
Otago CS/IS Presentation, Feb 2001 1

Component-based Methods,
Architectures and Tools

John Grundy
Dept of Computer Science

University of Auckland

Otago CS/IS Presentation, Feb 2001 2

Overview
  What are component-based systems???
  Recent UoA work on component-based

systems:
  JViews
  Jcomposer & Serendipity-II
  Aspect-oriented Component Engineering
  SoftArch

  Putting it all together…
  What does the future hold?

Otago CS/IS Presentation, Feb 2001 3

Software Components

  Idea of discrete, “pluggable” software components:

  Isolate functions/non-functional characteristics
  Interact via well-defined interfaces/events
  Compose to form systems (sometimes end users!)
  Domain-specific & reusable...

Email

Spell cheker

Word Processor
Data: messages
Funcs: send/receive/edit
Events: editing/send/recv Data: dictionary

Funcs: check, change, ask user
Events: changed

Data: text, pictures
Funcs: open, close, edit
Events: open/close, edit, save

Otago CS/IS Presentation, Feb 2001 4

Our Use of Components

Otago CS/IS Presentation, Feb 2001 5

JViews Framework
  Architecture for building event-based software

engineering tools (originally, anyway...)
  Abstractions:
  uses extended JavaBeans component model
  multiple view support
  repository, distribution support
  multi-user support
  extensible user interfaces
  limited tool integration support
  many reusable components from framework

Otago CS/IS Presentation, Feb 2001 6

JViews Architecture Example

  JViews structure
of Ser-II tool

  Comps for
repository
(model); views;
collaboration;
persistency; tool
integration etc

Otago CS/IS Presentation, Feb 2001 7

Tool Support

Otago CS/IS Presentation, Feb 2001 8

JComposer/BuildByWire

Otago CS/IS Presentation, Feb 2001 9

Serendipity-II
  Process modeling & enactment environment
  Process modeling:
  multiple, visual views (overlapping & hierarchical)
  multiple user editing support
  event processing visual language

  Process enactment:
  decentralised enactment engine; view highlights
  decentralised to-do lists, task automation (“agents”)
  tool integration

Otago CS/IS Presentation, Feb 2001 10

Ser-II: Example of Use

Otago CS/IS Presentation, Feb 2001 11

Collaborative Work...

Otago CS/IS Presentation, Feb 2001 12

Other applications...
  Collaborative

travel itinerary
planner

  Textual & visual
views

  Collaboratively
edit

  Built by
composing
comps in Ser-II

Otago CS/IS Presentation, Feb 2001 13

Specification in Serendipity-II
  Create/link various

components
  Event handling VL

from Ser-II used
  Can co-ord usage

with Ser-II process
models...

Otago CS/IS Presentation, Feb 2001 14

Component Development

Otago CS/IS Presentation, Feb 2001 15

Aspect-oriented Component
Engineering Methodology...

  Systemic perspectives on
component func/non-func reqs

  Capture data, func, non-
functional information

  Idea of provided & required
aspects

  Often overlap
  Various kinds of aspects...

Otago CS/IS Presentation, Feb 2001 16

Example: JViews Event History

Otago CS/IS Presentation, Feb 2001 17

Implementation of Aspects
  Extended our JViews framework to support

implementation of components using aspects
  Use to guide component interface & links
  Codify in component implementation for run-time

use by users/other components
  knowledge about component facilities available to users
  aspect codification provides set of functions to examine

aspects, set of patterns for component reconfiguration
etc.

Otago CS/IS Presentation, Feb 2001 18

Tool Support: Jcomposer+;
Repository & Query IF

Otago CS/IS Presentation, Feb 2001 19

Architectural Support

Otago CS/IS Presentation, Feb 2001 20

SoftArch Example

Otago CS/IS Presentation, Feb 2001 21

A Distributed Component
Engineering Environment...

•  Serendipity-II:
•  processes/agents

•  SoftArch:
•  High-level

component groupings
•  JComposer:

•  CASE/impl.
•  JVisualise:

•  debugging
•  Component Library:

•  reuse
•  Others (DB, RCS, Forte)

Otago CS/IS Presentation, Feb 2001 22

Summary

  Component-based architectures:
  work well for SEEs
  Jviews->Jcomposer->AOCE->SoftArch->??

  Future Work:
  Heterogeneous component systems?
  Improved architecture/component abstractions
  Many areas of tool enhancement
  Further exploit agents, aspects, repositories,

distribution, open systems platforms, ...

Otago CS/IS Presentation, Feb 2001 23

Selected References
Grundy, J.C. Multi-perspective specification, design and implementation of software components using aspects, International
Journal of Software Engineering and Knowledge Engineering, Vol. 10, No. 6, December 2000.

Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Constructing component-based software engineering environments: issues and
experiences, Journal of Information and Software Technology, Vol. 42, No. 2, January 2000, pp. 117-128.

Grundy, J.C. Visual specification and monitoring of software agents in decentralised process-centred environments, International
Journal on Software Engineering and Knowledge Engineering, Vol. 9, No. 4, World Scientific Publishing Company, August
1999, pp. 425-444.

Grundy, J.C., Hosking, J.G., Mugridge, W.B., Apperley, M.D. A decentralised architecture for software process modelling and
enactment, IEEE Internet Computing, Vol. 2, No. 5, IEEE CS Press, September/November, 1998, pp. 53-62.

Grundy, J.C. A method and support environment for distributed software component engineering, In Proceeding of the 2000
International Conference on Software – Methods & Tools, Wollongong, Australia, Nov 6-10 2000, IEEE CS Press, pp.157-166.

Grundy, J.C. and Hosking, J.G. High-level Static and Dynamic Visualisation of Software Architectures, accepted to 2000 IEEE
Symposium on Visual Languages, Seattle, Washington, Sept. 14-18 2000, IEEE CS Press.

Grundy, J.C. Storage and retrieval of Software Components using Aspects, In Proceedings of the 2000 Australasian Computer

Science Conference, Canberra, Australia, Jan 30-Feb 3 2000, IEEE CS Press, pp 95-103.

http://www.cs.auckland.ac.nz/~john-g/publications.html

