
Th
e

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d
N

ew
 Z

ea
la

nd

Meta Tools For
Implementing Domain
Specific Visual Languages

John Grundy 1,2 and John Hosking1

1Dept. of Computer Science and 2 Dept of Electrical and Computer Engineering
University of Auckland
New Zealand
{john-g, john}@cs.auckland.ac.nz

Th
e

U
ni

ve
rs

ity
 o

f A
uc

kl
an

d
O

rio
n

H
ea

lth
 L

td
N

ov
em

be
r 2

00
5

Introductions

Who
Where from
What like to get from this morning’s tutorial… (in 2
sentences or less J)

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 3

Outline
• What’s a DSVL?
• Where do DSVLs arise?
• Relationship to Model Driven Design
• Elements of a DSVL & its environment
• Metamodels & their development

– Design exercise
• DSVL Notation design

– Design exercise
• Example meta tool

– DSVL implementation exercise
• Other meta tools
• Wrap up

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 4

What’s a Domain Specific Visual Language?

• A DSVL is a visual language where the notation is customised
for a particular problem domain

• Have a trade off between generality of language (ie range of
problems able to be solved) and terseness of notation and
closeness of mapping

• Tim Menzies’ DSL preconditions (applicable to DSVLs)
– The 1 day rule:

• Users can get productive with the DSL in 1 day.
• Not all users, just some users.

– Just the users who had the DSL created.
– Implies that DSL is not just high-level programming

constructs;
– But constructs for an audience.

– The elbow test:
• Users elbow the analyst out of the way in their haste to get to the

screen to change something that is obviously wrong to them.
• Implies rapid comprehension of sentences in the DSL.

– tim@menzies.com

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 5

Example DSVL
• LabView uses a visual dataflow metaphor but applied in a

domain specific way
– Domain is lab instrumentation: access and analysis of sensor

data attached to computer
– Processing elements include math data transformations (eg

FFTs, integrators, differentiators)
• Very successful commercial Domain Specific VL

http://www.ni.com/labview/

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 6

Where do DSVLs come from?
• XML configuration files are endemic

“It's been almost a year since I wrote any Java, and I have finally
figured out the real reason I gave up on it and switched to Python. It's
nothing to do with the language itself--I often miss the sanity checks that
come with strong typing. And it certainly wasn't because Java lacked
tools, libraries, documentation, or an active developer community.

No, the reason I switched can be summed in a single phrase, one that
I've come to dread--XML configuration files. You have to write one for
Ant to describe what you want to compile, a second for Hibernate to tell
it how to map your classes to the tables in your database, a third for
Tomcat to tell it how to map URLs and HTTP requests to your app, and
on and on and on.”

Gregory Wilson, “It's the XML Configuration File's Fault”
http://www.ddj.com/184407816

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 7

Where do DSVLs come from?
• Companies don’t understand they need DSVLs but:
• They know they have problems configuring their

products
– Configuration/customisation a common problem VL and SV can

assist with
– Natural consequence of the large framework/software product

line evolution
– Companies often spend large

expensive programmer resource on it
& want to de-skill to lower costs &
make accessible to customers

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 8

Domain data and metaphors

Circuit elements

Statistical

Processes
& Data

Services and Connectors

Music (from guitargeek.com)

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 9

Evolving Frameworks Pattern Language

• EFPL tells us that Visual Builders (ie visual langs for
configuration) & Language Tools (software visualizers) are a
natural step in large framework evolution

• Backed up by SEI software product line work & Microsoft
Software Factory/DSL Tool approaches

D. Roberts, R.Johnson “Evolving
Frameworks”
http://st-www.cs.uiuc.edu
/users/droberts/evolve.html

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 10

Model Driven Design and DSVLs
• Model Driven Design is where applications are

generated from high level models
– Typically the models are represented using DSVL(s)

• This can be seen as a natural consequence of EFPL
– Moving from framework/text configuration language

-> VL/visual tools
• Model Driven Architecture (MDA) is MDD where the

VL is UML (usually heavily stereotyped)
– Problems of lack of domain specificity in notation

• Note: alternative is wizard approach
– problems with that: lack of overview,

highly constrained

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 11

Elements in a DSVL specification
• The notational elements

– Icons, connectors, metaphors
• The notations

– Views/editors using those notational
elements

• The meta model
– Underlying model definition

• Notation to model mappings
– One model element type may have multiple view repns

• Behaviour and constraints
– Interaction/editing constraints and model constraints

• Back end code generation (and import)
– The generation element for MDD

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 12

Meta models
• What’s a meta model?

