
YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Directions in Innovative Software
Engineering

Professor John Grundy
Dept Electrical and Computer Engineering &

Dept Computer Science
University of Auckland, New Zealand

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Outline

•  Some trends in Software Engineering
•  UoA Software Tools Group research activities
•  Some examples of our current research – basic and

applied:
–  Domain-specific visual language tools
–  Model-driven software engineering tools
–  Service-oriented software engineering tools

•  Aspect-oriented software engineering tools
•  Some of our future work plans
•  Conclusions

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Trends
•  You’ve probably heard this several times before J:

–  Software is getting ever-more complex
–  Key requirement is for higher quality software and

more agile response to end-user needs
–  Moving to service-oriented delivery of (software)

system solutions
–  Increasing need for self-healing, autonomic

computing systems
–  Desire for “open-ness” – open source, standards,

inter-operability (software, devices, networks…)
–  Ideally – end-users have ability to configure/

change systems THEMSELVES…

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

How can we do this??
•  Model-driven development – generate from high-level models vs

hack code
•  Domain-specific (visual) languages and tools – close-to-end-user

approaches to authoring of models
•  Service-oriented architectures – compose systems as need to

from reusable, 3rd party services
•  Software product lines – framework of solutions vs lots of once-

offs
•  Aspect-oriented software development – abstract cross-cutting

concerns
•  Agent-oriented systems – autonomous and emergent behaviours
•  Open-source software development – collaborative engineering
•  Agile engineering processes – response to changing requirements
•  End-user development – users do their own development J
•  Evaluation and improvement – continuous improvement paradigm

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Example…

Search for Item

Create/Modify Itinerary

Chat

Customer

Annotation

Review Itinerary

Travel Agent

Book Itinerary

•  Example: collaborative travel
planner

•  Want to build from services
vs components/programs

•  Need to integrate 3rd party
components & services

•  Dynamically integrate and
change comps on-the-fly

•  Users might want to use
different devices e.g. laptop
vs PDA vs phone

•  Might want to share same
user interface between
different users

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Example

•  Thick-client
UIs & web-
based/
mobile-based
UIs

•  Collaborative
work support

•  Built from
set of
services
(some 3rd
party)

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

(Desired) Approach

Model(s) of!
Services, DB, UIs etc! Generators!

Components/!
Services!

3rd party!
Services e.g.!

Airlines, payments!

DSVL – developer &!
End-user tools!

Meta-tools for!
DSVL tools!

Developers!

End-users &!
Developers!

Adaptive UIs!
Multi-Agents!Aspects e.g.

security,!
Transactions, audit,

…!

Tools for multi-agents!

Developers!
(& end users??)!

End-users!

Monitoring etc!
e.g. performance, !

self-heal,!
self-adaptive!

Evaluate e.g.!
usability!

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

UoA Software Tools Group
Research

•  Meta-tools (tools for building software tools…)
•  Domain-specific visual languages
•  Model-driven software engineering
•  Adaptive user interfaces
•  Aspect-oriented software development
•  Service-oriented architectures & adaptive

architectures
•  Visual languages and software visualisation
•  Light-weight evaluation methods and tools
•  Collaborative work support tools
•  Software processes and process technology

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Domain-specific Visual
Language Tools

•  Meta-tools:
–  JViews/JComposer
–  Pounamu
–  Marama
–  Eclipse plug-ins

•  Examples of DSVL tools:
–  Data mapping tools
–  Process modelling tools
–  Enterprise & software modelling tools
–  Event response behaviour tools
–  UI design tools
–  Statistical survey design tool

•  Industry examples:
–  XSOL, Orion Systems, WizzBang

•  (Light-weight) evaluation methods (tools are coming… J):
–  Cognitive Dimensions
–  Attention investment
–  Champagne prototyping (or should that be Methode Champagnois?? J)
–  Plus various heavy-weight usability evaluation methods

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Marama – Eclipse plug-ins
Pounamu Meta-tool

Application!
Specification
Tools!

!Shape
Designer!

Meta-model
Designer!

Event handler
Designer!

View Designer!

Tool Specifcations
– XML documents!

Tool
specification

projects (XML)!
Java .class files
(event handers)!

Eclipse Application!

Pounamu Plug-in
(GEF Editor)!Eclipse IDE UIs!

!
Eclipse IDE resource

management etc!

Event handler
objects (in
sandbox)!

Eclipse
workspace files!

Adapter API!

Marama!
Meta-tools!

-!
themselves!

DSVL!
tools J!

