
1Department of Electrical & Computer Engineering &
3Department of Computer Science,
University of Auckland, New Zealand

2Centre for Computing & Engineering Software Systems,
Swinburne University of Technology, Melbourne, Australia

IMPROVING REQUIREMENTS QUALITY VIA
ROUND-TRIP ENGINEERING WITH

ESSENTIAL USE CASES

MASSILA KAMALRUDIN1, JOHN GRUNDY2, JOHN HOSKING3

Introduction
  Requirements engineering is hard

  Software engineers often focus on doing the thing right, but…
  Need to do the right thing!!

  Need to ensure requirements analysed for the “three Cs” -
Consistency, Completeness and Correctness

  We are interested in all three of these
  Previous work – supporting consistency of particular interest
  Current work – analysing for completeness, correctness
  Future work – better negotiation with stakeholders

  When and how do we do this analysis?
  As early as possible!
  Need good tool support

Motivation
 We conducted a study of experienced requirements

engineers (REs) extracting semi-formal requirements from
structure natural language documents
 11 people, most experienced industry REs
 Basic natural language requirements -> (Essential) use cases

 They did really, really badly!!
 An initial exploratory tool with basic automation support did

a lot better!
 Supporting tracability between the natural language

requirements & semi-formal models helped REs a lot to
improve both models

Example tool

Evaluation – text <-> EUCs for ATM

Our Aims/Research Goals
  Provide requirements engineers with an environment to support:

 extraction of requirements from text into semi-formal models
 consistency checking
 traceability
 completeness, correctness checking
between requirements expressed in natural language and semi-

formal models of requirements expressed as essential use
cases

  To provide REs with a lightweight approach c.f. natural language
processing, formal methods

  We are using Constantine & Lockwood’s Essential Use Cases as
the semi-formal representation…

Essential Use Cases (EUCs)

“Structured narrative, expressed in a
language of the application domain and of
users, comprising a simplified, generalized,
abstract, technology free and independent
description of one task or interaction that is
complete, meaningful, and well-defined from
the point of view of users in some role or
roles in relation to a system and that
embodies the purpose or intentions
underlying the interaction” [Constantine
+Lockwood 1999].

Specifies a sequence of
abstract steps and captures

the core part of a
requirement.

Shorter and simpler than conventional
use cases, and is in the form of a

dialogue between the user and system.

Contains User
Intentions and

System
Responsibilities

Documentation of the
interaction without the need

to describe the user
interface in detail.

*Responsibility: “what
the system must do to
support the use case”

Capturing requirements with Essential Use Cases
(EUCs)

The use case begins when the customer
goes to the Customer Log-on page.
There, the customer 1types in his/her
name and customer ID on the form and
submits it. The system then 2displays the
Tech Support home page with a list of
Problem Categories. The customer 3clicks
on installation help within the list, and the
system 4supplies the Incident Report
Form. The customer 5completes and
submits the form, and the system
6presents a suggested resolution.

User intention System
responsibility

1. Identify self
2.Present help

options
3.Select help option

4.Request
description

5.Describe problem
6.Offer possible

solutions

“Essential
interaction”

Essential
requirement
(“Abstract

interaction”)

“Essential Use
Case” (EUC)

Natural language
requirements

Example EUC abstract/essential interactions

Our Approach(1)

Our Approach (2)

Our framework for extracting requirements: (1) mapping text to interactions; (2)
mapping interactions to EUCs; and (3) creating the EUC

Extraction of a set of abstract
interactions from the textual, natural
language requirements

1

The mapping engine
uses a database of
Essential Use Case
patterns to structure the
interactions into an EUC
model

2

3 Generates a diagrammatic
representation of EUC

Our Approach (3)

Validating EUCs with EUC pattern library (left); and supporting dialogue with
the stakeholders via EUIs and form-based rapid prototyes (right)

Tool Support
  Developed an automated tracing tool, Marama AI, and EUC diagram

editor, Marama Essential:
  Provides support to extract EUCs automatically from text
  Increases correctness of the abstract interactions produced
  Lessens the need for manual checking of software requirements -

provides consistency checking and notification support
  Requirements that are detected as incomplete and/or inconsistent

are highlighted - provides glossary and guidelines
  Comparison of extracted EUC to “best practice” EUC patterns:

  Developed library of common EUC patterns (templates)
  Compare extracted EUC to “best fit” pattern
  Helps detect incompleteness, incorrectness in extracted EUC
  Use a novel visual differ to highlight pattern/extracted EUC

differences
  Generation of rapid user interface prototypes

  Aid dialogue between requirements engineer and stakeholders

Extract Essential Interactions from text

Tracing Abstract Interactions

Tracing an abstract interaction from textual requirement and mapping to the
Marama Essential representation

1
2 3

“select voter registration option (1)” is
traced to a particular abstract
interaction – “select option (2)”

Map to the EUC diagram and falls under
the “user intention” category and select
option interaction

Inconsistency Checking

abstract interaction - “select option”
is moved.
produces an inconsistency in the
requirements and the tool detects
this and provides a warning about
the inconsistency.

Inconsistency Checking (2)

New component of EUC is added and tool detects an inconsistency
with the textual requirements and abstract interaction. An
inconsistency warning appears and informs the requirements
engineer where the inconsistency occurs.
This warning shows dependencies that occur between the textual
requirement, abstract interaction and EUC diagram.

