A Visual Language
for Design Pattern
Modelling and
Instantiation

David Maplesden, John Hosking and John Grundy

Department of Computer Science,
University of Auckland, New Zealand
john@cs.auckland.ac.nz

TOOLS Pacific 2002

Outline

* Motivation

* Design Patterns & Design Pattern Solutions
» Design Pattern Modeling Language

* Instantiating DPML patterns

- DPML+UML

+ DPTool

* Evaluation of DPML & DPTool

- Future work

Support for Design Patterns

Use patterns to help reuse design/implementation
approaches

Use with UML (or other) OODs + code
Want to better-support:

- Modeling of design pattern “solutions” i.e. particular
approaches to implementing patterns

- Tracking usage of pattern solutions in designs

- Validating patterns are correctly used

- Abstracting new patterns from design models
Our approach:

- Design Pattern Modeling Language (DPML)

- DPTool

Usage in Design Process

Modeling with UML

Design pattern
specifications
(using DPML)
Instantiate DPs
from DPML

Link instantiated
DP model elements
to UML design
elements

(Abstract DP
instantiations &
DPML DP models
from UML..)

DPMI. Pattern Specification

instantiate

DPMI. Pattern Tnstantiation

UMT. Object Model

Design Patterns vs Design Pattern Solutions

- Design pattern models abstract problem solution

+ Design pattern solution specifies actual approach to
solving problem (classes, methods, relationships etc)

* May have >1 solution for a particular design pattern...

observers
/
ObservedS

observers ObserverlF
Observed
I
0._* updated()
notify Changed(" /]
Observers
updated()

List

observers : Linked

notify Added()
notify Updated()

LinkedList

ObserverS

updated (Event)

0..*

ObserverSIF

updated (Event)

7
S
S
)

DPML

DPML - Design Pattern
Modelling Language

Abstract representation of

Marmg Narme:

ISR A G L TR F) I

design pattern solutions Inter e Attribute
Supports instantiation of - —
patterns intfo UML designs Narme
Basic notation represents]
importan‘r par"ricipam's Implementation Rinary Directed Relation
- interfaces & Name N

implementations
- operations and methods
- attributes Hperation Imerlace with Dimensions
- relations & constraints ame £A constraint
- abstract cardinality o oo
(dimensions)

Method A Simple Constraimt

Example: Abstract Factory Pattern

Each dimension
represents
cardinality of
the set of
participants

Eg same number
of createOps as
Products (one
for each
Product)

Eg no of
concrete
CreateOps is no
of factories
times no of
products

S
S
N
N
N
XY
N

Return Type

‘IIIIIIIII"’

AbstractFactory

Defined In

Realises

CO!

creteCreateOps I’
AN

Implements

icreteFactories

CO1

WS

Implements

cor[cretePro ducts E

=
[T

Dimension Key

factories Dimension

productsDimension

UML Model

<<Interface>>
GUIFactory

=_createScrollBar () : ScrollBar
createMenu () : Menu
mmcreateButton () : Button

1

MetalFactory

SpaceFactory

=_createScrollBar () : MetalScrollBar
createMenu () : MetalMenu
mmCreateButton () : MetalButton

=_createScrollBar () : SpaceScrollBar
createMenu () : SpaceMenu
mmcreateButton () : SpaceButton

<<Interface>>
ScrollBar

1

| |

<<Interface>>
Menu

P

Return Typg

Declared Ip

Realises

co creteCreateOpDI

AbstractFacto

hcreteFactoriegs

Defined I

S

\reaﬁ:
CO

hcreteProduct:

<<Interface>
Button

T

Implements

MetalScrollBar SpaceScrollBar

MetalMenu SpaceMenu

MetalButton

SpaceButton

Instantiation into UML Designs

Have instantiation diagrams
that refer to UML classes,
opns, etc

Instantiation diagram
elements from DPML DP
models linked to UML
design elements

Allows tracking of usage,
validation of usage

Possible to abstract DPs
from UML models...

