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Introduction 

�  Challenge: How to extract traceability links with both 
high precision and high recall. 



Background 

�  Semi-automatic techniques 
�  Rule-based 

�  Scenario-based 

�  Value-based 

�  Automatic techniques 
�  Lightweight 

�  Regular Expression 

�  Heavyweight 
�  Information Retrieval (IR) – PM, VSM, LSI etc 

�  Text Mining 



Information Retrieval (IR) 

�  Limitations 
�  Very few true links at high cut points 

�  Many fault links at low cut points 

�  Some links are missed 



Strategies 

�  VSM with general/context-specific thesaurus 

�  PM with hierarchical modeling, logical clustering, pruning 
of the probabilistic network 

�  LSI with source code clustering, identifier classifying, 
thesaurus, hierarchical structure 

�  No strategies can largely decrease fault links at low cut 
points and significantly increase true links at high cut 
points. 



Our approach 

�  VSM with Regular Expression (RE), Key Phrases (KP), 
and Clustering 

�  Adding RE to retrieve more true links at high cut points 

�  Adding KP to retrieve all possible links 

�  Adding Clustering to reduce fault links at low cut points 
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v  Documents are divided into small documents 
based on sections/headings. 

v  Extract documents’ inherent hierarchical 
structure 
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v  Extract classes’ identifiers/names 

v  Extract comments inside code 
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v  Using VSM engine to retrieve links between 
sections and classes 



Results of VSM 

  
(a) JDK1.5 (b) ArgoUML 

  
(c) Freenet (d) JMeter 
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v  Add RE into VSM 

v  Use two regular expressions to capture documents 
containing class names, and form the RE link set 

1.  (.*)(^a-zA-Z0-9\-)<C-?o-?n-?t-?r-?o-?l>(^a-zA-
Z0-9\-)(.*) 

2.  (.*)(^a-zA-Z0-9\-)<each part of package 
name>(^a-zA-Z0-9\-)(.*) 



Results after adding RE 

  
(a) JDK1.5 (b) ArgoUML 

  
(c) Freenet (d) JMeter 
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v  Adding KP into VSM 

v  Extract key phrases from code’s comments 

v  Argument VSM queries 



Implementation 

Source	
  code 

Code	
  dependency	
  analysis 

Key	
  phrases	
  
(KP) 

VSM	
  engine 

Regular	
  Expression	
  
(RE) 

Documents 

Preprocessing 

4 

2 1 

3 
5 

v  Form VSM queries by combining extracted key 
phrases and class names 

v  Retrieve links according to VSM queries 

v  Then form the VSM link set 



Results after adding KP 

  
(a) JDK1.5 (b) ArgoUML 

  
(c) Freenet (d) JMeter 
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v  Clustering: use the inherent hierarchical structure of documents 

v Merge the RE and VSM link sets 
v  If a link is in both RE and VSM link sets, then remove the one in VSM set and 

remain the one in RE set 

v  The merged link set is refined by Clustering 
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Results after adding Clustering 

  
(a) JDK1.5 (b) ArgoUML 

  
(c) Freenet (d) JMeter 

 



F-measure results 

  
(a) JDK1.5 (b) ArgoUML 

  
(c) Freenet (d) JMeter 

 



Discussion 

�  Adding RE increases precision and recall at high cut 
points 

�  Adding KP increases precision for JDK1.5 and ArgoUML, 
but Freenet and Jmeter is unresposive to it 

�  Adding Clustering increases precision at low cut points 

�  Some true links are discarded by Clustering 



Conclusion 

�  Our approach eliminates some VSM’s limitations 
�  Reduce fault links at low cut points 

�  Increase true links at high cut points 



Future works 

�  Allow users to configure thresholds and select some or 
all techniques to extract traceability links 

�  Refine the extracted links by allowing user creation and 
editing of links 

�  Usability tests to determine how effective our traceability 
tool is in assisting users navigate between documents 
and source code 



Thanks 
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