VN

IIIIIIIIIIII

SWINBURNE Supporting Operating System
R Kernel Data Disambiguation using
Points-to Analysis

Amani lbriham, James Hamlyn-Harris,
John Grundy & Mohamed Almorsy

Center for Computing and Engineering
Software Systems

Swinburne University of Technology

Melbourne, Australia




Outline

m Problem — C pointer ambiguity

m Operating System Kernel Data
m Our Approach
m Experiments

m Conclusions & Future Research



Problem

m OS kernel rootkits modify data structures to subvert
e.g. retarget processing, access data, hide bad
processes etc

m Most OSes are written in C - heavily use C void
pointers, null pointers, casting etc to “mimic” objects

m No data structure integrity checking is done by kernel
(as its an overhead and not expecting such attacks)

m Running security software in virtualised OS e.g. for
Cloud computing is problematic (can be compromised)

=> Serious security holes that need to be addressed



Example 1

Windows OS kernel

| EPROCESS data DLList \

[ ]

-




Example 2

Windows OS kernel

| EPROCESS data DLList \

/

-




Example 3

Windows OS kernel
| EPROCESS data DLList \ @
ol




Operating System Kernel Data

m [t is very challenging to verify the integrity of OS
kernel data

m Kernel Data Complexity:

0~ 40% pointer-based relations

[0~35% of these pointer-based relations are generic pointers -
null, void

0 OS kernel code also extensively uses C casts

0 OS kernel code is huge:

1D GV Yoid * Null * DL Ulnt
Linux [1249 ISy 1424 3T 5301 il
WRK 4747 1838 1691 234 1316 2387




Example of C code found in OSes

typedef struct _LIST_ENTRY {
struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;
} LIST_ENTRY, *PLIST_ENTRY; H . '
typedef struct _KProcess { UnlquePrOCGSS|d - VOId pOInter
LIST_ENTRY ThreadHeadlList;
} KProcess, *PKProcess;

typedef struct _EPROCESS { - | f d h t ”y p t t E H dl
void* UniqueProcessId; int DebugPort; ana ySIS O CO e S OWS aC ua Oln S O — X an e
LIST_ENTRY ActiveProcessLinks; KProcebg Kpg;

} EPROCESS, *PEPROCESS;

typedef struct _EThread {
void* UniqueThreadId; LIST_ENTRY ActiveThrgadlLinks;

} EThread, *PEThread;

typedef struct _ExHandle {
int* handle;

} ExHandle;

LIST_ENTRY PsActiveProcessHead;

PEPROCESS ActiveProcess; H

PEPROCESS AllocatePrMemory() { _LSlT_ENTRY = nu” pOInter
return (PEPROCESS) malloc(sizeg#(EPROCESS)); }

PEThread AllocateThMemory() { . . .
return (pEThred) malloclefieof (PEThread)); ) -calling context gives the type — known only @ run-time

void CreateProcess(PEPROCESS p_ptr) {
p_ptr = AllocatePrMemory();

ActiveProcess =£4 ptr;

p_ptr->UniqueProcessId = ExHandler();

p_ptr.DebugPort = (int) gxDebugHandler();

updatelinks (&ptr->ActNpéRrocessLinks, &PsActiveProcessHead);
CreateThread(p_ptr);

éThr‘ead CreateThread¢PEPROCESS p) { Debugport - d@Clared |nt

PEThread th = AllocateThMemory();
th->UniqueThpfadId = ExHandler();
updatelinks (&th->ActiveThreadlLinks,

pokpco>readheaduise); ...but cast to pointer to function @ run-time

void* ExHandler() {
ExHandle tempHandle;
tempHandle.handle = CreateHandler();
return tempHandle.handle;

void updatelinks(PLIST_ENTRY src, PLIST_ENTRY tgt) {

src->Flink
tgt->Blink

tgt->Flink;
src->Blink; 8



Research Objectives

1. Compute a precise kernel data definition that:
O Precisely models data structures
0 Reflects accurate both direct and indirect pointer relations

2. Discover kernel objects & types at run-time
3. Check kernel data consistency to detect violations
4,

m To achieve (1) — we developed a new tool to disambiguate

point-based relations in very large C programs (e.g. Windows
and LINUX OSes)

m Uses “points-to analysis™ — generate type-graph that describes
type(s) each pointer can have via deep program analysis



Kernal Data Disambiguator (KDD)

m A new static analysis tool that can generate an accurate type graph for*=>
any C program

m |s able to generate a sound data definition for large C-based OS -
without any prior knowledge of kernel data layout

m Disambiguates pointer relations including generic pointers to infer their
candidate types & values - by performing static points-to analysis on
source code

m We designed and implemented a new points-to analysis algorithm that
has the ability to provide interprocedural, context-sensitive and field-
sensitive points-to analysis

m Accuracy is more important than speed for our application domain

m Scales to extremely large C programs that contain millions of lines of
code

m Performs its analysis “off-line” — thus generated type graph can be
used by security solutions in on-line security mode

10



Tool structure

E Kernel’s Source Code (C files) }

1

{ Generate AST
Points-to Analysis Direct
" Relations
Indirect Graph

Relations Context-Sensitive Interprocedural Intraprocedural
Graph Analysis Analysis Analysis

v
A

}

E Kernel Data Structure Type-Graph

5

11



Type graph ouput

m Qutputs a initial type-graph that reflects the direct inclusion-
based relations between kernel data structures that have clear
type definitions