– A model that defines/describes a model
– Eg the UML meta model describes abstract concepts such as

class type, association type, generalisation type, etc, that have
instances in a particular model, (eg customer class, order class,
customer-order association, customer-organisation
generalisation)

• How are they described?
– Using a meta modelling language

• Eg MOF (UML class diagram like)
• Eg Extended Entity Relationship

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 13

Meta-modelling approaches: MOF (UML)
• MOF 4-level approach:

– M3: MOF MetaClass
– M2: UML Class, instance of MOF

Class; very similar to MOF concept
of a Class

– M1: Person, a typical instance of
UML Class

– M0: President:Person, a typical
instance of Class Person

– From C. Atkinson, Supporting and
applying the UML conceptual
framework.

MetaClass

isSingleton :

isVisible()

Boolean
Class

isActive : Boolean

Person

name : String
birth_date: Integer
address : String

age() : Integer

President:Person

name = "Bill Clinton"
birth_date = 1952
address = "White

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 14

Meta-modelling approaches (ER)
• Entities,

relationships
• Sub-typing (EER)
• Constraints e.g.

arities (1:1, 0:n
etc); exclusive-or;
temporal (can-be
connected to
after…)

• Forms “schema”
for data structures,
database, …

Person

Id:int
Name:String

Address:ShortAddress

Customer

CreditLimit:Money
TotalBought:int

Product

Id:int
Name:String

Weight:Kgs

Volume:m3

…

buys

subtype 0..*

0..*

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 15

Exercise 1: Metamodel design

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 16

Problem: Configuring Eclipse plug-ins…
• Eclipse IDE

has a “plug-
in” concept to
add new
elements to
the
environment

• Has an
esoteric
configuration
file…

• For details:
www.eclipse.org/documentation/pdf/org.eclipse.pde.doc.user_3.0.1.pdf

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 17

Example
<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.0"?>
<plugin

id="nz.ac.auckland.cs.marama.MaramaEditor"
name="Marama Editor Plug-in"
version="1.0.0"
provider-name="University of Auckland"
class="nz.ac.auckland.cs.marama.MaramaEditorPlugin">

…
<requires>

<import plugin="nz.ac.auckland.cs.marama.MaramaModel" export="true"/>
<import plugin="nz.ac.auckland.cs.marama.MaramaBasicHandlerLibrary" export="true"/>

<import plugin="nz.ac.auckland.cs.marama.MaramaMTETool" export="true"/>
</requires>

<extension point="org.eclipse.ui.editors">
<editor

name="Marama Eclipse Editor"
extensions="pouDiagram, pouModel"
icon="shapes.gif"
default="true"
class="nz.ac.auckland.cs.marama.MaramaEditor"

contributorClass="nz.ac.auckland.cs.marama.MaramaEditorActionBarContributor"
id="nz.ac.auckland.cs.marama.MaramaEditor" />

</extension>

<extension point="org.eclipse.ui.newWizards">

…

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 18

Define a meta-model for this…
• Look at the example plug-in definition file provided

• What are the key elements of the model?
• What are their key properties?
• How are the elements related?

• What is missing from the example you would have to
find more about?

• How could this thing be made easier to understand,
build…?

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 19

Solution

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 20

Designing and Evaluating DSVLs

• How “good” is a visual language?
• How can we design DSVLs so they meet users needs?

– Difficult:
– Combination of psychology, user interface design, abstraction

skills, expressability, narrowness of task, etc, etc
– Typical usability studies are VERY expensive
– Need some lightweight “tools” to help us understand the impact

of design decisions
• Look at:

– Basic approaches
– End users and metaphors
– Cognitive Dimensions
– Attention Investment
– Champagne Prototyping

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 21

Basic notational approaches
• Several main approaches, often combined together, differences

mainly around how relationships represented:
– Icons plus connectors

• Connectors may represent structure or flow or relationship
• Eg Labview computational elements plus flow connectors
• Eg Explorer hierarchical file view
• Eg ER diagrams

