
John Grundy’s Research – 2018+

MONASH
INFORMATION
TECHNOLOGY

2

Key Topic Areas

§ Automated Software Engineering
§ Domain-specific visual languages
§ Human-centric software engineering
§ Digital Health & Smart Systems Engineering
§ AI for and with Software Engineering
§ Requirements extraction and formalisation
§ Large Systems Engineering
§ Software Security Engineering
§ Testing, visualisation, education

3

Overarching research programme

§ There isn’t one :-)
§ Fundamentally, my aim is to take software engineering more into the

engineering realm – INCLUDING non-technical end users / developers
involved in software requirements, design, configuration/coding, testing,
deployment, …

§ I am particularly interested in Automated Software Engineering in (most of) its
forms ; visual modelling approaches ; human-centric aspects of SoftEng

§ I build and evaluate tools to support these things
§ I like to understand how people think about their organisations, collaborations,

tasks, software… and how to help them achieve what they want

4

Automated Software Engineering

§ Most of my work has an ASE / tools
flavour in some shape or form

§ Generating code/configurations
from high-level, visual models has
been a feature for over 25 years

§ Recent work includes generating
test-beds, requirements models,
IoT apps for smart homes

§ Current work includes generaing
visualisations, collaborative editors,
big data analytics, vulnerability
analysers

29

When Nancy is satisfied with the requirements components, she sits with

John to validate the requirements and to confirm the consistency of her captured

requirements with the earlier requirements provided by John. In order to allow John

to better understand the requirement components, she then has the tool map the

EUC model to abstract prototype: EUI prototype as (1) and also has the tool

translate EUI prototype to a concrete UI view in a HTML form (2) as shown in

Figure 11.

2

1

B

A

C

Fig 10. Visual differencing to check for incorrectness and incompleteness

transition iteration. They are marked as A, B and C in
the diagram, respectively.
A -- Session management: Endpoint protocol
modeling starts from specifying an interactive session
by using a logon transition relationship from Idle state
to Home state. On the opposite direction, a logout
transition relationship terminates a session. A session
can also be terminated by a timeout event, which is
defined by using a timeout relationship linking a from
state to a to state.
B – Constraint transition relationship: When the
endpoint is at inventorycheck state, there are
alternative flows either to supplierpo or to
paymentrequest. The choice of the flows is subject to
whether the purchase item stock can meet the PO
requirement. We use a constraint transition
relationship to link the inventorycheck state to the
supplierpo state. Its constraint condition is specified in
the relationship dialog box by comparing the quantity
parameter of porequest request with the inventory
parameter of inventorycheck response. If the former is
greater than the latter, the state transition will happen.
Similarly, we specify another constraint transition
from the inventorycheck state to the paymentrequest
state, and the constraint condition is the item stock
less than or equal to the PO quantity.
C – Transition iteration: A loop relationship is used
to specify that all the operations between the from
state and the to state of the loop relationship will be
repeatedly executed. We use a loop relationship to
specify the approval process of a supplier PO, which
includes an approvalnotification and a
supplierpoapproval operations. The approval process
starts from the immediate manager of the purchaser
until the manager with authority for the PO amount.

Figure 6: Example protocol model.

4.3 Behaviour Modeling

We use one operation paymentrequest as example to
explain how endpoint behaviour is modeled by our

behaviour DSVL. We model an operation behaviour
by using a service node construct and instantiate it by
providing the operation name. The operation request
and response parameters are imported from the
corresponding signature operation model
automatically. The paymentrequest operation node
consists of two sub nodes: poinformationretrieve to
retrieve PO, product and client information, and
poamountcalculation to calculate the total PO amount.
These two nodes are placed between a pair of input
and output bars.

The poinformationretrieve node is used to show
how behaviour DSVL visual constructs are used to
implement business logics. Figure 7 illustrates the
operations and dataflows within the
poinformationretrieve node. The node has one input
parameter pono, and four output parameters: quantity,
unitprice, discount and errormessage. The node
includes three data query operations: (1) to retrieve
PO category, item, quantity and clientname from
PurchaseOrderTable by the pono; (2) to retrieve
unitprice from ProductTable by the category and
item; and (3) to retrieve discount from ClientTable by
the clientname. If searching records are found,
searching results will be placed on the normal output
port (black circle) of data store operator. Otherwise, a
FatalError variable will be assigned by following the
exceptional output port (yellow circle).

Figure 7: Example behaviour model.

4.4 Testing Environment Creation

We build our testing runtime environment by
converting the above models into executable codes to
be run inside Axis2. We use Eclipse as our Java IDE;
and two Java projects purchaseserver and
purchaseclient are created for hosting server and
client side codes. The testing environment creation
process is described as followings:

Figure 3: Parametric statechart design for fall detection

similarly have more than one sensor to measure a user’s
altitude, such as a sensor built into a user’s cane or an on-
wrist barometric pressure sensor. It is also possible that
any of these sensors could go o✏ine at any time, or the user
might add new sensors to their home. The activation of
any of the presence sensors will signal the user’s presence
in the home, whereas we may want to aggregate all the
altitude sensor readings to compute the probability of a fall
happening more accurately [14]. So, not only must an IoT
app be aware of multiple sensors or actuators in a given IoT
system, it must also know how they are to be used. Hence,
we need to add more flexibility to statecharts, which we
do using parametric statecharts. A parametric statechart is
defined as follows.

Definition 2. A parametric statechart SC = hS, T,Ei is
a statechart as defined in Def. 1. The set of events E of
a parametric statechart contains a set of interface opera-
tion events HE ⇢ E. Each event e 2 HE is of the form
feature aggr endOp where feature represents a sensing or
actuating feature (e.g. read temperature, etc.), aggr repre-
sents how multiple devices supporting the same feature need
to be aggregated, and endOp is a user-provided function that
processes the data obtained from one or more sensors.

