

Overview

- □ Context
- □ Environment Emulation
 - Basic Idea
 - Problems of Existing Emulation Approach
- Novel Framework for Executable Endpoints
 - Similarities and Symmetric Fields
- Evaluation
- □ Conclusions and Future Work

Enterprise Software Environments

Clients and Services

Thousands of Endpoint Services

Environment Emulation

Approach - Emulation Environment

Scalability:

Lightweight models to ensure that *thousands* of endpoints may be emulated *on a single physical machine*

Heterogeneity:

Emulate as many endpoint types as needed for testing

Multiple Environment Instances:

Supply *different combinations* of models/configurations to emulation environment

Facilitate Evaluation Activities:

Record exact interactions between CUT and emulation environment

Runtime/playback visualization of interactions [ASE2012]

But how can we best generate executable endpoint models?

Endpoint Model Specification

In previous work:

"programmatically" using a high-level programming language (e.g., Java, Haskell) [ASWE 2009, ASE 2010] Too much "low-level" details to consider

High-level model creation

Coloured Petri Nets (CFN) [QoSA2002]
Non-trivial modeling of I/O structures

Model-driven

(semi-)automatic generation from high-level protocop specification

Endpoint behaviour still needs to be completed manually

Recording of Interaction Traces

- Observe and *record* the interaction between the Component Under Test and a "real" endpoint system.
 - If CUT not yet available, replace by system that uses the same protocol
- Assumption: interaction protocol defined by sequences of request/response pairs.
- Problem: recording is only a snapshot, but not a full protocol.

Proposed Framework

Suitable "format" of Traces

Copy "symmetric" information across

Assumption

Having a suitable distance measure and a corresponding translator, "good enough" responses can be synthesized from pre-recorded interaction traces.

What level of abstraction to target?

What distance measure/translator to use?

How effective are they?

What Level of Abstraction?

Edit Distance as Distance Measure

Needleman-Wunsch algorithm *globally aligns* two sequences of elements. Commonly used in bioinformatics to align protein and/or nucleotide sequences.

Minimizes the "distance" between two sequences by inserting *gaps* at the right places.

"Normalized" Edit Distance as *dissimilarity* measure between two requests.

Sequence Alignment - Example

Two sequences

Where is my computer book? Where is your computer magazine?

Alignment

Result: distance = 16, dissimilarity = 0.28

"Symmetric Fields" – LDAP Example

LDAP request

Message ID: 37

ProtocolOp: searchRequest

ObjectName: cn=Michael SMITH ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU

Scope: 0 (baseObject)

Corresponding LDAP response

Message ID: 37

ProtocolOp: searchResEntry

ObjectName: cn=Michael SMITH, ou=Administration,o

ou=Corporate,o=DEMOCORP,c=AU

Scope: 0 (baseObject)

Message ID: 37

ProtocolOp: searchResDone

resultCode: success

LDAP – A Working Example

Incoming request

Message ID: 18

ProtocolOp: searchRequest

ObjectName: cn=Mal BAIL, ou=Administration,

ou=Corporate,o=DEMOCORP, c=AU

Scope: 0 (baseObject)

Generated response

Message ID: 18

ProtocolOp: searchResEntry

ObjectName: cn=Mal BAIL,ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU

Scope: 0 (baseObject)

Message ID: 18

ProtocolOp: searchResDone

resultCode: success

"Best" matching request

Message ID: 37

ProtocolOp: searchRequest

ObjectName: cn=Michael SMITH ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU

Scope: 0 (baseObject)

Associated response

Message ID: 37

ProtocolOp: searchResEntry

ObjectName: cn=Michael SMITH,ou=Administration,

ou=Corporate,o=DEMOCORP,c=AU

Scope: 0 (baseObject)

Message ID: 37

ProtocolOp: searchResDone

resultCode: success

Evaluation

10 fold Cross-Validation using LDAP (498 request/response pairs) and SOAP (1000 request/response pairs)

Results – SOAP Evaluation

Results – LDAP Evaluation

Results – SOAP Dissimilarities

Results – LDAP Dissimilarities

Discussion and Conclusions

- □ Interaction Traces a promising approach to generate responses to incoming requests
 - □ Basic approach works for the chosen protocols
 - □ 99% "good enough" responses
- Avoid human effort in specifying executable endpoint models
 - □ shift towards framework configuration
- □ Lack of:
 - "temporal" properties of interaction protocols
 - □ support for "write" operations
 - consideration of "operation names"

Future Work

- Extend evaluation to more/different kinds of protocols (e.g., ReST, CAM/CAFT, BitTorrent)
- Differentiate structure and payload
- □ Partitioning of recorded interaction traces
 - Improve efficiency and accuracy
- Consider "temporal" protocol properties
- □ Different distance measures (e.g., tree distance) and translators
- □ Explore framework at binary level
- □ Hook into existing emulator

Acknowledgements

This work is supported by the Australian Research Council (ARC) Linkage project "Large-Scale Emulation for Enterprise Software Systems".

Many thanks also to CA Technologies for their ongoing collaboration and support of this project.

Generating Service Models by Trace Subsequence Substitution

SWINBURNE UNIVERSITY OF TECHNOLOGY

Jean-Guy Schneider ischneider@swin.edu.au

Swinburne hthink forward