(1 Nodes are data structures and edges are data members
(inclusion relations) of the structures e.g. for EPROCESS:

ThreadListHead

DISPATCHER HEADER

12



Three steps (see paper for details)

m Phase 1. Intraprocedural Analysis
O Compute a local points-to graph for each procedure without information about caller or callee
O Create nodes
0 Compute the transfer function
O Connect edges
O => this gives us typing of variables within procedures

m Phase 2: Interprocedural Analysis

O lincorporate interprocedural information from the callees of each procedure - without any context
information yet

O =>extends intermediate type graph with callee information

m Phase 3. Context-Sensitive Points-to Analysis
O Step 1: Points-to Sets Accumulation
O Compute the points-to sets
O Step 2: Graph Unification — unify collections of points-to sets
O Step 3: Context-Sensitive
O Context Sensitivity — output of procedure bind to calling site
O Indirect Points-to Relations found

O => gives complete type graph "



Evaluation 1 - benchmarks

m Soundness and Precision

O The points-to analysis algorithm is sound if the points-to set for each variable
contains all its actual runtime targets, and is imprecise if the inferred set is larger
than necessary

0 SPEC2000 and SPEC2006 benchmark suites and other open source C
programs

m Kernel Analysis
O WRK (~ 3.5 million LOC) and Linux kernel v3.0.22 (~ 6 million LOC)

O 28 hours to analyse the WRK and around 47 hours to analysis the Linux kernel.

e ASTT ASTM ASTC 6T TGM TG C
AR (sec) (MB) (%) (sec) (MB) (%) % %
199 176

_ 1272 215 100
1515 275 54 0.4 875 14.1 211 98.6
[ mef 453 42 22 432 41 285 14 23 27 97.2 100
T sots 991 90 340 154.2 1446 705 503.3 814 68.3 95.1 100
m 11394 3872 356 145 305.2 1912 76.7 661.4 107.8 743 945 100

vpr 17731 4592 228 398 316.1 298.7 80.2 1031.5 1632 79 NA 100
“ 222185 98384 1829 2806 3960.5 3756.5 935 12962 2200 94 NA 100
m 113264 9424 1005 901 2017.2 1915.1 9156 6609 1075.0 915 NA 100 14
[ bzip2 G 759 90 14 823 78.1 455 2716 442 429 959 100



Evaluation 2 — use for security

m Integrated into VM Monitoring Tool — CloudSec

m Mapping kernel address space based on KDD-generated
type graph

| | ] L Q4
m Windows XP 64 bit VM ‘F [ ﬁ(%;es |
Type 7
) Graph MPB
O Performance Overhead > Jatr +
O 8.5 minutes for a memory image of 4 GB SGSC

on a 2.8 GHz CPU with 6 GB RAM. “Thread ontrol Registers
. ? PX(l)\i[ hrl/}anager ]‘7 4’[ - tCheckgr t ?
O Low rate of false positives =4 — |

T

15




Conclusion

m Built new C program analysis tool to recover detailed, accurate type graphs — |
disambiguating void, null pointers and casting

m Can apply to very large scale C programs — millions of lines of code
m Motivated for use on C-based OS kernal data integrity checking
m Future work:

O Improve performance of KDD via multi-processes, more efficient
intermediate structures

O Use for external Virtual Machine OS kernel Integrity checking
O Use for Function Pointer Checking
O Use for Type-Inference
m Detection of “Zero-Day Threats” i.e. never before seen attacks on OS kernel

O By checking kernel data integrity at run-time

16



References

lbrahim, A., Hamlyn-Harris, J., Grundy, J.C. and Almorsy, M., DIGGER: Identifying OS Kernel Objects for Run- £
Security Analysis, International Journal on Internet and Distributed Computing Systems, vol 3, no. 1, January 2013,
pp 184-194.

lbrahim, A., Hamlyn-Harris, J., Grundy, J.C. and Almorsy, M., Supporting Operating System Kernel Data
Disambiguation using Points-to Analysis, 27th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2012), Sept 3-7 2012, Essen, Germany, ACM Press.

lbrahim, A., Hamlyn-Harris, J., Grundy, J.C., Aimorsy, M., Operating System Kernel Data Disambiguation to Support
Security Analysis, 2012 International Conference on Network and System Security (NSS 2012), Fujian, China, Nov
21-23 2012, LNCS, Springer.

lbrahim, A., Hamlyn-Harris, J., Grundy, J.C., Almorsy, M. Supporting Virtualizaion-Aware Security Solutions using a
Systematic Approach to Overcome the Semantic Gap, 5th IEEE Conference on Cloud Computing (CLOUD 2012),
|EEE CS Press, Waikiki, Hawai, USA, June 24-29 2012.

Imbrahim, A., Hamlyn-Harris J., Grundy, J.C. and Almorsy, M., CloudSec: A Security Monitoring Appliance for Virtual
Machines in the laaS Cloud Model, In Proceedings of the 5th International Conference on Network and System
Security (NCC 2011), Milan, Italy, September 5-7 2011, IEEE Press.

lbrahim, A., Hamlyn-Harris, J. and Grundy, J.C., Emerging Security Challenges of Cloud Virtual Infrastructure, In
Proceedings of the 2010 Asia Pacific Cloud Workshop 2010 (co-located with APSEC2010), Sydney, Nov 30 2010.

17