Fig. 3 shows a parametric statechart for the fall-detection
app, which is quite similar to the static statechart shown in
Fig. 2. It only di↵ers in the naming of the events relating to
the presence and altitude sensors, noted in boxes labelled 1
and 2. Event Person.inPresence OR LogPos corresponds
to an event from the interface Person where inPresence re-
lates to the reading of a presence sensor, OR relates to read-
ing any sensor in case there are multiple sensors of the same
type available. Aggregation operations aggr can be of types
OR, AND, or any user-defined operation depending on the
kind of sensor aggregation or fusion required. LogPos refers
to the logging of the last sensor reading to more accurately
track where the user is in their home. Similarly, the event
Person.inAltitude AND conjunction 2 HE corresponds
to an event from the interface Person where inAltitude re-
lates to reading an altitude sensor, AND relates to reading

Algorithm 1: Convert Converts a parametric state-
chart to a static statechart
Input: Parametric statechart SC = hS, T,Ei, and IoT

system configuration C = hEsh, F i
Output: Static statechart SC0 = hS0, T 0, E0i

1 S0 = S, T 0 = T , E0 = E;

2 for Transition t = (s
e�! s0) 2 S0

do

3 if e 2 HE = feature aggr endOp then

4 if aggr = OR then

5 Remove t from T 0;
6 for Each operation o 2 Operations(feature)

do

7 Add transition s
o�! s0;

8 end

9 Add operation endOp to s0;
10 end

11 else if aggr = AND then

12 Remove t from T 0;
13 Create unique state s f of type AND and

state s j of type BASIC;

14 Create transitions s
1�! s f and s j

1�! s0;
15 for Each operation o 2 Operations(feature)

do

16 Create state s o of type OR as a child of
s f ;

17 Add transition s f
o�! s a;

18 Create states s o1, s o2 of type BASIC
as children s o and make s o1 the default
child of s o;

19 Create transitions s o1
o�! s o2 and

Create transition s o2
o�! s j;

20 end

21 Add operation endOp to s j;
22 end

23 end

24 end

25 return C;

all sensors if there are multiple sensors available, and con-
junction is a user-defined function that aggregates the re-
sults from all sensors to compute the meta-variable altitude.
The parametric statechart shown in Fig. 3 is independent

of the actual numbers of presence and altitude sensors avail-
able. However, to customise the design to work in a given
smart-home, we require the precise configuration of the sen-
sor and actuators available. In general, the configuration of
an IoT system is defined as follows.

Definition 3. An IoT system configuration is defined as
the tuple C = hEsh, F i where Esh = Er

sh] Ew

sh is a set
of supported read and write operations supported and F =
F r]Fw is a set of supported read and write features. Each
feature is mapped to a set of operations via the function
Operations : F ! P(Esh).

An IoT system configuration links features expected in a
parametric statechart app design to operations supported
by available sensors and actuators. E.g., the configuration
pf tje smart-home of a user following the fall detection app
in Fig. 3 may have three presence sensors and two altitude
sensors. We can denote the configuration of this smart-
home as C = hEsh, F i where Esh = {ps1, ps2, ps3, as1, as2}.
ps1 . . . 3 are read operations for the three presence sensor,
and as1 and as2 are read operations for the two altitude

5

Domain-specific visual languages

§ For big data applications
§ DSVLs for modelling big data/AI

systems
§ Visualisation, specifying

visualisations
§ Data integration, wrangling & DSVLs

etc support
§ IDE / Workbench for big data / AI

systems
§ Defects, defect tracking in same
§ DSVLs theory, design, evaluation

(1)	Disparate	data	
sources	e.g.	traffic	flow	
data,	household	travel	
survey	data,	GIS	data,	
social	media	data	

(2)	Reusable	DSVL	abstracDons:	data	cleansing	&	aggregaDon;		
K-means	clustering;	sampling;	regression	analysis;	…	

(4)	Specify	set	of	models	via	DSVLs	to	define	pipeline/workflow	of	
data	sourcing,		analysis	and	visualisaDon	

(3)	Reusable	big	data	visualisaDon	
techniques	to	augment	DSVLs	e.g.	
clustering,	scaling,	highlighDng,	3D,	
user	data	browsing/interacDon	

Big	data	applicaDon	code,	
scripts,	configuraDons	

(5)	Generate	scripts,	code,	
configuraDons	to	realise	big	data	

analyDcs	applicaDon	

(6)	Deploy	big	
applicaDon	on	cloud	
and	run	on	target	

data	sets	

(7)	Produce	new	analysed	dataset	and	visualise	
	using	augmented	DSVL	models	

6

Human-centric software engineering

§ Usability defect reporting – taxonomy,
reporting, analysing, what currently done,
defect repository mining, …

§ Software team climate
§ Agile methods
§ “Intelligent” project management
§ Emotion-oriented Software Engineering
§ Personality influences – requirements

engineers, software architects, end
users/esp of smart systems, defect reporters,
pair programmers, testers, visual models,
visualisations …

7

Digital Health & Smart Systems Engineering

§ Smart homes for ageing
§ Mobile apps for health
§ Digital health systems design,

evaluation
§ Participatory design
§ Human-centric issues –

emotions, personality, team
climate etc impacting

§ Smart issues – use of AI
§ Sensor/interactor issues – use of

IoT

P1:Next-generation	 sensing	
and	interaction	 technologies	

P2:	Platform	for	integrating	
diverse,	heterogenous data

sources

P3:	Context	
aware,	

unsupervised	
learning	
platform	

P4:Digitally	
assisted	

physical	and	
mental	
behavior

enhancement

P5:	Model-
driven	

engineering	
of	complex	
digital	

enhanced	
living	

components

P6:	In-home	
support	

deployment

P7:	Residential	
aged	care
deployment

P8:Conversational	 agents	 for	
sustained	mental	well-being	

P10:	Proactive	
Monitoring	 and	
Intervention	 via	

remote	data	usage

Key	Technology	Research	Themes Key	Translational	Research	Themes

P9:Integrating	
hospital,	 in-
home	and	
other	data

8

AI for and with Software Engineering

§ I got interested via (1) a Samsung GRO
project and (2) all the deep learning stuff
reviewing for ASE…

§ How represent software artefacts for DL-
based analysis?