Text/Interaction patterns

Detect textual essential interactions are
inconsistent with abstract interactions
-option to change text
-option to change abstract interaction
-option to ignore and fix later (or not) 

Interaction -> text

Update text.
-manual update
-semi-automatic update from abstract
interaction -> essential interaction

Ignoring inconsistency…

Ignore (for now)
-Eclipse problem marker tracks

Renaming items (eg choose->check)

1

2

Names used to link parts
-need to remap
-need to update
-semi-automated support using
abstract & essential interaction
keywords

EUC Patterns – a few examples…

Visual diffing - consistency

1

2

Comparing models, can show
inconsistencies
-highlight EUC elements
-highlight text elements
-show changes

Visual diffing – correctness/completeness

Choose EUC pattern to compare to
extracted pattern
Detect “best fit” EUC pattern to
compare

Compare to template EUC pattern

3

D

2

A

B

C

Compare extracted EUC to pattern (template) EUC
-highlight items added – incorrect
-highlight items missing - incomplete
-highlight items in diff order – incorrect/inconsistent
Allow semi-automated update of extracted to pattern

Update based on template

Modify EUC to template
Update abstract interactions
Update text

EUI rapid prototypes

EUI Generation

Generate an EUI from an EUC…

Take EUC and generate EUI model
-set of EUI element patterns
-map EUC items to EUI items
-generate EUI layout
-allow editing of both (plus text)

Generating an HTML Form from an EUI

Generate HTML form from EUI
-library of HTML items
-library of EUI->HTML items
-layout & sizing heuristics
-can interact with form to “try” UI
[-can edit & keep consistent]

Consistency management, checking

Modifying EUI item -> modify HTML form
Add/delete EUI item -> modify form

Architecture

Architecture & Implementation cont..
Types of MaramaEUC Event handlers:
  ExtractInteractions: extracts abstract interactions from text
  Trace: Trace the textual requirement to the abstract interaction: extract key

phrases which are analyzed and matched by the interaction pattern library.
  Trace back: Traces back from abstract interaction or EUC component to its

source.
  MaptoEUC: Maps an abstract interaction to an EUC component - helps to

auto-generate the EUCs.
  Index Checker: Checker for the consistency of the sequence of abstract

interaction and EUC Component.
  Pattern comparison: Check match of EUC against a pattern (or patterns)
  Visual difference: visually compare extracted EUC against a chosen or best-fit

pattern
  Map EUC to EUI: generate a EUI rapid prototype by mapping EUC essential

interaction groups to EUI items
  EUI to HTML form: generate prototype HTML form from EUI

Evaluations
  Conducted preliminary evaluations with 8 Software Engineering

postgraduate students
  Several work(ed) as developers/requirements engineers in industry
  Participants were given a tutorial on how to use the tool and examples

of how an EUC model is derived from textual natural language
requirement and how to manage requirement consistency using
Marama AI

  Participants rated the usefulness and the usability of the tool together
with its inconsistency detection

  The evaluation is conducted using a standard method - Likert scale
with a five part answers (1 – not useful to 5 – always useful)

Evaluation #1 – Trace/consistency
Category Abstract Interaction

(%)
Marama Essential (%) Consistency

Management (%)
Very Useful 68.8 59.4 56.3

Always
useful

25.0 34.4 37.5

Sometime
Useful

6.2 6.2 6.2

Little useful 0 0 0
Not Useful 0 0 0
Save Time 100 100 100

Feedback :
 Abstract interaction: The tool might be/is constrained by the domains available in the
interaction pattern.
 MaramaEssential (EUCs): Users more familiar with UML diagrams.
 Consistency Management: Users would like to have more complex consistency checking by
the tool.

Evaluation #1 cont..
Category Automated Tracing Tool

(%)
Inconsistency Management (%)

Very Easy 59.4 62.5
Always Easy 37.5 37.5
Sometimes

Easy
3.1 0

Little Easy 0 0
Not Easy 0 0

User Friendly 100 100

Feedback :
 Automated Tracing Tool: Users had difficulty understanding layout used by Marama
AI.
 Inconsistency Management: Tool currently provides good warnings but limited ways
of resolving the inconsistency (sometimes wrong)
  Multiple models: useful for dialogue with stakeholders but want other formats

Evaluation #2 - EUC Patterns

Cognitive dimensions evaluation:
does MaramaEUC support …?

Summary & Future Research
  Extracting semi-formal models of requirements from natural language text is hard
  Keeping semi-formal models consistent with NL text is challenging
  Checking completeness, correctness of extracted semi-formal models very hard
  Negotiating with stakeholders using natural language text or semi-formal models limited

effectiveness c.f. rapid prototypes of interfaces
  Developed MaramaEUC:

  Supports extraction of semi-formal EUC requirements models from natural language text
  Supports consistency management between different notations (text, essential interaitons, EUCs, EUIs, rapid

prototypes)
  Supports analysis of extracted EUCs against “best practice” EUC patterns
  Supports visual diffing of EUC vs best practice pattern
  Supports generation of EUI and HTML form rapid prototypes from EUCs to aid negotiation with stakeholders
  Evaluation of tool prototypes undertaken with experienced REs

  Want to further extend libraries of interactions, patterns, UIs - support wider domains
  Larger evaluation of the tool including in industrial domain to be undertaken
  Want to assess not only impact of our tool - both in terms of improving the adoption and use of

the Essential Use Case method - but also its impact on improving the efficacy of the method
itself. This may include integration with other requirements and design modeling views.

Acknowledgement
 Support for Massila Kamalrudin PhD is from Ministry of Higher

Education (MOHE), University of Auckland and the FRST
Software Process and Product Improvement project.

Questions?

