
Deakin University CRICOS Provider Code: 00113B

MULTI-TENANT CLOUD
APPLICATION RUN-TIME

SECURITY MONITORING AND
ANALYSIS

Prof John Grundy
PVC ICT Innovation & Translation

Professor of Software Engineering

Deakin University CRICOS Provider Code: 00113B

OUTLINE
•Motivating example
•CloudSec – security appliance for cloud VMs
•SMART - (static; to-be dynamic) vulnerability analysis
•Log / metric correlation analysis (dynamic analysis)
•Run-time cloud monitoring via generated probes (static &

dynamic)
•Mitigation via run-time update (models @ run-time approach)
•Tenant-specified security requirements
•Future directions…

Deakin University CRICOS Provider Code: 00113B

MOTIVATION

3

Cloud Providers: GREEN CLOUD – BLUE CLOUD
Service Providers: SWINSOFT - GREEN CLOUD – BLUE CLOUD
Cloud Consumers: Swinburne University- Auckland University, SwinMarket

Get Currency-
Now

Build Workflow

Galactic ERP

Execute Batch
processing

<<
in

clu
de

>>

<<include>>
<<

in
clu

de
>>

SWIN
SOFT

SWIN
SOFT

GREEN
CLOUD

BLUE CLOUD

Injection attack
e.g. SQL, JS

Poor Isolation

Excessive
Priviledges

Data tampering attack

Root-kit attack

Deakin University CRICOS Provider Code: 00113B

CLOUD COMPUTING 101
•Resource virtualisation e.g. VMWare
•Elasticity, Pay-per-use vs buy & maintain
•Infrastructure as a Service (IaaS) e.g. Amazon

EC2
•Platform as as Service (PaaS) e.g. Google App

Engine
•Software as a Service (SaaS) e.g. SalesForce.com
•Multi-tenant applications sharing IaaS, Paas,

SaaS…

Deakin University CRICOS Provider Code: 00113B

KEY SECURITY PROBLEMS W CLOUD
MODEL
• IaaS:

–Cloud providers don’t know what is running on their VMs

–Cloud users don’t know what other apps running / infrastructure security

policies

• PaaS:

–Design-time focus of security solutions BUT security needs emerge @ run-

time esp with multi-tenant, extensible SaaS applications

– Lack of integration of security / cloud application architecture

• SaaS:

–Different tenant security needs for same SaaS application

– Evolving tenant needs / limited (no?) tenants involvement in security

configuration

Deakin University CRICOS Provider Code: 00113B

OUR APPROACH(ES) TO ADDRESS…
• IaaS protection:
– (1) CloudSec – security appliance for hypervisor layer
– Supported by points-to analysis tool (KDD) and kernel object discovery algorithm (DIGGER)

• PaaS:
– MDSE@R – model-driven security engineering with run-time updating of deployed cloud

applications (I won’t say much about this today)
– Supported by (2) SMART - vulnerability analysis & (5) run-time mitigation as-a-service, re-aspects
– (3) Log file / runtime cloud metric correlation analysis
– (4) Monitoring/metric probe generation

• SaaS:
– (6) TOSSMA – cloud consumer security management console
– SMURF – multi-tenant re-engineering via re-aspects

Deakin University CRICOS Provider Code: 00113B

TECHNIQUE #1 - CLOUDSEC
• Problem:
– OS kernel rootkits modify data structures to subvert e.g. retarget

processing, access data, hide bad processes etc
– Most OSes are written in C - heavily use C void pointers, null pointers,

casting etc to “mimic” objects
– OSs are huge – millions lines of C code
– No data structure integrity checking is done by kernel (as its an overhead

and not expecting such attacks)
– Running security software in virtualised OS e.g. for Cloud computing is

problematic (can be compromised)
– Virtual Machines (VMs) run on top of a hypervisor layer; compromising

hypervisor via root-kit => VMs compromised
=> Serious security holes that need to be addressed

Deakin University CRICOS Provider Code: 00113B

EXAMPLE 1

8

Windows OS kernel
EPROCESS data DLList rootkit

Deakin University CRICOS Provider Code: 00113B

EXAMPLE 2

9

Windows OS kernel
EPROCESS data DLList rootkit

Deakin University CRICOS Provider Code: 00113B

!