§ How explain DL-recommended results?
§ How visualise results?
§ Training tool – mark-up artefacts etc
§ Use – vulnerability detection, project

management, traceability, tag
recommendation, …

LSTM LSTM LSTM... LSTM LSTM LSTM... LSTM LSTM LSTM......

u0 u1 uk uk+1 uk+2 ul um um+1 un

Pooling
h0 h1 hk hk+1 hk+2 hl hm hm+1 hn

LSTM

Pooling

LSTM

Pooling

LSTM...

r0 r1 rp

Pooling

g0 g1 gp

s

Issue level

Release level

Project level Neural Network

y

h0 hkh1

Figure 1: DeepSoft architecture

opment, testing, and release. Development includes imple-
menting new functionalities and fixing bugs, all commonly
referred to as resolving issues. The resolution of an issue
may involve changes to the code in the form of code patches.
A release signifies a milestone where a number of issues are
resolved. This process is similar to the healthcare process
where illnesses are diagnosed and treated, and interventions
are put into place to counter future medical risks [11].
There are four major challenges in providing e↵ective model

of the software process: (i) Handling long-term dependen-

cies in software evolution: future issues and resolutions may
critically depend on historical issues and resolutions. For ex-
ample, the implementation of a functionality may constrain
how other functionalities are implemented in the future. (ii)
Representation of issues and their resolutions: the challenge
here is how features representing the semantics of an issue’s
description, its diagnoses (e.g. the comments and discus-
sions), and its resolution (e.g. code patch) can be automat-
ically learned from raw data. (iii) Episodic and irregular

timing : software is iteratively developed and delivered in
releases, each of which can be seen as an episode. Time
between releases and between the resolution of issues are
largely random. Existing learning systems used in software
analytics failed to address the episodic and irregular timing
of events of interests in software development. (iv) Model-

ing confounding interactions between the progression of is-

sues and resolutions: the phenomenon of bug-introducing
changes, where a change to a software system (either to add
a new functionality, to restructure the code, or to fix an ex-
isting bug) inadvertently injects new bugs, is an example of
confounding interactions.
In this vision paper, we introduce DeepSoft, a generic,

dynamic deep learning framework that addresses the above
challenges. DeepSoft is developed based on Long Short-
Term Memory [3], a recurrent neural network equipped with
memory cells to store experiences. DeepSoft is an end-to-

end prediction model that does not require manual feature
engineering. DeepSoft is capable of reading historical soft-
ware data (e.g. issue reports and source code), memorizing a
long history of past experience, inferring the current“health”
state of a software, predicting future risks, and finally rec-
ommending actionable interventions. In the remainder of
the paper, we will describe the architecture of DeepSoft and

outline a research agenda based on a number of applications
of DeepSoft to various software engineering problems.

3. DEEPSOFT
Software is similar to an evolving organism: what will

happen next to a software system depends heavily on what
has previously been done to it. DeepSoft leverages a deep
recurrent neural network (RNN) to model this temporal evo-
lution. Recurrent networks can be seen as multiple copies
of the same network, each passing information to a succes-
sor and thus allowing information to persist. DeepSoft is
built upon Long Short-Term Memory (LSTM) [3], a special
kind of RNN that is capable of learning long-term dependen-
cies, i.e. remembering information for long periods of time.
LSTMs have demonstrated ground-breaking performance in
many applications such as machine translation, video anal-
ysis, and speed recognition.
We focus here on two significant events1 in the life of a

software application: an issue being resolved (which may re-
sult in code patches) and a version being released. DeepSoft
has several layers (see Figure 1) which model the progres-
sion of a software at three levels: issue, release and project.
The bottom layer consists of a chain of repeating modules of
LSTM units, each of which reads an input ut, representing
an issue being resolved at time t, and the output ht�1 from
the previous unit, to compute the output ht. Thus ht sum-
marizes information from all previous inputs u0, u1, ..., ut�1.
Note that resolving issues can be done interleavedly, and the
issues are ordered with respect to their resolved time.
The input ut represents both the diagnosis of an issue

(denoting as vector xt), its resolution pt, and the elapsed
time �t between this issue and the previous one, i.e. ut =
[xt, pt,�t]. The diagnosis of an issue is typically in the form
of natural language text capturing its description, the dis-
cussion around it (e.g. comments), and optionally some
attributes (e.g. type, priority, etc.). State-of-the-art NLP
techniques such as word2vec [8] and paragraph2vec [4] can
be used to automatically convert those texts into a vector
which represents the actual semantic of the text. Issue reso-
lutions which result in code patches can also be represented

1DeepSoft can however be easily extended to model other
temporal events.

9

Requirements extraction and formalisation

§ Extract from natural language
§ Formalise
§ Analyse
§ Feedback with stakeholders
§ Use in various domains e.g. air

traffic control, automotive, IoT
security configuration, …

(S1)This software system will be a Web Publishing
System for a local editor of a regional historical
society. (S2)This system will be designed to
maximize the editor’s work productivity by providing
tools to assist in automating the article review and
publishing process, which would otherwise have to
be performed manually. (S3)By maximizing the
editor’s work efficiency and productivity the system
will meet the their needs while remaining easy to
understand and use. (S4)More specifically, this
system is designed to allow an editor to manage and
communicate with a group of reviewers and authors
to publish articles to a public website.
...
Use case: Manage Reviewer
Brief Description
The editor enters a new reviewer or update
information of the current reviewer.
Initial Step-By-Step Description
Before this use case can be initiated, the editor has
already accessed the main page of the Article
Manager.
1. The editor selects to manage a reviewer.
2. The system presents manage options. Manage
options include "add reviewer" or "update reviewer".
3. The editor selects an manage option.
4. If the editor is updating a reviewer, the system
presents the information of the reviewer; else the
system presents a list of reviewers and presents
information of a reviewer after the editor selects that
reviewer.
5. The editor fills in the information and submits the
form.

