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Data Analytics Stages

* Classifying the problem
* Acquiring data

* Processing data

* Modeling the problem

* Validation and execution
* Deploying

C. E. Sapp, “Preparing and Architecting for Machine
Learning”, Gartner Technical Professional Advice, 2017.
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Artificial Intelligence Systems Development Building Blocks

Data Data Feature ’L“ac”i”e Data
. - . . garning . . .
Collection Verification Extraction Code Visualisation
Configuration Analysis Tools Process Management Tools
Machine
Resource Serving Infrastructure Monitoring
Management

Only a small component of real-world ML systems is the ML model.
The required surrounding infrastructure is vast and complex.
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Traditional Software Development Lifecycle (SDLC)

Elicitation & Analysis of the requirements
* Design

* Implementation

* Testing

* Maintenance




What should Big Data Analytics Software support?

* Diverse data ingestion

* Wrangling and cleansing

* Data integration and querying for very large data volumes

* Feature extraction and selection

* Tailoring and combination of diverse data analytics techniques

* Integration of diverse software and services

 Communication of findings and integration with existing IT solutions

e Quality of service attributes including: scalability, privacy, security,
reliability and adaptability to changes in the target environment
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Key Requirements for End User Data Analytics Tools

* Support all data preprocessing operations e.g. cleaning, wrangling, anomaly detection

 Want it to be understandable and useable for domain experts, data scientists, and even
users with very limited data science and programming knowledge

* Cover a variety of the algorithms for each stage of data processing, modeling and
evaluation processes.

» Offer flexible options for experienced users such as data scientists

e Cover all AI-SDLC stages including problem description, requirements, design,
implementation, testing and deployment

* Beindustry ready for large scale industry-based projects
* Be cost effective, be deployable on the cloud, on premises or both
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Gartner 2017 Magic Quadrant for Data Science Platforms
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Existing Data Analytics Tools & Al Systems Building Blocks

* Variety of tools developed to automate the ML code as well as the data verification and
feature extraction phases

* We group these components (building blocks of an Al-powered systems) into three
groups:
— DataOps - includes data collection/ingestion, data validation cleansing, wrangling,
filtering, union, merge, etc.

— AlOps - covers feature engineering and model selection, model training and tuning,
use of variety of ML, Al techniques

— DevOps - covers model integration and deployment, monitoring and serving
infrastructure

74 MONASH
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From the Viewpoint of AlOps

» tools such as Tableau, Plotly, and Trifacta

» focus on data operations such as visualization, data cleaning, data wrangling,
and so on.

= |nteractive visualisation
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Example of Tableau in use for real estate data analysis
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From the Viewpoint of AlOps

» large number of tools focusing on the artificial intelligence and machine
learning operations

= Some examples are Azure ML Studio, Amazon AWS ML, Google Cloud ML,
BigMI, Weka, Rapidminer, IBM Watson ML, SAS, KNIME, and Tensorport

= tools in this group also often cover DataOps to some extent
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An example of Azure ML Studio in use
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From the DevOps Point of View

= Some tools focus on the deployment of the solutions on the cloud or on
premises as well as building industry ready solutions

= Some examples are Rapidminer, IBM Watson ML, SAS, and KNIME

» These tools assist to prepare industry ready solutions deployable on both
cloud and on premises
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An example of KNIME in use
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Strengths and Weaknesses (see paper for details...)

SDLC phases
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Gaps in existing tools. (see paper for details)

* Current practices and tools do not cover most activities of analysis and design, esp
business requirements

* Most focus on low-level data analytics process design, coding and visualization of results

* Most assume data is in a form amendable to processing — but most datasets are not
“clean” nor “integrated”, and great effort is needed to source the data, integrate,
cleanse, harmonize, pre-process it

* Only a few offer the ability for data science experts to embed new code and expand the
algorithms based on their needs

* Most only cover parts of the DataOps, AlOps, and DevOps of the data analytics life cycle

* Many real-world problems require large datasets to be processed and thus require
deployment of solutions on complex, powerful computing infrastructure

* Many tools provide a variety of visualization support to show results to end users to
support business decision making but are limited to built-in visualization options
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Research Directions

* Support domain expert end users to better capture their requirements about target
domain problems

* Better support for complex and large datasets, including handling partial and incomplete
datasets

* Need both simplicity for non-experts with no data science and programming knowledge,
and support for expansion and tailoring for data science experts need to be provided

* Want tool features to capture requirements and changes in requirements as well as
adapting the solution based on these changes

* Need scaling and distribution for many real-world applications while balancing this
against limited end user knowledge of computing platforms

* Further enhance information visualization capabilities including interactive exploration
and end user specification of complex visualizations for the target domain.
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Conclusions

* Data analytics phases can be divided to DataOps, AlOps, and DevOps
* Leading data analytics tools address some of these tasks
* Most current tools currently focus on

— data analytics and machine learning

— modeling and implementation

— visualisation

* Many existing tools are complicated for a domain expert with no data science and
programming background

 Many are not designed to allow for collaboration between the key stakeholders (team
members)
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