artefact divided by the total of primary studies (see
Section 8.6.1.2). This score is contrasted to the ‘in-practice score’ (IPS) which
indicates the overall level of agreement that practitioners think such documentation
artefacts are needed (see Section 8.6.1.1). For comparative purposes, we illustrate a
colour scale (from red to green) to indicate the relevancyweight between ILS and IPS
values inAppendixC.1 as per their assigned, discretised intervals (see Table 8.3). We
also show illustrative interpretations of these generalised artefacts through italicised
examples within Appendix C.1. We then provide three columns that assesses the
presence of these documentation artefacts against three popular CVSs: GoogleCloud
Vision, AWS’s Rekognition, and Azure Cloud Vision (abbreviated to GCV, AWS
and ACV). A fully shaded circle (○) indicates that the documentation artefact was

142 Better Documenting Computer Vision Services

[B] Descriptions of the API 's Design Rationale

[B1] Entry-point purpose of the API

[B2] What the API can develop

[B3] Who should use the API

[B4] Who will use the applications built using the API

[B5] Success stories on the API

[B6] Documentation comparing similar APIs to this API

[B7] Limitations on what the API can/ cannot provide

[D] Existence of Support Artefacts

[D1] FAQs

[D2] Troubleshooting hints

[D3] API diagrams

[D4] Contact for technical support

[D5] Printed guide

[D6] Licensing information

[E] Overal l Presentation of Documentation

[E1] Searchable knowledge base

[E2] Context-specific discussion forums

[E3] Quick-links to other relevant components

[E4] Structured navigation style

[E5] Visualised map of navigational paths

[E6] Consistent look and feel

[A] Descriptions of API Usage

[A1] Quick-start guides

[A2] Low-level reference manual

[A3] Explanation of high level architecture

[A4] Introspection source code comments

[A5] Code snippets of basic component function

[A6] Step-by-step tutorials with multiple components

[A7] Downloadable production-ready source code

[A8] Best-practices of implementation

[A9] An exhaustive list of all components

[A10] Minimum system requirements to use the API

[A11] Instructions to install/ update the API and its release cycle

[A12] Error definitions describing how to address problems

[C] Descriptions of Domain Concepts behind the API

[C1] Relationship between API components and domain concepts

[C2] Definitions of domain terminology

[C3] Documentation for nontechnical audiences

Figure 8.4: Our proposed taxonomy: The requirements of good-quality API documentation
(dimensions) represented through individual documentation artefacts (categories).

8.5 Validating the Taxonomy 143

clearly found in the service, while a half-shaded circle (è) indicates that the artefact
was only partially present. An outlined circle (+) indicates that the service lacks the
indicated documentation artefact within our taxonomy. This empirical assessment
is further detailed in Section 8.6.3, which outlines concrete areas in the respective
services’ documentation where improvements could be made, as well as hyperlinks
to the documentation where relevant.

Figure 8.4 illustrates a condensed version of taxonomy. We provide iconography
for the presence (Í) or non-presence (ë) of these artefacts in all threeCVSs assessed,
per Section 8.6.1.1.

8.5 Validating the Taxonomy

8.5.1 Survey Study

8.5.1.1 Designing the Survey

We followed the guidelines by Kitchenham and Pfleeger [197] on conducting per-
sonal opinion surveys in software engineering to validate our survey. In developing
our survey instrument, we shaped questions around each of our 5 dimensions and 34
categories. To achieve this, we used Brooke’s SUS [62] as a loose inspiration and
re-shaped the 34 categories around a question that imitates the style of wording of
questions used in the SUS. Each dimension wasmarked a numeric question (Q#3–7),
and alphabetic sub-questions were marked for each sub-dimension or category.

We used closed questioning where respondents could choose an answer on a
5-point Likert-scale (1=strongly disagree, 2=somewhat disagree, 3=neither agree
nor disagree, 4=slightly agree and 5=strongly agree). Like Brooke’s study, each
question alternated in positive and negative sentiment. Half of our questions were
written where a likely common response would be in strong agreement and vice-
versa for the other half, such that participants would have to “read each statement
and make an effort to think whether they would agree or disagree with it” [62]. For
example, the question regarding [B7] on API limitations was framed as: “I believe it
is important to know about what the limitations are on what the API can and cannot
provide” (Q4g), whereas the question regarding [C1] on domain concepts of the API
was framed as: “I wouldn’t read through theory about the API’s domain that relates
theoretical concepts to API components and how both work together” (Q5a).

In addition, the remaining eight questions asked demographical information. An
extra open question asked for further comments. The full survey is provided in Ap-
pendix C.5 and anonymised survey data is available at https://bit.ly/33siqll.

8.5.1.2 Evaluating the Survey

After the first pass at designing questions was completed, we evaluated our survey
on three researchers within our research group for general feedback. This resulted
in minor changes, such as slight re-wording of questions and providing specific
questions with examples (some with images). For example, the question regarding
[A9] on an exhaustive list of all major components in the API was framed as “I believe

https://bit.ly/33siqll

144 Better Documenting Computer Vision Services

11

8

3

6

4
3

2
1

3

7

20

6 6

1

4

6

N
um

be
r

of
 R

es
po

ns
es

2

4

6

8

10

12

14

16

18

20
B

ac
k-

E
nd

 D
ev

B
us

in
es

s
A

na
ly

st

D
at

a
Sc

ie
nt

is
t

D
at

ab
as

e
A

dm
in

D
es

ig
ne

r

D
es

kt
op

 A
pp

s
D

ev

E
du

ca
to

r/
R

es
ea

rc
he

r

E
m

be
dd

ed
 A

pp
s

D
ev

E
ng

in
ee

ri
ng

 M
an

ag
er

Fr
on

t-
E

nd
 D

ev

Fu
ll-

St
ac

k
D

ev

M
ob

ile
 D

ev

Pr
od

uc
t M

an
ag

er

Q
A

/T
es

t D
ev

el
op

er

St
ud

en
t

Sy
st

em
 A

dm
in

Intern Role (5)

Graduate Role (11)

Junior Role (7)

Mid-Tier Role (25)

Senior Role (19)

Lead Role (11)

Principal Role (1)

Management (6)

N/A (Student) (3)

Other (3)

Figure 8.5: A wide variety of roles and seniority were observed in our respondents.

an exhaustive list of all major components in the API without excessive detail would
be useful when learning an API” (Q3i) with the example “e.g., a computer vision
web API might list object detection, object localisation, facial recognition, and facial
comparison as its 4 components”.

After this, we conducted reliability analysis using a test-retest approach on three
developers within our group seven weeks apart. Using the R statistical computation
environment [294], we conducted our analysis using the irr package [130] (as
suggested in [151]) and resulted in an average intra-class correlation (ICC) of 0.63
which indicates a good overall index of agreement [79].

8.5.1.3 Recruiting Participants

Our target population for the study was application software developers with varying
degrees of experience (including those who and who have not used CVSs or related
tools before) and varying understanding of fundamental machine learning concepts.
We began by recruiting software developers within our research group using a group-
wide message sent on our internal messaging system. Of the 44 developers in our
group’s engineering cohort,5 22 responses were returned, indicating an internal
response rate of 50.00%. Based on the 22 results from this internal trial, we
calculated the median time to our complete survey was just over 20 minutes.

For external participant recruiting, we shared the survey on social media plat-
forms and online-discussion forums relevant to software development. We adopted
a non-probabilistic snowballing sampling where the participants, at the end of the
survey, were encouraged to share the survey link to others using AddThis.6 Ad-
ditionally, snowballing sampling was encouraged within members of our research
group who were asked to share the survey. This sampling approach resulted in 38
external responses. A further 44 participants were recruited via AmazonMechanical

5Our research group’s engineering cohort consists of fully-qualified software engineers, with on
average 5+ years industry experience.

6https://www.addthis.com/ last accessed 7 January 2020.

https://www.addthis.com/

8.5 Validating the Taxonomy 145

Turk7—often referred to as MTurk—which has been a successful approach adopted
in previous software engineering surveys (e.g., [181]). To ensure our target demo-
graphic was selected, we applied the participant filter option ‘Employment Industry
- Software & IT Services’. An additional 13 responses were partially filled (on
average at a completion rate of 43.23%). These partially completed responses were
included in our analysis since they did yield some insight (see Section 8.7.2). As
participants recruited via MTurk have a financial incentive to complete surveys,8 we
ensured strict quality control was applied to each survey response we received. For
example, 37 participants opened the survey but did not answer any questions; for
this reason, all survey responses by these participants were discarded. We identified
that 12 MTurk responses were filled out too quickly (where the median response
time was under five minutes; well below the internal average of 20 minutes), and
further analysis of these 12 responses indicated poor reading of the question, and
thus poor responses; this was identified via our use of alternating positively- and
negatively-worded questions. Thus, 12 MTurk responses were removed from the
final analysis. Therefore, our final response rate yielded 104 responses of the total
153 participants reached; an overall response rate of 67.97%.

8.5.1.4 Analysing Response Data

To analyse our response data, we produced a single score for each question’s 5-point
response. In line with with Brooke’s SUS methodology [62], we subtracted one
from the raw value of positive items, and subtracted the raw value from five for the
negative items. This resulted in values on an ordinal scale of 0–4. We then averaged
each response for every question and divide by four (i.e, now a 4-point scale) to
obtain scores for each category. For example, two responses of strongly agree=5
and one of neither agree nor disagree=3 were given to [A1] (positively worded);
these values are mapped to 4 and 2, respectively, and are averaged (to 3.33) which is
then divided by a maximum possible score of four, giving 0.84. We then discretise
these calculated values into five intervals (as per Table 8.3, see Section 8.6.1.1) to
interpret the findings; this is presented in Appendix C.1 under the ‘in-practice score’
(IPS) for each category.

Demographics for our survey were consistent in terms of the experience levels
of developers who responded. 78% of respondents indicated they were professional
programmers. Years of programming experience were: <1 year (3.30%); 1–5 years
(41.76%); 6–10 years (35.16%); 11–15 years (9.89%); 16–20 years (5.49%); 21–
30 years (3.30%); 31–40 years (1.10%); 41+ years (0.00%). A wide range of
roles and seniority were listed by developers as presented in Figure 8.5, thereby
indicating that our results include the different expectations of API documentation
from a variety of sources. The highest role was a full-stack developer at either
a mid-tier or senior role, followed by mid-tier or senior back-end developers and
graduate and junior business analysts. Various managerial roles were also listed.

7https://www.mturk.com/ last accessed 9 July 2020.
8A total budget of AUD$600 was allocated for recruitment via MTurk, with each participant

receiving between AUD$3.50–$10.00.

https://www.mturk.com/

146 Better Documenting Computer Vision Services

Only five students (5.00%) responded in our study, two listing themselves as interns
with one as an embedded applications developer. Most respondents were Australian
(40.00%), Indian (26.70%) or from the United States (20.00%). Besides information
technology services (30.77%), consulting and other software development (both at
9.89%) were the most predominant industries listed by participants.

8.5.2 Empirical Application on Computer Vision Services

Once our taxonomy had been developed and assessed with developers, we performed
an empirical application against three CVSs: Google Cloud Vision [423], Amazon
Rekognition [398] and Azure Computer Vision [437]. Our selection criteria in
choosing these particular services to analyse is based on the prominence of the
service providers in industry and the ubiquity of their cloud platforms (GoogleCloud,
Amazon Web Services, and Microsoft Azure) in addition to being the top three
adopted vendors used for cloud-based enterprise applications [121]. In addition, we
had conducted extensive investigation into the services’ non-deterministic runtime
behaviour and evolution profile in priorwork [89] and have also identified developers’
complaints about their incomplete documentation in a prior mining study on Stack
Overflow [92].

We began with an exploratory analysis of the presence of each dimension and
its categories. Appendix C.2 displays all sources of documentation used; although
we initially started on the respective services homepages [398, 423, 437], this search
was expanded to other webpages hyperlinked. For each category, we listed the
documentation’s presence as either fully present, partially present or not present
at all. This is shown in Appendix C.1 with the indication of (half-)filled circles or
circle outlines for Google Cloud Vision (abbreviated to GCV), Amazon Rekognition
(abbreviated toAWS), andAzureComputerVision (abbreviated toACV).Noteswere
taken for each webpage justifying the presence, and exact sources of documentation
were listed when (partially) present. PDFs of each webpage were downloaded
between 14–18 March 2019 for analysis. Analysis was performed manually by
the lead author by manual inspection of the downloaded web pages (as PDFs) and
presence of each item was noted by the lead author using an approach similar to
Watson [373].

8.6 Taxonomy Analysis

In this section, we analyse investigating the taxonomy from two perspectives. Firstly,
we contrast the ILS values, being an interpretation of the relevancy researchers have
emphasised, against the IPS values found from the results of our survey (being
an interpretation of what documentation artefacts developers value more). We are
therefore able to identify the API documentation artefacts that are of high value
to practitioners, but are yet to be deeply explored by researchers. Secondly, we
contrast the IPS values against our assessment of CVSs, and whether important API
documentation artefacts have been included in popular services. We are therefore
able to identify whether vendors have or have not already included these highly-

8.6 Taxonomy Analysis 147

Table 8.3: Intervals of ILS (top) and IPS (bottom) values and frequencies.

Research Attention Range Frequency Categories

Very Low 0.00 ≤ ILS([-8]) < 0.14 7 B4, B5, D6, B3, C1, D1, D2
Low 0.14 ≤ ILS([-8]) < 0.29 13 A1, A9, C3, D3, D4, E2, E3,

E4, E5, B6, A7, A10, D5
Medium 0.29 ≤ ILS([-8]) < 0.43 9 B2, B7, A4, A12, E1, A3, A8,

A11, C2
High 0.43 ≤ ILS([-8]) < 0.57 3 E6, B1, A2

Very High 0.57 ≤ ILS([-8]) ≤ 0.71 2 A6, A5

Value to Developers Range Frequency Categories

Very Low 0.00 ≤ IPS([-8]) < 0.18 0 –
Low 0.18 ≤ IPS([-8]) < 0.36 0 –

Medium 0.36 ≤ IPS([-8]) < 0.53 6 D4, B4, C3, C1, E4, B3
High 0.53 ≤ IPS([-8]) < 0.71 16 A4, B6, A2, D2, A6, E2, B5,

D6,
A8, B2, E6, A10, E5, D5, A9,
D3

Very High 0.71 ≤ IPS([-8]) ≤ 0.89 12 E3, A7, A3, C2, A12, B1, D1,
A11, A1, E1, A5, B7

valued documentation artefacts within their own APIs, and where existing areas of
improvement lie.

8.6.1 Exploring IPS and ILS Values

8.6.1.1 IPS Results

IPS values indicate the extent to which developers agree with the statements made in
our survey, as calculated by the method described in Section 8.5.1.4. The interpreta-
tion of these values are the documentation artefacts (categories) that developers value
the most. Thus collectively, these artefacts indicate the overall level of importance
towards specific API documentation requirements (dimensions).

To interpret these values, we group the data from each of our survey’s 34
statements (for each category) into an ordinal scale of five intervals. These intervals
indicate relative value to developers; a documentation artefact has very low value
to developers, low value, medium value, high value, or very high value. Table 8.3
presents these intervals and frequencies of each, with the order of the categories
shown in the last column indicating raw IPS values (least useful to most useful)
before discretisation in ascending order.

Practitioners tend to agree that each documentation artefact is important to have,
and thus IPS values likely fall into the High or Very High intervals. Only six cate-
gories fall into the Medium interval and none fall into lower intervals. Developers
find technical support contact information [D4] to be of the lowest value (see Ta-
ble 8.3), likely since developers tend to rely on crowd-sourced peer support through
mediums such as Stack Overflow. They also see little value in: descriptions of the
types of end-users the API is intended for [B4]; documentation for non-technical
audiences [C3]; conceptual information relating the API back to its application do-

148 Better Documenting Computer Vision Services

main [C1]; structured navigation of the presented API documentation [E4]; and
descriptions of the intended developers who should be using the API [B3].

8.6.1.2 ILS Results

ILS values indicate overall research attention of categories of our taxonomy through
the proportion of papers in our SMS that investigated or reported various issues
regarding a specific API documentation artefact. Collectively, each of these cat-
egories combined form a dimension (labelled A–E) in a bottom-up approach (see
Section 8.3.2.2). Each dimension (top-node) describes the requirements of good
quality API documentation, while the category (leaf-node) is the specific API doc-
umentation artefact that, collectively, form the requirement. A category with a
high ILS value indicates that existing studies that there is substantial attention by
researchers on this specific documentation artefact (or, collectively, requirement of
good quality API documentation). Conversely, a lower ILS value indicates less
attention reported on these categories (artefact) or dimensions (requirement) by the
software engineering research community.

To demonstrate the attention of these documentation artefacts within literature,
we interpret the ILS values in a similar fashion to the IPS values. It is represented
as a discretised value of intervals within a five-dimensional ordinal scale, where
the attention on these artefacts in literature are one of: very low attention, low
attention, medium attention, high attention, very high attention. Table 8.3 indicates
the boundaries for each interval (as calculated by the highest ILSvalue of 0.71 divided
by the five intervals) in addition to the frequency of categories appearing in each
interval. The order of the categories shown in the last column indicate the ascending
order (least research attention to most) of raw ILS values before discretisation. As
shown, most of the artefacts (20) found in the taxonomy are discussed in literature
disproportionately more than others (i.e., those that fall into the ‘low’ (13) or ‘very
low’ (7) intervals), though the underlying reasons behind this should be considered
on a case-by-case basis (see Section 8.7.3).

There are only five categories that fall into the ‘high’ or ‘very high’ intervals,
three of which fall under dimension [A], Descriptions of API Usage. Research atten-
tion on a particular documentation artefact that is considered Very High gravitates
towards code snippets [A5] and tutorials [A6]. Code snippets are the readiest form
of API documentation for developers, representing exemplary nuggets of informa-
tion for developers to rapidly digest singular components of the API’s functionality.
While code snippets generally only reflect small portions of API functionality (gen-
erally limited to 15–30 LoC), this is complimented by step-by-step tutorials. These
may tie in multiple (disparate) components of API functionality to demonstrate de-
velopment of more non-trivial applications. Therefore, unsurprisingly, research has
substantially explored how best API developers can extract code snippets or write
tutorials for these purposes in mind. This is followed by low-level reference doc-
umentation [A2]—under the ‘high’ interval—whereby developers should document
all client-facing implementation or usage aspects of their API (e.g., class, method,
parameter descriptions etc.). Lastly, the entry-level purpose/overview of an API

8.6 Taxonomy Analysis 149

[B1] and consistency in the look and feel of the documentation throughout all of the
API’s official documentation [E6] are fall under the ‘high’ interval. API vendors
must give motivation as to why a developer should choose a particular API over
another, articulating the need of their API, presenting this and other documentation
aspects in the easiest way for developers to consume.

8.6.1.3 Research Opportunities for High-Value Artefacts

Figure 8.6: Value of API documentation artefacts to developers (IPS) vs their research
attention (ILS). Colour intensity represents greater number of categories in each intersection

In this section, we explore the ILS and IPS values as two distinct indicators of
research exploration that would provide the most value to practitioners. We then
provide a qualitative discussion by inspecting the intersection of categories at each
respective interval identified by our SMS and survey study. Thus, we are able to
determine documentation artefacts (categories) and requirements (dimensions) that
provide the greatest value to developers but have not gained proportional attention
in the software engineering literature when compared to other artefacts, and vice-
versa. Graphically, we represent these intersections within a five-by-five matrix with
intervals of the IPS (G axis) plotted against intervals of the ILS (H axis). Intersections
between the two are listed for each category within the taxonomy. This is presented
in Figure 8.6.

There is a distinction between (very-)highly valued documentation artefacts
whose research attention is (very-)low, as presented in the bottom-right of Figure 8.6.
Most notably, we find that developers find Existence of Support Artefacts [D] a highly

150 Better Documenting Computer Vision Services

valued API documentation requirement, but there still exists a substantial gap in
existing literature into this requirement. For example, besides category [D4] (which
is of onlyMedium value to developers), less research has explored all other dimension
[D] categories (though there may be understandable reasons as to why, as detailed in
Section 8.7.3). Furthermore, developers highly value detailed Descriptions of API
Usage [A] through many documentation artefacts, notably quick-start guides [A1],
downloadable sample applications [A7], exhaustive list of major components [A9],
and system requirements to use the API [A10]. Such artefacts emphasise the need
for developers to rapidly pick-up a new API; however, the best ways to provide such
information is still open to further investigation in literature.

Conversely, the top-right of Figure 8.6 emphasises (very)-highly researched
artefacts that are of (very)-high value to developers. Here we see that Descriptions
of API Usage [A] is the most-researched requirement, with code snippets [A5] being
an API usage artefact that is both most-researched and of highest value. Hence,
this demonstrates how many existing studies have an empirical basis on software
developers (e.g., via surveys or interviews; see Figure 8.3)—code snippets is a well-
researched artefact since most developers agree to its need in the documentation of
APIs. Therefore, it is clear to see how the correlation between the respective ILS
and IPS values for [A5] are high. However, if we look at other areas of our taxonomy,
such as [A12], [B7], [D3], [E3] or [E5], we find that developers do indeed desire these
aspects ofAPI documentation, and, consequently, demand usage descriptions, design
rationale descriptions, support artefacts, or good presentation of the documentation
to be a necessary requirement of good quality API documentation. Thus, these
aspects have not gained proportional attention in literature, thereby highlighting
future research potential.

8.6.2 Triangulating IPS, ILS and Computer Vision

To interpret our comparison of IPS values with CVSs, we introduce a calculated
‘presence score’ for each category. As discussed in Section 8.5.2, we empirically
evaluate each category of our taxonomy with three CVSs: Azure Computer Vision
(ACV), Amazon Rekognition (AWS) and Google Cloud Vision (GCV). We indicate
whether the respective API documentation artefact is present, partially present, or
nor present (as listed in Appendix C.1). To interpret this data, we assign a full circle
(○) for present, half-circle (è) for partially present and an empty circle (+) for not
present. Combinations of presence for each category per service are indicated with
the three circles of varying shade. For example, [A1] has a presence score of○○è

because it was found to be present in both GCV and ACV but only partially present
in AWS; [B3] has a presence score ofè++ because it was only found to be partially
present in GCV, etc. For a list of full presence values, see Appendix C.1.

We illustrate which artefacts industry vendors provide developers with and the
artefact’s respective developer value using this combination of three circles. Using
a similar approach to the previous section, these results are presented in a ten-by-
five matrix as illustrated in Figure 8.7. If only one service fully implements a
documentation artefact of (very-)high value to developers (○ + +), if one or two

8.6 Taxonomy Analysis 151

Figure 8.7: Value of API documentation artefacts to developers (IPS) vs their presence in
CVSs. Colour intensity represents greater number of categories in each intersection.

services partially implement the artefact (è++ andèè+) or if none do (+++),
then we believe there is room for improvement for service vendors to improve their
documentation and include these artefacts.

In this instance, we can see 10 categories listed in Figure 8.7 that developers
feel are important but are not fully implemented across all three CVS vendors.
This is especially the case for dimensions [A] (Descriptions of API Usage) and [D]
(Existence of Support Artefacts), corroborating our findings with existing gaps in
literature under Section 8.6.1.3. In other words, while both the goals of existing
studies and CVS vendors have emphasised the need for artefacts such as code-
snippets [A5], tutorials [A6], and entry-points to the API [B1], less attention is
given to by both literature and vendors on the same, (very-)highly valued aspects to
developers (e.g., troubleshooting hints [D2], licensing information [D6] or links to
related components [E3]).

Furthermore, from our analysis, we can see areas with which the research com-
munity has and has not paid extensive attention to. We still see that vendors have
paid attention to artefacts even where there has been less research attention, namely
[D1] (FAQs), [B5] (success stories), [A7] (downloadable sample applications), [A1]
(quick-start guides), [E2] (forums), [D5] (printable guides), and [A9] (API compo-
nent lists). These seven categories are of (very) high value to developers but research
attention on these topics are (very) low; however, their presence score within CVSs
are ○èè or greater. Hence, we can see that vendors address developer’s concerns

152 Better Documenting Computer Vision Services

despite the lack of attention by software engineering researchers in these areas,
and thus future research potential to better serve developers and ensure vendors’
implementation of these documentation artefacts is evident.

From the above, we can therefore conclude that the vendors’ documentation
largely covers a majority of API documentation requirements. However, there still
remains opportunity for improvement to API documentation by either vendors and/or
the research community: that is, low research attention on documentation artefacts
that present high value to developers which are also generally missing from vendor
documentation. To explore this aspect, we triangulate the documentation artefacts
(categories) that have a low or very low research attention and that are only present
in one service, partially present in one or two, or not present at all. This results
in three documentation requirements that warrant further exploration by industry
vendors or the research community (see Table 8.4).

8.6.3 Recommendations Resulting from Analysis

In this section, we triangulate the taxonomy developed from literary sources, the
developer survey on this taxonomy to understand its efficacy in-practice, and the
application of the taxonomy to CVSs to provide several recommendations for both
service providers and researchers. Our recommendations are based both on extrap-
olations of our findings, our prior work, and existing experience with such work.

8.6.3.1 Recommendations for vendors

Table 8.4 emphasises how service vendors still lack key documentation requirements
of critical importance to developers that are still widely under-researched in software
engineering literature. The largest of these requirements are the need for vendors
to provide additional support artefacts [D] and the need for vendors to present this
in a way that’s most digestible for developers to understand [E]. A list of detailed
suggestions for vendors are provided in Appendix C.4; here we discuss generalised
findings on a sample of key artefacts.

For example, no services assessed had any form of diagrammatic overview of
their APIs at a high-level [D3], thereby indicating how various components of their
APIs work together, such as how specific endpoints work or an overview of the
lifecyle of the technical domain behind these endpoints (i.e., label/train/infer/re-
train), thereby incorporating conceptual relationships behind the API [C1]. For
instance, an interactive overview of the developer’s need to pre-process their data,
send it to the service, and post-process the response data would help developers
understand how the service better fits into the ‘flow’ of their application. Moreover,
we failed to find lower-level diagrammatic overviews of the client SDKs—such as
a UML diagram—that developers find very useful. We strongly advise vendors
to provide diagrams illustrating the service within context to help support existing
written documentation.

Troubleshooting hints [D2] are also a valuable support artefact, but were only
found for AWS’s video processing endpoints. As our prior work shows, developers
are likely to question what aspects of the service can and cannot do, such as the types

8.6
Taxonom

y
A
nalysis

153

Table 8.4: Documentation artefacts of high value to developers that have less attention in software engineering literature and are under-documented in
CVSs. Documentation requirements (i.e., dimensions) separated by rules.

Artefact Value Research Attention Presence in Computer Vision Services

[A10] Documenting API’s minimum sys-
tem requirements and/or dependencies

High Low: 5 studies (23%) Score=1.0: Nodedicatedweb pages found for this arte-
fact in any service. Dependencies for client libraries
embedded within GCV and ACV quick-start guides
[426, 440]. Other system requirements not listed.

[D2] Troubleshooting hints High Very Low: 2 studies (10%) Score=0.5: Only found in AWS’s video recognition
service [408], but no troubleshooting tips found for
non-video image recognition.

[D3] Diagrammatic representation of API Very High Low: 3 studies (14%) Score=0.0: Not found for any service.
[D6] Licensing Information Very High Very Low: 1 study (5%) Score=0.5: Partially present only in ACV [444]; infor-

mation is non-specific to the licensing terms of ACV
exclusively.

[E3] Quick-links to other relevant compo-
nents

Very High Low: 3 studies (14%) Score=0: Not found for any service.

[E5] Visualised map of navigational paths Very High Low: 3 studies (14%) Score=0: Not found for any service.

154 Better Documenting Computer Vision Services

of labels it can find, or how to make it focus on specific ontologies when an input im-
age is provided; e.g., time of day (day vs night) location (indoors vs outdoors) or the
subject of the image (dog vs cat) [92]. Troubleshooting in identifying service evolu-
tion [92] would also be important, since developers are likely to overlook subtle (but
application-breaking) changes to response data, such as labels introduced/removed
or confidence changes. Therefore, vendors must document detailed troubleshooting
suggestions on their websites on how best to resolve discrepancies in the results
found from these services. This could easily be tied in with [A12] to incorporate
usage description requirements when errors are presented to users and how to deal
with them; also largely missing from existing documentation.

Another important aspect is the need to make documentation of one component
more easily relatable to other parts of the documentation [E3]. Again, no service
provided quick-links to related documentation; an example here could be links to
definitions of domain-specific terminology [C2] to help developers with the learning
process of adopting these new generation of APIs (e.g., the ‘score’ field could be
linked back to a video explaining the concept of probability within the services’
guesses).

8.6.3.2 Recommendations for researchers

As shown in Table 8.4, we see that there are cases of (very) high-value documen-
tation artefacts (to practitioners) in which literature has not paid great attention to.
For example, for the requirement of API usage description [A], practitioners agree
that both code snippets [A5] and documenting system requirements to use the API
[A10] are of, at least, high value. However, while code snippets has had consis-
tent attention within the software engineering research community (i.e., 15 papers
spanning 1998–2019), we see that system requirements documentation only gained
fluctuating interest by researchers (i.e., predominantly in the 2000s, with two further
papers in the last three years). Thus, five papers investigating some aspects on this
artefact may not cover all its aspects; for example, we may have identified a need
to document these requirements and dependencies, but does this mean we know all
aspects on how to produce them, the best way to communicate them, and the most
efficient means for developers to consume that information? Contrasting this artefact
against the 15 papers on code snippets, we see two documentation artefacts of at
least high value to practitioners, yet, evidently, researchers have paid attention to one
over the other.

As Figure 8.6 shows, the need for additional support [D] within documentation
is the largest requirement thatmay be an indicator for further research in this domain
(see Section 8.7.3). Notably, RQ2 of our SMS identified the methodologies and data
collection techniques by which our existing understanding of API documentation
requirements were gathered; as demonstrated through Figure 8.3, a majority of our
understanding is grounded through the opinions of developers, namely evaluation
research using direct techniques. Too many studies are shown to rely on a handful
of data collection techniques (interviews and questionnaires, shadowing and obser-
vation, think-aloud sessions) and a stronger emphasis for indirect and independent

8.6 Taxonomy Analysis 155

techniques is needed moving forward; there is therefore a gap in literature on other
types of data collection techniques that may provide different insights into satisfying
the documentation requirements within our taxonomy.

For example, we see [A9] (exhaustive list of major API components) as a high-
value documentation artefact that satisfies the requirement of the API usage descrip-
tion [A]. However research attention is lower. A validation research paper could
propose a method to generate a baseline list of these components through an inde-
pendent technique, such mining the API codebase for its major components through
class usage (static analysis) or analysing an existing work database or tool use logs
to see which components developers have accessed the most. This would satisfy
the need for the documentation artefact, bolstering the API usage requirement and
exploring new techniques to do so.

Few philosophical papers result in a lack of insight into completely new ways of
exploringAPI documentation. Further exploration into this type of researchmay help
us devise a whole new framework of producing API documentation. For example,
as shown by developers and vendors, quick-start guides [A1] are highly valued,
and well-documented in CVSs. But literature does not provide any vocabulary
or frameworks into how best to develop such guides. Involving both software
engineering researchers and developers through a brainstorming or focus group to
conceptualise, devise, and refine such a framework may be a worthwhile study to
better improve our understanding of quick-start guides whilst also exploring new
approaches to research new guidelines.

Beyond requirement [A], another insight identified is the need for developers to
have visualised maps of navigational paths [E5] which is not yet provided by any of
the CVS providers investigated. With the low ILS value in this category (14% or
3 studies), we see a potential research topic for future exploration. For example, if
research can demonstrate that such visualisedmaps are not just something developers
desire, but can make themmore effective in their day-to-day work, then this could be
a strong case made to vendors to improve the presentation of their documentation.

Thus, as we have shown in these sample recommendations, many potential
studies and research directions can stem by exploring the discrepancies of API
documentation in literature, in practice, and their presence in CVSs (i.e., as a sample
case study) when assessed on a case-by-case basis. The method researchers decide
upon depends the research questions they wish to address; thus, observations we
present in Figure 8.3 may trigger fruitful reasoning about approaches future research
could take, however inferring methodological gaps will need to be compatible with
research goals. Thus, mapping these discrepancies to gaps in the techniques used in
studies to devise of novel ways to improve API documentation whilst also exploring
new methodologies should be balanced carefully by researchers.

156 Better Documenting Computer Vision Services

8.7 Threats to Validity

8.7.1 Internal Validity

Threats to internal validity represent internal factors of our study which affect
concluded results. Kitchenham and Charters’ guidelines on producing systematic
reviews [196] suggest that researchers conducting reviews should discuss the review
protocol, inclusion decisions, data extraction with a third party. Within this study,
we discussed our protocols with other researchers within our research group and
utilised test-retest reliability. Further assessments into reliability would involve an
assessment of the review and extraction processes, which can be investigated using
inter-rater reliability measures. Guidelines suggested by Garousi and Felderer [132]
describe methods for independent analysis and conflict resolution could help resolve
this.

As stated in Section 8.3.2, we utilised a systematic software engineering tax-
onomy development method by Usman et al. [362]. Two additional taxonomy
validation approaches proposed by Usman et al. were not considered in our work:
benchmarking and orthogonality demonstration. To our knowledge, there are no
other studies that classify existing API documentation studies into a structured tax-
onomy, and therefore we are unable to benchmark our taxonomy against others. We
would encourage the research community to conduct a replication of our work and
investigate whether our taxonomy classification approaches are replicable to ensure
that categories are reliable and the dimensions fit the objectives of the taxonomy.
Moreover, we did not investigate orthogonality demonstration as our primary goals
for this work were to investigate the efficacy of the taxonomy by practitioners and
in-practice, with reference to our wider research area of intelligent CVSs. Therefore,
we solely adopted the utility demonstration approach in two detailed experiments
(Sections 8.5 and 8.6) to analyse the efficacy of our taxonomy and identify potential
improvements for these services’ API documentation.

8.7.2 External Validity

Threats to external validity concern the generalisation of our observations. Our
SMS has used a broad range of sources however not all papers contributing to API
documentation may have been found or captured within the taxonomy. While we
attempted to include as many papers as we could find in our study, some papers may
have been filtered out due to our exclusion criteria. For example, there are studies
we found that were excluded as they were not written in English, and these excluding
factors may alter our conclusions, introducing conflicting recommendations. How-
ever, given the consistency of these trends within the studies that were sourced, we
consider this a low likelihood.

Online documentation of APIs are non-static, and may evolve using contribu-
tions from both official sources and the developer community (e.g., via GitHub).
We downloaded the three service’s API documentation in March of 2019—it is
highly likely that new documentation may have been added since or modified since
publication. A recommendation to mitigate this would be to re-evaluate this study

8.7 Threats to Validity 157

once intelligent CVSs have matured and become even more mainstream in developer
communities.

Unless significant inducements are offered, Singer et al. [333] report that a
consistent response rate of 5% has been found in software engineering questionnaires
distributed and in information systems the median response rates for surveys are 60%
[29]. We observe that low response rates may adversely effect the findings of our
survey, typically as software engineers find little time to do them [333]. When
compared to typical software engineering studies, our response rate of 67.97% was
likely successful due to designing and carefully testing succinct, unambiguous and
well-worded questions with researchers within our research group. All adjustments
made from the pilot study due to unexpected poor quality of the questionnaire have
been reported and explained in Section 8.5.1.2. However, further improvements
could be made to increase this response rate.

The survey reached 82 external and 22 internal participants. This yielded a total
of 104 participants. However, only 91 participants fully completed the survey and,
on average, those who only partially completed the survey completed 43.23% of
all questions. Therefore, demographic data for these participants is largely missing.
To verify the reliability of partially submitted responses, we calculated the average
response of each item in our survey (i.e., question) for all fully completed results and
all partially completed results. All partially completed questions, except [B7], were
within 1 standard deviation from the mean, and therefore we believe the 13 partial
results to be valid when excluding B7. Even if these partial results are excluded, our
full-response participant count of 91 is still comparable to existing studies, such as
Nykaza et al. [266] (57 participants), Robillard and Deline [307] (80 participants),
or [306] (83 participants). Therefore, given these comparable numbers, we believe
this does not compromise validity of our results.

We also adopt research conducted in the field of questionnaire design, such as
ensuring all scales are worded with labels [207] and have used a summating rating
scale [338] to address a specific topic of interest if people are to make mistakes in
their response or answer in different ways at different times. This approach was
also extended using alternating positive and negative sentiment for each question—
as multiple studies have shown [63, 317], this approach helps reduce poor-quality
responses by minimising extreme responses and acquiescence biases.

8.7.3 Construct Validity

Threats to construct validity relates to the degree by which the data extrapolated
in this study sufficiently measures its intended goals. Our interpretation of the
ILS (as given in Sections 8.4 and 8.6.1.2) is reported as the proportion of papers
whose research investigates or explores issues regarding the aspects of specific API
documentation artefacts (i.e., categories in the taxonomy) that, collectively, comprise
the requirements of good API documentation (i.e., dimensions in the taxonomy).
Every effort has been made in this work to provide a constructive analysis on the API
documentation landscape, however, the studies that comprise the ILS may differ in
their intent toward a specific documentation artefact. For example, some studies may

158 Better Documenting Computer Vision Services

have distinct goals to extensively study how code snippets [A5] specifically improve
developer productivity (e.g., through interviews or by observational studies), while
others may just reflect that code snippets are a commonly-used artefact self-reported
by developers (e.g., through a survey). Thus, the interpretation of the ILS may range
between deep exploration of an artefact or whether a study mentions the artefact
without any attempts to thoroughly investigate it. For this reason, we suggest that a
high ILS value for a category within the taxonomy suggests that the documentation
artefact is within the attention of the research community, and that subsequent
attention may be required for those artefacts with low ILS values as a potential
indicator for future research (i.e., it also may not). However, each artefact with a
low ILS (but high IPS) would need to be carefully examined in isolation to evaluate
whether future research is indeed warranted, and how that research can be conducted
with the ultimate goal to assist practitioners.

Automatic searching was conducted in the SMS by choice of three popular
databases (see Section 8.3.1). As a consequence of selecting multiple databases,
duplicates were returned. This was mitigated by manually curating out all duplicate
results from the set of studies returned. Additionally, we acknowledge that the lack
manual searching of papers within particular venues may be an additional threat due
to the misalignment of search query keywords to intended papers of inclusion. Thus,
our conclusions are only applicable to the information we were able to extract and
summarise, given the primary sources selected.

While we have investigated the application of this taxonomy using a user study
(Section 8.5.1), we would like to explore a controlled study of developers to assess
how improved and non-improved API documentation impacts developer productiv-
ity. The outcome of this work can help design a follow-up experiment, consisting of a
comparative controlled study [323] that capture firsthand behaviours and interactions
toward how software engineers approach using a CVS with and without our taxon-
omy applied. This can be achieved by providing ‘mock’ improved documentation
with the suggested improvements included in this work. Such an experiment could
recruit a sample of developers of varying experience (from beginner programmer
to principal engineer) to complete a certain number of tasks under a comparative
controlled study, half of which will (a) develop using the improved ‘mock’ docu-
mentation, and the other half will (b) develop with the as-is/existing documentation.
From this, we can compare if the taxonomy makes improvements by capturing met-
rics and recording the sessions for qualitative analysis. Visual modelling can be
adopted to analyse the qualitative data using matrices [100], maps and networks
[320] as these help illustrate any causal, temporal or contextual relationships that
may exist to map out the developer’s mindset and difference in approaching the two
sets of designs of the same tasks.

8.8 Conclusions & Future Work

The emergence of AI-based intelligent components present significant challenges to
our existing understanding of traditional API documentation. The inherent prob-
abilistic and non-deterministic nature of these components means that developers

8.8 Conclusions & Future Work 159

must shift their mindset of conventional APIs, and vendors of these services must
similarly shift the mindset of documenting their APIs using traditional means. With-
out adapting to the new mental model (of the vendors designing these services) and
by vendors presenting poor or incomplete (traditional) documentation that is not
compatible with these next-generation components, developers face many struggles.
They fail to grasp how to properly understand how these services work, seeking fur-
ther documentation or support from their peers on forums on such as Stack Overflow
[92]. This ultimately hinders developers’ productivity and thus adversely affects the
internal quality of the applications that they build.

This study has explored the artefacts and means by which traditional API doc-
umentation is studied through the use of an SMS of 4,501 studies, identifying 21
key works. From this, we synthesised a taxonomy of the various documentation
artefacts that improves API documentation quality, and thus collectively synthesis-
ing the requirements of good API documentation. Furthermore, we also capture the
most commonly used analysis techniques used in the academic literature to under-
stand the means by which the goals of these studies resulted in their findings. We
then validate our taxonomy against developers to assess its efficacy with practition-
ers, and conduct a heuristic evaluation against three popular CVSs. We determine
that developers demand certain documentation artefacts more than others, since not
all documentation artefacts are equally valued. We map the value (to developers)
of these artefacts against their exposure within the software engineering literature,
thereby highlighting the gaps by which future research could expand upon. Fur-
thermore, we present a similar mapping against how well the coverage CVSs have
incorporated such artefacts into their own API documentation, thus highlighting
that while industry vendors cover most documentation artefacts that may not be in
the interest to researchers, some artefacts with low research interest are still largely
missing (see Table 8.4). We therefore provide several generalised recommendations
to vendors and the wider research community to explore how best these artefacts
can be better addressed and incorporated into further research, thus improving our
understanding of the requirements of good API documentation.

Future extensions of our work may involve a restricted systematic literature
review in API documentation artefacts, and many suggestions are further detailed
in Section 8.7. Further, a review into the techniques of these primary studies may
extend the mapping we conducted in this work, by evaluating the the effectiveness of
the various approaches used in each study and assessing these against the proposed
conclusions of each study.

The findings of our work provides a solid baseline for improving the documen-
tation of non-deterministic software, such as CVSs. While our aim is to eventually
improve the quality of API documentation, the ultimate goal is to improve the
software engineer’s experience of non-deterministic and abstracted AI-based com-
ponents, such as intelligent web services (IWSs). We hope the guidelines from this
extensive study help both software developers and API providers alike by using our
taxonomy as a go-to checklist for what should be considered in documenting any
API.

CHAPTER9

Using a Facade Pattern to combine Computer Vision Services†

Abstract Intelligent computer vision services, such as Google Cloud Vision or Amazon
Rekognition, are becoming evermore pervasive and easily accessible to developers to build
applications. Because of the stochastic nature that ML entails and disparate datasets used in
their training, the outputs from different computer vision services varies with time, resulting
in low reliability—for some cases—when compared against each other. Merging multiple
unreliable API responses from multiple vendors may increase the reliability of the overall
response, and thus the reliability of the intelligent end-product. We introduce a novel
methodology—inspired by the proportional representation used in electoral systems—to
merge outputs of different intelligent computer vision API provided by multiple vendors.
Experiments show that our method outperforms both naive merge methods and traditional
proportional representation methods by 0.015 F-measure.

9.1 Introduction

With the introduction of intelligent web services (IWSs) that make machine learning
(ML) more accessible to developers [302, 369], we have seen a large growth of
intelligent applications dependent on such services [66, 137]. For example, consider
the advances made in computer vision, where objects are localised within an image
and labelled with associated categories. Cloud-based computer vision services
(CVSs)—e.g., [398, 411, 419, 423, 432, 433, 437, 486]—are a popular and mature
subset of IWSs. They utilise ML techniques to achieve image recognition via a
remote black-box approach, thereby reducing the overhead for application developers
to understand how to implement intelligent systems from scratch. Furthermore, as

†This chapter is originally based on T. Ohtake, A. Cummaudo, M. Abdelrazek, R. Vasa, and
J. Grundy, “Merging intelligent API responses using a proportional representation approach,” in
Proceedings of the 19th International Conference on Web Engineering. Daejeon, Republic of Korea:
Springer, June 2019. DOI 10.1007/978-3-030-19274-7_28. ISBN 978-3-03-019273-0. ISSN 1611-
3349 pp. 391–406. Terminology has been updated to fit this thesis.

161

https://doi.org/10.1007/978-3-030-19274-7_28

162 Using a Facade Pattern to combine Computer Vision Services

the processing and training of the machine-learnt algorithms is offloaded to the
cloud, developers simply send RESTful API requests to do the recognition. There
are, however, inherit differences and drawbacks between traditional web services
and IWSs, which we describe with the motivating scenario below.

9.1.1 Motivating Scenario: Intelligent vs Traditional Web Services

An application developer, Tom, wishes to develop a social media Android and iOS
app that catalogues photos of him and his friends, common objects in the photo,
and generates brief descriptions in the photo (e.g., all photos with his husky dog,
all photos on a sunny day etc.). Tom comes from a typical software engineering
background with little knowledge of computer vision and its underlying concepts.
He knows that intelligent computer vision web APIs are far more accessible than
building a computer vision engine from scratch, and opts for building his app using
these cloud services instead.

Based on his experiences using similar cloud services, Tomwould expect consis-
tency of the results from the same API and different APIs that provide the same (or
similar) functionality. As an analogy, when Tom writes the Java substring method
"doggy".substring(0, 2), he expects it to be the same result as the Swift equiv-
alent "doggy".prefix(3). Each and every time he interacts with the substring
method using either API, he gets "dog" as the response. This is because Tom is
used to deterministic, rule-driven APIs that drive the implementation behind the
substring method.

Tom’s deterministic mindset results in three key differentials between a tradi-
tional web services and an IWS:
(1) Given similar input, results differ between similar IWSs. When Tom

interacts with the API of an IWS, he is not aware that each API provider trains
their own, uniqueMLmodel, both with disparate methods and datasets. These
IWSs are, therefore, non-deterministic and data-driven; input images—even
if they contain the same conceptual objects—often output different results.
Contrast this to the substring method of traditional APIs; regardless of what
programming language or string library is used, the same response is expected
by developers.

(2) Intelligent responses are not certain. When Tom interprets the response
object of an IWS, he finds that there is a ‘confidence’ value or ‘score’. This
is because the ML models that power IWSs are inherently probabilistic and
stochastic; any insight they produce is purely statistical and associational [282].
Unlike the substring example, where the rule-driven implementation provides
certainty to the results, this is not guaranteed for IWSs. For example, a picture
of a husky breed of dog is misclassified as a wolf. This could be due to
adversarial examples [347] that ‘trick’ the model into misclassifying images
when they are fully decipherable to humans. It is well-studied that such
adversarial examples exist in the real world unintentionally [115, 208, 285].

(3) Intelligent APIs evolve over time. Tommay find that responses to processing
an image may change over time; the labels he processes in testing may evolve

9.2 Merging API Responses 163

and therefore differ to when in production. In traditional web services, evo-
lution in responses is slower, generally well-communicated, and usually rare
(Tom would always expect "dog" to be returned in the substring example).
This has many implications on software systems that depend on these APIs,
such as confidence in the output and portability of the solution. Currently, if
Tom switches from one API provider to another, or if he doesn’t regularly test
his app in production, he may begin to see a very different set of labels and
confidence levels.

9.1.2 Research Motivation

These drawbacks bring difficulties to the intended API users like Tom. We identify a
gap in the software engineering literature regarding such drawbacks, including: lack
of best practices in using IWSs; assessing and improving the reliability of APIs for
their use in end-products; evaluating which API is suitable for different developer
and application needs; and how to mitigate risk associated with these APIs. We
focus on improving reliability of CVSs for use in end-products. The key research
questions in this paper are:

RQ1: Is it possible to improve reliability by merging multiple CVS results?
RQ2: Are there better algorithms for merging these results than currently in

use?
Previous attempts at overcoming low reliability include triple-modular redun-

dancy [227]. This method uses three modules and decides output using majority
rule. However, in CVSs, it is difficult to applymajority rule: these APIs respondwith
a list of labels and corresponding scores. Moreover, disparate APIs ordinarily output
different results. These differences make it hard to apply majority rule because the
type of outputs are complex and disparate APIs output different results for the same
input. Merging search results is another technique to improve reliability [332]. It
normalises scores of different databases using a centralised sample database. Nor-
malising scores makes it possible to merge search results into a single ranked list.
However, search responses are disjoint, whereas they are not in the context of most
CVSs.

In this paper, we introduce a novel method to merge responses of CVSs, using
image recognition API endpoints as our motivating example. Section 9.2 describes
naive merging methods and requirements. Section 9.3 gives insights into the struc-
ture of labels. Section 9.4 introduces our method of merging computer vision labels.
Section 9.5 compares precision and recall for each method. Section 9.6 presents
conclusions and future work.

9.2 Merging API Responses

Image recognition APIs have similar interfaces: they receive a single input (image)
and respond with a list of labels and associated confidence scores. Similarly, other
supervised-AI-based APIs do the same (e.g., detecting emotions from text and

164 Using a Facade Pattern to combine Computer Vision Services

Facade

Endpoint 1

Endpoint 2

Endpoint 3

request
request

response

request

response

request

response

merged

response

Figure 9.1: The user sends a request to the facade; this request is propagated to the relevant
APIs. Responses are merged by the facade and returned back to the user.

natural language processing [434, 487]). It is difficult to apply majority rule on such
disparate, complex outputs. While the outputs by multiple AI-based API endpoints
is different and complex, the general format of the output is the same: a list of labels
and associated scores.

9.2.1 API Facade Pattern

To merge responses from multiple APIs, we introduce the notion of an API facade.
It is similar to a metasearch engine, but differs in their external endpoints. The
facade accepts the input from one API endpoint (the facade endpoint), propagates
that input to all user-registered concrete (external) API endpoints simultaneously,
then ‘merges’ outputs from these concrete endpoints before sending this merged
response to the API user. We demonstrate this process in Figure 9.1.

Although the model introduces more time and cost overhead, both can be miti-
gated by caching results. On the other hand, the facade pattern provides the following
benefits:

• Easy to modify: It requires only small modifications to applications, e.g.,
changing each concrete endpoint URL.

• Easy to customise: It merges results from disparate and concrete APIs ac-
cording to the user’s preference.

• Improves reliability: It enhances reliability of the overall returned result by
merging results from different endpoints.

9.2.2 Merge Operations

The API facade is applicable to many use cases. However, this paper focuses on
APIs that output a list of labels and scores, as is the case for CVSs. Merge operations
involve the mapping of multiple lists and associated scores, produced by multiple
APIs, to just one list. For instance, a CVS receives a bowl of fruit as the input image
and outputs the following:

[[‘apple’, 0.9], [‘banana’, 0.8]]

where the response gives a set of elements (two in this case) and the first item of that
element is the label and the second item is the score. Similarly, another computer
vision API outputs the following for the same image:

9.2 Merging API Responses 165

[[‘apple’, 0.7], [‘cherry’, 0.8]].

Merge operations can, therefore, merge these two responses into just one response.
Naive ways of merging results could make use of max, min, and average operations
on the confidence scores. For example, max merges results to:

[[‘apple’, 0.9], [‘banana’, 0.8], [‘cherry’, 0.8]];

min merges results to:

[[‘apple’, 0.7]];

and average merges results to:

[[‘apple’, 0.8], [‘banana’, 0.4], [‘cherry’, 0.4]].

However, as the object’s labels in each result are natural language, the operations
do not exploit the label’s semantics when conducting label merging. To improve
the quality of the merged results, we consider the ontologies of these labels, as we
describe below.

9.2.3 Merging Operators for Labels

Merge operations on labels are =-ary operations that map '= to ', where '8 =
{(;8 9 , B8 9)} is a response from endpoint 8 and contains pairs of labels (;8 9) and scores
(B8 9). Merge operations on labels have the following properties:

• identity defines that merging a single response should output same response
(i.e., ' = merge(') is always true);

• commutativity defines that the order of operands should not change the result
(i.e., merge('1, '2) = merge('2, '1) is always true);

• reflexivity defines that merging multiple same responses should output same
response (i.e., ' = merge(', ') is always true); and,

• additivity defines that, for a specific label, the merged response should have
higher or equal score for the label if a concrete endpoint has a higher score.
Let ' = merge('1, '2) and '′ = merge('′1, '2) be merged responses. '1 and
'′1 are same, except '′1 has a higher score for label ;G than '1. The additive
score property requires that '′ score for ;G should be greater than or equal to
' score for ;G .

Themax, min, and average operations in Section 9.2.2 follow each of these rules
as all operations calculate the score by applying these operations on each score.

166 Using a Facade Pattern to combine Computer Vision Services

Table 9.1: Statistics for the number of labels, on average, per service identified.

Endpoint Average number of labels Has synset No synset

Amazon Rekognition 11.42 ± 7.52 10.74 ± 7.10 (94.0%) 0.66 ± 0.87
Google Cloud Vision 8.77 ± 2.15 6.36 ± 2.22 (72.5%) 2.41 ± 1.93
Azure Computer Vision 5.39 ± 3.29 5.26 ± 3.32 (97.6%) 0.14 ± 0.37

9.3 Graph of Labels

CVSs typically return lists of labels and their associated scores. In most cases, the
label can be a singular word (e.g., ‘husky’) or multiple words (e.g., ‘dog breed’).
Lexical databases, such as WordNet [246], can therefore be used to describe the
ontology behind these labels’ meanings. Figure 9.2 is an example of a graph of
labels and synsets. A synset is a grouped set of synonyms for a word. In this image,
we consider two fictional endpoints, endpoints 1–2. We label red nodes as labels
from endpoint 1, yellow nodes as labels from endpoint 2, and blue nodes as synsets
for the associated labels from both endpoints. As actual graphs are usually more
complex, Figure 9.2 is a simplified graph to illustrate the usage of associating labels
from two concrete sources to synsets.

9.3.1 Labels and synsets

The number of labels depends on input images and concrete API endpoints used.
Table 9.1 and Figure 9.3 show how many labels are returned, on average per image,
from Google Cloud Vision [423], Amazon Rekogition [398] and Azure Computer
Vision [437] image recognition APIs. These statistics were calculated using 1,000
images from Open Images Dataset V4 [425] Image-Level Labels set.

Labels from Amazon and Microsoft tend to have corresponding synsets, and
therefore these endpoints return common words that are found in WordNet. On the
other hand, Google’s labels have less corresponding synsets: for example, labels
without corresponding synsets are car models and dog breeds.1

9.3.2 Connected Components

A connected component (CC) is a subgraph in which there are paths between any
two nodes. In graphs of labels and synsets, CCs are clusters of labels and synsets
with similar semantic meaning. For instance, there are two CCs in Figure 9.2. CC 1
in Figure 9.2 has ‘beverage’, ‘dessert’, ‘chocolate’, ‘hot chocolate’,
‘drink’, and ‘food’ labels from the red first endpoint and ‘coffee’, ‘hot
chocolate’, ‘drink’, ‘caffeine’, and ‘tea’ labels from the yellow second
endpoint. Therefore, these labels are related to ‘drink’. On the other hand, CC 2
in Figure 9.2 has ‘cup’ and ‘coffee cup’ labels from the first red endpoint and
‘cup’, ‘coffee cup’, and ‘tableware’ labels from the yellow second endpoint.
These labels are, therefore, related to ‘cup’.

1We noticed from our upload of 1,000 images that Google tries to identify objects in greater detail.

9.3 Graph of Labels 167

10/1/2018 Online FlowChart & Diagrams Editor - Mermaid Live Editor

https://mermaidjs.github.io/mermaid-live-editor/#/view/eyJjb2RlIjoiZ3JhcGggTFJcbnN1YmdyYXBoIENvbm5lY3RlZCBDb21wb25lbnQgMlxubi0zM… 1/1

Connected Component 1

Connected Component 2

Hypernym Hypernym

Part meronym

Hypernym

Hypernym

Part meronym

Hypernym

Part meronym

Hypernym

Hypernym

HypernymHypernymHypernym

HypernymHypernym

Hypernym

Substance meronym

Hypernym

Hypernym

Hypernym

Substance meronym

Hypernym

Substance meronym

Hypernym

beverage

food

nutrimentcoursedessert

foodstuffcocoa

cocoa

water
drinking_water

coffee

caffeine

tea

Beverage

Drink

drink

Food

Dessert

Chocolate

Hot Chocolate

hot chocolate

coffee

caffeine

tea

cup crockery

tableware

cutlery

handlecoffee_cup

teacup

Cup

cup

tableware
Coffee Cup

coffee cup

demitasse

Figure 9.2: Graph of labels from two concrete endpoints (red and yellow) and their associ-
ated synsets related to both words (blue).

168 Using a Facade Pattern to combine Computer Vision Services

Figure 9.3: Number of labels responded from our input dataset to three concrete APIs
assessed.

Figure 9.4: Number of connected components compared to the number of images.

9.4 API Results Merging Algorithm 169

Figure 9.4 shows a distribution of number of CCs for the 1,000-image label
detections on Amazon Rekognition, Google Cloud Vision, and Azure Computer
Vision APIs. The average number of CCs is 9.36 ± 3.49. The smaller number of
CCs means that most of labels have similar meanings, while a larger value means
that the labels are more disparate.

9.4 API Results Merging Algorithm

Our proposed algorithm to merge labels consists of four parts: (1) mapping labels to
synsets, (2) deciding the total number of labels, (3) allocating the number of labels
to CCs, and (4) selecting labels from CCs.

9.4.1 Mapping Labels to Synsets

Labels returned in CVS responses are words (in natural language) that do not always
identify their intended meanings. For instance, a label orange may represent the
fruit, the colour, or the name of the longest river in South Africa. To identify the
actual meanings behind a label, our facade enumerates all synsets corresponding to
labels. It then finds the most likely synsets for labels by traversing WordNet links.
For instance, if an API endpoint outputs the ‘orange’ and ‘lemon’ labels, the
facade regards ‘orange’ as a related synset word of ‘fruit’. If an API endpoint
outputs ‘orange’ and ‘water’ labels, the facade regards ‘orange’ as a ‘river’.

9.4.2 Deciding Total Number of Labels

The number of labels in responses from endpoints vary as described in Section 9.3.1.
The facade decides the number of merged labels using the numbers of labels from
each endpoint. We formulate the following equation to calculate the number of
labels:

min
8
(|'8 |) ≤

Σ8 |'8 |
=
≤ max

8
(|'8 |) ≤ Σ8 |'8 |

where |' | is number of labels and scores in response, and = is number of endpoints.
In case of naive operations in Section 9.2.2, the following is true:

|mergemax('1, . . . , '=) | ≤ min
8
(|'8 |)

max
8
(|'8 |) ≤|mergemin('1, . . . , '=) | ≤ Σ8 |'8 |

max
8
(|'8 |) ≤|mergeaverage('1, . . . , '=) | ≤ Σ8 |'8 |.

The proposal uses bΣ8 |'8 |/=c to conform to the necessary condition described in
Section 9.4.3.

170 Using a Facade Pattern to combine Computer Vision Services

L-1a, 0.9

L-1b, 0.8

L-1c, 0.7

L-2a, 0.9

L-2b, 0.8

L-2c, 0.7

Figure 9.5: Allocation to connected components.

9.4.3 Allocating Number of Labels to Connected Components

The graph of labels and synsets is then divided into several CCs. The facade decides
how many labels are allocated for each CC. For example, in Figure 9.5, there are
three CCs, where square-shaped nodes are labels in responses from endpoints. Text
within these label nodes describe which endpoint outputs the label and score, for
instance, “L-1a, 0.9” is label a from endpoint 1with a score 0.9. Circle-shaped nodes
represent synsets, where the edges between the label and synset nodes indicate the
relationships between them. Edges between synsets are links in WordNet.

Allegorically, allocating the number of labels to CCs is similar to proportional
representation in a political voting system, where CCs are the political parties and
labels are the votes to a party. Several allocation algorithms are introduced in
proportional representation, for instance, the D’Hondt and Hare-Niemeyer methods
[261]. However, there are differences from proportional representation in the polit-
ical context. For label merging, labels have scores and origin endpoints and such
information may improve the allocation algorithm. For instance, CCs supported
with more endpoints should have a higher allocation than CCs with fewer endpoints,
and CCs with higher scores should have a higher allocation than CCs with lower
scores. We introduce an algorithm to allocate the number of labels to CCs. This
allocates more to a CC with more supporting endpoints and higher scores. The steps
of the algorithm are:

Step I. Sort scores separately for each endpoint.
Step II. If all CCs have an empty score array or more, remove one, and go to Step

II.
Step III. Select the highest score for each endpoint and calculate product of highest

scores.
Step IV. A CC with the highest product score receives an allocation. This CC

removes every first element from the score array.
Step V. If the requested number of allocations is complete, then stop allocation.

