
David Maplesden, John Hosking and John Grundy

Department of Computer Science,
University of Auckland, New Zealand

john@cs.auckland.ac.nz

A Visual Language
for Design Pattern
Modelling and
Instantiation

TOOLS Pacific 2002

Outline

•  Motivation
•  Design Patterns & Design Pattern Solutions
•  Design Pattern Modeling Language
•  Instantiating DPML patterns
•  DPML+UML
•  DPTool
•  Evaluation of DPML & DPTool
•  Future work

Support for Design Patterns

•  Use patterns to help reuse design/implementation
approaches

•  Use with UML (or other) OODs + code
•  Want to better-support:

–  Modeling of design pattern “solutions” i.e. particular
approaches to implementing patterns

–  Tracking usage of pattern solutions in designs
–  Validating patterns are correctly used
–  Abstracting new patterns from design models

•  Our approach:
–  Design Pattern Modeling Language (DPML)
–  DPTool

Usage in Design Process

•  Modeling with UML
•  Design pattern

specifications
(using DPML)

•  Instantiate DPs
from DPML

•  Link instantiated
DP model elements
to UML design
elements

•  (Abstract DP
instantiations &
DPML DP models
from UML…)

Design Patterns vs Design Pattern Solutions

•  Design pattern models abstract problem solution
•  Design pattern solution specifies actual approach to

solving problem (classes, methods, relationships etc)
•  May have >1 solution for a particular design pattern…

ObservedS
observers : Linked
List

notifyAdded()
notifyUpdated()

1

LinkedList

1
observers

ObserverSIF

updated (Event)

0..*0..*

ObserverS

updated (Event)

Observers

updated()

Observed

notifyChanged(

ObserverIF

updated()0..*0..*

observers

DPML

•  DPML - Design Pattern
Modelling Language

•  Abstract representation of
design pattern solutions

•  Supports instantiation of
patterns into UML designs

•  Basic notation represents
important participants
–  interfaces &

implementations
–  operations and methods
–  attributes
–  relations & constraints
–  abstract cardinality

(dimensions)

Example: Abstract Factory Pattern

•  Each dimension
represents
cardinality of
the set of
participants

•  Eg same number
of createOps as
Products (one
for each
Product)

•  Eg no of
concrete
CreateOps is no
of factories
times no of
products

concreteCreateOps

concreteFactories

Implements

createOps

Declared_In

Defined InRealises

Products concreteProducts

Implements

Creates

AbstractFactory

Return Type

factoriesDimension

productsDimension

Dimension Key

UML Model

GUIFactory
createScrollBar () : ScrollBar
createMenu () : Menu
createButton () : Button

<<Interface>>

ScrollBar <<Interface>>
Menu <<Interface>>

Button <<Interface>

MetalFactory
createScrollBar () : MetalScrollBar
createMenu () : MetalMenu
createButton () : MetalButton

SpaceFactory
createScrollBar () : SpaceScrollBar
createMenu () : SpaceMenu
createButton () : SpaceButton

MetalScrollBar SpaceScrollBar MetalMenu SpaceMenu MetalButton SpaceButton

The image
cannot be
displayed. Your
computer may
not have

The image
cannot be
displayed. Your
computer may
not have

concreteCreateOps

The image
cannot be
displayed.
Your
computer
may not
have enough

concreteFactories
Implements

The image cannot be
displayed. Your
computer may not
have enough memory
to open the image, or
the image may have

createOps
Declared_In

Defined In Realises

The image cannot
be displayed. Your
computer may not
have enough
memory to open the
image, or the image

Products The image
cannot be
displayed.
Your
computer
may not
have enough

The image
cannot be
displayed.
Your
computer
may not
have enough

concreteProducts
Implements

Creates

AbstractFactory

Return Type

Instantiation into UML Designs

•  Have instantiation diagrams
that refer to UML classes,
opns, etc

•  Instantiation diagram
elements from DPML DP
models linked to UML
design elements

•  Allows tracking of usage,
validation of usage

•  Possible to abstract DPs
from UML models…

•  Eg instantiation of
abstract factory into GUI
factory

concreteCreateOps

concreteFactories

Implements

createOps

Declared_In

Defined In
Realises

Products concreteProducts

Implements

Creates

AbstractFactory

factoriesDimension

productsDimension

Dimension Key

MetalFactory
SpaceFactorycreateMenu

createScrollBar
createButton

6 bound elements

6 bound elements
Menu

ScrollBar
Button

GUIFactory

Return Type

DPTool Examples

•  DPML models
•  UML Models
•  DP Instantiation diagrams
•  Validation

Evaluation

•  Two approaches:
–  Empirical (several experienced designers)
–  Cognitive (“cognitive dimensions”)

•  Empirical:
–  Half a dozen experienced industry and academic designers
–  Use DPTool to model, instantiate several patterns and

(simple) UML designs
–  Very good feedback on usefulness of DPML + tool support

•  Cognitive:
–  Assessed DMPL visual language on several dimensions
–  Generally rates well, though quite “abstract”
–  Some problems with hiding links between elements in

different models

Future Work & Conclusions

•  Alternative visual representations of DPML elements
•  Link visualisation; further work with dimensions
•  Abstraction of DP solutions from UML models
•  Overlapping patterns – analysis & visualisation support
•  Applying to software architecture patterns/styles…
•  Plug-in to commercial CASE product

•  Can model design patterns using their own language (DPML)
•  Can associate UML elements with DPML instances to track

pattern usage, validate usage
•  Surveyed experienced designers like this kind of support
•  Questions over appropriate visualisation, other applications

References

•  Maplesden, D., Hosking, J.G. and Grundy, J.C. A Visual Language for Design Pattern Modelling
and Instantiation, In Proceedings of Human-Centric Computing 2001, IEEE CS Press.

•  Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Constructing component-based software
engineering environments: issues and experiences, Information and Software Technology Vol 42,
No. 2, Special Issue on Constructing Software Engineering Tools, Elsevier Science Publishers.

•  Grundy, J.C., Hosking, J.G., Mugridge, W.B., Apperley, M.D. A decentralised architecture for
software process modelling and enactment, IEEE Internet Computing: Special Issue on Software
Engineering via the Internet, Vol. 2, No. 5, September/October 1998, IEEE CS Press, pp. 53-62.

•  Grundy, J.C., Hosking, J.G., Mugridge, W.B., Apperley, M.D. A decentralised architecture for
software process modelling and enactment, IEEE Internet Computing: Special Issue on Software
Engineering via the Internet, Vol. 2, No. 5, September/October 1998, IEEE CS Press, pp. 53-62.

•  Grundy, J.C. and Hosking, J.G. Serendipity: integrated environment support for process modelling,
enactment and work coordination, Automated Software Engineering: Special Issue on Process
Technology, Vol. 5, No. 1, January 1998, Kluwer Academic Publishers, pp. 27-60.

•  Grundy, J.C., Mugridge, W.B. and Hosking, J.G. A Java-based Componentware Toolkit for
Constructing Multi-view Editing Systems, In Proceedings of the 2nd Component Users' Conference
(CUC'97), Munich July 15-18, 1997, SIGS Books.