– Containment
• Common for hierarchical systems as alternative to explorer style

views. Common for structured components
• Eg Labview blocks
• Eg UML class icons

– Proximity
• Adjacency used as basis for a relationship
• Eg Speadsheets, Grid languages such as KidSim/Cocoa

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 22

End users and metaphors
• Understanding both the target domain and the end

user are critical in DSVL design
• Target domain suggests metaphors/abstractions

that may be useful
– Eg Labview: circuit diagrams
– Eg Spreadsheet: financial table plus calculator

• End user acceptance of metaphors is critical
– Can’t use abstractions that target end users don’t understand,

don’t have affinity with
• Example: tool for specifying mapping between

health message formats
– Told the target end user was a DBA – someone familiar with

data management, spreadsheet programming

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 23

End users and metaphors

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 24

Cognitive Dimensions Framework

• Green and Petre 1996 (since developed by Blackwell)
– See this afternoon’s tutorial

• Establishes a set of “dimensions” to think about the
tradeoffs made in implementing visual programming
environments
– Means of explaining effects of design decisions
– Has had very strong influence on the VL community

• Comes out of cognitive psychology community
• Lightweight – doesn’t need large

usability studies to get useful insight
• Can be used for evaluation and

also as a design aid

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 25

Cognitive Dimensions

• Abstraction gradient What are the minimum and maximum levels of
abstraction? Can fragments be encapsulated?

• Closeness of mapping What ‘programming games’ need to be
learned?

• Consistency When some of the language has been learnt, how
much of the rest can be inferred?

• Diffuseness How many symbols or graphic entities are required to
express a meaning?

• Error-proneness Does the design of the notation induce ‘careless
mistakes’?

• Hard mental operations Are there places where the user needs to
resort to fingers or penciled annotation to keep track of what’s
happening?

• Hidden dependencies Is every dependency overtly indicated in both
directions? Is the indication perceptual or only symbolic?

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 26

Cognitive Dimensions

• Premature commitment Do programmers have to make decisions
before they have the information they need?

• Progressive evaluation Can a partially-complete program be
executed to obtain feedback on “How am I doing”?

• Role-expressiveness Can the reader see how each component of a
program relates to the whole?

• Secondary notation Can programmers use layout, color, or other
cues to convey extra meaning, above and beyond the ‘official’
semantics of the language?

• Viscosity How much effort is required to perform a single change?
• Visibility Is every part of the code simultaneously visible (assuming a

large enough display), or is it at least possible to compare any two
parts side-by-side at will? If the code is dispersed, is it at least
possible to know in what order to read it?

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 27

Use of Cognitive Dimensions
• Note the tradeoffs that occur

– May add an abstraction that makes it easier to change things
(reduced viscosity) but increases the difficulty of understanding
(increased abstraction gradient and increased hidden
dependencies).

– See Green and Petre
paper for
several examples
illustrating
tradeoffs made

• Burnett provides a set of representation benchmarks that
assist in operationalising the use of the CD framework.
– See http://web.engr.oregonstate.edu/~burnett/reprints.html

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 28

Cognitive Dimensions provides vocabulary
Verbatim transcript from a newsgroup discussion (real

words from real users).
NB: this discussion referred to a version of Framemaker

that is now obsolete.
• A: ALL files in the book should be identical in

everything except body pages. Master pages,
paragraph formats, reference pages, should be the
same.

• B: Framemaker does provide this ... File -> Use
Formats allows you to copy all or some formatting
categories to all or some files in the book.

• A: Grrrrrrrrr Oh People Of Little Imagination !!!!!!
• Sure I can do this ... manually, every time I change a

reference page, master page, or paragraph format
• What I was talking about was some mechanism that

automatically detected when I had made such a
change. (.....) Or better yet, putting all of these pages
in a central database for the entire book

• C: There is an argument against basing one
paragraph style on another, a method several systems
use. A change in a parent style may cause
unexpected problems among the children. I have had
some unpleasant surprises of this sort in Microsoft
Word.

Improved Discussion
• A: Framemaker is too viscous.
• B: With respect to what task?
• A: With respect to updating

components of a book. It needs to
have a higher abstraction level, such
as a style tree.

• C: Watch out for the hidden
dependencies of a style tree.

