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Motivating Example 

Cloud Providers:  GREEN CLOUD – BLUE CLOUD 
Service Providers:  SWINSOFT - GREEN CLOUD – BLUE CLOUD 
Cloud Consumers:  Swinburne  University-  Auckland University, SwinMarket 

Get	  Currency-‐Now	  

Build	  Workflow	  	  

Galac7c	  ERP	  

Execute	  Batch	  processing	  
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Injection attack 
e.g. SQL, JS 

Poor Isolation 

Excessive  
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Data tampering attack 
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-  Architecture Security Analysis e.g.  
-  MS STRIDE, EOP Card Game, CAPEC 

-  Common attacks to look for 
-  Man in the middle 
-  Denial of service 
-  Data tampering 
-  Injection attack 
-  … 

-  BUT – what indicates a system might be vulnerable to 
such attacks?? E.g. consider the previous example! 
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Architecture Security Analysis & Attacks 
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-  Attack surface – proportion of system attacker could use/
access to attack system 

-  Compartmentalization – isolation of system components 
from each other to minimise cross-compromise 

-  Least privilege – should grant components minimal 
privileges to carry out operation 

-  Secure failure – if something goes wrong, don’t expose 
sensitive details of system 

-  Security isolation – between components  
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System Architecture level security metrics  
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-  Can we use security metrics to identify weaknesses? 

-  Can we identify these weaknesses from architectural-level 
characteristics and structures of a cloud application? 

-  Can we formalise currently informal weakness and metric 
definitions e.g. CAPEC database to make them amenable 
for automated architectural analysis? 

-  Can we use the identified weaknesses / vulnerabilities to 
alert cloud/service providers and/or cloud consumers to 
actual or possible security problems? 

-  Can we use this information to mitigate the problems? 
6 

Key research questions 
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-  Previously, we described code-level “vulnerability 
signatures” used to detect via static analysis (ASE 2012) 

-  Now we have looked for signatures & metrics to indicate 
weaknesses @ architecture levels 

-  Formalise CAPEC attack pattern signatures, architecture 
vulnerabilities, security metrics via OCL  

-  Search for matching signatures in system architecture & 
security requirements definitions 

-  Perform trade-off analysis of vulnerabilities/mitigations 

-  Apply mitigations to address weaknesses 
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Our Approach 
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1. “Weakness Definitions” 



Swinburne   

SCIENCE  |  TECHNOLOGY  |   INNOVATION 

Automated Software Architecture Security Risk Analysis Using 
Formalized Signatures 

10 

Examples (Simplified) – Vulnerable components 
ID Metric Signature 
1 context System inv Man-in-the-Middle Attack: 

self.components->select(C1|  
          C1.DeploymentZoneType = 'Untrusted'   
   and self.components.exists(C2 |  
          C2.Channels->exists(Ch |  
             Ch.TargetComponent = C1  
         and Ch.EncryptionControlDeployed = false)  
   and C1.EncryptionControlDeployed = false  
   and C2.EncryptionControlDeployed = false)) 

Any two components that communicate through an unencrypted channel and one or both of them operate in an untrusted zone or do not apply cryptography controls on 
their communicated messages. 

2 context System inv Denial-of-Service Attack: 
self.components->select(C1|  
       C1.DeploymentZoneType = 'Untrusted'   
  and  C1.AuthenticationControlDeployed = false  
  and (C1.InputSanitizationControlDeployed = false      
    or C1.Host.Network.FirewallControlDeployed= false)) 

Any publicly accessible component that does not operate input sanitization control (or application firewall), and does not have authentication control. 
3 context System inv DataTampering: 

self.components->select(C1|  
        C1.DeploymentZoneType = 'Untrusted'   
  and self.components.exists(C2 |  
             C2.Channels->exists(Ch |  
                  Ch.TargetComponent = C1  
              and Ch.EncryptionControlDeployed = false)  
         and C1.EncryptionControlDeployed = false  
         and C2.EncryptionControlDeployed = false)) 

Any component that is deployed on an untrusted host (malicious insider) or zone, sends data in plain text, or does not operate authorization control. 

 

Any publicly accessible component that 
does not operate input sanitization control 
(or an application firewall), and does not 

have authentication control. 
Any component that is deployed on an 

untrusted host (malicious insider) or zone, 
sends data in plain text, or does not 

operate authorization control.
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Examples (2) – some metrics 
4 context System inv AttackSurface: 

   self.components->select(C1| C1. DeploymentZoneType = 'Untrusted')->collect(C2 | C2.Functions)->size() 
Number of the functions defined in the provided interfaces of the public system components and number of functions defined in the required interfaces of the system 
public components that are used by other components. 

5 context System inv Compartmentalization: 
self.components->select(C |  
      C.AuthenticationControlDeployed = true  
  and C.AuthorizationControlDeployed = true)->size() 

Number of architecture components that apply Authn. and Authz. controls on incoming calls (work independent and do not trust other components). 

6 context System inv FailSecurely: 
self.components->collect(C | C.Functions->select( F |  
                  F.IsCritical = true)->size())->sum()/     
   self.components->collect(C |C.Functions->select( F |   
              F.IsCritical = true)->size())->siz() 

The average of critical methods and attributes in each system component. 

7 context System inv Defense-in-depth: 
self.select( C | C.IsCritical= true  
       and C.AuthenticationControlDeployed = true  
       and C.AuthorizationControlDeployed = true 
       and C.CryptographyControlDeployed = true  
       and C.Host.AuthenticationControlDeployed = true  
       and C. Host.AuthorizationControlDeployed = true  
  and C. Host.CryptographyControl = true)->size() /  
self.select( C | C.IsCritical = true)->size() 

The ratio of critical components that have layered security compared to the total number of critical components in the system. 