6. The system verifies the information and returns
the editor to the Article Manager main page.
After this use case is successfully finished, the
reviewer's information is stored

BG2: Maximise the
editor's work productivity

FFG4: Editors shall be
able to manage a group of
reviewers

FFG1: Assist in automating
the article review process

FFG2: Assist in automating
the article publishing process

BG1: Meet the editor's
needs

BG3: Maximise the
editor's work efficiency NPG1: The system shall

be easy to understand
NPG2: The system shall
be easy to use

FFG5: Editors shall be able
to manage a group of authors

FFG7: Editors shall be able to
communicate with a group of
reviewers

FFG6: Editors shall be able to
communicate with a group of authors

FFG3: Editors shall be able to
publish articles to a publish website

Use Case UC1: Manage Reviewer Actor: Editor
Pre-condition: The editor has already accessed the main page of the Article Manager
Post-condition: The reviewer's information is stored
Steps:
1. The editor selects to manage a reviewer
2. The system present manage options
3. The editor selects a manage option
4. If the editor is updating a reviewer, the system presents the information of the reviewer
5. The editor fills in the information
6. The editor submits the form
7. The system verifies the information
8. The system returns the editors to the Article Manager main page
Extension Ext1:
 Condition: The editor is not updating a reviewer
 Starting Step: 4
 Extension Steps:
 4.1. The system presents a list of reviewers
 4.2. The editor selects a reviewer
 4.3. The system presents information of the selected reviewer
 Resuming Step: 5

FSG1: Editors shall be able to
add new reviewers

FSG2: Editors shall be able to
update reviewers' information

Business Level

Product Level

Feature Level

Service Level

(b)

(a)

DC1: Manage options include
"add reviewer" or "update
reviewer"

Operationalize link
Refine link

Constrain link12 Autom Softw Eng (2017) 24:1–45

Fig. 3 Usage of MaramaAIC

In Step 6, the RE can choose to resolve inconsistency, incompleteness and/or incor-
rectness problems detected, leave highlighted problemmarkers and later resolve them,
or ignore problems until later.

In Step7, the tool also allows the RE to automatically and traceably transform EUC
models to EUI prototypes using our novel EUI pattern library. This means traceability
is provided throughout the process, allowing any of the EUI components to be traced
forward/back from/to the EUC model, abstract interaction or textual natural language
requirement.

In Step 8, MaramaAIC allows the EUI prototype to be translated to a more concrete
form-based UI view, an HTML form, by using a novel EUI Pattern template library.
An EUI prototype model can also be translated to a concrete form-based UI using a
pre-defined template in a EUI pattern template library, with one template for each EUI
pattern. Here, the EUI Pattern template consists of the descriptions of Concrete UI
components to be instantiated for a particular EUI pattern. Simple interaction with the
generated HTML form is also supported to illustrate how target system information
input and output could work.

In Step 9, the EUI model and concrete UI generated from the tool can be reviewed
by the REs with end-users to validate and confirm the consistency of the original
textual requirements.

To achieve Steps 4 and 5 the extracted EUC model’s abstract interactions are com-
pared to an expected essential interaction and EUCpattern’s set of abstract interactions
and their sequencing. When any problems with requirements models are detected, the
tool focuses on providing warning, feedback notification and visualisation of the qual-
ity issues existing in any component:

123

10

Large Systems Engineering

§ Data placement on cloud
§ Energy consumption – cloud, IoT,

edge
§ Architecture, requirements, process
§ Adaptive systems
§ Data wrangling, integration,

visualisation – tools, techniques,
design, evaluation

(a) Stroke, color, and dashed lines,
appeared 18 times.

(b) Context based glyphs, appeared
13 times.

(c) Shapes and rankings, appeared 8
times.

(d) Emoticons, appeared 7 times. (e) Charts, appeared 4 times. (f) Arrows, appeared once.

Figure 3: Samples of trajectory recommendation representations and their frequency of appearance in results.

mendations. Some participants proposed only one method
and some proposed multiple methods. Some participants
provided multiple versions of each method; We here group
them as di↵erent representations for the same method. These
collectively account for 72 representations. We have ex-
tracted and characterized these methods into six visualiza-
tions groups depending on their number of appearance; five
as seen on Figure 3 a-e, and an “other” category. In the
following we describe these methods in more details.

Use of strokes, color, and dashed lines was the predomi-
nant method of choice by our participants, with each cate-
gory being mentioned 6, 10, and 2 respectively. Some partic-
ipants used dual coding, i.e. combination of these methods
to reiterate their ranking representation. For example, some
used di↵erent strokes and marked the top priority by green,
middle rank by yellow, and lowest rank by red. We believe
the high number of appearance of this category may have
been a↵ected by our participants’ experience with naviga-
tions systems (23 out of 25 had experience with at least
one navigation system). Only one participant mentioned
color-blindness and proposed using dashed lines with vary-
ing strokes as a result.

Second most proposed representation was the context-
based glyphs. Often we were asked by the participants
“What is the basis for this ranking”. We would then de-
scribe that there is no specific basis for why one path is
better than the other, but we assume that there is an agree-
ment between you and recipient of the annotated picture.
Then they would come up with various contexts to show
goodness of each choice based on their category of choice.
For example, the better choice was represented by scenery
(e.g. trees, rivers and lakes as in Figure 3(b)), or type of the
road (high way, toll road). A user mentioned that based on
what is understood and accepted in their culture, a moun-
tainous road is a hard road to take. As a result proposed
showing the bad choice by mountains. Some other exam-
ples pointed to the characteristics of the road. For example,
longer distance was demonstrated by number of kilometers,
faster route was demonstrated by turtle-rabbit-horse combi-
nation or hour glass (sand clock), or fast forward and stop as
demonstrated by blue shapes in Figure 3(b). Choice of travel
was also grouped as context based methods. For example

traveling by bus, bike or vehicle. Three participants used
tra�c sings and claimed these signs are accepted and used
worldwide and hence are good representations for rankings.
Accordingly speed limits, distance, and tra�c stop sign was
used.

Use of shapes for ranking appeared 8 times. For exam-
ple, stars to represent the scale, or number of thumb-ups. It
was mentioned that hotel review rankings or users’ experi-
ence with social media like system has had an e↵ect on this
choice. With shapes, e.g. stars, it is possible to demonstrate
the scale as well. For example empty stars can denote the
full scale and the ranking would be demonstrated by filled
stars, or by highlighting the area surrounding the stars as in
energy ratings. Consequently, it is possible to provide fuzzy
rankings, e.g. filling half of the shape.

Figure 4: Representing a 5 point Likert scale by
emoticons (smiley faces).

Among interesting findings of this study is the proposal
to use emoticons (or emoji) to represent order of recommen-
dations. This way the smiley face would represent the top
choice, and for example a neutral face would show the mid-
dle option. Participants mostly agreed that emoticons are
very easy to understand and they assume the recipient of
the picture would understand it too, regardless of the con-
text or basis of the ranking. When asked what if the choices
were more than three by the instructor, some participants
even came up with new smiley faces. We are also observing
increased use of smiley faces in web based surveys as a re-
placement for Likert scales. Figure 4 provides an example of
such representation. It is presumed that this representation
is more understandable for general public specifically when
the target audience is spread across a wide range of age and
demographics.