CLOUDSEC ARCHITECTURE
- Back-end

ü VMWare VMI (Virtual Machine

Introspection) APIs

ü Inspect/control VM’s hardware

ü Enables us to gain control over the

hosted VMs to suspend access to

VM’s hardware, read memory

bytes

- Front-end

ü A set of APIs that allow

communication with the back-end

ü Allows installing triggers (access

or timer) on the physical memory

pages that need to be monitored

Kernel structures defns Kernel memory pool
inspector

“Semantic Gap” bridge

Detect, limited fix,
Alarm, shut-down

Deakin University CRICOS Provider Code: 00113B

SUPPORTING TECHNIQUE #1 - KDD
• Need: precise definition of OS kernel data structures

– BUT: as C-based OSs, one doesn’t exist (casts, null pointer refs etc)
• KDD = a new static analysis tool to generate an accurate type graph for

any C program
– Is able to generate a sound data definition for large C-based OS
without any prior knowledge of kernel data layout

– Disambiguates pointer relations including generic pointers to infer
their candidate types & values by performing static points-to
analysis on source code

– New points-to analysis algorithm with inter-procedural, context-
sensitive and field-sensitive points-to analysis

– Scales to extremely large C programs that contain millions of lines
of code

– Performs its analysis “off-line” – thus generated type graph can be
used by security solutions in on-line security mode (~50 hours for
LINUX kernel typing)

Deakin University CRICOS Provider Code: 00113B

SUPPORTING TECHNIQUE #2 - DIGGER
• Problem: in order to protect kernel data structures, need to locate

kernel data structures in VM memory – “objects”

– BUT: this is a challenge – C-based OSs, running in Virtual Machine (must map

objects from physical memory bytes)

• DIGGER = a new kernel OS object discovery approach

– Use VMI to extract memory byes

– Use special Windows object signatures to locate “objects”

– Use KDD type graph to “type” the bytes

– Use discovered objects to identify data structure compromises

• Limited mitigations– raise alarm / “fix” structures / shut down process
and/or VM

Deakin University CRICOS Provider Code: 00113B

EVALUATION - KDD
•Soundness and Precision
– The points-to analysis algorithm is sound if the points-to set for each variable contains all its actual

runtime targets, and is imprecise if the inferred set is larger than necessary

– Used SPEC2000 and SPEC2006 benchmark suites and other open source C programs

• OS Kernel Analysis
– WRK (~ 3.5 million LOC) and Linux kernel v3.0.22 (~ 6 million LOC)

– 28 hours to analyse the WRK and around 47 hours to analysis the Linux kernel.

Benchmark` LOC Pointer Inst Proc Struct AST T (sec)
AST M
(MB)

AST C
(%)

TG T
(sec)

TG M
(MB)

TG C
(%)

P
(%)

S
(%)

art 1272 286 43 19 22.7 21.5 19.9 73.3 12.3 17.6 100 100

equake 1515 485 40 15 27.5 25.4 20.4 87.5 14.1 21.1 98.6 100

mcf 2414 453 42 22 43.2 41 28.5 14 23 27 97.2 100

gzip 8618 991 90 340 154.2 144.6 70.5 503.3 81.4 68.3 95.1 100

parser 11394 3872 356 145 305.2 191.2 76.7 661.4 107.8 74.3 94.5 100

vpr 17731 4592 228 398 316.1 298.7 80.2 1031.5 163.2 79 NA 100

gcc 222185 98384 1829 2806 3960.5 3756.5 93.5 12962 2200 94 NA 100

sendmail 113264 9424 1005 901 2017.2 1915.1 91.6 6609 1075.0 91.5 NA 100

bzip2 4650 759 90 14 82.3 78.1 45.5 271.6 44.2 42.9 95.9 100

Deakin University CRICOS Provider Code: 00113B

EVALUATION – DIGGER VS WINDEBUG

Deakin University CRICOS Provider Code: 00113B

TECHNIQUE #2 – VULNERABILITY ANALYSIS
• Part of larger “model-driven security engineering @ run-time”

