
Norhayati Mohd.Ali, John Hosking, Jun Huh and John Grundy 

University of Auckland, New Zealand. 

1 VL/HCC'09:20-24 Sept 09 



}  Introduction 
}  Motivation 
}  Our Approach 
}  Critic Authoring Template 
}  Critic Authoring Process-Example 
}  Implementation 
}  Discussions 
}  Conclusion & Future Work 
}  Q&A 

2 VL/HCC'09:20-24 Sept 09 



}  Many studies have reported that critic tools 
provide an efficient mechanism for 
feedbacks. 

}  However, critic authoring continues to be a 
challenge 
◦  Little agreement on how critics should be specified 
◦  Little work on tools to author and realize critics 

3 VL/HCC'09:20-24 Sept 09 



}  Our researchè Marama Critic Definer, a critic 
support-based extension to our Marama 
metatool.  

}  Critic authoring extension allow tool designer 
(not intended to be a skilled programmer) to 
define his/her own critics and feedback 
mechanisms specific to their tool.  

VL/HCC'09:20-24 Sept 09 4 



}  Related work on critics: 
 
 
 
 
 
 
}  Those approaches: 
◦  Require deep understanding of the tool platform 
◦  Customization of critics would not be easy 

5 VL/HCC'09:20-24 Sept 09 

Critic tool Critic’s realization approach 
LISP-Critic [ Fischer] Rule-based 
ArgoUML [Robbins & Redmiles] Java classes 
ABCDE-Critic [Souza et.al] First-order production system 

notation 
IDEA [Bergenti & Poggi]            Knowledge-based and Prolog 
Java Critiquer [Qiu&Riesbeck] Pattern matching approach 



}  Our Marama Critic tool similar to tools such 
as MetaEdit+ and other metamodelling tools 

}  We imitate the metamodelling approach but 
our focus is on critics authoring inspired by 
the critic tools 
◦  Less discussion on issues of critic authoring, i.e 

allow end-user and tool designer to customize 
critic rules 

VL/HCC'09:20-24 Sept 09 6 



}  Motivating Example: MaramaMTE architecture 
design tool with Critic function (initial attempt) 

VL/HCC'09:20-24 Sept 09 7 

CriticShape function 

MaramaMTE critics defined using the Marama meta-model editor 



}  To address some of the problems in the initial 
attempt, we propose a new Marama Critic 
development approach 

8 VL/HCC'09:20-24 Sept 09 

1.  Designer uses 
the Marama 
meta-tools to 
develop 
Marama-
based tools 

2.  Critics are 
specified via 
Marama critic 
definer view 

3.  When a diagram is created, 
critics for that particular tool 
will be applied. 



}  The critic-authoring task is adapting the concept 
of ‘business rule templates’ [Loucopoulus & Wan 
Kadir,2008] 

}  The rule templates are formal sentence patterns 
that allow the expression of business rules  

}  Why we choose ? 
◦  Match properties between metamodel descriptions and 

‘business rule templates’ 
◦  Support end-users (with limited programming capability) 

to define and author critics 

9 VL/HCC'09:20-24 Sept 09 



}  Currently the templates consist of two types: 
constraint templates and action assertion 
templates 

}  Constraint templates: 
◦  Attribute constraint = specify uniqueness, 

optionality, and value check of an entity’s attributes 

◦  Relationship constraint = asserts the relationship 
types, cardinality and roles of each entity in a 
relationship 

 
10 VL/HCC'09:20-24 Sept 09 



}  Constraint and Action Assertion Templates [13] 
Constraint <entity> must have | may have a [unique] 

<attributeTerm> 
 
<attributeTerm1>must be |may be 
<relationalOperator><value>| 
<attributeTerm2> 
 
[<cardinality>]<entity1> is a/an <role> of 
[<cardinality>]<entity2> 
 
[<cardinality>]<entity1> is associated with [<cardinality>] 
<entity2> 
 
<entity1> must have |may have [<cardinality>]<entity2> 
 
<entity1> is a/an <entity2> 
 

Action Assertion When <event> [If <condition>] then <action> 

11 VL/HCC'09:20-24 Sept 09 



}  We employ the templates for domain-specific 
tool specification specifically for visual critic 
authoring. 

