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}  Many studies have reported that critic tools 
provide an efficient mechanism for 
feedbacks. 

}  However, critic authoring continues to be a 
challenge 
◦  Little agreement on how critics should be specified 
◦  Little work on tools to author and realize critics 
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}  Our researchè Marama Critic Definer, a critic 
support-based extension to our Marama 
metatool.  

}  Critic authoring extension allow tool designer 
(not intended to be a skilled programmer) to 
define his/her own critics and feedback 
mechanisms specific to their tool.  
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}  Related work on critics: 
 
 
 
 
 
 
}  Those approaches: 
◦  Require deep understanding of the tool platform 
◦  Customization of critics would not be easy 

5 VL/HCC'09:20-24 Sept 09 

Critic tool Critic’s realization approach 
LISP-Critic [ Fischer] Rule-based 
ArgoUML [Robbins & Redmiles] Java classes 
ABCDE-Critic [Souza et.al] First-order production system 

notation 
IDEA [Bergenti & Poggi]            Knowledge-based and Prolog 
Java Critiquer [Qiu&Riesbeck] Pattern matching approach 



}  Our Marama Critic tool similar to tools such 
as MetaEdit+ and other metamodelling tools 

}  We imitate the metamodelling approach but 
our focus is on critics authoring inspired by 
the critic tools 
◦  Less discussion on issues of critic authoring, i.e 

allow end-user and tool designer to customize 
critic rules 
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}  Motivating Example: MaramaMTE architecture 
design tool with Critic function (initial attempt) 
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CriticShape function 

MaramaMTE critics defined using the Marama meta-model editor 



}  To address some of the problems in the initial 
attempt, we propose a new Marama Critic 
development approach 
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1.  Designer uses 
the Marama 
meta-tools to 
develop 
Marama-
based tools 

2.  Critics are 
specified via 
Marama critic 
definer view 

3.  When a diagram is created, 
critics for that particular tool 
will be applied. 



}  The critic-authoring task is adapting the concept 
of ‘business rule templates’ [Loucopoulus & Wan 
Kadir,2008] 

}  The rule templates are formal sentence patterns 
that allow the expression of business rules  

}  Why we choose ? 
◦  Match properties between metamodel descriptions and 

‘business rule templates’ 
◦  Support end-users (with limited programming capability) 

to define and author critics 
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}  Currently the templates consist of two types: 
constraint templates and action assertion 
templates 

}  Constraint templates: 
◦  Attribute constraint = specify uniqueness, 

optionality, and value check of an entity’s attributes 

◦  Relationship constraint = asserts the relationship 
types, cardinality and roles of each entity in a 
relationship 
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}  Constraint and Action Assertion Templates [13] 
Constraint <entity> must have | may have a [unique] 

<attributeTerm> 
 
<attributeTerm1>must be |may be 
<relationalOperator><value>| 
<attributeTerm2> 
 
[<cardinality>]<entity1> is a/an <role> of 
[<cardinality>]<entity2> 
 
[<cardinality>]<entity1> is associated with [<cardinality>] 
<entity2> 
 
<entity1> must have |may have [<cardinality>]<entity2> 
 
<entity1> is a/an <entity2> 
 

Action Assertion When <event> [If <condition>] then <action> 
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}  We employ the templates for domain-specific 
tool specification specifically for visual critic 
authoring. 

}  Advantages to the critic authors/tool 
designers: 
◦  Use formal language definition to define sentence 

patterns 
◦  Use of structured natural language 
◦  Guidance to construct the rules 
◦  Support the association between tool specification 

elements and rule statements 
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}  We illustrate the critic authoring process via three 
major components: 
◦  1) Marama Critic Definer editor 
◦  2) Critic Construction editor 
◦  3) Critic Feedback editor 

 
}  A simplified UML class diagram (MaramaCD) tool- 

as an example for the critic authoring process. 
◦  Metamodel for MaramaCD tool 
◦  Sample of critics and feedbacks 
◦  Critic and feedback execution 
 

13 VL/HCC'09:20-24 Sept 09 



VL/HCC'09:20-24 Sept 09 14 

Marama Critic  
Definer option 

Visual critic  
definer editor 

Back 
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CriticShape function 

‘Critic Construction View’  
interface associated with 

CriticShape function 

Back 
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CriticFeedback function 

‘CriticFeedbackView’  
interface associated with 
CriticFeedback function 

Back 
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Tool element Critic rule 
phrase 

Critic template Type Feedback 

Class A class must 
have a unique name 

<entity>  must have | may have 
a [unique] <attributeTerm> 

Attribute 
constraint 

Remove or rename one of 
the components 

Package Package must 
have many classes 

<entity1> must have | may 
have [<cardinality>] <entity2> 

Relationship 
constraint 

Add the component 

Class When a class 
has too many 
associations then 
reduce the 
association 

When <event> [if <condition>] 
then <action> 

  

Action 
assertion 

Reduce the association 

A. MaramaCD metamodel  B. Critic Definer editor 

C. Example of critics and feedbacks for MaramaCD tool  



}  Critic and Feedback execution: 
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1) Critic executed at diagram level 2) Critic’s feedback with fix action 



}  Create three new editors: Marama Critic 
Definer, Critic Construction view and Critic 
Feedback view 

}  Critics and feedbacks are stored in a 
repository (XML format) 

}  A code generator template is used to 
implement the critic, which is then 
instantiated into the tool when it is executed 
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}  The three new editors contributes several 
benefits:   
◦  Provides a simple way to define critic specifications 

and critic feedback specifications 
◦  Novice designer may easily construct the critics and 

feedbacks 
◦  The process of customizing critics and their 

feedback is much easier 
 

20 VL/HCC'09:20-24 Sept 09 



}  Main limitations: 
◦  Limited set of critic authoring and feedback 

templates and actions 
◦  Constructing new critic condition and feedback 

templates is not fully formed yet 
 

}  Apply appropriate abstractions: 
◦  A high-level visual overview of the critics 
◦  Highly user accessible form-based rule template 

interfaces 
◦  Extensibility options for experiences tool users 
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}  Evaluation: 
◦  Used Cognitive Dimensions 
◦  Reducing viscosity and hard mental operations 
◦  Good closeness of mapping, low error proneness 
◦  Provide a balance of abstractions 
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}  Marama Critic Definer provides support to 
end-user and tool designers for critic 
authoring and configuration tasks. 

 
}  Plans for future work include: 
◦  Provide a better template specification tool  
◦  Provide visualization of dependencies between critic 

and model elements 
◦  Develops a hierarchical critics to provide more 

powerful critic reasoning mechanism 
◦  More extensive case study 
◦  Conduct a larger end-user evaluation 
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} Q & A 
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