Charts appeared four times as a representation for rank-
ing. From these four, two used bar chart metaphor, an-
other stacked bar chart to depict multiple categories, and
one used pie chart. The bar chart examples showed the
goodness as the height of the bar as in a histogram. The

Fig. 2. Sample of inconsistencies encountered within categories used for Travel Purpose.

combination of both. Accepted majority using indicates the
data that is available in most provided datasets and discarding
the rest. This would have helped us to simplify implementation
of the required data mappings. However, it would also mean
that we had to remove some information provided by different
states. Available in depth on the other hand, would allow us
to keep all provided information, but at the expense of some
incomplete datasets. Although available in depth information
would not reduce the information, it would not provide a
dependable platform for comparison of the data provided
by different states. Additionally it would pose problems for
visualization frameworks as they cannot tolerate missing data.
We chose the third approach which is a combination of
both, i.e. we chose which fields to merge, which fields to
keep, and which fields to discard. For example in Figure 2,
six travel purpose categories of the NSW dataset have been
merged to “Other”, as the rest of the dataset did not provide
a corresponding purpose category.

Given that data sets in our case were provided from different
technologies and formats, we needed to develop data importers
to import various sources into our harmonization framework
(step 3 in Figure 1). The selection of suitable technology
for importing various data sources depends very much on
the available skill sets of the integration team and the data
mapping and transformation technology to be used. In our
case the technology used for data mapping and transforma-
tion development (Altova Mapforce3) provided facilities for
importing range of different data sources. It provided the
necessary data connectors to connect to various data sources
that eliminates separate coding of the connectors.

Once the data is imported, we moved to develop data pro-
cessing and integration. This step would include aggregating
and disaggregating (if possible) datasets at different levels of
abstraction, defining data mapping from various sources to her
harmonized model, and generating the mapping transformation
code (step 4 in Figure 1).

We used SQL querying and Microsoft SQL Server (MS-
SQL) to develop our aggregations. This decision was due to
availability of information about the data and the databases
structure. A temporary database was defined in MS-SQL and

3www.altova.com

the raw data was imported into this temporary database. Then
the required queries were defined to calculate aggregations and
save as new datasets.

Our next step was to define the data mappings. These
mappings would insert the collected data to the new data
model. We used Altova Mapforce for this data mapping task.
Mapforce provides a powerful, flexible and relatively user
friendly framework for complex data mapping. MapForce
automatically generates schemas for imported data and allows
viewing source and target schemas side by side. Mapping
correspondences can then be defined by drag and dropping
elements of source and target schemas. From these Map-
Force specifications a set of Java programs are automatically
generated that extract data from each dataset and import it
into a single, integrated SQL Server database based on our
harmonized data model.

The output of harmonization is set of polished and ready
to be used data. Usage could be in form of data queries,
or visualization (step 5 in Figure 1). The current AURIN
framework provides a set of default visualizations including
geographic highlighting, some basic charts, and heat maps.
However, the extent to which data can be explored very much
depends on how many dimensions of the data can be visu-
alized. Accordingly, we used our CONcrete Visual assistEd
Transformation (CONVErT) framework [23], to design set of
new, more powerful and expressive visualizations for HTS
and associated datasets retrieved from AURIN. CONVErT
allows different notations to be composed to form complex
visualizations. Examples of such visualizations are depicted
on Figure 3.

AURIN also provides facilities for querying and exporting
data. Users can select range of attributes to be included using
provided GUI. This way, the harmonized data can be queried
and combined with existing AURIN data e.g. household,
demographic and income data. Detailed description of this
HTS project and the implementation can be found in the
project technical report [24].

V. DISCUSSION AND LESSONS LEARNED

This section discusses strengths and weaknesses of the
CODA approach for data harmonization and integration. We

PathRec: Visual Analysis of Travel Route Recommendations
Dawei Chen*†, Dongwoo Kim*, Lexing Xie*†, Minjeong Shin*, Aditya Krishna Menon†*,

Cheng Soon Ong†*, Iman Avazpour‡, John Grundy‡

*The Australian National University, †Data61/CSIRO, ‡Deakin University
{u5708856,dongwoo.kim,lexing.xie,minjeong.shin,aditya.menon,chengsoon.ong}@anu.edu.au

{iman.avazpour,j.grundy}@deakin.edu.au

ABSTRACT
We present an interactive visualisation tool for recommending
travel trajectories. This system is based on new machine learning
formulations and algorithms for the sequence recommendation
problem. The system starts from a map-based overview, taking an
interactive query as starting point. It then breaks down contribu-
tions from di�erent geographical and user behavior features, and
those from individual points-of-interest versus pairs of consecutive
points on a route. The system also supports detailed quantitative
interrogation by comparing a large number of features for multiple
points. E�ective trajectory visualisations can potentially bene�t a
large cohort of online map users and assist their decision-making.
More broadly, the design of this system can inform visualisations
of other structured prediction tasks, such as for sequences or trees.

KEYWORDS
Route Visualisation, Travel Recommendation, Learning to rank

1 INTRODUCTION
Sequence recommendation has emerged as an important frame-
work for modelling diverse problems such as travel route and music
playlist recommendation [3]. Unlike classical ranking algorithms
where items are considered independently [7], a sequence recom-
mendation algorithm requires modelling a structure between items
and suggests a set of items as a whole. For example, consider recom-
mending a trajectory of points-of-interest (POIs) in a city to a visitor.
While a classical ranking algorithm can learn a user’s preference
for each individual location, it may ignore the distances between
them and could suggest a longer trajectory than is optimal. Several
sequence recommendation algorithms have been proposed to solve
this problem and demonstrated superior performance compared to
classical ranking algorithms [3, 9]. Nonetheless, recommendation
algorithms for sequences and trajectories [1, 3] have many compo-
nents and can be di�cult for a user to understand. This is part of the
general challenge of introducing transparency and accountability
for machine learning algorithms [4].