Otherwise, go to Step II.

Tables 9.2 to 9.5 are examples of allocation iterations. In Table 9.2, the facade
sorts scores separately for each endpoint. For instance, the first CC in Figure 9.5
has scores of 0.9 and 0.8 from endpoint 1 and 0.9 from endpoint 2. All CCs have a

9.5 Evaluation 171

Table 9.2: Allocation iteration 1.

Scores Highest Product Allocated

[0.9, 0.8], [0.9] [0.9, 0.9] 0.81 0+1
[0.7], [0.8] [0.7, 0.8] 0.56 0
[], [0.7] [N/A, 0.7] N/A 0

Table 9.3: Allocation iteration 2.

Scores Highest Product Allocated

[0.8], [] [0.8, N/A] N/A 1
[0.7], [0.8] [0.7, 0.8] 0.56 0+1
[], [0.7] [N/A, 0.7] N/A 0

Table 9.4: Allocation iteration 3.

Scores Highest Product Allocated

[0.8], [] — — 1
[], [] — — 1
[], [0.7] — — 0

Table 9.5: Allocation iteration 4.

Scores Highest Product Allocated

[0.8] [0.8] 0.8 1+1
[] [N/A] N/A 1
[0.7] [0.7] 0.7 0

non-empty score array or more, so the facade skips Step II. The facade then picks
the highest scores for each endpoint and CC. CC 1 has the largest product of highest
scores and receives an allocation. In Table 9.3, the first CC removes every first score
in its array as it received an allocation in Table 9.2. In this iteration, the second CC
has largest product of scores and receives an allocation. In Table 9.4, the second CC
removes every first score in its array. At Step II, all the three CCs have an empty
array. The facade removes one empty array from each CC. In Table 9.5, the first CC
receives an allocation. The algorithm is applicable if total number of allocation is
less than or equal to max8 (|'8 |) as scores are removed in Step II. The condition is a
necessary condition.

9.4.4 Selecting Labels from Connected Components

For each CC, the facade applies the average operator from Section 9.2.2 and takes
labels with =-highest scores up to allocation, as per Section 9.4.3.

9.4.5 Conformance to properties

Section 9.2.3 defines four properties: identity, commutativity, reflexivity, and addi-
tivity. Our proposed method conforms to these properties:

• identity: the method outputs same result if there is one response;
• commutativity: the method does not care about ordering of operands;
• reflexivity: the allocations to CCs are same to number of labels in CCs; and
• additivity: increases in score increases or does not change the allocation to
the corresponding CC.

9.5 Evaluation

9.5.1 Evaluation Method

To evaluate the merge methods, we merged CVS results from three representative
image analysis API endpoints and compared these merged results against human-

172 Using a Facade Pattern to combine Computer Vision Services

verified labels. Images and human-verified labels are sourced from 1,000 randomly-
sampled images from the Open Images Dataset V4 [425] Image-Level Labels test
set.

The first three rows in Table 9.7 are the evaluation of original responses from
each API endpoint. Precision, recall, and F-measure in Table 9.7 do not reflect
actual values: for instance, it appears that Google performs best at first glance, but
this is mainly because Google’s labels are similar to that of the Open Images label
set.

The Open Images Dataset uses 19,995 classes for labelling. The human-verified
labels for the 1,000 images contain 8,878 of these classes. Table 9.6 shows the
correspondence between each service’s labels and the Open Images Dataset classes.
For instance, Amazon Rekognition outputs 11,416 labels in total for 1,000 images.
There are 1,409 unique labels in 11,416 labels. 1,111 labels out of 1,409 can be
found in Open Images Dataset classes. Rekognition’s labels matches to Open Images
Dataset classes at 78.9% ratio, while Google has an outstanding matched percentage
of 94.1%. This high match is likely due to Google providing both Google Cloud
Vision and the Open Images Dataset—it is likely that they are trained on the same
data and labels. An endpoint with higher matched percentage has a more similar
label set to the Open Images Dataset classes. However, a higher matched percentage
does not mean imply better quality of an API endpoint; it will increase apparent
precision, recall, and F-measure only.

The true and false positive (TP/FP) label averages and the TP/FP ratio is shown
in Table 9.7. Where the TP/FP ratio is larger, the scores are more reliable, however
it is possible to increase the TP/FP ratio by adding more false labels with low scores.
On the other hand, it is impossible to increase F-measure intentionally, because
increasing precision will decrease recall, and vice versa. Hence, the importance of
the F-measure statistic is critical for our analysis.

Let '�, '� , and '" be responses from Amazon Rekognition, Google Cloud
Vision, and Microsoft’s Azure Computer Vision, respectively. There are four sets
of operands, i.e., ('�, '�), ('� , '"), ('" , '�), and ('�, '� , '"). Table 9.7
shows the evaluation of each operands set, Table 9.8 shows the averages of the four
operands sets, and Figure 9.6 shows the comparison of F-measure for each methods.

9.5.2 Naive Operators

Results of min, max, and average operators are shown in Tables 9.7 and 9.8 and Fig-
ure 9.6. The min operator is similar to union operator of set operation, and outputs
all labels of operands. The precision of the min operator is always greater than any
precision of operands, and the recall is always lesser than any precision of operands.
Max and average operators are similar to intersection operator of set operations.
Both operators output intersection of labels of operands and there is no clear relation
to the precision and recall of operands. Since both operators have the same preci-
sion, recall, and F-measure, Figure 9.6 groups them into one. The average operator
performs well on the TP/FP ratio, where most of the same labels from multiple
endpoints are TPs. In many cases of the four operand sets, all naive operators’

9.5 Evaluation 173

Table 9.6: Matching to human-verified labels.

Endpoint Total Unique Matched Matched %

Amazon Rekognition 11,416 1,409 1,111 78.9
Google Cloud Vision 8,766 2,644 2,487 94.1
Azure Computer Vision 5,392 746 470 63.0

Table 9.7: Evaluation results. A = Amazon Rekognition, G = Google Cloud Vision, M =
Microsoft’s Azure Computer Vision.

Operands Operator Precision Recall F-measure TP average FP average TP/FP ratio

A 0.217 0.282 0.246 0.848 ± 0.165 0.695 ± 0.185 1.220
G 0.474 0.465 0.469 0.834 ± 0.121 0.741 ± 0.132 1.126
M 0.263 0.164 0.202 0.858 ± 0.217 0.716 ± 0.306 1.198
A, G Min 0.771 0.194 0.310 0.805 ± 0.142 0.673 ± 0.141 1.197
A, G Max 0.280 0.572 0.376 0.850 ± 0.136 0.712 ± 0.171 1.193
A, G Average 0.280 0.572 0.376 0.546 ± 0.225 0.368 ± 0.114 1.485
A, G D’Hondt 0.350 0.389 0.369 0.713 ± 0.249 0.518 ± 0.202 1.377
A, G Hare-Niemeyer 0.344 0.384 0.363 0.723 ± 0.242 0.527 ± 0.199 1.371
A, G Proposal 0.380 0.423 0.401 0.706 ± 0.239 0.559 ± 0.190 1.262
G, M Min 0.789 0.142 0.240 0.794 ± 0.209 0.726 ± 0.210 1.093
G, M Max 0.357 0.521 0.424 0.749 ± 0.135 0.729 ± 0.231 1.165
G, M Average 0.357 0.521 0.424 0.504 ± 0.201 0.375 ± 0.141 1.342
G, M D’Hondt 0.444 0.344 0.388 0.696 ± 0.250 0.551 ± 0.254 1.262
G, M Hare-Niemeyer 0.477 0.375 0.420 0.696 ± 0.242 0.591 ± 0.226 1.179
G, M Proposal 0.414 0.424 0.419 0.682 ± 0.238 0.597 ± 0.209 1.143
M, A Min 0.693 0.143 0.237 0.822 ± 0.201 0.664 ± 0.242 1.239
M, A Max 0.185 0.318 0.234 0.863 ± 0.178 0.703 ± 0.229 1.228
M, A Average 0.185 0.318 0.234 0.589 ± 0.262 0.364 ± 0.144 1.616
M, A D’Hondt 0.271 0.254 0.262 0.737 ± 0.261 0.527 ± 0.223 1.397
M, A Hare-Niemeyer 0.260 0.245 0.253 0.755 ± 0.251 0.538 ± 0.218 1.402
M, A Proposal 0.257 0.242 0.250 0.769 ± 0.244 0.571 ± 0.205 1.337
A, G, M Min 0.866 0.126 0.220 0.774 ± 0.196 0.644 ± 0.219 1.202
A, G, M Max 0.241 0.587 0.342 0.857 ± 0.142 0.714 ± 0.210 1.201
A, G, M Average 0.241 0.587 0.342 0.432 ± 0.233 0.253 ± 0.106 1.712
A, G, M D’Hondt 0.375 0.352 0.363 0.678 ± 0.266 0.455 ± 0.208 1.492
A, G, M Hare-Niemeyer 0.362 0.340 0.351 0.693 ± 0.260 0.444 ± 0.216 1.559
A, G, M Proposal 0.380 0.357 0.368 0.684 ± 0.259 0.484 ± 0.200 1.414

Table 9.8: Average of the evaluation result.

Operator Precision Recall F-measure TP/FP ratio

Min 0.780 0.151 0.252 1.183
Max 0.266 0.500 0.344 1.197
Average 0.266 0.500 0.344 1.539
D’Hondt 0.361 0.335 0.346 1.382
Hare-Niemeyer 0.361 0.336 0.347 1.378
Proposal 0.358 0.362 0.360 1.289

174 Using a Facade Pattern to combine Computer Vision Services

Figure 9.6: F-measure comparison.

F-measures are between F-measures of operands. None of naive operators therefore
improve results by merging responses from multiple endpoints.

9.5.3 Traditional Proportional Representation Operators

There are many existing allocation algorithms in proportional representation, e.g.,
the Niemeyer and Niemeyer method [261]. These methods may be replacements of
those in Section 9.4.3. Other steps, i.e., Sections 9.4.1, 9.4.2 and 9.4.4, are the same
as for our proposed technique. Tables 9.7 and 9.8 and Figure 9.6 show the result of
these traditional proportional representation algorithms. Averages of F-measures by
traditional proportional representation operators are almost equal to that of the max
and average operators. It is worth noting that merging " and � responses results in
a better F-measure than each F-measure of " and � individually. As these are not
biased to human-verified labels, situations in the real-world usage should, therefore,
be similar to the case of " and �. Hence, RQ1 is true.

9.5.4 New Proposed Label Merge Technique

As shown in Table 9.8, our proposed new method performs best in F-measure.
Instead, the TP/FP ratio is less than average, the D’Hondt method, and Hare-
Niemeyer method. As described in Section 9.5.1, we argue that F-measure is a
more important measure than the TP/FP ratio (in this case). Therefore, RQ2 is
true. Shown in Table 9.7, our proposed new method improves the results when
merging " and � in non-biased endpoints. It is similar to traditional proportional
representation operators, but does not perform as well. However, it performs better
on other operand sets, and performs best overall as shown in Figure 9.6.

9.5.5 Performance

We used AWS EC2 m5.large instance (2 vCPUs, 2.5 GHz Intel Xeon, 8 GiB RAM);
Amazon Linux 2 AMI (HVM), SSD Volume Type; Node.js 8.12.0. It takes 0.370

9.6 Conclusions and Future Work 175

seconds to merge responses from three endpoints. Computational complexity of the
algorithm in Section 9.4.3 is $ (=2), where = is total number of labels in responses.
(The estimation assumes that the number of endpoints is a constant.) Complexity of
Step I in Section 9.4.3 is $ (= log =), as the worst case is that all = labels are from
one single endpoint and all = labels are in one CC. Complexity of Step II to Step V
is $ (=2), as the number of CCs is less than or equal to = and number of iterations
are less than or equal to =. As Table 9.1 shows, the averaged total number of three
endpoints is 25.58. Most of time for merging is consumed by looking up WordNet
synsets (Section 9.4.1). The API facade calls each APIs on actual endpoints in
parallel. It takes about 5 seconds, which is much longer than 0.370 seconds taken
for the merging of responses.

9.6 Conclusions and Future Work

In this paper, we propose a method to merge responses from CVSs. Our method
merges API responses better than naive operators and other proportional represen-
tation methods (i.e., D’Hondt and Hare-Niemeyer). The average of F-measure of
our method marks 0.360; the next best method, Hare-Niemeyer, marks 0.347. Our
method and other proportional representation methods are able to improve the F-
measure from original responses in some cases. Merging non-biased responses
results in an F-measure of 0.250, while original responses have an F-measure be-
tween 0.246 and 0.242. Therefore, users can improve their applications’ precision
with small modification, i.e., by switching from a singular URL endpoint to a facade-
based architecture. The performance impact by applying facades is small, because
overhead in facades is much smaller than API invocation. Our proposal method
conforms identity, commutativity, reflexivity, and additivity properties and these
properties are advisable for integrating multiple responses.

Our idea of a proportional representation approach can be applied to other IWSs.
If the response of such a service is list consisting of an entity and score, and if there is a
way to group entities, a proposal algorithm can be applied. The opposite approach is
to improve results by inferring labels. Our current approach picks some of the labels
returned by endpoints. IWSs are not only based on supervised ML—thus to cover a
wide range of IWSs, it is necessary to classify and analyse each APIs and establish
a method to improve results by merging. Currently graph structures of labels and
synsets (Figure 9.2) are not considered when merging results. Propagating scores
from labels could be used, losing the additivity property but improving results for
users. There are many ways to propagate scores. For instance, setting propagation
factors for each link type would improve merging and could be customised for users’
preferences. It would be possible to generate an API facade automatically. APIs
with the same functionality have same or similar signatures. Machine-readable API
documentation, for instance, OpenAPI Specification, could help a generator to build
an API facade.

CHAPTER10

An Integration Architecture Tactic to guard AI-first Components†

Abstract Intelligent web services provide the power of AI to developers via simple REST-
ful API endpoints, abstracting away many complexities of machine learning. However,
most of these intelligent web services (IWSs)—such as computer vision—continually learn
with time. When the internals within the abstracted ‘black box’ become hidden and evolve,
pitfalls emerge in the robustness of applications that depend on these evolving services.
Without adapting the way developers plan and construct projects reliant on IWSs, signifi-
cant gaps and risks result in both project planning and development. Therefore, how can
software engineers best mitigate software evolution risk moving forward, thereby ensuring
that their own applications maintain quality? Our proposal is an architectural tactic designed
to improve intelligent service-dependent software robustness. The tactic involves creating
an application-specific benchmark dataset baselined against an intelligent service, enabling
evolutionary behaviour changes to be mitigated. A technical evaluation of our implementa-
tion of this architecture demonstrates how the tactic can identify 1,054 cases of substantial
confidence evolution and 2,461 cases of substantial changes to response label sets using a
dataset consisting of 331 images that evolve when sent to a service.

10.1 Introduction

The introduction of intelligent web services (IWSs) into the software engineering
ecosystem allows developers to leverage the power of artificial intelligence (AI)
without implementing complex AI algorithms, source and label training data, or
orchestrate powerful and large-scale hardware infrastructure. This is extremely

†This chapter is originally based on A. Cummaudo, S. Barnett, R. Vasa, J. Grundy, and M. Ab-
delrazek, “Beware the evolving ‘intelligent’ web service! An integration architecture tactic to guard
AI-first components,” in Proceedings of the 28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering. Virtual Event,
USA: ACM, November 2020. DOI 10.1145/3368089.3409688, pp. 269–280. Terminology has been
updated to fit this thesis.

177

https://doi.org/10.1145/3368089.3409688

178 An Integration Architecture Tactic to Guard AI-first Components

enticing for developers to embrace due to the effort, cost and non-trivial expertise
required to implement AI in practice [289, 322].

However, the vendors that offer these services also periodically update their
behaviour (responses). The ideal practice for communicating the evolution of a
web service involves updating the version number and writing release notes. The
release notes typically describe new capabilities, known problems, and requirements
for proper operation [50]. Developers anticipate changes in behaviour between ver-
sioned releases although they expect the behaviour of a specific version to remain
stable over time [364]. However, emerging evidence indicates that ‘intelligent’ ser-
vices do not communicate changes explicitly [88]. Intelligent services evolve in
unpredictable ways, provide no notification to developers and changes are undoc-
umented [92]. To illustrate this, consider Figure 10.1, which shows the evolution
of a popular computer vision service (CVS) with examples of labels and associated
confidence scores with how they changed. This behaviour change severely nega-
tively affects reliability. Applications may no longer function correctly if labels are
removed or confidence scores change beyond predefined thresholds.

Unlike traditional web services, the functionality of these IWSs is dependent
on a set of assumptions unique to their machine learning principles and algorithms.
These assumptions are based on the data used to train machine learning algorithms,
the choice of algorithm, and the choice of data processing steps—most of which
are not documented to service end users. The behaviour of these services evolve
over time [89]—typically this implies the underlying model has been updated or
re-trained.

Vendors do not provide any guidance on how best to deal with this evolution in
client applications. For developers to discover the impact on their applications they
need to know the behavioural deviation and the associated impact on the robustness
and reliability of their system. Currently, there is no guidance on how to deal with
this evolution, nor do developers have an explicit checklist of the likely errors and
changes that they must test for [92].

In this paper, we present a reference architecture to detect the evolution of such
IWSs, using a mature subset of these services that provide computer vision as an
exemplar. This tactic can be used both by intelligent service consumers, to defend
their applications against the evolutionary issues present in IWSs, and by service
vendors to make their services more robust. We also present a set of error conditions
that occur in existing CVSs.

The key contributions of this paper are:

• A set of new service error codes for describing the empirically observed error
conditions in IWSs.

• A new reference architecture for using IWSs with a Proxy Server that returns
error codes based on an application specific benchmark dataset.

• A labelled data set of evolutionary patterns in CVSs.
• An evaluation of the new architecture and tactic showing its efficacy for
supporting IWS evolution from both provider and consumer perspectives.

The rest of this paper is organised thus: Section 10.2 presents a motivating

10.1
Introduction

179

‘natural foods’ (.956) → ‘granny smith’ (.986) ‘skiing’ (.937) → ‘snow’ (.982) ‘girl’ (.660) → ‘photography’ (.738)

‘water’ (.972) → ‘wave’ (.932) ‘tennis’ (.982) → ‘sports’ (.989) ‘neighbourhood’ (.925) → ‘blue’ (.927)

Figure 10.1: Prominent CVSs evolve with time which is not effectively communicated to developers. Each image was uploaded in November 2018 and
March 2019 and the topmost label was captured. Specialisation in labels (Left), generalisation in labels (Centre) and emphasis change in labels (Right) are
all demonstrated from the same service with no API change and limited release note documentation. Confidence values indicated in parentheses.

180 An Integration Architecture Tactic to Guard AI-first Components

example that anchors our work; Section 10.3 presents a landscape analysis on IWSs;
Section 10.4 presents an overview of our architecture; Section 10.5 describes the
technical evaluation; Section 10.6 presents a discussion into the implications of our
architecture, its limitations and potential future work; Section 10.7 discusses related
work; Section 10.8 provides concluding remarks.

10.2 Motivating Example

We identify the key requirements for managing evolution of IWSs using a motivating
example. Consider Michelina, a software engineer tasked with developing a fall
detector system for helping aged care facilities respond to falls promptly. Michelina
decides to build the fall detector with an intelligent service for detecting people as she
has no prior experience with machine learning. The initial system built byMichelina
consists of a person detector and custom logic to identify a fall based on rapid shape
deformation (i.e., a vertical ‘person’ changing to a horizontal ‘person’ greater than
specified probability threshold value). Due to the inherent uncertainty present in
an intelligent service and the importance of correctly identifying falls, Michelina
informs the aged care facility that they shouldmanually verify falls before dispatching
a nurse to the location. The aged care facility is happy with this approach but inform
Michelina that only a certain percentage of falls can be manually verified based on
the availability of staff. In order to reduce the manual workMichelina sets thresholds
for a range of confidence scores where the system is uncertain. Michelina completes
the fall detector using a well-known cloud-based intelligent image classification web
service and her client deploys this new fall detection application.

Three months go by and then the aged care facility contact Michelina saying the
percentage of manual inspections is far too high and could she fix it. Michelina is
mystified why this is occurring as she thoroughly tested the application with a large
dataset provided by the aged care facility. On further inspection Michelina notices
that the problem is caused by some images classifying the person with a ‘child’
label rather than a ‘person’ label. Michelina is frustrated and annoyed at this
behaviour as (i) the cloud vendor did not document or notify her of the change of the
intelligent service behaviour, (ii) she does not know the best practice for dealing with
such a service evolution, and (iii) she cannot predict how the service will change
in the future. This experience also makes Michelina wonder what other types of
evolution can occur and how can she minimise these behavioural changes on her
critical care application. Michelina then begins building an ad-hoc solution hoping
that what she designs will be sufficient.

For Michelina to build a robust solution she needs to support the following
requirements:

R1. Define a set of error conditions that specify the types of evolution that occur
for an intelligent service.

R2. Provide a notification mechanism for informing client applications of be-
havioural changes to ensure the robustness and reliability of the application.

10.3 Intelligent Services 181

R3. Monitor the evolution of IWSs for changes that affect the application’s be-
haviour.

R4. Implement a flexible architecture that is adaptable to different IWSs and ap-
plication contexts to facilitate reuse.

10.3 Intelligent Services

We present background information on IWSs describing how they differ from tra-
ditional web services, the dimensions of their evolution and the currently limited
configuration options available to users.

10.3.1 ‘Intelligent’ vs ‘Traditional’ Web Services

Unlike conventional web services, IWSs are built usingAI-based components. These
components are unlike traditional software engineering paradigms as they are data-
dependent and do not result in deterministic outcomes. These services make future
predictions on new data based solely against its training dataset; outcomes are
expressed as probabilities that the inference made matches a label(s) within its
training data. Further, these services are often marketed as forever evolving and
‘improving’. This means that their large training datasets may continuously update
the prediction classifiers making the inferences, resulting both in probabilistic and
non-deterministic outcomes [89, 164]. Critically for software engineers using the
services, these non-deterministic aspects have not been sufficiently documented in
the service’s API documented, which has been shown to confuse developers [92].

A strategy to combat such service changes, which we often observe in traditional
software engineering practices, are for such services to be versioned upon substantial
change. Unfortunately emerging evidence indicates that prominent cloud vendors
providing these IWSs do not release new versioned endpoints of the APIs when the
internal model changes [89]. For IWSs, it is impossible to invoke requests specific
to a particular version model that was trained at a particular date in time. This means
that developers need to consider how evolutionary changes to the IWSs they make
use of may impact their solutions in production.

10.3.2 Dimensions of Evolution

The various key dimensions of the evolution of IWSs is illustrated in Figure 10.2.
There are two primary dimensions of evolution: changes to the label sets returned
per image submitted and changes to the confidences per label in the set of labels
returned per image. In the former, we identify two key aspects: cardinality changes
and ontology changes. Cardinality changes occur when the service either introduces
or drops a label for the same image at two different generations. Alternatively, the
cardinality may remain stagnant, although this is not guaranteed. This results in
an expectation mismatch by developers as to what labels can or will be returned by
the service. For instance, the terms ‘black’ and ‘black and white’ may be found to
be categorised as two separate labels. Secondly, the ontologies of these labels are

182 An Integration Architecture Tactic to Guard AI-first Components

Computer Vision Service Evolution per Image

Confidences per Label Vocabulary

Increase Decrease Stable Labels Ontology

More Labels Fewer Labels Unchanged Emphasis Change Generalisation Specialisation

Figure 10.2: The dimensions of evolution identified within CVSs.

Figure 10.3: A significant confidence increase (X = +0.425) from ‘window’ (0.559) to
‘water transportation’ (0.984) goes beyond simple decision boundaries.

non-static, and a label may become more generalised into a hypernym, specialised
into a hyponym, or the emphasis of the label may change either to a co-hyponym or
another aspect in the image, such as the colour or scene, rather than the subject of
the image [89].

Secondly, we have identified that the confidence values returned per label are also
non-static. While some services may present minor changes to labels’ confidences
resulting from statistical noise, other labels had significant changes that were beyond
basic decision boundaries. An example is shown in Figure 10.3. Developer code
written to assume certain ranges/confidence intervals will fail if the service evolves
in this way.

10.3.3 Limited Configurability

As an example, consider Figure 10.5, which illustrates an image of a dog uploaded to
a well-known cloud-based CVS. Developers have very few configuration parameters
in the upload payload (url for the image to analyse and maxResults for the number
of objects to detect). The JSON output payload provides the confidence value of
its estimated bounding box and label of the dog object via its score field (0.792).
This value indicates the level of confidence in the label returned, and is dependent
on the input to the underlying ML model used by that service. Developers set

10.3
IntelligentServices

183

Client
Application

Service
Client

Proxy Server

Facade API

Scheduler
Service
Client

Benchmark
Dataset

Threshold
Tuner

Client
Application

Behaviour
Token

Application
Developers

HTTP Request

HTTP Response (200 OK) or, on exception
HTTP Response (412 Precondition Failed)

Intelligent
Service

HTTP Request

HTTP Response (200 OK)

Set Recurrent Tr igger or Tr igger Now

Tune Benchmark Rules

Tune Tolerated Benchmarks

Intelligent
Service

HTTP Request

HTTP Response (200 OK)

Figure 10.4: Top: Accessing an intelligent service directly. Bottom: Primary components of the Proxy Server approach.

184 An Integration Architecture Tactic to Guard AI-first Components

thresholds as a decision boundary in this case, a threshold of “greater than 0.7”
could indicate that the image contains a dog where as any other value the system is
uncertain. These decision boundaries determine if the service’s output is accepted
or rejected. However, these confidence scores change whenever a model is re-
trained and these changes are not communicated or propagated to developers [89].
Developers can onlymodify these decision boundaries to improve the performance of
the IWS. This is unlike many machine learning toolkit hyper-parameter optimisation
facilities, which can be used to configure the internal parameters of the algorithm for
training a model. In this case, developers using the IWS have no insight into which
hyperparameters were used when training the model or the algorithm selected, and
cannot tune the trained model. Thus an evaluation procedure must be followed as a
part of using an intelligent service for an application to tune their output confidence
values and select appropriate threshold boundaries. While some service providers
provide some guidance to thresholding,1 they do not provide domain-specific tooling.
This is because choice of appropriate thresholds is dependent on the data and must
consider factors, such as algorithmic performance, financial cost, and impact of
false-positives/negatives.

Computer
Vision
Service

{

 " i mage" : {
 " ur l " : " ht t p: / / do. gg/ st af f y. j peg"
 } ,
 " f eat ur es" [{
 " maxResul t s" : 1
 }]
}

JSON {

 " l ocal i zedObj ect Annot at i ons" : [
 {
 " boundi ngPol y" : { . . . } ,
 " name" : " Dog" ,
 " scor e" : 0. 7923307
 }
]
}

JSON

" scor e" : 0. 7923307

" ur l " : " ht t p: / / do. gg/ st af f y. j peg"

" maxResul t s" : 1

Figure 10.5: Request and response for an intelligent computer vision web service with only
three configuration parameters: the image’s url, maxResults and score.

However, decision boundaries in service client code using simple If conditions
around confidence scores is not a sufficient strategy, as evidence shows intelligent,
non-deterministic web services change sporadically and unknowingly. Most tra-
ditional, deterministic code bases handle unexpected behaviour of called APIs via
error codes and exception handling. Thus the non-deterministic components of the
client code, such as those using CVSs, will also tend to conflict with their traditional
deterministic components as the latter do not deal in terms of probabilities but in
using error codes. This makes achieving robust component integration in client code
bases hard. More sophisticated monitoring of IWSs in client code is therefore re-
quired to map the non-deterministic service behaviour changes to errors such that the
surrounding infrastructure can support it and reduce interface boundary problems.
While data science literature acknowledges the need for such an architecture [114]
they do not offer any technical software engineering solutions to mitigate the issues
such that software engineers have a pattern to work against it. To date, there do not

1https://bit.ly/36oMgWb last accessed 20 May 2020.

https://bit.ly/36oMgWb

10.4 Our Approach 185

Table 10.1: Potential reasons for a 412 Precondition Failed response.

Error Code Error Description

No Key Yet This indicates that the Proxy Server is still initialising its
first behaviour token, i.e., :0 does not yet exist.

Service Mismatch The service encoded within the behaviour token provided
to the Proxy Server does not match the service the Proxy
Server is benchmarked against. This makes it possible for
one Proxy Server to face multiple CVSs.

Dataset Mismatch The benchmark dataset � encoded within the behaviour to-
ken does not match the benchmark dataset encoded within
the Proxy Server.

Success Mismatch The success of each response within the benchmark dataset
must be true for a behaviour token to be usedwithin a request.
This error indicates that :A is, therefore, not successful.

Min Confidence Mismatch The minimum confidence delta threshold set in :C does not
match that of :A .

Max Labels Mismatch The maximum label delta threshold set in :C does not match
that of :A .

Response Length Mismatch The number of responses within :C does not match that
within :A .

Label Delta Mismatch An image within � has either dropped or gained a number
of labels that exceeds the maximum label delta. Thus, :A
exceeds the threshold encoded within :C .

Confidence Delta Mismatch One of the labels within an image encoded in :A exceeds the
confidence threshold encoded within :C .

Expected Labels Mismatch One of the expected labels for an image within :C is now
missing.

yet exist IWS client code architectures, tactics or patterns that achieve this goal.

10.4 Our Approach

To address the requirements from Section 10.2 we have developed a new Proxy
Service2 that includes: (i) evaluation of an intelligent service using an application
specific benchmark dataset, (ii) a Proxy Server to provide client applications with
evolution aware errors, and (iii) a scheduled evolution detection mechanism. The
current approach of using an intelligent API via direct access is shown in Figure 10.4
(top). In contrast, an overview of our approach is shown in Figure 10.4 (bottom).
The following sections describe our approach.

10.4.1 Core Components

For the purposes of this paper we assume that the intelligent service of interest
is an image recognition service, but our approach generalises to other intelligent,

2A reference architecture is provided at http://bit.ly/2TIMmDh.

http://bit.ly/2TIMmDh

186 An Integration Architecture Tactic to Guard AI-first Components

trained model-based services e.g., natural language processing, document recog-
nition, voice, etc. Each image, when uploaded to the intelligent service returns a
response (') which is a set describing a label (;) of what is in the image (8) along
with its associated confidence (2)—thus '8 = {(;1, 21), (;2, 22), . . . (;=, 2=)}. Most
documentation of these services imply that these confidence values are all what is
needed to handle evolution in their systems. This means that if a label changes
beyond a certain threshold, then the developer can deal with the issue then (or ignore
it). While this approach may work in some simple application contexts, in many it
may not. Our Proxy Server offers a way to monitor if these changes go beyond a
threshold of tolerance, checking against a domain-specific dataset over time.

10.4.1.1 Benchmark Dataset

Monitoring an intelligent service for behaviour change requires aBenchmarkDataset,
a set of = images. For each image (8) in the Benchmark Dataset (�) there is an associ-
ated label (;) that represents the true value for that item; �8 = {(81, ;1), (82, ;2), . . . (8=, ;=)}.
This dataset is used to check for evolution in IWSs by periodically sending each im-
age within the dataset to the service’s API, as per the rules encoded within the
Scheduler (see Section 10.4.1.6). By using a dataset specific to the application
domain, developers can detect when evolution affects their application rather than
triggering all non-impactful changes. This helps achieve our requirement R3. Mon-
itor the evolution of IWSs for changes that affect the application’s behaviour. Using
application-specific datasets also ensures that the architectural style can be used for
different IWSs as only the data used needs to change. This design choice encourages
reuse, satisfying requirement R4. Implement a flexible architecture that is adapt-
able to different IWSs and application contexts to facilitate reuse. We propose an
initial set of guidelines on how to create and update the benchmark dataset within
Section 10.6.3.1.

10.4.1.2 Facade API

An architectural ‘facade’ is the central component to our mitigation strategy for
monitoring and detecting for changes in called IWSs. The facade acts as a guarded
gateway to the intelligent service that defends against two key issues: (i) potential
shifts in model variations that power the cloud vendor services, and (ii) ensures that
a context-specific dataset specific to the application being developed is validated
over time. By using a facade we can return evolution-aware error codes to the client
application satisfying requirement R1. Define a set of error conditions that specify
the types of evolution that occur for an intelligent service and enabling requirement
R3. Monitor the evolution of IWSs for changes that affect the application’s behaviour.
This works by ensuring every request made by the client application contains a valid
Behaviour Token (see Section 10.4.1.4) and will reject the request when evolution
has been identified by the Scheduler with an associated error code. The Facade API
essentially ‘blocks’ the client application out from accessing the intelligent service
when an invalid state has occurred.

10.4 Our Approach 187

Table 10.2: Rules encoded within a Behaviour Token.

Rule Description

Max Labels The value of =.
Min Confidence The smallest acceptable value of 2.
Max X Labels The minimum number of labels dropped or introduced from

the current :C and provided :A to be considered a violation (i.e
|; (:C) 4 ; (:A) |).

Max X Confidence The minimum confidence change of any label from the current
:C and provided :A to be considered a violation.

Expected Labels A set of labels that every response must include.

10.4.1.3 Threshold Tuner

Selecting an appropriate threshold for detecting behavioural change depends on the
application context. Setting the threshold too low increases the likelihood of incor-
rect results, while setting the threshold too high means undesired changes are being
detected. Our approach enables developers to configure these parameters through a
Threshold Tuner, and consider competing factors such as algorithmic performance,
financial cost, and impact of false-positives/negatives. This component improves
robustness as now there is a systematic approach for monitoring and responding to
incorrect thresholds. Configurable thresholds meet our key requirements R2 and R3.
An example of the component is detailed within our complement paper published in
the ESEC/FSE 2020 demonstrations track [90] (see Chapter 11).

10.4.1.4 Behaviour Token

TheBehaviour Token stores the current state of the Proxy Server by encoding specific
rules regarding the evolution of the intelligent service. The current token (at time C)
held by the Proxy Server is denoted by :C . These rules are specified by the developer
upon initialisation of this Proxy Server, and are presented in Table 10.2. When the
Proxy Server is first initialised (i.e., at C = 0), the first Behaviour Token is created
based on the Benchmark Dataset and its configuration parameters (Table 10.2) and
is stored locally (thus :0 is created). The Behaviour Token is passed to the client
application to be used in subsequent requests to the proxy server, where :A represents
the Behaviour Token passed from the client application to the proxy server. Each
time the proxy server receives the Behaviour Token from the client the validity of the
token is validated with a comparison to the Proxy Server’s current behaviour token
(i.e., :A ≡ :C). An invalid token (i.e., when :A . :C) indicates that an error caused by
evolution has occurred and the application developer needs to appropriately handle
the exception. Behaviour Tokens are essential for meeting requirement R3. Monitor
the evolution of IWSs for changes that affect the application’s behaviour.

188
A
n
Integration

A
rchitecture

Tactic
to

G
uard

A
I-firstCom

ponents

Workflow 4: Invalid Request Post-EvolutionWorkflow 2: Valid Request Pre-EvolutionWorkflow 1: Initialise Benchmark

Upload Benchmark
Dataset

Initialise First
Baseline

Make Service Client
Request

Analyse Images

Produce Behaviour
Token

Retain Behaviour
Token

Request with Valid
Behaviour Token

Validate Behaviour
Token as OK

Make Service Client
Request

Analyse Images

Register Result

Use Result

Workflow 3: Evolution Detection

C
lie

nt
 A

pp
P

ro
xy

In
te

lli
ge

nt

Se
rv

ic
e

Invoke Benchmark
Schedule

Initialise New
Baseline

Make Service Client
Request

Analyse Images with
Evolved Model

Produce New
Behaviour Token

Request with Old
Behaviour Token

Validate Behaviour
Token as INVALID

Produce Exception

Handle Exception

Figure 10.6: State diagram for the four workflows presented.

10.4 Our Approach 189

412 Precondition Failed

No Key Yet Validate
Config

Validate
Data

Service
Mismatch

Validate
Benchmarks

Validate
Parameters

Validate
Tolerances

Expected Labels
Mismatch

Dataset
Mismatch

Success
Mismatch

Response Length
Mismatch

Min Confidence
Mismatch

Max Labels
Mismatch

Label Delta
Mismatch

Confidence Delta
Mismatch

Figure 10.7: Precondition failure taxonomy; leaf nodes indicate error types returned to
users.

10.4.1.5 Service Client

If any of the rules above are violated, then the response of the facade request varies
depending on the behaviour encoded within the behaviour token. This can be one
of:

• Error: Where a HTTP non-200 code is returned by the facade to the client
application, indicating that the client application must deal with the issue
immediately;

• Warning: Where a warning ‘callback’ endpoint is called with the violated
response to be dealt with, but the response is still returned to the client
application;

• Info: Where the violated response is logged in the facade’s logger for the
developer to periodically read and inspect, and the response is returned to the
client application.

We implement this Proxy Server pattern using HTTP conditional requests. As
we treat the Label as a first class citizen, we return the labels for a specific image
(A8) only where the Entity Tag (ETag) or Last Modified validators pass. The :A
is encoded within either the ETag (i.e., a unique identifier representing C) or as
the date labels (and thus models) were last modified (i.e., using the If-Match
or If-Unmodified-Since conditional headers). We note that the use of weak
ETags should be used, as byte-for-byte equivalence is not checked but only semantic
equivalence within the tolerances specified. Should C evolve to an invalid state (i.e.,
:A is no longer valid against :C) then the behaviour as described above will be
enacted.

These HTTP header fields are used as the ‘backbone’ to help enforce robustness
of the services against evolutionary changes and context within the problem domain
dataset. Responses from the service are forwarded to the clients when such rules
are met, otherwise alternative behaviour occurs. For example, the most severe of
violated erroneous behaviour is the ‘Error’ behaviour. To enforce this rule, we
advocate for use of the 412 Precondition Failed HTTP error if a violation
occurs, as a If-* conditional header was violated. An example of this architectural
pattern with the ‘Error’ behaviour is illustrated in Figure 10.6.

190 An Integration Architecture Tactic to Guard AI-first Components

We suggest the 412 Precondition Failed HTTP error be returned in the
event that a behaviour token is violated against a new benchmark. Further details
outlining the reasons why a precondition has failed are encoded within a JSON
response sent back to the consuming application. The following describes the
two broad categories of possible errors returned: robustness precondition failure
or benchmark precondition failure. These are illustrated in a high level within
Figure 10.7 where leaf nodes are the potential error types that can be returned. A
list of the different error codes are given in Table 10.1, where errors above the rule
are robustness expectations (which check for basic requirements such as whether the
key provided encodes the same data as the dataset in the facade) while those below
are benchmark expectations (which identifies evolution cases).

10.4.1.6 Scheduler

The Scheduler is responsible for triggering the Evolution Detection Workflow (de-
scribed in detail below in Section 10.4.2). Developers set the schedule to run in
the background at regular intervals (e.g., via a cron-job) or to trigger if violations
occur I times. The Scheduler is the component that enables our architectural style
to identify called intelligent service software evolution and to notify the client ap-
plications that such evolution has occurred. Client applications can then respond to
this evolution in a timely manner rather than wait for the system to fail, as in our
motivating example. The Scheduler is necessary to satisfy our requirements R2 and
R3.

10.4.2 Usage Example

We explain how developer Michelina, from our motivating example, would use
our proposed solution to satisfy the requirements described in Section 10.2. Each
workflow is presented in Figure 10.6. Only Workflow 1 - Initialise Benchmark is
executed once, while the rest are cycled. The description below assumes Michelina
has implemented the Proxy.

10.4.2.1 Workflow 1. Initialise Benchmark

The first task that Michelina has to do is to prepare and initialise the benchmark
dataset within the Proxy Server. To prepare a representative dataset, Michelina needs
to follow well established guidelines such as those proposed by Pyle. Michelina also
needs to manually assign labels to each image before uploading the dataset to the
Proxy along with the thresholds to use for detecting behavioural change. The full set
of parameters that Michelina has to set are based on the rules shown in Table 10.2.
Michelina cannot use the Proxy to notify her of evolution until a Benchmark Dataset
has been provided. The Proxy then sends each image in the Benchmark Dataset to
the intelligent service and stores the results. From these results, a Behaviour Token
is generated which is passed back to the Client Application. Michelina uses this
token in all future requests to the Proxy as the token captures the current state of the
intelligent service.

10.5 Evaluation 191

10.4.2.2 Workflow 2. Valid Request Pre-Evolution

Workflow 2 represents the steps followed when the intelligent service is behaving as
expected. Michelina makes a request to label an image to the Proxy using the token
that she received when registering the Benchmark Dataset. The token is validated
with the Proxy’s current state token and then a request to label the image is made to
the intelligent service if no errors have occurred. Results returned by the intelligent
service are registered with the Proxy Server. Michelina can be confident that the
result returned by our service is in line with her expectations.

10.4.2.3 Workflow 3. Evolution Detection

Workflow 3 describes how the Proxy functions when behavioural change is present
in the called intelligent service. Michelina sets a schedule for once a day so that the
Proxy’s Scheduler triggers Workflow 3. First, each image in the Benchmark Dataset
is sent to the intelligent service. Unlike, Workflow 1, we already have a Behaviour
Token that represents the previous state of the intelligent service. In this case, the
model behind the intelligent service has been updated and provides different results
for the Benchmark Dataset. Second, the Proxy updates the internal Behaviour Token
ready for the next request. At this stage Michelina will be notified that the behaviour
of the intelligent service has changed.

10.4.2.4 Workflow 4. Invalid Request Post-Evolution

Workflow 4 provides Michelina with an error message when evolution has been
detected. Michelina’s client application makes a request to the Proxy Server with
an old Behaviour Token. The Proxy Server then validates the client token which is
invalid as the Behaviour Token has been updated. In this case, an exception is raised
and an appropriate error message as discussed above is included in the response
back to Michelina’s client application. Michelina can code her application to handle
each error class in appropriate ways for her domain.

10.5 Evaluation

Our evaluation of our novel intelligent service Proxy Server approach uses a technical
evaluation based on the results of an observational study. We used existing datasets
from observational studies [89, 219] to identify problematic evolution in computer
vision labelling services. This technical evaluation is designed to show: (i) what
the responses are with and without our architecture present (highlighting errors); (ii)
the overall increased robustness using enhanced responses; and (iii) the technical
soundness of the approach. Thus, we propose the following research question which
we answer in Section 10.5.2: “Can the architecture identify evolutionary issues of
computer vision services via error codes?” Based on our findings we proposed and
implemented the Proxy Server using a Ruby development framework which we have

192 An Integration Architecture Tactic to Guard AI-first Components

made available online for experimentation.3 Additional data was collected from the
CVS and sent to the Proxy Server to evaluate how the service handles behavioural
change.

10.5.1 Data Collection and Preparation

To minimise reviewer bias, we do not identify the name of the service used, however
this servicewas one of themost adopted cloud vendors used in enterprise applications
in 2018 [121]. The two existing datasets used [89, 219] consisted of 6,680 images.

We initialised the benchmark (workflow 1) in November 2018, and sent each
image to the service every eight days and captured the JSON responses through the
facadeAPI (workflow 2) untilMarch 2019. This resulted in 146,960 JSON responses
from the target CVS. We then selected the first and last set of JSON responses (i.e.,
13,360 responses) and independently identified 331 cases of evolution of the original
6,680 images. This was achieved by analysing the JSON responses for each image
taken in using an evaluation script.4

For each JSON response, evolution (as classified by Figure 10.2) was determined
either by a vocabulary or confidence per label change in the first and last responses
sent. For the 331 evolving responses, we calculated the delta of the label’s confidence
between the two timestamps and the delta in the number of labels recorded in the
entire response. Further, for the highest-ranking label (by confidence), we manually
classified whether its ontology became more specific, more generalised or whether
therewas substantial emphasis change. The distribution of confidence differences per
these three groups are shown in Figure 10.8, with themean confidence delta indicated
with a vertical dotted line. This highlights that, on average, labels that change
emphasis generally have a greater variation, such as the example in Figure 10.3.
Further, we grouped each image into one of four broad categories—food, animals,
vehicles, humans—and assessed the breakdown of ontology variance as provided
in Table 10.3. We provide this dataset as an additional contribution and to permit
replication.5 The parameters set for our initial benchmark were a delta label value of
3 and delta confidence value of 0.01. Expected labels for relevant groups were also
assigned as mandatory label sets (e.g., animal images used ‘animal’, ‘fauna’ and
‘organism’; human images used ‘human’ etc.).

10.5.2 Results

Examples of the March 2019 responses contrasting the proxy and direct service
responses in our evaluation are shown in Figures 10.9 to 10.11. (Due to space limita-
tions, the entire JSON response is partially redacted using ellipses.) These examples
identify the label identified with the highest level of confidence in three examples
against the ground truth label in the benchmark dataset. In total, the Proxy Server
identified 1,334 labels added to the responses and 1,127 labels dropped, with, on
average, a delta of 8 labels added. The topmost labels added were ‘architecture’

3http://bit.ly/2TIMmDh last accessed 5 March 2020.
4http://bit.ly/2G7saFJ last accessed 2 March 2020.
5http://bit.ly/2VQrAUU last accessed 5 March 2020.

http://bit.ly/2TIMmDh
http://bit.ly/2G7saFJ
http://bit.ly/2VQrAUU

10.5 Evaluation 193

E
m

ph
as

is
 C

ha
ng

e
G

en
er

al
is

at
io

n
S

pe
ci

al
is

at
io

n

−0.30−0.25−0.20−0.15−0.10−0.050.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0
2
4
6
8

10
12

0
2
4
6
8

10
12

0
2
4
6
8

10
12

Confidence ±Delta

F
re

qu
en

cy

Figure 10.8: Histogram of confidence variation.

at 32 cases, ‘building’ at 20 cases and ‘ingredient’ at 20 cases; the topmost
labels dropped were ‘tree’ at 21 cases, ‘sky’ at 19 cases and ‘fun’ at 17 cases.
1054 confidence changes were also observed by the Proxy Server, on average a delta
increase of 0.0977.

In Figure 10.9, we highlight an image of a sheep that was identified as a ‘sheep’
(at 0.9622) in November 2018 and then a ‘mammal’ in March 2019. This evolution
was classified by the Proxy Server as a confidence change error as the delta in
the confidences between the two timestamps exceeds the parameter set of 0.01—in
this case, ‘sheep’ was downgraded to the third-ranked label at 0.9816, thereby
increasing by a value of 0.0194. As shown in the example, four other labels evolved
for this image between the two time stamps (‘herd’, ‘livestock’, ‘terrestrial
animal’ and ‘snout’) with an average increase of 0.1174 found. Such information
is encoded as a 412 HTTP error returned back to the user by the Proxy Server,
rejecting the request as substantial evolution has occurred, however the response
directly from the service indicates no error at all (indicating by a 200HTTP response).

Similarly, Figure 10.10 shows a violation of the number of acceptable changes in
the number of labels a response should have between two timestamps. In November
2018, the response includes the labels ‘car’, ‘motor vehicle’, ‘city’ and
‘road’, however these labels are not present in the 2019 response. The response
in 2019 introduces ‘transport’, ‘building’, ‘architecture’, and ‘house’.
Therefore, the combined delta is 4 dropped and 4 introduced labels, exceeding our
threshold set of 3.

Lastly, Figure 10.11 indicates an expected label failure. In this example, the
label ‘fauna’ was dropped in the 2018 label set, which was an expected label
of all animals we labelled in our dataset. Additionally, this particular response

194 An Integration Architecture Tactic to Guard AI-first Components

Table 10.3: Variance in ontologies for the five broad categories.

Ontology Change Food Animal Vehicles Humans Other Total

Generalisation 8 13 11 8 38 78
Specialisation 5 12 1 1 43 62

Emphasis Change 18 4 10 21 138 191

Total 31 29 22 30 219 331

introduced ‘green iguana’, ‘iguanidae’, and ‘marine iguana’ to its label
set. Therefore, not only was this response in violation of the label delta mismatch, it
was also in violation of the expected labels mismatch error, and thus is caught twice
by the Proxy Server.

10.5.3 Threats to Validity

10.5.3.1 Internal Validity

As mentioned, we selected a popular CVS provider to test our proxy server against.
However, there exist many other CVSs, and due to language barriers of the authors,
no non-English speaking service were selected despite a large number available from
Asia. Further, no user evaluation has been performed on the architectural tactic so
far, and therefore developers may suggest improvements to the approach we have
taken in designing our tactic. We intend to follow this up with a future study.

10.5.3.2 External Validity

This paper only evaluates the object detection endpoint of a computer vision-based
intelligent service. While this type of intelligent service is one of the more mature
AI-based services available on the market—and is largely popular with develop-
ers [92]—further evaluations of the our tactic may need to be explored against other
endpoints (i.e., object localisation) or, indeed, other types of services, such as natural
language processing, audio transcription, or on time-series data. Future studies may
need to explore this avenue of research.

10.5.3.3 Construct Validity

The evaluation of our experiment was largely conducted under clinical conditions,
and a real-world case study of the design and implementation of our proposed tactic
would be beneficial to learn about possible side-effects from implementing such a
design (e.g., implications to cost etc.). Therefore, our evaluation does not consider
more practical considerations that a real-world, production-grade system may need
to consider.

10.5 Evaluation 195

Label: Animal
Nov 2018: ‘sheep’ (0.9622)
Mar 2019: ‘mammal’ (0.9890)
Category: Confidence Change

Intelligent Service Response in March 2019

1 { "responses": [{ "label_annotations": [
2 { "mid": "/m/04rky",
3 "description": "mammal",
4 "score": 0.9890478253364563,
5 "topicality": 0.9890478253364563 },
6 { "mid": "/m/09686",
7 "description": "vertebrate",
8 "score": 0.9851104021072388,
9 "topicality": 0.9851104021072388 },
10 { "mid": "/m/07bgp",
11 "description": "sheep",
12 "score": 0.9815810322761536,
13 "topicality": 0.9815810322761536 },
14 ...] }] }

Proxy Server Response in March 2019

1 { "error_code": 8,
2 "error_type": "CONFIDENCE_DELTA_MISMATCH",
3 "error_data": {
4 "source_key": { ... },
5 "source_response": { ... },
6 "violating_key": { ... },
7 "violating_response": { ... },
8 "delta_confidence_threshold": 0.01,
9 "delta_confidences_detected": {
10 "sheep": 0.01936030388219212,
11 "herd": 0.15035879611968994,
12 "livestock": 0.13112884759902954,
13 "terrestrial animal": 0.1791478991508484,
14 "snout": 0.10682523250579834
15 },
16 "uri": "http://localhost:4567/demo/data/000000005992.jpeg"

↩→ ,
17 "reason": "Exceeded confidence delta threshold ±0.01 in 5

↩→ labels (delta mean=+0.1174)." } }

Figure 10.9: Example of substantial confidence change due to evolution.

196 An Integration Architecture Tactic to Guard AI-first Components

Label: Vehicle
Nov 2018: ‘vehicle’ (0.9045)
Mar 2019: ‘motorcycle’ (0.9534)
Category: Label Set Change

Intelligent Service Response in March 2019

1 { "responses": [{ "label_annotations": [
2 { "mid": "/m/07yv9",
3 "description": "vehicle",
4 "score": 0.9045347571372986,
5 "topicality": 0.9045347571372986 },
6 { "mid": "/m/07bsy",
7 "description": "transport",
8 "score": 0.9012271165847778,
9 "topicality": 0.9012271165847778 },
10 { "mid": "/m/0dx1j",
11 "description": "town",
12 "score": 0.8946694135665894,
13 "topicality": 0.8946694135665894 },
14 ...] }] }

Proxy Server Response in March 2019

1 { "error_code": 7,
2 "error_type": "LABEL_DELTA_MISMATCH",
3 "error_data": {
4 "source_key": { ... },
5 "source_response": { ... },
6 "violating_key": { ... },
7 "violating_response": { ... },
8 "delta_labels_threshold": 5,
9 "delta_labels_detected": 8,
10 "uri": "http://localhost:4567/demo/data/000000019109.jpeg"

↩→ ,
11 "new_labels": ["transport", "building", "architecture", "

↩→ house"],
12 "dropped_labels": ["car", "motor vehicle", "city", "road"

↩→],
13 "reason": "Exceeded label count delta threshold ±5 (4 new

↩→ labels + 4 dropped labels = 8)." } }

Figure 10.10: Example of substantial changes of a response’s label set due to evolution.

10.5 Evaluation 197

Label: Fauna
Nov 2018: ‘reptile’ (0.9505)
Mar 2019: ‘iguania’ (0.9836)
Category: Ontology Specialisation

Intelligent Service Response in March 2019

1 { "responses": [{ "label_annotations": [
2 { "mid": "/m/08_jw6",
3 "description": "iguania",
4 "score": 0.9835183024406433,
5 "topicality": 0.9835183024406433 },
6 { "mid": "/m/06bt6",
7 "description": "reptile",
8 "score": 0.9833670854568481,
9 "topicality": 0.9833670854568481 },
10 { "mid": "/m/01vq7_",
11 "description": "iguana",
12 "score": 0.9796721339225769,
13 "topicality": 0.9796721339225769 },
14 ...] }] }

Proxy Server Response in March 2019

1 { "error_code": 9,
2 "error_type": "EXPECTED_LABELS_MISMATCH",
3 "error_data": {
4 "source_key": { ... },
5 "violating_response": { ... },
6 "uri": "http://localhost:4567/demo/data/0052.jpeg",
7 "expected_labels": ["fauna"],
8 "labels_detected": ["iguana", "green iguana", "iguanidae"

↩→ , "lizard", "scaled reptile", "marine iguana", "
↩→ terrestrial animal", "organism"],

9 "labels_missing": ["fauna"],
10 "reason": "The expected label(s) `fauna' are missing in

↩→ the response." } }

Figure 10.11: Example of an expected label missing due to evolution.

198 An Integration Architecture Tactic to Guard AI-first Components

10.6 Discussion

10.6.1 Implications

10.6.1.1 For cloud vendors

Cloud vendors that provide IWSsmaywish to adopt the architectural tactic presented
in this paper by providing a proxy, auxiliary service (or similar) to their existing ser-
vices, thereby improving the current robustness of these services. Further, they
should consider enabling developers of this technical domain knowledge by pre-
venting client applications from using the service without providing a benchmark
dataset, such that the service will return HTTP error codes. These procedures should
be well-documented within the service’s API documentation, thereby indicating to
developers how they can build more robust applications with their IWSs. Lastly,
cloud vendors should consider updating the internal machine learning models less
frequently unless substantial improvements are being made. Many different appli-
cations from many different domains are using these IWSs so it is unlikely that
the model changes are improving all applications. Versioned endpoints would help
with this issue, although—as we have discussed—context using benchmark datasets
should be provided.

10.6.1.2 For application developers

Developers need to monitor all IWSs for evolution using a benchmark dataset and
application specific thresholds before diving straight into using them. It is clear that
the evolutionary issues have significant impact in their client applications [89], and
therefore they need to check the extent this evolution has between versions of an
intelligent service (should versioned APIs be available). Lastly, application devel-
opers should leverage the concept of a proxy server (or other form of intermediary)
when using IWSs to make their applications more robust.

10.6.1.3 For project managers

Project managers need to consider the cost of evolution changes on their application
when using IWSs, and therefore should schedule tasks for building maintenance
infrastructure to detect evolution. Consider scheduling tasks that evaluates and
identifies the frequency of evolution for the specific intelligent service being used.
Our research we have found some IWSs that are not versioned but rarely show
behavioural changes due to evolution.

10.6.2 Limitations

In the situation where a solo developer implements the Proxy Service the main
limitation is the cost vs response time trade-off. Developers may want to be notified
as soon as possible when a behavioural change occurs which requires frequent
validation of the Benchmark Dataset. Each time the Benchmark Dataset is validated
each item is sent as a request to the intelligent service. As cloud vendors charge

10.6 Discussion 199

per request to an intelligent service there are financial implications for operating
the Proxy Service. If the developer optimises for cost then the application will take
longer to respond to the behavioural change potentially impact end users. Developers
need to consider the impact of cost vs response time when using the Proxy Service.

Another limitation of our approach is the development effort required to imple-
ment the Proxy Service. Developers need to build a scheduling component, batch
processing pipeline for the Benchmark Dataset, and a web service. These com-
ponents require developing and testing which impact project schedules and have
maintenance implications. Thus, we advise developers to consider the overhead of
a Proxy Service and way up the benefits with have incorrect behaviour caused by
evolution of IWSs.

10.6.3 Future Work

10.6.3.1 Guidelines to construct and update the Benchmark Dataset

Our approach assumes that each category of evolution is present in the Benchmark
Dataset prepared by the developer. Further guidelines are required to ensure that the
developer knows how to validate the data before using the Proxy Service. While the
focus of this paper was to present and validate our architectural tactic, guidelines
on how to construct and update benchmark datasets for this tactic will need to be
considered in future work. Data science literature extensively covers dataset prepa-
ration (e.g., [204, 291]), and many example benchmark datasets are readily available
[24, 148, 381]. An initial set of guidelines are proposed as follows: data must be
contextualised and appropriately sampled to be representative of the client applica-
tion in particular the patterns present in the data, contain both positive and negative
examples (this is/is not a cat); where to source data from (existing datasets, Google
Images/Flickr, crowdsourced etc.); whether the dataset is synthetically generated to
increase sample size; and how large a benchmark dataset size should be (i.e., larger
the better but takes more effort and costs more). Benchmark datasets can also be
used by software engineers provided the domain and context is appropriate for their
specific application’s context. Software engineers also benefit from our approach
even if these guidelines are not strictly adhered to provided they use an application-
specific dataset (i.e., data collected from the input source for their application). The
main reason for this is that without our proposed tactic there are limited ways to
build robust software with intelligent services. Future testing and evaluation of these
guidelines should be considered.

10.6.3.2 Extend the evolution categories to support other IWSs

This paper has used computer vision services to assess our proposed tactic, and
therefore further investigation is needed into the evolution characteristics of other
IWSs. The evolution challenges with services that provide optimisation algorithms
such as route planning are likely to differ from CVSs. These characteristics of an
application domain have shown to greatly influence software architecture [25] and
further development of the Proxy Service will need to account for these differences.

200 An Integration Architecture Tactic to Guard AI-first Components

As an example, we have identified many similar issues that exist for natural language
processing, where topic modelling produces labels on large bodies of text with
associated confidences. Therefore, the broader concepts of our contribution (e.g.,
behaviour token parameters, error codes etc.) can be used to handle issues in natural
language processing to demonstrate the generalisability of the architecture to other
intelligent services. We plan to apply our tactic to natural language processing and
other intelligent services in our future work.

10.6.3.3 Provide tool support for optimising parameters for an application context

Appropriately using the Proxy Service requires careful selection of thresholds,
benchmark rules and schedule. Further work is required to support the developer in
making these decisions so an optimal application specific outcome is achieved. One
approach is a to present the trade-offs to the developer and let them visualise the
impact of their decisions. We have developed an early prototype for such purpose
in [90].

10.6.3.4 Improvements for a more rigorous approach

Conducting a more formal evaluation of our proposed architecture would benefit
the robustness of the solution presented. This could be done in various ways,
for example, using a formal architecture evaluation method such as ATAM [193]
or a similar variant [51]; conducting user evaluation via brainstorming sessions or
interviews with practitioners who may provide suggestions to improve our approach;
determining better strategies to fully-automate the approach and reducemanual steps;
and using real-world industry case studies to identify other factors such as cost and
maintenance issues. All these are various avenues of research that would ultimately
benefit in a more well-rounded approach to the architectural tactic we have proposed.