Eg instantiation of
abstract factory into GUI
factory

-
AdbstractFactdry
/ \

% A / A AN g
Declared In-" Gi]] Factory “Yrgplements
/// T \\
N
» e
concrteFactories
P CreateO;\)\\ I =
/ g N MetalFactor)d
N createMenu Sl aceFactor)t
reateScrollBar; IE?
ateButt /'
| Defined I~
geahses e
| N\ /s
| AN N y d
| 7T TN
Return Tyipe concyeteCreate Op
\
| 6 bouxd eleme N
: \‘C{eates
v A
/Produds concqleteProducts [
/
{ Menu 4 -
\ ScrollBar Implements 6 bou}ﬁd elements
\B utton

Dimension Key
g factories Dimen sion
“I[l productsDimension

DPTool Examples

- DPML models
- UML Models
- DP Instantiation diagrams

- Validation

=% Diagram 1 =% | est Instance:#Diagram 1# [D
Fle Edt iew Changes Paiterr Lo Lin R |- g] !EIBI

File Edit %iew Changes File Edit WYiew Changes Pattern Instance

@ Bind Elements |4
'®) None

) NEW

Factory

-
T <=:c'énte”ace ==

Vehicle *Factory

abstract move(:int Yehicie

Nalid Elements

) MetalFactory

) GUIFactory

) WindowsFactory

Non-valid Elements

& &

TCo ncreteFacto riesi

TCO ncreteFacto riesT

*

I Nk H Canral |

E‘-’E’%Uiulatinns in Pattern: UML Model Baze

Etrar Type Descriptian MadelElament Pattern Instance
Model Warning Mo wiew of base model element MetalFactory createCar):Car
mModel Warning Mo wiew of base model element MetalFactory createScrollBar. .
Pattern Instance Error | The FROM bound element MetalF actory. createCard: Car' does not satisfy this relation. Frowy for mMethod: createiMeth... |[Testinstance

Pattern Instance Error | The elerment "card:Car" has a name which does not match the padicipant's 'instancename’ pattern |Praoxy for Operation: createp |Testinstance

Evaluation

Two approaches:
- Empirical (several experienced designers)
- Cognitive (“cognitive dimensions™)
Empirical:
- Half a dozen experienced industry and academic designers
- Use DPTool to model, instantiate several patterns and
(simple) UML designs
- Very good feedback on usefulness of DPML + tool support
Cognitive:
- Assessed DMPL visual language on several dimensions
- Generally rates well, though quite “abstract”

- Some problems with hiding links between elements in
different models

Future Work & Conclusions

Alternative visual representations of DPML elements
Link visualisation; further work with dimensions
Abstraction of DP solutions from UML models
Overlapping patterns - analysis & visualisation support
Applying to software architecture patterns/styles...
Plug-in to commercial CASE product

Can model design patterns using their own language (DPML)

Can associate UML elements with DPML instances to track
pattern usage, validate usage

Surveyed experienced designers like this kind of support
Questions over appropriate visualisation, other applications

References

Maplesden, D., Hosking, J.6. and Grundy, J.C. A Visual Language for Design Pattern Modelling
and Instantiation, In Proceedings of Human-Centric Computing 2001, IEEE CS Press.

6rundy, J.C., Mugridge, W.B. and Hosking, J.6. Constructing component-based software
engineering environments: issues and experiences, Information and Software Technology Vol 42,
No. 2, Special Issue on Constructing Software Engineering Tools, Elsevier Science Publishers.

6rundy, J.C., Hosking, J.6., Mugridge, W.B., Apperley, M.D. A decentralised architecture for
software process modelling and enactment, IEEE Internet Computing: Special Issue on Software
Engineering via the Internet, Vol. 2, No. 5, September/October 1998, TEEE CS Press, pp. 53-62.

6rundy, J.C., Hosking, J.6., Mugridge, W.B., Apperley, M.D. A decentralised architecture for
software process modelling and enactment, IEEE Internet Computing: Special Issue on Software
Engineering via the Internet, Vol. 2, No. 5, September/October 1998, TEEE CS Press, pp. 53-62.

6rundy, J.C. and Hosking, J.G. Serendipity: integrated environment support for process modelling,
enactment and work coordination, Automated Software Engineering: Special Issue on Process
Technology, Vol. 5, No. 1, January 1998, Kluwer Academic Publishers, pp. 27-60.

6rundy, J.C., Mugridge, W.B. and Hosking, J.6. A Java-based Componentware_Toolkit for
Constructing Multi-view Editing Systems, In Proceedings of the 2nd Component Users' Conference
(CUC'97), Munich July 15-18, 1997, SIGS Books.

