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Data Analytics Stages

• Classifying	the	problem
• Acquiring	data
• Processing	data
• Modeling	the	problem
• Validation	and	execution
• Deploying

C. E. Sapp, “Preparing and Architecting for Machine
Learning”, Gartner Technical Professional Advice, 2017.
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Example: Real Estate Sales Price Prediction Project in Azure ML Studio
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Artificial Intelligence Systems Development Building Blocks

Only	a	small	component	of	real-world	ML	systems	is	the	ML	model.
The	required	surrounding	infrastructure	is	vast	and	complex.	
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Traditional Software Development Lifecycle (SDLC) 

• Elicitation	&	Analysis	of	the	requirements
• Design
• Implementation
• Testing
• Maintenance
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What should Big Data Analytics Software support?

• Diverse	data	ingestion
• Wrangling	and	cleansing
• Data	integration	and	querying	for	very	large	data	volumes
• Feature	extraction	and	selection
• Tailoring	and	combination	of	diverse	data	analytics	techniques
• Integration	of	diverse	software	and	services
• Communication	of	findings	and	integration	with	existing	IT	solutions
• Quality	of	service	attributes	including:	scalability,	privacy,	security,	
reliability	and	adaptability	to	changes	in	the	target	environment
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Key Requirements for End User Data Analytics Tools

• Support	all	data	preprocessing	operations	e.g.	cleaning,	wrangling,	anomaly	detection
• Want	it	to	be	understandable	and	useable	for	domain	experts,	data	scientists,	and	even	

users	with	very	limited	data	science	and	programming	knowledge
• Cover	a	variety	of	the	algorithms	for	each	stage	of	data	processing,	modeling	and	

evaluation	processes.
• Offer	flexible	options	for	experienced	users	such	as	data	scientists
• Cover	all	AI-SDLC	stages	including	problem	description,	requirements,	design,	

implementation,	testing	and	deployment
• Be	industry	ready	for	large	scale	industry-based	projects
• Be	cost	effective,	be	deployable	on	the	cloud,	on	premises	or	both



9

Gartner 2017 Magic Quadrant for Data Science Platforms 
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Existing Data Analytics Tools & AI Systems Building Blocks

• Variety	of	tools	developed	to	automate	the	ML	code	as	well	as	the	data	verification	and	
feature	extraction	phases

• We	group	these	components	(building	blocks	of	an	AI-powered	systems)	into	three	
groups:	
– DataOps - includes	data	collection/ingestion,	data	validation	cleansing,	wrangling,	
filtering,	union,	merge,	etc.	

– AIOps - covers	feature	engineering	and	model	selection,	model	training	and	tuning,	
use	of	variety	of	ML,	AI	techniques

– DevOps - covers	model	integration	and	deployment,	monitoring	and	serving	
infrastructure
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From the Viewpoint of AIOps

§ tools such as Tableau, Plotly, and Trifacta
§ focus on data operations such as visualization, data cleaning, data wrangling, 

and so on. 
§ Interactive visualisation
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Example of Tableau in use for real estate data analysis
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From the Viewpoint of AIOps

§ large number of tools focusing on the artificial intelligence and machine 
learning operations

§ Some examples are Azure ML Studio, Amazon AWS ML, Google Cloud ML, 
BigMl, Weka, Rapidminer, IBM Watson ML, SAS, KNIME, and Tensorport

§ tools in this group also often cover DataOps to some extent



14

An example of Azure ML Studio in use
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From the DevOps Point of View

§ Some tools focus on the deployment of the solutions on the cloud or on 
premises as well as building industry ready solutions 

§ Some examples are Rapidminer, IBM Watson ML, SAS, and KNIME
§ These tools assist to prepare industry ready solutions deployable on both 

cloud and on premises
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An example of KNIME in use
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Strengths and Weaknesses (see paper for details…)
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Tableau ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Plotly ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trifacta ✓ ✓ ✓ ✓ ✓

Azure	ML	Studio ✓ ✓ ✓ ✓ ✓ ✓ ✓

Amazon	AWS	ML ✓ ✓ ✓ ✓ ✓

Google	Cloud	ML ✓ ✓ ✓ ✓ ✓ ✓
BigML ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Weka ✓ ✓ ✓ ✓ ✓

Rapidminer ✓ ✓ ✓ ✓ ✓ ✓
IBM	Watson	ML ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SAS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
KNIME ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TensorPort ✓ ✓ ✓ ✓ ✓ ✓
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Gaps in existing tools. (see paper for details)

• Current	practices	and	tools	do	not	cover	most	activities	of	analysis	and	design,	esp
business	requirements

• Most	focus	on	low-level	data	analytics	process	design,	coding	and	visualization	of	results
• Most	assume	data	is	in	a	form	amendable	to	processing	– but		most	datasets	are	not	

“clean”	nor	“integrated”,	and	great	effort	is	needed	to	source	the	data,	integrate,	
cleanse,	harmonize,	pre-process	it

• Only	a	few	offer	the	ability	for	data	science	experts	to	embed	new	code	and	expand	the	
algorithms	based	on	their	needs

• Most	only	cover	parts	of	the	DataOps,	AIOps,	and	DevOps	of	the	data	analytics	life	cycle
• Many	real-world	problems	require	large	datasets	to	be	processed	and	thus	require	

deployment	of	solutions	on	complex,	powerful	computing	infrastructure	
• Many	tools	provide	a	variety	of	visualization	support	to	show	results	to	end	users	to	

support	business	decision	making	but	are	limited	to	built-in	visualization	options
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Research Directions

• Support	domain	expert	end	users	to	better	capture	their	requirements	about	target	
domain	problems

• Better	support	for	complex	and	large	datasets,	including	handling	partial	and	incomplete	
datasets

• Need	both	simplicity	for	non-experts	with	no	data	science	and	programming	knowledge,	
and	support	for	expansion	and	tailoring	for	data	science	experts	need	to	be	provided

• Want	tool	features	to	capture	requirements	and	changes	in	requirements	as	well	as	
adapting	the	solution	based	on	these	changes

• Need	scaling and	distribution	for	many	real-world	applications	while	balancing	this	
against	limited	end	user	knowledge	of	computing	platforms

• Further	enhance	information	visualization	capabilities	including	interactive	exploration	
and	end	user	specification	of	complex	visualizations	for	the	target	domain.
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Conclusions

• Data	analytics	phases	can	be	divided	to	DataOps,	AIOps,	and	DevOps
• Leading	data	analytics	tools	address	some	of	these	tasks
• Most	current	tools	currently	focus	on	

– data	analytics	and	machine	learning	
– modeling	and	implementation
– visualisation

• Many	existing	tools	are	complicated	for	a	domain	expert	with	no	data	science	and	
programming	background

• Many	are	not	designed	to	allow	for	collaboration	between	the	key	stakeholders	(team	
members)	