}  Advantages to the critic authors/tool 
designers: 
◦  Use formal language definition to define sentence 

patterns 
◦  Use of structured natural language 
◦  Guidance to construct the rules 
◦  Support the association between tool specification 

elements and rule statements 

12 VL/HCC'09:20-24 Sept 09 



}  We illustrate the critic authoring process via three 
major components: 
◦  1) Marama Critic Definer editor 
◦  2) Critic Construction editor 
◦  3) Critic Feedback editor 

 
}  A simplified UML class diagram (MaramaCD) tool- 

as an example for the critic authoring process. 
◦  Metamodel for MaramaCD tool 
◦  Sample of critics and feedbacks 
◦  Critic and feedback execution 
 

13 VL/HCC'09:20-24 Sept 09 



VL/HCC'09:20-24 Sept 09 14 

Marama Critic  
Definer option 

Visual critic  
definer editor 

Back 



VL/HCC'09:20-24 Sept 09 15 

CriticShape function 

‘Critic Construction View’  
interface associated with 

CriticShape function 

Back 



VL/HCC'09:20-24 Sept 09 16 

CriticFeedback function 

‘CriticFeedbackView’  
interface associated with 
CriticFeedback function 

Back 



VL/HCC'09:20-24 Sept 09 17 

Tool element Critic rule 
phrase 

Critic template Type Feedback 

Class A class must 
have a unique name 

<entity>  must have | may have 
a [unique] <attributeTerm> 

Attribute 
constraint 

Remove or rename one of 
the components 

Package Package must 
have many classes 

<entity1> must have | may 
have [<cardinality>] <entity2> 

Relationship 
constraint 

Add the component 

Class When a class 
has too many 
associations then 
reduce the 
association 

When <event> [if <condition>] 
then <action> 

  

Action 
assertion 

Reduce the association 

A. MaramaCD metamodel  B. Critic Definer editor 

C. Example of critics and feedbacks for MaramaCD tool  



}  Critic and Feedback execution: 

18 VL/HCC'09:20-24 Sept 09 

1) Critic executed at diagram level 2) Critic’s feedback with fix action 



}  Create three new editors: Marama Critic 
Definer, Critic Construction view and Critic 
Feedback view 

}  Critics and feedbacks are stored in a 
repository (XML format) 

}  A code generator template is used to 
implement the critic, which is then 
instantiated into the tool when it is executed 

19 VL/HCC'09:20-24 Sept 09 



}  The three new editors contributes several 
benefits:   
◦  Provides a simple way to define critic specifications 

and critic feedback specifications 
◦  Novice designer may easily construct the critics and 

feedbacks 
◦  The process of customizing critics and their 

feedback is much easier 
 

20 VL/HCC'09:20-24 Sept 09 



}  Main limitations: 
◦  Limited set of critic authoring and feedback 

templates and actions 
◦  Constructing new critic condition and feedback 

templates is not fully formed yet 
 

}  Apply appropriate abstractions: 
◦  A high-level visual overview of the critics 
◦  Highly user accessible form-based rule template 

interfaces 
◦  Extensibility options for experiences tool users 

 
21 VL/HCC'09:20-24 Sept 09 



}  Evaluation: 
◦  Used Cognitive Dimensions 
◦  Reducing viscosity and hard mental operations 
◦  Good closeness of mapping, low error proneness 
◦  Provide a balance of abstractions 

VL/HCC'09:20-24 Sept 09 22 



}  Marama Critic Definer provides support to 
end-user and tool designers for critic 
authoring and configuration tasks. 

 
}  Plans for future work include: 
◦  Provide a better template specification tool  
◦  Provide visualization of dependencies between critic 

and model elements 
◦  Develops a hierarchical critics to provide more 

powerful critic reasoning mechanism 
◦  More extensive case study 
◦  Conduct a larger end-user evaluation 

23 VL/HCC'09:20-24 Sept 09 



}  BuildIT Travel award, NZ – travel funding 
support 

}  Postgraduate Research Student Support 
account – travel funding support 

}  Ministry of Malaysia Higher Education & 
Universiti Putra Malaysia – scholarship 
support 

}  VL/HCC 2009 for this opportunity to present 

24 VL/HCC'09:20-24 Sept 09 



} Q & A 

25 VL/HCC'09:20-24 Sept 09 



}  [1]. Ali, N.M., Hosking, J., Huh, J. And Grundy, J. Critic Authoring Templates for Specifying 
Domain-Specific Visual Language Tools, Proc. ASWEC09, Gold Coast, Australia, April 14-17 
2009. 