10.7 Related Work

10.7.0.1 Robustness of Intelligent Services

While usage of IWSs have been proven to have widespread benefits to the commu-
nity [95, 300], they are still largely understudied in software engineering literature,
particularly around their robustness in production-grade systems. As an example,
advancements in computer vision (largely due to the resurgence of convolutional
neural networks in the late 1990s [213]) have been made available through IWSs and
are given marketed promises from prominent cloud vendors, e.g., “with Amazon
Rekognition, you don’t have to build, maintain or upgrade deep learning pipelines”.6
However, while vendors claim this, the state of the art of computer vision itself
is still susceptible to many robustness flaws, as highlighted by many recent stud-
ies [115, 312, 368]. Further, each service has vastly different (and incompatible)
ontologies which are non-static and evolve [89, 267], certain services can mislabel

6https://aws.amazon.com/rekognition/faqs/, accessed 21 November 2019.

https://aws.amazon.com/rekognition/faqs/

10.8 Conclusions 201

imageswhen as little as 10%noise is introduced [164], and developers have a shallow
understanding of the fundamental AI concepts behind these issues, which presents a
dichotomy of their understanding of the technical domain when contrasted to more
conventional domains such as mobile application development [92].

10.7.0.2 Proxy Servers as Fault Detectors

Fault detection is an availability tactic that encompasses robustness of software [31].
Our architecture implements the sanity check and condition monitoring techniques
to detect faults [31, 170], by validating the reasonableness of the response from the
intelligent service against the conditions set out in the rules encoded in the benchmark
dataset and behaviour token. As we do in this study, the proxy server pattern can be
used to both detect and action faults in another service as an intermediary between a
client and a server. For example, addressing accessibility issues using proxy servers
has been widely addressed [42, 43, 351, 392] and, more recently, they have been
used to address in-browser JavaScript errors [110].

10.8 Conclusions

IWSs are gaining traction in the developer community, and this is shown with
an evermore growing adoption of CVSs in applications. These services make
integration of AI-based components far more accessible to developers via simple
RESTful APIs that developers are familiar with, and offer forever-‘improving’ object
localisation and detectionmodels at little cost or effort to developers. However, these
services are dependent on their training datasets and do not return consistent and
deterministic results. To enable robust composition, developers must deal with the
evolving training datasets behind these components and consider how these non-
deterministic components impact their deterministic systems.

This paper proposes an integration architectural tactic to deal with these issues
by mapping the evolving and probabilistic nature of these services to deterministic
error codes. We propose a new set of error codes that deal directly with the erroneous
conditions that has been observed in IWSs, such as computer vision. We provide
a reference architecture via a proxy server that returns these errors when they are
identified, and evaluate our architecture, demonstrating its efficacy for supporting
IWS evolution. Further, we provide a labelled dataset of the evolutionary patterns
identified, which was used to evaluate our architecture.

CHAPTER11

Threshy: Supporting Safe Usage of Intelligent Web Services†

Abstract Increased popularity of ‘intelligent’web services provides end-userswithmachine-
learnt functionality at little effort to developers. However, these services require a decision
threshold to be setwhich is dependent on problem-specific data. Developers lack a systematic
approach for evaluating intelligent services and existing evaluation tools are predominantly
targeted at data scientists for pre-development evaluation. This paper presents a workflow
and supporting tool, Threshy, to help software developers select a decision threshold suited to
their problem domain. Unlike existing tools, Threshy is designed to operate inmultiple work-
flows including pre-development, pre-release, and support. Threshy is designed for tuning
the confidence scores returned by intelligent web services and does not deal with hyper-
parameter optimisation used in ML models. Additionally, it considers the financial impacts
of false positives. Threshold configuration files exported by Threshy can be integrated into
client applications and monitoring infrastructure. Demo: https://bit.ly/2YKeYhE.

11.1 Introduction

Machine learning algorithm adoption is increasing in modern software. End users
routinely benefit frommachine-learnt functionality through personalised recommen-
dations [83], voice-user interfaces [256], and intelligent digital assistants [52]. The
easy accessibility and availability of intelligent web services (IWSs)1 is contributing
to their adoption. These IWSs simplify the development of machine learning (ML)

†This chapter is originally based on A. Cummaudo, S. Barnett, R. Vasa, and J. Grundy, “Threshy:
Supporting Safe Usage of Intelligent Web Services,” in Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. Virtual Event, USA: ACM, November 2020. DOI 10.1145/3368089.3417919, pp.
1645–1649. Terminology has been updated to fit this thesis.

1Such as Azure Computer Vision (https://azure.microsoft.com/en-au/services/
cognitive-services/computer-vision/), Google Cloud Vision (https://cloud.google.
com/vision/), or Amazon Rekognition (https://aws.amazon.com/rekognition/).

203

https://bit.ly/2YKeYhE
https://doi.org/10.1145/3368089.3417919
https://azure.microsoft.com/en-au/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-au/services/cognitive-services/computer-vision/
https://cloud.google.com/vision/
https://cloud.google.com/vision/
https://aws.amazon.com/rekognition/

204 An Implementation of the Threshold Tuner Component

Computer
Vision
Service

{

 " i mage" : {
 " ur l " : " ht t p: / / do. gg/ st af f y. j peg"
 } ,
 " f eat ur es" [{
 " maxResul t s" : 1
 }]
}

JSON {

 " l ocal i zedObj ect Annot at i ons" : [
 {
 " boundi ngPol y" : { . . . } ,
 " name" : " Dog" ,
 " scor e" : 0. 7923307
 }
]
}

JSON

" scor e" : 0. 7923307

" ur l " : " ht t p: / / do. gg/ st af f y. j peg"

" maxResul t s" : 1

Figure 11.1: Request and response for an intelligent computer vision web service with only
three configuration parameters: the image’s url, maxResults and score.

solutions as they (i) do not require specialised ML expertise to build and maintain
AI-based solutions, (ii) abstract away infrastructure related issues associated with
ML [16, 322], and (iii) provide web APIs for ease of integration.

However, unlike traditional web services, the functionality of these IWSs is
dependent on a set of assumptions unique to ML [89]. These assumptions are based
on the data used to train ML algorithms, the choice of algorithm, and the choice of
data processing steps—most of which are not documented. For developers, these
assumptions mean that the performance characteristics of an IWS in any particular
application problem domain is not fully knowable. IWSs represent this uncertainty
through a confidence value associated with their predictions.

As an example, consider Figure 11.1, which illustrates an image of a dog up-
loaded to a real computer vision service (CVS). Developers have very few configura-
tion parameters in the upload payload (url of the image to analyse and maxResults
the number of objects to detect). The JSON output payload returns the confidence
value via a score field (0.792), the bounding box and a “dog” label. Developers
can only work with these parameters; unlike hyper-parameter optimisation available
to ML creators, who can configure the internal parameters of the algorithm while
training a model. Given the structure of the abstractions, developers have no insight
into which hyper-parameters are used or the algorithm selected and cannot tune the
underlying trained model when using an IWS. Thus an evaluation procedure must
be followed as a part of using an IWS for an application to work with and tune the
output confidence values for a given input set.

A typical evaluation process involves a test data set (curated by the developers
using the IWS) that is used to determine an appropriate threshold. Choice of a
decision threshold is a critical element of the evaluation procedure [152]. This is
especially true for classification problems such as detecting if an image contains can-
cer. Simple approaches to selecting a threshold are often insufficient, as highlighted
in Google’s ML course: “It is tempting to assume that [a] classification threshold
should always be 0.5, but thresholds are problem-dependent, and are therefore
values that you must tune.”2

As an example consider the predictions from two email spam classifiers shown

2See https://bit.ly/36oMgWb.

https://bit.ly/36oMgWb

11.1 Introduction 205

0 25 50 75 100
0

0.25

0.50

0.75

1

Co
nf

id
en

ce
 v

al
ue

model_1

Labels
ham
spam

0 25 50 75 100
Email ID

model_2
Confidence of two spam classifiers

Figure 11.2: Predictions for 100 emails from two spam classifiers. Decision thresholds
are classifier-dependent: a single threshold for both classifiers is not appropriate as ham
emails are clustered at 0.12 (model_1) and at 0.65 (model_2). Developers must evaluate
performance for both thresholds.

in Figure 11.2. The predicted safe emails, ‘ham’, are in two separate clusters (a
simple threshold set to approx. 0.2 for model 1 and 0.65 for model 2, indicating
that different decision thresholds may be required depending on the classifier. Also
note that some emails have been misclassified; how many depends on the choice of
decision threshold. An appropriate threshold considers factors outside algorithmic
performance, such as financial cost and impact of wrong decisions. To select an
appropriate decision threshold, developers using intelligent services need approaches
to reason about and consider trade-offs between competing cost factors. These
include impact, financial costs, and maintenance implications. Without considering
these trade-offs, sub-optimal decision thresholds will be selected.

The standard approach for tuning thresholds in classification problems involve
making trade-offs between the number of false positives and false negatives using
the receiver operating characteristic (ROC) curve. However, developers (i) need
to realise that this trade-off between false positives and false negatives is a data
dependent optimisation process [321], (ii) often need to develop custom scripts
and follow a trial-and-error based approach to determine a threshold, (iii) must
have appropriate statistical training and expertise, and (iv) be aware that multi-
label classification require more complex optimisation methods when setting label
specific costs. However, current intelligent services do not sufficiently guide or
support software engineers through the evaluation process, nor do they make this
need clear in the documentation.

In this paper we presentThreshy3, a tool to assist developers in selecting decision
thresholds when using intelligent services. The motivation for developing Threshy
arose from our work across a set of industry projects, and is an implemented example
of the threshold tuner component presented in our proposed architecture tactic [91]

3Threshy is available for use at http://bit.ly/a2i2-threshy

http://bit.ly/a2i2-threshy

206 An Implementation of the Threshold Tuner Component

Application Domain Context
Benchmark

Dataset

Impact of
Mistake

Threshy

T
h

re
sh

o
ld

C

o
n

fi
g

u
ra

ti
o

n

Code Snippet Usage

i f (scor e > 0. 8) {

 f eed_t he_dog()
}

i f (di st r i but i on > del t a) {

 not i f y_suppor t _t eam()

}

(1) Thresholding

What's my decision boundary?

(2) Monitoring

When is substantial change notified?

Figure 11.3: Threshy supports two key aspects for intelligent web services: threshold
selection and monitoring.

(see Chapter 10). While Threshy has been designed to specifically handle pre-
trained classification ML models where the hyperparameters cannot be tuned, the
overall conceptual design serves as inspiration for general model calibration. Unlike
existing tooling (see Section 11.4), Threshy serves as a means to up-skill and
educate software engineers in selecting machine-learnt decision thresholds, for
example, on aspects such as confusion matrices. We re-iterate that the end-users of
Threshy are software engineers and not data scientists—Threshy is not designed for
hyper-parameter tuning of models, but for threshold tuning to use intelligent web
services more robustly where internal models are not exposed. Threshy provides a
visually interactive interface for developers to fine-tune thresholds and explore trade-
offs of prediction hits/misses. This exposes the need for optimisation of thresholds,
which is dependent on particular use cases.

Threshy improves developer productivity through automation of the threshold
selection process by leveraging an optimisation algorithm to propose thresholds.
Figure 11.3 illustrates the two key aspects by which Threshy supports developer’s
application domain context. Developers input a representative dataset of their appli-
cation data (a benchmark dataset) in addition to cost factors to Threshy. Threshy’s
output helps developers select appropriate thresholds while considering different
cost factors and can be used to monitor the evolution of an IWS. This algorithm
considers different cost factors providing developers with summary information so
they can make more informed trade-offs. Developers also benefit from the workflow
implemented in Threshy by providing a reproducible procedure for testing and tun-
ing thresholds for any category of classification problem (binary, multi-class, and
multi-label). Threshy has also been designed to work for different input data types
including images, text and categorical values. The output, is a configuration file that
can be integrated into client applications ensuring that the thresholds can be updated
without code changes, and continuously monitored in a production setting.

This paper is structured as so: we provide a motivating example in Section 11.2;
we present an overview of Threshy in Section 11.3, providing an overview of the
architecture and implementation details and give a usage example; we offer a pre-
liminary evaluation strategy of Threshy in ??; we give a background of some related

11.2 Motivating Example 207

Figure 11.4: Pipeline of Nina’s harvesting robot. Left: Photo from harvesting robot’s
webcam. Centre: Classification detecting different types of tomatoes. Right: Binary classi-
fication for ripeness (ripe/unripe) based on (R, G, B values).

work in the area within Section 11.4; we present our conclusions, limitations and
future avenues of this research in Section 11.5.

11.2 Motivating Example

As a motivating example consider Nina, a fictitious developer, who has been em-
ployed by Lucy’s Tomato Farm to automate the picking of tomatoes from their vines
(when ripe) using computer vision and a harvesting robot. Lucy’s Farm grow five
types of tomatoes (roma, cherry, plum, green, and yellow tomatoes). Nina’s robot—
using an attached camera—will crawl and take a photo of each vine to assess it for
harvesting. Nina’s automated harvester needs to sort picked tomatoes into a respec-
tive container, and thus several business rules need to be encoded into the prediction
logic to sort each tomato detected based on its ripeness (ripe or not ripe) and type of
tomato (as above). Nina uses a two-stage pipeline consisting of a multi-class and a
binary classification model. She has decided to evaluate the viability of cloud based
intelligent services and use them if operationally effective.

Figure 11.4 illustrates an example of the pipeline as listed below:

1. Classify tomato ‘type’. This stage uses an object localisation service to detect
all tomato-like objects in the frame and classifies each tomato into one of the
following labels: [‘roma’,‘cherry’,‘plum’,‘green’,‘yellow’,‘unknown’].

2. Assess tomato ‘ripeness’. This stage uses a crop of the localised tomatoes
from the original frame to assess the crop’s colour properties (i.e., average
colour must have R > 200 and G < 240). This produces a binary classification
to deduce whether the tomato is ripe or not.

Nina only has a minimal appreciation of the evaluation method to use for off-
the-shelf computer vision (classification) services. She also needs to consider the
financial costs of misclassifying either the tomato type or the ripeness. Missing a
few ripe tomatoes isn’t a significant concern as the robot travels the field twice a
week during harvest season. However, picking an unripe tomato is expensive as
Lucy cannot sell them. Therefore, Nina needs a better (automated) way to assess

208 An Implementation of the Threshold Tuner Component

Prepare and Upload
Data to Threshy

R
u

n
 b

en
ch

m
ar

k
d

at
a

th
ro

u
g

h

in
te

lli
g

en
t

se
rv

ic
e

In
te

g
ra

te

th
re

sh
o

ld
s

in
to

ap

p
lic

at
io

n

1

2
Explore Prediction

Data Output3 Add Cost Factors4

Optimise Thresholds5Review Thresholds &
Fine Tune6

Export Threshold &
Schema Data7

8

Figure 11.5: UI workflow for interacting with Threshy to optimise the thresholds for
classification problem.

the performance of the service and set optimal thresholds for her picking robot, to
maximise profit.

To assist in developing Nina’s pipeline, Lucy sampled a section of 1000 tomatoes
by taking a photo of each tomato, manually labelling its type, and assessing whether
the vine was ‘ripe’ or ‘not_ripe’. Nina ran the labelled images through an IWS,
with each image having a predicted type (multi-class) and ripeness (binary), with
respective confidence values.

Nina combined the predictions, their respective confidence values, and Lucy’s
labelled ground truths into a CSV file which was then uploaded to Threshy. Nina
asked Lucy the farmer to assist in setting relevant costs (from a business perspective)
for correct predictions and false predictions. Threshy then recommended a choice
of decision threshold which Nina then fine tuned while considering the performance
and cost implications.

11.3 Threshy

Threshy is a tool to assist software engineers with setting decision thresholds when
integrating machine-learnt components in a system in collaboration with subject
matter experts. Our tool also serves as a method to inform and educate engineers
about the nuances to consider when using prepackaged ML services. Key novel
features are:

• Automating threshold selection using an optimisation algorithm (NSGA-II
[97]), optimising the results for each label.

• Support for user defined, domain-specificweightswhen optimising thresholds,
such as financial costs and impact to society. This allows decision thresholds
to be set within a business context as they differ between applications [109].

• Handles nuances of classification problems such as dealingwithmulti-objective
optimisation, and metric selection—reducing errors of omission.

11.4 Related work 209

• Support key classification problems including binary (e.g. email is spam or
ham), multi-class (e.g. predict the colour of a car), andmulti-label (e.g. assign
multiple topics to a document). Existing tools ignoremulti-label classification.

Setting thresholds in Threshy is an eight step process as outlined in Figure 11.5.
Software engineers 1 run a benchmark dataset through the machine-learnt compo-
nent to create a data file (CSV format) with true labels and predicted labels along
with the predicted confidence values. The data file is then 2 uploaded for ini-
tial exploration where engineers can 3 experiment with modifying a single global
threshold for the dataset. Developers may choose to exit at this point (as indicated by
dotted arrows in Figure 11.5). Optionally, the engineer 4 defines costs for missed
predictions followed by selecting optimisation settings. The optional optimisation
step of Threshy 5 considers the performance and costs when deriving the thresh-
olds. Finally, the engineer can 6 review and fine tune the calculated thresholds,
associated costs, and 7 download generated threshold meta-data to be 8 integrated
into their application.

Threshy runs a client/server architecture with a thin-client (see Figure 11.6).
The web-based application consists of an interactive front-end where developers
upload benchmark results—consisting of both human annotated labels and machine
predictions from the IWS—and use threshold tuners (via sliders) to present a data
summary of the uploaded information. Predicted model performances and costs are
entered manually into the web interface by the developer. The Threshy back-end
runs a data analyser, cost processor and metrics calculator when relevant changes
are made to the front-end’s tuning sliders. Separating the two concerns allows for
high intensity processing to be done on the server and not the front end.

The data analyser provides a comprehensive overview of confusion matrices
compatible for multi-label multi-class classification problems. When representing
the confusion matrix, it is trivial to represent instances where multi-label multi-
classification is not considered. For example, in the simplest case, a single row in
the matrix represents a single label out of two classes, or each row has one label
but it has multiple classes. However, a more challenging case to visualise arises
when you have = labels and< classes as the true/false matches become too excessive
to visualise; = ∗ < ∗ 4 fields need to be presented. We resolve this challenge by
summarising the statistics down to three constructs: (i) number of true positives, (ii)
false positives, and (iii) missed positives. This allows us to optimise against the true
positives and minimise the other two constructs. Threshy is a fully self-contained
repository of the tool implementation, scripting and exploratory notebooks, which
is available at https://github.com/a2i2/threshy.

11.4 Related work

11.4.1 Decision Boundary Estimation

Optimal machine-learnt decision boundaries depend on identifying the operating
conditions of the problem domain. A systematic study by Drummond and Holte
[109] classifies four operating conditions to determine a decision threshold: (i) the

https://github.com/a2i2/threshy

210 An Implementation of the Threshold Tuner Component

operating condition is known and the model trained matches perfectly; (ii) where
the operating conditions are known but change with time, and thus the model must
be adaptable to such changes; (iii) where there is uncertainty in the knowledge of
the operating conditions certain changes in the operating condition are more likely
than others; and (iv) where there is no knowledge of the operating conditions and
the conditions may change from the model in any possible way. Various approaches
to determine appropriate thresholds exist for all four of these cases, such as cost-
sensitive learning, ROC analysis, and Brier scores. However, an automated attempt
to calibrate decision threshold boundaries is not considered, and is largely pitched
at a non-software engineering audience. A recent study touches on this in model
management for large-scale adversarial instances in Google’s advertising system
[321], however this is only a single component within the entire architecture, and
is not a tool that is useful for developers in varying contexts. Threshy provides a
‘plug-and-play’ style calibration method where any context/domain can have thresh-
olds automatically calibrated and optimised for engineers. Threshy’s architecture
supports a headless mode for use in monitoring workflows.

11.4.2 Tooling for ML Frameworks

Support tools for ML frameworks generally fall into two categories. The first
attempts to illuminate the ‘black box’ by offering ways in which developers can
better understand the internals of themodel to improve its performance. For extensive
analyses and surveys into this area, see [162, 278]. However, a recent emphasis to
probe only inputs and outputs of a model has been explored, exploring off-the-shelf
models without knowledge of its unknowns (see Figure 11.2) to reflect the nature
of real-world development. Google’s What-If Tool [378] for Tensorflow provides a
means for data scientists to visualise, measure and assess model performance and
fairness with various hypothetical scenarios and data features; similarly, Microsoft’s
Gamut tool [161] provides an interface to test hypotheticals on Generalized Additive
Models, and aModelTracker tool [13] collates summary statistics on sample data to
enable visualisation of model behaviour and access to key performance metrics.

However, these tools are focused toward pre-development model evaluation and
not designed for software engineering workflows. Nor are they context-aware to
the overall software system they are meant to target. They are also aimed at data
scientists and model builders and do not consider consistent tooling that works
across development, test, and production environments. They also do not provide
synthesised output for using intelligent web services with predetermined thresholds.
Further, certain tools are tied to specific ML frameworks (e.g., What-If and Tensor-
flow). Our work, instead, attempts to bridge these gaps through a context-aware,
structured workflow with an automated tool targeted to software developers; our tool
is designed for software engineers to calibrate their thresholds and is used for IWS
APIs in particular.

11.5 Conclusions & Future Work 211

Metrics
Calculator

Cost
ProcessorOptimiser

Threshold
Tuner Costs

Predicted
Performance

Metadata
Exporter

Data Analyser

HTTP

Threshy Back-End

Threshy Front-End

H
um

an
 L

ab
el

s
&

 M
ac

hi
ne

 P
re

di
ci

tio
ns

CSV

T
hr

es
ho

ld
 &

 S
ch

em
a

JSON

Figure 11.6: Architecture of Threshy.

11.5 Conclusions & Future Work

Primary contributions of this work include Threshy, a tool for automating threshold
selection, and the overall meta-workflow proposed in Threshy that developers can
use as a point of reference for calibrating thresholds. Threshy only deals with
classification problems and adapting our method to other problem domains is left as
future work. Furthermore, we plan to evaluate Threshy with practitioners for user-
acceptance and add support for code synthesis for calibrating the API responses.

Part III

Postface

213

CHAPTER12

Conclusions & Future Work

In this chapter, we provide a summary of the contributions within the body of
this work. We evaluate the significance of the research outcomes to the software
engineering research community, and identify potential criticisms of these outcomes.
Lastly, we indicate future avenues of research resulting from this thesis and provide
concluding remarks.

12.1 Contributions of this Work

This thesis has presented three primary contributions to the body of software en-
gineering knowledge. Namely, we have presented an improved understanding in
the landscape of intelligent web services (IWSs)—concretely, those that provide
computer vision—by examining their runtime behaviour and evolution profile over a
longitudinal study (Chapter 4). The implications of this work emphasise the caution
developers need to take before diving deep into using these services, and highlight
the substantial impacts to software quality if these considerations are ignored. We
showed that developers find working with this software more frustrating when con-
trasted to conventional software engineering domains (Chapters 6 and 7), and that
the distribution of the types of issues they face differs from that of the types of issues
developers face in established areas such as mobile and web development (Chap-
ter 5). Furthermore, developers find the completeness of the existing computer vision
service (CVS) API documentation poor (Chapter 5). Therefore, we investigated the
documentation artefacts that constitute API documentation according to those that
are substantially researched in literature, and contrast this against how developers
respond to the efficacy of these attributes (Chapter 8). This enabled synthesis of
a taxonomy of various documentation artefacts that, collectively, comprise the re-
quirements of good API documentation. When this taxonomy was applied to three
CVS service providers, we found 12 areas of improvement of the services’ documen-
tation and found general recommendations needed for software engineering research

215

216 Conclusions & Future Work

to focus on. This taxonomy further serves as a go-to ‘checklist’ for any software
engineer to review a prioritised list of documentation elements worth implementing
into their own API documentation. Lastly our investigations into improved IWS
integration architectures proposes several strategies by which developers can guard
against the non-deterministic evolutionary issues found in Chapter 4. Preliminary
solutions such as that presented in Chapter 9 helped informed further investigations
into how developers can use a novel workflow to better select appropriate confi-
dence thresholds calibrated for their application’s domain (Chapter 11) and prevent
evolution evident in CVSs via a client-server intermediary proxy server strategy
(Chapter 10). A more extensive discussion into the contributions of this thesis is
presented in Section 1.7.

12.1.1 Answers to Research Questions

In this subsection, we directly answer the four primary research questions that were
posed in Section 1.4.

12.1.1.1 RQ1: “What is the nature of cloud-based CVSs?”

� These services are in a nascent stage, are difficult to evaluate, and are not
easily interchangeable. They present themselves as conceptually similar, but
we find they functionally differ between vendors. Their labels are semanti-
cally disparate and work needs to be done on consolidating a standardised
vocabulary for labels. Evolution within these services occurs and is not
sufficiently versioned or documented to developers, since their results are
non-static.

Irrespective of which service is used, the vocabulary used to label an image is dis-
parate. We find that there exists no common standard vocabulary (e.g., ‘border
collie’ vs. ‘collie’) and semantic consistency for the same image between services
is disparate, for example as that shown in Figure 12.1 (left). The runtime behaviour
of these services when contrasted against each other is, therefore, inconsistent, and
thus (without semantic comparison of images, such as that suggested in Chapter 9)
the vendors are not ‘plug-and-play’. In contrast to deterministic web services, the
same result is functionally guaranteed despite which service is used. For instance,
conceptually, a cloud storage service will provide the same output for the same
input; that is, regardless of whether a developer uses AWS or Google Cloud object
storage, when they upload a file, that file is (more or less) guaranteed to be stored.
A deterministic input/output is, thereby, conceptually and functionally guaranteed.
However, we find that the nature of IWSs are conceptually similar but func-
tionally different between services, and therefore developers are likely to become
vendor locked. For instance, as we show in Section 4.5.1, one service may return the
duplicity of objects in an image (e.g., ‘several’), while another service may return
the subject of the image (e.g., ‘carrot’) or a hypernym of that subject (e.g., ‘food’),

12.1 Contributions of this Work 217

and another service may focus on the environment of the image (e.g., ‘indoors’).
Further, even when a label is consistent between services, we find the consistency
of how well they agree to that result—as measured by their confidence score in
the label—does not always strictly match in their level of agreement. As we show
in Figure 12.1 (right), distributions of agreement can be disparate even where
services agree on a label for the same image. Lastly, while IWSs that provide
computer vision are somewhat stable in the responses they return, their responses
are non-static. There is no guarantee that a request with the same image sent in
testing will return the same response, and we find that this potential evolution risk
is not sufficiently communicated to developers.

Figure 12.1: Left: Semantic consistency between services is not always guaranteed. Two
services identified this image as ‘people’, while another identified ‘conversation’, which is not
registered at all as a possible label from the other two services. Right: Even when services
agree on a label, the distribution of their level of agreement is (at times) inconsistent—in the
above image, ‘food’ is detected at confidence levels of three services ranging from 94.93%
to 41.39%.

12.1.1.2 RQ2: “Are CVS APIs sufficiently documented?”

� These services are largely well-documented, but areas of improvement can
be identified. By applying the five-dimensional taxonomy we propose in
Chapter 8 to three services, we found there to be twelve ways vendors can
better improve their services’ documentation. We found the ways in which
developers can use these services could be improved—such as improved
tutorials that integrate multiple components of the service—and by provid-
ing better descriptions to improve developers’ conceptual understanding of
computer vision.

To understand if these services are sufficiently documented, we first investigated
what documentation artefacts constitute the requirements of good API documen-
tation through a systematic mapping study of the literature. We systematically
developed a taxonomy—reproduced in Figure 12.2—that we then validated in a
twofold manner. Firstly, we assessed each documentation artefact against practi-
tioner efficacy by surveying 104 software developers to estimate what value they

218 Conclusions & Future Work

[B] Descriptions of the API 's Design Rationale

[B1] Entry-point purpose of the API

[B2] What the API can develop

[B3] Who should use the API

[B4] Who will use the applications built using the API

[B5] Success stories on the API

[B6] Documentation comparing similar APIs to this API

[B7] Limitations on what the API can/ cannot provide

[D] Existence of Support Artefacts

[D1] FAQs

[D2] Troubleshooting hints

[D3] API diagrams

[D4] Contact for technical support

[D5] Printed guide

[D6] Licensing information

[E] Overal l Presentation of Documentation

[E1] Searchable knowledge base

[E2] Context-specific discussion forums

[E3] Quick-links to other relevant components

[E4] Structured navigation style

[E5] Visualised map of navigational paths

[E6] Consistent look and feel

[A] Descriptions of API Usage

[A1] Quick-start guides

[A2] Low-level reference manual

[A3] Explanation of high level architecture

[A4] Introspection source code comments

[A5] Code snippets of basic component function

[A6] Step-by-step tutorials with multiple components

[A7] Downloadable production-ready source code

[A8] Best-practices of implementation

[A9] An exhaustive list of all components

[A10] Minimum system requirements to use the API

[A11] Instructions to install/ update the API and its release cycle

[A12] Error definitions describing how to address problems

[C] Descriptions of Domain Concepts behind the API

[C1] Relationship between API components and domain concepts

[C2] Definitions of domain terminology

[C3] Documentation for nontechnical audiences

Figure 12.2: Our proposed taxonomy fromChapter 8, forming the five requirements of good
API documentation ([a] through [e]) and each of the 34 concrete documentation artefacts
that comprise the requirement. A checkmark is used to indicate that the documentation
artefact was present in all three CVSs assessed, while a cross is used to indicate that the
documentation artefact was missing from all three.

12.1 Contributions of this Work 219

Figure 12.3: Left: Triangulation of research attention, in literature, of each documentation
artefact compared to the value reported by the developers. Right: Triangulation of the
value each documentation artefact has to developers contrasted to their coverage in CVS
API documentation. Semi-circles indicate partial presence in one of the three services. Full
circles indicate total presence in a service.

hold for each documentation artefact. Secondly, we assessed inclusivity of each
artefact within three popular CVSs, noting the artefact as fully present, partially
present, or not present at all. These findings are summarised within Figure 12.3.

The taxonomy itself consists of five dimensions, each representing a distinct
requirement for good API documentation:

(i) Descriptions of API Usage, or how can developers use the API for their
intended use case?

(ii) Descriptions of Design Rationale, or when should the developer choose this
particular API for their intended use case?

(iii) Descriptions of Domain Concepts, or why does the developer select this
particular API for their application’s domain and does the API’s domain align
with the application’s domain?

(iv) Existence of Support Artefacts, orwhat additional API documentation can the
developer find to aid their productivity?

(v) Overall Presentation of Documentation, or is the visualisation of the above
information well organised and easy for the developer to digest?

This taxonomy is presented with further detail, including usage examples, under
Appendix C.1. Developers argue that code snippets are the most important
documentation artefact, followed closely by tutorials and low-level reference
documentation. This is largely explored by existing research. When we apply
this taxonomy to IWSs such as CVSs, we find that there can be improvementsmade to
all dimensions except documentation presentation, which is sufficient. The largest
suggested improvements fall into the usage description dimension, in which
quick-start guides, step-by-step tutorials, reference applications, best-practices, list-
ings of all API components, minimum system dependencies, and installation in-

220 Conclusions & Future Work

structions require further detail. The second largest dimension falls into the domain
concepts behind computer vision, where vendors should provide a greater emphasis
behind computer vision concepts and definitions of relevant computer vision ter-
minology (especially since many vendors refer to the same concept under different
terms, such as ‘image tagging’ and ‘label detection’ for what is essentially object
recognition). Additional suggested improvements specific to the CVSs services
we assessed are provided in Appendix C.4. The lack of complete documentation in
domain concepts was further reflected in developer discussions on Stack Overflow,
as found in Chapter 5. Section 8.6.3 details these suggested improvements in greater
detail.

12.1.1.3 RQ3: “Are CVSs more misunderstood than conventional software engi-
neering domains?”

� In conventional software engineering domains, where the technical domain
is well-established and well-understood by developers, questions asked by
developers are of greater depth. In contrast, their shallow understanding
of the technical domain of computer vision is reflected by questions that
highlight a poor understanding of the behaviour of these services and the
contexts by which they work. Thus, simpler questions are asked, such as
help with trying to understand basic error codes, or clarification of basic
concepts and terminologies in computer vision. Therefore, we argue that
they are more misunderstood seeing as the domain of IWSs is still immature.

As expressed on Stack Overflow, we find developers struggle most with simple de-
bugging issues, which reflects a shallow understanding of the of the AI concepts that
empower these services. The technical nuances become so abstracted away that
developers begin to lack a full appreciation of the context and proper usage of
these systems. These questions reveal how developers do not have a strong grasp
of the behaviour of these services and how further functional capability needs to be
overcome by secondary phases of work, such as pre- and post-processing. Their
conceptual understanding of these services are poor, with our findings sug-
gesting that developers present a misunderstanding of the vocabulary used within
computer vision, such as the differences between object and facial detection, local-
isation and recognition. The lack of strong conceptual understanding also reflects
in discrepancy-based issues where developers cannot appreciate why services result
in specific outcomes contrary to what they believe should happen. We find these
discrepancy-based issues to be themost frustrating for developers, and argue that
this is rooted in a need for developers to have some basic understanding of computer
vision before diving into services such as these. In terms of the documentation of
these services, developers express frustration towards the completeness of the
documentation, whereby they seek additional information from the official docu-
mentation sources but are unable to find anything to help resolve this gap. Further,
they question the accuracy of the cloud documentation since it is in contrast

12.1 Contributions of this Work 221

22
.8

7%

47
.8

7%

4.
26

%

1.
06

%

4.
79

%

5.
32

%

13
.8

3%

6.
87

%

25
.5

7%

18
.1

3%

2.
00

% 10
.2

1%

13
.1

7%

1.
91

%

[A
-1

a]
 C

or
re

ct
ne

ss

[A
-1

b]
 C

om
pl

et
en

es
s

[A
-1

c]
 U

p-
to

-d
at

en
es

s

[A
-2

a]
 M

ai
nt

ai
na

bi
lit

y

[A
-2

b]
 R

ea
da

bi
lit

y

[A
-2

c]
 U

sa
bi

lit
y

[A
-2

d]
 U

se
fu

ln
es

s

Intelligent Services
Aghajani et al. (2019) [1]

22
.2

9%

16
.3

4%

32
.0

5%

15
.1

4%

11
.0

2%

1.
08

%

2.
09

%

28
.9

3%

18
.1

2%

13
.0

6%

11
.1

0%

20
.3

7%

4.
21

%

4.
21

%

[B
-1

]
AP

I U
sa

ge

[B
-2

]
D

is
cr

ep
an

cy

[B
-3

]
Er

ro
rs

[B
-4

]
Re

vi
ew

[B
-5

]
C

on
ce

pt
ua

l

[B
-6

]
AP

I C
ha

ng
e

[B
-7

]
Le

ar
ni

ng

Intelligent Services
Beyer et al. (2018) [9]

Figure 12.4: The distribution of documentation-specific questions (left) and generalised
questions (right) differs between prior studies. Descriptions of each category for both
question types are found in Table 5.1.

with the behaviour they observe, as related to the discrepancy-based issues they
find. In contrast to more established domains, such as mobile and web-development,
the distribution of issues are different (see Figure 12.4). Rather than trying to in-
terpret simple errors (as is the case for CVSs), developers question API usage and
high-level conceptual questions. Developers have a greater appreciation for the
technical domain in these mature areas, resulting in fewer shallower questions asked.

12.1.1.4 RQ4: “What strategies can developers employ to integrate their applica-
tions with CVSs while preserving robustness and reliability?”

� Developers can employ the use of a facade-based architecture to merge the
responses of multiple vendors using a novel, proportional-representation
based approach using lexical databases to resolve ontological issues of
labels. An integration strategy consisting of four workflows was presented
in Chapter 10 to assist developers monitor and handle substantial evolution
change in these services. Developers can deal with the probabilistic nature
of these services by using a representative data set of their application’s
data to fine-tune a confidence threshold and monitor threshold changes in a
production setting.

This thesis offers three strategies targeted at improved integration of developer
applications with CVSs. Chapter 9 successfully demonstrated that multiple services
can be combined using lexical databases to better improve the reliability of relying
on a single service’s label. Further, this strategy outperformed naive merge methods
using a novel proportional representation method by 0.015 F-measure. This strategy
uses the idea of a client-server intermediary facade to handle these operations and
produce a consistent result regardless of which service is being used. This inspired

222 Conclusions & Future Work

further work presented in Chapter 10. To handle the evolutionary issues found in
the services, we developed a novel integration architecture based on the proxy server
strategy, integrating four key proposed workflows which can be used to guard against
evolution and non-determinism in these services: (i) initialising a representative
benchmark of domain-specific data used in the client application; (ii) validating
that the service is behaving as expected against that benchmark; (iii) periodically
detecting for evolution if behavioural change occurs, thereby notifying change; and
lastly (iv) invalidating future requests if substantial evolution is detected in step (iii).
This, in turn, resolves a non-deterministic response into a deterministic error when
evolution is raised. Lastly, to deal with the uncertainty arising from probabilistic
confidence values, we proposed Threshy (see Chapter 11), a tool to help developers
select appropriate threshold boundaries resulting from their benchmark data sets and
cost factors (due to missed predictions). Ultimately these strategies aim at improving
the robustness of applications that are dependent on CVSs.

12.1.2 Limitations to Research Answers & Future Research

Throughout this thesis, we have used computer vision as a primary exemplar of
pre-trained ML models abstracted as intelligent AI components. These components
are embedded into cloud platforms, typically provided via RESTful API endpoints.
Limiting this research to such a narrow scope is an illustrative example that enables
more concrete findings and potential solutions to a specific subset of IWSs. As
discussed in Section 1.2, these particular type of IWSs were selected due to both
their increasing enthusiasm and uptake in developer communities (see Figure 1.1)
and their maturity in the area. However, we acknowledge that there are myriad
domains in the IWS space, such as audio and sentiment analysis, text-to-speech
and speech-to-text, natural language processing, or time-series data analysis. Our
analyses of CVSs chiefly targets content analysis (or object detection) endpoints of
these services; other endpoints such as image description or object localisation exist,
and were not considered as the main unit of analysis in this work. Further, this thesis
selects three prominent vendors of CVSs: Google, Microsoft, and Amazon. While
these vendors are considered to be the ubiquitous ‘go-to’ providers for cloud-based
services (given their AWS, Google Cloud, Azure platforms) and were the most
adopted for enterprise solutions [121], many other providers of computer vision
intelligence exist [395, 411, 412, 413, 419, 432, 433, 435, 485, 486], including those
from Asian market [409, 410, 431, 451, 452] where language barriers prevented
analysis of these services.

Thus, the generalisability of our findings are a substantial threat to the external
validity of our research answers and future research needs to investigate other areas
of IWSs to assess whether our findings and solutions are applicable to other intel-
ligent domains and other types of services in the CVS market. Further, this thesis
strongly emphasises investigations into identifying issues within web-based IWSs.
We establish a better understanding on their nature and run-time behaviour (RQ1),
how they are documented (RQ2), and how well they are understood by developers
(RQ3), but only offer limited solutions to these issues (e.g., RQ4). We encourage

12.1 Contributions of this Work 223

the software engineering community to use the issues identified in this work as a
stepping-stone into future solutions, identifying other ways (beyond improved inte-
gration techniques) in which developers can handle these issues. For example, the
broader concepts of our contributed architecture (e.g., use of a behaviour token, its
parameters, and the error codes proposed) can be shifted to handle issues in natural
language processing to demonstrate the generalisability of the architecture to other
IWSs, since topic modelling produces labels with confidences and the approach can
be largely transferred to this area.

Other future work stemming from this thesis would be to explore the nature of
other IWSs and understanding if similar evolution and behavioural runtime patterns
exist with their computer vision equivalents (as identified in this thesis). Chiefly,
future work on how to better support developers using different types of intelligent
components would be an interesting area to explore, especially in applying our
design strategies to combat the robustness issues we have identified to these other
types of services and identify any potential pitfalls of our design. As our proposed
architectural usage framework is a preliminary design, rigorous testing in real-
world scenarios, such as a long-term industry case study implementing our design
or conducting formal architecture evaluations such as ATAM [193], would be a
possible avenue of research to verify the design. Further, our proposal makes use
of the benchmark data set approach, but we are yet to explore and test potential
guidelines in developing a benchmark data set. While we provide some potential
guidelines in Section 10.6.3.1, these will need to be evaluated for practical use.

Another key aspect would revolve around the documentation contributions of
this study and investigating whether our suggested documentation improvements
are applicable to these different services. Developing improved documentation and
tooling that better support developers when using these IWSs (and how our proposed
architecture fits in) should be explored.

Moreover, since we find these services to be not yet as matured as traditional
software development domains and—like similar emerging software engineering
domains such as web development in the mid-1990s and early-2000s or mobile
development from the mid-2000s to early-2010s—we suspect there to be substantial
growth in the understanding of how we will use these services and maturity in the
developer’s appreciation of its surrounding technical domain. Therefore, it would be
beneficial to repeat some of the studies within this thesis and assess whether there is
an improved understanding of the phenomena occurring within IWSs and whether
developers have an improved mindset of these services and how they can be used.
Thus, different tools, designs, or suggestions may result from repetitional studies
5-10 years in the future. This, therefore, identifies evolution in thematurity of IWSs,
and to highlight whether developers are showing a stronger understanding of the
surrounding technical domain behind these services. We strongly encourage the
software engineering community to explore these in such time to identify maturity
in this emerging domain.

224 Conclusions & Future Work

12.2 Concluding Remarks

As has been achieved with other software components, recent trends to raise abstrac-
tion levels ofML (from low-level statistical operations to high-levelML components)
aim to reduce the time, effort, and knowledge required for software developers to
integrateML into their application. This trend is warranted given the ever-increasing
needs to incorporate AI, and particularly deep learning, into applications, thereby
creating AI-first ‘intelligent’ software. Intelligent web service (IWS) are a com-
mon form of these high-level ML components that are offered through prominent
cloud platforms—such as Google’s Cloud Platform, Microsoft’s Azure, or Amazon
Web Services—and the integration and usage of these components into conventional
software is at the core of this work.

To our knowledge, little prior investigation has been conducted to understand
IWSs via the lenses of software quality; primarily the robustness, reliability of the
services and completeness of its documentation. In this thesis, we have shown that
the non-deterministic and probabilistic properties of computer vision IWSs present
non-trivial impacts to the quality of software that they are integrated with, and it is
pivotal that developers have a greater appreciation of the technical domain behind
the AI techniques that empower such services.

In identifying evolutionary and run-time issues of these services, the ways in
which they are (currently) documented and these issues communicated (or not), and
analysing how developers perceive these services with a deterministic mindset, we
have shown just how fragile the use of such services (as they stand) are. We strongly
encourage vendors to use suggestions made within this research to improve both their
documentation and their integration strategies so that developers can ensure more
robust applicationswhen using these services. Ultimately, intelligent AI components
are still in a nascent stage, and therefore we strongly suggest one message to eager
developers: use with caution and be aware of the consequences!

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: A system for large-
scale machine learning,” in Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation. Savannah, GA, USA: ACM, 2016. ISBN 978-1-93-197133-1 pp.
265–283.

[2] R. Abdalkareem, E. Shihab, and J. Rilling, “What Do Developers Use the Crowd For?
A Study Using Stack Overflow,” IEEE Software, vol. 34, no. 2, pp. 53–60, 2017,
DOI 10.1109/MS.2017.31.

[3] E. Aghajani, C. Nagy, G. Bavota, and M. Lanza, “A Large-scale empirical study on linguistic
antipatterns affecting apis,” in Proceedings of the 34th International Conference on Software
Maintenance and Evolution. Madrid, Spain: IEEE, September 2018. DOI 10.1109/IC-
SME.2018.00012. ISBN 978-1-53-867870-1 pp. 25–35.

[4] E. Aghajani, C. Nagy, O. L. Vega-Marquez, M. Linares-Vasquez, L. Moreno, G. Bavota,
and M. Lanza, “Software Documentation Issues Unveiled,” in Proceedings of the 41st Inter-
national Conference on Software Engineering. Montreal, QC, Canada: IEEE, May 2019.
DOI 10.1109/ICSE.2019.00122. ISBN 978-1-72-810869-8. ISSN 0270-5257 pp. 1199–1210.

[5] M. Ahasanuzzaman, M. Asaduzzaman, C. K. Roy, and K. A. Schneider, “Classifying stack
overflow posts on API issues,” in Proceedings of the 25th International Conference on
Software Analysis, Evolution and Reengineering. Campobasso, Italy: IEEE, March 2018.
DOI 10.1109/SANER.2018.8330213. ISBN 978-1-53-864969-5 pp. 244–254.

[6] R. E. Al-Qutaish, “Quality Models in Software Engineering Literature: An Analytical and
Comparative Study,” Journal of American Science, vol. 6, no. 3, pp. 166–175, 2010.

[7] H. Allahyari and N. Lavesson, “User-oriented assessment of classification model understand-
ability,” in Proceedings of the 11th Scandinavian Conference on Artificial Intelligence, vol.
227. Trondheim, Norway: IOS Press, May 2011. DOI 10.3233/978-1-60750-754-3-11.
ISBN 978-1-60-750753-6. ISSN 0922-6389 pp. 11–19.

[8] M. Allamanis and C. Sutton, “Why, when, and what: Analyzing stack overflow questions
by topic, type, and code,” in Proceedings of the 10th IEEE International Working Con-
ference on Mining Software Repositories. San Francisco, CA, USA: IEEE, May 2013.
DOI 10.1109/MSR.2013.6624004. ISBN 978-1-46-732936-1. ISSN 2160-1852 pp. 53–56.

[9] C. O. Alm, D. Roth, and R. Sproat, “Emotions from Text: Machine Learning for Text-Based
Emotion Prediction,” in Proceedings of the Conference on Human Language Technology and
Empirical Methods in Natural Language Processing. Vancouver, BC, Canada: Association
for Computational Linguistics, October 2005. DOI 10.3115/1220575.1220648, pp. 579–586.

[10] N. Alswaidan and M. E. B. Menai, A survey of state-of-the-art approaches for emotion recog-

225

https://doi.org/10.1109/MS.2017.31
https://doi.org/10.1109/ICSME.2018.00012
https://doi.org/10.1109/ICSME.2018.00012
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/SANER.2018.8330213
https://doi.org/10.3233/978-1-60750-754-3-11
https://doi.org/10.1109/MSR.2013.6624004
https://doi.org/10.3115/1220575.1220648

226 REFERENCES

nition in text. Springer, 2020, vol. 62, no. 8, DOI 10.1007/s10115-020-01449-0. ISBN
101-1-50-200144-9

[11] J. Alway and C. Calhoun, Critical Social Theory: Culture, History, and the Challenge of
Difference. American Sociological Association, 1997, vol. 26, no. 1, DOI 10.2307/2076647.

[12] S. Aman and S. Szpakowicz, “Identifying Expressions of Emotion in Text,” in Proceedings of
the 10th International Conference on Text, Speech and Dialogue. Pilsen, Czech Republic:
Springer, September 2007. DOI 10.1007/978-3-540-74628-7_27, pp. 196–205.

[13] S. Amershi, M. Chickering, S. M. Drucker, B. Lee, P. Simard, and J. Suh, “Modeltracker:
Redesigning performance analysis tools for machine learning,” in Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems. Seoul, Republic of
Korea: ACM, April 2015. DOI 10.1145/2702123.2702509. ISBN 978-1-45-033145-6 pp.
337–346.

[14] K. Arnold, “Programmers are People, Too,” ACM Queue, vol. 3, no. 5, pp. 54–59, 2005,
DOI 10.1145/1071713.1071731. ISSN 1542-7749

[15] M. Arnold, D. Piorkowski, D. Reimer, J. Richards, J. Tsay, K. R. Varshney, R. K. E. Bel-
lamy, M. Hind, S. Houde, S. Mehta, A. Mojsilovic, R. Nair, K. N. Ramamurthy, and
A. Olteanu, “FactSheets: Increasing trust in AI services through supplier’s declarations of
conformity,” IBM Journal of Research and Development, vol. 63, no. 4-5, pp. 6:1 – 6:13, 2019,
DOI 10.1147/JRD.2019.2942288.

[16] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software engineering challenges
of deep learning,” in Proceedings of the 44th Euromicro Conference on Software En-
gineering and Advanced Applications. Prague, Czech Republic: IEEE, August 2018.
DOI 10.1109/SEAA.2018.00018. ISBN 978-1-53-867382-9 pp. 50–59.

[17] W. R. Ashby and J. R. Pierce, “An Introduction to Cybernetics,” Physics Today, vol. 10, no. 7,
pp. 34–36, July 1957.

[18] L. Aversano, D. Guardabascio, and M. Tortorella, “Analysis of the Documentation of ERP
Software Projects,” Procedia Computer Science, vol. 121, pp. 423–430, January 2017,
DOI 10.1016/j.procs.2017.11.057. ISSN 1877-0509

[19] D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K. R. Müller, “How
to explain individual classification decisions,” Journal of Machine Learning Research, vol. 11,
pp. 1803–1831, 2010. ISSN 1532-4435

[20] B. Baesens, C. Mues, M. De Backer, J. Vanthienen, and R. Setiono, “Building intelligent credit
scoring systems using decision tables,” in Proceedings of the 5th International Conference on
Enterprise Information Systems, vol. 2. Angers, France: IEEE, April 2003. DOI 10.1007/1-
4020-2673-0_15. ISBN 9-72-988161-8 pp. 19–25.

[21] X. Bai, Y. Wang, G. Dai, W. T. Tsai, and Y. Chen, “A framework for contract-based collab-
orative verification and validation of Web services,” in Proceedings of the 10th International
Symposium of Component-Based Software Engineering. Medford, MA, USA: Springer, July
2007. DOI 10.1007/978-3-540-73551-9_18. ISBN 978-3-54-073550-2. ISSN 0302-9743 pp.
258–273.

[22] K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions asked by web developers,” in
Proceedings of the 11th Working Conference on Mining Software Repositories. Hyderabad,
India: ACM, May 2014. DOI 10.1145/2597073.2597083. ISBN 978-1-45-032863-0 pp.
112–121.

[23] K. Ballinger, “Simplicity and Utility, or, Why SOAP Lost,” [Online] Available: http://bit.ly/
37vLms0, December 2014, Accessed: 28 August 2018.

[24] O. Baños, M. Damas, H. Pomares, I. Rojas, M. A. Tóth, and O. Amft, “A Benchmark
Dataset to Evaluate Sensor Displacement in Activity Recognition,” in Proceedings of the
2012 ACM Conference on Ubiquitous Computing. Pittsburgh, PA, USA: ACM, 2012.
DOI 10.1145/2370216.2370437. ISBN 9781450312240 pp. 1026–1035.

[25] S. Barnett, “Extracting technical domain knowledge to improve software architecture,” Ph.D.
dissertation, Swinburne University of Technology, Hawthorn, VIC, Australia, 2018.

[26] S. Barnett, R. Vasa, and J. Grundy, “Bootstrapping Mobile App Development,” in Proceedings
of the 37th International Conference on Software Engineering. Florence, Italy: IEEE, May
2015. DOI 10.1109/ICSE.2015.216. ISBN978-1-47-991934-5. ISSN 0270-5257 pp. 657–660.

https://doi.org/10.1007/s10115-020-01449-0
https://doi.org/10.2307/2076647
https://doi.org/10.1007/978-3-540-74628-7_27
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1145/1071713.1071731
https://doi.org/10.1147/JRD.2019.2942288
https://doi.org/10.1109/SEAA.2018.00018
https://doi.org/10.1016/j.procs.2017.11.057
https://doi.org/10.1007/1-4020-2673-0_15
https://doi.org/10.1007/1-4020-2673-0_15
https://doi.org/10.1007/978-3-540-73551-9_18
https://doi.org/10.1145/2597073.2597083
http://bit.ly/37vLms0
http://bit.ly/37vLms0
https://doi.org/10.1145/2370216.2370437
https://doi.org/10.1109/ICSE.2015.216

REFERENCES 227

[27] S. Barnett, R. Vasa, and A. Tang, “A Conceptual Model for Architecting Mobile Applications,”
inProceedings of the 12thWorking IEEE/IFIPConference on Software Architecture. Montreal,
QC, Canada: IEEE, May 2015. DOI 10.1109/WICSA.2015.28. ISBN 978-1-47-991922-2 pp.
105–114.

[28] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking about? An analysis
of topics and trends in Stack Overflow,” Empirical Software Engineering, vol. 19, no. 3, pp.
619–654, 2014, DOI 10.1007/s10664-012-9231-y. ISSN 1573-7616

[29] Y. Baruch, “Response rate in academic studies - A comparative analysis,” Human Relations,
vol. 52, no. 4, pp. 421–438, 1999, DOI 10.1177/001872679905200401. ISSN 0018-7267

[30] O. Barzilay, C. Treude, and A. Zagalsky, “Facilitating crowd sourced software engineering via
stack overflow,” in Finding Source Code on the Web for Remix and Reuse, 2014, no. 4, pp.
289–308. ISBN 978-1-46-146596-6

[31] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed. Addison-
Wesley, 2003. ISBN 0-32-115495-9

[32] E. Batbaatar, M. Li, and K. H. Ryu, “Semantic-Emotion Neural Network for Emotion
Recognition From Text,” IEEE Access, vol. 7, pp. 111 866–111 878, 2019, DOI 10.1109/ac-
cess.2019.2934529.

[33] B. E. Bejnordi, M. Veta, P. J. Van Diest, B. Van Ginneken, N. Karssemeĳer, G. Litjens, J. A.
W. M. Van Der Laak, M. Hermsen, Q. F. Manson, M. Balkenhol, O. Geessink, N. Stathonikos,
M. C. R. F. Van Dĳk, P. Bult, F. Beca, A. H. Beck, D. Wang, A. Khosla, R. Gargeya, H. Ir-
shad, A. Zhong, Q. Dou, Q. Li, H. Chen, H. J. Lin, P. A. Heng, C. Haß, E. Bruni, Q. Wong,
U. Halici, M. Ü. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. Vylegzhanin, O. Kraus,
M. Shaban, N. Rajpoot, R. Awan, K. Sirinukunwattana, T. Qaiser, Y. W. Tsang, D. Tellez,
J. Annuscheit, P. Hufnagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Li-
imatainen, S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno,
Y. Takenaka, H. Matsuda, H. A. Phoulady, V. Kovalev, A. Kalinovsky, V. Liauchuk, G. Bueno,
M. M. Fernandez-Carrobles, I. Serrano, O. Deniz, D. Racoceanu, and R. Venâncio, “Diagnostic
assessment of deep learning algorithms for detection of lymph node metastases in women with
breast cancer,” Journal of the American Medical Association, vol. 318, no. 22, pp. 2199–2210,
December 2017, DOI 10.1001/jama.2017.14585. ISSN 1538-3598

[34] R. Bellazzi and B. Zupan, “Predictive data mining in clinical medicine: Current issues and
guidelines,” International Journal of Medical Informatics, vol. 77, no. 2, pp. 81–97, 2008,
DOI 10.1016/j.ĳmedinf.2006.11.006. ISSN 1386-5056

[35] A. Ben-David, “Monotonicity Maintenance in Information-Theoretic Machine Learning Algo-
rithms,” Machine Learning, vol. 19, no. 1, pp. 29–43, 1995, DOI 10.1023/A:1022655006810.
ISSN 1573-0565

[36] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifier (URI): Generic
syntax,” Tech. Rep., 2004.

[37] L. L. Berry, A. Parasuraman, and V. A. Zeithaml, “SERVQUAL: A multiple-item scale for
measuring consumer perceptions of service quality,” Journal of Retailing, vol. 64, no. 1, pp.
12–40, 1988, DOI 10.1016/S0148-2963(99)00084-3. ISBN 00224359. ISSN 0022-4359

[38] J. Bessin, “The Business Value of Quality,” [Online] Available: https://ibm.co/2u0UDK0, June
2004.

[39] S. Beyer and M. Pinzger, “A manual categorization of android app development issues on stack
overflow,” in Proceedings of the 30th International Conference on Software Maintenance and
Evolution. Victoria, BC, Canada: IEEE, September 2014. DOI 10.1109/ICSME.2014.88.
ISBN 978-0-76-955303-0 pp. 531–535.

[40] S. Beyer, C.MacHo,M. Pinzger, andM.Di Penta, “Automatically classifying posts into question
categories on stack overflow,” in Proceedings of the 26th International Conference on Program
Comprehension. Gothenburg, Sweden: ACM, May 2018. DOI 10.1145/3196321.3196333.
ISBN 978-1-45-035714-2. ISSN 0270-5257 pp. 211–221.

[41] J. Biggs and K. Collis, “Evaluating the Quality of Learning: The SOLO Taxonomy (Structure
of the Observed Learning Outcome),” Management in Education, vol. 1, no. 4, p. 20, 1987,
DOI 10.1177/089202068700100412. ISBN 0-12-097551-1. ISSN 0892-0206

[42] J. P. Bigham, R. S.Kaminsky, R. E. Ladner, O.M.Danielsson, andG.L.Hempton, “WebInSight:
Making web images accessible,” in Proceedings of the 8th International ACM SIGACCESS

https://doi.org/10.1109/WICSA.2015.28
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1177/001872679905200401
https://doi.org/10.1109/access.2019.2934529
https://doi.org/10.1109/access.2019.2934529
https://doi.org/10.1001/jama.2017.14585
https://doi.org/10.1016/j.ijmedinf.2006.11.006
https://doi.org/10.1023/A:1022655006810
https://doi.org/10.1016/S0148-2963(99)00084-3
https://ibm.co/2u0UDK0
https://doi.org/10.1109/ICSME.2014.88
https://doi.org/10.1145/3196321.3196333
https://doi.org/10.1177/089202068700100412

228 REFERENCES

Conference on Computers and Accessibility. Portland, OR, USA: ACM, October 2006.
DOI 10.1145/1168987.1169018, pp. 181–188.

[43] J. P. Bigham, C. M. Prince, and R. E. Ladner, “WebAnywhere,” in Proceedings of the 2008
International Cross-Disciplinary Conference on Web Accessibility. Beĳing, China: ACM,
April 2008. DOI 10.1145/1368044.1368060, pp. 73–82.

[44] J. J. Blake, L. P.Maguire, T.M.McGinnity, B. Roche, and L. J.McDaid, “The implementation of
fuzzy systems, neural networks and fuzzy neural networks using FPGAs,” Information Sciences,
vol. 112, no. 1-4, pp. 151–168, 1998, DOI 10.1016/S0020-0255(98)10029-4. ISSN 0020-0255

[45] B. S. Bloom, Taxonomy of Educational Objectives, Handbook 1: Cognitive Domain, 2nd ed.
Addison-Wesley Longman, 1956. ISBN 978-0-58-228010-6

[46] B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of software quality,” in
Proceedings of the 2nd International Conference on Software Engineering. San Francisco,
California, USA: IEEE, October 1976. ISSN 0270-5257 pp. 592–605.

[47] B. Boehm and V. R. Basili, “Software defect reduction top 10 list,” Software Management, pp.
419–421, 2007, DOI 10.1109/9780470049167.ch12. ISBN 978-0-47-004916-7

[48] B. W. Boehm, Software engineering economics. Englewood Cliffs, NJ, USA: Prentice-Hall,
1981. ISBN 0-13-822122-7

[49] C. Bottomley, “What part writer? What part programmer? A survey of practices
and knowledge used in programmer writing,” in Proceedings of the 2005 IEEE Interna-
tional Professional Communication Conference. Limerick, Ireland: IEEE, July 2005.
DOI 10.1109/IPCC.2005.1494255, pp. 802–812.

[50] P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering Body of Knowledge,
3rd ed. Washington, DC, USA: IEEE, 2014. ISBN 978-0-7695-5166-1

[51] E. Bouwers and A. van Deursen, “A Lightweight Sanity Check for Implemented Architectures,”
IEEE Software, vol. 27, no. 4, pp. 44–50, July 2010, DOI 10.1109/MS.2010.60. ISSN 0740-
7459

[52] M. Boyd and N. Wilson, “Just ask Siri? A pilot study comparing smartphone digital assistants
and laptop Google searches for smoking cessation advice,” PLoS ONE, vol. 13, no. 3, 2018,
DOI 10.1371/journal.pone.0194811. ISSN 1932-6203

[53] O. Boz, “Extracting decision trees from trained neural networks,” inProceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton,
AB, Canada: ACM, July 2002. DOI 10.1145/775107.775113, pp. 456–461.

