
Scott Barnett, Iman Avazpour, Rajesh Vasa, John Grundy

Supporting Multi-View Development 
for Mobile Applications

A multi-view code synthesis tool 
for developing data-driven mobile 
apps at decreasing levels of 
abstraction. 



Problem 
Simple data-driven mobile applications take too long 

to develop! 



Problem continued
• Multiple levels of abstraction required for designing 

and building a mobile app (navigation, workflow, 
services etc.)

• Data-drive apps contain boilerplate code

• Re-development needed to migrate from a 
prototype to a production ready app

• Low level code implementation needed to deal with 
device specific variations



Solution 
Better domain-specific tooling == faster development time

Target end users == professional app developers



Goal:Generate 80% of this app!

https://play.google.com/store/apps/details?id=com.eventbrite.attendee&hl=en

https://play.google.com/store/apps/details?id=com.eventbrite.attendee&hl=en


Levels of abstraction: 

DSVL: Domain Specific Visual Language
DSTL: Domain Specific Textual Language



Our approach



Domain Specific Visual 
Language



C������ C. RAPPT’� I��������

2
3
4

5 6

1

Figure C.1: Screenshot for RAPPT’s Designer. 1. Package, Project
and Download, 2. Navigational Tabs, 3. Shortcuts, 4. Widget Pane,
5.Visual Editing Pane and 6. Properties Pane.

tion. Next to these fields is the Download button for downloading
the source code for the generated Android app. These three fields
are displayed for each of RAPPT’s screens.

2 Navigational Tabs enable the developer to navigate between the
Designer, AML code editor and the Code Browser. After Peter has
completed specifying the app using the DSVL he can add addi-
tional details by going to the AML screen or preview the generated
source code before downloading the app by navigating to the Code
Browser section.

3 An overview of the keyboard Shortcuts for adding elements from
the DSVL to the Visual Editing Pane.

4 The Widget Pane contains the elements that make up the DSVL
ready for the developer to drag onto the Visual Editing Pane. For
the MovieDB app, Peter needs to drag three screens onto the de-
signer one for the list of movies, displaying the details for a single
movie and one for the app’s about screen. Peter also drags the
Tabbar component onto the list and about screens to specify the

230

RAPPT’s DSVL Interface



Domain Specific Textual 
Language

1. Event handler for 
screen loading

2. Call to RESTful 
API

3. Landing page for 
the app

4. RESTful API 
definition



C������ C. RAPPT’� I��������

device, thankful he does not need to manually write all of the boiler plate
code automatically produced by RAPPT. The complete code for building
a MovieDB app is shown in Figure C.4 and illustrates which parts of
the DSL were generated from the DSVL, copied from the samples section
and edited manually.

DSVL Generated Code

Samples Code

Manual edited code

Figure C.4: Complete source code for the MovieDB app showing code
generated by the DSVL, code reused from copy-pasting AML samples
and manually edited DSTL code.

235

RAPPT Generated Code



Results from an evaluation 
with 20 users

• 95% of users felt RAPPT was beneficial for 
mobile app development (agree or strongly 
agree)

• 80% felt RAPPT was more efficient than starting 
with a standard Android project (agree or 
strongly agree)

• More abstractions required and additional 
support for avoiding errors in the user interface



Summary

• Building mobile apps is hard

• Professional app developers under-researched 
area for support

• They want range of abstractions from high to low 
level, “professional quality” generated 
templates/partial code ability to edit/polish 
generated code

• We use mixed DSVL/DSTLs to support this