}  [2]. ArgoUML, http://argouml.tigris.org/  
}  [3]. Barone, R., & Cheng, P. C.-H. (2004). Representations for problem solving: on the benefits 

of integrated structure. Proc 8th Intnl Conf on Information Visualisation (pp. 575-580). Los 
Alamitos, CA: IEEE. 

}  [4]. Bergenti, F. and Poggi. A. Improving UML designs using automatic design pattern detection, 
Proc SEKE, 2000, pp. 336-343. 

}  [5]. Costagliola, G., Denfemia, V., Ferrucci, F., and Gravino, C. “A User-centered Methodology to 
Generate Visual Modeling Enviroments” in Enterprise Information Systems VI, Springer, 
Netherlands, 2006. 

}  [6]. Eclipse, http://www.eclipse.org/ 
}  [7]. ExtendedBNF, http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf 
}  [8]. Fischer, G. A critic for LISP, In Proc of the 10th IJCAI (Milan, Aug.1987) pp. 177-184. 
}  [9]. Florijin, G. RevJava-Design critiques and architectural conformance checking for Java 

software, Technical Report, White Paper, SERC 2002. http://www.bi-inbusiness.nl/site.nsf/0/
A284738E9CD72E0EC1256E43002FE770/$file/Whitepaper_RevJava.pdf 

}  [10]. Green, T.R.G. & Petre, M. Usability analysis of visual programming environments: a 
‘cognitive dimensions’ framework. Journal of Visual Languages and Computing 1996 (7), pp. 
131-174. 

26 VL/HCC'09:20-24 Sept 09 



}  [11]. Grundy, J.C., Hosking, J.G., Huh, J. and Li, N. Marama: an Eclipse meta-toolset for generating multi-view 
environments, Formal demoICSE’08, Liepzig, Germany, May 2008, ACM Press. 

}  [12]. Grundy, J.C., Hosking, J.G., Li, L. and Liu, N. Performance engineering of service compositions, ICSE 2006 Workshop 
on Service-oriented Software Engineering, Shanghai, May 2006. 

}  [13]. Loucopoulus, P., and Wan Kadir, W.M.N. “BROOD:Business rules-driven object-oriented design”, J Database 
Management, 19(1), 2008, pp. 41-73. 

}  [14]. Oh,Y., Gross, M.D and Do, E.Y.-L, Computer-aided critiquing systems, lessons learned and new research directions. 
http://code.arc.cmu.edu/lab/upload/caadriaoh.0.pdf 

}  [15]. Qiu, L., and Riesbeck, C.K., An incremental model for developing educational critiquing systems: experiences with the 
Java critiquer, J Interactive Learning Research, 2008(19), pp.119-145. 

}  [16]. Robbins, J.E., Redmiles, D.F. Cognitive Support, UML Adherence, and XMI Interchange in Argo/UML. IST 2000, 42(2) 
pp. 71-149. 

}  [17]. Robbins, J.E., Hilbert, D.M. Redmiles, D.F. Software Architecture Critics in Argo. Intelligent User Interfaces 1998, pp. 
141-144. 

}  [18]. Souza, C.R.B., et al. A Group Critic System for Object-Oriented Analysis and Design, Proc ASE 2000, 313-316. 
}  [19]. Wan Kadir, W.M.N., and Loucopoulus, P. “Relating evolving business rules to software design”, Journal of Systems 

Architecture, 50(7), Elsevier, 2004, pp.367-382. 
}  [20] Ali, N. Md., Hosking, J.G., Huh, J. Grundy, J.C., Critic Authoring Templates for Specifying Doman-Specific Visual 

Language Tool Critics, In Proceedings of the 2009 Australian Software Engineering Conference, Gold Coast, Australia, April 
2009, IEEE CS Press.  

}  [21] Ali, N.M., Hosking, J.G., Grundy, J.C., A Taxonomy and Mapping of Computer-based Critiquing Tools,  IEEE 
Transactions on Software Engineering, vol. 39, no. 11, November 2013, pp. 1494-1520. 

}  [22] Grundy, J.C., Hosking, J.G., Li, N., Li, L., Ali, N.M., Huh, J. Generating Domain-Specific Visual Language Tools from 
Abstract Visual Specifications, IEEE Transactions on Software Engineering, vol. 39, no. 4, April 2013, pp. 487 - 515. 

}  [23] Ali, N. Md., Hosking, J.G. and Grundy, J.C. End-User Oriented Critic Specification for Domain-Specific Visual Language 
Tools, In Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp, 
Belgium, 20-24 Sept 2010, ACM Press.  

VL/HCC'09:20-24 Sept 09 27 