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

MaramaVMLPlus –
complex data mapping

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

SDLTool – Statisical Survey
Design tool

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Other DSVLs…

Music – Jimi Hendrix set-up… (from guitargeek.com)

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Industrial examples

(1)

(a)

(b) (c)

(d)

(e)

(f)

(g)
(h)

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

DSVL Evaluation – Cognitive
Dimensions Framework

•  Green and Petre 1996 (since developed by Blackwell)
•  Establishes a set of “dimensions” to think about the

tradeoffs made in implementing visual programming
environments
–  Means of explaining effects of design decisions
–  Has had very strong influence on the VL community

•  Comes out of cognitive psychology community
•  Lightweight – doesn’t need large

usability studies to get useful insight
•  Can be used for evaluation and

also as a design aid

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Example
Cognitive Dimensions

•  Abstraction gradient What are the minimum and maximum levels
of abstraction? Can fragments be encapsulated?

•  Closeness of mapping What ‘programming games’ need to be
learned?

•  Consistency When some of the language has been learnt, how
much of the rest can be inferred?

•  Diffuseness How many symbols or graphic entities are required
to express a meaning?

•  Error-proneness Does the design of the notation induce
‘careless mistakes’?

•  Hard mental operations Are there places where the user needs
to resort to fingers or penciled annotation to keep track of
what’s happening?

•  Hidden dependencies Is every dependency overtly indicated in
both directions? Is the indication perceptual or only symbolic?

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Model-driven Software
Engineering Tools

•  Meta-tools:
–  Marama
–  MaramaVMLPlus
–  Eclipse JET, ALT; QVT; XSLT

•  Examples:
–  EML
–  MaramaMTE
–  Adaptive User Interface Technology

•  Industry examples:
–  XSOL, Peace Software, Orion Systems, iVistra

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Enterprise Modelling
Language

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

MaramaMTE – Performance
Engineering tool

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Industrial Examples

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Service-oriented Software
Engineering Tools

•  AOCE-WS (Aspect Oriented Component Engineering)
•  Enterprise Modelling Language
•  ViTABaL-WS
•  IMAL
•  JEdit-WS
•  AUIT
•  …

•  Industry projects:
–  XSOL, Peace Software, Orion Systems, iVistra, …

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Aspects

•  Functional decomposition - normal approach
•  Alternatives: parts of system contributing to

“systemic” properties e.g. UI, persistency etc
•  Systemic properties of system get spread…

User interface-!
related services!

Distribution-!
related services!

Persistency-!
related services!

Security-!
related services!

Itinerary UI! Customer!
Manager! Flights

Data!Middleware!

Exmaples of “Vertical Slices”!
i.e. objects, components!

Examples of
“Horizontal!

Slices”!
i.e. aspects,!
perspectives!

Overall software
application!

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

AOCE-WS

Itinerary Web Service! !
-!Insert/Update/Delete Items! !
-!Items Collection Data structure!
-!Book travel items! !
-!Data update events! !

Database Component! !
-!Select/Insert/Update/Delete! !
-!Transactions! !

Travel Planner Client! !
-!Tree display/editing! !
-!T!ree data structure! !
-!Lock & highlight! !
-!Messages! !

 !
<<User Interface>>! !
Requires: items viewer! !
Provides: items list! !

<<User Interfac!e>>! !
Provides: collection viewer! !

<<Persistency>>! !
Provides: store/load! !
Provides: transactional update! !

<<Persistency>>! !
Provides: items list! !
Requires: store/load! !- Lock item!

<<Co!-!ordination>>! !
Requires: data locking! !

<<Co!-!ordination>>! !
Provides: data locking! !

<Transaction>>!
Provides: Pessimistic, ACID!

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Tool Support for AOCE-WS

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Example - IMAL

 Pounamu meta-CASE
Tool

Process diagrams

Model
Export

State
Import

Local Model
Data

Process Model
Service

Process State
Service

Process Engine
(Simple) Service

Process Engine
(Idiom) Service

Process Web UI
Service

Document Editing
(InfoPath) Service

Notification
Service

Model
Data

State
Data

Idiom Rule
Base

Document
Management

Service

Document
Store

User Login/State
Service

UDDI Registry
Service

Subscribe/Notify
Data

SOAP messaging between services

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

IMAL Process Modelling

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

IMAL Run-time

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Problems still to overcome…

•  Design of DSVLs:
–  Good visual metaphors/building blocks
–  Evaluation of effectiveness
–  Building DSVL tools
–  End-user DSVLs & tools

•  Model engineering:
–  Scalability and complexity of models
–  Correctness of models
–  Mapping/translating between (very) complex models
–  Integrating approaches & tools

•  Service-oriented systems engineering:
–  Design of services – what is a service anyway??
–  Engineering of service-based systems – process, methods, tools
–  Scalability, performance, reliability, security, …
–  Self-healing; adpative service-based systems

