
Marama: an Eclipse-based
meta-tool for generating multi-
view graphical modelling tools

John Grundy

Department of Electrical &
Computer Engineering
University of Auckland, New
Zealand

j.grundy@auckland.ac.nz

John Hosking

Department of Computer
Science,
University of Auckland, New
Zealand

j.hosking@auckland.ac.nz

Outline

•  Models in SoftEng (and elsewhere)
•  Our history in building modelling tools
•  Marama motivation/requirements
•  Marama overview
•  Examples of Marama modelling tools
•  Current & future work
•  Conclusions

Models, models everywhere…

•  Software engineering:
–  OOA/D, requirements, processes, networks, tests,

configurations, code, …
•  Construction/Engineering/Comp Systems:

–  Structures, plant, plumbing/electrics, materials, …
–  VHDL, electromagnetics, processes/tasks, …

•  Health:
–  Patient diagnoses, treatments, imaging, …

•  Business:
–  Processes/workflow, financial, economic (!), …

•  Others:
–  Families, Friends/social/business networks, ...

Working with models

•  Authoring, visualising, navigating, transforming,
understanding, evolving, …

•  Requires appropriate TOOLS to support these
•  Tools must be usable, scalable, sharable, robust,

extensible
•  Ideally we want to provide domain-specific visual

languages (DSVLs) to represent (parts of) models in
“closeness of fit” to end user/domain

•  We want tools to support these DSVLs
•  BUT - building such DSVL modelling tools is HARD!

UoA Modelling Tools – a brief History
Frameworks for
constructing multi-view
multi-notation environments

Meta tools for specifying &
constructing multi-view
multi-notation environments

(An aside: Evolving Frameworks Pattern Language
- a nice framework to describe this evolution…)

Design Tools-
Engineering

Prolog Java Java, RMI,
Web Services

Eclipse +
Java

Applications developed using the frameworks & meta tools
Commercialisation/industry transfer

Ispel
1990

MViews
1993

JViews
1997

JComposer
1998

Pounamu
2003

Kea
1989

Marama
2006

+ Software

Marama – some key goals
•  Make modelling tool implementation easier for:

–  Experienced domain modellers (may not be developers!)
–  Familiar with basic modelling concepts

•  Eg EER, OCL, meta models
–  Construct basic modelling tools within 1 day

•  Plus time for backend code generators etc

•  Leverage strength of Eclipse platform
–  Standalone Pounamu left us with too much to support

infrastructure to develop e.g. save/load, XML, GUI, remoting
•  Make use of EMF, GEF, JET, events, etc

–  Eclipse community & open source attractive

•  Paper at ASE06 on early version of Marama
–  Used Pounamu metatools
–  Realised tools in Eclipse using Marama runtime plugin

•  Paper at ICSE08 on (more or less) latest Marama toolset

Marama – some key requirements
•  Need to be able to specify and generate:

–  Meta-model
•  represents the target model elements

–  Icons and connectors
•  visual representation(s) of model

–  Views and view to model mappings
•  View – model consistency

–  Behaviour
•  Constraints, operations

–  Model transformations
•  Backend code generation
•  Tool integration

–  Tool deployment
•  Scalable, sharable, usable, intelligent, ... tools

Marama – basic architecture
 Eclipse IDE

Marama Meta-tool
Application

Specification Tools

Shape Designer

Meta-model
Designer

View Designer

Tool Specifcations
– XML documents

Tool specification
projects (XML)

Marama Plug-in
(GEF Editor)

Eclipse IDE
resource

management

Marama save files - Eclipse
workspace files (XMI)

Marama Plug-in
(EMF Models)

(2)

Adapter API

(3)
(5)

(7) (1)

Tool
config.
held in
DOMs

EMF OCL Plug-
in (OCL

Interpreter)

Event handler objects

(6) (4)

Example tool: MaramaMTE

Palette

Property
Sheet

Modelling
Window

Helpers

Meta model specification

•  EER (KISS)
–  Entities
–  Relationships
–  Subtyping
–  Roles
–  Attributes
–  Keys

•  OCL constraints
(see later)
–  Attribute calcns
–  Invariants
–  Cardinalities

