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Overview 
  What are component-based systems??? 
  Recent UoA work on component-based 

systems: 
  JViews 
  Jcomposer & Serendipity-II 
  Aspect-oriented Component Engineering 
  SoftArch 

  Putting it all together… 
  What does the future hold? 
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Software Components 

  Idea of discrete, “pluggable” software components: 

  Isolate functions/non-functional characteristics 
  Interact via well-defined interfaces/events 
  Compose to form systems (sometimes end users!) 
  Domain-specific & reusable... 

Email 

Spell cheker 

Word Processor 
Data: messages 
Funcs: send/receive/edit 
Events: editing/send/recv Data: dictionary 

Funcs: check, change, ask user 
Events: changed 

Data: text, pictures 
Funcs: open, close, edit 
Events: open/close, edit, save 
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Our Use of Components 
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JViews Framework 
  Architecture for building event-based software 

engineering tools (originally, anyway...) 
  Abstractions: 
  uses extended JavaBeans component model 
  multiple view support 
  repository, distribution support 
  multi-user support 
  extensible user interfaces 
  limited tool integration support 
  many reusable components from framework 
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JViews Architecture Example 

  JViews structure 
of Ser-II tool 

  Comps for 
repository 
(model); views; 
collaboration; 
persistency; tool 
integration etc 
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Tool Support 
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JComposer/BuildByWire 
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Serendipity-II 
  Process modeling & enactment environment 
  Process modeling: 
  multiple, visual views (overlapping & hierarchical) 
  multiple user editing support 
  event processing visual language 

  Process enactment: 
  decentralised enactment engine; view highlights 
  decentralised to-do lists, task automation (“agents”) 
  tool integration  
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Ser-II: Example of Use 
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Collaborative Work... 
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Other applications... 
  Collaborative 

travel itinerary 
planner 

  Textual & visual 
views 

  Collaboratively 
edit 

  Built by 
composing 
comps in Ser-II 
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Specification in Serendipity-II 
  Create/link various 

components 
  Event handling VL 

from Ser-II used 
  Can co-ord usage 

with Ser-II process 
models... 
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Component Development 
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Aspect-oriented Component 
Engineering Methodology... 

  Systemic perspectives on 
component func/non-func reqs 

  Capture data, func, non-
functional information 

  Idea of provided & required 
aspects 

  Often overlap 
  Various kinds of aspects... 
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Example: JViews Event History 
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Implementation of Aspects 
  Extended our JViews framework to support 

implementation of components using aspects 
  Use to guide component interface & links 
  Codify in component implementation for run-time 

use by users/other components 
  knowledge about component facilities available to users 
  aspect codification provides set of functions to examine 

aspects, set of patterns for component reconfiguration 
etc. 
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Tool Support: Jcomposer+; 
Repository & Query IF 
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Architectural Support 
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SoftArch Example 
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A Distributed Component 
Engineering Environment... 

•  Serendipity-II: 
•   processes/agents 

•  SoftArch: 
•   High-level 

component groupings 
•  JComposer: 

•   CASE/impl. 
•  JVisualise: 

•   debugging 
•  Component Library: 

•   reuse 
•  Others (DB, RCS, Forte) 
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Summary 

  Component-based architectures: 
  work well for SEEs 
  Jviews->Jcomposer->AOCE->SoftArch->?? 

  Future Work: 
  Heterogeneous component systems? 
  Improved architecture/component abstractions 
  Many areas of tool enhancement 
  Further exploit agents, aspects, repositories, 

distribution, open systems platforms, ... 
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