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Support for Design Patterns

Use patterns to help reuse design/implementation
approaches

Use with UML (or other) OODs + code
Want to better-support:

- Modeling of design pattern “solutions” i.e. particular
approaches to implementing patterns

- Tracking usage of pattern solutions in designs

- Validating patterns are correctly used

- Abstracting new patterns from design models
Our approach:

- Design Pattern Modeling Language (DPML)

- DPTool



Usage in Design Process

Modeling with UML

Design pattern
specifications
(using DPML)
Instantiate DPs
from DPML

Link instantiated
DP model elements
to UML design
elements

(Abstract DP
instantiations &
DPML DP models
from UML..)

DPMI. Pattern Specification

instantiate

DPMI. Pattern Tnstantiation

UMT. Object Model




Design Patterns vs Design Pattern Solutions

- Design pattern models abstract problem solution

+ Design pattern solution specifies actual approach to
solving problem (classes, methods, relationships etc)

* May have >1 solution for a particular design pattern...
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DPML

DPML - Design Pattern
Modelling Language
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Example: Abstract Factory Pattern

Each dimension
represents
cardinality of
the set of
participants

Eg same number
of createOps as
Products (one
for each
Product)

Eg no of
concrete
CreateOps is no
of factories
times no of
products
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UML Model

<<Interface>>
GUIFactory
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Instantiation into UML Designs

Have instantiation diagrams
that refer to UML classes,
opns, etc

Instantiation diagram
elements from DPML DP
models linked to UML
design elements

Allows tracking of usage,
validation of usage

Possible to abstract DPs
from UML models...

Eg instantiation of
abstract factory into GUI
factory
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DPTool Examples

- DPML models
- UML Models
- DP Instantiation diagrams

- Validation
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Evaluation

Two approaches:
- Empirical (several experienced designers)
- Cognitive (“cognitive dimensions™)
Empirical:
- Half a dozen experienced industry and academic designers
- Use DPTool to model, instantiate several patterns and
(simple) UML designs
- Very good feedback on usefulness of DPML + tool support
Cognitive:
- Assessed DMPL visual language on several dimensions
- Generally rates well, though quite “abstract”

- Some problems with hiding links between elements in
different models



Future Work & Conclusions

Alternative visual representations of DPML elements
Link visualisation; further work with dimensions
Abstraction of DP solutions from UML models
Overlapping patterns - analysis & visualisation support
Applying to software architecture patterns/styles...
Plug-in to commercial CASE product

Can model design patterns using their own language (DPML)

Can associate UML elements with DPML instances to track
pattern usage, validate usage

Surveyed experienced designers like this kind of support
Questions over appropriate visualisation, other applications
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