(MDSE@R) platform (another talk for another day… J)
• Formalise the OWSAP and CAPEC database of security vulnerabilities

into “signatures” ; search for these in code/models
• Handles code vulnerability detection and design, architecture

vulnerability detection & security “metrics”
• Some vulnerabilities have a “mitigation” – some can apply at run-

time using MDSE@R platform (run-time security enforcement)
and/or our ”Re-aspects” framework (run-time .NET code updating)

Deakin University CRICOS Provider Code: 00113B

EXAMPLES…

if(Request.Cookies["Loggedin"] != true) {
 if(!AuthenticateUser(Request.Params["username"],
 Request.Params["password"]))
 throw new Exception("Invalid user");

}
DoAdministrativeTask();

Figure 3. A code snippet vulnerable to authentication Bypass

	
if(!AuthenticateUser(Request.Params["username"],

 Request.Params["password"]))
 throw new Exception("Invalid user");

updateCustomerBalance(Request.QueryString["custID"], nBalance);
Figure 4. A code snippet vulnerable to improper authz

	

Public bool LogUser(string username, string password) {
 string query = “SELECT username FROM Users WHERE
 UserID =‘” username “ ‘ AND Password = ‘” + password + “’”;

Figure 2. A code snippet vulnerable to SQLI attack

	

Deakin University CRICOS Provider Code: 00113B

SMART VULNERABILITY ANALYSIS TOOL

Vul. Vulnerability Signature (Simplified!!)
SQLI Method.Contains(S : MethodCall | S.FnName = “ExecuteQuery” AND

S.Arguments.Contains(X : IdentifierExpression | X.Contains(InputSource)))
XSS Method.Contains(S : AssignmentStatement | S.RightPart.Contains(InputSource)

AND
S.LeftPart.Contains(OutputTarget))

Improper Authn. Method.IsPublic == true AND Method.Contains(S : MethodCall |
S.IsAuthenitcationFn == true AND S.Parent == IFElseStmt AND
S.Parent.Condition.Contains(InputSource))

Improper Authz. Method.IsPublic == true AND Method.Contains(S : Expression | S.Contains(X:
InputSource | X.IsSanitized == False OR X.IsAuthorized == False)

Deakin University CRICOS Provider Code: 00113B

(STATIC) ANALYSER
Pr

og
ra

m
 S

ou
rc

e
co

de

Program
Representation 1

Abstract Syntax
Tree

Program
Representation n

…

…
Signature Locator

OCL
Functions

Platform
Profile

Vulnerability List

Weaknesses
Signatures

(OCL)

Deakin University CRICOS Provider Code: 00113B

EVALUATION – VULNERABILITY
ANALYSIS (STATIC)

Benchmark Downloads KLOC Files Comps Classes Method
BlogEngine >46,000 25.7 151 2 258 616
BugTracer >500 10 19 2 298 223
Galactic - 16.2 99 6 101 473
KOOBOO >2,000 112 1178 13 7851 5083

NopCommerce >10 Rel. 442 3781 8 5127 9110
SplendidCRM >400 245 816 7 6177 6107

0
10
20
30
40
50
60

URL
Redirect

Info.
Exposure

CSRF

XSS

Authz.
Bypass

-5

3

11

19

Man-in-The-Middle

Denial of Service

Data Tampering

Injection Attack

Attack Surface

Compartmentalization

Fail Securely

Defence-in-Depth

[1]
[3]
[4]

Deakin University CRICOS Provider Code: 00113B

TECHNIQUE #3 – LOG FILE/CLOUD PAAS METRIC
ANALYSIS (DYNAMIC ANALYSIS)
• Applied to large scale cloud operations e.g. rolling upgrade

• These complex operations often fall over due to various issues

encountered during the operation

• Detecting – and fixing is (very) hard

• Our approach – take log file & monitor cloud metrics – do correlation

analysis to determine occurrence of cloud operation exceptions

• Aim to generate assertions / monitors to determine proactively

different cloud operation exceptions

• Lots of challenges – detail in logs; log collection timings; access to

detailed cloud metrics; metric capture frequency and accuracy; …

Deakin University CRICOS Provider Code: 00113B

ANOMALY DETECTION

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000

0mTW 1mTW 2mTW 1mTW_RipEff 2mTW_RipEff

F-score

TerminatedInstance CPUAverage CPUMaximum

Deakin University CRICOS Provider Code: 00113B

TECHNIQUE #4 – MONITORING PROBE
GENERATION
•How do we better monitor run-time metrics?
•Specify metrics and security constraints of interest – similar to

vulnerability signatures
•Process application model to determine where to monitor
•Inject “probes” at run-time to monitor (using variety of

techniques)
•Capture data, metrics
•Determine exceptions, mitigations
•Action mitigations…

