

A Domain-Specific Visual
Language for Report
Writing
Using Microsoft DSL Tools

- Ruskin Dantra, John Grundy and John Hosking

Overview

•  Introduction
–  Domain
–  Problem

•  Background
–  Motivation

•  Approach and design
•  Evaluation
•  Future work

Domain Introduction

•  In conjunction with Prism
–  MIS for the printing and graphics industry

•  Prism exposes a proprietary reporting
language via which end-users can query their
database and display the results in a visual
form

•  Language is called RWL for the purpose of this
paper

•  Procedural, “sort-of” object-oriented,
interpreted programming language

Background and Motivation

•  RWL is complicated
–  Implicit semantics
–  Complicated enterprise database

•  No design time validation
•  No dedicated IDE

–  Lack of context sensitive help

•  Ease change management
–  Time to market

Code	 CASE_STUDY_1	
Type	 Standard	
Access	 STSR	
	 	
Scan	 RM	
	 Print	 RM_CUST	 +	 RM_NAME;	
	 Print	 “All	 Jobs	 For	 ”	 +	 RM_NAME;	
	 Scan	 QM	
	 	 Choose	 (QM_CUST_CODE,	 MATCH,	 RM_CUST)	
	 	 Choose(QM_QUOTE_JOB,	 MATCH,	 QMM_JOB)	
	 	
	 	 Print	 QM_JOB_NUM	 +	 QM_TITLE;	
	 End	
End	
Print	 StandarReportFooter;	

Why a VL?

•  Visual aid, cues and context sensitive help
–  Visual DSL

•  Only expose “absolutely necessary”
information

•  Minimize user errors by allowing them to
“design” reports rather than write them

Approach overview
RWL Meta-Model

RWL Model

Generates
RWL script

Text Templates

User Designing Reports

DSL Tools

Shell

Our Approach

1.  Reverse engineer meta-model from RWL
specification

Scan	 RM	
	 Print	 RM_CUST	 +	 RM_NAME;	
End	

Our Approach (Cont’d...)

2.  Design a VL using surface level notation

Our Approach (Cont’d...)

3.  Allow end-users to create entire RWL models

Our Approach (Cont’d...)

4.  Automated RWL script generation from RWL
model

Simple Example

Evaluation – Design

•  Evaluated using the Cognitive Dimensions
framework

•  Eases mental operations by emphasizing
report logic over report layout
–  E.g. Inner joins across tables

•  Trade-off between concreteness of final report
and closeness of mapping

Evaluation – Design (Cont’d...)

•  Auto layout and simple refactoring capabilities
reduce viscosity

Evaluation – Design (Cont’d...)

•  Reducing textual entry from users reduces
error proneness

•  Hidden dependencies reduced by doing simple
things. E.g. Showing relationships using
connectors, co-selection of elements

Evaluation – Survey

•  14 participants
•  Six developers and eight non-technical end-

users
•  Both groups given two task: an easy task and

a comparatively harder task

Evaluation – Survey (Cont’d...)

•  End-user survey
–  Novice and intermediate users found tool useful
–  Experienced users felt a bit constrained
–  Scalability was raised as an issue

• At what point does a visual report
become harder to understand than a
textual report?

–  Making small changes require comparatively more
steps
• E.g. Adding a simple print statement

Evaluation – Survey (Cont’d...)

•  Developer survey
–  Tasks were easy and procedural with automated

code generation
–  Scalability was raised as an issue

• Will the meta-model become so large
than maintenance will be difficult?

Future Work

•  Improve VL
•  Improve auto-layout algorithms
•  Versioning
•  Wizards and code snippets

The End

•  Questions?