[54] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
[55] H. B. Braiek and F. Khomh, “On Testing Machine Learning Programs,” December 2018.
[56] M. Bramer, Principles of Data Mining, ser. Undergraduate Topics in Computer Science. Lon-

don, England, UK: Springer, 2016, vol. 180, DOI 10.1007/978-1-4471-7307-6. ISBN 978-1-
44-717306-9

[57] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer, “Two studies of oppor-
tunistic programming: Interleaving web foraging, learning, and writing code,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing System. Boston, MA, USA: ACM,
April 2009. DOI 10.1145/1518701.1518944. ISBN 978-1-60-558247-4 pp. 1589–1598.

[58] L. Bratthall and M. Jørgensen, “Can you trust a single data source exploratory software engi-
neering case study?” Empirical Software Engineering, 2002, DOI 10.1023/A:1014866909191.
ISSN 1382-3256

[59] E. Breck, S. Cai, E. Nielsen, M. Salib, andD. Sculley, “What’s yourMLTest Score? A rubric for
ML production systems,” in Proceedings of the 30th Annual Conference on Neural Information
Processing Systems. Barcelona, Spain: Curran Associates Inc., December 2016.

[60] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees.
New York, NY, USA: CRC press, 1984. DOI 10.1201/9781315139470. ISBN 978-1-35-
146049-1

[61] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil, “Lessons from applying
the systematic literature review process within the software engineering domain,” Journal of
Systems and Software, vol. 80, no. 4, pp. 571–583, April 2007, DOI 10.1016/j.jss.2006.07.009.
ISSN 0164-1212

[62] J. Brooke, “SUS-A quick and dirty usability scale,” inUsability Evaluation in Industry. Corn-
wall, England, UK: Taylor & Francis Ltd, 1996, ch. 21, pp. 189–194. ISBN 978-0-74-840460-5

https://doi.org/10.1145/1168987.1169018
https://doi.org/10.1145/1368044.1368060
https://doi.org/10.1016/S0020-0255(98)10029-4
https://doi.org/10.1109/9780470049167.ch12
https://doi.org/10.1109/IPCC.2005.1494255
https://doi.org/10.1109/MS.2010.60
https://doi.org/10.1371/journal.pone.0194811
https://doi.org/10.1145/775107.775113
https://doi.org/10.1007/978-1-4471-7307-6
https://doi.org/10.1145/1518701.1518944
https://doi.org/10.1023/A:1014866909191
https://doi.org/10.1201/9781315139470
https://doi.org/10.1016/j.jss.2006.07.009

REFERENCES 229

[63] ——, “SUS: a retrospective,” Journal of Usability Studies, vol. 8, no. 2, pp. 29–40, 2013. ISSN
1931-3357

[64] O. Bruna, H. Avetisyan, and J. Holub, “Emotion models for textual emotion classification,”
Journal of Physics: Conference Series, vol. 772, p. 12063, November 2016, DOI 10.1088/1742-
6596/772/1/012063.

[65] M. Bunge, “A General Black Box Theory,” Philosophy of Science, vol. 30, no. 4, pp. 346–358,
October 1963, DOI 10.1086/287954. ISSN 0031-8248

[66] BusinessWire, “FileShadow Delivers Machine Learning to End Users with Google Vision API
| Business Wire,” [Online] Available: https://bwnews.pr/2O5qv78, July 2018, Accessed: 25
January 2019.

[67] A. Bussone, S. Stumpf, and D. O’Sullivan, “The role of explanations on trust and reliance in
clinical decision support systems,” inProceedings of the 2015 IEEE InternationalConference on
Healthcare Informatics. Dallas, TX, USA: IEEE, October 2015. DOI 10.1109/ICHI.2015.26.
ISBN 978-1-46-739548-9 pp. 160–169.

[68] F. Calefato, F. Lanubile, and N. Novielli, “EmoTxt: a toolkit for emotion recognition from
text,” in Proceedings of the 7th International Conference on Affective Computing and Intel-
ligent Interaction Workshops and Demos. San Antonio, TX, USA: IEEE, October 2017.
DOI 10.1109/ACIIW.2017.8272591, pp. 79–80.

[69] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity detection for
software development,” Empirical Software Engineering, vol. 23, no. 3, pp. 1352–1382, 2018,
DOI 10.1007/s10664-017-9546-9.

[70] G. Canfora, “User-side testing ofWeb Services,” inProceedings of the 9th EuropeanConference
on Software Maintenance and Reengineering. Manchester, England, UK: IEEE, March 2005.
DOI 10.1109/csmr.2005.57. ISSN 1534-5351 p. 301.

[71] G. Canfora and M. Di Penta, “Testing services and service-centric systems: Challenges and
opportunities,” IT Professional, vol. 8, no. 2, pp. 10–17, 2006, DOI 10.1109/MITP.2006.51.
ISSN 1520-9202

[72] R. Caruana, Y. Lou, J. Gehrke, P. Koch, M. Sturm, and N. Elhadad, “Intelligible models for
healthcare: Predicting pneumonia risk and hospital 30-day readmission,” in Proceedings of
the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
vol. 2015-Augus. Sydney, Australia: ACM, August 2015. DOI 10.1145/2783258.2788613.
ISBN 978-1-45-033664-2 pp. 1721–1730.

[73] F. Casati, H. Kuno, G. Alonso, and V. Machiraju, Web Services-Concepts, Architectures and
Applications, 2004. ISBN 978-3-64-207888-0

[74] J. P. Cavano and J. A. McCall, “A framework for the measurement of software quality,” in
Proceedings of the Software Quality Assurance Workshop on Functional and Performance
Issues, vol. 3, no. 5, November 1978, DOI 10.1145/800283.811113, pp. 133–139.

[75] C. V. Chambers, D. J. Balaban, B. L. Carlson, and D. M. Grasberger, “The effect of
microcomputer-generated reminders on influenza vaccination rates in a university-based family
practice center.” The Journal of the American Board of Family Practice / American Board of
Family Practice, vol. 4, no. 1, pp. 19–26, 1991, DOI 10.3122/jabfm.4.1.19. ISSN 0893-8652

[76] J. Cheng andR.Greiner, “Learning bayesian belief network classifiers: Algorithms and system,”
in Proceedings of the 14th Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, vol. 2056. Ottawa, ON, Canada: Springer, June 2001. DOI 10.1007/3-
540-45153-6_14. ISBN 3-54-042144-0. ISSN 1611-3349 pp. 141–151.

[77] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, B. K. Ray, and D. S. Moebus, “Or-
thogonal Defect Classification—A Concept for In-Process Measurements,” IEEE Transactions
on Software Engineering, vol. 18, no. 11, pp. 943–956, 1992, DOI 10.1109/32.177364. ISSN
0098-5589

[78] E. Choi, N. Yoshida, R. G. Kula, and K. Inoue, “What do practitioners ask about code clone? a
preliminary investigation of stack overflow,” in Proceedings of the 9th International Workshop
on Software Clones, Montreal, QC, Canada, March 2015, DOI 10.1109/IWSC.2015.7069890.
ISBN 978-1-46-736914-5 pp. 49–50.

[79] D. V. Cicchetti, “Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Stan-
dardized Assessment Instruments in Psychology,” Psychological Assessment, vol. 6, no. 4, pp.
284–290, 1994, DOI 10.1037/1040-3590.6.4.284. ISSN 10403590

https://doi.org/10.1088/1742-6596/772/1/012063
https://doi.org/10.1088/1742-6596/772/1/012063
https://doi.org/10.1086/287954
https://bwnews.pr/2O5qv78
https://doi.org/10.1109/ICHI.2015.26
https://doi.org/10.1109/ACIIW.2017.8272591
https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1109/csmr.2005.57
https://doi.org/10.1109/MITP.2006.51
https://doi.org/10.1145/2783258.2788613
https://doi.org/10.1145/800283.811113
https://doi.org/10.3122/jabfm.4.1.19
https://doi.org/10.1007/3-540-45153-6_14
https://doi.org/10.1007/3-540-45153-6_14
https://doi.org/10.1109/32.177364
https://doi.org/10.1109/IWSC.2015.7069890
https://doi.org/10.1037/1040-3590.6.4.284

230 REFERENCES

[80] Cigital, “Case Study: Finding defects earlier yields enormous savings,” [Online] Available:
http://bit.ly/36Il2cE, 2003.

[81] P. Clark and R. Boswell, “Rule induction with CN2: Some recent improvements,” in Proceed-
ings of the 1991 European Working Session on Learning. Porto, Portugal: Springer, March
1991. DOI 10.1007/BFb0017011. ISBN 978-3-54-053816-5. ISSN 1611-3349 pp. 151–163.

[82] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational and Psychological
Measurement, vol. 20, no. 1, pp. 37–46, 1960, DOI 10.1177/001316446002000104. ISSN
1552-3888

[83] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recommendations,”
in Proceedings of the 10th ACM Conference on Recommender Systems. Boston, MA, USA:
ACM, September 2016. DOI 10.1145/2959100.2959190. ISBN 978-1-45-034035-9 pp. 191–
198.

[84] M. W. Craven and J. W. Shavlik, “Extracting tree-structured representations of trained neural
networks,” inProceedings of the 8th InternationalConference onNeural InformationProcessing
Systems, vol. 8. Denver, CO, USA: MIT Press, December 1996. ISBN 978-0-26-220107-0 pp.
24–30.

[85] J. W. Creswell, Research design: Qualitative, quantitative, and mixed methods approaches,
4th ed. SAGE, 2017. ISBN 860-1-40-429618-5

[86] P. B. Crosby, Quality is free: The art of making quality certain. McGraw-Hill, 1979. ISBN
978-0-07-014512-2

[87] A. Cummaudo, U. Graetsch, M. Curumsing, S. Barnett, R. Vasa, and J. Grundy, “Manual and
Automatic Emotion Analysis of Computer Vision Service Pain-Points,” in Proceedings of the
Sixth International Workshop on Emotion Awareness in Software Engineering. Virtual Event,
USA: IEEE, 2021, In Review.

[88] A. Cummaudo, R. Vasa, and J. Grundy, “What should I document? A preliminary systematic
mapping study into API documentation knowledge,” in Proceedings of the 13th International
Symposium on Empirical Software Engineering and Measurement. Porto de Galinhas, Recife,
Brazil: IEEE, October 2019. DOI 10.1109/ESEM.2019.8870148. ISBN 978-1-72-812968-6.
ISSN 1949-3789 pp. 1–6.

[89] A. Cummaudo, R. Vasa, J. Grundy, M. Abdelrazek, and A. Cain, “Losing Confidence in
Quality: Unspoken Evolution of Computer Vision Services,” in Proceedings of the 35th IEEE
International Conference on Software Maintenance and Evolution. Cleveland, OH, USA:
IEEE, December 2019. DOI 10.1109/ICSME.2019.00051. ISBN 978-1-72-813094-1 pp.
333–342.

[90] A. Cummaudo, S. Barnett, R. Vasa, and J. Grundy, “Threshy: Supporting Safe Usage of
IntelligentWeb Services,” in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. Virtual
Event, USA: ACM, November 2020. DOI 10.1145/3368089.3417919, pp. 1645–1649.

[91] A. Cummaudo, S. Barnett, R. Vasa, J. Grundy, and M. Abdelrazek, “Beware the evolving
‘intelligent’ web service! An integration architecture tactic to guard AI-first components,” in
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. Virtual Event, USA: ACM,
November 2020. DOI 10.1145/3368089.3409688, pp. 269–280.

[92] A. Cummaudo, R. Vasa, S. Barnett, J. Grundy, and M. Abdelrazek, “Interpreting Cloud Com-
puter Vision Pain-Points: A Mining Study of Stack Overflow,” in Proceedings of the 42nd
International Conference on Software Engineering. Seoul, Republic of Korea: ACM, June
2020. DOI 10.1145/3377811.3380404, pp. 1584–1596.

[93] A. Cummaudo, R. Vasa, J. Grundy, and M. Abdelrazek, “Requirements of API Documentation:
A Case Study into Computer Vision Services,” IEEE Transactions on Software Engineering,
pp. 1–1, 2020, DOI 10.1109/TSE.2020.3047088.

[94] M. K. Curumsing, “Emotion-Oriented Requirements Engineering,” Ph.D. dissertation, Swin-
burne University of Technology, Hawthorn, VIC, Australia, 2017.

[95] H. da Mota Silveira and L. C. Martini, “How the New Approaches on Cloud Computer Vision
can Contribute to Growth of Assistive Technologies to Visually Impaired in the Following
Years?” Journal of Information Systems Engineering & Management, vol. 2, no. 2, pp. 1–3,
2017, DOI 10.20897/jisem.201709. ISSN 2468-4376

http://bit.ly/36Il2cE
https://doi.org/10.1007/BFb0017011
https://doi.org/10.1177/001316446002000104
https://doi.org/10.1145/2959100.2959190
https://doi.org/10.1109/ESEM.2019.8870148
https://doi.org/10.1109/ICSME.2019.00051
https://doi.org/10.1145/3368089.3417919
https://doi.org/10.1145/3368089.3409688
https://doi.org/10.1145/3377811.3380404
https://doi.org/10.1109/TSE.2020.3047088
https://doi.org/10.20897/jisem.201709

REFERENCES 231

[96] R. M. Davison, M. G. Martinsons, and N. Kock, “Principles of canonical action re-
search,” Information Systems Journal, vol. 14, no. 1, pp. 65–86, 2004, DOI 10.1111/j.1365-
2575.2004.00162.x. ISSN 1350-1917

[97] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, April 2002, DOI 10.1109/4235.996017. ISSN 1089778X

[98] K. Dejaeger, F. Goethals, A. Giangreco, L. Mola, and B. Baesens, “Gaining insight into student
satisfaction using comprehensible data mining techniques,” European Journal of Operational
Research, vol. 218, no. 2, pp. 548–562, 2012, DOI 10.1016/j.ejor.2011.11.022. ISSN 0377-2217

[99] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei, “ImageNet: A large-scale hierar-
chical image database,” in Proceedings of the 2009 IEEE Conference on Computer Vision and
Pattern Recognition. Miami, FL, USA: IEEE, June 2009. DOI 10.1109/cvpr.2009.5206848.

[100] I. Dey, Qualitative Data Analysis: A User-Friendly Guide for Social Scientists. New York,
NY: Routledge, 1993. DOI 10.4324/9780203412497. ISBN 978-0-41-505852-0

[101] V. Dhar, D. Chou, and F. Provost, “Discovering interesting patterns for investment decision
making with GLOWER - A genetic learner overlaid with entropy reduction,” Data Mining and
Knowledge Discovery, vol. 4, no. 4, pp. 69–80, 2000, DOI 10.1023/A:1009848126475. ISSN
1384-5810

[102] V. Dibia, A. Cox, and J. Weisz, “Designing for Democratization: Introducing Novices to
Artificial Intelligence Via Maker Kits,” in Proceedings of the 2017 CHI Conference Extended
Abstracts on Human Factors in Computing Systems. Denver, CO, USA: ACM, May 2017, pp.
381–384.

[103] M. Doderer, K. Yoon, J. Salinas, and S. Kwek, “Protein subcellular localization prediction
using a hybrid of similarity search and Error-Correcting Output Code techniques that produces
interpretable results,” In Silico Biology, vol. 6, no. 5, pp. 419–433, 2006. ISSN 1386-6338

[104] P. Domingos, “Occam’s Two Razors: The Sharp and the Blunt,” in Proceedings of the 4th
International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:
AAAI, August 1998. DOI 10.1.1.40.3278, pp. 37–43.

[105] B. Dorn and M. Guzdial, “Learning on the job: Characterizing the programming knowl-
edge and learning strategies of web designers,” in Proceedings of the 28th ACM Conference
on Human Factors in Computing Systems, vol. 2. Atlanta, GA, USA: ACM, April 2010.
DOI 10.1145/1753326.1753430. ISBN 978-1-60-558929-9 pp. 703–712.

[106] F. Doshi-Velez and B. Kim, “Towards A Rigorous Science of Interpretable Machine Learning,”
2017.

[107] F. Doshi-Velez, M. Kortz, R. Budish, C. Bavitz, S. J. Gershman, D. O’Brien, S. Shieber,
J. Waldo, D. Weinberger, and A. Wood, “Accountability of AI Under the Law: The Role of
Explanation,” SSRN Electronic Journal, November 2017, In Press, DOI 10.2139/ssrn.3064761.

[108] R. G. Dromey, “A model for software product quality,” IEEE Transactions on Software Engi-
neering, vol. 21, no. 2, pp. 146–162, 1995, DOI 10.1109/32.345830. ISBN 978-1-11-815666-7.
ISSN 0098-5589

[109] C. Drummond and R. C. Holte, “Cost curves: An improvedmethod for visualizing classifier per-
formance,”Machine Learning, vol. 65, no. 1, pp. 95–130, October 2006, DOI 10.1007/s10994-
006-8199-5. ISSN 0885-6125

[110] T. Durieux, Y. Hamadi, and M. Monperrus, “Fully Automated HTML and Javascript Rewrit-
ing for Constructing a Self-Healing Web Proxy,” in Proceedings of the 29th International
Symposium on Software Reliability Engineering. Memphis, TN, USA: IEEE, October 2018.
DOI 10.1109/ISSRE.2018.00012. ISSN 1071-9458 pp. 1–12.

[111] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting empirical methods for
software engineering research,” inGuide to Advanced Empirical Software Engineering, F. Shull,
J. Singer, and D. I. K. Sjøberg, Eds. Springer, November 2007, ch. 11, pp. 285–311. ISBN
978-1-84-800043-8

[112] P. Ekman, W. V. Friesen, and J. Hager, Facial Action Coding System: A Technique for the
Measurement of Facial Movement. Palo Alto, CA, USA: Consulting Pyschologists Press,
1978.

[113] W. Elazmeh, S. Matwin, D. O’Sullivan, W. Michalowski, and K. Farion, “Insights from pre-
dicting pediatric asthma exacerbations from retrospective clinical data,” in Proceedings of the

https://doi.org/10.1111/j.1365-2575.2004.00162.x
https://doi.org/10.1111/j.1365-2575.2004.00162.x
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.ejor.2011.11.022
https://doi.org/10.1109/cvpr.2009.5206848
https://doi.org/10.4324/9780203412497
https://doi.org/10.1023/A:1009848126475
https://doi.org/10.1.1.40.3278
https://doi.org/10.1145/1753326.1753430
https://doi.org/10.2139/ssrn.3064761
https://doi.org/10.1109/32.345830
https://doi.org/10.1007/s10994-006-8199-5
https://doi.org/10.1007/s10994-006-8199-5
https://doi.org/10.1109/ISSRE.2018.00012

232 REFERENCES

22nd Conference on Artificial Intelligence, vol. WS-07-05. Vancouver, BC, Canada: AAAI,
July 2007. ISBN 978-1-57-735332-4 pp. 10–15.

[114] N. Elgendy and A. Elragal, “Big data analytics: A literature review paper,” in Proceedings of
the 10th Industrial Conference on Data Mining. St. Petersburg, Russia: Springer, July 2014.
DOI 10.1007/978-3-319-08976-8_16. ISSN 1611-3349 pp. 214–227.

[115] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,
and D. Song, “Robust Physical-World Attacks on Deep Learning Visual Classification,” in
Proceedings of the 2017 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, July 2018, DOI 10.1109/CVPR.2018.00175. ISBN 978-1-
53-866420-9. ISSN 1063-6919 pp. 1625–1634.

[116] F. Elder, D. Michie, D. J. Spiegelhalter, and C. C. Taylor, “Machine Learning, Neural, and
Statistical Classification.” Journal of the American Statistical Association, vol. 91, no. 433, pp.
436–438, 1996, DOI 10.2307/2291432. ISBN 978-0-13-106360-0. ISSN 0162-1459

[117] A. J. Feelders, “Prior knowledge in economic applications of data mining,” in Proceedings of
the 4th European Conference on Principles of Data Mining and Knowledge Discovery, vol.
1910. Lyon, France: Springer, September 2000. DOI 10.1007/3-540-45372-5_42. ISBN
978-3-54-041066-9. ISSN 1611-3349 pp. 395–400.

[118] R. T. Fielding, “Architectural Styles and the Design of Network-based Software Architectures,”
Ph.D. dissertation, University of California, Irvine, 2000.

[119] I. Finalyson, “Nondeterministic Finite Automata,” [Online] Available: http://bit.ly/319GOF9,
Fredericksburg, VA, USA, 2018.

[120] J. L. Fleiss, “Measuring nominal scale agreement among many raters,” Psychological Bulletin,
vol. 76, no. 5, pp. 378–382, 1971, DOI 10.1037/h0031619.

[121] Flexera, “RightScale 2019 State of the Cloud Report from Flexera,” [Online] Available: https:
//bit.ly/3nigT7E, Itasca, IL, USA, Tech. Rep., 2019.

[122] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-based verification of Web service
compositions,” in Proceedings of the 18th International Conference on Automated Software
Engineering. Linz, Austria: IEEE, September 2004. DOI 10.1109/ase.2003.1240303, pp.
152–161.

[123] A. A. Freitas, “A critical review of multi-objective optimization in data mining,” ACM SIGKDD
Explorations Newsletter, vol. 6, no. 2, p. 77, 2004, DOI 10.1145/1046456.1046467. ISSN 1931-
0145

[124] ——, “Comprehensible classificationmodels,” ACMSIGKDDExplorations Newsletter, vol. 15,
no. 1, pp. 1–10, March 2014, DOI 10.1145/2594473.2594475. ISSN 1931-0145

[125] A. A. Freitas, D. C. Wieser, and R. Apweiler, “On the importance of comprehensible classi-
fication models for protein function prediction,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, vol. 7, no. 1, pp. 172–182, 2010, DOI 10.1109/TCBB.2008.47.
ISSN 1545-5963

[126] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,” Science, vol.
315, no. 5814, pp. 972–976, February 2007, DOI 10.1126/science.1136800. ISSN 0036-8075

[127] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network Classifiers,”Machine Learn-
ing, vol. 29, no. 2-3, pp. 131–163, 1997, DOI 10.1002/9780470400531.eorms0099. ISSN
0885-6125

[128] G. Fung, S. Sandilya, and R. B. Rao, “Rule extraction from linear support vector machines,”
Studies in Computational Intelligence, vol. 80, no. 1, pp. 83–107, 2009, DOI 10.1007/978-3-
540-75390-2_4.

[129] D. Gachechiladze, F. Lanubile, N. Novielli, and A. Serebrenik, “Anger and its direction in
collaborative software development,” in Proceedings of the 39th International Conference on
Software Engineering: New Ideas and Emerging Technologies Results Track, IEEE. Buenos
Aires, Argentina: IEEE, May 2017. DOI 10.1109/ICSE-NIER.2017.18, pp. 11–14.

[130] M. Gamer, J. Lemon, I. Fellows, and P. Singh, “Irr: various coefficients of interrater reliability,”
R package version 0.83, 2010.

[131] S. K. Garg, S. Versteeg, and R. Buyya, “SMICloud: A framework for comparing and ranking
cloud services,” in Proceedings of the 4th IEEE International Conference on Utility and Cloud
Computing. Melbourne, Australia: IEEE, December 2011. DOI 10.1109/UCC.2011.36.
ISBN 978-0-76-954592-9 pp. 210–218.

https://doi.org/10.1007/978-3-319-08976-8_16
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.2307/2291432
https://doi.org/10.1007/3-540-45372-5_42
http://bit.ly/319GOF9
https://doi.org/10.1037/h0031619
https://bit.ly/3nigT7E
https://bit.ly/3nigT7E
https://doi.org/10.1109/ase.2003.1240303
https://doi.org/10.1145/1046456.1046467
https://doi.org/10.1145/2594473.2594475
https://doi.org/10.1109/TCBB.2008.47
https://doi.org/10.1126/science.1136800
https://doi.org/10.1002/9780470400531.eorms0099
https://doi.org/10.1007/978-3-540-75390-2_4
https://doi.org/10.1007/978-3-540-75390-2_4
https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1109/UCC.2011.36

REFERENCES 233

[132] V. Garousi and M. Felderer, “Experience-based guidelines for effective and efficient data ex-
traction in systematic reviews in software engineering,” in Proceedings of the 21st International
Conference on Evaluation and Assessment in Software Engineering, vol. Part F1286. Karl-
skrona, Sweden: ACM, June 2017. DOI 10.1145/3084226.3084238. ISBN978-1-45-034804-1
pp. 170–179.

[133] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including grey literature and
conducting multivocal literature reviews in software engineering,” Information and Software
Technology, vol. 106, pp. 101–121, 2019, DOI 10.1016/j.infsof.2018.09.006. ISSN 0950-5849

[134] D. A. Garvin, “What Does ‘Product Quality’ Really Mean?” MIT Sloan Management Review,
vol. 26, no. 1, pp. 25–43, 1984. ISSN 0019-848X

[135] T. Gebru, J. Morgenstern, B. Vecchione, J. W. Vaughan, H. Wallach, H. Daumeé, and K. Craw-
ford, “Datasheets for Datasets,” 2018.

[136] R. S. Geiger, N. Varoquaux, C. Mazel-Cabasse, and C. Holdgraf, “The Types, Roles, and
Practices of Documentation inData Analytics Open Source Software Libraries: ACollaborative
Ethnography of Documentation Work,” Computer Supported Cooperative Work: CSCW: An
International Journal, vol. 27, no. 3-6, pp. 767–802, May 2018, DOI 10.1007/s10606-018-
9333-1. ISSN 1573-7551

[137] GeoSpatial World, “Mapillary and Amazon Rekognition collaborate to build a parking solution
for US cities through computer vision,” [Online] Available: http://bit.ly/36AdRmS, September
2018, Accessed: 25 January 2019.

[138] M. Gethsiyal Augasta and T. Kathirvalavakumar, “Reverse engineering the neural networks
for rule extraction in classification problems,” Neural Processing Letters, vol. 35, no. 2, pp.
131–150, 2012, DOI 10.1007/s11063-011-9207-8. ISSN 1370-4621

[139] D. Ghazi, D. Inkpen, and S. Szpakowicz, “Hierarchical approach to emotion recognition and
classification in texts,” in Proceedings of the 23rd Canadian Conference on Artificial Intelli-
gence, vol. 6085 LNAI. Ottawa, ON, Canada: Springer, May 2010. DOI 10.1007/978-3-
642-13059-5_7, pp. 40–50.

[140] H. L. Gilmore, “Product conformance cost,” Quality progress, vol. 7, no. 5, pp. 16–19, 1974.
[141] D. Girardi, N. Novielli, D. Fucci, and F. Lanubile, “Recognizing developers’ emotions while

programming,” Proceedings - International Conference on Software Engineering, pp. 666–677,
2020, DOI 10.1145/3377811.3380374. ISBN 978-1-45-037121-6

[142] R. L. Glass, I. Vessey, and V. Ramesh, “RESRES: The story behind the paper "Research in
software engineering: An analysis of the literature",” Information and Software Technology,
vol. 51, no. 1, pp. 68–70, 2009, DOI 10.1016/j.infsof.2008.09.015. ISSN 0950-5849

[143] M. W. Godfrey and D. M. German, “The past, present, and future of software evolution,” in
Proceedings of the 2008 Frontiers of Software Maintenance, Beĳing, China, October 2008,
DOI 10.1109/FOSM.2008.4659256. ISBN 978-1-42-442655-3 pp. 129–138.

[144] M. W. Godfrey and Q. Tu, “Evolution in open source software: a case study,” in
Conference on Software Maintenance. San Jose, CA, USA: IEEE, August 2000.
DOI 10.1109/icsm.2000.883030, pp. 131–142.

[145] Google LLC, “Classification: Thresholding | Machine Learning Crash Course,” [Online] Avail-
able: http://bit.ly/36oMgWb, 2019, Accessed: 5 February 2020.

[146] U. M. Graetsch, A. Cummaudo, M. K. Curumsing, R. Vasa, and J. Grundy, “Using Pre-Trained
Emotion Classification Models against Stack Overflow Questions,” in Proceedings of the 33rd
International Conference on Advanced Information Systems Engineering. Melbourne, VIC,
Australia: Springer, 2021, In Review.

[147] P. D. Grünwald, The Minimum Description Length Principle. MIT press, 2019.
DOI 10.7551/mitpress/4643.001.0001.

[148] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “MS-Celeb-1M: A Dataset and Benchmark for
Large-Scale Face Recognition,” in Proceedings of the 16th European Conference on Computer
Vision. Amsterdam, The Netherlands: Springer, 2016. DOI 10.1007/978-3-319-46487-9_6,
pp. 87–102.

[149] M. J. Hadley and H. Marc, “Web Application Description Language,” [Online] Available:
http://bit.ly/2RXRhQ1, August 2009.

[150] H. A. Haenssle, C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl, A. Blum, A. Kalloo, A. Ben
Hadj Hassen, L. Thomas, A. Enk, L. Uhlmann, C. Alt, M. Arenbergerova, R. Bakos, A. Baltzer,

https://doi.org/10.1145/3084226.3084238
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1007/s10606-018-9333-1
https://doi.org/10.1007/s10606-018-9333-1
http://bit.ly/36AdRmS
https://doi.org/10.1007/s11063-011-9207-8
https://doi.org/10.1007/978-3-642-13059-5_7
https://doi.org/10.1007/978-3-642-13059-5_7
https://doi.org/10.1145/3377811.3380374
https://doi.org/10.1016/j.infsof.2008.09.015
https://doi.org/10.1109/FOSM.2008.4659256
https://doi.org/10.1109/icsm.2000.883030
http://bit.ly/36oMgWb
https://doi.org/10.7551/mitpress/4643.001.0001
https://doi.org/10.1007/978-3-319-46487-9_6
http://bit.ly/2RXRhQ1

234 REFERENCES

I. Bertlich, A. Blum, T. Bokor-Billmann, J. Bowling, N. Braghiroli, R. Braun, K. Buder-
Bakhaya, T. Buhl, H. Cabo, L. Cabrĳan, N. Cevic, A. Classen, D. Deltgen, C. Fink, I. Georgieva,
L. E. Hakim-Meibodi, S. Hanner, F. Hartmann, J. Hartmann, G. Haus, E. Hoxha, R. Karls,
H. Koga, J. Kreusch, A. Lallas, P. Majenka, A. Marghoob, C. Massone, L. Mekokishvili,
D. Mestel, V. Meyer, A. Neuberger, K. Nielsen, M. Oliviero, R. Pampena, J. Paoli, E. Pawlik,
B. Rao, A. Rendon, T. Russo, A. Sadek, K. Samhaber, R. Schneiderbauer, A. Schweizer,
F. Toberer, L. Trennheuser, L. Vlahova, A.Wald, J.Winkler, P.Wo¨lbing, and I. Zalaudek, “Man
against Machine: Diagnostic performance of a deep learning convolutional neural network for
dermoscopic melanoma recognition in comparison to 58 dermatologists,” Annals of Oncology,
vol. 29, no. 8, pp. 1836–1842, May 2018, DOI 10.1093/annonc/mdy166. ISSN 1569-8041

[151] K. A. Hallgren, “Computing Inter-Rater Reliability for Observational Data: An Overview and
Tutorial,” Tutorials in Quantitative Methods for Psychology, vol. 8, no. 1, pp. 23–34, February
2012, DOI 10.20982/tqmp.08.1.p023. ISSN 1913-4126

[152] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised learning,” in Pro-
ceedings of the 30th International Conference on Neural Information Processing Systems.
Barcelona, Spain: Curran Associates Inc., December 2016. DOI 978-1-51-083881-9. ISSN
1049-5258 pp. 3323–3331.

[153] M. Hasan, E. Agu, and E. Rundensteiner, “Using Hashtags as Labels for Supervised Learning
of Emotions in Twitter Messages,” in Proceedings of the 2014 ACM SIGKDD Workshop on
Healthcare Informatics. New York, NY, USA: ACM, August 2014, pp. 187–193.

[154] S. Haselbock, R. Weinreich, G. Buchgeher, and T. Kriechbaum, “Microservice Design Space
Analysis and Decision Documentation: A Case Study on API Management,” in Proceedings
of the 11th International Conference on Service-Oriented Computing and Applications, Paris,
France, November 2019, DOI 10.1109/SOCA.2018.00008, pp. 1–8.

[155] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of Statistical Learning, 2nd ed., ser.
Data Mining, Inference, and Prediction. Springer, January 2001.

[156] B. Hayete and J. R. Bienkowska, “Gotrees: Predicting go associations from protein domain
composition using decision trees,” in Proceedings of the Pacific Symposium on Biocomput-
ing 2005, PSB 2005. Hawaii, USA: World Scientific Publishing Company, January 2005.
DOI 10.1142/9789812702456_0013. ISBN 9-81-256046-7 pp. 127–138.

[157] A. Head, C. Sadowski, E. Murphy-Hill, and A. Knight, “When not to comment: Questions and
tradeoffs with API documentation for C++ projects,” in Proceedings of the 40th International
Conference on Software Engineering, ser. questions and tradeoffs with API documentation for
C++ projects. Gothenburg, Sweden: ACM, May 2018. DOI 10.1145/3180155.3180176.
ISSN 0270-5257 pp. 643–653.

[158] R. Heckel and M. Lohmann, “Towards Contract-based Testing of Web Services,” Elec-
tronic Notes in Theoretical Computer Science, vol. 116, pp. 145–156, January 2005,
DOI 10.1016/j.entcs.2004.02.073. ISSN 1571-0661

[159] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie, “Dependency
networks for inference, collaborative filtering, and data visualization,” Journal of Machine
Learning Research, vol. 1, no. 1, pp. 49–75, 2001, DOI 10.1162/153244301753344614. ISSN
1532-4435

[160] M. Henning, “API design matters,” Communications of the ACM, vol. 52, no. 5, pp. 46–56,
2009, DOI 10.1145/1506409.1506424. ISSN 0001-0782

[161] F. Hohman, A. Head, R. Caruana, R. DeLine, and S. M. Drucker, “Gamut: A design probe
to understand how data scientists understand machine learning models,” in Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. Glasgow, Scotland, UK:
ACM, May 2019. DOI 10.1145/3290605.3300809. ISBN 978-1-45-035970-2

[162] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau, “Visual Analytics in Deep Learning: An
Interrogative Survey for the Next Frontiers,” IEEE Transactions on Visualization and Computer
Graphics, vol. 25, no. 8, pp. 2674–2693, 2019, DOI 10.1109/TVCG.2018.2843369. ISSN
1941-0506

[163] J. W. Horch, Practical Guide To Software Quality Management. Artech House, 2003. ISBN
978-1-58-053604-2

[164] H. Hosseini, B. Xiao, and R. Poovendran, “Google’s cloud vision API is not robust to noise,” in
Proceedings of the 16th IEEE International Conference onMachine Learning and Applications.

https://doi.org/10.1093/annonc/mdy166
https://doi.org/10.20982/tqmp.08.1.p023
https://doi.org/978-1-51-083881-9
https://doi.org/10.1109/SOCA.2018.00008
https://doi.org/10.1142/9789812702456_0013
https://doi.org/10.1145/3180155.3180176
https://doi.org/10.1016/j.entcs.2004.02.073
https://doi.org/10.1162/153244301753344614
https://doi.org/10.1145/1506409.1506424
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1109/TVCG.2018.2843369

REFERENCES 235

Cancun, Mexico: IEEE, December 2017. DOI 10.1109/ICMLA.2017.0-172. ISBN 978-1-53-
861417-4 pp. 101–105.

[165] D. Hou and L. Mo, “Content categorization of API discussions,” in Proceedings of the 29th In-
ternational Conference on Software Maintenance. Eindhoven, Netherlands: IEEE, September
2013. DOI 10.1109/ICSM.2013.17, pp. 60–69.

[166] C. Howard, “Introducing Google AI,” [Online] Available: http://bit.ly/2uI6vAr, May 2018,
Accessed: 28 August 2018.

[167] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating learning algorithms,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 3, pp. 299–310, 2005,
DOI 10.1109/TKDE.2005.50. ISSN 1041-4347

[168] J. Huysmans, K. Dejaeger, C. Mues, J. Vanthienen, and B. Baesens, “An empirical evaluation
of the comprehensibility of decision table, tree and rule based predictive models,” Decision
Support Systems, vol. 51, no. 1, pp. 141–154, April 2011, DOI 10.1016/j.dss.2010.12.003.
ISSN 0167-9236

[169] IEEE, “IEEE Standard Glossary of Software Engineering Terminology,” 1990.
[170] J. Ingeno, Software Architect’s Handbook: Become a Successful Software Architect by Imple-

menting Effective Architecture Concepts. Birmingham, England, UK: Packt Publishing, Ltd.,
2018. ISBN 978-1-78862-406-0

[171] International Organization for Standardization, “ISO/IEC 25010:2011 Systems and software
engineering – Systems and software Quality Requirements and Evaluation (SQuaRE) – System
and software quality models,” [Online] Available: http://bit.ly/2S4yzGs, 2011.

[172] ——, “ISO 8402:1986 Information Technology - Software Product Evaluation - Quality Char-
acteristics and Guidelines for Their Use,” [Online] Available: http://bit.ly/37SK4HP, 1986.

[173] ——, “ISO 9000:2015 Quality management systems – Fundamentals and vocabulary,” [Online]
Available: http://bit.ly/37O4oKo, 2015.

[174] ——, “ISO/IEC 9126 Information Technology - Software Product Evaluation - Quality Charac-
teristics and Guidelines for Their Use,” [Online] Available: http://bit.ly/2tgMHUE, November
1999.

[175] S. Inzunza, R. Juárez-Ramírez, and S. Jiménez, “API Documentation,” in Proceedings of the
6th World Conference on Information Systems and Technologies. Naples, Italy: Springer,
March 2018. DOI 10.1007/978-3-319-77712-2_22, pp. 229–239.

[176] A. Iyengar, “Supporting Data Analytics Applications Which Utilize Cognitive Services,” in
Proceedings of the 37th International Conference on Distributed Computing Systems. Atlanta,
GA, USA: IEEE, June 2017. DOI 10.1109/ICDCS.2017.172. ISBN 978-1-53-861791-5 pp.
1856–1864.

[177] N. Japkowicz and M. Shah, Evaluating learning algorithms: A classification perspective.
CambridgeUniversity Press, 2011, vol. 9780521196, DOI 10.1017/CBO9780511921803. ISBN
978-0-51-192180-3

[178] M. W. M. Jaspers, M. Smeulers, H. Vermeulen, and L. W. Peute, “Effects of clinical decision-
support systems on practitioner performance and patient outcomes: A synthesis of high-quality
systematic review findings,” Journal of the American Medical Informatics Association, vol. 18,
no. 3, pp. 327–334, 2011, DOI 10.1136/amiajnl-2011-000094. ISSN 1067-5027

[179] S. Y. Jeong, Y. Xie, J. Beaton, B. A. Myers, J. Stylos, R. Ehret, J. Karstens, A. Efeoglu, and
D. K. Busse, “Improving documentation for eSOA APIs through user studies,” in Proceedings
of the First International Symposium on End User Development, vol. 5435 LNCS. Siegen,
Germany: Springer, March 2009. DOI 10.1007/978-3-642-00427-8_6. ISSN 0302-9743 pp.
86–105.

[180] T. Jiang and A. E. Keating, “AVID: An integrative framework for discovering functional rela-
tionship among proteins,” BMC Bioinformatics, vol. 6, no. 1, p. 136, 2005, DOI 10.1186/1471-
2105-6-136. ISSN 1471-2105

[181] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and J. Grundy, “An Empirical Study of
Model-Agnostic Techniques for Defect Prediction Models,” IEEE Transactions on Software
Engineering, vol. 5589, no. c, pp. 1–1, 2020, DOI 10.1109/tse.2020.2982385. ISSN 0098-5589

[182] B. Jimerson and B. Gregory, “Pivotal Cloud Foundry, Google ML, and Spring,” [Online]
Available: http://bit.ly/2RUBIIL, San Francisco, CA, USA, December 2017.

https://doi.org/10.1109/ICMLA.2017.0-172
https://doi.org/10.1109/ICSM.2013.17
http://bit.ly/2uI6vAr
https://doi.org/10.1109/TKDE.2005.50
https://doi.org/10.1016/j.dss.2010.12.003
http://bit.ly/2S4yzGs
http://bit.ly/37SK4HP
http://bit.ly/37O4oKo
http://bit.ly/2tgMHUE
https://doi.org/10.1007/978-3-319-77712-2_22
https://doi.org/10.1109/ICDCS.2017.172
https://doi.org/10.1017/CBO9780511921803
https://doi.org/10.1136/amiajnl-2011-000094
https://doi.org/10.1007/978-3-642-00427-8_6
https://doi.org/10.1186/1471-2105-6-136
https://doi.org/10.1186/1471-2105-6-136
https://doi.org/10.1109/tse.2020.2982385
http://bit.ly/2RUBIIL

236 REFERENCES

[183] Y. Jin,Multi-Objective Machine Learning, ser. Studies in Computational Intelligence. Berlin,
Heidelberg: Springer, 2006. DOI 10.1007/3-540-33019-4. ISBN 978-3-54-030676-4

[184] U. Johansson and L. Niklasson, “Evolving decision trees using oracle guides,” in Proceedings
of the 2009 IEEE Symposium on Computational Intelligence and Data Mining. Nashville,
TN, USA: IEEE, May 2009. DOI 10.1109/CIDM.2009.4938655. ISBN 978-1-42-442765-9
pp. 238–244.

[185] M. Jørgensen, T. Dybå, K. Liestøl, and D. I. K. Sjøberg, “Incorrect results in software engineer-
ing experiments: How to improve research practices,” Journal of Systems and Software, vol.
116, pp. 133–145, 2016, DOI 10.1016/j.jss.2015.03.065. ISSN 0164-1212

[186] J. M. Juran, Juran on Planning for Quality. New York, NY, USA: The Free Press, 1988. ISBN
978-0-02-916681-9

[187] N. Juristo and O. S. Gómez, “Replication of software engineering experiments,” in Proceedings
of the LASER Summer School on Software Engineering. Elba Island, Italy: Springer, 2011.
DOI 10.1007/978-3-642-25231-0_2. ISBN 978-3-64-225230-3. ISSN 0302-9743 pp. 60–88.

[188] N. Juristo and A. M. Moreno, Basics of Software Engineering Experimentation. Boston, MA,
USA: Springer, March 2001. DOI 10.1007/978-1-4757-3304-4.

[189] D. Kahneman, Thinking, Fast and Slow. Macmillan, 2011. ISBN 978-0-37-453355-7
[190] A. Karwath and R. D. King, “Homology induction: The use of machine learning to improve se-

quence similarity searches,” BMCBioinformatics, vol. 3, no. 1, p. 11, 2002, DOI 10.1186/1471-
2105-3-11. ISSN 1471-2105

[191] K. A. Kaufman and R. S. Michalski, “Learning from inconsistent and noisy data: The AQ18
approach,” in Proceedings of the 11th European Conference on Principles and Practice of
Knowledge Discovery in Databases, vol. 1609. Warsaw, Poland: Springer, September 1999.
DOI 10.1007/BFb0095128. ISBN 3-540-65965-X. ISSN 1611-3349 pp. 411–419.

[192] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu, and V. Filkov, “Using and asking:
APIs used in the Android market and asked about in StackOverflow,” in Proceedings of the
5th International Conference on Social Infomatics. Kyoto, Japan: Springer, November 2013.
DOI 10.1007/978-3-319-03260-3_35. ISBN 978-3-31-903259-7. ISSN 0302-9743 pp. 405–
418.

[193] R. Kazman, M. Klein, and P. Clements, “ATAM:Method for architecture evaluation,” Software
Engineering Institute, Pittsburgh, PA, USA, Tech. Rep., 2000.

[194] B. Kim, “Interactive and Interpretable Machine Learning Models for Human Machine Collab-
oration,” Ph.D. dissertation, Massachusetts Institute of Technology, 2015.

[195] B. Kim, C. Rudin, and J. Shah, “The Bayesian case model: A generative approach for case-
based reasoning and prototype classification,” in Proceedings of the 28th Conference on Neural
Information Processing Systems, Montreal, QC, Canada, December 2014. ISSN 1049-5258 pp.
1952–1960.

[196] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature Reviews
in Software Engineering,” Software Engineering Group, Keele University and Department of
Computer Science, University of Durham, Keele, UK, Tech. Rep., 2007.

[197] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds. Springer,
November 2007, ch. 3, pp. 63–92. ISBN 978-1-84-800043-8

[198] B. A. Kitchenham, T. Dybå, and M. Jorgensen, “Evidence-Based Software Engineering,” in
Proceedings of the 26th International Conference on Software Engineering. Edinburgh,
Scotland, UK: IEEE, May 2004. ISBN 978-0-76-952163-3 pp. 273–281.

[199] H. K. Klein and M. D. Myers, “A set of principles for conducting and evaluating interpretive
field studies in information systems,”MISQuarterly: Management Information Systems, vol. 23,
no. 1, pp. 67–94, 1999, DOI 10.2307/249410. ISSN 0276-7783

[200] A. J. Ko and Y. Riche, “The role of conceptual knowledge in API usability,” in Proceedings of
the 2011 IEEE Symposium on Visual Languages and Human Centric Computing. Pittsburgh,
PA, USA: IEEE, September 2011. DOI 10.1109/VLHCC.2011.6070395. ISBN 978-1-45-
771245-6 pp. 173–176.

[201] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user programming
systems,” in Proceedings of the 2004 IEEE Symposium on Visual Languages and Human

https://doi.org/10.1007/3-540-33019-4
https://doi.org/10.1109/CIDM.2009.4938655
https://doi.org/10.1016/j.jss.2015.03.065
https://doi.org/10.1007/978-3-642-25231-0_2
https://doi.org/10.1007/978-1-4757-3304-4
https://doi.org/10.1186/1471-2105-3-11
https://doi.org/10.1186/1471-2105-3-11
https://doi.org/10.1007/BFb0095128
https://doi.org/10.1007/978-3-319-03260-3_35
https://doi.org/10.2307/249410
https://doi.org/10.1109/VLHCC.2011.6070395

REFERENCES 237

Centric Computing. Rome, Italy: IEEE, September 2004. DOI 10.1109/vlhcc.2004.47.
ISBN 0-78-038696-5 pp. 199–206.

[202] I. Kononenko, “Inductive and bayesian learning in medical diagnosis,” Applied Artificial Intel-
ligence, vol. 7, no. 4, pp. 317–337, 1993, DOI 10.1080/08839519308949993. ISSN 1087-6545

[203] J. Kotula, “Using patterns to create component documentation,” IEEE Software, vol. 15, no. 2,
pp. 84–92, 1998, DOI 10.1109/52.663791. ISSN 0740-7459

[204] S. Krig, “Ground Truth Data, Content, Metrics, and Analysis,” in Computer Vision Metrics:
Textbook Edition. Cham: Springer, 2016, pp. 247–271. ISBN 978-3-319-33762-3

[205] K. Krippendorff, Content Analysis, ser. An Introduction to Its Methodology. SAGE, 1980.
ISBN 978-1-50-639566-1

[206] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convo-
lutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017,
DOI 10.1145/3065386. ISSN 1557-7317

[207] J. A. Krosnick, “Survey Research,” Annual Review of Psychology, vol. 50, no. 1, pp. 537–567,
February 1999, DOI 10.1146/annurev.psych.50.1.537. ISSN 0066-4308

[208] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,” in
Proceedings of the 5th International Conference on Learning Representations, Toulon, France,
April 2017.

[209] G. Laforge, “Machine Intelligence at Google Scale,” in QCon, London, England, UK, June
2018.

[210] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets: A joint framework for
description and prediction,” inProceedings of the 22ndACMSIGKDD International Conference
on Knowledge Discovery and Data Mining. San Francisco, CA, USA: ACM, August 2016.
DOI 10.1145/2939672.2939874. ISBN 978-1-45-034232-2 pp. 1675–1684.

[211] J. R. Landis and G. G. Koch, “The Measurement of Observer Agreement for Categorical Data,”
Biometrics, vol. 33, no. 1, p. 159, March 1977, DOI 10.2307/2529310. ISSN 0006-341X

[212] N. Lavrač, “Selected techniques for datamining inmedicine,”Artificial Intelligence inMedicine,
vol. 16, no. 1, pp. 3–23, 1999, DOI 10.1016/S0933-3657(98)00062-1. ISSN 0933-3657

[213] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998,
DOI 10.1109/5.726791. ISSN 0018-9219

[214] T. Lei, R. Barzilay, and T. Jaakkola, “Rationalizing neural predictions,” inProceedings of the 9th
International Joint Conference on Natural Language Processing and Conference on Empirical
Methods in Natural Language Processing. Austin, TX, USA: Association for Computational
Linguistics, November 2016. DOI 10.18653/v1/d16-1011. ISBN 978-1-94-562625-8 pp.
107–117.

[215] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engineers: Data collection
techniques for software field studies,” Empirical Software Engineering, vol. 10, no. 3, pp.
311–341, July 2005, DOI 10.1007/s10664-005-1290-x. ISSN 1382-3256

[216] R. J. Light, “Measures of response agreement for qualitative data: Some generalizations and
alternatives,”Psychological Bulletin, vol. 76, no. 5, pp. 365–377, 1971, DOI 10.1037/h0031643.
ISSN 0033-2909

[217] E. Lima, C. Mues, and B. Baesens, “Domain knowledge integration in data mining using
decision tables: Case studies in churn prediction,” Journal of the Operational Research Society,
vol. 60, no. 8, pp. 1096–1106, 2009, DOI 10.1057/jors.2008.161. ISSN 0160-5682

[218] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oliveto, “Sentiment anal-
ysis for software engineering: How far can we go?” in Proceedings of the 40th Inter-
national Conference on Software Engineering. Gothenburg, Sweden: ACM, May 2018.
DOI 10.1145/3180155.3180195, pp. 94–104.

[219] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft COCO: Common objects in context,” in Proceedings of the 13th European
Conference on Computer Vision, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds., vol.
8693 LNCS, no. PART 5. Zurich, Germany: Springer, September 2014. DOI 10.1007/978-
3-319-10602-1_48. ISSN 1611-3349 pp. 740–755.

[220] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshyvanyk, “How do API
changes trigger stack overflow discussions? A study on the android SDK,” in Proceedings of

https://doi.org/10.1109/vlhcc.2004.47
https://doi.org/10.1080/08839519308949993
https://doi.org/10.1109/52.663791
https://doi.org/10.1145/3065386
https://doi.org/10.1146/annurev.psych.50.1.537
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.2307/2529310
https://doi.org/10.1016/S0933-3657(98)00062-1
https://doi.org/10.1109/5.726791
https://doi.org/10.18653/v1/d16-1011
https://doi.org/10.1007/s10664-005-1290-x
https://doi.org/10.1037/h0031643
https://doi.org/10.1057/jors.2008.161
https://doi.org/10.1145/3180155.3180195
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48

238 REFERENCES

the 22nd International Conference on Program Comprehension. Hyderabad, India: ACM,
June 2014. DOI 10.1145/2597008.2597155. ISBN 978-1-45-032879-1 pp. 83–94.

[221] Z. C. Lipton, “The mythos of model interpretability,” Communications of the ACM, vol. 61,
no. 10, pp. 35–43, 2018, DOI 10.1145/3233231. ISSN 1557-7317

[222] M. Litwin,How toMeasure Survey Reliability and Validity. ThousandOaks, CA, USA: SAGE,
1995, vol. 7, DOI 10.4135/9781483348957. ISBN 978-0-80-395704-6

[223] Y. Liu, T. Kohlberger, M. Norouzi, G. E. Dahl, J. L. Smith, A. Mohtashamian, N. Olson,
L. H. Peng, J. D. Hipp, and M. C. Stumpe, “Artificial Intelligence-Based Breast Cancer Nodal
Metastasis Detection.” Archives of Pathology & Laboratory Medicine, vol. 143, no. 7, pp.
859–868, July 2017, DOI 10.5858/arpa.2018-0147-OA. ISSN 1543-2165

[224] D. Lo Giudice, C. Mines, A. LeClair, R. Curran, and A. Homan, “How AI Will Change
Software Development And Applications,” [Online] Available: http://bit.ly/38RiAlN, Forrester
Research, Inc., Tech. Rep., November 2016.

[225] A. A. Lopez-Lorca, T. Miller, S. Pedell, A. Mendoza, A. Keirnan, and L. Sterling, “One size
doesn’t fit all: diversifying the user using personas and emotional scenarios,” in Proceedings of
the 6th International Workshop on Social Software Engineering. Hong Kong, China: ACM,
November 2014. DOI 10.1145/2661685.2661691, pp. 25–32.

[226] R. Lori and M. Oded, Data mining with decision trees. World Scientific Publishing Company,
2008, vol. 69. ISBN 978-9-81-277171-1

[227] R. E. Lyons andW. Vanderkulk, “The Use of Triple-Modular Redundancy to Improve Computer
Reliability,” IBM Journal of Research and Development, vol. 6, no. 2, pp. 200–209, April 2010,
DOI 10.1147/rd.62.0200. ISSN 0018-8646

[228] W. Maalej and M. P. Robillard, “Patterns of knowledge in API reference documentation,” IEEE
Transactions on Software Engineering, 2013, DOI 10.1109/TSE.2013.12. ISSN 0098-5589

[229] G. Malgieri and G. Comandé, “Why a right to legibility of automated decision-making exists
in the general data protection regulation,” International Data Privacy Law, vol. 7, no. 4, pp.
243–265, June 2017, DOI 10.1093/idpl/ipx019. ISSN 2044-4001

[230] L. Mandel, “Describe REST Web services with WSDL 2.0,” [Online] Available: https://ibm.
co/313RoNV, May 2008, Accessed: 28 August 2018.

[231] T. E.Marshall and S. L. Lambert, “Cloud-based intelligent accounting applications: Accounting
task automation using IBM watson cognitive computing,” Journal of Emerging Technologies
in Accounting, vol. 15, no. 1, pp. 199–215, 2018, DOI 10.2308/jeta-52095. ISSN 1558-7940

[232] D. Martens, J. Vanthienen, W. Verbeke, and B. Baesens, “Performance of classification mod-
els from a user perspective,” Decision Support Systems, vol. 51, no. 4, pp. 782–793, 2011,
DOI 10.1016/j.dss.2011.01.013. ISSN 0167-9236

[233] P. Mayring, “Mixing Qualitative and Quantitative Methods,” inMixed Methodology in Psycho-
logical Research. Sense Publishers, 2007, ch. 6, pp. 27–36. ISBN 978-9-07-787473-8

[234] J. A. McCall, P. K. Richards, and G. F. Walters, “Factors in Software Quality: Concept and
Definitions of Software Quality,” General Electric Company, Griffiss Air Force Base, NY, USA,
Tech. Rep. RADC-TR-77-369, November 1977.

[235] J. McCarthy, “Programs with common sense,” in Proceedings of the Symposium on the Mech-
anization of Thought Processes, Cambridge, MA, USA, 1963, pp. 1–15.

[236] B. McGowen, “Machine learning with Google APIs,” [Online] Available: http://bit.ly/
3aUQpo2, January 2019.

[237] M. L. McHugh, “Interrater reliability: The kappa statistic,” Biochemia Medica, vol. 22, no. 3,
pp. 276–282, 2012, DOI 10.11613/bm.2012.031. ISSN 1330-0962

[238] S. G. McLellan, A. W. Roesler, J. T. Tempest, and C. I. Spinuzzi, “Building more usable APIs,”
IEEE Software, vol. 15, no. 3, pp. 78–86, 1998, DOI 10.1109/52.676963. ISSN 0740-7459

[239] L. McLeod and S. G. MacDonell, “Factors that affect software systems development project
outcomes: A survey of research,” ACM Computing Surveys, vol. 43, no. 4, p. 24, 2011,
DOI 10.1145/1978802.1978803. ISSN 0360-0300

[240] J. Meltzoff and H. Cooper, Critical thinking about research: Psychology and related fields,
2nd ed. American Psychological Association, 2018. DOI 10.1037/0000052-000.

[241] M. Meng, S. Steinhardt, and A. Schubert, “Application programming interface documentation:
What do software developers want?” Journal of Technical Writing and Communication, vol. 48,
no. 3, pp. 295–330, August 2018, DOI 10.1177/0047281617721853. ISSN 1541-3780

https://doi.org/10.1145/2597008.2597155
https://doi.org/10.1145/3233231
https://doi.org/10.4135/9781483348957
https://doi.org/10.5858/arpa.2018-0147-OA
http://bit.ly/38RiAlN
https://doi.org/10.1145/2661685.2661691
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1093/idpl/ipx019
https://ibm.co/313RoNV
https://ibm.co/313RoNV
https://doi.org/10.2308/jeta-52095
https://doi.org/10.1016/j.dss.2011.01.013
http://bit.ly/3aUQpo2
http://bit.ly/3aUQpo2
https://doi.org/10.11613/bm.2012.031
https://doi.org/10.1109/52.676963
https://doi.org/10.1145/1978802.1978803
https://doi.org/10.1037/0000052-000
https://doi.org/10.1177/0047281617721853

REFERENCES 239

[242] T. Mens and S. Demeyer, Software Evolution. Berlin, Heidelberg: Springer, 2008.
DOI 10.1007/978-3-540-76440-3. ISBN 978-3-54-076439-7

[243] T. Mens, S. Demeyer, M. Wermelinger, R. Hirschfeld, S. Ducasse, and M. Jazayeri, “Chal-
lenges in software evolution,” in Proceedings of the 8th International Workshop on Principles
of Software Evolution, vol. 2005. Lisbon, Portugal: IEEE, September 2005. DOI 10.1109/I-
WPSE.2005.7. ISBN 0-76-952349-8. ISSN 1550-4077 pp. 13–22.

[244] A. C. Michalos and H. A. Simon, The Sciences of the Artificial. MIT press, 1970, vol. 11,
no. 1, DOI 10.2307/3102825.

[245] D. Michie, “Machine learning in the next five years,” in Proceedings of the 3rd European
Conference on European Working Session on Learning. Glasgow, Scotland, UK: Pitman
Publishing, Inc., October 1988. ISBN 978-0-27-308800-4 pp. 107–122.

[246] G. A.Miller, “WordNet: A Lexical Database for English,”Communications of the ACM, vol. 38,
no. 11, pp. 39–41, November 1995, DOI 10.1145/219717.219748. ISSN 1557-7317

[247] M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D.
Raji, and T. Gebru, “Model cards for model reporting,” in Proceedings of the 2nd Conference
on Fairness, Accountability, and Transparency. Atlanta, GA, USA: ACM, January 2019.
DOI 10.1145/3287560.3287596. ISBN 978-1-45-036125-5 pp. 220–229.

[248] R. Mohanani, I. Salman, B. Turhan, P. Rodríguez, and P. Ralph, “Cognitive Biases in Software
Engineering: A Systematic Mapping Study,” IEEE Transactions on Software Engineering, p. 1,
2018, DOI 10.1109/TSE.2018.2877759. ISSN 1939-3520

[249] D. Moody, “The physics of notations: Toward a scientific basis for constructing visual notations
in software engineering,” IEEE Transactions on Software Engineering, vol. 35, no. 6, pp.
756–779, 2009, DOI 10.1109/TSE.2009.67. ISSN 0098-5589

[250] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel emotions? an ex-
ploratory analysis of emotions in software artifacts,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories. Hyderabad, India: ACM, May 2014.
DOI 10.1145/2597073.2597086, pp. 262–271.

[251] C. Murphy and G. Kaiser, “Improving the Dependability of Machine Learning Applications,”
Department of Computer Science, Columbia University, New York, NY, USA, Tech. Rep. Ml,
2008.

[252] C. Murphy, G. Kaiser, and M. Arias, “An approach to software testing of machine learning
applications,” inProceedings of the 19th International Conference on Software Engineering and
Knowledge Engineering, Boston, MA, USA, July 2007. ISBN 978-1-62-748661-3 pp. 167–172.

[253] B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers Are Users Too: Human-
Centered Methods for Improving Programming Tools,” Computer, vol. 49, no. 7, pp. 44–52,
2016, DOI 10.1109/MC.2016.200.