Icon and connector specification

View and view-model mapping specn

•  Elements in view
•  Mappings

–  Entity to Icon
–  Relationship to

connector
–  Attribute to

property
•  Constraints

–  Specialised
relationships eg
enclosure,
containment

Generated tool – performance eng tool

Architecture spec

Web form interaction spec

Marama – key requirements

•  Need to be able to specify/generate:
ü Metamodel
ü  Icons and connectors
ü Views and view to model mappings
–  Behaviour

•  Constraints, operations
–  Model transformations
–  Tool deployment

MaramaTatau – model level constraints

•  Specification of behaviour always difficult in meta-tools:
–  Initial approach – Java event handlers (code plug-ins)
–  Clumsy to write, need detailed API knowledge etc

•  MaramaTatau allows constraints to be specified as OCL
expressions over the meta model elements:
–  Textual OCL expression
–  But constructed using spreadsheet approaches
–  Click and connect
–  High level visual repn

Constraint construction

Grey border annotations
sensible to use in formula

Green arrow annotations
formula dependencies

Formula
construction
area

Built in function
palette

Green circle annotations
formula for this attribute/entity

MaramaMTE example
self.object.name.concat('.').concat(name)

Constraint violation

Critic mechanism

Visual constraints in views

•  Can add some predefined layout constraints in
view specification (eg containment)

Encloses(ObjectShape,ServiceShape)

Contains(ServiceShape,
 RequestShape)

Visual constraints in views
•  OCL constraints in

MaramaTatau –
declarative; some
limitations

•  Kaitiaki: imperative
visual event flow
language for
expressing view level
constraints/operations

•  Dataflow oriented
–  Push and pull

•  Implemented in
Pounamu
–  currently being

ported into Marama

Marama basic requirements

•  Need to be able to specify/generate:
ü Metamodel
ü  Icons and connectors
ü Views and view to model mappings
ü Behaviour
–  Model transformations

•  Backend code generation
•  Tool integration

–  Tool deployment

MaramaTorua –visual mapping/ model
transformation specn and generation

Mapping specs

Generated XSLT

Hierarchical
schema Element

mappings

Mapping formula

Installing mapping into a Marama tool

 	

Marama – key requirements
•  Need to be able to specify/generate:

ü Metamodel
ü  Icons and connectors
ü Views and view to model mappings
ü Behaviour
ü Model transformations
•  Tool deployment

•  Scalable
•  Sharable
•  Usable
•  Intelligent
•  …

MaramaThin, MaramaMobile

MaramaDiffer

MaramaSketch

(how cool is that?!! J)

MaramaCritics

Example tools
•  Marama metatools themselves J
•  MaramaMTE
•  MaramaTorua

•  MaramaEML – business process modeller
•  MaramaDPML – design pattern tool
•  Healthcare plan specification (& mobile

deployment)
•  Various industry rapid prototypes

MaramaEML – Enterprise Modelling
(best demo paper ASE2008)

MaramaDPML Tool – Design Patterns

VCPML & VPAM – Health Care Plans

Evaluation
•  A variety of evaluation approaches
•  Use of Cognitive Dimensions to:

–  Inform design and
–  Undertake lightweight evaluation

•  Experience of use in designing and implementing systems
•  Small group survey based usability evaluations

–  Primarily of generated tools and tool extensions
•  Large group use with PG CS/SE students

–  (~130 in 2007; ~80 in 2008 participants)
–  Extended tool development exercise
–  Survey based evaluation of core meta tool
–  Results very good

•  Consistent with similar series of surveys undertaken with
Pounamu

Sutcliffe’s Design metadomain model

(from Sutcliffe 2002)

MaramaSketch

MaramaDiffer/CSCW

MaramaCritic

Core Marama

MaramaThin, Mobile
The “Visual Wiki”

Where to next (Marama)?
•  Modelling vs visualisation – explore existing models vs build

new ones
•  Domain knowledge management e.g. with EU FP7 SUDDEN and

SERVE projects; NICTA (Jenny Liu)
•  Commercialising and “industry hardening” with Sofismo (Swiss

IT company)
•  Model-driven development tools using DSVLs – MaramaMTE,

VPAM good examples…
•  Use to develop tools! E.g. for cloud computing (with Anna Liu @

UNSW); model-to-model mapping, tracability, consistency (with
Rainbow Cai @ ANU); visualise various Eclipse projects (and
itself J); business process modelling; health care DSVL tools;
Construction IT tools (back to Kea!); …

Where to next (bigger picture)?