 

# of functions defined in interfaces of 
public system components that are used 

by other components.
# of components that apply Authentication 

and Authorization controls on incoming 
calls (& work independently  and do not 

trust other components)

The ratio of critical components that have 
layered security compared to the total 
number of critical components in the 

system
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-  System Description Model 

-  Security Specification Model 

-  System-Security Mappings 

-  Signature Evaluator – vulnerabilities & metrics 

-  Results 

-  Trade-off analysis 
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2. Models to check & the Analysis process 
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Some source models for architecture 
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Some security specification models 
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Linking models 
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-  Mappings between architecture (system) <-> security 
specification => desired security levels, constraints 

-  Signatures encoded in OCL => vulnerable components/
connectors to search for & metrics to take 

-  OCL Signatures compiled => set of C# functions 

-  C# functions run over system/security model => locate 
potential weaknesses/vulnerabilities in architecture 

-  Trade-off analysis using mitigation information => possible 
changes to system and/or security models… 

-  Run-time application of vulnerability mitigations… 
16 

3. Architecture Analysis & Weakness Mitigation 
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Using the vulnerabilities / mitigations @ runtime… 
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-  5 open source + our own motivating scenario 

-  Various levels of complexity, architecture, implemented 
security models 

-  Four attack scenarios: Man-in-The-Middle, Denial of 
Service, Data Tampering, and Injection attacks 
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Evaluation 
Benchmark Downloads KLOC Files Comps Classes Method 
BlogEngine >46,000 25.7 151 2 258 616 
BugTracer >500 10 19 2 298 223 

Galactic - 16.2 99 6 101 473 
KOOBOO >2,000 112 1178 13 7851 5083 

NopCommerce >10 Rel. 442 3781 8 5127 9110 
SplendidCRM >400 245 816 7 6177 6107 
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Results 
Scenario / Metric 

D = DISCOVERED FLAWS 
FP= FALSE POSITIVES 

FN = FALSE NEGATIVES  
↓ =>  lower = better 
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Security Scenarios 

Man-in-The-Middle (↓) 
D 1 1 4 8 3 5 22 
FP 0 0 0 1 0 0 1 
FN 0 0 0 1 0 1 2 

Denial of Service (↓) 
D 1 1 3 2 1 2 10 
FP 0 0 0 0 0 1 1 
FN 0 0 0 1 1 0 2 

Data Tampering (↓) 
	  	   

D 1 1 3 5 3 3 16 
FP 0 0 0 2 0 0 2 
FN 0 0 1 0 1 0 2 

Injection Attack (↓) 
D 2 1 3 5 4 3 18 
FP 0 0 1 1 0 1 3 
FN 0 1 1 1 0 0 3 

Total 
D 5 4 13 20 11 13 66 
FP 0 0 1 4 0 2 7 
FN 0 1 2 3 2 1 9 

Average Precision = 90%  Average Recall = 87%    F-Measure = 88%  
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Results (2) 
Scenario / Metric 

M = METRIC MEASURED VALU,E 
FP= ALSE POSITIVES 

FN = FALSE NEGATIVES  
↑ => higher is  better; 
↓ => lower is better 
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Security Metrics 

Attack Surface (↓) 
M 8 11 17 23 18 24 101 
FP 1 2 2 1 2 4 12 
FN 0 0 1 3 2 1 7 

Compartmental-ization (↑) 
M 1 1 3 3 4 3 14 
FP 0 0 0 0 1 0 1 
FN 0 0 1 1 0 0 2 

Fail Securely (↓) 
M 0.3 0.2 0.5 0.5 0.4 0.6 -‐ 
FP 2 1 0 0 0 1 4 
FN 1 0 0 0 1 1 3 

Defence-in-Depth (↑) 
M 0.5 0.5 0.8 0.4 0.3 0.5 -‐ 
FP 0 1 0 0 1 0 2 
FN 0 2 0 1 0 1 4 

Average Precision = 91%   Average Recall = 89%    F-Measure = 90% 



Swinburne   

SCIENCE  |  TECHNOLOGY  |   INNOVATION 

Automated Software Architecture Security Risk Analysis Using 
Formalized Signatures 

21 

Results (3) – Apples vs Oranges J; Performance 
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-  Can compare systems in the same domain – but appearances can be 
(very) deceiving… 

-  Vulnerability Counts vs Metrics vs meaning 
-  need to compare like with like 
-  Criticality of the issue vs simple occurrences 
-  System scale makes a large difference   

-  Just one critical weakness can cause whole system to be 
compromised under attack; lots of minor weaknesses may be 
tolerable 

-  Its rather slow to analyse many of these => non-real time 

-  Change to environment / co-deployed services/applications => 
changes to measures / counts… 

22 

All is not what it may seem - some things to note… 
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-  A range of architecture vulnerabilities and security metrics can be 
formalised 

-  These formalised specifications can be used to check architecture 
security properties and vulnerabilities 

-  Applying to range of open source applications shows the technique 
finds a number of vulnerabilities present in the applications 

-  Authoring these specifications is hard 

-  Technique relies heavily on soundness of specifications 

-  Some vulnerabilities need dynamic analysis to find 

-  Interpretation of measures / counts; criticality of flaws 

23 

Conclusions, Future work 
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Thanks! 
 
Questions? 
 
 

Automated Software Architecture Security Risk 
Analysis Using Formalized Signatures 
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