Deakin University CRICOS Provider Code: 00113B

Example signatures of security metrics/properties in OCL
Metric Signature

Information Disclosure

context Method inv InfoDisclosure:
Let access : Request := self.Requests->last() in
Let authorized : Response :=

self.AuthorizationControl.Responses-> select(R| R.IsValid = True AND access.UserID = R.UserID)->last() in IF (authorized)
THEN true ENDIF

Chinese Wall

Let Subject := Classes->select(Name = 'Subj')->first() in
Let Obj: Class := Classes->select(Name = 'Object')->first()
Let mthdCall : Request := self.Requests->last() in
Let mthdReturn: Response := self.Responses->last() in
Let access : Request := self.Requests->last() in
IF (access.RequestTime > mthdCall.RequestTime and

access.RequestTime < mthdReturn.ResponseTime) THEN Not self.Conflictlist->exists(R| R = access.Target)

Restrict System Calls
Let SystemCalls : Request := Classes->select(Name = ‘SystemHandler’)->first().Requests()->last() in

IF (SystemCalls <> null) THEN false ENDIF

Separation of Duties

Let xReq : Request:= Requests(Entity = 'MthdX') in
Let yReq : Request:= >Requests(Entity = 'MthdY') in
Let zReq : Request:= >Requests(Entity = 'MthdZ') in
IF (xReq.UserID = yReq.UserID and xReq.Target = yReq.Target Or xReq.UserID = zReq.UserID and zReq.Target = zReq.Target Or

yReq.UserID = zReq.UserID and xReq.Target = yReq.Target) THEN false ENDIF

Authenticated Requests context System inv AuthenticatedRequests:
self.AuthenticationControl.Requests->select()->count()/ self.Request->select()->count()

Authentic Requests context System inv AuthenticRequests:
self.AuthenticationControl.Response->select(R | R.IsValid = true)->count()/ self.AuthenticationControl.Request->select()->count()

Last(10) Authz. Reqs
context System inv Last10AuthzCtl:
self.AuthorizationControl.Requests->select()->Last(10)

Top(10) admin Requests
context System inv Top10AuthnCtl:

self.AuthenticationControl.Responses->select(R | R.UserID = ‘Admin’)->count()

Mean Time Between
Unauthentic Request

context System inv MTBUnauthenticRequests:
self.AuthenticationControl.Responses->select(R | R.IsValid = false)>differences(‘Measurementtime’)-> sum() /

self.AuthenticationControl.Responses->select(R | R.IsValid = false))->count()
Authenticated Requests

Trend
context System inv Authenticated RequestsTrend:
self.AuthenticatedRequests.Differences(‘AuthenticatedRequests’)->sum() / self.AuthenticatedRequests-> count()

MTBUR Over Systems context System inv MTBUROverSystems:
self.MTBUnauthenticRequests->sum()/ self.MTBUnauthenticRequests->count()

Deakin University CRICOS Provider Code: 00113B

….Service 1 Service 2 Service n

M
et

ric
 Sp

ec
ifi

ca
tio

n

Probe Manager

Probe Generator

System Wrapper

Measures Analysis Re
po

rti
ng

 se
rv

ice

M
et

ric
s’

De
fin

iti
on

s
an

d
M

ea
su

re
m

en
ts

Probe Probe ProbeProbe

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

TECHNIQUE #5 – RUN-TIME MITIGATION

• Found vulnerability (statically or dynamically, at design-time or run-
time) ; found anomaly – how fix / mitigate / raise alarm??