[254] B. A. Myers and J. Stylos, “Improving API Usability,” Communications of the ACM, vol. 59,
no. 6, pp. 62–69, May 2016, DOI 10.1145/2896587. ISSN 0001-0782

[255] B. A.Myers, S. Y. Jeong, Y. Xie, J. Beaton, J. Stylos, R. Ehret, J. Karstens, A. Efeoglu, andD. K.
Busse, “Studying the Documentation of an API for Enterprise Service-Oriented Architecture,”
Journal of Organizational and End User Computing, vol. 22, no. 1, pp. 23–51, January 2010,
DOI 10.4018/joeuc.2010101903. ISSN 1546-2234

[256] C. Myers, A. Furqan, J. Nebolsky, K. Caro, and J. Zhu, “Patterns for how users overcome
obstacles in Voice User Interfaces,” in Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, vol. 2018-April. Montreal, QC, Canada: ACM, April 2018.
DOI 10.1145/3173574.3173580. ISBN 978-1-45-035620-6 p. 6.

[257] S. Nakajima, “Model-Checking Verification for Reliable Web Service,” in Proceedings of the
First International Symposium on Cyber World. Montreal, QC, Canada: IEEE, November
2002. ISBN 978-0-76-951862-6 pp. 378–385.

[258] M. Narayanan, E. Chen, J. He, B. Kim, S. Gershman, and F. Doshi-Velez, “How do Humans
Understand Explanations from Machine Learning Systems? An Evaluation of the Human-
Interpretability of Explanation,” IEEE Transactions on Evolutionary Computation, 2018, In
Press.

[259] S. Narayanan and S. A. McIlraith, “Simulation, verification and automated composition of web
services,” in Proceedings of the 11th International Conference on World Wide Web. Honolulu,
HI, USA: ACM, May 2002. DOI 10.1145/511446.511457. ISBN 1-58-113449-5 pp. 77–88.

https://doi.org/10.1007/978-3-540-76440-3
https://doi.org/10.1109/IWPSE.2005.7
https://doi.org/10.1109/IWPSE.2005.7
https://doi.org/10.2307/3102825
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/3287560.3287596
https://doi.org/10.1109/TSE.2018.2877759
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1145/2597073.2597086
https://doi.org/10.1109/MC.2016.200
https://doi.org/10.1145/2896587
https://doi.org/10.4018/joeuc.2010101903
https://doi.org/10.1145/3173574.3173580
https://doi.org/10.1145/511446.511457

240 REFERENCES

[260] B. J. Nelson, “Remote Procedure Call,” Ph.D. dissertation, Carnegie Mellon University, 1981.
[261] H. F. Niemeyer and A. C. Niemeyer, “Apportionment methods,”Mathematical Social Sciences,

vol. 56, no. 2, pp. 240–253, 2008. ISSN 0165-4896
[262] Y. Nishi, S. Masuda, H. Ogawa, and K. Uetsuki, “A test architecture for machine learn-

ing product,” in Proceedings of the 11th International Conference on Software Test-
ing, Verification and Validation Workshops. Västerås, Sweden: IEEE, April 2018.
DOI 10.1109/ICSTW.2018.00060. ISBN 978-1-53-866352-3 pp. 273–278.

[263] N. Novielli, F. Calefato, and F. Lanubile, “The challenges of sentiment detection in the social
programmer ecosystem,” in Proceedings of the 7th International Workshop on Social Software
Engineering. Bergamo, Italy: ACM, August 2015. DOI 10.1145/2804381.2804387. ISBN
978-1-45-033818-9 pp. 33–40.

[264] ——, “A gold standard for emotion annotation in stack overflow,” in Proceedings of the 15th
International Conference onMining Software Repositories. Gothenburg, Sweden: ACM,May
2018. DOI 10.1145/3196398.3196453. ISBN 9781450357166 pp. 14–17.

[265] K. Nybom, A. Ashraf, and I. Porres, “A systematic mapping study on API documenta-
tion generation approaches,” in Proceedings of the 44th Euromicro Conference on Software
Engineering and Advanced Applications. Prague, Czech Republic: IEEE, August 2018.
DOI 10.1109/SEAA.2018.00081. ISBN 978-1-53-867382-9 pp. 462–469.

[266] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M.Mace, andM. Gordon, “What program-
mers really want: Results of a needs assessment for SDK documentation,” in Proceedings of the
20th Annual International Conference on Computer Documentation. Toronto, ON, Canada:
ACM, October 2002. DOI 10.1145/584955.584976, pp. 133–141.

[267] T. Ohtake, A. Cummaudo, M. Abdelrazek, R. Vasa, and J. Grundy, “Merging intelligent API
responses using a proportional representation approach,” in Proceedings of the 19th Interna-
tional Conference on Web Engineering. Daejeon, Republic of Korea: Springer, June 2019.
DOI 10.1007/978-3-030-19274-7_28. ISBN 978-3-03-019273-0. ISSN 1611-3349 pp. 391–
406.

[268] Open Software Foundation, “Part 3: DCE Remote Procedure Call (RPC),” in OSF DCE
application development guide: revision 1.0. Prentice Hall, December 1991.

[269] N. Oreskes, K. Shrader-Frechette, and K. Belitz, “Verification, validation, and confirmation
of numerical models in the earth sciences,” Science, vol. 263, no. 5147, pp. 641–646, 1994,
DOI 10.1126/science.263.5147.641. ISSN 0036-8075

[270] A. L. M. Ortiz, “Curating Content with Google Machine Learning Application Programming
Interfaces,” in EIAPortugal, July 2017.

[271] M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli, M. Marchesi, and B. Adams,
“The emotional side of software developers in JIRA,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ACM. Austin, TX, USA: ACM, May 2016.
DOI 10.1145/2901739.2903505, pp. 480–483.

[272] F. E. B. Otero andA.A. Freitas, “Improving the interpretability of classification rules discovered
by an ant colony algorithm: Extended results,” in Evolutionary Computation, vol. 24, no. 3.
ACM, 2016. DOI 10.1162/EVCO_a_00155. ISSN 1530-9304 pp. 385–409.

[273] A. Pal, S. Chang, and J. A. Konstan, “Evolution of experts in question answering communities,”
inProceedings of the 6th International AAAIConference onWeblogs and SocialMedia. Dublin,
Ireland: AAAI, June 2012. ISBN 978-1-57-735556-4 pp. 274–281.

[274] R. Parekh, “Designing AI at Scale to Power Everyday Life,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, NS,
Canada: ACM, August 2017. DOI 10.1145/3097983.3105815, p. 27.

[275] D. L. Parnas and S. A. Vilkomir, “Precise documentation of critical software,” in Proceedings
of 10th IEEE International Symposium on High Assurance Systems Engineering. Plano, TX,
USA: IEEE, November 2007. DOI 10.1109/HASE.2007.63. ISSN 1530-2059 pp. 237–244.

[276] W. G. Parrott, Ed., Emotions in Social Psychology: Essential Readings. Philadelphia: Psy-
chology Press, 2001. ISBN 978-0-86-377682-3

[277] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative
Style, High-Performance Deep Learning Library,” in Proceedings of the 33rd International

https://doi.org/10.1109/ICSTW.2018.00060
https://doi.org/10.1145/2804381.2804387
https://doi.org/10.1145/3196398.3196453
https://doi.org/10.1109/SEAA.2018.00081
https://doi.org/10.1145/584955.584976
https://doi.org/10.1007/978-3-030-19274-7_28
https://doi.org/10.1126/science.263.5147.641
https://doi.org/10.1145/2901739.2903505
https://doi.org/10.1162/EVCO_a_00155
https://doi.org/10.1145/3097983.3105815
https://doi.org/10.1109/HASE.2007.63

REFERENCES 241

Conference on the Advances of Neural Information Processing Systems. Vancouver, BC,
Canada: Curran Associates, Inc., December 2019, pp. 8026–8037.

[278] K. Patel, J. Fogarty, J. A. Landay, and B. Harrison, “Investigating statistical machine learn-
ing as a tool for software development,” in Proceedings of the 26th SIGCHI Conference on
Human Factors in Computing Systems, ser. CHI ’08. Florence, Italy: ACM, April 2008.
DOI 10.1145/1357054.1357160. ISBN 978-1-60-558011-1 pp. 667–676.

[279] C. Pautasso, O. Zimmermann, and F. Leymann, “RESTful web services vs. "Big" web services:
Making the right architectural decision,” in Proceedings of the 17th International Conference
on World Wide Web. Beĳing, China: ACM, April 2008. DOI 10.1145/1367497.1367606.
ISBN 978-1-60-558085-2

[280] M. Pazzani, “Comprehensible knowledge discovery: gaining insight from data,” in Proceedings
of the First Federal Data Mining Conference and Exposition, Washington, DC, USA, 1997, pp.
73–82.

[281] M. J. Pazzani, S. Mani, andW. R. Shankle, “Acceptance of rules generated by machine learning
among medical experts,” Methods of Information in Medicine, vol. 40, no. 5, pp. 380–385,
2001, DOI 10.1055/s-0038-1634196. ISSN 0026-1270

[282] J. Pearl, “The seven tools of causal inference, with reflections on machine learning,” Commu-
nications of the ACM, vol. 62, no. 3, pp. 54–60, 2019, DOI 10.1145/3241036. ISSN 1557-7317

[283] K. Petersen and C. Gencel, “Worldviews, research methods, and their relationship to validity
in empirical software engineering research,” in Proceedings of the Joint Conference of the
23rd International Workshop on Software Measurement and the 8th International Conference
on Software Process and Product Measurement. Ankara, Turkey: IEEE, October 2013.
DOI 10.1109/IWSM-Mensura.2013.22. ISBN 978-0-76-955078-7 pp. 81–89.

[284] K. Petersen, R. Feldt, S.Mujtaba, andM.Mattsson, “Systematicmapping studies in software en-
gineering,” in Proceedings of the 12th International Conference on Evaluation and Assessment
in Software Engineering, EASE 2008, 2008, DOI 10.14236/ewic/ease2008.8, pp. 68–77.

[285] Z. Pezzementi, T. Tabor, S. Yim, J. K. Chang, B. Drozd, D. Guttendorf, M. Wagner, and
P.Koopman, “Putting ImageManipulations inContext: Robustness Testing for Safe Perception,”
in Proceedings of the 15th IEEE International Symposium on Safety, Security, and Rescue
Robotics. Philadelphia, PA, USA: IEEE, August 2018. DOI 10.1109/SSRR.2018.8468619.
ISBN 978-1-53-865572-6 pp. 1–8.

[286] H. Pham, System Software Reliability, 1st ed. Springer, 2000. ISBN 978-1-84-628295-9
[287] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of API usability,” in Proceedings

of the 13th International Symposium on Empirical Software Engineering and Measurement.
Baltimore, MD, USA: IEEE, October 2013. DOI 10.1109/ESEM.2013.14. ISSN 1949-3770
pp. 5–14.

[288] R. M. Pirsig, Zen and the art of motorcycle maintenance: An inquiry into values, 1st ed.
HarperTorch, 1974. ISBN 9-780-06-058946-2

[289] N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data lifecycle challenges in production
machine learning: A survey,” SIGMOD Record, 2018, DOI 10.1145/3299887.3299891. ISSN
01635808

[290] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 8th ed. McGraw-Hill,
2005. ISBN 978-0-07-802212-8

[291] D. Pyle, Data Preparation for Data Mining, 1st ed. Morgan Kaufmann, 1994. ISBN 978-15-
5-860529-9

[292] J. R. Quinlan, “Some elements of machine learning,” in Proceedings of the 9th International
Workshop on Inductive Logic Programming, vol. 1634. Bled, Slovenia: Springer, June 1999.
DOI 10.1007/3-540-48751-4_3. ISBN 3-54-066109-3. ISSN 1611-3349 pp. 15–18.

[293] ——, C4.5: Programs for machine learning. San Francisco, CA, USA: Morgan Kauffmann,
1993. ISBN 978-1-55-860238-0

[294] R Core Team, R - A Language and Environment for Statistical Computing, \url{https://www.R-
project.org/}, R Foundation for Statistical Computing, Vienna, Austria, 2020.

[295] A. Radford, J. Wu, D. Amodei, D. Amodei, J. Clark, M. Brundage, and I. Sutskever, “GPT2:
Better Language Models and Their Implications,” OpenAI, 2019.

[296] N. Rama Suri, V. S. Srinivas, andM.NarasimhaMurty, “A cooperative game theoretic approach
to prototype selection,” in Proceedings of the 11th European Conference on Principles and

https://doi.org/10.1145/1357054.1357160
https://doi.org/10.1145/1367497.1367606
https://doi.org/10.1055/s-0038-1634196
https://doi.org/10.1145/3241036
https://doi.org/10.1109/IWSM-Mensura.2013.22
https://doi.org/10.14236/ewic/ease2008.8
https://doi.org/10.1109/SSRR.2018.8468619
https://doi.org/10.1109/ESEM.2013.14
https://doi.org/10.1145/3299887.3299891
https://doi.org/10.1007/3-540-48751-4_3

242 REFERENCES

Practice of Knowledge Discovery in Databases. Warsaw, Poland: Springer, September 2007.
DOI 10.1007/978-3-540-74976-9_58. ISBN 978-3-54-074975-2. ISSN 0302-9743 pp. 556–
564.

[297] C. Raman Anand; Hoder, Building Intelligent Apps with Cognitive APIs, 1st ed. Sebastopol,
CA, USA: O’Reilly Media, Inc., 2019. ISBN 978-1-49-205862-5

[298] M. Reboucas, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, and F. Castor, “An Empirical Study
on the Usage of the Swift Programming Language,” in Proceedings of the 23rd International
Conference on Software Analysis, Evolution, and Reengineering. Suita, Japan: IEEE, March
2016. DOI 10.1109/saner.2016.66, pp. 634–638.

[299] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in Proceedings of the 2017
Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA: IEEE, July
2017, pp. 6517–6525.

[300] A. Reis, D. Paulino, V. Filipe, and J. Barroso, “Using online artificial vision services to assist
the blind - An assessment ofMicrosoft Cognitive Services and Google Cloud Vision,” Advances
in Intelligent Systems and Computing, vol. 746, no. 12, pp. 174–184, 2018, DOI 10.1007/978-
3-319-77712-2_17. ISBN 978-3-31-977711-5. ISSN 2194-5357

[301] M. T. Ribeiro, S. Singh, and C. Guestrin, “‘Why Should I Trust You?’: Explaining the Predic-
tions of Any Classifier,” in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. San Francisco, CA, USA: ACM, August 2016.
DOI 2939672.2939778, pp. 1135–1144.

[302] M. Ribeiro, K. Grolinger, and M. A. M. Capretz, “MLaaS: Machine learning as a service,”
in Proceedings of the 14th International Conference on Machine Learning and Applications.
Miami, FL, USA: IEEE, December 2015. DOI 10.1109/ICMLA.2015.152. ISBN 978-1-50-
900287-0 pp. 896–902.

[303] G. Richards, V. J. Rayward-Smith, P. H. Sönksen, S. Carey, and C. Weng, “Data mining for
indicators of earlymortality in a database of clinical records,” Artificial Intelligence inMedicine,
vol. 22, no. 3, pp. 215–231, 2001, DOI 10.1016/S0933-3657(00)00110-X. ISSN 0933-3657

[304] G. Ridgeway, D. Madigan, T. Richardson, and J. O’Kane, “Interpretable Boosted Naïve Bayes
Classification,” in Proceedings of the 4th International Conference on Knowledge Discovery
and Data Mining. New York, NY, USA: AAAI, 1998, pp. 101–104.

[305] G. Ritzer and E. Guba, “The Paradigm Dialog,” Canadian Journal of Sociology, vol. 16, no. 4,
p. 446, 1991, DOI 10.2307/3340973. ISSN 0318-6431

[306] M. P. Robillard, “What makes APIs hard to learn? Answers from developers,” IEEE Software,
vol. 26, no. 6, pp. 27–34, 2009, DOI 10.1109/MS.2009.193. ISSN 0740-7459

[307] M. P. Robillard and R. Deline, “A field study of API learning obstacles,” Empirical Software
Engineering, vol. 16, no. 6, pp. 703–732, 2011, DOI 10.1007/s10664-010-9150-8. ISSN 1382-
3256

[308] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A. Geros-
all, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C. Murphy, L. Moreno, D. Shepherd,
and E. Wong, “On-demand developer documentation,” in Proceedings of the 33rd IEEE In-
ternational Conference on Software Maintenance and Evolution. Shanghai, China: IEEE,
September 2017. DOI 10.1109/ICSME.2017.17, pp. 479–483.

[309] H. Robinson, J. Segal, and H. Sharp, “Ethnographically-informed empirical studies of soft-
ware practice,” Information and Software Technology, vol. 49, no. 6, pp. 540–551, 2007,
DOI 10.1016/j.infsof.2007.02.007. ISSN 0950-5849

[310] C. Rosen and E. Shihab, “What are mobile developers asking about? A large scale study
using stack overflow,” Empirical Software Engineering, vol. 21, no. 3, pp. 1192–1223, 2016,
DOI 10.1007/s10664-015-9379-3. ISSN 1573-7616

[311] W. Rosenberry, D. Kenney, and G. Fisher, Understanding DCE. O’Reilly & Associates, Inc.,
1992. ISBN 978-1-56-592005-7

[312] A. Rosenfeld, R. Zemel, and J. K. Tsotsos, “The Elephant in the Room,” 2018.
[313] A. S. Ross, M. C. Hughes, and F. Doshi-Velez, “Right for the right reasons: Training differen-

tiable models by constraining their explanations,” in Proceedings of the 26th International Joint
Conferences on Artificial Intelligence, Melbourne, Australia, August 2017, DOI 10.24963/ĳ-
cai.2017/371. ISBN 978-0-99-924110-3. ISSN 1045-0823 pp. 2662–2670.

https://doi.org/10.1007/978-3-540-74976-9_58
https://doi.org/10.1109/saner.2016.66
https://doi.org/10.1007/978-3-319-77712-2_17
https://doi.org/10.1007/978-3-319-77712-2_17
https://doi.org/2939672.2939778
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1016/S0933-3657(00)00110-X
https://doi.org/10.2307/3340973
https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1109/ICSME.2017.17
https://doi.org/10.1016/j.infsof.2007.02.007
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.24963/ijcai.2017/371
https://doi.org/10.24963/ijcai.2017/371

REFERENCES 243

[314] R. J. Rubey andR.D.Hartwick, “Quantitativemeasurement of program quality,” inProceedings
of the 1968 23rd ACM National Conference. Las Vegas, NV, USA: ACM, August 1968.
DOI 10.1145/800186.810631. ISBN 978-1-45-037486-6 pp. 671–677.

[315] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker,Mathematical techniques for analyzing
concurrent and probabilistic systems, ser. CRM Monograph Series, P. Panangaden and F. van
Breugel, Eds. American Mathematical Society, 2004, vol. 23.

[316] K. Sailunaz, M. Dhaliwal, J. Rokne, and R. Alhajj, “Emotion detection from text and speech: a
survey,” Social Network Analysis andMining, vol. 8, no. 1, pp. 1–8, 2018, DOI 10.1007/s13278-
018-0505-2.

[317] J. Sauro and J. R. Lewis, “When designing usability questionnaires, does it hurt to be positive?”
in Proceedings of the 2011 SIGCHI Conference on Human Factors in Computing Systems,
Vancouver, BC, Canada, May 2011, DOI 10.1145/1978942.1979266, pp. 2215–2223.

[318] M. Schwabacher and P. Langley, “Discovering communicable scientific knowledge from spatio-
temporal data,” in Proceedings of the 18th International Conference on Machine Learning.
Williamstown, MA, USA: Morgan Kaufmann, June 2001. ISBN 978-1-55-860778-1 pp. 489–
496.

[319] A. Schwaighofer and N. D. Lawrence, Dataset shift in machine learning, J. Quiñonero-Candela
andM. Sugiyama, Eds. Cambridge, MA, USA: TheMIT Press, 2008. ISBN 978-0-26-217005-
5

[320] T. A. Schwandt, “Qualitative data analysis: An expanded sourcebook,” Evaluation and Program
Planning, vol. 19, no. 1, pp. 106–107, 1996, DOI 10.1016/0149-7189(96)88232-2. ISSN 0149-
7189

[321] D. Sculley, M. E. Otey, M. Pohl, B. Spitznagel, J. Hainsworth, and Y. Zhou, “Detecting
adversarial advertisements in the wild,” in Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. San Diego, CA, USA: ACM, August
2011. DOI 10.1145/2020408.2020455, pp. 274–282.

[322] D. Sculley, G.Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary,M.Young, J. F.
Crespo, and D. Dennison, “Hidden technical debt in machine learning systems,” in Proceedings
of the 28th International Conference on Neural Information Processing Systems. Montreal,
QC, Canada: Curran Associates Inc., December 2015. DOI 10.5555/2969442.2969519. ISSN
1049-5258 pp. 2503–2511.

[323] C. B. Seaman, “Qualitative methods,” in Guide to Advanced Empirical Software Engineering,
F. Shull, J. Singer, and D. I. K. Sjøberg, Eds. Springer, November 2007, ch. 2, pp. 35–62.
ISBN 978-1-84-800043-8

[324] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM:
Visual Explanations from Deep Networks via Gradient-Based Localization,” International
Journal of Computer Vision, pp. 618–626, 2019, DOI 10.1007/s11263-019-01228-7. ISSN
1573-1405

[325] S. Sen and L. Knight, “A genetic prototype learner,” in Proceedings of the International Joint
Conference on Artificial Intelligence. Montreal, QC, Canada: Morgan Kaufmann, August
1995, pp. 725–733.

[326] M. P. Sendak, M. Gao, N. Brajer, and S. Balu, “Presenting machine learning model information
to clinical end users with model facts labels,” npj Digital Medicine, vol. 3, no. 1, p. 41, 2020,
DOI 10.1038/s41746-020-0253-3. ISSN 2398-6352

[327] C. E. Shannon and W. Weaver, “The mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948, DOI 10.1002/j.1538-
7305.1948.tb01338.x.

[328] P. Shaver, J. Schwartz, D. Kirson, and C. O’Connor, “Emotion knowledge: Further exploration
of a prototype approach,” Journal of Personality and Social Psychology, vol. 52, no. 6, pp.
1061–1086, 1987, DOI 10.1037/0022-3514.52.6.1061.

[329] M. Shaw, “Writing good software engineering research papers,” in Proceedings of the 25th
International Conference on Software Engineering. Portland, OR, USA: IEEE, May 2003.
ISBN 978-0-76-951877-0 pp. 726–736.

[330] M. Shepperd, “Replication studies considered harmful,” in Proceedings of the 40th Inter-
national Conference on Software Engineering. Gothenburg, Sweden: ACM, May 2018.
DOI 10.1145/3183399.3183423. ISBN 978-1-45-035662-6. ISSN 0270-5257 pp. 73–76.

https://doi.org/10.1145/800186.810631
https://doi.org/10.1007/s13278-018-0505-2
https://doi.org/10.1007/s13278-018-0505-2
https://doi.org/10.1145/1978942.1979266
https://doi.org/10.1016/0149-7189(96)88232-2
https://doi.org/10.1145/2020408.2020455
https://doi.org/10.5555/2969442.2969519
https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1038/s41746-020-0253-3
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1037/0022-3514.52.6.1061
https://doi.org/10.1145/3183399.3183423

244 REFERENCES

[331] D. J. Sheskin,Handbook of Parametric and Nonparametric Statistical Procedures. New York,
NY, USA: Chapman and Hall/CRC, 2004. DOI 10.4324/9780203489536.

[332] L. Si and J. Callan, “A semisupervised learning method to merge search engine results,”
ACM Transactions on Information Systems, vol. 21, no. 4, pp. 457–491, October 2003,
DOI 10.1145/944012.944017. ISSN 1046-8188

[333] J. Singer, S. E. Sim, and T. C. Lethbridge, “Software engineering data collection for field
studies,” inGuide to Advanced Empirical Software Engineering, F. Shull, J. Singer, and D. I. K.
Sjøberg, Eds. Springer, November 2007, ch. 1, pp. 9–34. ISBN 978-1-84-800043-8

[334] S. Singh, M. T. Ribeiro, and C. Guestrin, “Programs as Black-Box Explanations,” November
2016.

[335] V. S. Sinha, S. Mani, and M. Gupta, “Exploring activeness of users in QA forums,” in Proceed-
ings of the 10th Working Conference on Mining Software Repositories. San Francisco, CA,
USA: IEEE, May 2013. DOI 10.1109/MSR.2013.6624010. ISBN 978-1-46-732936-1. ISSN
2160-1852 pp. 77–80.

[336] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classifi-
cation tasks,” Information Processing and Management, vol. 45, no. 4, pp. 427–437, 2009,
DOI 10.1016/j.ipm.2009.03.002. ISSN 0306-4573

[337] I. Sommerville, Software Engineering, 9th ed. Boston, MA, USA: Addison-Wesley, 2011.
ISBN 978-0-13-703515-1

[338] P. Spector, Summated Rating Scale Construction. Newbury Park, CA, USA: SAGE, 1992.
DOI 10.4135/9781412986038. ISBN 978-0-80-394341-4

[339] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen, “Asking for (and about) permissions
used by Android apps,” in Proceedings of the 10th Working Conference on Mining Software
Repositories. San Francisco, CA,USA: IEEE,May 2013. ISBN978-1-46-732936-1 pp. 31–40.

[340] M. A. Storey, L. Singer, B. Cleary, F. F. Filho, and A. Zagalsky, “The (R)evolution of social
media in software engineering,” in Future of Software Engineering Proceedings. Hyderabad,
India: ACM, May 2014. DOI 10.1145/2593882.2593887, pp. 100–116.

[341] C. Strapparava and A. Valitutti, “WordNet-Affect: an Affective Extension of WordNet,” in
Proceedings of the 4th International Conference on Language Resources and Evaluation.
Lisbon, Portugal: European Language Resources Association (ELRA), May 2004, pp. 1083–
1086.

[342] J. Su, D. V. Vargas, and K. Sakurai, “One Pixel Attack for Fooling Deep Neural Net-
works,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828–841, 2019,
DOI 10.1109/TEVC.2019.2890858. ISSN 1941-0026

[343] G. H. Subramanian, J. Nosek, S. P. Raghunathan, and S. S. Kanitkar, “A comparison of
the decision table and tree,” Communications of the ACM, vol. 35, no. 1, pp. 89–94, 1992,
DOI 10.1145/129617.129621. ISSN 1557-7317

[344] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documentation,” in Proceedings
of the 36th International Conference on Software Engineering. Hyderabad, India: ACM, May
2014. DOI 10.1145/2568225.2568313. ISSN 0270-5257 pp. 643–652.

[345] S. Sun, W. Pan, and L. L. Wang, “A Comprehensive Review of Effect Size Reporting and Inter-
preting Practices in Academic Journals in Education and Psychology,” Journal of Educational
Psychology, vol. 102, no. 4, pp. 989–1004, 2010, DOI 10.1037/a0019507. ISSN 0022-0663

[346] D. Szafron, P. Lu, R. Greiner, D. S.Wishart, B. Poulin, R. Eisner, Z. Lu, J. Anvik, C.Macdonell,
A. Fyshe, and D.Meeuwis, “Proteome Analyst: Custom predictions with explanations in a web-
based tool for high-throughput proteome annotations,” Nucleic Acids Research, vol. 32, 2004,
DOI 10.1093/nar/gkh485. ISSN 0305-1048

[347] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,
“Intriguing properties of neural networks,” in Proceedings of the 2nd International Conference
on Learning Representations. Banff, AB, Canada: ACM, April 2014.

[348] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception Archi-
tecture for Computer Vision,” in Proceedings of the 2016 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, June 2016.
DOI 10.1109/CVPR.2016.308. ISBN 978-1-46-738850-4. ISSN 1063-6919 pp. 2818–2826.

[349] M. B. W. Tabor, “Student Proves That S.A.T. Can Be: (D) Wrong,” [Online] Available: https:
//nyti.ms/2UiKrrd, New York, NY, USA, February 1997.

https://doi.org/10.4324/9780203489536
https://doi.org/10.1145/944012.944017
https://doi.org/10.1109/MSR.2013.6624010
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.4135/9781412986038
https://doi.org/10.1145/2593882.2593887
https://doi.org/10.1109/TEVC.2019.2890858
https://doi.org/10.1145/129617.129621
https://doi.org/10.1145/2568225.2568313
https://doi.org/10.1037/a0019507
https://doi.org/10.1093/nar/gkh485
https://doi.org/10.1109/CVPR.2016.308
https://nyti.ms/2UiKrrd
https://nyti.ms/2UiKrrd

REFERENCES 245

[350] A. Tahir, A. Yamashita, S. Licorish, J. Dietrich, and S. Counsell, “Can you tell me if it
smells? A study on how developers discuss code smells and anti-patterns in Stack Overflow,”
in Proceedings of the 22nd International Conference on Evaluation and Assessment in Software
Engineering. Christchurch, NewZealand: ACM, June 2018. DOI 10.1145/3210459.3210466.
ISBN 978-1-45-036403-4 pp. 68–78.

[351] H. Takagi and C. Asakawa, “Transcoding proxy for nonvisual Web access,” in Proceedings of
the 2000 ACM Conference on Assistive Technologies. Arlington, VA, USA: ACM, November
2000. DOI 10.1145/354324.354371, pp. 164–171.

[352] G. Tassey, The economic impacts of inadequate infrastructure for software testing. National
Institute of Standards and Technology, September 2002. DOI 10.1080/10438590500197315.
ISBN 978-0-75-672618-8

[353] A. Taulavuori, E. Niemelä, and P. Kallio, “Component documentation - A key issue in software
product lines,” Information and Software Technology, vol. 46, no. 8, pp. 535–546, June 2004,
DOI 10.1016/j.infsof.2003.10.004. ISSN 0950-5849

[354] R. S. Taylor, “Question-Negotiation and Information Seeking in Libraries,” College and Re-
search Libraries, vol. 29, no. 3, 1968, DOI 10.5860/crl_29_03_178.

[355] S. W. Thomas, B. Adams, A. E. Hassan, and D. Blostein, “Studying software evolu-
tion using topic models,” Science of Computer Programming, vol. 80, pp. 457–479, 2014,
DOI 10.1016/j.scico.2012.08.003. ISSN 0167-6423

[356] S. Thrun, “Is Learning The n-th Thing Any Easier Than Learning The First?” in Proceedings
of the 8th International Conference on Neural Information Processing Systems. Denver, CO,
USA: MIT Press, November 1996. ISSN 1049-5258 p. 7.

[357] C. Treude, O. Barzilay, and M. A. Storey, “How do programmers ask and answer questions
on the web?” in Proceedings of the 33rd International Conference on Software Engineering.
Honolulu, HI, USA: ACM, May 2011. DOI 10.1145/1985793.1985907. ISBN 978-1-45-
030445-0. ISSN 0270-5257 pp. 804–807.

[358] B. Turhan, M. Shepperd, and T. Menzies, “On the dataset shift problem in software en-
gineering prediction models,” Empirical Software Engineering, vol. 17, pp. 62–74, 2012,
DOI 10.1007/s10664-011-9182-8.

[359] A. Tversky and D. Kahneman, “Judgment under uncertainty: Heuristics and biases,” Science,
vol. 185, no. 4157, pp. 1124–1131, 1974.

[360] G. Uddin and F. Khomh, “Automatic Mining of Opinions Expressed About APIs in
Stack Overflow,” IEEE Transactions on Software Engineering, February 2019, In Press,
DOI 10.1109/TSE.2019.2900245. ISSN 1939-3520

[361] G. Uddin and M. P. Robillard, “How API Documentation Fails,” IEEE Software, vol. 32, no. 4,
pp. 68–75, June 2015, DOI 10.1109/MS.2014.80. ISSN 0740-7459

[362] M. Usman, R. Britto, J. Börstler, and E. Mendes, “Taxonomies in software engineering: A
Systematic mapping study and a revised taxonomy development method,” Information and
Software Technology, vol. 85, pp. 43–59, May 2017, DOI 10.1016/j.infsof.2017.01.006. ISSN
0950-5849

[363] A. Van Assche and H. Blockeel, “Seeing the forest through the trees learning a comprehensible
model from a first order ensemble,” in Proceedings of the 17th International Conference on
Inductive Logic Programming. Corvallis, OR, USA: Springer, June 2007. DOI 10.1007/978-
3-540-78469-2_26. ISBN 3-54-078468-3. ISSN 0302-9743 pp. 269–279.

[364] R. Vasa, “Growth and Change Dynamics in Open Source Software Systems,” Ph.D. dissertation,
Swinburne University of Technology, Hawthorn, VIC, Australia, 2010.

[365] B. Venners, “Design by Contract: A Conversation with Bertrand Meyer,” Artima Developer,
2003.

[366] W. Verbeke, D. Martens, C. Mues, and B. Baesens, “Building comprehensible customer churn
prediction models with advanced rule induction techniques,” Expert Systems with Applications,
vol. 38, no. 3, pp. 2354–2364, 2011, DOI 10.1016/j.eswa.2010.08.023. ISSN 0957-4174

[367] F. Wachter, Mitterlstadt, “EU regulations on algorithmic decision-making and a "right to expla-
nation",” in Proceedings of the 2016 ICML Workshop on Human Interpretability in Machine
Learning, New York, NY, USA, June 2016, pp. 26–30.

[368] B. Wang, Y. Yao, B. Viswanath, H. Zheng, and B. Y. Zhao, “With great training comes great
vulnerability: Practical attacks against transfer learning,” in Proceedings of the 27th USENIX

https://doi.org/10.1145/3210459.3210466
https://doi.org/10.1145/354324.354371
https://doi.org/10.1080/10438590500197315
https://doi.org/10.1016/j.infsof.2003.10.004
https://doi.org/10.5860/crl_29_03_178
https://doi.org/10.1016/j.scico.2012.08.003
https://doi.org/10.1145/1985793.1985907
https://doi.org/10.1007/s10664-011-9182-8
https://doi.org/10.1109/TSE.2019.2900245
https://doi.org/10.1109/MS.2014.80
https://doi.org/10.1016/j.infsof.2017.01.006
https://doi.org/10.1007/978-3-540-78469-2_26
https://doi.org/10.1007/978-3-540-78469-2_26
https://doi.org/10.1016/j.eswa.2010.08.023

246 REFERENCES

Security Symposium. Baltimore, MD, USA: USENIX Association, July 2018. ISBN 978-1-
93-913304-5 pp. 1281–1297.

[369] K. Wang, Cloud Computing for Machine Learning and Cognitive Applications: A Machine
Learning Approach. Cambridge, MA, USA: MIT Press, 2017. ISBN 978-0-26-203641-2

[370] S. Wang, D. Lo, and L. Jiang, “An empirical study on developer interactions in StackOverflow,”
inProceedings of the 28th Annual ACMSymposium onAppliedComputing. Coimbra, Portugal:
ACM, March 2013. DOI 10.1145/2480362.2480557, pp. 1019–1024.

[371] W. Wang and M. W. Godfrey, “Detecting API usage obstacles: A study of iOS and android
developer questions,” in Proceedings of the 10th Working Conference on Mining Software
Repositories. San Francisco, CA, USA: IEEE,May 2013. DOI 10.1109/MSR.2013.6624006.
ISBN 978-1-46-732936-1. ISSN 2160-1852 pp. 61–64.

[372] W. Wang, H. Malik, and M. W. Godfrey, “Recommending Posts concerning API Issues in
Developer Q&A Sites,” in Proceedings of the 12th Working Conference on Mining Software
Repositories. Florence, Italy: IEEE, May 2015. DOI 10.1109/MSR.2015.28. ISBN 978-0-
7695-5594-2. ISSN 2160-1860 pp. 224–234.

[373] R. Watson, “Development and application of a heuristic to assess trends in API documenta-
tion,” in Proceedings of the 30th ACM International Conference on Design of Communication.
Seattle, WA, USA: ACM, October 2012. DOI 10.1145/2379057.2379112. ISBN 978-1-45-
031497-8 pp. 295–302.

[374] R. Watson, M. Mark Stamnes, J. Jeannot-Schroeder, and J. H. Spyridakis, “API documentation
and software community values: A survey of open-source API documentation,” in Proceedings
of the 31st ACM International Conference on Design of Communication. Greenville, SC,
USA: ACM, September 2013. DOI 10.1145/2507065.2507076, pp. 165–174.

[375] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson,Web Services Platform
Architecture. Crawfordsville, IN, USA: Prentice-Hall, 2005. ISBN 0-13-148874-0

[376] G. M. Weiss, “Mining with rarity,” ACM SIGKDD Explorations Newsletter, vol. 6, no. 1, pp.
7–19, 2004, DOI 10.1145/1007730.1007734. ISSN 1931-0145

[377] D. Wettschereck, D. W. Aha, and T. Mohri, “A Review and Empirical Evaluation of Feature
Weighting Methods for a Class of Lazy Learning Algorithms,” Artificial Intelligence Review,
vol. 11, no. 1-5, pp. 273–314, 1997, DOI 10.1007/978-94-017-2053-3_11. ISSN 0269-2821

[378] J. Wexler, M. Pushkarna, T. Bolukbasi, M. Wattenberg, F. Viegas, and J. Wilson, “The What-If
Tool: Interactive Probing of Machine Learning Models,” IEEE Transactions on Visualization
and Computer Graphics, vol. 26, no. 1, pp. 56–65, 2019, DOI 10.1109/tvcg.2019.2934619.
ISSN 1077-2626

[379] H. Wickham, “A Layered grammar of graphics,” Journal of Computational and Graphical
Statistics, vol. 19, no. 1, pp. 3–28, January 2010, DOI 10.1198/jcgs.2009.07098. ISSN 1061-
8600

[380] R. J. Wieringa and J. M. G. Heerkens, “The methodological soundness of requirements en-
gineering papers: A conceptual framework and two case studies,” Requirements Engineering,
vol. 11, no. 4, pp. 295–307, 2006, DOI 10.1007/s00766-006-0037-6. ISSN 0947-3602

[381] Wikipedia Contributors, “List of datasets for machine-learning research — Wikipedia, The
Free Encyclopedia,” [Online] Available: https://bit.ly/3cZgwLb, 2020.

[382] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, 2016. DOI 10.1016/c2009-0-19715-5. ISBN
978-0-12-804291-5

[383] C. Wohlin and A. Aurum, “Towards a decision-making structure for selecting a research design
in empirical software engineering,” Empirical Software Engineering, vol. 20, no. 6, pp. 1427–
1455, May 2015, DOI 10.1007/s10664-014-9319-7. ISSN 1573-7616

[384] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation
in Software Engineering. Berlin, Heidelberg: Springer, 2012. DOI 10.1007/978-3-642-
29044-2. ISBN 978-3-64-229044-2

[385] M. L. Wong and K. S. Leung, Data Mining Using Grammar Based Genetic Programming and
Applications. Springer, 2002. DOI 10.1007/b116131. ISBN 978-0-79-237746-7

[386] M. R. Wrobel, “Emotions in the software development process,” in Proceedings of 6th In-
ternational Conference on Human System Interactions. Sopot, Poland: IEEE, June 2013.
DOI 10.1109/HSI.2013.6577875, pp. 518–523.

https://doi.org/10.1145/2480362.2480557
https://doi.org/10.1109/MSR.2013.6624006
https://doi.org/10.1109/MSR.2015.28
https://doi.org/10.1145/2379057.2379112
https://doi.org/10.1145/2507065.2507076
https://doi.org/10.1145/1007730.1007734
https://doi.org/10.1007/978-94-017-2053-3_11
https://doi.org/10.1109/tvcg.2019.2934619
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1007/s00766-006-0037-6
https://bit.ly/3cZgwLb
https://doi.org/10.1016/c2009-0-19715-5
https://doi.org/10.1007/s10664-014-9319-7
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/b116131
https://doi.org/10.1109/HSI.2013.6577875

REFERENCES 247

[387] ——, “The Impact of Lexicon Adaptation on the Emotion Mining from Software Engineering
Artifacts,” IEEE Access, 2020, DOI 10.1109/ACCESS.2020.2979148. ISSN 21693536

[388] X. Yi and K. J. Kochut, “A CP-nets-based design and verification framework for web services
composition,” inProceedings of the 2004 IEEE International Conference onWeb Services. San
Diego, CA, USA: IEEE, July 2004. DOI 10.1109/icws.2004.1314810. ISBN 0-76-952167-3
pp. 756–760.

[389] R. K. Yin, Case study research and applications: Design and methods, 6th ed. Los Angeles,
CA, USA: SAGE, 2017. ISBN 978-1-50-633616-9

[390] J. Zahálka and F. Železný, “An experimental test of Occam’s razor in classification,” Machine
Learning, vol. 82, no. 3, pp. 475–481, 2011, DOI 10.1007/s10994-010-5227-2. ISSN0885-6125

[391] J. Zhang and R. Kasturi, “Extraction of Text Objects in Video Documents: Recent Progress,” in
Proceedings of the 8th International Workshop on Document Analysis Systems. Nara, Japan:
IEEE, September 2008. DOI 10.1109/das.2008.49, pp. 5–17.

[392] X. Zhang, A. S. Ross, A. Caspi, J. Fogarty, and J. O.Wobbrock, “Interaction Proxies for Runtime
Repair and Enhancement of Mobile Application Accessibility,” in Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, ser. CHI ’17. Denver, CO, USA: ACM,
May 2017. DOI 10.1145/3025453.3025846. ISBN 978-1-4503-4655-9 pp. 6024–6037.

[393] B. Zupan, J. Demšar, M. W. Kattan, J. R. Beck, and I. Bratko, “Machine learning for survival
analysis: a case study on recurrence of prostate cancer,” Artificial intelligence in medicine,
vol. 20, no. 1, pp. 59–75, 2000.

[394] M. Zur Muehlen, J. V. Nickerson, and K. D. Swenson, “Developing web services choreography
standards - The case of REST vs. SOAP,” Decision Support Systems, vol. 40, no. 1, pp. 9–29,
July 2005, DOI 10.1016/j.dss.2004.04.008. ISSN 0167-9236

https://doi.org/10.1109/ACCESS.2020.2979148
https://doi.org/10.1109/icws.2004.1314810
https://doi.org/10.1007/s10994-010-5227-2
https://doi.org/10.1109/das.2008.49
https://doi.org/10.1145/3025453.3025846
https://doi.org/10.1016/j.dss.2004.04.008

List of Online Artefacts

The online artefacts listed below have been downloaded and stored on the Deakin
Research Data Store (RDS) for archival purposes at the following location:

RDS29448-Alex-Cummaudo-PhD/datasets/webrefs

[395] Affectiva, Inc., “Home - Affectiva : Affectiva,” http://bit.ly/36sgbMM, 2018, accessed: 15
October 2018.

[396] Amazon Web Services, Inc., “Detecting Labels in an Image,” https://amzn.to/2TBNtTa, 2018,
accessed: 28 August 2018.

[397] ——, “Detecting Objects and Scenes,” https://amzn.to/2TDed5V, 2018, accessed: 28 August
2018.

[398] ——, “Amazon Rekognition,” https://amzn.to/2TyT2BL, 2018, accessed: 13 September 2018.
[399] ——, “Aws release notes,” https://go.aws/2v0RYjr, 2019, accessed: 18 March 2019.
[400] ——, “Actions - amazon rekognition,” https://amzn.to/392p3dH, 2019, accessed: 18 March

2019.
[401] ——, “Amazon rekognition | aws machine learning blog,” https://go.aws/37Q7lKc, 2019, ac-

cessed: 18 March 2019.
[402] ——, “Amazon rekognition image,” https://go.aws/2ubB6qc, 2019, accessed: 18 March 2019.
[403] ——, “Best practices for sensors, input images, and videos - amazon rekognition,” https:

//amzn.to/2uZlWo0, 2019, accessed: 18 March 2019.
[404] ——, “Exercise 1: Detect objects and scenes in an image (console) - amazon rekognition,”

https://amzn.to/36TkLnm, 2019, accessed: 18 March 2019.
[405] ——, “Java (sdk v1) code samples for amazon rekognition - aws code sample,” https://amzn.

to/2ugTle3, 2019, accessed: 18 March 2019.
[406] ——, “Limits in amazon rekognition - amazon rekognition,” https://amzn.to/2On6n0h, 2019,

accessed: 18 March 2019.
[407] ——, “Step 1: Set up an aws account and create an iam user - amazon rekognition,” https:

//amzn.to/2tqW4kI, 2019, accessed: 18 March 2019.
[408] ——, “Troubleshooting amazon rekognition video - amazon rekognition,” https://amzn.to/

3b763fS, 2019, accessed: 18 March 2019.
[409] Beĳing Geling Shentong Information Technology Co., Ltd., “DeepGlint,” http://bit.ly/

2uHHdPS, 2018, accessed: 3 April 2019.
[410] Beĳing Kuangshi Technology Co., Ltd., “Megvii,” http://bit.ly/2WJYFzk, 2018, accessed: 3

April 2019.

249

http://bit.ly/36sgbMM
https://amzn.to/2TBNtTa
https://amzn.to/2TDed5V
https://amzn.to/2TyT2BL
https://go.aws/2v0RYjr
https://amzn.to/392p3dH
https://go.aws/37Q7lKc
https://go.aws/2ubB6qc
https://amzn.to/2uZlWo0
https://amzn.to/2uZlWo0
https://amzn.to/36TkLnm
https://amzn.to/2ugTle3
https://amzn.to/2ugTle3
https://amzn.to/2On6n0h
https://amzn.to/2tqW4kI
https://amzn.to/2tqW4kI
https://amzn.to/3b763fS
https://amzn.to/3b763fS
http://bit.ly/2uHHdPS
http://bit.ly/2uHHdPS
http://bit.ly/2WJYFzk

250 REFERENCES

[411] Clarifai, Inc., “Enterprise AI Powered Computer Vision Solutions | Clarifai,” http://bit.ly/
2TB3kSa, 2018, accessed: 13 September 2018.

[412] CloudSight, Inc., “Image Recognition API & Visual Search Results | CloudSight AI,” http:
//bit.ly/2UmNPCw, 2018, accessed: 13 September 2018.

[413] Cognitec Systems GmbH, “The face recognition company - Cognitec,” http://bit.ly/38VguBB,
2018, accessed: 15 October 2018.

[414] A. Cummaudo, http://bit.ly/2KlyhcD, 2019, accessed: 27 March 2019.
[415] ——, http://bit.ly/2G7saFJ, 2019, accessed: 27 March 2019.
[416] ——, http://bit.ly/2G5ZEEe, 2019, accessed: 27 March 2019.
[417] ——, “ICSE 2020 Submission #564 Supplementary Materials,” http://bit.ly/2Z8zOKW, 2019.
[418] ——, http://bit.ly/2G6ZOeC, 2019, accessed: 27 March 2019.
[419] Deep AI, Inc., “DeepAI: The front page of A.I. | DeepAI,” http://bit.ly/2TBNYgf, 2018, ac-

cessed: 26 September 2018.
[420] Google LLC, “Best practices for enterprise organizations | documentation | google cloud,”

http://bit.ly/2v0RSs5, 2019, accessed: 18 March 2019.
[421] ——, “Detect Labels | Google Cloud Vision API Documentation | Google Cloud,” http://bit.ly/

2TD5kcy, 2018, accessed: 28 August 2018.
[422] ——, “Class EntityAnnotation | Google.Cloud.Vision.V1,” http://bit.ly/2TD5fpg, 2018, ac-

cessed: 28 August 2018.
[423] ——, “Vision API - Image Content Analysis | Cloud Vision API | Google Cloud,” http:

//bit.ly/2TD9mBs, 2018, accessed: 13 September 2018.
[424] ——, “Machine learning glossary | google developers,” http://bit.ly/3b38VdL, 2019, accessed:

18 March 2019.
[425] ——, “Open Images Dataset V4,” http://bit.ly/2Ry2vvF, 2019, accessed: 9 November 2018.
[426] ——, “Quickstart: Using client libraries | cloud vision api documentation | google cloud,”

http://bit.ly/2RRMQHG, 2019, accessed: 18 March 2019.
[427] ——, “Release notes | cloud vision api documentation | google cloud,” http://bit.ly/2UipY5J,

2019, accessed: 18 March 2019.
[428] ——, “Sample applications | cloud vision api documentation | google cloud,” http://bit.ly/

2SdoB5r, 2019, accessed: 18 March 2019.
[429] ——, “Tips & tricks | cloud functions documentation | google cloud,” http://bit.ly/2GZNc8Z,

2019, accessed: 18 March 2019.
[430] ——, “Vision ai | derive image insights via ml | cloud vision api | google cloud,” http:

//bit.ly/31nWoNx, 2019, accessed: 18 March 2019.
[431] Guangzhou Tup Network Technology, “TupuTech,” http://bit.ly/2uF4IsN, 2018, accessed: 3

April 2019.
[432] Imagga Technologies, “Imagga - powerful image recognition APIs for automated categorization

& tagging in the cloud and on-premises,” http://bit.ly/2TxsyRe, 2018, accessed: 13 September
2018.

[433] International Business Machines Corporation, “Watson Visual Recognition - Overview | IBM,”
https://ibm.co/2TBNIO4, 2018, accessed: 13 September 2018.

[434] ——, “Watson Tone Analyzer,” https://ibm.co/37w3y4A, 2019, accessed: 25 January 2019.
[435] Kairos AR, Inc., “Kairos: Serving Businesses with Face Recognition,” http://bit.ly/30WHGNs,

2018, accessed: 15 October 2018.
[436] Microsoft Corporation, “azure-sdk-for-java/ImageTag.java,” http://bit.ly/38IDPWU, 2018, ac-

cessed: 28 August 2018.
[437] ——, “Image Processing with the Computer Vision API | Microsoft Azure,” http://bit.ly/

2YqhkS6, 2018, accessed: 13 September 2018.
[438] ——, “How to call the Computer Vision API,” http://bit.ly/2TD5oJk, 2018, accessed: 28

August 2018.
[439] ——, “What is Computer Vision?” http://bit.ly/2TDgUnU, 2018, accessed: 28 August 2018.
[440] ——, “Call the computer vision api - azure cognitive services | microsoft docs,” http://bit.ly/

2vHSdjT, 2019, accessed: 18 March 2019.
[441] ——, “Content tags - computer vision - azure cognitive services | microsoft docs,” http:

//bit.ly/2vESzHX, 2019, accessed: 18 March 2019.

http://bit.ly/2TB3kSa
http://bit.ly/2TB3kSa
http://bit.ly/2UmNPCw
http://bit.ly/2UmNPCw
http://bit.ly/38VguBB
http://bit.ly/2KlyhcD
http://bit.ly/2G7saFJ
http://bit.ly/2G5ZEEe
http://bit.ly/2Z8zOKW
http://bit.ly/2G6ZOeC
http://bit.ly/2TBNYgf
http://bit.ly/2v0RSs5
http://bit.ly/2TD5kcy
http://bit.ly/2TD5kcy
http://bit.ly/2TD5fpg
http://bit.ly/2TD9mBs
http://bit.ly/2TD9mBs
http://bit.ly/3b38VdL
http://bit.ly/2Ry2vvF
http://bit.ly/2RRMQHG
http://bit.ly/2UipY5J
http://bit.ly/2SdoB5r
http://bit.ly/2SdoB5r
http://bit.ly/2GZNc8Z
http://bit.ly/31nWoNx
http://bit.ly/31nWoNx
http://bit.ly/2uF4IsN
http://bit.ly/2TxsyRe
https://ibm.co/2TBNIO4
https://ibm.co/37w3y4A
http://bit.ly/30WHGNs
http://bit.ly/38IDPWU
http://bit.ly/2YqhkS6
http://bit.ly/2YqhkS6
http://bit.ly/2TD5oJk
http://bit.ly/2TDgUnU
http://bit.ly/2vHSdjT
http://bit.ly/2vHSdjT
http://bit.ly/2vESzHX
http://bit.ly/2vESzHX

REFERENCES 251

[442] ——, “Github - azure-samples/cognitive-services-java-computer-vision-tutorial: This tutorial
shows the features of the microsoft cognitive services computer vision rest api.” http://bit.ly/
37N1yoN, 2019, accessed: 18 March 2019.

[443] ——, “Improving your classifier - custom vision service - azure cognitive services | microsoft
docs,” http://bit.ly/37SBkRQ, 2019, accessed: 18 March 2019.

[444] ——, “Microsoft azure legal information | microsoft azure,” https://bit.ly/2Cy8Z8r, 2019,
accessed: 18 March 2019.

[445] ——, “Quickstart: Computer vision client library for .net - azure cognitive services | microsoft
docs,” http://bit.ly/2vF3wJC, 2019, accessed: 18 March 2019.

[446] ——, “Release notes - custom vision service - azure cognitive services | microsoft docs,”
http://bit.ly/2UlPiaW, 2019, accessed: 18 March 2019.

[447] ——, “Sample: Explore an image processing app in c# - azure cognitive services | microsoft
docs,” http://bit.ly/2u4mPMh, 2019, accessed: 18 March 2019.

[448] ——, “Tutorial: Generate metadata for azure images - azure cognitive services | microsoft
docs,” http://bit.ly/2RRnARK, 2019, accessed: 18 March 2019.

[449] ——, “Tutorial: Use custom logo detector to recognize azure services - custom vision - azure
cognitive services | microsoft docs,” http://bit.ly/2RUGwPH, 2019, accessed: 18 March 2019.

[450] ——, “What is computer vision? - computer vision - azure cognitive services | microsoft docs,”
http://bit.ly/37SomDx, 2019, accessed: 18 March 2019.

[451] SenseTime, “SenseTime,” http://bit.ly/2WH6RjF, 2018, accessed: 3 April 2019.
[452] Shanghai Yitu Technology Co., Ltd., “Yitu Technology,” http://bit.ly/2uGvxgf, 2018, accessed:

3 April 2019.
[453] Stack Overflow User #1008563 ‘samiles’, “AWS Rekognition PHP SDK gives invalid image

encoding error,” http://bit.ly/31Sgpec, 2019, accessed: 22 June 2019.
[454] Stack Overflow User #10318601 ‘reza naderii’, “google cloud vision category detecting,”

http://bit.ly/31Uf32t, 2019, accessed: 22 June 2019.
[455] Stack Overflow User #10729564 ‘gabgob’, “Multiple Google Vision OCR requests at once?”

http://bit.ly/31P09dU, 2019, accessed: 22 June 2019.
[456] Stack Overflow User #1453704 ‘deeptimancode’, “Human body part detection in Android,”

http://bit.ly/31T5pxd, 2019, accessed: 22 June 2019.
[457] Stack Overflow User #174602 ‘geekyaleks’, “aws Rekognition not initializing on iOS,” http:

//bit.ly/31UeqG9, 2019, accessed: 22 June 2019.
[458] Stack Overflow User #2251258 ‘James Dorfman’, “All GoogleVision label possibilities?”

http://bit.ly/31R4FZi, 2019, accessed: 22 June 2019.
[459] Stack Overflow User #2521469 ‘Hillary Sanders’, “Is there a full list of potential labels that

Google’s Vision API will return?” http://bit.ly/2KNnJSB, 2019, accessed: 22 June 2019.
[460] Stack Overflow User #2604150 ‘user2604150’, “Google Vision Accent Character Set NodeJs,”

http://bit.ly/31TsVdp, 2019, accessed: 22 June 2019.
[461] Stack Overflow User #3092947 ‘Mark Bench’, “Google Cloud Vision OCR API returning

incorrect values for bounding box/vertices,” http://bit.ly/31UeZjf, 2019, accessed: 22 June
2019.

[462] Stack Overflow User #3565255 ‘CSquare’, “Vision API topicality and score always the same,”
http://bit.ly/2TD5As2, 2019, accessed: 22 June 2019.

[463] Stack Overflow User #4748115 ‘Latifa Al-jiffry’, “similar face recognition using google cloud
vision API in android studio,” http://bit.ly/31WhMZy, 2019, accessed: 22 June 2019.

[464] Stack Overflow User #4852910 ‘Gaurav Mathur’, “Amazon Rekognition Image caption,” http:
//bit.ly/31P08qm, 2019, accessed: 22 June 2019.

[465] Stack Overflow User #5294761 ‘Eury Pérez Beltré’, “Specify language for response in Google
Cloud Vision API,” http://bit.ly/31SsUGG, 2019, accessed: 22 June 2019.

[466] Stack Overflow User #549312 ‘GroovyDotCom’, “Image Selection for Training Visual Recog-
nition,” http://bit.ly/31W8lcw, 2019, accessed: 22 June 2019.

[467] Stack Overflow User #5809351 ‘J.Doe’, “How to confidently validate object detection results
returned from Google Cloud Vision,” http://bit.ly/31UcCNy, 2019, accessed: 22 June 2019.

[468] StackOverflowUser #5844927 ‘Amit Pawar’, “Google cloudVision andClarifai doesn’t Support
tagging for 360 degree images and videos,” http://bit.ly/31StuEm, 2019, accessed: 22 June 2019.

http://bit.ly/37N1yoN
http://bit.ly/37N1yoN
http://bit.ly/37SBkRQ
https://bit.ly/2Cy8Z8r
http://bit.ly/2vF3wJC
http://bit.ly/2UlPiaW
http://bit.ly/2u4mPMh
http://bit.ly/2RRnARK
http://bit.ly/2RUGwPH
http://bit.ly/37SomDx
http://bit.ly/2WH6RjF
http://bit.ly/2uGvxgf
http://bit.ly/31Sgpec
http://bit.ly/31Uf32t
http://bit.ly/31P09dU
http://bit.ly/31T5pxd
http://bit.ly/31UeqG9
http://bit.ly/31UeqG9
http://bit.ly/31R4FZi
http://bit.ly/2KNnJSB
http://bit.ly/31TsVdp
http://bit.ly/31UeZjf
http://bit.ly/2TD5As2
http://bit.ly/31WhMZy
http://bit.ly/31P08qm
http://bit.ly/31P08qm
http://bit.ly/31SsUGG
http://bit.ly/31W8lcw
http://bit.ly/31UcCNy
http://bit.ly/31StuEm

252 REFERENCES

[469] Stack Overflow User #5924523 ‘Akash Dathan’, “Can i give aspect ratio in Google Vision api?”
http://bit.ly/2KSJwsp, 2019, accessed: 22 June 2019.

[470] Stack Overflow User #6210900 ‘Mike Grommet’, “Are the Cloud Vision API limits in docu-
mentation correct?” http://bit.ly/31SsNLg, 2019, accessed: 22 June 2019.

[471] Stack Overflow User #6649145 ‘I. Sokolyk’, “How to get a position of custom object on image
using vision recognition api,” http://bit.ly/3210Q49, 2019, accessed: 22 June 2019.

[472] Stack Overflow User #6841211 ‘NigelJL’, “Google Cloud Vision - Numbers and Numerals
OCR,” http://bit.ly/31P07mi, 2019, accessed: 22 June 2019.

[473] Stack Overflow User #7064840 ‘Josh’, “Google Cloud Vision fails at batch annotate images.
Getting Netty Shaded ClosedChannelException error,” http://bit.ly/31UrBH9, 2019, accessed:
22 June 2019.

[474] Stack Overflow User #7187987 ‘tuanars10’, “Adding a local path to Microsoft Face API by
Python,” http://bit.ly/2KLeMt3, 2019, accessed: 22 June 2019.

[475] Stack Overflow User #7219743 ‘Davide Biraghi’, “Google Vision API does not recognize
single digits,” http://bit.ly/31Ws1Nj, 2019, accessed: 22 June 2019.

[476] Stack Overflow User #738248 ‘lavuy’, “Meaning of score in Microsoft Cognitive Service’s
Entity Linking API,” http://bit.ly/2TD9vVw, 2019, accessed: 22 June 2019.

[477] Stack Overflow User #7604576 ‘Alagappan Narayanan’, “Text extraction - line-by-line,” http:
//bit.ly/31Yc21s, 2019, accessed: 22 June 2019.

[478] Stack Overflow User #7692297 ‘1lucas’, “Can Google Cloud Vision generate labels in Spanish
via its API?” http://bit.ly/31UcBsY, 2019, accessed: 22 June 2019.

[479] Stack Overflow User #7896427 ‘David mark’, “Google Api Vision, ""before_request"" error,”
http://bit.ly/31Z27Zt, 2019, accessed: 22 June 2019.

[480] Stack Overflow User #8210103 ‘Cosmin-Ioan Leferman’, “Google Vision API text detection
strange behaviour - Javascript,” http://bit.ly/31Ucyxi, 2019, accessed: 22 June 2019.

