
SCIENCE | TECHNOLOGY | INNOVATION

Mohamed Almorsy, John Grundy, and Amani S. Ibrahim

Automated Software Architecture
Security Risk Analysis Using

Formalized Signatures

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  Motivation

-  Weaknesses and Security Metrics

-  Approach

-  Example

-  Evaluation

-  Conclusions

2

Outline

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

3

Motivating Example

Cloud Providers: GREEN CLOUD – BLUE CLOUD
Service Providers: SWINSOFT - GREEN CLOUD – BLUE CLOUD
Cloud Consumers: Swinburne University- Auckland University, SwinMarket

Get	 Currency-‐Now	

Build	 Workflow	 	

Galac7c	 ERP	

Execute	 Batch	 processing	
<<
in
cl
ud

e>
>	

<<
in
clu

de
>>
	

SWIN
SOFT

SWIN
SOFT

GREEN	 CLOUD

BLUE	 CLOUD

Injection attack
e.g. SQL, JS

Poor Isolation

Excessive
Priviledges

Data tampering attack

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  Architecture Security Analysis e.g.
-  MS STRIDE, EOP Card Game, CAPEC

-  Common attacks to look for
-  Man in the middle
-  Denial of service
-  Data tampering
-  Injection attack
-  …

-  BUT – what indicates a system might be vulnerable to
such attacks?? E.g. consider the previous example!

4

Architecture Security Analysis & Attacks

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  Attack surface – proportion of system attacker could use/
access to attack system

-  Compartmentalization – isolation of system components
from each other to minimise cross-compromise

-  Least privilege – should grant components minimal
privileges to carry out operation

-  Secure failure – if something goes wrong, don’t expose
sensitive details of system

-  Security isolation – between components

5

System Architecture level security metrics

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  Can we use security metrics to identify weaknesses?

-  Can we identify these weaknesses from architectural-level
characteristics and structures of a cloud application?

-  Can we formalise currently informal weakness and metric
definitions e.g. CAPEC database to make them amenable
for automated architectural analysis?

-  Can we use the identified weaknesses / vulnerabilities to
alert cloud/service providers and/or cloud consumers to
actual or possible security problems?

-  Can we use this information to mitigate the problems?
6

Key research questions

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  Previously, we described code-level “vulnerability
signatures” used to detect via static analysis (ASE 2012)

-  Now we have looked for signatures & metrics to indicate
weaknesses @ architecture levels

-  Formalise CAPEC attack pattern signatures, architecture
vulnerabilities, security metrics via OCL

-  Search for matching signatures in system architecture &
security requirements definitions

-  Perform trade-off analysis of vulnerabilities/mitigations

-  Apply mitigations to address weaknesses
7

Our Approach

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

8

Process

1

2

3

4

5

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

9

1. “Weakness Definitions”

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

10

Examples (Simplified) – Vulnerable components
ID Metric Signature
1 context System inv Man-in-the-Middle Attack:

self.components->select(C1|
 C1.DeploymentZoneType = 'Untrusted'
 and self.components.exists(C2 |
 C2.Channels->exists(Ch |
 Ch.TargetComponent = C1
 and Ch.EncryptionControlDeployed = false)
 and C1.EncryptionControlDeployed = false
 and C2.EncryptionControlDeployed = false))

Any two components that communicate through an unencrypted channel and one or both of them operate in an untrusted zone or do not apply cryptography controls on
their communicated messages.

2 context System inv Denial-of-Service Attack:
self.components->select(C1|
 C1.DeploymentZoneType = 'Untrusted'
 and C1.AuthenticationControlDeployed = false
 and (C1.InputSanitizationControlDeployed = false
 or C1.Host.Network.FirewallControlDeployed= false))

Any publicly accessible component that does not operate input sanitization control (or application firewall), and does not have authentication control.
3 context System inv DataTampering:

self.components->select(C1|
 C1.DeploymentZoneType = 'Untrusted'
 and self.components.exists(C2 |
 C2.Channels->exists(Ch |
 Ch.TargetComponent = C1
 and Ch.EncryptionControlDeployed = false)
 and C1.EncryptionControlDeployed = false
 and C2.EncryptionControlDeployed = false))

Any component that is deployed on an untrusted host (malicious insider) or zone, sends data in plain text, or does not operate authorization control.

Any publicly accessible component that
does not operate input sanitization control
(or an application firewall), and does not

have authentication control.
Any component that is deployed on an

untrusted host (malicious insider) or zone,
sends data in plain text, or does not

operate authorization control.

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

11

Examples (2) – some metrics
4 context System inv AttackSurface:

 self.components->select(C1| C1. DeploymentZoneType = 'Untrusted')->collect(C2 | C2.Functions)->size()
Number of the functions defined in the provided interfaces of the public system components and number of functions defined in the required interfaces of the system
public components that are used by other components.