• (further possible comments)
• The abstraction level will be difficult to

master; getting the styles right may
impose lookahead.

From: An Introduction to the Cognitive
Dimensions Framework, T R G Green

http://homepage.ntlworld.com/greenery/wor
kStuff/Papers/introCogDims/index.html

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 29

Labview in CD terms
• Metaphor used – dataflow wiring plus computation blocks –

has high closeness of mapping
– End users are electronic engineers – very familiar with circuit

wiring
• Modularity via blocks – again very similar to electrical circuit

concepts hence low abstraction gradient for end users and
hidden dependencies are of a sort that end users are familiar
with

• Problems of high viscosity due to layout reorganisation not an
major issue with user audience – familiar with these problems
from circuit design tools

• Language relatively terse at one level (general concepts) but
quite diffuse at another (many predefined operations with their
own iconic representation)

• Attention to front end – ability to create realistic looking virtual
instrument front panel, providing high closeness of mapping
for end users

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 30

Spreadsheet in CD terms
• Strong and consistent metaphor providing high

closeness of mapping to typical balance sheet etc
problems

• At one level notation is quite terse (sheet and cell
metaphor), at another it is quite verbose (extensive
range of functions that stretch the bounds of the
metaphor)

• Progressive evaluation well supported: values
calculated immediately a formula entered

• Hidden dependencies a real issue – a strong cause
of errors, ie leading to error proneness

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 31

Champagne Prototyping

• A “cheap” method for early design evaluation
• Combines:

– simple prototyping
• used overlays and “look don’t touch” approach

– cognitive walkthroughs with credible participants
– cognitive dimensions & attention investment for analysis

to assist in answering questions at early design
phase of visual environments

• Blackwell, Burnett and Peyton Jones, Champagne Prototyping:
a research technique for early evaluation of complex end user
programming systems, IEEE VL/HCC, 2004, 47-54

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 32

Final notation design comments
• Design is a creative process: examine multiple candidate

designs, don’t just develop one
• Try to find notations that are in some senses natural for the end

user (ie rate closeness of mapping highly as a cognitive
dimension)
– Function blocks + wiring for Labview
– Table + calculator for spreadsheet
– Tree or Form + drag and connect + formula for Mapper

• Look to reuse diagrams at execution time to visualise
behaviour at the same level of abstraction used to construct
the program (moving towards liveness/progressive evaln and
concreteness but recognising that compile cycle inevitable in
many applications)

• Common to use terse high level abstractions and more verbose
lower level detail (often textual) which gives some hidden
dependencies and can lead to error proneness (cf
spreadsheets)

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 33

Exercise 2: Notation design

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 34

Problem
• Have meta-model for Eclipse plug-in description file
• Want one (or more!) visual notation(s) that allow

users to build up a specification from visual
building-blocks vs edit the XML or use form-based
editor (like the Eclipse PDE plug-in…)

• What are the visual metaphor(s)?
• What are the shapes & connectors?
• How do we relate shape/connector to meta-model

elements (entities, relationships)?
• What consistency constraints are their e.g. layout;

change property=> change …; delete shape => ??

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 35

Solution

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 36

Meta tools
• What’s a meta tool?

– A tool that allows you to define meta models and notations which
can be used to generate environments for modelling using the
notations

• Needs means of specifying the DSVL (cf earlier)
– Notation or notations – metaphors, elements, views
– Meta model definition
– Notation-model mapping
– Behaviour and constraints
– Back end code generation and

import

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 37

Pounamu – exemplar meta tool
• Pounamu overarching design requirements

– Simplicity of use.
• It should be very easy to express the design of a visual notation,

and generate an environment to support modelling using the
notation.

– Simplicity of extension and modification.
• It should be possible to rapidly evolve proof of concept tools by

modification of the notation, addition of back end processing,
integration with other tools, and behavioural extensions (eg complex
constraints).

• Led to a lightweight structure, with extensibility,
customisation strongly built in, plus web services
interface

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 38

Pounamu components
• Shape creator and connector

creator tools
– Used to define icons, connectors

and associated properties
• Event Handler Designer tool

– Specifies dynamic behaviour in
response to events (eg shape
creation). Currently Java code
using API. Have two experimental
DSVLs for this as well.