[481] Stack Overflow User #8411506 ‘AsSportac’, “How can we find an exhaustive list (or graph)
of all logos which are effectively recognized using Google Vision logo detection feature?”
http://bit.ly/31Z27IX, 2019, accessed: 22 June 2019.

[482] Stack OverflowUser #8594124 ‘God Himself’, “How to set up AWSmobile SDK in iOS project
in Xcode,” http://bit.ly/31St2pE, 2019, accessed: 22 June 2019.

[483] StackOverflowUser #9006896 ‘Dexter Intelligence’, “Gettingwrong text sequencewhen image
scanned by offline google mobile vision API,” http://bit.ly/31Sgr5O, 2019, accessed: 22 June
2019.

[484] Stack Overflow User #9913535 ‘Sahil Mehra’, “Google Vision API: ModuleNotFoundError:
module not found ’google.oauth2’,” http://bit.ly/31VlZfU, 2019, accessed: 22 June 2019.

[485] Symisc Systems, S.U.A.R.L, “Computer Vision & Media Processing APIs | PixLab,” http:
//bit.ly/2UlkW9K, 2018, accessed: 13 September 2018.

[486] Talkwalker Inc., “Image Recognition - Talkwalker,” http://bit.ly/2TyT7W5, 2018, accessed: 13
September 2018.

[487] TheySay Limited, “Sentiment Analysis API | TheySay,” http://bit.ly/37AzTHI, 2019, accessed:
25 January 2019.

http://bit.ly/2KSJwsp
http://bit.ly/31SsNLg
http://bit.ly/3210Q49
http://bit.ly/31P07mi
http://bit.ly/31UrBH9
http://bit.ly/2KLeMt3
http://bit.ly/31Ws1Nj
http://bit.ly/2TD9vVw
http://bit.ly/31Yc21s
http://bit.ly/31Yc21s
http://bit.ly/31UcBsY
http://bit.ly/31Z27Zt
http://bit.ly/31Ucyxi
http://bit.ly/31Z27IX
http://bit.ly/31St2pE
http://bit.ly/31Sgr5O
http://bit.ly/31VlZfU
http://bit.ly/2UlkW9K
http://bit.ly/2UlkW9K
http://bit.ly/2TyT7W5
http://bit.ly/37AzTHI

Part IV

Appendices

253

APPENDIXA

Additional Figures

The following figures are listed in this section:

• FigureA.1 (p257) highlights potential causal factors thatmay influence a developer’s
understanding of the documentation and response of IWSs. It was intended to be
used as the basis of a survey study in Chapter 8, and can be used for future avenues
of research.

• Figure A.2 (p258) was intended for the discussion in Chapter 5, where we propose
that developers have a misaligned of the technical domain models within IWSs and
more specifically CVSs. We designed a draft technical domain model to describe
the various aspects developers must consider when using these services, based on
the work by Barnett [25].

• Figure A.3 (p259) describes potential questions that may arise to analyse and test
the causal factors of the technical domain model proposed in Figure A.2. This lies
an open avenue of future research.

• Figure A.4 (p259) emphasises dichotomy between an application using an IWS and
the IWS’ training data (which is sourced from an unknown context) and the context
of an application, which is known. This is to emphasise how the model produced
from these services need to be calibrated to the application domain being used in
order for the decision boundary of a single inference to be properly assessed by
the developer. This image was originally included within the Threshy publication
(Chapter 11) but was removed due to space limitations.

• Figure A.5 (p260) illustrates the domain model of Threshy (Chapter 11).
• FigureA.6 (p260) illustrates the dynamicmodel of usingThreshy and its interactions
between the application, front-end of Threshy and back-end of Threshy (Chapter 11).

• Figure A.7 (p261) was originally included within the publication Chapter 5 but was
removed due to space limitations. It provides a high-level overview of the main steps
we performed within this study.

255

256 Additional Figures

• Figure A.8 (p262) is a class diagram of the reference architecture of the proposed
architecture in Chapter 10. The implementation is provided in Chapter B. See
Chapter 10 for more.

• Figure A.9 (p263) is a sequence diagram illustrating how the reference architecture
can be used to create a new benchmark as per the implementation provided in
Chapter B. See Chapter 10 for more.

• Figure A.10 (p264) is a sequence diagram illustrating how applications can make
requests to the proxy server ‘facade’ as per the implementation provided inChapter B.
See Chapter 10 for more.

• Figure A.11 (p265) is a state diagram that illustrates the overall states that exist
within the architecture tactic’s workflows. See Chapter 10 for more.

• Figure A.12 (p266) is a sequence diagram illustrating how the reference architec-
ture handles evolution in an external service per the implementation provided in
Chapter B. See Chapter 10 for more.

• Figure A.13 (p267) illustrates how the reference architecture is able to capture and
handle three requests (two valid, one invalid) when sent to the proxy server. See
Chapter 10 for more.

257

Figure A.1: Causal factors that may influence understanding of intelligent web services.

Intelligent
Web

Services

Documentation
Quality

Response
Quality

documents
usage

documents
responses

interpretability of...

First Language

Cognitive
Models

Language
Used at Work

Favourite
Language

Cognitive
Biases

Determinism vs
Nondeterminism

Stochasticism
and Probability

Skill

Years Coding
Exposure to
Paradigms

Time
Allocated on

Learning

Learning
Modality

Resources
Preferred

Order of
Learning

Experience
in...

Artificial
Inteligence

Data Science/
Big Data

Software
Engineering

Education

Level/Depth
of Study

Field of StudyLocation of
Study

Tooling
Used

IDEs
Continuous
Integration Unit Testing

Business
Value

Productivity Time to Market
Quality

Assurance

impacts quality benchmark...

impacts on...

biased view of...

impacts learning of...

impacts understanding of...

awareness of concepts affects... impacts understanding of...

impacts understanding of...
familarity with debugging...

258
A
dditionalFigures

Figure A.2: A proposal technical domain model for intelligent services. (The � symbol indicates computer vision related services only.)

Intelligent Services:
Techincal Domain Model

What

Data Sparsity and
Density
Specific algorithms for
dense spacial data

Monte-Carlo Simulations

Convolutional Neural
Networks

Data Dependency &
Instability

Impact of Retraining
E.g., new labels introduced
that impact previous
inferences (new dog breed)

Notification of Changes
Some form of notification
when data is changed in
the training

Hardware Infrastructure

Tagging Infrastructure

Training Infrastructure

Inference Infrastructure

Pre- and Post-Processing

Min/Max Image Sizes
E.g., 1px by 1px image
should fail due to lack of
data

Colour Depth
E.g., Grayscale images
should only allow grayscale
(non-colour) analysis

When

Preparation
Data Collection & Tagging

Tagging Techniques
E.g., Bounding box vs.
bounding polygon

Curator QA
Quality of the data

Labelling QA
Quality of the labelling

Domain Vocabulary
Ambiguity
Ambiguity in labels and
techniques (e.g., Face vs.
Body, Dog vs. Cat,
Recognition vs.
Localisation)

Diversity of Curation
Data boundary set

Diversity of Labels
Label boundary set

Training
Model Training

Training Data

Training Method

Operation
System in Production

How

Uncertainty
System is data dependent
and not rule-driven

Potential
Potential ranges of
probability distributions

Distribution shape
Do not know what the
distribution shape could
even look like

Engineer Awareness
Most engineers not aware
of probability distributions

Unknown Expectations
Impact of adversarial
examples that occur
naturally in the real world

Observable
No changes in API or
schema but learned
behaviour is different

Non-Determinism
No guarantee in confidence
stability that the results
occur from day to day

Error-Handling
Errors are not foreseeable
due to data dependency

Workflow Design
Handling the failure cases

Maintainence Design
Alarm and QA monitoring

259

Figure A.3: Potential questions that can be asked around causal factors of a developer’s
understanding of an intelligent service.

Intelligent Web Services:
Documentation & Response

Quality

Experience
"Depending
on your
experience...

Years Programming

Work Diversity

Software Engineering XP

Data Science & AI XP

Education
(Location, Field, Depth)

Cognitive Priors
of Technical
Domain
how do you
percieve the
response &
docs....

Technical Domain Model of
Computer Vision Services

Languages,
Frameworks, and
Tooling
(Support Tools, Used
Most, First Learned,
Favourite)

Learning Modality
and how do you
learn?"

Learning Taxonomies
(Cognitive Domain)

Order of learning

Time allocated to learn

Preferred resources

Figure A.4: Threshy assists with making appropriate decision boundaries in the application
context by calibrating model (train on an unknown context) to your domain.

Context
Data

Test
Data

Model Decision
Boundary

Unknown Context

Single
InferenceValidate

Data
Train
Data

Application
Domain
Context

«tunes»

Result
«explores»

Developer

«prepares»

260 Additional Figures

Figure A.5: Threshy domain model.

Optimiser Result
Summary

1 1
has

Threshold

Schema

1
1..*

has

1
1

has

Strategy

Cost Factors

1
1

? has

1
0..*

? has

Performance
Metrics

1

1..*
? has

Benchmark
Results

Human
Label

Machine
Prediction

1
*

? has

1
*

? has

1

1

? processes

Data Analyser
1

1
has

Data Summary
1 1

has

Figure A.6: High level overview of Threshy’s interaction between the front- and back-end.

User Front End Back End

Gets Test Results in CSV file Enters location to CSV
and it's parameters into dialog

Uploads CSV and parameters
Cache CSV

Load CSV &
generate confusion matrices
& summaries

Matrices, labels & summaries
Confusion matrices, labels
& summariesVisualises confusion matrices &

summary data

Enters cost weights into matrix
for each label Send new cost weights & current

confusion matrices Calculate cost matrices
& their summary

ResultsCost matrices & summary
Shows cost summaries in table

Selects "Optimise" Sends current filename, thresholds,
properties, cost weights

Load CSV from cache

Dataframe

Optimise using Genetic Algorithm

ThresholdsThresholdsSets threshold sliders & displays
JSON output

261

Figure A.7: High-level overview of the methodology within Chapter 5.

Inspect overview
pages of intelligent
services offered by

cloud vendors

Perform search of
each term on

Stack Overflow

For each search result,
review user defined

tags, related tags, and
synonyms

Note down terms of
different intelligent

services names

Run query on SEDE
to find every question

for each tag found

Review 400 results to
review how

developers discuss
names of services

Define list of intelligent services Define list of relevant and related terms

Extract case
insensitive search on

Google BigQuery

Refine results to only
computer vision

services

Review 50 results for
relevancy

Optimise search query

Split results into 4
random samples and

classify all posts

Run intra- and
inter-rater reliability

on these 50 posts

Refine inclusion/exclusion criteria Classification and reliability

Extract sample of 50
questions to identify

false positives

Analysis and interpretation

Review classification
distributions

Categorise 50 posts
against

SOLO/Bloom's
taxonomy

262
A
dditionalFigures

Figure A.8: Class diagram of the implementation of our architecture.

RequestClient

- service: Service
- max_labels: Integer = 100
- min_confidence: Float = 0.05

+ initialize(service: Service ...)
+ send_uri(uri: String, batch: BatchRequest): Response
+ send_uris(uris: Array<String>): BatchRequest
+ log(message: String): void

Request

- id: String
- service: Service
- created_at: DateTime
- batch_request: BatchRequest «optional»
- uri: String

+ success? : Boolean

«enum»
Service

+ :google_cloud_vision
+ :amazon_rekognition
+ :azure_computer_vision

Response

- id: String
- request: Request
- created_at: DateTime
- body: File
- success: Boolean

+ labels: Hash<String, Float>
+ flag_warning: void

«enum»
BenchmarkSever ity

+ :exception
+ :warning
+ :info
+ :none

initiated by ?

1

1

BenchmarkKey

- id: String
- service: Service
- batch_request: BatchRequest
- severity: BenchmarkSeverity
- created_at: DateTime
- expired: Boolean
- delta_labels: Integer
- delta_confidence: Float
- max_labels: Integer
- min_confidence: Float

+ expire: void
+ valid_against(key: BenchmarkKey): Boolean
+ success? : Boolean

«use»

BatchRequest

- id: String
- created_at: DateTime

+ success? : Boolean
+ responses: Array <Response>
+ uris: Array<String>

1..*

1

«use»
BenchmarkedRequestClient

- scheduler: Scheduler::Cron
- benchmark_uris: Array<String>
- reevaluate_on: String = "0 0 * * 0"
- delta_labels: Integer = 5
- delta_confidence: Float = 0.01
- severity: BenchmarkSeverity = :info

+ initialize(service: Service,
 benchmark_uris: Array<String> ...)
+ send_uri(uri: String,
 key: BenchmarkKey): BenchmarkResponse
 «override»
+ send_uris(uris: Array<String> ,
 key: BenchmarkKey): Array<BenchmarkResponse>
 «override»
- benchmark: BenchmarkKey

generates ?

1..*

0..*

generates ?

1..*

0..*

generates ?
0..*

1..*

263

Figure A.9: Creation of a new benchmark proxy server using the architecture tactic.

azure_brc:
BenchmarkedRequestClient[1] «create»

[2] benchmark(uris): BenchmarkKey

breq: BatchRequest

azure: Service

[6] detect_labels(uri): File

[8] «create»
req: Request

[7] http_response

res: Response
[9] «create»

bkey: BenchmarkKey
[11] «create»

benchmark(uris) runs every n days to
regenerate a BenchmarkKey to be
stored in current_key

[12] current_key = bkey
[13] azure_brc

azure_brc bkeybreq resreqazure

consumer

Array of uris
with representative
dataset and service
to use (in this case,
azure) is provided in
the constructor

[3] send_uris_async(uris): BatchRequest

[5] send_uri(uri): Response

[10] breq

[4] «create»

Loop

[each uri
 in uris]

The BatchRequest that benchmarked
this dataset of uris is encoded in a
BenchmarkKey and stored in brc's
current_key, which will be used to
validate future requests

breq is provided as
the batch encoded in
bkey's constructor

breq is provided
to constructor of
req to indicate this
request is part of the
BatchRequest that
benchmarked the
dataset

Each uri is sent over
multiple threads to
improve benchmark
performance

The raw http_response
is encoded within the res
Response instance

consumer

264
A
dditionalFigures

Figure A.10: Making a request through the proxy server ‘facade’.

[1] send_uri_with_key(uri, akey)

azure_brc

consumer

azure_brc:
BenchmarkedRequestClient

azure_brc.current_key:
BenchmarkKey

[2] valid_against(akey): Boolean

[3] key_valid

azure_brc.
current_key

Alternative

[if key_valid = true or
 severity = :none or
 severity = :info or
 severity = :warn]

[else if severity = :error]

[6] send_uri(uri): Response

Opt

[if severity = :info and
 key_valid = false]

Opt

[if severity = :warn and
 key_valid = false]

[12] log("Warning! Key used to make resquest to #{ uri} is invalid! Response returned anyway."): void

[14] res: Response

[13] flag_warning: void

azure: Service

[7] detect_labels(uri): File

[8] http_response

azure

[9] «create»
req: Request

res: Response
[10] «create»

resreq

[11] res

e: Exception

e

[15] «raise("Invalid key attempted to make request")»

[16] e: Exception

[4] severity: BenchmarkSeverity

[5] severity

consumer

265

Figure A.11: State diagram of high-level workflows in the architectural tactic.

Gather
representative

dataset
Benchmark dataset
at t0 as a baseline

Get benchmark key
from baseline
benchmark

Make request to
service using latest

benchmark key

Re-assess
benchmark from
latest baseline

Yes

No Response from
request is OK

Has key
expired?

Evolution
occured?

Raise exception or
warn developer

Expire current key
being usedYes

266
A
dditionalFigures

Figure A.12: Evolution occurring in the benchmark and how the architectural tactic notifies the consumer.

[1] «execute cronjob»
[2] benchmark(uris): BenchmarkKey

breq: BatchRequest

azure: Service

[6] detect_labels(uri): File

[8] «create»
req: Request

[7] http_response

res: Response
[9] «create»

nkey: BenchmarkKey
[11] «create»

azure_brc nkeybreq resreqazure

azure_brc.scheduler

[3] send_uris_async(uris): BenchmarkRequest

[5] send_uri(uri): Response

[10] breq

azure_brc:
BenchmarkedRequestClient

Alternative

[if key_valid = false]

[4] «create»

[12] valid_against(nkey): Boolean

azure_brc.current_key:
BenchmarkKey

[15] current_key = nkey

[13] key_valid

[14] expire: void

Loop

[each uri
 in uris]

breq is provided
to constructor of
req to indicate this
request is part of the
BatchRequest that
benchmarked the
dataset

Each uri is sent over
multiple threads to
improve benchmark
performance

See conditions
that make key
valid

Conditions for a key to be valid
- both keys use the same services
- both keys encode the same URIs
- both keys have successful BatchRequests
- both keys must have BatchRequests with the

same number of Resposne objects
- both keys must have the same cardinality of

labels, within a margin of error of x delta labels
- for every label, each label must have a

confidence value between both within a margin
of error of y, i.e.:
abs(conf(labeln , azure_brc.current_key) ?
 conf(labeln , nkey)) <= y

The raw http_response
is encoded within the res
Response instance

azure_brc.scheduler

267

Figure A.13: Evolution occurring in an intelligent service and how the architectural tactic handles it.

Facade

Benchmark
Dataset

Behaviour
Token
«at t0»

«generates»

Consumer

«uploads»

t0

t1

t2

FacadeRequest 1

Behaviour
Token
«at t1»

FacadeRequest 2

«validates»

Behaviour
Token
«at t2»

FacadeRequest 3

«invokes»

«using»

200 OK

200 OK

412 Precondition Failed

Service

Model 1

Model 2

«evolves»

Sc
he

du
le

r

«req/res»

«req/res»

«req/res»

Benchmark dataset
no longer with set
tolerances

«generates»

«generates»

APPENDIXB

Reference Architecture Source Code

Listing B.1: Implementation of architecture module components.

1 # frozen_string_literal: true
2
3 # Author:: Alex Cummaudo (mailto:ca@deakin.edu.au)
4 # Copyright:: Copyright (c) 2019 Alex Cummaudo
5 # License:: MIT License
6
7 require 'sequel'
8 require 'logger'
9 require 'stringio'
10 require 'binding_of_caller'
11 require 'dotenv/load'
12 require 'google/cloud/vision'
13 require 'aws-sdk-rekognition'
14 require 'net/http/post/multipart'
15 require 'down'
16 require 'uri'
17 require 'json'
18 require 'tempfile'
19 require 'rufus-scheduler'
20
21 # Intelligent Computer Vision Service Benchmarker (ICVSB) module. This module
22 # implements an architectural pattern that helps overcome evolution issues
23 # within intelligent computer vision services.
24 module ICVSB
25 Thread.abort_on_exception = true
26 # The valid services this version of the ICVSB module supports. At present the
27 # only services supported are Google Cloud Vision, Amazon Rekognition, and
28 # Azure Computer Vision and their respective labelling/tagging endpoints. You
29 # can also request the demo.
30 # @see https://cloud.google.com/vision/docs/labels
31 # Google Cloud Vision labelling endpoint.
32 # @see https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectLabels.html
33 # Amazon Rekognition's labelling endpoint.
34 # @see https://docs.microsoft.com/en-us/rest/api/cognitiveservices/

↩→ computervision/tagimage/tagimage

269

270 Reference Architecture Source Code

35 # Azure Computer Visions's tagging endpoint.
36 VALID_SERVICES = %i[google_cloud_vision amazon_rekognition

↩→ azure_computer_vision demo].freeze
37
38 # A list of the valid severities that the ICVSB module supports. Exception
39 # prevents the response from being accessed; warning will still produce a
40 # response but the +error+ field will be filled in; info will only log
41 # errors to the ICVSB log file and keep +error+ empty and none ignores the
42 # errors entirely.
43 VALID_SEVERITIES = %i[exception warning info none].freeze
44
45 # Logs a messaage to the global ICVSB logger. If called from within the
46 # stack trace of a RequestClient, it will also add the message provided
47 # the RequestClient's log associated with the RequestClient's object id.
48 # @param [Logger::Severity] severity The type of severity to log.
49 # @param [String] message The message to log.
50 def self.lmessage(severity, message)
51 unless [Logger::DEBUG, Logger::INFO, Logger::WARN, Logger::ERROR, Logger::

↩→ FATAL, Logger::UNKNOWN].include?(severity)
52 raise ArgumentError, 'Severity must be a Logger::Severity type'
53 end
54 raise ArgumentError, 'Message must be a string' unless message.is_a?(String)
55
56 @log ||= Logger.new(ENV['ICVSB_LOGGER_FILE'] || STDOUT)
57
58 # Add message to global ICVSB logger
59 @log.add(severity, message)
60 # Find object_id within request_clients... when found add this message w/
61 # severity to that RC's log too
62 binding.frame_count.times do |n|
63 caller_obj_id = binding.of_caller(n).eval('object_id')
64 if @request_clients.keys.include?(caller_obj_id)
65 @request_clients[caller_obj_id].log(severity, "[RequestClient=#{

↩→ caller_obj_id}] #{message}")
66 break
67 end
68 end
69 end
70
71 # Logs an error to the global ICVSB logger.
72 # @param [String] message The message to log.
73 def self.lerror(message)
74 lmessage(Logger::ERROR, message)
75 end
76
77 # Logs a warning to the global ICVSB logger.
78 # @param [String] message The message to log.
79 def self.lwarn(message)
80 lmessage(Logger::WARN, message)
81 end
82
83 # Logs an info message to the global ICVSB logger.
84 # @param [String] message The message to log.
85 def self.linfo(message)
86 lmessage(Logger::INFO, message)
87 end
88
89 # Logs a debug message to the global ICVSB logger.
90 # @param [String] message The message to log.
91 def self.ldebug(message)
92 lmessage(Logger::DEBUG, message)
93 end
94
95 # Register's a request client to the ICVSB's register of request clients.

271

96 # @param [RequestClient] request_client The request client to register.
97 def self.register_request_client(request_client)
98 raise ArgumentError, 'request_client must be a RequestClient' unless

↩→ request_client.is_a?(RequestClient)
99
100 @request_clients ||= {}
101 @request_clients[request_client.object_id] = request_client
102 end
103
104 #################################
105 # Database schema creation seed #
106 #################################
107 url = ENV['ICVSB_DATABASE_CONNTECTION_URL'] || 'sqlite://icvsb.db'
108 log = ENV['ICVSB_DATABASE_LOG_FILE'] || 'icvsb.db.log'
109 dbc = Sequel.connect(url, logger: Logger.new(log))
110 # Create Services and Severity enums...
111 dbc.create_table?(:services) do
112 primary_key :id
113 column :name, String, null: false, unique: true
114 end
115 dbc.create_table?(:benchmark_severities) do
116 primary_key :id
117 column :name, String, null: false, unique: true
118 end
119 if dbc[:services].first.nil?
120 VALID_SERVICES.each { |s| dbc[:services].insert(name: s.to_s) }
121 VALID_SEVERITIES.each { |s| dbc[:benchmark_severities].insert(name: s.to_s) }
122 end
123 # Create Objects...
124 dbc.create_table?(:batch_requests) do
125 primary_key :id
126 column :created_at, DateTime, null: false
127 end
128 dbc.create_table?(:requests) do
129 primary_key :id
130 foreign_key :service_id, :services, null: false
131 foreign_key :batch_request_id, :batch_requests, null: true
132 foreign_key :benchmark_key_id, :benchmark_keys, null: true
133
134 column :created_at, DateTime, null: false
135 column :uri, String, null: false
136
137 index %i[service_id batch_request_id]
138 end
139 dbc.create_table?(:responses) do
140 primary_key :id
141 foreign_key :request_id, :requests, null: false
142
143 column :created_at, DateTime, null: false
144 column :body, File, null: true
145 column :success, TrueClass, null: false
146
147 index :request_id
148 end
149 dbc.create_table?(:benchmark_keys) do
150 primary_key :id
151 foreign_key :service_id, :services, null: false
152 foreign_key :batch_request_id, :batch_requests, null: false
153 foreign_key :benchmark_severity_id, :benchmark_severities, null: false
154
155 column :created_at, DateTime, null: false
156 column :expired, TrueClass, null: false
157 column :delta_labels, Integer, null: false
158 column :delta_confidence, Float, null: false

272 Reference Architecture Source Code

159 column :max_labels, Integer, null: false
160 column :min_confidence, Float, null: false
161 column :expected_labels, String, null: true
162
163 index %i[service_id batch_request_id]
164 end
165
166 # Service representing the list of VALID_SERVICES the ICVSB module supports.
167 class Service < Sequel::Model(dbc)
168 # The Service representing Google Cloud Vision's labelling endpoint.
169 # @see https://cloud.google.com/vision/docs/labels
170 # Google Cloud Vision labelling endpoint.
171 GOOGLE = Service[name: VALID_SERVICES[0].to_s]
172
173 # The Service representing Amazon Rekognition's labelling endpoint.
174 # @see https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectLabels.html
175 # Amazon Rekognition's labelling endpoint.
176 AMAZON = Service[name: VALID_SERVICES[1].to_s]
177
178 # The Service representing Azure Computer Vision's tagging endpoint.
179 # @see https://docs.microsoft.com/en-us/rest/api/cognitiveservices/

↩→ computervision/tagimage/tagimage
180 # Azure Computer Visions's tagging endpoint.
181 AZURE = Service[name: VALID_SERVICES[2].to_s]
182
183 # The Service representing a demonstration of the facade.
184 DEMO = Service[name: VALID_SERVICES[3].to_s]
185 end
186
187 # Severity representing the list of VALID_SEVERITIES the ICVSB module
188 # supports. The severity is encoded within a BenchmarkKey.
189 class BenchmarkSeverity < Sequel::Model(dbc[:benchmark_severities])
190 # Exception severities will prevent responses from being accessed. This
191 # disallows access to the Response object encoded within a
192 # BenchmarkedRequestClient#send_uri_with_key or
193 # BenchmarkedRequestClient#send_uris_with_key result.
194 EXCEPTION = BenchmarkSeverity[name: VALID_SEVERITIES[0].to_s]
195
196 # Warning severities will allow the Response from being accessed but will
197 # additionally populate the +error+ value encoded within a
198 # BenchmarkedRequestClient#send_uri_with_key or
199 # BenchmarkedRequestClient#send_uris_with_key result.
200 WARNING = BenchmarkSeverity[name: VALID_SEVERITIES[1].to_s]
201
202 # Info severities will allow the Response from being accessed encoded within
203 # the result of a BenchmarkedRequestClient#send_uri_with_key or
204 # BenchmarkedRequestClient#send_uris_with_key call, however, information
205 # pertaining to issues with the request will be logged to the ICVSB log
206 # file.
207 INFO = BenchmarkSeverity[name: VALID_SEVERITIES[2].to_s]
208
209 # None severities will essentially ignore all benchmarking capabilities and
210 # 'switches off' the benchmarking.
211 NONE = BenchmarkSeverity[name: VALID_SEVERITIES[3].to_s]
212
213 # Overrides the to_s method to return the name.
214 # @return [String] The name of the severity type.
215 def to_s
216 name
217 end
218 end
219
220 # This class represents a single request made to a Service. It encodes the
221 # service, batch of requests (if applicable) and respective response.

273

222 class Request < Sequel::Model(dbc)
223 many_to_one :service
224 many_to_one :batch
225 many_to_one :benchmark_key
226 one_to_one :response
227
228 # @see Response#success.
229 def success?
230 response.success?
231 end
232 end
233
234 # This class represents a single response returned back from a Service. It
235 # encodes the reqeust that was made to invoke the response.
236 class Response < Sequel::Model(dbc)
237 many_to_one :request
238
239 # Indicates if the response from the request was successful.
240 # @return [Boolean] True if the response was successful or false if the
241 # response contained some issue.
242 def success?
243 success
244 end
245
246 # Returns a hash of the entire response object, decoded form its
247 # Service-specific response Ruby type and into a simple hash object.
248 # @return [Hash] A hash representing the entire Service response object
249 # within a Hash type.
250 def hash
251 return nil if body.nil?
252
253 JSON.parse(body.lit.downcase.to_s, symbolize_names: true).to_h
254 end
255
256 # Returns hash of labels paired with their respective confidence values.
257 # Decodes each Service's individual response syntax into a simple
258 # key-value-pair that can be used for generalised use, regardless of which
259 # Service actually generated the response.
260 # @return [Hash] A hash with key-value-pairs representing the label (key)
261 # and value (confidence) of the response.
262 def labels
263 if success?
264 case request.service
265 when Service::GOOGLE
266 _google_cloud_vision_labels
267 when Service::AMAZON
268 _amazon_rekognition_labels
269 when Service::AZURE
270 _azure_computer_vision_labels
271 when Service::DEMO
272 _demo_service_labels
273 end
274 else
275 {}
276 end
277 end
278
279 # Returns the benchmark key ID of the request.
280 # @return [Integer] The benchmark key id of this response's request.
281 def benchmark_key_id
282 request.benchmark_key.id
283 end
284
285 # Returns the benchmark key of the request.

274 Reference Architecture Source Code

286 # @return [BenchmarkKey] The benchmark key of this response's request.
287 def benchmark_key
288 request.benchmark_key
289 end
290
291 # Sets the benchmark key of the request.
292 # @param [BenchmarkKey] value The new benchmark key to set.
293 # @return [void]
294 def benchmark_key=(value)
295 request.benchmark_key = value
296 request.save
297 end
298
299 # Sets the benchmark key id of the request.
300 # @param [Integer] value The new benchmark key id to set.
301 # @return [void]
302 def benchmark_key_id=(value)
303 request.benchmark_key_id = value
304 request.save
305 end
306
307 private
308
309 # Decodes a Google Cloud Vision label endpoint response into a simple hash.
310 # @return [Hash] A key-value-pair representing label => confidence.
311 def _google_cloud_vision_labels
312 hash[:responses][0][:label_annotations].map do |label|
313 [label[:description].downcase, label[:score]]
314 end.to_h
315 end
316
317 # Decodes an Amazon Rekognition label endpoint response into a simple hash.
318 # @return [Hash] See #{#_google_cloud_vision_labels}.
319 def _amazon_rekognition_labels
320 hash[:labels].map do |label|
321 [label[:name].downcase, label[:confidence] * 0.01]
322 end.to_h
323 end
324
325 # Decodes an Azure Computer Vision tagging endpoint into a simple hash.
326 # @return [Hash] See #{#_google_cloud_vision_labels}.
327 def _azure_computer_vision_labels
328 hash[:tags].map do |label|
329 [label[:name].downcase, label[:confidence]]
330 end.to_h
331 end
332
333 # Decodes the mock demo service response into a simple hash. This is simply
334 # a relay of Google's as the data is from Google Cloud Vision.
335 # @return [Hash] A key-value-pair representing label => confidence.
336 def _demo_service_labels
337 _google_cloud_vision_labels
338 end
339 end
340
341 # The batch request class collates multiple requests (URIs) invoked to a
342 # single Service's endpoint in a single request. It encodes all requests
343 # made to the service and can produce all responses back.
344 class BatchRequest < Sequel::Model(dbc)
345 one_to_many :requests
346
347 # Indicates if every request in the batch of requests made were successful.
348 # @return [Boolean] True if every response was successful, false
349 # otherwise.

275

350 def success?
351 requests.map(&:success?).reduce(:&)
352 end
353
354 # Maps all Response objects that were returned back from this batch to an
355 # array.
356 # @return [Array<Response>] An array of Response objects from every Request
357 # made in this batch.
358 def responses
359 requests.map(&:response)
360 end
361
362 # Maps all URIs that were requested back within this batch.
363 # @return [Array<String>] An array of URI strings from every Request
364 # made in this batch.
365 def uris
366 requests.map(&:uri)
367 end
368 end
369
370 # The Benchmark Key encodes all information pertaining to the evolution of a
371 # specific service and is used to validate if a benchmark dataset has evolved
372 # with time. This key must be used in conjunction with the
373 # BenchmarkedRequestClient to ensure that responses made are still reasonable

↩→ to
374 # use or if the service should be re-benchmarked against a new dataset.
375 class BenchmarkKey < Sequel::Model(dbc)
376 many_to_one :service
377 many_to_one :benchmark_severity
378 many_to_one :batch_request
379
380 # Class that encapsulates reasons why a benchmark key can be invalided.
381 class InvalidKeyError
382 module InvalidKeyErrorType
383 NO_KEY_YET = 'No key yet exists. It is likely key is still benchmarking

↩→ its first results.'
384 SERVICE_MISMATCH = 'Keys use different services'
385 DATASET_MISTMATCH = 'Keys have different benchmark datasets'
386 SUCCESS_MISMATCH = 'One or both keys do not have successful service

↩→ responses'
387 MIN_CONFIDENCE_MISMATCH = 'Keys have different min confidence values'
388 MAX_LABELS_MISMATCH = 'Keys have different max label values'
389 RESPONSE_LENGTH_MISMATCH = 'Keys have different number of responses'
390 LABEL_DELTA_MISMATCH = 'Number of labels in one key exceeds the label

↩→ delta threshold'
391 CONFIDENCE_DELTA_MISMATCH = 'Confidence value for a label in one key

↩→ exceeds the confidence delta threshold'
392 EXPECTED_LABELS_MISMATCH = 'Expected labels missing from response'
393 end
394
395 include InvalidKeyErrorType
396 attr_reader :errorname, :errorcode, :data
397
398 def initialize(errortype, data = '')
399 @errorname = InvalidKeyErrorType.constants.find { |c| InvalidKeyErrorType.

↩→ const_get(c) == errortype }
400 @errorcode = InvalidKeyErrorType.constants.index(@errorname)
401 @data = data
402 end
403
404 def to_s
405 "[#{@errorcode}::#{@errorname}] #{@data}"
406 end
407

276 Reference Architecture Source Code

408 def to_h
409 {
410 error_code: @errorcode,
411 error_type: @errorname,
412 error_data: @data
413 }
414 end
415 end
416
417 # @see BatchRequest#success?
418 def success?
419 batch_request.success?
420 end
421
422 # An alias for the +expired+ field on the key, adding a question mark at the
423 # end to make the field more 'Ruby-esque'.
424 # @return [Boolean] True if the key has expired and thus should not be used
425 # for future requests as it is no longer valid.
426 def expired?
427 expired
428 end
429
430 # Expires this key by writing over its +expired+ field and marking it
431 # true.
432 # @return [void]
433 def expire
434 self.expired = true
435 save
436 end
437
438 # Un-expires this key by writing over its +expired+ field and marking it
439 # true.
440 # @return [void]
441 def unexpire
442 self.expired = false
443 save
444 end
445
446 # Returns the comma-separated mandatory labels list as an set of values
447 # @return [Set<String>] The set of mandatory labels required by this key.
448 def expected_labels_set
449 Set[*expected_labels.split(',').map(&:downcase)]
450 end
451
452 # Validates another key against this key to ensure if the two keys are
453 # compatible or if evolution has occured iff BenchmarkKey is provided to
454 # +key_or_response+. If a Response is provided instead, then validates that
455 # the response is okay against this key's encoded parameters.
456 # @param [BenchmarkKey,Response] key_or_response A key or response to
457 # validate against.
458 # @return [Array<Boolean,Array<BenchmarkKey::InvalidKeyError>>] Returns +true+

↩→ if
459 # this key is valid against the other key OR a tuple with +false+ and
460 # BenchmarkKey::InvalidKeyError to explain why the key is invalid.
461 def valid_against?(key_or_response)
462 if key_or_response.is_a?(BenchmarkKey)
463 _validate_against_key(key_or_response)
464 elsif key_or_response.is_a?(Response)
465 _validate_against_response(key_or_response)
466 else
467 raise ArgumentError, 'key_or_response must be a BenchmarkKey or Response

↩→ type'
468 end
469 end

277

470
471 private
472
473 # Validates a key against this key as per rules encoded within this key.
474 # @param [BenchmarkKey] key The key to validate.
475 # @return See #valid_against?
476 def _validate_against_key(key)
477 ICVSB.linfo("Validating key id=#{id} with other key id=#{key.id}")
478
479 # True if same key id...
480 return true if key == self
481
482 invalid_key_errors = []
483
484 # 1. Ensure same services!
485 if key.service == service
486 ICVSB.ldebug('Services both match')
487 else
488 ICVSB.lwarn("Service mismatch in validation: #{key.service.name} != #{

↩→ service.name}")
489 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
490 BenchmarkKey::InvalidKeyError::SERVICE_MISMATCH, {
491 source_key: {
492 id: id,
493 created_at: created_at,
494 service_name: service.name
495 },
496 violating_key: {
497 id: key.id,
498 created_at: key.created_at,
499 service_name: key.service.name
500 },
501 message: "Source key (id=#{id}) service=#{service.name} but "\
502 "validation key (id=#{key.id}) service=#{key.service.name}."
503 }
504)
505 end
506
507 # 2. Ensure same benchmark dataset
508 symm_diff_uris = Set[*batch_request.uris] ^ Set[*key.batch_request.uris]
509 if symm_diff_uris.empty?
510 ICVSB.ldebug('Same benchmark dataset has been used')
511 else
512 ICVSB.lwarn('Benchmark dataset mismatch in key validation: '\
513 "Symm difference contains #{symm_diff_uris.count} different URIs")
514 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
515 BenchmarkKey::InvalidKeyError::DATASET_MISTMATCH, {
516 source_key: {
517 id: id,
518 created_at: created_at,
519 dataset: batch_request.uris
520 },
521 violating_key: {
522 id: key.id,
523 created_at: key.created_at,
524 dataset: key.batch_request.uris
525 },
526 dataset_symmetric_difference: symm_diff_uris.to_a,
527 message: "Source key (id=#{id}) and valiation key (id=#{key.id}) have

↩→ different "\
528 "benchmark dataset URIS. The symmetric difference is: #{symm_diff_uris.

↩→ to_a}."
529 }
530)

278 Reference Architecture Source Code

531 end
532
533 # 3. Ensure successful request made in BOTH instances
534 our_key_success = success?
535 their_key_success = key.success?
536 if our_key_success && their_key_success
537 ICVSB.ldebug('Both keys were successful')
538 else
539 ICVSB.lwarn('Sucesss mismatch in key validation')
540 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
541 BenchmarkKey::InvalidKeyError::SUCCESS_MISMATCH, {
542 source_key: {
543 id: id,
544 created_at: created_at,
545 successful_response: our_key_success
546 },
547 violating_key: {
548 id: key.id,
549 created_at: key.created_at,
550 successful_response: their_key_success
551 },
552 message: "Source key (id=#{id}) success=#{our_key_success} but "\
553 "validation key (id=#{key.id}) success=#{their_key_success}."
554 }
555)
556 end
557
558 # 4. Ensure the same max labels
559 if key.max_labels == max_labels
560 ICVSB.ldebug('Both keys have same max labels')
561 else
562 ICVSB.lwarn('Max labels mismatch in key validation')
563 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
564 BenchmarkKey::InvalidKeyError::MAX_LABELS_MISMATCH, {
565 source_key: {
566 id: id,
567 created_at: created_at,
568 max_labels: max_labels
569 },
570 violating_key: {
571 id: key.id,
572 created_at: key.created_at,
573 max_labels: key.max_labels
574 },
575 message: "Source key (id=#{id}) max_labels=#{max_labels} but "\
576 "validation key (id=#{key.id}) max_labels=#{key.max_labels}."
577 }
578)
579 end
580
581 # 5. Ensure the same min confs
582 if key.min_confidence == min_confidence
583 ICVSB.ldebug('Both keys have same min confidence')
584 else
585 ICVSB.lwarn('Minimum confidence or max labels mismatch in key validation')
586 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
587 BenchmarkKey::InvalidKeyError::MIN_CONFIDENCE_MISMATCH, {
588 source_key: {
589 id: id,
590 created_at: created_at,
591 min_confidence: min_confidence
592 },
593 violating_key: {
594 id: key.id,

279

595 created_at: key.created_at,
596 min_confidence: key.min_confidence
597 },
598 message: "Source key (id=#{id}) min_confience=#{min_confidence} but "\
599 "validation key (id=#{key.id}) min_confidence=#{key.min_confidence}."
600 }
601)
602 end
603
604 # 6. Ensure same number of results... (responses... not labels!)
605 our_response_length = batch_request.responses.length
606 their_response_length = key.batch_request.responses.length
607 if our_response_length == their_response_length
608 ICVSB.ldebug('Both keys have same number of encoded responses')
609 else
610 ICVSB.lwarn('Number of responses mismatch in key validation')
611 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
612 BenchmarkKey::InvalidKeyError::RESPONSE_LENGTH_MISMATCH, {
613 source_key: {
614 id: id,
615 created_at: created_at,
616 num_responses: our_response_length
617 },
618 violating_key: {
619 id: key.id,
620 created_at: key.created_at,
621 num_responses: their_response_length
622 },
623 message: "Source key (id=#{id}) responses#=#{our_response_length} but "

↩→ \
624 "validation key (id=#{key.id}) responses#=#{their_response_length}."
625 }
626)
627 end
628
629 # 7. Validate every label delta and confidence delta
630 our_requests = batch_request.requests
631 their_requests = key.batch_request.requests
632 our_requests.each do |our_request|
633 this_uri = our_request.uri
634 their_request = their_requests.find { |r| r.uri == this_uri }
635
636 our_labels = Set[*our_request.response.labels.keys]
637 their_labels = Set[*their_request.response.labels.keys]
638
639 # 7a. Label delta
640 symm_diff_labels = our_labels ^ their_labels
641
642 msg_suffix = "URI = #{this_uri} from #{their_request.created_at} (req_id

↩→ =#{their_request.id})"\
643 " to #{our_request.created_at} (req_id=#{our_request.id})"
644
645 ICVSB.ldebug("Request id=#{our_request.id} {#{our_labels.to_a}} against "\
646 "id=#{their_request.id} {#{their_labels.to_a}} - symm diff "\
647 "= {#{symm_diff_labels.to_a}}")
648 if symm_diff_labels.length > delta_labels
649 ICVSB.lwarn("Number of labels mismatch in key validation (margin of error

↩→ =#{delta_labels}): "\
650 "New/dropped labels = '#{(our_labels - their_labels).to_a.map { |l| "+#

↩→ {l}" }.join(',')}'"\
651 "#{(their_labels - our_labels).to_a.map { |l| "-#{l}" }.join(',')}")
652 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
653 BenchmarkKey::InvalidKeyError::LABEL_DELTA_MISMATCH, {
654 source_key: {

280 Reference Architecture Source Code

655 id: id,
656 created_at: created_at
657 },
658 source_response: {
659 id: our_request.id,
660 created_at: our_request.created_at,
661 body: our_request.response.hash
662 },
663 violating_key: {
664 id: key.id,
665 created_at: key.created_at
666 },
667 violating_response: {
668 id: their_request.id,
669 created_at: their_request.created_at,
670 body: their_request.response.hash
671 },
672 uri: this_uri,
673 delta_labels_threshold: delta_labels,
674 delta_labels_detected: symm_diff_labels.length,
675 new_labels: (our_labels - their_labels).to_a,
676 dropped_labels: (their_labels - our_labels).to_a,
677 message: "Source key (id=#{id}) and validation key (id=#{key.id})

↩→ have #{symm_diff_labels.length} "\
678 "differing labels, which exceeds the delta label value of #{

↩→ delta_labels}. "\
679 "New/dropped labels = '#{(our_labels - their_labels).to_a.map { |l| "

↩→ +#{l}" }.join(',')}"\
680 "#{(their_labels - our_labels).to_a.map { |l| "-#{l}" }.join(',')}'"\
681 ". #{msg_suffix}."
682 }
683)
684 else
685 ICVSB.ldebug("Number of labels match both keys (within margin of error #{

↩→ delta_labels})")
686 end
687
688 # 7b. Confidence delta
689 delta_confs_exceeded = {}
690 our_request.response.labels.each do |label, conf|
691 our_conf = conf
692 their_conf = their_request.response.labels[label]
693
694 if their_conf.nil?
695 ICVSB.ldebug("The label #{label} does not exist in the response id=#{

↩→ their_request.response.id}. "\
696 'Skipping confidence comparison...')
697 next
698 end
699
700 delta = our_conf - their_conf
701 ICVSB.ldebug("Request id=#{our_request.id} against id=#{their_request.id}

↩→ "\
702 "for label '#{label}' confidence: #{our_conf}, #{their_conf} (delta=#{

↩→ delta})")
703 if delta > delta_confidence
704 ICVSB.lwarn(
705 "Maximum confidence delta breached in key validation (margin of error

↩→ =#{delta_confidence}). "\
706 "#{msg_suffix}."
707)
708 delta_confs_exceeded[label] = delta
709 end
710 end

281

711 if delta_confs_exceeded.empty?
712 ICVSB.ldebug("Both keys have confidence within margin of error #{

↩→ delta_confidence}")
713 else
714 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
715 BenchmarkKey::InvalidKeyError::CONFIDENCE_DELTA_MISMATCH, {
716 source_key: {
717 id: id,
718 created_at: created_at
719 },
720 source_response: {
721 id: our_request.id,
722 created_at: our_request.created_at,
723 body: our_request.response.hash
724 },
725 violating_key: {
726 id: key.id,
727 created_at: key.created_at
728 },
729 violating_response: {
730 id: their_request.id,
731 created_at: their_request.created_at,
732 body: their_request.response.hash
733 },
734 uri: this_uri,
735 delta_confidence_threshold: delta_confidence,
736 delta_confidences_detected: delta_confs_exceeded,
737 message: "Source key (id=#{id}) has exceeded confidence delta of "\
738 "validation key (id=#{key.id}): #{delta_confs_exceeded}. #{

↩→ msg_suffix}."
739 }
740)
741 end
742
743 # Check if the responses are valid against this key
744 valid_response, invalid_reasons = valid_against?(our_request.response)
745 if valid_response
746 ICVSB.ldebug('Our response is valid against this key')
747 else
748 invalid_key_errors += invalid_reasons
749 end
750 end
751
752 [invalid_key_errors.empty?, invalid_key_errors.sort_by(&:errorcode)]
753 end
754
755 # Validates a response against this key as per rules encoded within this key.
756 # @param [Response] key The response to validate.
757 # @return See #valid_against?
758 def _validate_against_response(response)
759 invalid_key_errors = []
760
761 missing_expected_labels = expected_labels_set - Set[*response.labels.keys]
762 unless missing_expected_labels.empty?
763 invalid_key_errors << BenchmarkKey::InvalidKeyError.new(
764 BenchmarkKey::InvalidKeyError::EXPECTED_LABELS_MISMATCH, {
765 source_key: {
766 id: id,
767 created_at: created_at
768 },
769 violating_response: {
770 id: response.id,
771 created_at: response.created_at,
772 body: response.hash

282 Reference Architecture Source Code

773 },
774 uri: response.request.uri,
775 expected_labels: expected_labels.split(','),
776 labels_detected: response.labels.keys,
777 labels_missing: missing_expected_labels.to_a,
778 message: "Expected key (id=#{id}) expects the following mandatory

↩→ labels: '#{expected_labels}'. "\
779 "However, response (id=#{response.id}) has the following labels: '#{

↩→ response.labels.keys.join(',')}'. "\
780 "The following labels are missing: '#{missing_expected_labels.to_a.join

↩→ (',')}'."
781 }
782)
783 end
784
785 [invalid_key_errors.empty?, invalid_key_errors]
786 end
787 end
788
789 # The Request Client class is used to make non-benchmarked requests to the
790 # provided service's labelling endpoints. It handles creating respective
791 # +Request+ and +Response+ records to be commited to the benchmarker database.
792 # Requests made with the +RequestClient+ do *not* ensure that evolution risk
793 # has occured (see BenchmarkedRequestClient).
794 class RequestClient
795 # Initialises a new instance of the requester to label endpoints.
796 # @param [Service] service The service to request from.
797 # @param [Fixnum] max_labels The maximum labels that the requester returns.
798 # Only supported if the service supports this parameter. Default is 100
799 # labels.
800 # @param [Float] min_confidence The confidence threshold by which labels
801 # are returned. Only supported if the service supports this parameter.
802 # Default is 0.50.
803 def initialize(service, max_labels: 100, min_confidence: 0.50)
804 unless service.is_a?(Service) && [Service::GOOGLE, Service::AMAZON, Service

↩→ ::AZURE, Service::DEMO].include?(service)
805 raise ArgumentError, "Service with name #{service.name} not supported."
806 end
807
808 # Registers logging for this client
809 ICVSB.register_request_client(self)
810 @logstrio = StringIO.new
811 @log = Logger.new(@logstrio)
812
813 @service = service
814 @service_client =
815 case @service
816 when Service::GOOGLE
817 Google::Cloud::Vision::ImageAnnotator.new
818 when Service::AMAZON
819 Aws::Rekognition::Client.new
820 when Service::AZURE
821 URI('https://australiaeast.api.cognitive.microsoft.com/vision/v2.0/tag')
822 when Service::DEMO
823 nil # Not client needed for mock...
824 end
825 @config = {
826 max_labels: max_labels,
827 min_confidence: min_confidence
828 }
829 @max_labels = max_labels
830 @min_confidence = min_confidence
831 end
832

283

833 attr_reader :max_labels, :min_confidence
834
835 # Sends a request to the client's respective service endpoint. Does *not*
836 # validate a response against a key (see BenchmarkedRequestClient).
837 # Params:
838 # @param [String] uri A URI to an image to detect labels.
839 # @param [BatchRequest] batch The batch that the request is being made
840 # under. Defaults to nil.
841 # @return [Response] The response record commited to the benchmarker
842 # database.
843 def send_uri(uri, batch: nil)
844 raise ArgumentError, 'URI must be a string.' unless uri.is_a?(String)
845 raise ArgumentError, 'Batch must be a BatchRequest.' if !batch.nil? && !

↩→ batch.is_a?(BatchRequest)
846
847 batch_id = batch.nil? ? nil : batch.id
848 ICVSB.ldebug("Sending URI #{uri} to #{@service.name} - batch_id: #{batch_id}

↩→ ")
849
850 begin
851 request_start = DateTime.now
852 exception = nil
853 case @service
854 when Service::GOOGLE
855 response = _request_google_cloud_vision(uri)
856 when Service::AMAZON
857 response = _request_amazon_rekognition(uri)
858 when Service::AZURE
859 response = _request_azure_computer_vision(uri)
860 when Service::DEMO
861 response = _request_demo_service(uri)
862 end
863 ICVSB.ldebug("Succesful response for URI #{uri} to #{@service.name} (

↩→ batch_id=#{batch_id})")
864 rescue StandardError => e
865 ICVSB.lwarn("Exception caught in send_uri: #{e.class} - #{e.message}")
866 exception = e
867 end
868 request = Request.create(
869 service_id: @service.id,
870 created_at: request_start,
871 uri: uri,
872 batch_request_id: batch_id
873)
874 response = Response.create(
875 created_at: DateTime.now,
876 body: response[:body],
877 success: exception.nil? && response[:success],
878 request_id: request.id
879)
880 ICVSB.ldebug("Request saved (id=#{request.id}) with response (id=#{response.

↩→ id})")
881 response
882 end
883
884 # Sends a batch request with multiple images to client's respective service
885 # endpoint. Does *not* validate a response against a key (see
886 # ICVSB::BenchmarkedRequestClient).
887 # @param [Array<String>] uris An array of URIs to an image to detect labels.
888 # @return [BatchRequest] The batch request that was created.
889 def send_uris(uris)
890 raise ArgumentError, 'URIs must be an array of strings.' unless uris.is_a?(

↩→ Array)
891

284 Reference Architecture Source Code

892 batch_request = BatchRequest.create(created_at: DateTime.now)
893 ICVSB.linfo("Initiated a batch request for #{uris.count} URIs")
894 uris.each do |uri|
895 send_uri(uri, batch: batch_request)
896 end
897 ICVSB.linfo("Batch is complete (id=#{batch_request.id})")
898 batch_request
899 end
900
901 # Performs the same operation as send_uris but performs sends each URI
902 # asynchronously. Saves a lot of time if you have lots of URIs. This method
903 # should not be used with an SQLite database.
904 # @see #send_uris
905 # @param [Array<String>] uri See #send_uris
906 # @return [Array<BatchRequest, Array<Thread>] Returns both the array and an
907 # array of threads representing each request. Call +threads.join(&:each)+
908 # to ensure all requests have finished.
909 def send_uris_async(uris)
910 raise ArgumentError, 'URIs must be an array of strings.' unless uris.is_a?(

↩→ Array)
911 if ICVSB::Request.superclass.db.url.start_with?('sqlite')
912 raise StandardError, 'You are using SQLite and thus async operations are

↩→ not supported.'
913 end
914
915 threads = []
916 batch_request = BatchRequest.create(created_at: DateTime.now)
917 ICVSB.linfo("Initiated an async batch request for #{uris.count} URIs")
918 uris.each do |uri|
919 threads << Thread.new do
920 send_uri(uri, batch: batch_request)
921 end
922 end
923 ICVSB.linfo("Async batch submitted (id=#{batch_request.id}). Wait for this

↩→ batch to be complete!")
924 [batch_request, threads]
925 end
926
927 # Adds a message of a specific severity to this client's logger.
928 # @param [Logger::Severity] severity The type of severity to log.
929 # @param [String] message The message to log.
930 def log(severity, message)
931 unless [Logger::DEBUG, Logger::INFO, Logger::WARN, Logger::ERROR, Logger::

↩→ FATAL, Logger::UNKNOWN]
932 .include?(severity)
933 raise ArgumentError, 'Severity must be a Logger::Severity type'
934 end
935 raise ArgumentError, 'Message must be a string' unless message.is_a?(String)
936
937 @log.add(severity, message)
938 end
939
940 # Gets the log of this client as a string.
941 # @return [String] The entire log.
942 def read_log
943 @logstrio.string
944 end
945
946 private
947
948 # Makes a request to Google Cloud Vision's +LABEL_DETECTION+ feature.
949 # @see https://cloud.google.com/vision/docs/labels
950 # @param [String] uri A URI to an image to detect labels. Google Cloud
951 # Vision supports JPEGs, PNGs, GIFs, BMPs, WEBPs, RAWs, ICOs, PDFs and

285

952 # TIFFs only.
953 # @return [Hash] A hash containing the response +body+ and whether the
954 # request was +success+ful.
955 def _request_google_cloud_vision(uri)
956 begin
957 image = _download_image(
958 uri,
959 %w[
960 image/jpeg
961 image/png
962 image/gif
963 image/webp
964 image/x-dcraw
965 image/vnd.microsoft.icon
966 application/pdf
967 image/tiff
968]
969)
970 exception = nil
971 res = @service_client.label_detection(
972 image: image.open,
973 max_results: @max_labels
974).to_h
975 rescue StandardError => e
976 exception = e
977 res = { service_error: "#{exception.class} - #{exception.message}" }
978 end
979 {
980 body: res.to_json,
981 success: exception.nil? && res.key?(:responses)
982 }
983 end
984
985 # Makes a request to Amazon Rekogntiion's +DetectLabels+ endpoint.
986 # @see https://docs.aws.amazon.com/rekognition/latest/dg/API_DetectLabels.html
987 # @param [String] uri A URI to an image to detect labels. Amazon Rekognition
988 # only supports JPEGs and PNGs.
989 # @return (see #_request_google_cloud_vision)
990 def _request_amazon_rekognition(uri)
991 begin
992 image = _download_image(uri, %w[image/jpeg image/png])
993 exception = nil
994 res = @service_client.detect_labels(
995 image: {
996 bytes: image.read
997 },
998 max_labels: @max_labels,
999 min_confidence: @min_confidence
1000).to_h
1001 rescue StandardError => e
1002 exception = e
1003 res = { service_error: "#{e.class} - #{e.message}" }
1004 end
1005 {
1006 body: res.to_json,
1007 success: exception.nil? && res.key?(:labels)
1008 }
1009 end
1010
1011 # Makes a request to Azure's +analyze+ endpoint with +visualFeatures+ of
1012 # +Tags+.
1013 # @see https://docs.microsoft.com/en-us/rest/api/cognitiveservices/

↩→ computervision/tagimage/tagimage
1014 # @param [String] uri A URI to an image to detect labels. Azure Computer

286 Reference Architecture Source Code

1015 # Vision only supports JPEGs, PNGs, GIFs, and BMPs.
1016 # @return (see #_request_google_cloud_vision)
1017 def _request_azure_computer_vision(uri)
1018 image = _download_image(uri, %w[image/jpeg image/png image/gif image/bmp])
1019
1020 http_req = Net::HTTP::Post::Multipart.new(
1021 @service_client,
1022 file: UploadIO.new(image.open, image.content_type, image.original_filename

↩→)
1023)
1024 http_req['Ocp-Apim-Subscription-Key'] = ENV['AZURE_SUBSCRIPTION_KEY']
1025
1026 http_res = Net::HTTP.start(@service_client.host, @service_client.port,

↩→ use_ssl: true) do |h|
1027 h.request(http_req)
1028 end
1029
1030 tags_present = JSON.parse(http_res.body).key?('tags')
1031 {
1032 body: tags_present ? http_res.body : { service_error: http_res.body },
1033 success: tags_present
1034 }
1035 end
1036
1037 # Makes a request to the mock demo server, returning JSON data at time 1
1038 # (t1) or time 2 (t2), depending on the timestamp flip (which can be
1039 # triggered by the PATCH /benchmark/:key endpoint).
1040 # @param [String] uri A URI to an image to detect labels.
1041 # @return (see #_request_google_cloud_vision)
1042 def _request_demo_service(uri)
1043 # Get the image id from the URI...
1044 rexp = %r{http:\/\/localhost:4567\/demo\/data\/(\d{4,12})\.jpe?g}
1045
1046 all_image_ids = JSON.parse(
1047 File.read(File.join('demo', 'categories.json'))
1048)['all']
1049
1050 invalid_uri = (uri =~ rexp).nil?
1051 image_id = uri.match(rexp)[1] unless invalid_uri
1052 invalid_image_id = !all_image_ids.include?(image_id)
1053
1054 # Mock service can be switched to t1 or t2 at demo endpoint...
1055 body =
1056 if invalid_uri || invalid_image_id
1057 { service_error: 'The URI is not a valid demo URI.' }
1058 else
1059 body = JSON.parse(File.read(File.join('demo', "#{image_id}.#{

↩→ demo_timestamp}.json")))
1060 { responses: [body] }#[{ label_annotations: body }] }
1061 end
1062
1063 {
1064 body: body.to_json,
1065 success: !(invalid_uri || invalid_image_id)
1066 }
1067 end
1068
1069 # Downloads the image at the specified URI.
1070 # @param [String] uri The URI to download.
1071 # @param [Array<String>] mimes Accepted mime types.
1072 # @return [File] if download was successful.
1073 def _download_image(uri, mimes)
1074 raise ArgumentError, 'URI must be a string.' unless uri.is_a?(String)
1075 raise ArgumentError, 'Mimes must be an array of strings.' unless mimes.is_a

287

↩→ ?(Array)
1076 raise ArgumentError, "Invalid URI specified: #{uri}." unless uri =~ URI::

↩→ DEFAULT_PARSER.make_regexp
1077
1078 ICVSB.ldebug("Downloading image at URI: #{uri}")
1079 file = Down.download(uri)
1080 mime = file.content_type
1081
1082 unless mimes.include?(mime)
1083 raise ArgumentError, "Content type of URI #{uri} not accepted. Recieved #{

↩→ mime}. Valid are: #{mimes}."
1084 end
1085
1086 file
1087 rescue Down::Error => e
1088 raise ArgumentError, "Could not access the URI #{uri} - #{e.class}"
1089 end
1090 end
1091
1092 # The Benchmarked Request Client class is used to make requests to a service's
1093 # labelling endpoints, ensuring that the response from the endpoint has not
1094 # altered significantly as indicated by the expiration flags. It handles
1095 # creating respective +Request+ and +Response+ records to be commited to the
1096 # benchmarker database. Unlike the +RequestClient+, the
1097 # +BenchmarkedRequestClient+ ensures that, respective to a benchmark dataset,
1098 # evolution has not occured and thus is safe to use the endpoint without
1099 # re-evaluation. Requires a BenchmarkKey to make any requests.
1100 class BenchmarkedRequestClient < RequestClient
1101 alias send_uri_no_key send_uri
1102 alias send_uris_no_key send_uris
1103 alias send_uris_no_key_async send_uris_async
1104
1105 # Initialises a new instance of the benchmarked requester to label
1106 # endpoints.
1107 # @param [Service] service (see RequestClient#initialize)
1108 # @param [Array<String>] dataset An array of URIs to benchmark
1109 # against.
1110 # @param [Fixnum] max_labels (see RequestClient#initialize)
1111 # @param [Float] min_confidence (see RequestClient#initialize)
1112 # @param [Hash] opts Additional benchmark-related parameters.
1113 # @option opts [String] :trigger_on_schedule A cron-tab string (see
1114 # +man 5 crontab+) that is used for the benchmarker to re-evaluate if the
1115 # current key should be expired. Default is every Sunday at middnight,
1116 # i.e., +0 0 * * 0+.
1117 # @option opts [String] :trigger_on_failcount Number of times the benchmark
1118 # request fails making requests for the benchmark to re-evalauate. Must
1119 # be a positive, non-zero number for the benchmark to trigger on failure,
1120 # else this field is ignored. Default is 0.
1121 # @option opts [BenchmarkSeverity] :severity The severity of warning for
1122 # the #BenchmarkKey to fail. Default is +BenchmarkSeverity::INFO+.
1123 # @option opts [String] :benchmark_callback_uri The URI to call with results
1124 # of a completed benchmark. Optional. If an invalid URI is specified this
1125 # will default to nil.
1126 # @option opts [String] :warning_callback_uri Required when the +:severity:+
1127 # is +BenchmarkSeverity::WARN+. If left blank, the effect of the benchmark
1128 # client is essentially a severity of +BenchmarkSeverity::NONE+, as no
1129 # warning endpoint can be called to notify of issues. If an invalid URI is
1130 # provided, this will default to nil.
1131 # @option opts [Boolean] :autobenchmark Automatically benchmark the client
1132 # as soon as it it initialised. If +false+, then you will need to call
1133 # the #benchmark method immediately (i.e., on your own thread). Defaults
1134 # to true, so will block the current thread before benchmarking is
1135 # complete.
1136 # @option opts [Fixnum] :delta_labels Number of labels that change for a

288 Reference Architecture Source Code

1137 # #BenchmarkKey to expire. Default is 5.
1138 # @option opts [Float] :delta_confidences Minimum amount of difference for
1139 # the same label to have changed between the last benchmark for the
1140 # #BenchmarkKey to expire. Default is 0.01.
1141 # @option opts [Array<String>] :expected_labels Array of strings for the
1142 # various expected labels that should be expected in every result. Fails
1143 # otherwise. Encoded within the key.
1144 def initialize(service, dataset, max_labels: 100, min_confidence: 0.50, opts:

↩→ {})
1145 super(service, max_labels: max_labels, min_confidence: min_confidence)
1146 @dataset = dataset
1147 @key_config = {
1148 delta_labels: opts[:delta_labels] || 5,
1149 delta_confidence: opts[:delta_confidence] || 0.01,
1150 severity: opts[:severity] || BenchmarkSeverity::INFO,
1151 expected_labels: opts[:expected_labels] || []
1152 }
1153 @benchmark_config = {
1154 trigger_on_schedule: opts[:trigger_on_schedule] || '0 0 * * 0',
1155 trigger_on_failcount: opts[:trigger_on_failcount] || 0,
1156 autobenchmark: opts[:autobenchmark].nil? ? true : opts[:autobenchmark]
1157 }
1158 # Validate URIs
1159 if !opts[:benchmark_callback_uri].nil? &&
1160 !(opts[:benchmark_callback_uri] =~ URI::DEFAULT_PARSER.make_regexp).nil?
1161 @benchmark_config[:benchmark_callback_uri] = URI(opts[:

↩→ benchmark_callback_uri])
1162 end
1163 if !opts[:warning_callback_uri].nil? &&
1164 !(opts[:warning_callback_uri] =~ URI::DEFAULT_PARSER.make_regexp).nil?
1165 @benchmark_config[:warning_callback_uri] = URI(opts[:warning_callback_uri

↩→])
1166 end
1167
1168 if !opts[:warning_callback_uri].nil? && opts[:severity] != BenchmarkSeverity

↩→ ::WARNING
1169 ICVSB.lwarn("A warning callback URI #{opts[:warning_callback_uri]} was set

↩→ but "\
1170 'the severity is not WARNING. This callback will be ignored...')
1171 end
1172
1173 @created_at = DateTime.now
1174 @demo_timestamp = 't1' if @service == Service::DEMO
1175 @is_benchmarking = false
1176 @last_benchmark_time = nil
1177 @benchmark_count = 0
1178 @invalid_state_count = 0
1179 trigger_benchmark if @benchmark_config[:autobenchmark]
1180 @scheduler = Rufus::Scheduler.new.schedule(@benchmark_config[:

↩→ trigger_on_schedule]) do |cronjob|
1181 ICVSB.linfo("Cronjob starting for BenchmarkedRequestClient #{self} - "\
1182 "Scheduled at: #{cronjob.scheduled_at}; Last ran at: #{cronjob.last_time

↩→ }.")
1183 trigger_benchmark
1184 end
1185 end
1186
1187 # Exposes whether or not the client is currently benchmarking.
1188 # @return [Boolean] True if the client is benchmarking, false otherwise.
1189 def benchmarking?
1190 @is_benchmarking
1191 end
1192
1193 # Returns the next time a schedule to trigger a benchmark will run.