•  Better integration with workflow/ process/
knowledge management tools e.g. the “visual
wiki” (see: thinkbase.cs.auckland.ac.nz for prototype)

•  Handling (well) model evolution; collaborative
modelling; cross-domain modelling; model
integration

•  Reusing others model checking, validation etc work
•  Modelling vs visualisation – integration of the

concepts via multiple views
•  How do we design and validate DSVLs effectively?
•  “End-user” DSVLs tools - much wider applications

Summary
•  Models are used in huge range of domains
•  Need good tools to author, manage, evolve etc models
•  Have described Marama – a meta-modelling tool builder:

–  Meta tools for multi-view modelling tool generation
–  Extensions to support:

• Model transformation
•  Sketching
•  Tool critic authoring
•  Collaboration

•  Some Applications:
•  Performance Engineering, design patterns, health

care planning, model mapping and transformation, …
•  BUT - we still don’t know how to design good model

representations (DSVLs) vs build tools for them…

Credits

•  Assoc Prof Robert Amor
•  Dr Rick Mugridge
•  Dr Beryl Plimmer
•  Dr Gerald Weber
•  Dr Karen Li
•  Jun Huh
•  Richard Li
•  Rainbow Cai
•  Team @ Sofismo

•  Funding from New Zealand Foundation for Research
Science & Technology – DS Tools & SPPI projects

https://wiki.auckland.ac.nz/display/csidst/

References
•  Li, L, Grundy, J.C., Hosking, J.G. A visual language and environment for enterprise system modelling and automation,

Journal of Visual Languages and Computing, vol. 25, no. 4, Elsevier, pp. 253-277
•  Ali, N.M., Hosking, J.G., Grundy, J.C., A Taxonomy and Mapping of Computer-based Critiquing Tools, IEEE Transactions on

Software Engineering, vol. 39, no. 11, November 2013, pp. 1494-1520
•  Grundy, J.C., Hosking, J.G., Li, N., Li, L., Ali, N.M., Huh, J. Generating Domain-Specific Visual Language Tools from Abstract

Visual Specifications, IEEE Transactions on Software Engineering, vol. 39, no. 4, April 2013, pp. 487 - 515.
•  Kamalrudin, M., Hosking, J.G, and Grundy, J.C. Improving requirements quality using essential use case interaction patterns,

In Proceedings of the 2011 International Conference on Software engineering (ICSE 2011), Hawaii, USA, May 21-28 2011.
•  Pei, Y.S., Hosking, J.G. and Grundy, J.C. Automatic Diagram Layout Support for the Marama Meta-toolset, In Proceedings of

the 2011 IEEE Symposium on Visual Languages and Human-Centric Computing, Pittsburgh, USA, Sept 18-22 2011, IEEE
Press.

•  Li, K., Hosking, J.G., Grundy, J.C. , Ly, T. and Webb, B., Augmenting DSVL Meta-Tools with Pattern Specification,
Instantiation and Reuse, 2nd International Workshop on Visual Formalisms for Patterns, Co-located with IEEE Visual
Languages & Human-Centric Computing 2010, Madrid, Spain, 24th Sept 2010. Post-workshop revised version in Electronic
Communications of the EASST Vol 31.

•  Ali, N., Hosking, J.G., Huh, J. and Grundy, J.C. Template-based Critic Authoring for Domain-Specific Visual Language Tools,
In Proceedings of the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing, Cornwallis, Oregon, USA,
Sept 20-24 2009, IEEE CS Press.

•  Huh, J., Grundy, J.C., Hosking, J.G., Li, N., Amor, R., Integrated data mapping for a software meta-tool, In Proceedings of
the 2009 Australian Software Engineering Conference, Gold Coast, Australia, April 2009, IEEE CS Press.

•  Abizer Khambati, John Grundy, John Hosking, and Jim Warren, Model-driven Development of Mobile Personal Health Care
Applications, In Proceedings of the 2008 IEEE/ACM International Conference on Automated Software Engineering, L'Aquilla,
Italy, 15-19 September 2008, IEEE CS Press.

•  Grundy, J.C., Hosking, J.G., Li, N. and Huh, J. Marama: an Eclipse meta-toolset for generating multi-view environments,
Formal demonstration at the 30th International Conference on Software Engineering (ICSE 2008), Leipzig, Germany, May
2008, ACM Press.