5 context System inv Compartmentalization:
self.components->select(C |
 C.AuthenticationControlDeployed = true
 and C.AuthorizationControlDeployed = true)->size()

Number of architecture components that apply Authn. and Authz. controls on incoming calls (work independent and do not trust other components).

6 context System inv FailSecurely:
self.components->collect(C | C.Functions->select(F |
 F.IsCritical = true)->size())->sum()/
 self.components->collect(C |C.Functions->select(F |
 F.IsCritical = true)->size())->siz()

The average of critical methods and attributes in each system component.

7 context System inv Defense-in-depth:
self.select(C | C.IsCritical= true
 and C.AuthenticationControlDeployed = true
 and C.AuthorizationControlDeployed = true
 and C.CryptographyControlDeployed = true
 and C.Host.AuthenticationControlDeployed = true
 and C. Host.AuthorizationControlDeployed = true
 and C. Host.CryptographyControl = true)->size() /
self.select(C | C.IsCritical = true)->size()

The ratio of critical components that have layered security compared to the total number of critical components in the system.

of functions defined in interfaces of
public system components that are used

by other components.
of components that apply Authentication

and Authorization controls on incoming
calls (& work independently and do not

trust other components)

The ratio of critical components that have
layered security compared to the total
number of critical components in the

system

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  System Description Model

-  Security Specification Model

-  System-Security Mappings

-  Signature Evaluator – vulnerabilities & metrics

-  Results

-  Trade-off analysis

12

2. Models to check & the Analysis process

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

13

Some source models for architecture

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

14

Some security specification models

BAData	 Integrity
Medium

Confidentiality
High

Availability
High

Accountability
Low

Authenticate	 User

Password	 lifetime

Unsuccessful	 trials

Password	 length
Virus	 definition	

update

Input	 sanitization

In
te
rn
et
	 Zo

ne In
tra

ne
t	

Zo
ne

In
te
rn
et
	 D
M
Z

Production	
Zone1

HostIDSAntivirus

AuthzSVCAuthnSVC

Production	
Zone2

M
an
ag
em

en
t

c

D

LDAP Forms-‐based	
Authenticator

SwinValidator

SwinSoft Antivirus CA	 Host	 IDS

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

15

Linking models

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  Mappings between architecture (system) <-> security
specification => desired security levels, constraints

-  Signatures encoded in OCL => vulnerable components/
connectors to search for & metrics to take

-  OCL Signatures compiled => set of C# functions

-  C# functions run over system/security model => locate
potential weaknesses/vulnerabilities in architecture

-  Trade-off analysis using mitigation information => possible
changes to system and/or security models…

-  Run-time application of vulnerability mitigations…
16

3. Architecture Analysis & Weakness Mitigation

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

17

Using the vulnerabilities / mitigations @ runtime…

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  5 open source + our own motivating scenario

-  Various levels of complexity, architecture, implemented
security models

-  Four attack scenarios: Man-in-The-Middle, Denial of
Service, Data Tampering, and Injection attacks

18

Evaluation
Benchmark Downloads KLOC Files Comps Classes Method
BlogEngine >46,000 25.7 151 2 258 616
BugTracer >500 10 19 2 298 223

Galactic - 16.2 99 6 101 473
KOOBOO >2,000 112 1178 13 7851 5083

NopCommerce >10 Rel. 442 3781 8 5127 9110
SplendidCRM >400 245 816 7 6177 6107

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

19

Results
Scenario / Metric

D = DISCOVERED FLAWS
FP= FALSE POSITIVES

FN = FALSE NEGATIVES
↓ => lower = better

B
lo

gE
ng

in
e

B
ug

Tr
ac

ke
r

G
al

ac
tic

K
O

O
B

O
O

N
op

C
om

m
er

ce

Sp
le

nd
id

C
R

M

To
ta

l

Security Scenarios

Man-in-The-Middle (↓)
D 1 1 4 8 3 5 22
FP 0 0 0 1 0 0 1
FN 0 0 0 1 0 1 2

Denial of Service (↓)
D 1 1 3 2 1 2 10
FP 0 0 0 0 0 1 1
FN 0 0 0 1 1 0 2

Data Tampering (↓)
	 	