289

1194 # @return [DateTime] The time the next trigger to benchmark will be run.
1195 def next_scheduled_benchmark_time
1196 DateTime.parse(@scheduler.next_time.to_t.to_s)
1197 end
1198
1199 # Returns the last time a schedule to trigger a benchmark was run.
1200 # @return [DateTime,nil] Time next DateTime the benchmark ran or nil if
1201 # the scheduler has never yet run.
1202 def last_scheduled_benchmark_time
1203 @scheduler.last_time.nil? ? nil : DateTime.parse(@scheduler.last_time.to_t.

↩→ to_s)
1204 end
1205
1206 # Returns the average time taken to complete the last benchmark.
1207 # @return [Float] The time taken.
1208 def mean_scheduled_benchmark_duration
1209 @scheduler.mean_work_time
1210 end
1211
1212 # Returns the time taken to complete the last benchmark.
1213 # @return [Float] The time taken.
1214 def last_scheduled_benchmark_duration
1215 @scheduler.last_work_time
1216 end
1217
1218 attr_reader *%i[
1219 invalid_state_count
1220 current_key
1221 created_at
1222 dataset
1223 benchmark_count
1224 last_benchmark_time
1225 benchmark_config
1226 key_config
1227 service
1228]
1229
1230 attr_accessor :demo_timestamp
1231
1232 # Sends an image to this client's respective labelling endpoint, verifying
1233 # the key provided has not expired (and thus substantial evolution in the
1234 # labelling endpoint has not occured for significant impact to the results).
1235 # Depending on the key's varied severity level, a response will be returned
1236 # with varied fields populated.
1237 # @param [URI] uri (see RequestClient#send_uri)
1238 # @param [BenchmarkKey] key The benchmark key required to make a request
1239 # to the service using this client. This key is verified against this
1240 # client's most recent benchmark, thereby ensuring no evolution has occured
1241 # in the back-end service.
1242 # @return [Hash] A hash with the following keys: +:response+, the raw
1243 # #Response object returned from the #RequestClient.send_uri method (i.e.,
1244 # a non-benchmarked response) or +nil+ if the #key has expired or invalid
1245 # and the key's severity level is #BenchmarkSeverity::EXCEPTION;
1246 # +:labels:, a shortcut to the #Response.label method of the response or
1247 # +nil+ if the key has expired or was invalid and the key's severity level
1248 # is #BenchmarkSeverity::EXCEPTION; +:key_errors:+ a(n) error(s) response
1249 # indicating if the key has expired (a string value) which is only
1250 # populated if the key has a severity level of
1251 # #BenchmarkSeverity::EXCEPTION or #BenchmarkSeverity::WARNING;
1252 # +:response_errors:+ similar to :key_errors: but for the response;
1253 # +:cached:+ an optional DateTime inciating that there was no need to make
1254 # a request to the service as the benchmarker holds a cached response that
1255 # is still valid; this indicates the time at which the cached response was
1256 # generated.

290 Reference Architecture Source Code

1257 def send_uri_with_key(uri, key)
1258 raise ArgumentError, 'URI must be a string.' unless uri.is_a?(String)
1259 raise ArgumentError, 'Key must be a BenchmarkKey.' unless key.is_a?(

↩→ BenchmarkKey)
1260
1261 if @current_key.nil?
1262 return {
1263 key_errors: [
1264 BenchmarkKey::InvalidKeyError.new(BenchmarkKey::InvalidKeyError::

↩→ NO_KEY_YET)
1265]
1266 }
1267 end
1268
1269 result = {
1270 labels: nil,
1271 response: nil,
1272 key_errors: nil,
1273 response_errors: nil,
1274 service_error: nil,
1275 cached: nil
1276 }
1277
1278 # Check for a cached result w/ this service given provided key...
1279 ICVSB.ldebug("Attempting to use a cached response for #{uri} + #{@service.

↩→ name}...")
1280 Request.where(uri: uri, service_id: @service.id, benchmark_key_id: key.id)
1281 .order(Sequel.desc(:created_at)).each do |request|
1282 response = request.response
1283
1284 # Ignore unsuccessful responses
1285 next if response.nil? || !response.success?
1286
1287 # Check if the response's benchmark is still valid -- if so, just
1288 # reuse that result... (no need to actually ping service)
1289 key_is_valid, = @current_key.valid_against?(response.benchmark_key)
1290 ICVSB.ldebug("Cached key (id=#{response.benchmark_key.id}) is valid

↩→ against current key "\
1291 "(id=#{@current_key.id})? #{key_is_valid}")
1292 if !response.benchmark_key.nil? && key_is_valid
1293 return { labels: response.labels, response: response.hash, cached:

↩→ DateTime.parse(response.created_at.to_s) }
1294 end
1295 end
1296 ICVSB.ldebug("Cached response failed! Will try to invoke a request to #{

↩→ @service.name}")
1297
1298 # Check for key validity
1299 ICVSB.ldebug("Checking if current key (id=#{@current_key.id}) is valid

↩→ against key provided (id=#{key.id})...")
1300 key_valid, key_invalid_reasons = @current_key.valid_against?(key)
1301 # Invalid state count incremement if key error exists...
1302 unless key_valid
1303 ICVSB.ldebug("Validation of current key (id=#{@current_key.id}) failed

↩→ against key provided (id=#{key.id}). "\
1304 "Reasons: #{key_invalid_reasons.join('; ')}")
1305 result[:key_errors] = key_invalid_reasons
1306 @invalid_state_count += 1
1307 ICVSB.linfo("Error has occured in key validation. Invalid state count

↩→ count is now #{@invalid_state_count}.")
1308 end
1309
1310 # If key is valid, raise request and check if response is valid
1311 ICVSB.ldebug("Key provided #{key.id} is valid against current key #{

291

↩→ @current_key.id}!")
1312 if key_valid
1313 ICVSB.ldebug("Invoking a request '#{uri}' to #{@service.name}...")
1314 response = send_uri_no_key(uri)
1315 ICVSB.ldebug("Response returned (id=#{response.id})! Labels: #{response.

↩→ labels}")
1316 # Update the benchmark key id
1317 response.benchmark_key_id = @current_key.id
1318 ICVSB.ldebug("Updated response (id=#{response.id}) with benchmark key = #{

↩→ response.benchmark_key_id}...")
1319 # Now check to see if it was valid given that the response was successful
1320 if response.success?
1321 ICVSB.ldebug("Checking if this response (id=#{response.id}) is valid

↩→ against current key (id=#{key.id})")
1322 response_valid, response_invalid_reasons = @current_key.valid_against?(

↩→ response)
1323 end
1324 result[:labels] = response.labels
1325 result[:response] = response.hash
1326 result[:service_error] = result[:response][:service_error].to_s unless

↩→ result[:response][:service_error].nil?
1327 response_valid ||= !result[:response][:service_error].nil?
1328 # Incremenet invalid state count if response error ONLY (i.e., not service

↩→ error)
1329 unless response_valid
1330 ICVSB.ldebug("Validation of current key (id=#{@current_key.id}) failed

↩→ against response "\
1331 "(id=#{response.id}). Reasons: #{response_invalid_reasons.join('; ')}")
1332 result[:response_errors] = response_invalid_reasons
1333 @invalid_state_count += 1
1334 ICVSB.linfo('Error has occured in response validation. '\
1335 "Invalid state count count is now #{@invalid_state_count}.")
1336 end
1337 end
1338
1339 # If benchmark trigger on num failures is set
1340 if @benchmark_config[:trigger_on_failcount].positive? &&
1341 @invalid_state_count > @benchmark_config[:trigger_on_failcount]
1342 ICVSB.linfo("Benchmark has failed #{@benchmark_config[:

↩→ trigger_on_failcount]} "\
1343 'times... retriggering benchmark...')
1344 @invalid_state_count = 0
1345 trigger_benchmark
1346 end
1347
1348 # Response behaviour is dependent on the severity encoded within the key
1349 case @current_key.benchmark_severity
1350 when BenchmarkSeverity::EXCEPTION
1351 # Only expose errors if they exist
1352 if (result[:key_errors].nil? || result[:key_errors].empty?) &&
1353 result[:response_errors].nil? &&
1354 result[:service_error].nil?
1355 result
1356 else
1357 {
1358 key_errors: result[:key_errors],
1359 response_errors: result[:response_errors],
1360 service_error: result[:service_error]
1361 }
1362 end
1363 when BenchmarkSeverity::WARNING
1364 # Flag a warning to the warning endpoint about this result if sev is WARN
1365 _flag_warning(result)
1366 result

292 Reference Architecture Source Code

1367 when BenchmarkSeverity::INFO
1368 # Log to info...
1369 unless key_valid
1370 ICVSB.lwarn("Benchmarked request made for #{uri} with invalid key "\
1371 "(id=#{@current_key.id}) -- error reasons: #{key_invalid_reasons.join

↩→ ('; ')}")
1372 end
1373 unless response_valid
1374 ICVSB.lwarn("Benchmarked request made for #{uri} and response violated

↩→ current key "\
1375 "(id=#{@current_key.id}) -- error reasons: #{response_invalid_reasons.

↩→ join('; ')}")
1376 end
1377 result
1378 when BenchmarkSeverity::NONE
1379 # Passthrough...
1380 result
1381 end
1382 end
1383
1384 # Makes a request to benchmark's the client's current key against the
1385 # client's URIs to benchmark against. Expires the existing current key
1386 # if a new benchmark key is no longer valid against the old benchmark key.
1387 # @return [void]
1388 def trigger_benchmark
1389 @is_benchmarking = true
1390 new_key = _benchmark
1391 old_key = @current_key
1392 expiry_occured = false
1393 if @current_key.nil?
1394 @current_key = new_key
1395 else
1396 # Check if the key is valid
1397 valid_key, invalid_reasons = @current_key.valid_against?(new_key)
1398 unless valid_key
1399 ICVSB.lerror('BenchmarkedRequestClient no longer has a valid key! '\
1400 "Reason(s) ='#{invalid_reasons.join('; ')}'"\
1401 "Expiring old key (id=#{@current_key.id}) with new key (id=#{new_key.id

↩→ })")
1402 @current_key.expire
1403 @current_key = new_key
1404 expiry_occured = true
1405 end
1406 end
1407 # # Check if the responses are valid against the current key
1408 # new_key.batch_request.responses.each do |res|
1409 # valid_response, invalid_reasons = @current_key.valid_against?(res)
1410 # unless valid_response
1411 # ICVSB.lerror('BenchmarkedRequestClient has a violated response! '\
1412 # "Reason(s) = '#{invalid_reasons.join(';')}'. Falling back to old key (id

↩→ =#{old_key.nil? ? '<NONE>' : old_key.id})...")
1413 # @current_key.expire
1414 # @current_key = old_key
1415 # @current_key&.unexpire
1416 # expiry_occured = true
1417 # break
1418 # end
1419 # end
1420 @is_benchmarking = false
1421 _flag_benchmarking_complete(new_key, old_key, expiry_occured)
1422 end
1423
1424 # Locates the last behaviour token key from the given date
1425 # @param [DateTime] Date at which the key should be searched from

293

1426 # @param [BenchmarkKey] The benchmark key found, or nil.
1427 def find_key_since(date)
1428 candidate_bks = BenchmarkKey.where(
1429 service_id: @service.id,
1430 benchmark_severity_id: @key_config[:severity].id,
1431 max_labels: @max_labels,
1432 min_confidence: @min_confidence,
1433 delta_labels: @key_config[:delta_labels],
1434 delta_confidence: @key_config[:delta_confidence],
1435 expected_labels: @key_config[:expected_labels].map(&:downcase).join(','),
1436).where(Sequel[:created_at] > date).reverse_order(:created_at)
1437 return nil if candidate_bks.nil?
1438
1439 candidate_bks.find do |bk|
1440 (Set[*bk.batch_request.uris] ^ Set[*@dataset]).empty?
1441 end
1442 end
1443
1444 private
1445
1446 # Forwards a full result to the benchmarked request client's warning endpoint
1447 # @param [Hash] result See #send_uri_with_key
1448 # @return [void]
1449 def _flag_warning(result)
1450 return if @benchmark_config[:warning_callback_uri].nil? || @key_config[:

↩→ severity] != BenchmarkSeverity::WARNING
1451
1452 uri = @benchmark_config[:warning_callback_uri]
1453 data = result
1454 Thread.new do
1455 ICVSB.linfo("POSTing to warning endpoint '#{uri}' data=#{data}")
1456 req = Net::HTTP::Post.new(uri)
1457 req.body = data.to_json
1458 req.content_type = 'application/json;charset=utf8'
1459 res = Net::HTTP.start(uri.hostname, uri.port) do |http|
1460 http.request(req)
1461 end
1462 ICVSB.linfo("Response from warning endpoint: #{res.code} #{res.message}")
1463 ICVSB.ldebug("Response body is: #{res.body}") if res.is_a?(Net::

↩→ HTTPSuccess)
1464 end
1465 end
1466
1467 # Forwards a new key that has been generated due to benchmark trigger and
1468 # sends the current or old key (depending on expiry_occured flag.)
1469 # @param [BenchmarkKey] new_key The new key that was generated from the
1470 # benchmark that was triggered.
1471 # @param [BenchmarkKey] old_or_current_key The current key, if expiry did
1472 # not occur, or the old key if expiry did occur.
1473 # @param [Boolean] expiry_occured Indicates if the current_key was expired
1474 # and replaced with the new_key.
1475 # @return [void]
1476 def _flag_benchmarking_complete(new_key, old_or_current_key, expiry_occured)
1477 return if @benchmark_config[:benchmark_callback_uri].nil?
1478
1479 uri = @benchmark_config[:benchmark_callback_uri]
1480 old_or_current_key_id = old_or_current_key.nil? ? nil : old_or_current_key.

↩→ id
1481 data = { new_key: new_key.id, old_key: old_or_current_key_id, expiry_occured

↩→ : expiry_occured }
1482 Thread.new do
1483 ICVSB.linfo("POSTing to benchmark complete endpoint '#{uri}' data=#{data}"

↩→)
1484 req = Net::HTTP::Post.new(uri)

294 Reference Architecture Source Code

1485 req.body = data.to_json
1486 req.content_type = 'application/json;charset=utf8'
1487 res = Net::HTTP.start(uri.hostname, uri.port) do |http|
1488 http.request(req)
1489 end
1490 ICVSB.linfo("Response from benchmark complete endpoint: #{res.code} #{res.

↩→ message}")
1491 ICVSB.ldebug("Response body is: #{res.body}") if res.is_a?(Net::

↩→ HTTPSuccess)
1492 end
1493 end
1494
1495 # Benchmarks this client against a set of URIs, returning this client's
1496 # configurated key configuration. Internal method...
1497 # @return [BenchmarkKey] A key representing the result of this benchmark.
1498 def _benchmark
1499 @last_benchmark_time = DateTime.now
1500 @benchmark_count += 1
1501 ICVSB.linfo("Benchmarking dataset against dataset of #{@dataset.count} URIs.

↩→ "\
1502 "Times benchmarked=#{benchmark_count}")
1503 br, thr = send_uris_no_key_async(@dataset)
1504 ICVSB.linfo("Benchmarking this dataset using batch request with id=#{br.id}.

↩→ ")
1505 # Wait for all threads to finish...
1506 thr.each(&:join)
1507 ICVSB.linfo("Batch request with id=#{br.id} is now complete!")
1508 bk = BenchmarkKey.create(
1509 service_id: @service.id,
1510 benchmark_severity_id: @key_config[:severity].id,
1511 batch_request_id: br.id,
1512 created_at: DateTime.now,
1513 expired: false,
1514 delta_labels: @key_config[:delta_labels],
1515 delta_confidence: @key_config[:delta_confidence],
1516 expected_labels: @key_config[:expected_labels].map(&:downcase).join(','),
1517 max_labels: @max_labels,
1518 min_confidence: @min_confidence
1519)
1520 # Ensure every response is updated with this key
1521 br.responses.each do |res|
1522 ICVSB.ldebug("Updating response id=#{res.id} to benchmark key id=#{bk.id}.

↩→ ")
1523 res.benchmark_key_id = bk.id
1524 end
1525 ICVSB.linfo("Benchmarking dataset is complete (benchmark key id=#{bk.id}).")
1526 bk
1527 end
1528 end
1529 end

295

Listing B.2: Implementation of the architecture facade API.

1 # frozen_string_literal: true
2
3 # Author:: Alex Cummaudo (mailto:ca@deakin.edu.au)
4 # Copyright:: Copyright (c) 2019 Alex Cummaudo
5 # License:: MIT License
6
7 require 'sinatra'
8 require 'time'
9 require 'json'
10 require 'cgi'
11 require 'require_all'
12 require_all 'lib'
13
14
15 set :root, File.dirname(__FILE__)
16 set :public_folder, File.join(File.dirname(__FILE__), 'static')
17 set :show_exceptions, false
18 set :demo_folder, File.join(File.dirname(__FILE__), 'demo')
19
20 store = {}
21
22 before do
23 if request.body.size.positive?
24 request.body.rewind
25 @params = JSON.parse(request.body.read, symbolize_names: true)
26 end
27 end
28
29 def halt!(code, message)
30 content_type 'text/plain'
31 halt code, message
32 end
33
34 def check_brc_id(id, store)
35 halt! 400, 'Benchmark id must be a positive integer' unless id.integer? && id.

↩→ to_i.positive?
36 halt! 400, "No such benchmark request client exists with id=#{id}" unless store

↩→ .key?(id)
37 end
38
39 get '/' do
40 File.read(File.expand_path('index.html', settings.public_folder))
41 end
42
43 # Creates a new benchmark request client with given parameters
44 post '/benchmark' do
45 # Extract params
46 service = params[:service] || ''
47 benchmark_dataset = params[:benchmark_dataset] || ''
48 max_labels = params[:max_labels] || ''
49 min_confidence = params[:min_confidence] || ''
50 trigger_on_schedule = params[:trigger_on_schedule] || ''
51 trigger_on_failcount = params[:trigger_on_failcount] || ''
52 benchmark_callback_uri = params[:benchmark_callback_uri] || ''
53 warning_callback_uri = params[:warning_callback_uri] || ''
54 expected_labels = params[:expected_labels] || ''
55 delta_labels = params[:delta_labels] || ''
56 delta_confidence = params[:delta_confidence] || ''
57 severity = params[:severity] || ''
58
59 # Check param types
60 unless max_labels.integer? && max_labels.to_i.positive?

296 Reference Architecture Source Code

61 halt! 400, 'max_labels must be a positive integer'
62 end
63 unless min_confidence.float? && min_confidence.to_f.positive?
64 halt! 400, 'min_confidence must be a positive float'
65 end
66 unless delta_labels.integer? && delta_labels.to_i.positive?
67 halt! 400, 'delta_labels must be a positive integer'
68 end
69 unless delta_confidence.float? && delta_confidence.to_f.positive?
70 halt! 400, 'delta_confidence must be a positive float'
71 end
72 unless ICVSB::VALID_SERVICES.include?(service.to_sym)
73 halt! 400, "service must be one of #{ICVSB::VALID_SERVICES.join(', ')}"
74 end
75 unless trigger_on_schedule.cronline?
76 halt! 400, 'trigger_on_schedule must be a cron string in * * * * * (see man 5

↩→ crontab)'
77 end
78 unless trigger_on_failcount.integer? && trigger_on_failcount.to_i >= -1
79 halt! 400, 'trigger_on_failcount must be zero or positive integer'
80 end
81 if !benchmark_callback_uri.empty? && !benchmark_callback_uri.uri?
82 halt! 400, 'benchmark_callback_uri is not a valid URI'
83 end
84
85 unless ICVSB::VALID_SEVERITIES.include?(severity.to_sym)
86 halt! 400, "severity must be one of #{ICVSB::VALID_SEVERITIES.join(', ')}"
87 end
88 if ICVSB::BenchmarkSeverity[name: severity.to_s] == ICVSB::BenchmarkSeverity::

↩→ WARNING && !warning_callback_uri.uri?
89 halt! 400, 'Must provide a valid warning_callback_uri when severity is WARNING

↩→ '
90 end
91
92 halt! 400, 'benchmark_dataset has not been specified' if benchmark_dataset.

↩→ empty?
93 benchmark_dataset = benchmark_dataset.lines.map(&:strip)
94 expected_labels = expected_labels.empty? ? [] : expected_labels.split(',').map

↩→ (&:strip)
95 benchmark_dataset.each do |uri|
96 unless uri.uri?
97 halt! 400, "benchmark_dataset must be a list of uris separated by a newline

↩→ character; #{uri} is not a valid URI"
98 end
99 end
100
101 # Convert params
102 brc = ICVSB::BenchmarkedRequestClient.new(
103 ICVSB::Service[name: service.to_s],
104 benchmark_dataset,
105 max_labels: max_labels.to_i,
106 min_confidence: min_confidence.to_f,
107 opts: {
108 trigger_on_schedule: trigger_on_schedule,
109 trigger_on_failcount: trigger_on_failcount.to_i,
110 benchmark_callback_uri: benchmark_callback_uri,
111 warning_callback_uri: warning_callback_uri,
112 expected_labels: expected_labels,
113 delta_labels: delta_labels.to_i,
114 delta_confidence: delta_confidence.to_f,
115 severity: ICVSB::BenchmarkSeverity[name: severity.to_s],
116 autobenchmark: false
117 }
118)

297

119 # Benchmark on new thread
120 Thread.new do
121 brc.trigger_benchmark
122 store[brc.object_id] = brc
123 end
124
125 store[brc.object_id] = brc
126
127 status 201
128 content_type 'application/json;charset=utf-8'
129 { id: brc.object_id }.to_json
130 end
131
132 # Gets all auxillary information about the benchmark
133 get '/benchmark/:id' do
134 id = params[:id].to_i
135 check_brc_id(id, store)
136 brc = store[id]
137
138 content_type 'application/json;charset=utf-8'
139 {
140 id: id,
141 service: brc.service.name,
142 created_at: brc.created_at,
143 current_key_id: brc.current_key ? brc.current_key.id : nil,
144 is_benchmarking: brc.benchmarking?,
145 last_scheduled_benchmark_time: brc.last_scheduled_benchmark_time,
146 next_scheduled_benchmark_time: brc.next_scheduled_benchmark_time,
147 mean_scheduled_benchmark_duration: brc.mean_scheduled_benchmark_duration,
148 last_scheduled_benchmark_duration: brc.last_scheduled_benchmark_duration,
149 invalid_state_count: brc.invalid_state_count,
150 last_benchmark_time: brc.last_benchmark_time,
151 benchmark_count: brc.benchmark_count,
152 config: {
153 max_labels: brc.max_labels,
154 min_confidence: brc.min_confidence,
155 key: brc.key_config,
156 benchmarking: brc.benchmark_config
157 },
158 benchmark_dataset: brc.dataset
159 }.to_json
160 end
161
162 patch '/benchmark/:id' do
163 # Set is_benchmarking to true to force the benchmark to reevaluate...
164 # Else, endpoint is ignored
165 id = params['id'].to_i
166 check_brc_id(id, store)
167 brc = store[id]
168
169 status 202
170 response = {
171 id: id,
172 service: brc.service.name,
173 current_key_id: brc.current_key ? brc.current_key.id : nil,
174 is_benchmarking: brc.benchmarking?
175 }
176 if brc.service == ICVSB::Service::DEMO && params[:demo_timestamp]
177 brc.demo_timestamp = params[:demo_timestamp] if ['t1','t2'].include?(params[:

↩→ demo_timestamp])
178 response[:timestamp] = brc.demo_timestamp
179 end
180
181 brc.trigger_benchmark if params[:is_benchmarking] && !brc.benchmarking?

298 Reference Architecture Source Code

182
183 response.to_json
184 end
185
186 # Gets all auxillary information about this key's benchmark
187 get '/benchmark/:id/key' do
188 id = params[:id].to_i
189 check_brc_id(id, store)
190 brc = store[id]
191
192 halt! 422, 'The requested benchmark client is still benchmarking its first key'

↩→ if brc.current_key.nil?
193
194 current_key_id = brc.current_key.id
195 redirect "/key/#{current_key_id}"
196 end
197
198 get '/key/:id' do
199 id = params[:id].to_i
200 bk = BenchmarkKey[id: params[:id]]
201
202 halt! 400, 'id must be an integer' unless id.integer?
203 halt! 400, "No such benchmark key request client exists with id=#{id}" if bk.

↩→ nil?
204
205 content_type 'application/json;charset=utf-8'
206 {
207 id: bk.id,
208 service: bk.service.name,
209 created_at: bk.created_at,
210 benchmark_dataset: bk.batch_request.uris,
211 success: bk.success?,
212 expired: bk.expired?,
213 severity: bk.severity.name,
214 responses: bk.batch_request.responses.map(&:hash),
215 config: {
216 expected_labels: bk.expected_labels_set.to_a,
217 delta_labels: bk.delta_labels,
218 delta_confidence: bk.delta_confidence,
219 max_labels: bk.max_labels,
220 min_confidence: bk.min_confidence
221 }
222 }.to_json
223 end
224
225 # Gets the log of the benchmark with the given id
226 get '/benchmark/:id/log' do
227 id = params[:id].to_i
228
229 check_brc_id(id, store)
230
231 content_type 'text/plain'
232 store[id].read_log
233 end
234
235 post '/callbacks/benchmark' do
236 "Acknowledged benchmark completion with params: '#{params}'..."
237 end
238
239 post '/callbacks/warning' do
240 "Acknowledged benchmark warning params: '#{params}'..."
241 end
242
243 # Labels resources against the provided uri. This is a conditional HTTP request.

299

244 # Must provide "If-Match" request header field with at least one ETag. Note that
245 # the ETag must ALWAYS been provided in the following format:
246 #
247 # W/"<benchmark-id>[;<behaviour-token>]"
248 #
249 # Note that the ETag is a weak ETag; ``weak ETag values of two representations
250 # of the same resources might be semantically equivalent, but not byte-for-byte
251 # identical.'' (https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag).
252 # That is, as the developer is not directly accessing the service, they are
253 # only getting a semantically equivalent representation of the labels, but not
254 # a byte-for-byte equivalent (the model may have changed slightly, given the
255 # latest benchmark used.)
256 #
257 # The first id, the benchmark-id, is mandatory as the request must know what
258 # benchmark dataset (and service) the requested URI is being made against.
259 #
260 # The following behaviour-token is optional, indicating the tolerances to which
261 # the response will be made, and the behaviour by which the response will change
262 # given if evolution has occured since the last benchmark was made. (Not that
263 # internally to this project, we refer to the behaviour token as a BenchmarkKey
264 # -- see ICVSB::BenchmarkKey.)
265 #
266 # One may provide multiple ETags (separated by commas) in the format:
267 #
268 # W/"<benchmark-id1>[;<behaviour-token1>]",W/"<benchmark-id2>[;<behaviour-token2

↩→ >]" ...
269 #
270 # Where this is the case, the label requested will attempt to match ANY of the
271 # tags provided. If failure occurs for the first, it will default to the next
272 # ETag, and so on.
273 #
274 # If NO behaviour-token is specified, then then (additionally) one must provide
275 # an "If-Unmodified-Since" request header field, indicating that the resource
276 # (labels) must have been unmodified since the given date. This will attempt to
277 # automatically locate the nearest behaviour token that was generated after the
278 # given date and request the labels against that date.
279 #
280 # The endpoint will return one of the following HTTP responses:
281 #
282 # - 200 OK if this is the first request made to this URI;
283 # - 400 Bad Request if invalid parameters were provided by the client;
284 # - 412 Precondition Failed if the key/unmodified time provided is no longer
285 # valid, and thus the key provided (or time provided) is violating the
286 # valid tolerances embedded within the key (responding further details
287 # reasoning what tolerances were violated as metadata in the response body);
288 # - 428 Precondition Required if no If-Match field is provided in request;
289 # - 422 Unprocessable Entity if a service error has occured, indicating the
290 # service cannot process the entity or a bad request was made.
291 # - 500 Internal Server Error if a facade error has occured.
292 #
293 # The endpont will return the following HTTP response headers:
294 #
295 # - ETag: The ETag that was used to successfully generate a response
296 # - Last-Modified: The last time the benchmark-id was benchmarked against
297 # its dataset
298 # - Expires: The next time the benchmark with the provided id will be
299 # benchmarked against its dataset
300 # - Age: Indicates that the repsonse provided is cached (i.e., no changes
301 # to the service the last time it was benchmarked against the dataset
302 # to not be considered a violation); returns the time elapsed in seconds
303 # since then
304 get '/labels' do
305 image_uri = CGI.unescape(params[:image])
306

300 Reference Architecture Source Code

307 if_match = request.env['HTTP_IF_MATCH'] || ''
308 if_unmodified_since = request.env['HTTP_IF_UNMODIFIED_SINCE'] || ''
309
310 halt! 400, 'URI provided to analyse is not a valid URI' unless image_uri.uri?
311 halt! 428, 'Missing If-Match in request header' if if_match.nil?
312 if !if_unmodified_since.empty? && !if_unmodified_since.httpdate?
313 halt! 400, 'If Unmodified Since must be compliant with the RFC 2616 HTTP date

↩→ format'
314 end
315
316 if_unmodified_since_date = if_unmodified_since.empty? ? nil : Time.httpdate(

↩→ if_unmodified_since)
317
318 relay_body = nil
319 relay_etag = nil
320 relay_last_modified = nil
321 relay_expires = nil
322
323 # Scan through each comma-separated ETag
324 etags = if_match.scan(%r{W\/"(\d+;?\d+)",?})
325 if etags.empty?
326 halt! 428, 'Malformed ETags provided. Ensure you are using the correct format.

↩→ '
327 end
328 etags.each do |etag|
329 etag = etag[0]
330 benchmark_id, benchmark_key_id = etag.split(';').map(&:to_i)
331
332 # Check if we have a valid benchmark id
333 check_brc_id(benchmark_id, store)
334 brc = store[benchmark_id]
335 bk = nil
336
337
338 # Check if we have a key; if no key we must have a If-Unmodified-Since.
339 if benchmark_key_id.nil? && if_unmodified_since.empty?
340 halt! 400, "You have provided a benchmark id (id=#{benchmark_id}) "\
341 'without a behaviour token. Please provide a behaviour token '\
342 'or include the If-Unmodified-Since request header with a RFC '\
343 '2616-compliant HTTP date string.'
344 elsif !benchmark_key_id.nil?
345 # Check if valid key
346 if ICVSB::BenchmarkKey.where(id: benchmark_key_id).empty?
347 halt! 400, "No such key with id #{benchmark_key_id} exists!"
348 end
349 unless benchmark_key_id.integer? && benchmark_key_id.positive?
350 halt! 400, 'Behaviour token must be a positive integer.'
351 end
352
353 bk = ICVSB::BenchmarkKey[id: benchmark_key_id]
354 elsif !if_unmodified_since_date.nil?
355 bk = brc.find_key_since(if_unmodified_since_date)
356 halt! 412, "No compatible behaviour token found unmodified since #{

↩→ if_unmodified_since_date}." if bk.nil?
357 end
358
359 # Process...
360 result = brc.send_uri_with_key(image_uri, bk)
361
362 # Set HTTP status+body as appropriate if there is no more ETags or if
363 # this was a successful response (i.e., no errors so don't keep trying other
364 # ETags...)
365 error = result.key?(:key_errors) || result.key?(:response_errors) || result.

↩→ key?(:service_error)

301

366 if [etag] == etags.last || !error
367 if result[:key_errors] || result[:response_errors]
368 status 412
369 content_type 'application/json;charset=utf-8'
370
371 key_error_len = result[:key_errors].nil? ? 0 : result[:key_errors].length
372 res_error_len = result[:response_errors].nil? ? 0 : result[:

↩→ response_errors].length
373
374 key_error_data = result[:key_errors].nil? ? [] : result[:key_errors].map

↩→ (&:to_h)
375 res_error_data = result[:response_errors].nil? ? [] : result[:

↩→ response_errors].map(&:to_h)
376
377 relay_body = {
378 num_key_errors: key_error_len,
379 num_response_errors: res_error_len,
380 key_errors: key_error_data,
381 response_errors: res_error_data
382 }.to_json
383 elsif result[:service_error]
384 status 422
385 content_type 'text/plain'
386 relay_body = result[:service_error]
387 else
388 content_type 'application/json;charset=utf-8'
389 unless result[:cached].nil?
390 age_sec = ((DateTime.now - result[:cached]) * 24 * 60 * 60).to_i.to_s
391 headers 'Age' => age_sec
392 end
393 status 200
394 relay_body = result[:response].to_json
395 end
396 relay_etag = etag
397 relay_last_modified = brc.current_key.nil? ? brc.created_at.httpdate : brc.

↩→ current_key.created_at.httpdate
398 relay_expires = brc.next_scheduled_benchmark_time.httpdate
399 end
400 end
401 headers \
402 'ETag' => "W/\"#{relay_etag}\"", \
403 'Expires' => relay_expires, \
404 'Last-Modified' => relay_last_modified
405 body relay_body
406 end
407
408 error do |e|
409 halt! 500, e.message
410 end
411
412 ###
413 # DEMONSTRATION RELATED API
414 ###
415 get '/demo/categories.json' do
416 content_type 'application/json;charset=utf-8'
417 send_file(File.join(settings.demo_folder, 'categories.json'))
418 end
419
420 get '/demo/random/:type.jpg' do
421 category_data = JSON.parse(
422 File.read(File.join(settings.demo_folder, 'categories.json'))
423)
424 ok_categories = category_data.keys
425

302 Reference Architecture Source Code

426 category = params[:type]
427
428 halt! 400, 'No category provided' if category.empty?
429 unless ok_categories.include?(category)
430 halt! 400, "Unknown category '#{category}'. Accepted category types are: '#{

↩→ ok_categories.join("', '")}'."
431 end
432
433 id = category_data[category].sample
434
435 redirect "/demo/data/#{id}.jpg"
436 end
437
438 get '/demo/data/:id.*' do |_, ext|
439 image_id = params[:id].split('.').first
440 time_id = params[:id].split('.').last
441
442 unless File.exist?(File.join(settings.demo_folder, image_id + '.jpg'))
443 halt! 400, "No such image with id '#{image_id}' exists in the demo database."
444 end
445 unless %w[jpg jpeg json].include?(ext)
446 halt! 400, 'Invalid file extension. Suffix with .jp[e]g or .t1.json or .t2.

↩→ json.'
447 end
448 ext = 'jpg' if ext == 'jpeg'
449
450 if ext == 'jpg'
451 content_type 'image/jpeg'
452 else
453 content_type 'application/json;charset=utf-8'
454 halt! 400, 'Missing time id (.t1 or .t2).' if time_id.empty? || !%w[t1 t2].

↩→ include?(time_id)
455 image_id += '.' + time_id
456 end
457
458 send_file(File.join(settings.demo_folder, image_id + '.' + ext))
459 end

APPENDIXC

Supplementary Materials to Chapter 8

303

C.1 Detailed Overview of Our Proposed Taxonomy 305

C.1 Detailed Overview of Our Proposed Taxonomy

The following pages detail our proposed taxonomy. Detailed descriptions of the
five requirements of good API documentation (dimensions) and 34 generalised
API documentation artefacts (categories/sub-dimensions) that help satisfy these
requirements within our proposed taxonomy. Descriptions of examples of these
documentation artefacts are italicised and provided for illustrative purposes. ILS
= In-Literature Score, calculated as a ratio of papers that investigated or reported
various issues concerning each artefact. IPS = In-Practice Score, calculated as
the average response from our survey instrument. Colour scales indicate relevancy
weight within ILS or IPS values for comparative purposes, where red = lowest and
green = highest. GCV, AWS, ACV = Presence of category in Google Cloud Vision,
Amazon Rekognition, and Azure Cloud Vision documentation. Presence indicated
as fully present (○), partially present (è), and not present (+).

306
Supplem

entary
M
aterialsto

Chapter8

Key Description Primary Sources ILS IPS GCV AWS ACV

A Requirement 1: API Documentation should include Descriptions of API Usage

A1 Quick-start guides; i.e., a guide to rapidly get started using the API in a specific
programming language.

S4, S9, S10 Low V High ○ è ○

A2 Low-level reference manual; i.e., a manual documenting all API components
to review fine-grade detail.

S1, S3, S4, S8, S9, S10,
S11, S12, S15, S16, S17

High High ○ ○ ○

A3 Explanation of high level architecture; i.e., explanations of the API’s high-level
architecture to better understand intent and context.

S1, S2, S4, S11, S14,
S16, S19, S20

Med V High ○ ○ ○

A4 Introspection source code comments; i.e., code implementation and code
comments (where applicable) to understand the API author’s mindset.

S1, S4, S7, S12, S13,
S17, S20

Med High + + +

A5 Code snippets of basic component function; i.e., code snippets (with com-
ments) of no more than 30 LoC to understand a basic component functionality
within the API.

S1, S2, S4, S5, S6, S7,
S9, S10, S11, S14, S15,
S16, S18, S20, S21

V High V High ○ ○ ○

A6 Step-by-step tutorials with multiple components; i.e., step-by-step tutorials,
with screenshots to understand how to build a non-trivial piece of functionality
with multiple components of the API.

S1, S2, S4, S5, S7,
S9, S10, S15, S16, S18,
S20, S21

V High V High è ○ ○

A7 Downloadable production-ready source code; i.e., downloadable source code
of production-ready applications that use the API to understand implementa-
tion in a large-scale solution.

S1, S2, S5, S9, S15 Low V High è è ○

A8 Best-practices of implementation; i.e., best-practices of implementation to
assist with debugging and efficient use of the API.

S1, S2, S4, S5, S7, S8,
S9, S14

Med V High + ○ è

A9 An exhaustive list of all components; i.e., a list of all the major components
that exist within the API.

S4, S16, S19 Low V High + ○ ○

A10 Minimum system requirements to use the API; i.e., requirements and the
dependencies to use the API on a particular system.

S4, S7, S13, S17, S19 Low V High è + è

A11 Instructions to install/update the API and its release cycle; i.e., instructions
to install or begin using the API and details on its release cycle and how to
update it.

S4, S7, S8, S9, S11,
S13, S16, S19

Med V High è è +

A12 Error definitions describing how to address problems S1, S2, S4, S5, S9, S11,
S13

Med V High è + +

Continued on next page...

C.1
D
etailed

O
verview

ofO
urProposed

Taxonom
y

307

Key Description Primary Sources ILS IPS GCV AWS ACV

B Requirement 2: API Documentation should include Descriptions of the API’s Design Rationale

B1 Entry-point purpose of the API; i.e., a brief description of the purpose or
overview of the API as a low barrier to entry.

S1, S2, S4, S5, S6, S8,
S10, S11, S15, S16

High V High ○ ○ ○

B2 What the API can develop; i.e., descriptions of concrete types of applications
the API can develop.

S2, S4, S9, S11, S15,
S18

Med V High è è ○

B3 Who should use the API; i.e., descriptions of the types of users who should
use the API.

S4, S9 V Low High è + +

B4 Whowill use the applications built using the API; i.e., descriptions of the types
of users who will use the product the API creates.

S4 V Low Med + + +

B5 Success stories on the API; i.e., example success stories of major users that
describe how well the API was used in production.

S4 V Low V High è ○ ○

B6 Documentation comparing similar APIs to this API S2, S6, S13, S18 Low High è + ○
B7 Limitations on what the API can/cannot provide S4, S5, S8, S9, S14, S16 Med V High + ○ ○

C Requirement 3: API Documentation should include Descriptions of the Domain Concepts behind the API

C1 Relationship between API components and domain concepts S3, S10 V Low High + + ○
C2 Definitions of domain terminology; i.e., definitions of the domain-terminology

and concepts, with synonyms if applicable.
S2, S3, S4, S6, S7, S10,
S14, S16

Med V High è + è

C3 Documentation for nontechnical audiences; i.e., generalised documentation
for non-technical audiences regarding the API and its domain.

S4, S8, S16 Low High ○ ○ ○

D Requirement 4: API Documentation should include Additional Support Artefacts to aide Developer Productivity

D1 FAQs S4, S7 V Low V High ○ ○ ○
D2 Troubleshooting hints S4, S8 V Low High + è +
D3 API diagrams; i.e., diagrammatically representing API components using

visual architectural representations.
S6, S13, S20 Low V High + + +

D4 Contact for technical support S4, S8, S19 Low Med ○ ○ ○
D5 Printed guide S4, S6, S7, S9, S16 Low V High + ○ ○

Continued on next page...

308
Supplem

entary
M
aterialsto

Chapter8

Key Description Primary Sources ILS IPS GCV AWS ACV

D6 Licensing information S7 V Low V High + + è

E Requirement 5: API Documentation should be Presented in an Easily Digestible Format

E1 Searchable knowledge base S3, S4, S6, S10, S14,
S17, S18

Med V High ○ ○ ○

E2 Context-specific discussion forums S4, S10, S11 Low V High ○ ○ è
E3 Quick-links to other relevant components S6, S16, S20 Low V High + + +
E4 Structured navigation style; i.e., breadcrumbs S6, S10, S20 Low High ○ ○ ○
E5 Visualised map of navigational paths; i.e., to certain API components in the

website.
S6, S14, S20 Low V High + + +

E6 Consistent look and feel S1, S2, S3, S5, S6, S8,
S10, S15, S20

High V High ○ ○ ○

C.2 Sources of Documentation 309

C.2 Sources of Documentation

Sources of documentation used for the validation of the taxonomy. For clarity, exact
webpages are not referenced for each category, but can be found in supplementary
materials which can be downloaded from the URL listed in the paper.

Service Document Sources

Google Cloud Vision
https://cloud.google.com/vision/docs/quickstart-client-
libraries

https://googleapis.github.io/google-cloud-java/google-cloud-
clients/apidocs/index.html

https://cloud.google.com/vision/#cloud-vision-use-cases
https://cloud.google.com/vision/docs/quickstart-client-
libraries#using_the_client_library

https://cloud.google.com/vision/docs/tutorials
https://cloud.google.com/community/tutorials?q=vision
https://cloud.google.com/vision/docs/samples#mobile_platform_
examples

https://cloud.google.com/docs/enterprise/best-practices-for-
enterprise-organizations

https://cloud.google.com/functions/docs/bestpractices/tips
https://cloud.google.com/vision/#derive-insight-from-images-
with-our-powerful-cloud-vision-api

https://cloud.google.com/vision/docs/quickstart-client-
libraries

https://cloud.google.com/vision/docs/release-notes
https://cloud.google.com/vision/docs/reference/rpc/google.rpc#
google.rpc.Code

https://cloud.google.com/vision/#insight-from-your-images
https://developers.google.com/machine-learning/glossary/
https://cloud.google.com/vision/docs/resources
https://cloud.google.com/vision/sla
https://cloud.google.com/vision/docs/data-usage
https://cloud.google.com/vision/docs/support#searchbox
https://cloud.google.com/vision/docs/support

Continued on next page...

https://cloud.google.com/vision/docs/quickstart-client-libraries
https://cloud.google.com/vision/docs/quickstart-client-libraries
https://googleapis.github.io/google-cloud-java/google-cloud-clients/apidocs/index.html
https://googleapis.github.io/google-cloud-java/google-cloud-clients/apidocs/index.html
https://cloud.google.com/vision/#cloud-vision-use-cases
https://cloud.google.com/vision/docs/quickstart-client-libraries#using_the_client_library
https://cloud.google.com/vision/docs/quickstart-client-libraries#using_the_client_library
https://cloud.google.com/vision/docs/tutorials
https://cloud.google.com/community/tutorials?q=vision
https://cloud.google.com/vision/docs/samples#mobile_platform_examples
https://cloud.google.com/vision/docs/samples#mobile_platform_examples
https://cloud.google.com/docs/enterprise/best-practices-for-enterprise-organizations
https://cloud.google.com/docs/enterprise/best-practices-for-enterprise-organizations
https://cloud.google.com/functions/docs/bestpractices/tips
https://cloud.google.com/vision/#derive-insight-from-images-with-our-powerful-cloud-vision-api
https://cloud.google.com/vision/#derive-insight-from-images-with-our-powerful-cloud-vision-api
https://cloud.google.com/vision/docs/quickstart-client-libraries
https://cloud.google.com/vision/docs/quickstart-client-libraries
https://cloud.google.com/vision/docs/release-notes
https://cloud.google.com/vision/docs/reference/rpc/google.rpc#google.rpc.Code
https://cloud.google.com/vision/docs/reference/rpc/google.rpc#google.rpc.Code
https://cloud.google.com/vision/#insight-from-your-images
https://developers.google.com/machine-learning/glossary/
https://cloud.google.com/vision/docs/resources
https://cloud.google.com/vision/sla
https://cloud.google.com/vision/docs/data-usage
https://cloud.google.com/vision/docs/support#searchbox
https://cloud.google.com/vision/docs/support

310 Supplementary Materials to Chapter 8

Service Document Sources

Amazon Rekgonition
https://docs.aws.amazon.com/rekognition/latest/dg/getting-
started.html

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.
html

https://aws.amazon.com/blogs/machine-learning/using-amazon-
rekognition-to-identify-persons-of-interest-for-law-
enforcement/

https://aws.amazon.com/rekognition/#Rekognition_Image_Use_
Cases

https://docs.aws.amazon.com/rekognition/latest/dg/labels-
detect-labels-image.html

https://aws.amazon.com/rekognition/getting-started/#Tutorials
https://aws.amazon.com/blogs/machine-learning/category/
artificial-intelligence/amazon-rekognition/

https://docs.aws.amazon.com/code-samples/latest/catalog/code-
catalog-java-example_code-rekognition.html

https://docs.aws.amazon.com/rekognition/latest/dg/best-
practices.html

https://docs.aws.amazon.com/rekognition/latest/dg/API_
Operations.html

https://aws.amazon.com/rekognition/image-features/
https://aws.amazon.com/releasenotes/?tag=releasenotes%
23keywords%23amazon-rekognition

https://docs.aws.amazon.com/rekognition/latest/dg/setting-
up.html

https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://docs.aws.amazon.com/rekognition/latest/dg/limits.html
https://aws.amazon.com/rekognition/pricing/
https://aws.amazon.com/rekognition/sla/
https://aws.amazon.com/rekognition/faqs/
https://docs.aws.amazon.com/rekognition/latest/dg/video-
troubleshooting.html

https://docs.aws.amazon.com/rekognition/latest/dg/rekognition-
dg.pdf

https://github.com/awsdocs/amazon-rekognition-developer-
guide/issues

https://forums.aws.amazon.com/thread.jspa?threadID=285910

Continued on next page...

https://docs.aws.amazon.com/rekognition/latest/dg/getting-started.html
https://docs.aws.amazon.com/rekognition/latest/dg/getting-started.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/index.html
https://aws.amazon.com/blogs/machine-learning/using-amazon-rekognition-to-identify-persons-of-interest-for-law-enforcement/
https://aws.amazon.com/blogs/machine-learning/using-amazon-rekognition-to-identify-persons-of-interest-for-law-enforcement/
https://aws.amazon.com/blogs/machine-learning/using-amazon-rekognition-to-identify-persons-of-interest-for-law-enforcement/
https://aws.amazon.com/rekognition/#Rekognition_Image_Use_Cases
https://aws.amazon.com/rekognition/#Rekognition_Image_Use_Cases
https://docs.aws.amazon.com/rekognition/latest/dg/labels-detect-labels-image.html
https://docs.aws.amazon.com/rekognition/latest/dg/labels-detect-labels-image.html
https://aws.amazon.com/rekognition/getting-started/#Tutorials
https://aws.amazon.com/blogs/machine-learning/category/artificial-intelligence/amazon-rekognition/
https://aws.amazon.com/blogs/machine-learning/category/artificial-intelligence/amazon-rekognition/
https://docs.aws.amazon.com/code-samples/latest/catalog/code-catalog-java-example_code-rekognition.html
https://docs.aws.amazon.com/code-samples/latest/catalog/code-catalog-java-example_code-rekognition.html
https://docs.aws.amazon.com/rekognition/latest/dg/best-practices.html
https://docs.aws.amazon.com/rekognition/latest/dg/best-practices.html
https://docs.aws.amazon.com/rekognition/latest/dg/API_Operations.html
https://docs.aws.amazon.com/rekognition/latest/dg/API_Operations.html
https://aws.amazon.com/rekognition/image-features/
https://aws.amazon.com/releasenotes/?tag=releasenotes%23keywords%23amazon-rekognition
https://aws.amazon.com/releasenotes/?tag=releasenotes%23keywords%23amazon-rekognition
https://docs.aws.amazon.com/rekognition/latest/dg/setting-up.html
https://docs.aws.amazon.com/rekognition/latest/dg/setting-up.html
https://aws.amazon.com/rekognition/
https://aws.amazon.com/rekognition/
https://docs.aws.amazon.com/rekognition/latest/dg/limits.html
https://aws.amazon.com/rekognition/pricing/
https://aws.amazon.com/rekognition/sla/
https://aws.amazon.com/rekognition/faqs/
https://docs.aws.amazon.com/rekognition/latest/dg/video-troubleshooting.html
https://docs.aws.amazon.com/rekognition/latest/dg/video-troubleshooting.html
https://docs.aws.amazon.com/rekognition/latest/dg/rekognition-dg.pdf
https://docs.aws.amazon.com/rekognition/latest/dg/rekognition-dg.pdf
https://github.com/awsdocs/amazon-rekognition-developer-guide/issues
https://github.com/awsdocs/amazon-rekognition-developer-guide/issues
https://forums.aws.amazon.com/thread.jspa?threadID=285910

C.2 Sources of Documentation 311

Service Document Sources

Azure Computer
Vision https://docs.microsoft.com/en-au/azure/cognitive-services/

computer-vision/quickstarts-sdk/csharp-analyze-sdk
https://docs.microsoft.com/en-us/java/api/overview/azure/
cognitiveservices/client/computervision?view=azure-java-
stable

https://docs.microsoft.com/en-us/azure/architecture/example-
scenario/ai/intelligent-apps-image-processing

https://docs.microsoft.com/en-us/azure/cognitive-services/
computer-vision/tutorials/java-tutorial

https://docs.microsoft.com/en-us/azure/cognitive-services/
custom-vision-service/logo-detector-mobile

https://docs.microsoft.com/en-au/azure/cognitive-services/
computer-vision/tutorials/storage-lab-tutorial

https://docs.microsoft.com/en-us/azure/cognitive-services/
computer-vision/tutorials/csharptutorial

https://docs.microsoft.com/en-us/azure/cognitive-services/
custom-vision-service/getting-started-improving-your-
classifier

https://docs.microsoft.com/en-au/azure/cognitive-services/
computer-vision/home#analyze-images-for-insight

https://docs.microsoft.com/en-au/azure/cognitive-services/
computer-vision/vision-api-how-to-topics/howtocallvisionapi

https://docs.microsoft.com/en-us/azure/cognitive-services/
custom-vision-service/release-notes

https://docs.microsoft.com/en-au/azure/cognitive-services/
computer-vision/

https://azure.microsoft.com/en-au/services/cognitive-services/
computer-vision/

https://azure.microsoft.com/en-us/pricing/details/cognitive-
services/computer-vision/

https://docs.microsoft.com/en-au/azure/cognitive-services/
computer-vision/concept-tagging-images

https://docs.microsoft.com/en-au/azure/cognitive-services/
computer-vision/home

https://azure.microsoft.com/en-us/support/legal/sla/cognitive-
services/v1_1/

https://docs.microsoft.com/en-au/azure/cognitive-services/
computer-vision/faq

https://azure.microsoft.com/en-us/support/legal/

https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/quickstarts-sdk/csharp-analyze-sdk
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/quickstarts-sdk/csharp-analyze-sdk
https://docs.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/computervision?view=azure-java-stable
https://docs.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/computervision?view=azure-java-stable
https://docs.microsoft.com/en-us/java/api/overview/azure/cognitiveservices/client/computervision?view=azure-java-stable
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/intelligent-apps-image-processing
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/ai/intelligent-apps-image-processing
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/tutorials/java-tutorial
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/tutorials/java-tutorial
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/logo-detector-mobile
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/logo-detector-mobile
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/tutorials/storage-lab-tutorial
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/tutorials/storage-lab-tutorial
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/tutorials/csharptutorial
https://docs.microsoft.com/en-us/azure/cognitive-services/computer-vision/tutorials/csharptutorial
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/getting-started-improving-your-classifier
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/getting-started-improving-your-classifier
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/getting-started-improving-your-classifier
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/home#analyze-images-for-insight
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/home#analyze-images-for-insight
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/vision-api-how-to-topics/howtocallvisionapi
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/vision-api-how-to-topics/howtocallvisionapi
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/release-notes
https://docs.microsoft.com/en-us/azure/cognitive-services/custom-vision-service/release-notes
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/
https://azure.microsoft.com/en-au/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-au/services/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/computer-vision/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/computer-vision/
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/concept-tagging-images
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/concept-tagging-images
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/home
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/home
https://azure.microsoft.com/en-us/support/legal/sla/cognitive-services/v1_1/
https://azure.microsoft.com/en-us/support/legal/sla/cognitive-services/v1_1/
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/faq
https://docs.microsoft.com/en-au/azure/cognitive-services/computer-vision/faq
https://azure.microsoft.com/en-us/support/legal/

312 Supplementary Materials to Chapter 8

C.3 List of Primary Sources

The following pages list of the primary sources found from our systematic mapping
study. Each citation is referenced by a prefixed ‘S’. We also list the respective
citation count, as measured by the number of citations the publication has from
Google Scholar as at July 2020. We also list the venue ranking (as at 2020), as
measured by Scimago Rankings or Qualis Ranking for Journals and CORERankings
for conference publications. If no rank can be found, a dash is used.