• Meta model designer tool
– Specifies tool meta models

• View type designer tool
– Specifies an editor for a set of

shapes, connectors and handlers,
and their relationship to a meta
model

• Model projects
– Instances of a specified tool in use

Pounamu Meta-tool Application

Modelling Tools Specification Tools
 Shape Designer

Meta-model
Designer

Event handler
Designer

View Designer

Modelling Views

Model Entity instances

Tool Specifcations
– XML documents

Plug-ins

Event
Handlers

Web Services
APIs Tool specification

projects (XML)
Modelling

projects (XML)

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 39

Pounamu designer examples

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 40

Examples

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 41

Examples

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 42

Exercise 3: Pounamu demonstration

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 43

MetaEdit+
• Commercial system from MetaCASE (cost E11,500)

www.metacase.com
– (ex MetaEdit from U Jyvaskyla Finland)

• Variety of text/form based tools to specify meta model
– Objects
– Properties (attributes)
– Relationships and Roles (endpoints)
– Ports (constraints on connection points)
– Graph (like Pounamu view tool)

• Symbol and Dialog Box Editors
• Reports and generators (walk data structures to generate

reports, code)
• External interfaces
• Model editors include diagrams, matrices, tables, browsers

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 44

MetaEdit+

Object Tool

Constraints

Symbol editor

Generator

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 45

MetaEdit+ Generated System

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 46

GME

• Generic Modelling Environment, Ledeczi et al, Vanderbuilt
• http://www.isis.vanderbilt.edu/Projects/gme/default.html
• Visual MetaModel composed of several parts

– Class diagram with stereotypes representing metatype
• Metatypes defined by MetaGME meta model
• Atoms, connections, models

– Attributes, constraints
• Constraints represented using OCL (see UML later)

– Visualization
• Like Pounamu view definer – defines aspects
• Symbols from simple built-in symbols or bitmaps + code for more

complex symbols
• Extensibility via COM interfaces and XML import/export

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 47

GME Example

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 48

DOME
• Notations defined by filling in properties on an object model

using the DOME Tool Specification Language.
– Includes object class, property and relationship definitions,

connector types, dynamic object appearances, tool buttons,
menus, annotations, and semantic relationships.

– Graphical languages can also include textual, numeric, and
symbolic annotations.

• Graphical meta-modeling capability ProtoDOME
– allows specn of new notations and running them in an

interpreted mode.

• Projector and Alter are DOME's code and document generation
tools:
– Projector, is a visual dataflow language;
– Alter, a functional textual language
– Both provide functionality to write complex model

transformations.
• http://www.htc.honeywell.com/dome

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 49

DOME – Tool Specn

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 50

DOME Model Instantiation

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 51

IPSEN

• Klein and Schurr, AAchen (Schurr now @ Darmstadt)
– See SEE’97 paper

• Quite different approach to the other tools
– Context free grammars used to specify syntax and layout of

languages
– Graph rewriting rules (PROGRESS) used for specifying

semantics
– Both mechanisms use textual specification to generate syntax

directed visual editor

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 52

IPSEN

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 53

Eclipse GMF (Graphical Modelling Framework)

• Framework for using the EMF (Eclipse Modelling
Framework) and GEF (Graphical Editor Framework)
to build graphical editors

• Proivides set of (currently basic) meta-tools to
specify meta-model, graphical elements and
mapping (“view type” specification)

• Generates EMF and GEF code to implement editors
as Eclipse plug-ins

• Open source and free

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 54

GMF – Domain model definition

From: wiki.eclipse.org/index.php/GMF_Tutorial

Import EMF model from class diagram, XSD file etc:

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 55

GEF – graphical element definition
Use Wizards to specify appearance, tools for editor:

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 56

GEF – mapping & example tool
Specify model<->graphical mapping via Wizard:

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 57

Microsoft VisualStudio 2005 DSL Tools
• Set of frameworks to build model-driven engineering

tools with DSVLs for VS 2005
• Provides meta-modelling based on UML meta-model

extensions
• Provides diagram editors via XML configuration files
• Generates code for VS 2005 SDK – plug-ins to VS

2005 to produce UML models for model-driven
engineering

• Models transformed to code in VS 2005 and code
can be further enhanced

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 58

VS2005 DSL – model definition

From: http://www.developerland.com/DotNet/Design/444.aspx

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 59

VS 2005 DSL – Diagram definition

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 60

Comparison
Tool MetaModel

Paradigm
Meta Model
Specn

Visual Elmt Specfn Behaviour Specfn

MetaEdit+ Unkown
(MetaEdit was
MOF)