In this paper, we tackle the problem of sequence visualisation,
speci�cally focussing on travel routes recommendation. A travel
route is a sequence of POIs, and the sequence recommendation
problem can be formulated as a structured prediction problem [3].
Based on a diverse set of features for individual and pairs of POIs, we
train the prediction model with trajectory data extracted from geo-
tagged photos taken in Melbourne [1]. To visualise the suggested
routes, we develop a novel tool that e�ciently displays multiple
suggested routes, which helps users understand the process behind

Figure 1: Travel route visualisation system1. Given a start-
ing POI and the number of POIs to be visited, the system
recommends multiple routes from travel history of tourists.
Shown above: recommendation in central Melbourne.

the recommendations. Speci�cally, our system decomposes a total
score of each route into a set of features and their corresponding
scores, and shows the total score as a stacked bar plot of the features.
The system also visualises the di�erences between POIs in a single
route to show how POIs in that route can exhibit vast diversity.

This visualisation helps tourists who want diverse experiences
by choosing the best route among multiple recommendations. Gen-
eralising to a broader class of routes, such a visualisation could also
help users of online mapping apps to make decisions on suggested
travel routes, such as by trading o� distance, tra�c, and scenery.

2 TRAVEL ROUTE RECOMMENDATION
The travel route recommendation problem involves a set of POIs in
a city. Given a trajectory query x = (s, l), comprising a start POI s
and trip length l , the goal is to suggest one or more sequences of
POIs that maximise some notion of utility.

Following [3], we �rst cast travel recommendation as a structured
prediction problem, which allows us to leverage the well-studied
literature of structured SVMs (SSVM) [6]. From a visualisation
perspective, an advantage of the SSVM is the explicit representation
of feature scores in its �nal decision process. Speci�cally, we can
disassemble the �nal score of a route into feature scores of each POI
and the transition between two adjacent POIs. We use hand-crafted
POI features such as the category, popularity, and average visit
duration of previous tourists. We also crafted transition features
such as the distance and neighbourhood of two POIs to maximise
the interpretability of the outcome.

1http://www.pathrec.ml

ar
X

iv
:1

70
7.

01
62

7v
2

 [c
s.H

C
]

19
 Ju

l 2
01

7

Figure 3. Comparison of different strategies with latency requirement of

90% lower than 150 ms.

Figure 4. Comparison of different strategies with latency requirement of
90% lower than 100 ms.

V. RELATED WORK
The focus on this paper is cost-effective data placement

and replication in the cloud. In this section, we compare our
work with existing literature in three categories: first,
optimising online social networks services, second, data
placement and replication in cloud, and third, graph-
partitioning.

Social locality is used to address the issue of OSN
(online social network) data placement at one site with
different servers, in literature. For instance, SPAR [9]
minimises the total number of slave replicas while
maintaining social locality for every user; S-CLONE [10]
maximises the number of users whose social locality can be
sustained, given a fixed number of replicas per user. For
OSN across multiple sites, some propose selective
replication of data across datacentres to reduce the total
inter-data-centre traffic. some other works propose a
framework that captures and optimises multiple dimensions
of the OSN system objectives concurrently [11]. Other works

do not involve quality of service as our geo-distribution and
replication case.

To decrease the network traffic and undesirable long
delays in large distributed systems such as the Internet,
replicating some of the objects at multiple sites is considered
as one possible solution in [12]. The decision of what and
where to replicate is solved by genetic algorithms (GA).
Normal GA is considered for static situations and a hybrid
GA is proposed that takes current replica distribution as
input and then computes a new one using knowledge about
the network attributes and the changes occurred.
Furthermore, problem of co-scheduling job dispatching and
data replication in wide-area distributed systems in an
integrated manner is addressed in [13]. Their system contains
three variables as the order of the jobs, the assignment of the
jobs to the individual compute nodes, and the assignment of
the data objects to the local data stores. A genetic algorithm
is used to find the optimal placement. However, they do not
consider the social network data placement problem in the
cloud.

Some data placement strategies based on genetic
algorithms are proposed in [14] and [15] to reduce data
scheduling between cloud datacentres and the distributed
transaction costs as much as possible. Additionally, the
problem of placing the components of a SaaS and their
related data in the cloud is addresses in [16]. However, data
replication is not considered in these papers.

The inter-datacentre communication of the online social
network services is focused in [17]. Moreover, a geo-cloud
based dynamic replica creation in large global Web sites
such as Facebook is presented in [18]. Volley [19] addresses
the automated data placement challenge which deals with
WAN bandwidth costs and datacentre capacity limitations
while minimising user-perceived latency. Additionally, the
cloud storage reconfiguration while respecting application-
defined constraints to adapt to changes in users’ locations or
request rates is addressed in [20]. However, they do not
consider the monetary cost for replicating data in their work.

A mechanism for selectively replicating large databases
globally while minimising the bandwidth is introduced in
[21]. However, it replicates all records in all locations either
as a full copy or as a stub. Using geo-distributed clouds for
scaling the social media streaming service is used in [22] to
address the challenges for storing and migrating media data
for timely response and moderate expense. It works on
videos and focuses on resource and data migration. The
primary focus in [23] is to minimise the cost incurred by
latency-sensitive application providers while satisfying
consistency and fault-tolerance requirements with taking
workload properties into account. However, latency
definition in their work makes it not comparable with our
work.

The data placement of the OSN services with considering
their monetary cost, quality of service, data availability
requirements, inter-cloud traffic as well as the carbon
footprint is investigated in [11]. The social locality
assumption in which they have to keep all friends’ replicas in
one’s main datacentre makes their work not comparable with
ours. Multi-objective optimisation including reducing the

11

Software Security Engineering

§ Self-securing software systems
§ Static and dynamic vulnerability

analysis
§ Run-time update of code,

configurations
§ End user specification, configuration

of security requirements, controls
§ Security for mobile, IoT systems

Cloud Providers: GREEN CLOUD – BLUE CLOUD
Service Providers: SWINSOFT - GREEN CLOUD – BLUE CLOUD
Cloud Consumers: Swinburne University- Auckland University, SwinMarket