C.3
ListofPrim

ary
Sources

313

Ref Citation Cite# Rank

[S1] M. P. Robillard, “What makes APIs hard to learn? Answers from developers,” IEEE Software, vol. 26, no. 6, pp. 27–34,
2009, DOI 10.1109/MS.2009.193. ISSN 0740-7459

305 Q1

[S2] M. P. Robillard and R. Deline, “A field study of API learning obstacles,” Empirical Software Engineering, vol. 16, no. 6,
pp. 703–732, 2011, DOI 10.1007/s10664-010-9150-8. ISSN 1382-3256

254 Q1

[S3] A. J. Ko and Y. Riche, “The role of conceptual knowledge in API usability,” in Proceedings of the 2011 IEEE Symposium
on Visual Languages and Human Centric Computing. Pittsburgh, PA, USA: IEEE, September 2011. DOI 10.1109/VL-
HCC.2011.6070395. ISBN 978-1-45-771245-6 pp. 173–176

33 A

[S4] J. Nykaza, R. Messinger, F. Boehme, C. L. Norman, M. Mace, and M. Gordon, “What programmers really want: Results
of a needs assessment for SDK documentation,” in Proceedings of the 20th Annual International Conference on Computer
Documentation. Toronto, ON, Canada: ACM, October 2002. DOI 10.1145/584955.584976, pp. 133–141

56 –

[S5] R. Watson, M. Mark Stamnes, J. Jeannot-Schroeder, and J. H. Spyridakis, “API documentation and software community
values: A survey of open-source API documentation,” in Proceedings of the 31st ACM International Conference on Design
of Communication. Greenville, SC, USA: ACM, September 2013. DOI 10.1145/2507065.2507076, pp. 165–174

14 B1

[S6] S. Y. Jeong, Y. Xie, J. Beaton, B. A. Myers, J. Stylos, R. Ehret, J. Karstens, A. Efeoglu, and D. K. Busse, “Improving
documentation for eSOA APIs through user studies,” in Proceedings of the First International Symposium on End User
Development, vol. 5435 LNCS. Siegen, Germany: Springer, March 2009. DOI 10.1007/978-3-642-00427-8_6. ISSN
0302-9743 pp. 86–105

34 –

[S7] E. Aghajani, C. Nagy, O. L. Vega-Marquez, M. Linares-Vasquez, L. Moreno, G. Bavota, and M. Lanza, “Software Docu-
mentation Issues Unveiled,” in Proceedings of the 41st International Conference on Software Engineering. Montreal, QC,
Canada: IEEE, May 2019. DOI 10.1109/ICSE.2019.00122. ISBN 978-1-72-810869-8. ISSN 0270-5257 pp. 1199–1210

6 A*

[S8] S. Haselbock, R. Weinreich, G. Buchgeher, and T. Kriechbaum, “Microservice Design Space Analysis and Decision
Documentation: A Case Study on API Management,” in Proceedings of the 11th International Conference on Service-
Oriented Computing and Applications, Paris, France, November 2019, DOI 10.1109/SOCA.2018.00008, pp. 1–8

2 C

[S9] S. Inzunza, R. Juárez-Ramírez, and S. Jiménez, “API Documentation,” in Proceedings of the 6th World Conference on
Information Systems and Technologies. Naples, Italy: Springer, March 2018. DOI 10.1007/978-3-319-77712-2_22, pp.
229–239

3 C

Continued on next page...

https://doi.org/10.1109/MS.2009.193
https://doi.org/10.1007/s10664-010-9150-8
https://doi.org/10.1109/VLHCC.2011.6070395
https://doi.org/10.1109/VLHCC.2011.6070395
https://doi.org/10.1145/584955.584976
https://doi.org/10.1145/2507065.2507076
https://doi.org/10.1007/978-3-642-00427-8_6
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/SOCA.2018.00008
https://doi.org/10.1007/978-3-319-77712-2_22

314
Supplem

entary
M
aterialsto

Chapter8

Ref Citation Cite# Rank

[S10] M. Meng, S. Steinhardt, and A. Schubert, “Application programming interface documentation: What do software
developers want?” Journal of Technical Writing and Communication, vol. 48, no. 3, pp. 295–330, August 2018,
DOI 10.1177/0047281617721853. ISSN 1541-3780

12 Q1

[S11] R. S. Geiger, N. Varoquaux, C.Mazel-Cabasse, and C. Holdgraf, “The Types, Roles, and Practices of Documentation in Data
Analytics Open Source Software Libraries: A Collaborative Ethnography of Documentation Work,” Computer Supported
Cooperative Work: CSCW: An International Journal, vol. 27, no. 3-6, pp. 767–802, May 2018, DOI 10.1007/s10606-018-
9333-1. ISSN 1573-7551

4 Q1

[S12] A. Head, C. Sadowski, E. Murphy-Hill, and A. Knight, “When not to comment: Questions and tradeoffs with API
documentation for C++ projects,” in Proceedings of the 40th International Conference on Software Engineering,
ser. questions and tradeoffs with API documentation for C++ projects. Gothenburg, Sweden: ACM, May 2018.
DOI 10.1145/3180155.3180176. ISSN 0270-5257 pp. 643–653

4 A*

[S13] L. Aversano, D. Guardabascio, and M. Tortorella, “Analysis of the Documentation of ERP Software Projects,” Procedia
Computer Science, vol. 121, pp. 423–430, January 2017, DOI 10.1016/j.procs.2017.11.057. ISSN 1877-0509

4 –

[S14] M. P. Robillard, A.Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A. Gerosall, M. Godfrey,M. Lanza,M. Linares-
Vásquez, G. C. Murphy, L. Moreno, D. Shepherd, and E. Wong, “On-demand developer documentation,” in Proceedings
of the 33rd IEEE International Conference on Software Maintenance and Evolution. Shanghai, China: IEEE, September
2017. DOI 10.1109/ICSME.2017.17, pp. 479–483

55 A*

[S15] R. Watson, “Development and application of a heuristic to assess trends in API documentation,” in Proceedings of
the 30th ACM International Conference on Design of Communication. Seattle, WA, USA: ACM, October 2012.
DOI 10.1145/2379057.2379112. ISBN 978-1-45-031497-8 pp. 295–302

10 B1

[S16] W. Maalej and M. P. Robillard, “Patterns of knowledge in API reference documentation,” IEEE Transactions on Software
Engineering, 2013, DOI 10.1109/TSE.2013.12. ISSN 0098-5589

110 Q1

[S17] D. L. Parnas and S. A. Vilkomir, “Precise documentation of critical software,” in Proceedings of 10th IEEE
International Symposium on High Assurance Systems Engineering. Plano, TX, USA: IEEE, November 2007.
DOI 10.1109/HASE.2007.63. ISSN 1530-2059 pp. 237–244

2 B

[S18] C. Bottomley, “What part writer? What part programmer? A survey of practices and knowledge used in programmer
writing,” in Proceedings of the 2005 IEEE International Professional Communication Conference. Limerick, Ireland:
IEEE, July 2005. DOI 10.1109/IPCC.2005.1494255, pp. 802–812

0 –

Continued on next page...

https://doi.org/10.1177/0047281617721853
https://doi.org/10.1007/s10606-018-9333-1
https://doi.org/10.1007/s10606-018-9333-1
https://doi.org/10.1145/3180155.3180176
https://doi.org/10.1016/j.procs.2017.11.057
https://doi.org/10.1109/ICSME.2017.17
https://doi.org/10.1145/2379057.2379112
https://doi.org/10.1109/TSE.2013.12
https://doi.org/10.1109/HASE.2007.63
https://doi.org/10.1109/IPCC.2005.1494255

C.3
ListofPrim

ary
Sources

315

Ref Citation Cite# Rank

[S19] A. Taulavuori, E. Niemelä, and P. Kallio, “Component documentation - A key issue in software product lines,” Information
and Software Technology, vol. 46, no. 8, pp. 535–546, June 2004, DOI 10.1016/j.infsof.2003.10.004. ISSN 0950-5849

40 Q1

[S20] J. Kotula, “Using patterns to create component documentation,” IEEE Software, vol. 15, no. 2, pp. 84–92, 1998,
DOI 10.1109/52.663791. ISSN 0740-7459

27 Q1

[S21] S. G. McLellan, A. W. Roesler, J. T. Tempest, and C. I. Spinuzzi, “Building more usable APIs,” IEEE Software, vol. 15,
no. 3, pp. 78–86, 1998, DOI 10.1109/52.676963. ISSN 0740-7459

105 Q1

https://doi.org/10.1016/j.infsof.2003.10.004
https://doi.org/10.1109/52.663791
https://doi.org/10.1109/52.676963

316 Supplementary Materials to Chapter 8

C.4 Detailed Suggested Improvements

For this assessment, we select the ILS or IPS values for categories that are considered
either somewhat or very helpful (i.e., a score greater than 0.50). We then match
these against categories that are found to be partially or not present within each
service. In total, we found 12 categories where improvements can be made across
all dimensions except Overall Presentation of Documentation, detailed below .

C.4.1 Issues regarding Descriptions of API Usage

Quick-start guides [A1]: Quick-start guides should provide a short tutorial that
allows programmers to pick up the basics of an API in a programming language of
their choice. For the services assessed, each offer various client SDKs (e.g., as Java
or Python client libraries). Google Cloud Vision and Azure Computer Vision offer
quick-start guides [426, 445] in which sets of articles target various SDKs or are
client-agnostic with code snippets that can be changed to the client language/SDK
of the developer’s choice. Amazon Rekognition offers exercises in setting up the
AWS SDK and using the command-line interface to interact with image analysis
components [404], however this is client-agnostic nor does it provide details in how
to get started with using the client SDKs.

� Suggested improvement: Ensure tutorials detail all client-libraries and how develop-
ers can produce a minimum working example using the service on their own computer
using that client library. For each SDK offered, there should be details on how to install,
authenticate and use a component using local data. For example, this may be as simple
as using the service to determine if an image of a dog contains the label ‘dog’.

Step-by-step tutorials [A6]: Google Cloud Vision offers tutorials limited to one
component. These do not sufficiently demonstrate how to combine multiple com-
ponents of the API together and how developers should integrate it with a differ-
ent platform, which a good step-by-step tutorial should detail. The official AWS
Machine Learning blog [401] provides extensive tutorials (in some cases, with a
suggested tutorial completion time of over an hour) that integrate multiple Amazon
Rekognition components with other AWS components. Microsoft provide tutori-
als [442, 448, 449] integrating multiple components within their service to mobile
applications and the Azure platform.

� Suggested improvement: Ensure tutorials combine multiple components of the service
together, are extensive, and require developers to spend a non-trivial amount of time to
produce a basic application. For example, the tutorial may detail how to integrate the
API into a smartphone application to achieve the following: (i) take a photo with the
camera, (ii) detect if a person is within the image, (iii) analyse the visual features of the
person.

Downloadable production-ready applications [A7]: Microsoft provide a down-
loadable application [447] that explores many components of the Azure Computer
Vision API. The application is thoroughly documented with and also provides guid-
ance on how to structure the architecture design of the program. While Rekognition

C.4 Detailed Suggested Improvements 317

and Google Cloud Vision also provide downloadable source code, they are largely
under-documented, do not combine multiple components of the API together, and
only use god-classes to handle all requests to the API [405, 428].

� Suggested improvement: Downloadable source code should be thoroughly docu-
mented, and should avoid the use of god-classes that demonstrate a single piece of the
service’s functionality. Ideally, the architecture of a production-ready application should
be demonstrated to developers.

Understanding best-practices [A8]: Google Cloud provides best-practices for its
platform in both general and enterprise contexts [420, 429], but there is little advice
provided to guide developers on how best to use Google Cloud Vision. Microsoft
provides guidance on improving results of custom vision classifiers [443], but no
further details on non-customvision classifiers are found. We found themost detailed
best-practices to be provided by Amazon Rekognition [403], which outlines more
detailed strategies such as reducing data transfer by storing and referencing images
on S3 Buckets or the attributes images should have in various scenarios (e.g., the
angles of a person’s face in facial recognition).

� Suggested improvement: Document best-practices for all major components of the
computer vision service. Guide developers on the types of input data that produce the
best results, advisable minimum image sizes and recommended file types, and suggest
ways to overcome limitations that improve usage and cost efficiency. Provide guidance
in more than one use case; give a range of scenarios that demonstrate different best
practices for different domains.

Exhaustive lists of all major API components [A9]: Amazon provides a two-fold
feature list that describes both the key features of Rekognition at a high-level [402]
as well as a detailed, technical breakdown of each API operation provided within the
service [400]. Microsoft also provide a list of high-level features that Azure Com-
puter Vision can analyse [450] which provides hyperlinks to detailed descriptions of
each feature. Google’s Cloud Vision API provides a partial breakdown of the types
of services provided, however this list is not fully complete, nor are there hyperlinks
to more detailed descriptions of each of the features [430].

� Suggested improvement: Document key features that the computer vision classifier
can perform at a high level. This should be easy to find from the service’s landing page.
Each feature should be described with reference to more detailed descriptions of the
feature’s exact API endpoint and required inputs, outputs and possible errors.

Minimum system requirements and dependencies [A10]: Although there is no
dedicated webpage for this on any of the services investigated, there are listed
dependencies for the client libraries in Google’s and Azure’s quick-start guides
[426, 440]. These may be embedded within the quick-start guide as developers are
likely to encounter dependency issues when they first start using the API. We found
it a challenge to discover similar documentation this in Amazon’s documentation.

318 Supplementary Materials to Chapter 8

� Suggested improvement: Any system requirements and dependency issues should be
well-highlighted within the documentation’s quick-start guide; developers are likely to
encounter these issues within the early stages of using an API, and it is highly relevant
to provide solutions to these issues within the quick-starts.

Installation and release cycle notes [A11]: It is imperative that developers know
what has changed between releases and how frequently the releases are exported.
We found release notes for Amazon Computer Vision, although they are only major
releases and have not been updated since 2017 [399] which does not account for
evolution in the service’s responses [89]. Google’s and Microsoft’s release notes are
generally more frequently updated, therefore developers can get a sense of its release
frequency [427, 446]. However, there are evolution issues that are not addressed.
Installation instructions are detailed within Rekognition’s developer guide, outlining
how to sign up for an account, and install the AWS command-line interface [407].

� Suggested improvement: Ensure release notes detail label evolution, including any
new additional labels that may have been introduced within the service. Transparency
around the changes made to the service should go beyond new features: document
potential changes that may influence maintenance of a system using the computer vision
service so that developers are aware of potential side-effects of upgrading to a newer
release.

C.4.2 Issues regarding Descriptions of Design Rationale

Limitations of the API [B7]: The most detailed limitations documented were found
on Rekognition’s dedicated limitations page [406] that outlines functional limitations
such as the maximum number of faces or words that can be detected in an image,
the size requirements of images, and file type information. For the other services,
functional limitations are generally foundwithin each endpoint’sAPI documentation,
instead of within a dedicated page.

� Suggested improvement: Document all functional limitations in a dedicated page
that outline the maximum and minimum input requirements the classifier can handle.
Documentation of the types of labels the service can provide is also desired.

C.4.3 Issues regarding Descriptions of Domain Concepts

Conceptual understanding of the API [C1]: Azure Computer Vision provides
‘concept’ pages describing the high-level concepts behind computer vision and
where these functions are implemented within the APIs (e.g., [441]). We were
unable to find similar conceptual documentation for the other services assessed.

�Suggested improvement:Document the concepts behind computer vision; differentiate
between foundational concepts such as object localisation, object recognition, facial
localisation and facial analysis such that developers are able to make the distinction
between them. Relate these concepts back to the API and provide references to where the
APIs implement these concepts.

C.4 Detailed Suggested Improvements 319

Definitions of domain-specific terminology [C2]: Terminologies relevant to ma-
chine learning concepts powering these computer vision services are well detailed
within Google’s machine learning glossary [424], however few examples matching
computer vision are immediately relevant. While this page is linked from the orig-
inal Google Cloud Vision documentation, it may be too technical for application
developers to grasp. A slightly better example of this is [450], where developers can
understand computer vision terms in lay terms.

� Suggested improvement: Current computer vision services use a myriad of termi-
nologies to refer to the same conceptual feature; for example, while Microsoft refers to
object recognition as ‘image tagging’, Google refers to this as ‘label detection’. If a
consolidation of terms is not possible, then computer vision services should provide a
glossary that provides synonyms for these terminologies so that developers can easily
move between service providers without needing to relink terms back to concepts.

C.4.4 Issues regarding Existence of Support Artefacts

Troubleshooting suggestions [D2]: The only troubleshooting tips found in our
analysis were in Rekognition’s video service [408]. Further detailed instances of
these troubleshooting tips could be expanded to non-video issues. For instance,
if developers upload ‘noisy’ images, how can they inform the system of a specific
ontology to use or to focus on parts of the foreground of background of the image?
These are suggestions which we have proposed in prior work [89] that do not seem
to be documented.

�Suggested improvement:Ensure troubleshooting tips provide advice for testing against
different types of valid input images.

Diagrammatic overview of the API [D3]: None of the computer vision services
provide any overview of the API in terms of the features and processing steps on how
they should be use. For instance, pre-processing and post-processing of input and
response data should be considered and an understanding of how this fits into the
‘flow’ of an application highlighted. Moreover, no UML diagrams could be found.

� Suggested improvement: Provide diagrams illustrating the service within context of
use, such as how it can be integrated with other service features or how a specific API
endpoint may be used within a client application. Consider integrating interactive UML
diagrams so that developers can easily explore various aspects of the documentation in
a visual perspective.

320 Supplementary Materials to Chapter 8

C.5 Survey Questions

This section contains the exact text of the survey described in Section 8.5.1. Our
instrument also included questions where answers were not included in the research
reported in this article, e.g. questions 1 and 2 regarding consent and ensuring
participants have had development experience. Images used within the survey have
been removed.

Developer opinions towards the importance of web API documentation
recommendations
In this study, we are finding out how important recommendations of web API documentation
are to developers. From this, we will improve AI-powered APIs. While there are screenshots
of example APIs in the questions, think of an API that you have used based on your own
prior experience when answering these questions. Thanks for taking the time to answer
these questions; it should only take you about 10–20 minutes to complete.

Attribution Notice

Portions of this questionnaire are reproduced from work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License.

Implementation-specific documentation of web APIs

When answering these questions please answer with respect to your own experience in
learning web APIs (if applicable). Any examples provided exist solely to help illustrate the
statement. For each question, please nominate how much you agree with the following state-
ments: [Strongly agree, Somewhat agree, Neither agree nor disagree, Somewhat disagree, Strongly
disagree]

Q3a. I think quick-start guides with code that help me get started with an API’s client library
are important. e.g., quick-start guides that show how to get started and interact with
the API and its responses.

Q3b. I don’t find low-level documentation of all classes and methods particularly helpful.
e.g., a generated online reference manual from Javadoc comments.

Q3c. I would imagine that explanations of the API’s high-level architecture, context and
rationale would be important to better understand how to consume the API. e.g., a
graphic showing how the API could fit into the wider context of an application.

Q3d. If I want to understand why an API did something that I didn’t expect, the source
code comments generally don’t help me. e.g., an example from the Lodash API that
describes why set.add isn’t directly returned.

Q3e. I find small code snippets with comments to demonstrate a single component’s ba-
sic functionality within the API a useful way to learn. e.g., 10-30 lines of code to
demonstrating various how-tos of a computer vision API.

Q3f. I think it’s cumbersome to read through step-by-step tutorials that show how to build
something non-trivial with multiple components using the API. e.g., a ten-step tutorial
documenting how to combine face recognition, face analysis, scene description, and
landmark detection API components to generate descriptions of photos.

C.5 Survey Questions 321

Q3g. I think it’s useful to download source code of production-ready applications that
demonstrate the use of multiple facets of the API. e.g., a downloadable iOS app
that demonstrates how to perform image analysis on an iPhone/iPad.

Q3h. I think official documentation describing the ‘best-practices’ of how to use the API
to assist with debugging and efficiency is not helpful. e.g., an article describing the
correct ways of doing things, the best tools to use, and how to write well-performing
code.

Q3i. I believe an exhaustive list of all major components in the API without excessive
detail would be useful when learning an API. e.g., a computer vision web API might
list object detection, object localisation, facial recognition, and facial comparison as
its 4 components.

Q3j. I believe minimum system requirements and/or dependencies to use the API do not
always need to be part of official documentation. e.g., I can find descriptions of how
to get started with a Python environment for a cloud platform on community forums
instead of the API’s website.

Q3k. I think instructions on how to install or access the API, update it, and the frequency
of its release cycle is all useful information to know about. e.g., a list showing the
latest releases, what was added and how to update your application to make use of
it.

Q3l. Error codes describing specific problems with an API are not helpful. e.g., a list of
canonical HTTP error codes and how to interpret them.

Rationale-specific documentation of web APIs

When answering these questions please answer with respect to your own experience in
learning web APIs (if applicable). Any examples provided exist solely to help illustrate the
statement. For each question, please nominate how much you agree with the following state-
ments: [Strongly agree, Somewhat agree, Neither agree nor disagree, Somewhat disagree, Strongly
disagree]

Q4a. I think that, as a starting point when beginning to learn about an API, I would like to
read about descriptions of the API’s purpose and overview.

Q4b. I don’t find descriptions of the types of applications the API can develop helpful.
Q4c. I believe that descriptions of the types of developers who should and shouldn’t use

the API is important to know.
Q4d. I don’t think that descriptions of the types of end-users who will use the product built

using the API is important to know in advance.
Q4e. I think that if I read success stories about when the API was previously used in

production, I would have a better indicator of how I could use that API.
Q4f. I think that documentation that compares an API to other, similar APIs confusing and

not important.
Q4g. I believe it is important to know about what the limitations are on what the API can

and cannot provide.

Conceptual-specific documentation of web APIs

When answering these questions please answer with respect to your own experience in
learning web APIs (if applicable). Any examples provided exist solely to help illustrate the

322 Supplementary Materials to Chapter 8

statement. For each question, please nominate how much you agree with the following state-
ments: [Strongly agree, Somewhat agree, Neither agree nor disagree, Somewhat disagree, Strongly
disagree]

Q5a. I wouldn’t read through theory about the API’s domain that relates theoretical con-
cepts to API components and how both work together.

Q5b. I think it is important to know the definitions of the API’s domain-specific terminology
and concepts (with synonyms where needed). e.g., a computer vision API that uses
machine learning should list machine learning concepts.

Q5c. It’s not really important to document information about the API to non-technical audi-
ences, such as managers and other stakeholders. e.g., pricing information, uptime
information, QoS metrics/SLAs etc.

General-support documentation of web APIs

When answering these questions please answer with respect to your own experience in
learning web APIs (if applicable). Any examples provided exist solely to help illustrate the
statement. For each question, please nominate how much you agree with the following state-
ments: [Strongly agree, Somewhat agree, Neither agree nor disagree, Somewhat disagree, Strongly
disagree]

Q6a. I find lists of Frequently Asked Questions (FAQs) helpful.
Q6b. When something goes wrong, I don’t read through troubleshooting suggestions for

specific problems straight away as I like to solve it myself.
Q6c. I like to see diagrammatic representations of an API’s components using visual ar-

chitectural visualisations. e.g., UML class diagram, sequence diagram.
Q6d. I wouldn’t look for email addresses and/or phone number for technical support in an

API’s documentation.
Q6e. I generally refer to a programmer’s reference guide or textbook about the API when

I need to.
Q6f. I don’t think it’s important to read about the licensing information about the API.

The effect of structure and tooling on web API documentation

When answering these questions please answer with respect to your own experience in
learning web APIs (if applicable). Any examples provided exist solely to help illustrate the
statement. For each question, please nominate how much you agree with the following state-
ments: [Strongly agree, Somewhat agree, Neither agree nor disagree, Somewhat disagree, Strongly
disagree]

Q7a. I would like to use a searchable knowledge base to find information.
Q7b. I think a context-specific discussion forum between developers isn’t very helpful as

it just introduces noise. e.g., issue trackers, Slack group.
Q7c. I think links to other similar documentation frequently viewed by other developers

would be useful. e.g., ’people who viewed this also viewed. . . ’
Q7d. If I get lost within the API’s documentation, a ’breadcrumbs’-style of navigation isn’t

very useful to me.

C.5 Survey Questions 323

Q7e. A visualised map of navigational paths to common API components in the website
would be useful to have. e.g., a large and complex API for Enterprise Service-
Oriented Architecture where I could click into various boxes to read about compo-
nents and arrows to read about how they are related.

Q7f. I believe ensuring consistent look and feel of all documentation isn’t necessary to a
good API documentation.

Demographics

Q8a. Are you, or do you aspire to be, a professional programmer? Or would you consider
programming a hobby?
[Professional, Hobbyist]

Q8b. How many years have you been programming?
[1–5 years, 6–10 years, 11–15 years, 16–20 years, 21–30 years, 31–40 years, 41+ years]

Q8c. In what type of role would you say your current job falls into?
[Back-end developer, Data or business analyst, Data scientist or machine learning specialist,
Database administrator, Designer, Desktop or enterprise applications developer, DevOps spe-
cialist, Educator or academic researcher, Embedded applications or devices developer, En-
gineering manager, Front-end developer, Full-stack developer, Game or graphics developer,
Marketing or sales professional, Mobile developer, Product manager, QA or test developer,
Student, System administration]

Q8d. What level of seniority would you say this role falls into?
[Intern Role, Graduate Role, Junior Role, Mid-Tier Role, Senior Role, Lead Role, Principal
Role, Management, N/A (e.g., I am a student), Other]

Q8e. What industry would you say you work in?
[Cloud-based solutions or services, Consulting, Data and analytics, Financial technology or
services, Healthcare technology or services, Information technology, Media, advertising, pub-
lishing, or entertainment, Other software development, Retail or eCommerce, Software as a
service (SaaS) development, Web development or design, N/A (e.g., I am a student), Other
industry not listed here]

** End of Survey **

APPENDIXD

Authorship Statements

325

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 4

Title of publication Losing Confidence in Quality: Unspoken Evolution of Computer
Vision Services

Publication details Presented at the 35th IEEE International Conference on Software
Maintenance and Evolution, Cleveland, USA, 2019

Name of executive author Alex Cummaudo

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Applied Artificial Intelligence Institute

Email or phone ca@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

As above

School/Institute/Division if at
Deakin

Applied Artificial Intelligence Institute

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis
author’s contribution to the
publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 22 July 2019

327

4. Description of all author contributions

Page 2 of 4

Name and affiliation of author 1 Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 1 Alex Cummaudo initiated the conception of the project.
Additionally, he designed a detailed methodology, conducted all
data collection via a data-collection instrument he designed and
implemented and performed a majority of data analysis. He drafted
the full manuscript and made further revisions, modifications and
prepared the camera ready version for publication in the conference
proceedings.

Name and affiliation of author 2

Rajesh Vasa
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Rajesh Vasa contributed to the initial conception of this project by
providing high-level guidance over overview of what the project
and its experiments should comprise of. Rajesh also contributed to
detailed revisions of the initial manuscripts, and assisted in advising
Alex Cummaudo on improved analytical insight into the collected
results. Rajesh Vasa also assisted in shaping the paper to
specifically target the conference audience. Rajesh Vasa is the
primary supervisor of Alex Cummaudo.

Name and affiliation of author 3

John Grundy
Faculty of Information Technology
Monash University

Contribution of author 3 John Grundy provided high-level oversight of the project. He
contributed to detailed reviews of the methodology and manuscript.
John Grundy is the external supervisor of Alex Cummaudo.

Name and affiliation of author 4

Mohamed Abdelrazek
School of Information Technology
Deakin University

Contribution of author 4 Mohamed Abdelrazek made final edits and suggestions to the final
draft of the manuscript before submitting for peer review.
Mohamed Abdelrazek is an associate supervisor of Alex
Cummaudo.

Name and affiliation of author 5

Andrew Cain
School of Information Technology
Deakin University

Contribution of author 5 Andrew Cain made edits and suggestions to the abstract and
introduction paragraphs of the manuscript. Andrew Cain is an
associate supervisor of Alex Cummaudo.

328 Authorship Statements

5. Author declarations

Page 3 of 4

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Alex Cummaudo

Signed:
Dated: 22 July 2019

Author 2 Rajesh Vasa

Signed:
Dated: 22 July 2019

Author 3 John Grundy

Signed:
Dated: 22 July 2019

Author 4 Mohamed Abdelrazek

Signed:
Dated: 22 July 2019

Author 5 Andrew Cain

Signed:
Dated: 22 July 2019

329

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 4 of 4

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format Comma separated values (CSV), iPython Notebook

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/icsme19

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

330 Authorship Statements

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 4

Title of publication What should I document? A preliminary systematic mapping study
into API documentation knowledge

Publication details Presented at the 13th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), Porto
de Galinhas, Brazil, 2019

Name of executive author Alex Cummaudo

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Applied Artificial Intelligence Institute

Email or phone ca@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

As above

School/Institute/Division if at
Deakin

Applied Artificial Intelligence Institute

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis
author’s contribution to the
publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 22 July 2019

331

4. Description of all author contributions

Page 2 of 4

Name and affiliation of author 1 Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 1 Alex Cummaudo devised the conception of this project and the
intended objectives and hypotheses. Additionally, he designed a
detailed methodology, conducted data collection with a custom tool
he wrote himself and performed analysis. He drafted the manuscript
and made further revisions, modifications and prepared the camera
ready version for publication in the conference proceedings.

Name and affiliation of author 2

Rajesh Vasa
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Rajesh Vasa contributed to the initial conception of this project by
providing high-level guidance over overview of what the project
and its experiments should comprise of. Rajesh also contributed to
detailed revisions of the initial manuscripts, and assisted in advising
Alex Cummaudo on improved analytical insight into the collected
results. Rajesh Vasa also assisted in shaping the paper to
specifically target the conference audience. Rajesh Vasa is the
primary supervisor of Alex Cummaudo.

Name and affiliation of author 3

John Grundy
Faculty of Information Technology
Monash University

Contribution of author 3 John Grundy provided high-level oversight of the project. He
contributed to detailed reviews of the methodology and manuscript.
John Grundy is the external supervisor of Alex Cummaudo.

332 Authorship Statements

5. Author declarations

Page 3 of 4

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Alex Cummaudo

Signed:
Dated: 22 July 2019

Author 2 Rajesh Vasa

Signed:
Dated: 22 July 2019

Author 3 John Grundy

Signed:
Dated: 22 July 2019

333

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 4 of 4

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format Comma separated values (CSV), Portable Document Format (PDF)

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/esem19

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

334 Authorship Statements

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 4

Title of publication Interpreting Cloud Computer Vision Pain-Points: A Mining Study
of Stack Overflow

Publication details Presented at the 42nd International Conference on Software
Engineering, Seoul, South Korea, 2020

Name of executive author Alex Cummaudo

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Applied Artificial Intelligence Institute

Email or phone ca@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

As above

School/Institute/Division if at
Deakin

Applied Artificial Intelligence Institute

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis
author’s contribution to the
publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 27 August 2019

335

4. Description of all author contributions

Page 2 of 4

Name and affiliation of author 1 Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 1 Alex Cummaudo initiated the conception of the project.
Additionally, he designed a detailed methodology, conducted the
experiment and mined data against the methodology devised,
performed a majority of data analysis and categorised 525 Stack
Overflow posts. He drafted the full manuscript and made further
revisions, modifications and prepared the camera ready version for
publication in the conference proceedings.

Name and affiliation of author 2

Rajesh Vasa
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Rajesh Vasa contributed to the initial conception of this project by
providing high-level guidance over overview of what the project
and its experiments should comprise of. Rajesh also contributed to
detailed revisions of the initial manuscripts, and assisted in advising
Alex Cummaudo on improved analytical insight into the collected
results. Rajesh Vasa is the primary supervisor of Alex Cummaudo.

Name and affiliation of author 3

Scott Barnett
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 3 Scott Barnet conducted a statistical distribution analysis for this
experiment. He contributed to detailed reviews of the methodology
and manuscript. He also contributed a major section of the work
regarding Technical Domain Models.

Name and affiliation of author 4

John Grundy
Faculty of Information Technology
Monash University

Contribution of author 4 John Grundy provided high-level oversight of the project. He
contributed to detailed reviews of the methodology and manuscript.
John Grundy is the external supervisor of Alex Cummaudo.

Name and affiliation of author 5

Mohamed Abdelrazek
School of Information Technology
Deakin University

Contribution of author 5 Mohamed Abdelrazek made final edits and suggestions to the final
draft of the manuscript before submitting for peer review.
Mohamed Abdelrazek is an associate supervisor of Alex
Cummaudo.

336 Authorship Statements

5. Author declarations

Page 3 of 4

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Alex Cummaudo

Signed:
Dated: 27 August 2019

Author 2 Rajesh Vasa

Signed:
Dated: 27 August 2019

Author 3 Scott Barnett

Signed:
Dated: 27 August 2019

Author 4 John Grundy

Signed:
Dated: 27 August 2019

Author 5 Mohamed Abdelrazek

Signed:
Dated: 27 August 2019

337

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 4 of 4

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format Comma separated values (CSV), Excel Spreadsheet

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/icse20

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

338 Authorship Statements

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 4

Title of publication Beware the evolving ‘intelligent’ web service! An integration
architecture tactic to guard AI-first components

Publication details Presented at the 28th Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering

Name of executive author Alex Cummaudo

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Applied Artificial Intelligence Institute

Email or phone ca@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

As above

School/Institute/Division if at Deakin Applied Artificial Intelligence Institute

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis author’s
contribution to the publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 10 March 2020

339

4. Description of all author contributions

Page 2 of 4

Name and affiliation of author 1 Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 1 Alex Cummaudo initiated the conception of the project, designed the
architecture that is described in this paper and implemented its
codebase. He designed the architectural designs appearing in the
paper and many drafts of this design. Additionally, he designed a
detailed methodology, conducted the experiment, performed data
collection, and performed a majority of data analysis. He drafted the
full manuscript and made further revisions, modifications and (will)
prepare the camera ready version for publication in the conference
proceedings.

Name and affiliation of author 2

Scott Barnett
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Scott Barnett contributed to the initial concept of this project by
providing feedback of the architecture designed. Scott also provided
feedback to the architectural designs and figures/graphs appearing in
this paper. Scott provided detailed reviews and edits of the
introduction, approach and evaluation sections of the manuscript, and
contributed to the limitations section.

Name and affiliation of author 3

Rajesh Vasa
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 3 Rajesh Vasa contributed to the initial conception of this project by
providing high-level guidance over overview of what the project and
its experiments should comprise of. Rajesh also contributed to
detailed revisions of the initial manuscripts, and assisted in advising
Alex Cummaudo on improved analytical insight into the collected
results. Rajesh Vasa is the primary supervisor of Alex Cummaudo.

Name and affiliation of author 4

John Grundy
Faculty of Information Technology
Monash University

Contribution of author 4 John Grundy provided high-level oversight of the project. He
contributed to detailed reviews of the methodology and manuscript.
John Grundy is the external supervisor of Alex Cummaudo.

Name and affiliation of author 5

Mohamed Abdelrazek
School of Information Technology
Deakin University

Contribution of author 5 Mohamed Abdelrazek made final edits and suggestions to the final
draft of the manuscript before submitting for peer review. Mohamed
Abdelrazek is an associate supervisor of Alex Cummaudo.

340 Authorship Statements

5. Author declarations

Page 3 of 4

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Alex Cummaudo

Signed:
Dated: 10 March 2020

Author 2 Scott Barnett

Signed:
Dated: 10 March 2020

Author 3 Rajesh Vasa

Signed:
Dated: 10 March 2020

Author 4 John Grundy

Signed:
Dated: 10 March 2020

Author 5 Mohamed Abdelrazek

Signed:
Dated: 10 March 2020

341

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 4 of 4

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format Comma separated values (CSV), Excel Spreadsheet, Ruby Code

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/fse2020

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

342 Authorship Statements

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 4

Title of publication Threshy: Supporting Safe Usage of Intelligent Web Services

Publication details Presented at the 28th Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (Demonstrations Track)

Name of executive author Alex Cummaudo

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Applied Artificial Intelligence Institute

Email or phone ca@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

As above

School/Institute/Division if at
Deakin

Applied Artificial Intelligence Institute

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis
author’s contribution to the
publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 14 January 2020

343

4. Description of all author contributions

Page 2 of 4

Name and affiliation of author 1 Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 1 Alex Cummaudo drafted the manuscript for this work, prepared
visualisations within the paper, made further revisions and changes
per reviewer feedback and (will) prepare the camera ready version
for publication in the conference proceedings. Alex also created the
required demonstration video required for this publication
(https://bit.ly/2YKeYhE), drafting the voiceover script, recording
the voiceover itself, producing animations within the video, and
recording a video of the tool in use.

Name and affiliation of author 2

Scott Barnett
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Scott Barnet contributed to the initial conception of this project by
providing high-level guidance on the conceptual workflow and
associated tooling. He also assisted in implementing the tool. Scott
contributed to detailed reviews of the methodology and manuscript
and provided feedback for the required video demonstration. Scott
also provided a detailed revision of the manuscript and provided
contribution to specific portions of the paper.

Name and affiliation of author 3

Rajesh Vasa
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 3 Rajesh Vasa contributed guidance to the conceptual workflow and
associated tooling presented in this paper. Rajesh also contributed
to detailed revisions of the initial manuscripts and provided
feedback on the tool and its associated demonstration video. Rajesh
Vasa is the primary supervisor of Alex Cummaudo.

Name and affiliation of author 4

John Grundy
Faculty of Information Technology
Monash University

Contribution of author 4 John Grundy provided high-level oversight of the project. He
contributed to detailed reviews of the manuscript and associated
demonstration video. John Grundy is the external supervisor of
Alex Cummaudo.

344 Authorship Statements

5. Author declarations

Page 3 of 4

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Alex Cummaudo

Signed:
Dated: 14 January 2020

Author 2 Scott Barnett

Signed:
Dated: 14 January 2020

Author 3 Rajesh Vasa

Signed:
Dated: 14 January 2020

Author 4 John Grundy

Signed:
Dated: 14 January 2020

345

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 4 of 4

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format JavaScript, Python, HTML, Keynote File, iMovie File

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/icse(d)20

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

346 Authorship Statements

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 4

Title of publication Requirements of API Documentation: A Case Study into Computer
Vision Services

Publication details Submitted to the IEEE Transactions on Software Engineering

Name of executive author Alex Cummaudo

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Applied Artificial Intelligence Institute

Email or phone ca@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

As above

School/Institute/Division if at
Deakin

Applied Artificial Intelligence Institute

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis
author’s contribution to the
publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 10 March 2020

347

4. Description of all author contributions

Page 2 of 4

Name and affiliation of author 1 Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 1 Alex Cummaudo devised the conception of this project and the
intended objectives and hypotheses. Additionally, he designed a
detailed methodology, conducted data collection with a custom tool
he wrote himself and performed analysis. He also designed and
conducted the survey instrument listed within this publication. He
drafted the full manuscript and made further revisions,
modifications. He made detailed revisions to all graphs and figures
within this paper.

Name and affiliation of author 2

Rajesh Vasa
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Rajesh Vasa contributed to the initial conception of this project by
providing high-level guidance over overview of what the project
and its experiments should comprise of. Rajesh also contributed to
detailed revisions of the initial manuscript, and assisted in advising
Alex Cummaudo on improved analytical insight into the collected
results. Rajesh Vasa is the primary supervisor of Alex Cummaudo.

Name and affiliation of author 3

John Grundy
Faculty of Information Technology
Monash University

Contribution of author 3 John Grundy provided high-level oversight of the project. He
contributed to detailed reviews of the methodology and manuscript.
John Grundy is the external supervisor of Alex Cummaudo.

Name and affiliation of author 4

Mohamed Abdelrazek
School of Information Technology
Deakin University

Contribution of author 4 Mohamed Abdelrazek made final edits and suggestions to the final
draft of the manuscript before submitting for peer review.
Mohamed Abdelrazek is an associate supervisor of Alex
Cummaudo.

348 Authorship Statements

5. Author declarations

Page 3 of 4

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Alex Cummaudo

Signed:
Dated: 10 March 2020

Author 2 Rajesh Vasa

Signed:
Dated: 10 March 2020

Author 3 John Grundy

Signed:
Dated: 10 March 2020

Author 4 Mohamed Abdelrazek

Signed:
Dated: 10 March 2020

349

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 4 of 4

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format Comma separated values (CSV), Portable Document Format (PDF)

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/tse2020

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

350 Authorship Statements

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 5

Title of publication Manual and Automatic Emotion Analysis of Computer Vision
Service Pain-Points

Publication details Submitted to the 6th International Workshop on Emotion
Awareness in Software Engineering

Name of executive author Alex Cummaudo

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Applied Artificial Intelligence Institute

Email or phone ca@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

As Above

School/Institute/Division if at
Deakin

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis
author’s contribution to the
publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 18 September 2020

351

4. Description of all author contributions

Page 2 of 5

Name and affiliation of author 1 Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 1 Alex Cummaudo produced the data set of Stack Overflow posts
used for analysis within this paper and contributed to the initial
conception of this project. He drafted the methodology section that
details how this data set was produced. Additionally, he drafted the
threats to validity section, results and discussion sections. He
reviewed the entire paper and made contributions to the findings
and discussion sections. He assisted in conducting inter-rater
reliability with two additional raters (Rajesh and Ulrike Maria). He
prepared the graphs and tables, prepared the paper for submission,
and ensured the paper was formatted to the guidelines and page
limit. Alex made most of the contribution to the paper (in terms of
content).

Name and affiliation of author 2

Ulrike Maria Graetsch
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Ulrike Maria’s contributed to the initial conception of the project
and performed the automatic EmoTxt classifier classifications on
our Stack Overflow data set, which involved downloading and
installing EmoTxt and adapting our data set to be compatible with
EmoTxt. She drafted the findings and discussion sections based on
the output from the EmoTxt classifier, including constructing the
graphs and tables in the paper. Ulrike Maria also conducted a
literature review into automatic emotion classifiers into Stack
Overflow posts. She extracted the quotes from posts as presented in
Table 3.

Name and affiliation of author 3

Maheswaree K Curumsing
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 3 Maheswaree Curumsing contributed to the fleshing out of the
project concept and coordinating the work. Maheswaree’s expertise
in emotion classification was leveraged in the paper, particularly
around the background sections and in deciding the correct
frameworks to classify posts. She conducted extensive literature
reviews for this paper. Maheswaree drafted the introduction,
background, part of the methodology and discussion. She was
involved in classifying emotions within Stack Overflow posts for
inter-rater reliability. She made further revisions to the manuscript
and provided modifications where needed.

Name and affiliation of author 4

Scott Barnett
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 4 Scott Barnett’s contribution involved drafting the abstract,

352 Authorship Statements

Page 3 of 5

conclusion and reviewing the entire manuscript for proofreading.
Scott also contributed in the initial conception of the project by
outlining techniques used to run the experiment.

Name and affiliation of author 5

Rajesh Vasa
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 5 Rajesh Vasa contributed to the initial conception of this project by
providing high-level guidance over overview of what the project
and its experiments should comprise of. Rajesh also contributed to
detailed revisions of the initial manuscripts, and assisted in advising
Alex Cummaudo on improved analytical insight into the collected
results. Rajesh Vasa is the primary supervisor of Alex Cummaudo.

Name and affiliation of author 6

John Grundy
Faculty of Information Technology
Monash University

Contribution of author 6 John Grundy contributed to revisions of the manuscript and
guidance for the publication venue. John Grundy is the external
supervisor of Alex Cummaudo.

353

5. Author declarations

Page 4 of 5

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Alex Cummaudo

Signed:
Dated: 18 September 2020

Author 2 Ulrike Maria Graetsch

Signed:
Dated: 18 September 2020

Author 3 Maheswaree K Curumsing

Signed:
Dated: 18 September 2020

Author 4 Scott Barnett

Signed:
Dated: 18 September 2020

Author 5 Rajesh Vasa

Signed:
Dated: 18 September 2020

Author 6 John Grundy

Signed:
Dated: 18 September 2020

354 Authorship Statements

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 5 of 5

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format Comma separated values (CSV), Excel Spreadsheet

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/semotion21

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

355

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 4

Title of publication Merging Intelligent API Responses Using a Proportional
Representation Approach

Publication details Presented at the 19th International Conference on Web Engineering
(ICWE), Daejeon, South Korea, 2019

Name of executive author Tomohiro Ohtake

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Faculty of Science, Engineering and Built Environment

Email or phone tomohiro.otake@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

Alex Cummaudo

School/Institute/Division if at
Deakin

Applied Artificial Intelligence Institute

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis
author’s contribution to the
publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 2 August 2019

356 Authorship Statements

4. Description of all author contributions

Page 2 of 4

Name and affiliation of author 1

Tomohiro Ohtake
Faculty of Science, Engineering and Built Environment
Deakin University

Contribution of author 1 Tomohiro Ohtake designed a detailed methodology for data
collection in the primary experiment of this work. He conducted all
data collection via a data-collection instrument he designed and
implemented and performed a majority of data analysis. He drafted
the full manuscript and made further revisions, modifications and
prepared the camera ready version for publication in the conference
proceedings.

Name and affiliation of author 2

Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Alex Cummaudo’s primary contribution to this work was the
conception and writing up of the motivating sections in the
manuscript. He additionally contributed to detailed editing of the
manuscripting to make further revisions and modifications and
implemented reviewer feedback.

Name and affiliation of author 3

Mohamed Abdelrazek
Faculty of Science, Engineering and Built Environment
Deakin University

Contribution of author 3 Mohamed Abdelrazek contributed to the initial conception of this
project by providing high-level guidance over overview of what the
project and its experiments should comprise of. Mohamed also
contributed to detailed revisions of the initial manuscripts, and
assisted in advising Tomohiro Ohtake on improved analytical
insight into the collected results, and implementing reviewer
feedback.

Name and affiliation of author 4

Rajesh Vasa
Faculty of Science, Engineering and Built Environment
Deakin University

Contribution of author 4 Rajesh Vasa provided high-level oversight of the project. He
contributed to detailed reviews of the methodology and manuscript.

Name and affiliation of author 5

John Grundy
Faculty of Information Technology
Monash University

Contribution of author 5 John Grundy provided high-level oversight of the project. He
contributed to detailed reviews of the methodology and manuscript.

357

5. Author declarations

Page 3 of 4

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Tomohiro Ohtake

Signed:
Dated: 2 August 2019

Author 2 Alex Cummaudo

Signed:
Dated: 2 August 2019

Author 3 Mohamed Abdelrazek

Signed:
Dated: 2 August 2019

Author 4 Rajesh Vasa

Signed:
Dated: 2 August 2019

Author 5 John Grundy

Signed:
Dated: 2 August 2019

358 Authorship Statements

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 4 of 4

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format Comma separated values (CSV)

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/icwe19

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

359

Deakin University Authorship Procedure
Schedule A: Authorship Statement

1. Details of the publication and executive author

2. Inclusion of publication in a thesis

3. HDR thesis author’s declaration

Page 1 of 4

Title of publication Using Pre-Trained Emotion Classification Models on Stack
Overflow Questions: Lessons Learned

Publication details Submitted for the 33rd International Conference on Advanced
Information Systems Engineering

Name of executive author Ulrike Maria Graetsch

School/Institute/Division if at
Deakin
Organisation and address if
non-Deakin

Applied Artificial Intelligence Institute

Email or phone maria.graetsch@deakin.edu.au

Is it intended to include this
publication in a higher degree by
research (HDR) thesis?
If Yes, please complete Section 3
If No, go straight to Section 4.

Yes

Name of HDR thesis author if
different from above.
(If the same, write “as above”)

Alex Cummaudo

School/Institute/Division if at
Deakin

Applied Artificial Intelligence Institute

Thesis title Taming the Evolving Black Box: Improving Integration and
Documentation of Pre-Trained Machine Learning Components

If there are multiple authors, give a
full description of HDR thesis
author’s contribution to the
publication.

See page 2

I declare that the above is an accurate description of my contribution to this paper, and the contributions of
other authors are as described below.

Signed: Dated: 2 June 2020

360 Authorship Statements

4. Description of all author contributions

Page 2 of 4

Name and affiliation of author 1 Ulrike Maria Graestch
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 1 Ulrike Maria’s contributed to the initial conception of the project
and performed the automatic classifier classifications (EmoTxt) on
our Stack Overflow data set, which involved downloading and
installing EmoTxt and adapting our data set to be compatible with
EmoTxt. Ulrike Maria drafted the initial manuscript, conducted the
literature review presented in the work, and performed calculations
on the inter-rater agreement statistics. She explored the training
dataset of EmoTxt and investigated the data imbalance and emotion
labelling bias discussed within the work, and proposal for future
tooling to alleviate issues identified.

Name and affiliation of author 2

Alex Cummaudo
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 2 Alex Cummaudo produced the data set of Stack Overflow posts
used for analysis within this paper. He performed a detailed review
of the manuscript and made substantial changes to the paper's
content, producing figures and tables within the paper. He revised
the Fliess' Kappa statistic and proposed changes to observed
percentage agreement. He set up and conducted inter-rater
reliability with two additional raters (Maheswaree and Ulrike
Maria). He reviewed the entire paper and made contributions to the
findings and discussion sections. He validated inter-rater reliability
statistics against the three raters and against the automatic
classifications made from EmoTxt. He prepared the paper for
submission, and ensured the paper was formatted to the guidelines
and page limit by reducing whitespace.

Name and affiliation of author 3

Rajesh Vasa
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 3 Rajesh Vasa contributed to the initial conception of this project by
providing high-level guidance over overview of what the project
and its experiments should comprise of. Rajesh also contributed to
detailed revisions of the initial manuscripts, and assisted in advising
Alex Cummaudo on improved analytical insight into the collected
results. Rajesh Vasa is the primary supervisor of Alex Cummaudo.

Name and affiliation of author 4 Maheswaree K Curumsing
Applied Artificial Intelligence Institute
Deakin University

Contribution of author 4 Maheswaree K Curumsing’s contribution involved structuring the
approach used around the EmoTxt classifier to label emotions
within Stack Overflow posts. Further, she contributed to the manual
classification for inter-rater reliability. She made further revisions
and proofreading to the manuscript and provided modifications

361

5. Author declarations

Page 3 of 4

where needed. Maheswaree also contributed in the initial
conception of the project by outlining techniques used to run the
experiment and her expertise in emotion classification was
leveraged in the paper.

I agree to be named as one of the authors of this work, and confirm:

i. that I have met the authorship criteria set out in the Deakin University Research Conduct
Policy,

ii. that there are no other authors according to these criteria,

iii. that the description in Section 4 of my contribution(s) to this publication is accurate,

iv. that the data on which these findings are based are stored as set out in Section 7 below.

If this work is to form part of an HDR thesis as described in Sections 2 and 3, I further

v. consent to the incorporation of the publication into the candidate’s HDR thesis submitted to
Deakin University and, if the higher degree is awarded, the subsequent publication of the thesis
by the university (subject to relevant Copyright provisions).

Author 1 Ulrike Maria Graetsch

Signed:
Dated: 2 June 2020

Author 2 Alex Cummaudo

Signed:
Dated: 2 June 2020

Author 3 Rajesh Vasa

Signed:
Dated: 2 June 2020

Author 4 Maheswaree K Curumsing

Signed:
Dated: 2 June 2020

362 Authorship Statements

6. Other contributor declarations

7. Data storage

8. Additional notices

Page 4 of 4

There are no other contributors for this publication to declare.

The original data for this project are stored in the following locations. (The locations must be within an
appropriate institutional setting. If the executive author is a Deakin staff member and data are stored outside
Deakin University, permission for this must be given by the Head of Academic Unit within which the
executive author is based.)

Data format Comma separated values (CSV), Excel Spreadsheet

Storage location Deakin University Research Data Store (RDS)
Location: RDS29448-Alex-Cummaudo-PhD/results/caise21

This form must be retained by the executive author, within the school or institute in which they are based.

If the publication is to be included as part of an HDR thesis, a copy of this form must be included in the
thesis with the publication.

363

APPENDIXE

Ethics Clearance

365

 Faculty of Science Engineering & Built Environment Human Ethics Advisory Group
 Geelong Waurn Ponds Campus, Geelong, VIC 3220
 Tel 03 522 72270 Fax 03 522 72028 sciethic@deakin.edu.au www.deakin.edu.au

CRICOS Provider Code: 00113B

Rajesh Vasa and Alex Cummaudo
 Applied Artificial Intelligence Institute (A²I²)
 C.c Mohamed Abdelrazek, Andrew Cain

 2 May 2019

 Dear Rajesh and Alex

STEC-11-2019-CUMMAUDO titled “Developer opinions towards the importance of web API documentation
recommendations”

Thank you for submitting the above project for consideration by the Faculty Human Ethics Advisory Group
(HEAG). The HEAG recognised that the project complies with the National Statement on Ethical Conduct in
Human Research (2007) and has approved it. You may commence the project upon receipt of this
communication.
The approval period is for three years until 02/05/22. It is your responsibility to contact the Faculty HEAG
immediately should any of the following occur:

x Serious or unexpected adverse effects on the participants
x Any proposed changes in the protocol, including extensions of time
x Any changes to the research team or changes to contact details
x Any events which might affect the continuing ethical acceptability of the project
x The project is discontinued before the expected date of completion.

You will be required to submit an annual report giving details of the progress of your research. Please
forward your first annual report on 02/05/20 Failure to do so may result in the termination of the project.
Once the project is completed, you will be required to submit a final report informing the HEAG of its
completion.

Please ensure that the Deakin logo is on the Plain Language Statement and Consent Forms. You should also
ensure that the project ID is inserted in the complaints clause on the Plain Language Statement, and be
reminded that the project number must always be quoted in any communication with the HEAG to avoid
delays. All communication should be directed to sciethic@deakin.edu.au

The Faculty HEAG and/or Deakin University Human Research Ethics Committee (HREC) may need to audit
this project as part of the requirements for monitoring set out in the National Statement on Ethical Conduct
in Human Research (2007).

If you have any queries in the future, please do not hesitate to contact me.

We wish you well with your research.

Kind regards

Teresa Treffry
Secretary, Human Ethics Advisory Group (HEAG)
Faculty of Science Engineering & Built Environment

366 Ethics Clearance

Faculty of Science Engineering & Built Environment Human Ethics Advisory Group
Tel 03 5563 33535 or 03 522 72028 sciethic@deakin.edu.au

www.deakin.edu.au

CRICOS Provider Code: 00113B

Rajesh Vasa, Mohamed Abdelrazek, Andrew Cain, Scott Barnett, Alex Cummaudo
Applied Artificial Intelligence Institute (A2I2) (G)

 23rd July 2019

 Dear Rajesh and research team

STEC-39-2019-CUMMAUDO titled “Factors that impact the learnability, interpretability and
adoption of intelligent services”.

Thank you for submitting the above project for consideration by the Faculty Human Ethics
Advisory Group (HEAG). The HEAG recognised that the project complies with the National
Statement on Ethical Conduct in Human Research (2007) and has approved it. You may
commence the project upon receipt of this communication.

The approval period is for three years until 23/07/22. It is your responsibility to contact the
Faculty HEAG immediately should any of the following occur:

• Serious or unexpected adverse effects on the participants
• Any proposed changes in the protocol, including extensions of time
• Any changes to the research team or changes to contact details
• Any events which might affect the continuing ethical acceptability of the project
• The project is discontinued before the expected date of completion.

You will be required to submit an annual report giving details of the progress of your research.
Please forward your first annual report on 23/07/20. Failure to do so may result in the
termination of the project. Once the project is completed, you will be required to submit a final
report informing the HEAG of its completion.

Please ensure that the project number must always be quoted in any communication with the
HEAG to avoid delays. All communication should be directed to sciethic@deakin.edu.au.

The Faculty HEAG and/or Deakin University Human Research Ethics Committee (HREC) may need
to audit this project as part of the requirements for monitoring set out in the National Statement
on Ethical Conduct in Human Research (2007).

If you have any queries in the future, please do not hesitate to contact me.

We wish you well with your research.

Kind regards

Rickie Morey
Senior Research Administration Officer
Representing the Human Ethics Advisory Group (HEAG)
Faculty of Science Engineering & Built Environment

367

	Abstract
	Contents
	List of Publications
	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	I Preface
	Introduction
	Research Context
	Motivating Scenarios
	Low Risk Motivating Scenario
	High Risk Motivating Scenario

	Research Motivation
	Outputs are Probabilities
	Evolution of Datasets
	Selecting Appropriate Decision Boundaries
	Documentation of the Above Concerns

	Research Goals
	Research Methodology
	Thesis Organisation
	part:preface: Preface
	part:publications: Publications
	part:postface: Postface
	part:appendices: Appendices

	Research Contributions
	Contribution 1: Landscape Analysis & Preliminary Solutions
	Contribution 2: Improving Documentation Attributes
	Contribution 3: Service Integration Architecture

	Chapter Summary

	Background
	Software Quality
	Validation and Verification
	Quality Attributes and Models
	Reliability in Computer Vision

	Probabilistic and Non-deterministic Systems
	Interpreting the Uninterpretable
	Explanation and Communication
	Mechanics of Model Interpretation

	Application Programming Interfaces
	Development, Documentation and Usage of Web APIs
	API Usability

	Chapter Summary

	Research Methodology
	Research Questions Revisited
	Empirical Research Questions
	Non-Empirical Research Questions

	Philosophical Stances
	Research Methods
	Review of Relevant Research Methods
	Review of Data Collection Techniques for Field Studies

	Research Design
	Landscape Analysis of Computer Vision Services
	Utility of API Documentation in Computer Vision Services
	Developer Issues concerning Computer Vision Services
	Designing Improved Integration Strategies

	Chapter Summary

	II Publications
	Identifying Evolution in Computer Vision Services
	Introduction
	Motivating Example
	Related Work
	External Quality
	Internal Quality

	Method
	Findings
	Consistency of top labels
	Consistency of confidence
	Evolution risk

	Recommendations
	Recommendations for IWS users
	Recommendations for IWS providers

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusions & Future Work

	Interpreting Pain-Points in Computer Vision Services
	Introduction
	Motivation
	Background
	Method
	Data Extraction
	Data Filtering
	Data Analysis

	Findings
	Post classification and reliability analysis
	Developer Frustrations
	Statistical Distribution Analysis

	Discussion
	Answers to Research Questions
	The Developer's Learning Approach
	Implications

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusions

	Ranking Computer Vision Service Issues using Emotion
	Introduction
	Motivation
	Methodology
	Dataset
	Additional Dataset Cleansing
	Automatic Emotion Classification
	Manual Emotion Classification
	Comparing Manual and Automatic Classification Methods

	Findings
	Discussion
	Threats to Validity
	Internal validity
	External validity
	Construct validity

	Conclusion

	Using Emotion Classification Models against Stack Overlow
	Introduction
	Motivation
	Method
	Results
	Limitations of the Text Classifier
	Data imbalance
	Emotion Labeling Bias
	Emotion Labelling and Classification Granularity

	Discussion
	Threats to Validity
	Related Work
	Conclusion

	Better Documenting Computer Vision Services
	Introduction
	Related Work
	Systematic Reviews in Software Documentation
	API Usability and Documentation Knowledge
	Computer Vision Services

	Taxonomy Development
	Systematic Mapping Study
	Development of the Taxonomy

	A Taxonomy for API Documentation
	Validating the Taxonomy
	Survey Study
	Empirical Application on Computer Vision Services

	Taxonomy Analysis
	Exploring IPS and ILS Values
	Triangulating IPS, ILS and Computer Vision
	Recommendations Resulting from Analysis

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusions & Future Work

	Using a Facade Pattern to combine Computer Vision Services
	Introduction
	Motivating Scenario: Intelligent vs Traditional Web Services
	Research Motivation

	Merging API Responses
	API Facade Pattern
	Merge Operations
	Merging Operators for Labels

	Graph of Labels
	Labels and synsets
	Connected Components

	API Results Merging Algorithm
	Mapping Labels to Synsets
	Deciding Total Number of Labels
	Allocating Number of Labels to Connected Components
	Selecting Labels from Connected Components
	Conformance to properties

	Evaluation
	Evaluation Method
	Naive Operators
	Traditional Proportional Representation Operators
	New Proposed Label Merge Technique
	Performance

	Conclusions and Future Work

	An Integration Architecture Tactic to Guard AI-first Components
	Introduction
	Motivating Example
	Intelligent Services
	`Intelligent' vs `Traditional' Web Services
	Dimensions of Evolution
	Limited Configurability

	Our Approach
	Core Components
	Usage Example

	Evaluation
	Data Collection and Preparation
	Results
	Threats to Validity

	Discussion
	Implications
	Limitations
	Future Work

	Related Work
	Conclusions

	An Implementation of the Threshold Tuner Component
	Introduction
	Motivating Example
	Threshy
	Related work
	Decision Boundary Estimation
	Tooling for ml Frameworks

	Conclusions & Future Work

	III Postface
	Conclusions & Future Work
	Contributions of this Work
	Answers to Research Questions
	Limitations to Research Answers & Future Research

	Concluding Remarks

	References
	List of Online Artefacts

	IV Appendices
	Additional Figures
	Reference Architecture Source Code
	Supplementary Materials to ch:tse2020
	Detailed Overview of Our Proposed Taxonomy
	Sources of Documentation
	List of Primary Sources
	Detailed Suggested Improvements
	Dimension A Issues
	Dimension B Issues
	Dimension C Issues
	Dimension D Issues

	Survey Questions

	Authorship Statements
	Ethics Clearance