D 1 1 3 5 3 3 16
FP 0 0 0 2 0 0 2
FN 0 0 1 0 1 0 2

Injection Attack (↓)
D 2 1 3 5 4 3 18
FP 0 0 1 1 0 1 3
FN 0 1 1 1 0 0 3

Total
D 5 4 13 20 11 13 66
FP 0 0 1 4 0 2 7
FN 0 1 2 3 2 1 9

Average Precision = 90% Average Recall = 87% F-Measure = 88%

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

20

Results (2)
Scenario / Metric

M = METRIC MEASURED VALU,E
FP= ALSE POSITIVES

FN = FALSE NEGATIVES
↑ => higher is better;
↓ => lower is better

B
lo

gE
ng

in
e

B
ug

Tr
ac

ke
r

G
al

ac
tic

K
O

O
B

O
O

N
op

C
om

m
er

ce

Sp
le

nd
id

C
R

M
 Total

Security Metrics

Attack Surface (↓)
M 8 11 17 23 18 24 101
FP 1 2 2 1 2 4 12
FN 0 0 1 3 2 1 7

Compartmental-ization (↑)
M 1 1 3 3 4 3 14
FP 0 0 0 0 1 0 1
FN 0 0 1 1 0 0 2

Fail Securely (↓)
M 0.3 0.2 0.5 0.5 0.4 0.6 -‐
FP 2 1 0 0 0 1 4
FN 1 0 0 0 1 1 3

Defence-in-Depth (↑)
M 0.5 0.5 0.8 0.4 0.3 0.5 -‐
FP 0 1 0 0 1 0 2
FN 0 2 0 1 0 1 4

Average Precision = 91% Average Recall = 89% F-Measure = 90%

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

21

Results (3) – Apples vs Oranges J; Performance

0

50

100

150

200

250

1 2 3 4 5 6

Defense-‐in-‐depth

Isolation

Least	 privilege

Compartmental-‐ization

Attack	 Surface	 Metric

System	 criticality

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  Can compare systems in the same domain – but appearances can be
(very) deceiving…

-  Vulnerability Counts vs Metrics vs meaning
-  need to compare like with like
-  Criticality of the issue vs simple occurrences
-  System scale makes a large difference

-  Just one critical weakness can cause whole system to be
compromised under attack; lots of minor weaknesses may be
tolerable

-  Its rather slow to analyse many of these => non-real time

-  Change to environment / co-deployed services/applications =>
changes to measures / counts…

22

All is not what it may seem - some things to note…

Swinburne

SCIENCE | TECHNOLOGY | INNOVATION

Automated Software Architecture Security Risk Analysis Using
Formalized Signatures

-  A range of architecture vulnerabilities and security metrics can be
formalised

-  These formalised specifications can be used to check architecture
security properties and vulnerabilities

-  Applying to range of open source applications shows the technique
finds a number of vulnerabilities present in the applications

-  Authoring these specifications is hard

-  Technique relies heavily on soundness of specifications

-  Some vulnerabilities need dynamic analysis to find

-  Interpretation of measures / counts; criticality of flaws

23

Conclusions, Future work

SCIENCE | TECHNOLOGY | INNOVATION

Thanks!

Questions?

Automated Software Architecture Security Risk
Analysis Using Formalized Signatures

SCIENCE | TECHNOLOGY | INNOVATION

Almorsy, M., Ibrahim, A., Grundy, J.C., Adaptive Security Management in SaaS Applications, Chapter 8
in Security, Privacy and Trust in Cloud Systems, Springer, 2013.

Almorsy, M., Grundy, J.C. and Ibrahim, A., Automated Software Architecture Security Risk Analysis
Using Formalized Signatures, 2013 IEEE/ACM International Conference on Software Engineering
(ICSE 2013), San Franciso, May 2013, IEEE CS Press

Almorsy, M., Grundy, J.C. and Ibrahim, A. Supporting Automated Vulnerability Analysis using Formalized
Vulnerability Signatures, 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2012), Sept 3-7 2012, Essen, Germany, ACM Press.

Almorsy, M., Grundy, J.C. and Ibrahim, A., Supporting Automated Software Re-Engineering Using "Re-
Aspects”, 27th IEEE/ACM International Conference on Automated Software Engineering (ASE 2012),
Sept 3-7 2012, Essen, Germany, ACM Press.

Almorsy, M., Grundy, J.C. and Ibrahim, I., VAM-aaS: Online Cloud Services Security Vulnerability
Analysis and Mitigation-as-a-Service, 2012 International Conference on Web Information Systems
Engineering (WISE 2012), Nov 28-30 2012, Paphos, Cyprus, LNCS, Springer.

Almorsy, M., Grundy, J.C. and Ibrahim, A., MDSE@R: Model-Driven Security Engineering at Runtime,
4th International Symposium on Cyberspace Safety and Security (CSS 2012), Melbourne, Australia,
Dec 12-13 2012, Springer.

Almorsy, M., Grundy, J.C., Ibrahim, A., SMURF: Supporting Multi-tenancy Using Re-Aspects Framework,
17th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS 2012),
Paris, France, July 2012, IEEE CS Press.

Almorsy, M. and Grundy, J.C. TOSSMA: A Tenant-Oriented SaaS Security Management Architecture,
5th IEEE Conference on Cloud Computing (CLOUD 2012), IEEE CS Press, Waikiki, Hawai, USA,
June 24-29 2012.

References