Get	Currency-
Now

Build	Workflow	

Galactic	ERP

Execute	Batch	
processing

SWIN
SOFT

SWIN
SOFT

GREEN	
CLOUD

BLUE	CLOUD

Injection attack
e.g. SQL, JS

Poor Isolation

Excessive
Priviledges

Data tampering attack

Root-kit attack

Pr
og
ra
m
	S
ou

rc
e	
co
de

Program	
Representation	1

Abstract	Syntax	
Tree

Program	
Representation	n

…

…
Signature	Locator

OCL	
Functions

Platform	
Profile

Vulnerability	List

Weaknesses	
Signatures	

(OCL)

12

Testing, visualisation, education

§ Testing: mobile apps, IoT, generating
tests, testers, defect reporting, …

§ Visualisation: domain-specific visual
langage models, presenting and
interacting with visual models,
building and scaling visualisations,
modelling tools, collaborative
modelling & visualisation

§ Portfolio-based assessment, open
learner models, constructive
alignment, industry placements and
capstone projects

2017 8th International Conference on Information Technology (ICIT)

sent to background to make them available to other
applications. The importance of correctly managing system
resources stems from the fact that failing to do so will cause
run time errors and consume other system resources such as
battery, CPU and memory space[25].

We first need a formal model to represent the lifecycle
rules knowledge base. This is because the current format of
Android application lifecycle rules is represented as informal
narratives, which cannot be well incorporated into an
automated software testing tool. Such a software model should
be constructed to represent all lifecycle simple and complex
rules. Secondly, lifecycle rules can change over time: New
versions of Android OS are produced regularly [21]. Such
versions normally contain changes to old libraries as well as
introducing new ones (APIs). Thus the model must
incorporate platform versioning. Thirdly, inspecting source
code against these rules is necessary: an automated testing tool
must be able to automatically detect resource API calls that
may be affected by lifecycle rules and match these calls with
appropriate lifecycle rules to check if they are being released
correctly. Further – as our approach is based on static analysis
of source code - a major challenge is imposed because
developers can write their code using many different patterns
and coding styles. Thus, the tool should be smart enough to
recognize such a variety of coding patterns. Finally, current
source code analysis tools for Android applications (e.g. [2, 8,
26]) do not inspect their lifecycle conformance.

The main steps of our testing approach are: 1) we define a
UML-based model to represent Android system resources
along with their lifecycle rules and make them available in a
repository; 2) we use a software tool to analyze and inspect
Android source code against these formalized lifecycle rules;
and 3) the tool produces a report to the developer of
notifications of incorrect management of system resources.
Figure 2 depicts our proposed testing approach.

Fig. 2 Structure diagram of ALCI

First, the client side of the tool loads system resources and

their associated lifecycle rules from repository using the
LCLoader component. Second, the analyzer uses JavaParser to
parse Android source code. Then using the object model

produces by JavaParser, the Analyzer applies handling
algorithms that inspects source code against system resources’
rules and produces results report. Figure 3 presents our UML
model for lifecycle resources and their associated lifecycle
rules.

Fig. 3. UML class diagram for lifecycle rules

In our lifecycle rules model:

• The Resource class represents the system resources that
should be managed by developer which consists of the
following attributes and methods:
o Packagename: name of package for the resource
o API level: the Android OS level version
o Class name: the name of class that developer uses to

create object in order to use the resource
o initMethod: the method that initializes the resource
o releaseMethod: the method that the developer has to

call in order to release the resource
o Type: used to differentiate between various types of

resources e.g. Camera, GPS, Microphone, etc.

• LCRule is an abstract class that contains the notification
message which will be displayed to developer if he/she
did not release a specific resource.

• MultiRule is a subtype of LCRule and it is used when a
system resource has to be managed in more than one
callback method.

• CallbackMethod represents a single callback method from
the Android lifecycle model (e.g. onPause, onStop,
onResume).

• SingleRule is used when a resource has to be called at one
callback method.

• Action is a class to represent the mode of resource
management, mainly initializing (started) and releasing
(ended).

Code Inspection Algorithm

Source code analysis is the process of analyzing source
code to generate useful information for programmers to

collected data from 2013 to 2016 [5]. The data is meant to
provide insights into how the city is being used by pedestrians.
The important attributes of the pedestrian count data are date,
hour, sensor ID, sensor location, geographic coordinates of
sensor locations, and hourly counts. We combined this count
dataset with Melbourne temperature data [6] for the same
period. The temperature data contains only the daily maximum
and minimum temperature values.

A web application implemented to visualise the data is
shown in Fig. 1.

Design 1: For (T1, T5), using the geographic coordinates at-
tributes, the sensor locations are shown on a thematic map with
the area of the circles being proportional to the overall hourly
counts of people. The colours of the circle represent common
location categories. Locations with similar activities have been
grouped together as shown in Fig. 1(e & g). Thematic maps
are useful for analysing proportions over geographic areas
[7]. Although analysis involving statistical proportions can be
explored with diverse non-cartographic visualisations such as
line charts, other tasks involving investigation of changing
spatio-temporal dimensions are better shown with maps [8].

Design 2: For (T2, T3), When a circle is hovered over or
clicked, it expands into a 24-sided clocklike polygon where
each side of the polygon represents an hour. The length of
each side corresponds to the hourly counts as shown in Fig.
1(f). In order to reduce occlusion, the opacity of the polygons
was reduced. This makes it visible and yet transparent enough
to see underlying location points. A section displays maximum
and minimum temperature for the selected day. As visual
metaphors have been shown to shape how information is
internalised and influences how visualisations are understood
[9], we adopted a clocklike visual metaphor to represent hours,
informed by an object with which users already measure time.

Time Selection Control: lets the user select temporal
condition in the visualisation. As shown in Fig. 1(a & c), the
two controls, Date-picker and Hour combo boxes allow users
to select date and hour, updating the visualisation accordingly.

Event Control: allows the user to select temporal conditi-
ons – users can select any event to visualise how pedestrian
counts increase and decrease at certain times without having
to remember the date of the event, shown as Fig. 1(b) (T4).

Animation Control: The Play button in Fig. 1(c) allows
the user to play the visualisation for a certain period and see
how the counts change using hourly updates as frames.