• Use one (or more) of previous techniques to identify security flaw /
vulnerability / new attack scenario / anomalous measurement(s) /
event(s) at run-time

• Identify feasible modification to application to address
• Update the application on-the-fly to address vulnerability / security

flaw / counter attack scenario / mitigate for anomaly
• Validate that vulnerability etc has been addressed
• The beginnings of the notion of “self-securing software systems”…

Deakin University CRICOS Provider Code: 00113B

TECHNIQUE #5 –
RUN-TIME MITIGATION

Deakin University CRICOS Provider Code: 00113B

RE-ASPECTS GRAMMAR, SIGNATURES
Re-aspect	Def							::=	 				s:{Signature}	a:{Action}	d:{Advice}		
Signature	 												::=		 				st:Signature	Type	se:	{Signature	Expression}	
Signature	Type						::=	 				code-snippet		|		ocl-expression	
Action	 												::=	 				at:Action	Type	ac:	{Action	Condition}	
	Action	Type									::=	 				Delete	|	Modify	|	Replace	|	Inject	
Action	Condition		::=	 				ocl-expression		

Figure 7: Re-aspect Grammar

if(Request.Cookies["Loggedin"]	!=	true)	{	
							if(!AuthenticateUser(Request.Params["username"],	

Request.Params["password"]));	
				throw	new	Exception("Invalid	user");	

}	
DoAdministration();

Figure 3: Case 2: code vulnerable to authentication bypass, to replace

if(!AuthenticateUser(Request.Params["username"],		
																																										Request.Params["password"]))	

throw	new	Exception("Invalid	user");	
if(!AuthorizeUser(Thread.CurrentPrincipal,	
																				(new	StakeFrame()).GetMethod().Name,		
																				(new	StakeFrame()).GetMethod().GetParameters()))			
									throw	new	Exception("User	is	not	auhorized");	
updateCustomerBalance(Request.QueryString["cID"],	nBalance);	

Figure 6: Case 4: code vulnerable to improper authorization, to inject

bool	updateCustomerBalance(string	custID,	decimal	nBalance)	{	
if(!AuthenitcateUser(username,	password))	return	false;	
if(!AuthorzUser(username,	"updateCustBalance"))	return	false;	
LogTrx(username,	dateTime.Now,	"updateCustomerBalance");	
Customer	customer	=	Customers.getCustomerByID(custID);	
customer.Balance	=	nBalance;	
Customers.SaveChanges();	
LogTrx(username,	dateTime.Now,	"updateCustBalance	done");	

}
Figure 2: Case 1: code with old security functions, we want to leave out

Inputsanitizer((new	StakeFrame()).GetMethod().GetParameters());	
string	query	=	"SELECT	*		FROM	USERS	WHERE	UserID	=	'"		
+	EncodeForSQL(username)		+	"'	AND	password	=	'"		
+	EncodeForSQL(password)		+	"'";	
Figure 5: Case 3b: Code vulnerable to SQL injection, to modify

Deakin University CRICOS Provider Code: 00113B

SMART TOOL

Re-aspect Engine
Change Propagator

Impact Analyser

Re-aspect Locator

AST Generator

Target Code Base

Source Code Base

Re
-a

sp
ec

t
M

od
el

le
r

Pe
rs

pe
ct

ive
 M

od
el

le
r1

4

5

6

3 2

1 2

3 4

5

Target code in
VB.Net Anti-aspect in C#

Deakin University CRICOS Provider Code: 00113B

TECHNIQUE #6 – TENANT-ORIENTED
SECURITY CONTROLS
•Cloud applications using SaaS model typically have multiple

tenants sharing same software / platform / infrastructure
•But – different tenants may have different security

requirements
•How support this – at SaaS/PaaS or even IaaS levels?!
•Different tenants specifying security requirements – user

model
•Realising different tenant security requirements on same

platform

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

ALL IS NOT AS IT MAY SEEM…
• Can compare systems in the same domain – but appearances can be (very)

deceiving…
• Vulnerability Counts vs Metrics vs meaning

– need to compare like with like

– Criticality of the issue vs simple occurrences

– System scale makes a large difference

• Just one critical weakness can cause whole system to be compromised under attack;
lots of minor weaknesses may be tolerable

• Its rather slow to analyse many of these => non-real time
• Change to environment / co-deployed services/applications => changes to measures /

counts…
• Run-time vulnerability analysis still emerging area

Deakin University CRICOS Provider Code: 00113B

CURRENT / FUTURE WORK
• Further formalisation of the OWSAP and CAPEC databases of security

vulnerabilities (IMO one of the real contributions we have undersold…)

• Apply deep learning to static, dynamic vulnerability detection vs rule-based

(DIGGER, SMART) and statistical-based (log analysis) approaches – have a

group of leading experts @ Deakin on this J
• Implies have good training set - but…

• Implies have good vector model for input to the RNN-based learnerc- but...

