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Support for Design Patterns 

•  Use patterns to help reuse design/implementation 
approaches 

•  Use with UML (or other) OODs + code 
•  Want to better-support: 

–  Modeling of design pattern “solutions” i.e. particular 
approaches to implementing patterns 

–  Tracking usage of pattern solutions in designs 
–  Validating patterns are correctly used 
–  Abstracting new patterns from design models 

•  Our approach: 
–  Design Pattern Modeling Language (DPML) 
–  DPTool 



Usage in Design Process 

•  Modeling with UML 
•  Design pattern 

specifications 
(using DPML) 

•  Instantiate DPs 
from DPML 

•  Link instantiated 
DP model elements 
to UML design 
elements 

•  (Abstract DP 
instantiations & 
DPML DP models 
from UML…) 



Design Patterns vs Design Pattern Solutions 

•  Design pattern models abstract problem solution 
•  Design pattern solution specifies actual approach to 

solving problem (classes, methods, relationships etc) 
•  May have >1 solution for a particular design pattern… 
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DPML 

•  DPML - Design Pattern 
Modelling Language 

•  Abstract representation of 
design pattern solutions 

•  Supports instantiation of 
patterns into UML designs 

•  Basic notation represents 
important participants 
–  interfaces & 

implementations 
–  operations and methods 
–  attributes 
–  relations & constraints 
–  abstract cardinality 

(dimensions) 



Example: Abstract Factory Pattern 

•  Each dimension 
represents 
cardinality of 
the set of 
participants 

•  Eg same number 
of createOps as 
Products (one 
for each 
Product) 

•  Eg no of 
concrete 
CreateOps is no 
of factories 
times no of 
products 
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UML Model 

GUIFactory 
createScrollBar () :  ScrollBar 
createMenu () : Menu 
createButton () : Button 

<<Interface>> 

ScrollBar <<Interface>> 
Menu <<Interface>> 

Button <<Interface> 

MetalFactory 
createScrollBar () :  MetalScrollBar 
createMenu () :  MetalMenu 
createButton () :  MetalButton 

SpaceFactory 
createScrollBar () :  SpaceScrollBar 
createMenu () :  SpaceMenu 
createButton () :  SpaceButton 

MetalScrollBar SpaceScrollBar MetalMenu SpaceMenu MetalButton SpaceButton 
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Instantiation into UML Designs 

•  Have instantiation diagrams 
that refer to UML classes, 
opns, etc 

•  Instantiation diagram 
elements from DPML DP 
models linked to UML 
design elements 

•  Allows tracking of usage, 
validation of usage 

•  Possible to abstract DPs 
from UML models… 

•  Eg instantiation of 
abstract factory into GUI 
factory 
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DPTool Examples 

•  DPML models 
•  UML Models 
•  DP Instantiation diagrams 
•  Validation 

 



Evaluation 

•  Two approaches: 
–  Empirical (several experienced designers) 
–  Cognitive (“cognitive dimensions”) 

•  Empirical: 
–  Half a dozen experienced industry and academic designers 
–  Use DPTool to model, instantiate several patterns and 

(simple) UML designs 
–  Very good feedback on usefulness of DPML + tool support 

•  Cognitive: 
–  Assessed DMPL visual language on several dimensions 
–  Generally rates well, though quite “abstract” 
–  Some problems with hiding links between elements in 

different models 



Future Work & Conclusions 

•  Alternative visual representations of DPML elements 
•  Link visualisation; further work with dimensions 
•  Abstraction of DP solutions from UML models 
•  Overlapping patterns – analysis & visualisation support 
•  Applying to software architecture patterns/styles… 
•  Plug-in to commercial CASE product 

•  Can model design patterns using their own language (DPML) 
•  Can associate UML elements with DPML instances to track 

pattern usage, validate usage 
•  Surveyed experienced designers like this kind of support 
•  Questions over appropriate visualisation, other applications 
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