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Planned Future Work &
Approaches

•  Current/proposed projects:
–  Domain-specific Software Tools project (current FRST NERF project –

sort-of very Large ARC) – meta-tools, design critique tools, collaborative
work tools, model evaluation tools, MDD tools, software artefact reuse
approaches

–  Several Technology NZ “TBG” projects – XSOL, Peace, WizzBang, iVistra, …
- applied R&D - like DEST projects – these apply DS tools group research to
practical industry problems

–  Meta-tools for DSVLs & MDD (Large FRST NERF proposal)
–  Software Improvement Research Lab (Large FRST SER proposal)
–  Aspect-oriented, agent-oriented, service-oriented systems engineering

(Marsden proposal – blue skies basic research)
–  Open Systems Research Lab/Repository (“CoRE” proposal)

•  Approaches to fostering academic/industry research:
–  Usability lab; Light-weight eval methods & tools
–  ICT Innovation Academy – local industry internship programme
–  Centre for Software Innovation (our “little brother to NICTA”… J)

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

Conclusions
•  Building software is still hard
•  Complexity management; quality assurance; dynamic change are

the key nasties…
•  Not just academic problems - Industry needs good solutions now!

•  Solutions we are pursuing:
–  Model-driven engineering
–  Service-oriented architectures (+agents + aspects…)
–  Domain-specific visual languages & meta-tools
–  Software process & product improvement

•  Working closely with industry to apply research outcomes
•  Developing better tools to make all of these feasible!

YEAR

20
06

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

UoA Software Tools Research - NICTA Oct 2006

References
–  Grundy, J.C, Hosking, J.G., Amor, R., Mugridge, W.B., Li, M. Domain-specific visual languages for specifying and generating

data mapping systems, Journal of Visual Languages and Computing, vol. 15, no. 3-4, June-August 2004, Elsevier, pp
243-263.

–  Grundy, J.C., Hosking, J.G., Zhu, N. and Liu, N. Generating Domain-Specific Visual Language Editors from High-level Tool
Specifications, In Proceedings of the 2006 IEEE/ACM International Conference on Automated Software Engineering,
Tokyo, 24-28 Sept 2006, IEEE.

–  Bossung, S., Stoeckle, H., Grundy, J.C., Amor, R. and Hosking, J.G. Automated Data Mapping Specification via Schema
Heuristics and User Interaction, In Proceedings of the 2004 IEEE International Conference on Automated Software
Engineering, Linz, Austria, September 20-24, IEEE CS Press, pp. 208-217.

–  Stoeckle, H., Grundy, J.C. and Hosking, J.G. A Framework for Visual Notation Exchange, Journal of Visual Languages and
Computing, Volume 16, Issue 3 , June 2005, Elsevier, pp.187-212.

–  Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Constructing component-based software engineering environments: issues
and experiences, Journal of Information and Software Technology: Special Issue on Constructing Software Engineering
Tools, Vol. 42, No. 2, January 2000, pp. 117-128

–  Grundy, J.C., Cai, Y. and Liu, A. SoftArch/MTE: Generating Distributed System Test-beds from High-level Software
Architecture Descriptions, Automated Software Engineering, Kluwer Academic Publishers, vol. 12, no. 1, January 2005, pp.
5-39.

–  Cai, Y., Grundy, J.C. and Hosking, J.G. Experiences Integrating and Scaling a Performance Test Bed Generator with an
Open Source CASE Tool, In Proceedings of the 2004 IEEE International Conference on Automated Software Engineering,
Linz, Austria, September 20-24, IEEE CS Press, pp. 36-45.

–  Grundy, J.C., Ding, G., and Hosking, J.G. Deployed Software Component Testing using Dynamic Validation Agents, Journal
of Systems and Software, vol. 74, no. 1, January 2005, Elsevier, pp. 5-14

–  Singh, S., Grundy, J.C., Hosking, J.G. and Sun, J. An Architecture for Developing Aspect-Oriented Web Services, In
Proceedings of the 2005 European Conference on Web Services, Vaxjo, Sweden, Nov 14-16 2005, IEEE Press.

–  Grundy, J.C. Multi-perspective specification, design and implementation of software components using aspects,
International Journal of Software Engineering and Knowledge Engineering, Vol. 10, No. 6, December 2000, World
Scientific Publishers, pp. 713-734.

–  Grundy, J.C. and Hosking, J.G. Developing Software Components with Aspects: Some Issues and Experiences, Chapter 25 in
Aspect-Oriented Software Development, Prentice-Hall, October 2004, pp. 585-604.