• Supporting tenants to specify their security requirements is... Really hard!

• Zero-day threat detection at IaaS level extremely hard – but working on how

to apply to IoT security analysis and mitigation

Deakin University CRICOS Provider Code: 00113B

Questions ?

Deakin University CRICOS Provider Code: 00113B

Deakin University CRICOS Provider Code: 00113B

REFERENCES
• Almorsy, M., Grundy, J.C., Ibrahim, A., Adaptive Software Security, Chapter 5 in Managing trade-offs in adaptable software architectures, I. Mistrik, J.

Grundy, B. Schmerl, R. Kazman, N. Ali (Eds), Morgan Kaufmann, January 2016.
• Almorsy, M., Grundy, J.C. and Ibrahim, A. Improving Tenants’ Trust In SaaS Applications Using Dynamic Security Monitors, In 2015 International

Conference on Engineering Complex Computing Systems (ICECCS 2015), Gold Coast, Australia, 9-12 December, IEEE
• Almorsy, M., Grundy, J.C., Ibrahim, A., Adaptable, Model-driven Security Engineering for SaaS Cloud-based Applications, Automated Software

Engineering, vol. 21, no. 2, April 2014, Springer.
• Almorsy, M., Grundy, J.C. and Ibrahim, A., Automated Software Architecture Security Risk Analysis Using Formalized Signatures, 2013 IEEE/ACM

International Conference on Software Engineering (ICSE 2013), San Franciso, May 2013, IEEE CS Press
Almorsy, M., Grundy, J.C. and Ibrahim, A. Supporting Automated Vulnerability Analysis using Formalized Vulnerability Signatures, 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2012), Sept 3-7 2012, Essen, Germany, ACM Press.
Almorsy, M., Grundy, J.C. and Ibrahim, A., Supporting Automated Software Re-Engineering Using "Re-Aspects”, 27th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2012), Sept 3-7 2012, Essen, Germany, ACM Press.

• Ibrahim, A., Hamlyn-Harris, J., Grundy, J.C., Almorsy, M., Operating System Kernel Data Disambiguation to Support Security Analysis, 2012 International
Conference on Network and System Security (NSS 2012), Fujian, China, Nov 21-23 2012, LNCS, Springer.

• Almorsy, M., Grundy, J.C. and Imbrahim, A. Collaboration-Based Cloud Computing Security Management Framework, In Proceedings of 2011 IEEE
International Conference on Cloud Computing (CLOUD 2011), Washington DC, USA on 4 July – 9 July, 2011, IEEE.

• Imbrahim, A., Hamlyn-Harris J., Grundy, J.C. and Almorsy, M., CloudSec: A Security Monitoring Appliance for Virtual Machines in the IaaS Cloud Model, In
Proceedings of the 5th International Conference on Network and System Security (NSS 2011), Milan, Italy, September 5-7 2011, IEEE Press.

• Almorsy, M., Grundy, J.C. and Ibrahim, I., VAM-aaS: Online Cloud Services Security Vulnerability Analysis and Mitigation-as-a-Service, 2012 International
Conference on Web Information Systems Engineering (WISE 2012), Nov 28-30 2012, Paphos, Cyprus, LNCS, Springer.

• Ibrahim, A., Hamlyn-Harris, J., Grundy, J.C. and Almorsy, M., DIGGER: Identifying OS Kernel Objects for Run-time Security Analysis, International Journal
on Internet and Distributed Computing Systems, vol 3, no. 1, January 2013, pp 184-194.

• Almorsy, M. and Grundy, J.C. SecDSVL: A Domain-Specific Visual Language To Support Enterprise Security Modelling, 2014 Australasian Conference on
Software Engineering (ASWEC 2014), Sydney, Australia, April 2014, IEEE CS Press.

• Almorsy, M., Grundy, J.C., Ibrahim, A., SMURF: Supporting Multi-tenancy Using Re-Aspects Framework, 17th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS 2012), Paris, France, July 2012, IEEE CS Press.