Tabular/
Form based

Symbol Editor Constraints

GME OO based on
MetaGME

Visual – several
editors

Bitmaps, simple
shapes

OCL constraints

IPSEN EBNF and graph
grammars

Text EBNF Graph Grammars

DOME Object Model ProtoDome ProtoDome Visual & textual
scripting

Pounamu Entity
Relationship

Visual
(currently
limited)

Shape & Connector
tools

Event handlers

Eclipse GMF EMF (EMOF) UML, XSD,
code import

Shape, relationship
Container

Code using EMF, GEF
APIs

MS VS 2005
DSL

UML meta-model UML Shape, relationship
Container

Simple constraints;
code using VS SDK
APIs

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 61

Comparison
Tool Storage Code gen support Integration API Multi paradigm

MetaEdit+ Custom DB Custom scripting
language

SOAP Partially

GME Variety -
customisable

Model
interpreters

COM interfaces Yes, aspects

IPSEN Graph based
database

Graph grammars Unknown No

DOME Custom Extensive Custom – has
plug ins

Yes

Pounamu XML files XML tools SOAP, RMI Yes, view definer

Eclipse GMF XMI, XML EMF JET; GME
ALT

Eclipse APIs Yes, view definer

MS VS 2005 DSL XML VS 2005 MDE
tools

VS 2005 SDK
APIs

Separate DSL
tools

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 62

Comparison
Tool Multiuser tools Liveness Portability Thin client

support
Cost

MetaEdit+ Yes Yes Multi-platform No High

GME Unclear Versioning
support

Java based No Free

IPSEN No No- compile
cycle

No No Free

DOME No Yes, good
support

Multi-platform No Free GNU

Pounamu Yes for
generated
tools

Yes, some
bugs!

Java based Yes Free for ac use

Eclipse GMF No No – code
generation to
GEF, EMF code

Java based No Free

MS VS 2005
DSL

Via VS 2005
SDK Support

No – code
generation to
SDK APIs

Theoretically any
.NET platform

No Moderate

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 63

Wrap up

VL/HCC2006 Tutorial (c) John Hosking & John Grundy 2006 64

References
• A. Blackwell, M. Burnett & S. Peyton Jones, Champagne Prototyping: a research technique for early

evaluation of complex end user programming systems, IEEE VL/HCC, 2004, 47-54
• Cognitive Dimensions website http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions
• T.R. Green and M. Petre, Usability analysis of visual programming environments: a ‘cognitive

dimensions’ framework, Journal of Visual Languages and Computing, (7), 1996, 131-174.
• Labview, http://www.ni.com/labview/
• D. Roberts, R.Johnson “Evolving Frameworks”

http://st-www.cs.uiuc.edu /users/droberts/evolve.html
• Jimi Hendrix kit: http://guitargeek.com/rigview/354/
• MS Visual Studio DSL tools example: http://www.developerland.com/DotNet/Design/444.aspx
• Eclipse GMF tutorial: wiki.eclipse.org/index.php/GMF_Tutorial
• Zhu, N., Grundy, J.C., Hosking, J.G., Liu, N., Cao, S. and Mehra, A. Pounamu: a meta-tool for

exploratory domain-specific visual language tool development, Journal of Systems and Software,
Elsevier, vol. 80, no. 8, pp 1390-1407.

• Gundy, J.C., Hosking, J.G., Zhu, N. and Liu, N. Generating Domain-Specific Visual Language
Editors from High-level Tool Specifications, In Proceedings of the 2006 IEEE/ACM International
Conference on Automated Software Engineering, Tokyo, 24-28 Sept 2006, IEEE.

• Stoeckle, H., Grundy, J.C. and Hosking, J.G. A Framework for Visual Notation Exchange, Journal
of Visual Languages and Computing, Volume 16, Issue 3 , June 2005, Elsevier, pp.187-212.

• Zhu, N., Grundy, J.C. and Hosking, J.G. Constructing domain-specific design tools with a visual
language meta-tool, CAiSE 2005 Forum, Portugul, June 2005, Springer.