IV. DISCUSSION

A primary reason we chose a day-by-day visualisation is
to show to the user in one glance the overview of hourly
pedestrian counts and the effect of daily temperature on
pedestrian activity without losing the context that the thematic
map provides. An area for future work is to extend the applica-
tion to include year-by-year and month-by-month aggregates
comparison. Moreover, the clocklike visual metaphor can
be applied to other datasets containing temporal dimensions
where the measures can be analysed over a 24 hour period
e.g. weather data such as humidity, pressure. It can also be

Fig. 1. The user interface with controls and legends. (a) Date selection control,
(b) Event control, (c) Hour selection control and animation button, (d) Daily
temperature (e) Thematic map, (f) 24-hour clocklike visual metaphor showing
pedestrian count per hour, and (g) Sensor location categories legend.

used to visualise two related measures simultaneously e.g.
using the weather data, the length of each side of the polygon
would represent humidity for each hour and the colour (a
colour gradient) would correspond to hourly pressure values.
Although inspired by our agenda to combine an intuitive
visual metaphor with other visualisation types, we recognise
the inevitable compromise in this approach - a trade-off of
increased cognitive load in favour of visual familiarity. The
opacity of the clocklike polygons was reduced to support
visual perception, yet several overlapping clocklike polygons
might increase visual clutter and cognitive load to the user.
We will continue and extend our research to further assess the
impact of the visualisation, including the merits and demerits
of the 24-hour clocklike visual metaphor.

ACKNOWLEDGMENT

Humphrey Obie is supported by a Data61 International
Postgraduate Award. Part of this work is also supported by
ARC Discovery Project scheme DP140102185.

REFERENCES

[1] J. Gehl, Cities for People, 1st ed. Washington, DC: Island Press, 2010.
[2] Z. Shahhoseini, M. Sarvi, M. Saberi and M. Haghani, “Pedestrian Crowd

Dynamics Observed at Merging Sections: The Impact of Different De-
signs on Movement Efficiency”, Transportation Research Record: Journal

of the Transportation Research Board, vol. 17-04277, 2017.
[3] City of Melbourne. (2017, June 2). Pedestrian Counting. [Online]. Avai-

lable: https://data.melbourne.vic.gov.au/browse?q=”pedestrian+counts”
[4] Environmental Science. (2017, June 2). Urban Planner. [Online]. Avai-

lable: http://www.environmentalscience.org/career/urban-planner
[5] City of Melbourne. (2017, February 1). Melbourne Data. [Online].

Available: https://data.melbourne.vic.gov.au/
[6] Bureau of Meteorology. (2017, February 2). Historical weather observa-

tions and statistics. [Online]. Available: http://www.bom.gov.au/climate/
[7] E. R. Tufte, The visual display of quantitative information, 2nd ed.

Cheshire, Conn.: Graphics Press, 2002.
[8] N. Andrienko, G. Andrienko, and P. Gatalsky, “Exploratory spatio-

temporal visualization: an analytical review,” Journal of Visual Languages

and Computing, vol. 14, no. 6, 2003.
[9] C. Ziemkiewicz and R. Kosara, “The Shaping of Information by Visual

Metaphors,” Visualization and Computer Graphics, IEEE Transactions

on, vol. 14, no. 6, 2008.

3. USER INTERFACE DESIGN FOR
SUPPORTING SELF-REGULATION
Doubtfire++ incorporates various OLM visualisations to support
the Task Oriented Portfolio teaching and learning approach and
encourage student self-regulated learning. It supports staff with
comprehensive learning analytic data about students in general,
and will provide insightful data about possible staff and student
perceptions on the links between tasks and learning outcomes.
These analysis and visualisations aim to support staff reflection on
teaching by identifying how teaching and learning strategies are
working for students. The interface designs include pages to
support students setting their target grade, managing their learning
tasks, tracking their progress and achievement, facilitating self-
reflection and evidencing their learning as shown in Figure 2 to
Figure 8.

Figure 2 is the interface used by students to set their target grade.
Each grade is linked to the amount of work needed to be
completed in order to obtain the desired grade. It provides
flexibility to students to adjust the target grade and see the
workload required for different grades. This helps them to plan for
their workload and learning schedule, and to set a realistic target.
The task list and focus list, as shown in Figure 3 and Figure 4
respectively, support students engagement with frequent formative
feedback on their tasks. The Task list exploits different colours to
keep students informed about their task statuses, whereas the
focus list suggests tasks to be focused on in order to stay on track
to achieve the desired grade. A burndown chart, as in Figure 5,
enables students to track their progress, showing target and
projected completion time, percent of tasks submitted and
completed. This keeps students aware of the number of tasks
remaining at a certain point of time for students to estimate effort
required to complete their tasks in meeting the minimum
requirement of their desired grade. This tool helps students to
assess their progress, and to estimate if they need to increase their
effort and time exploiting support resources available in order to
attain the required rate of progress. Figure 6 shows a bullet chart
for students to visualise their learning outcome achievement. This
chart resembles Stephen Few's bullet graph, and exploits 4
different colours that represent the qualitative range for different
level of achievements, indicating staff expectation for Pass,
Credit, Distinction and High Distinction. The cut-off line that
shows the class average achievement and the grey shaded area
that shows class range as well as the small triangle that denotes
individual achievement on the bullet chart enable users to quickly
grasp an overall understanding of their own achievement as well
as their class achievement as compared to staff expectation. In this
way, students are provided with a clear target to excel. The bullet
chart is linked to all tasks that contribute to each learning outcome
as in Figure 7. Students can easily click to view the tasks that
contribute to a specific learning outcome to identify tasks to be
focused on in order to improve a specific learning outcome.
Figure 8 shows an example of the student reflection interface
through which students align unit tasks with intended learning
outcomes to demonstrate they have achieved unit learning
outcomes in preparing their portfolio for final assessment. This
visualisation encourages students to reflect on their progress and
achievements based on the tasks completed by clicking on the
ratings that best represent their knowledge gained. They then can
upload their work to showcase or evidence their achievements.
The reflection data provide insight about student learning and help
teaching staff to examine any potential misalignment arising from
mismatches between student reflections on learning and initial

staff plans. The upload function helps students to retain their
learning artefacts in evidencing their learning.

Figure 2. Interface for setting target grade.

Figure 3. Task list exploits colours to keep students informed
about their task statuses.

Figure 4. Focus list suggests tasks to keep students on track.

Figure 5. Burn down chart helps students to self-assess.

Figure 6. Bullet chart gives information about individual and
class LO achievements.

