
Model-driven software
engineering: Engineering or not?

John Grundy
Professor of Software Engineering
Dean, Software & Electrical Engineering
Director, Centre Computing & Engineering
Software Systems

SwinburneOutline

- What characterises “Engineering”?

- What is model-driven software engineering?

- Some Examples

- Is MDE really “Engineering”??

- Future directions

SwinburneWhat is “Engineering”?

- Wikipedia:

“Engineering is the discipline, art and profession of acquiring and applying
technical, scientific, and mathematical knowledge to design and implement
materials, structures, machines, devices, systems, and processes that safely
realize a desired objective or invention.”

- ABET:

“… creative application of scientific principles to design or develop structures,
machines, apparatus, or manufacturing processes, or works utilizing them
singly or in combination; or to construct or operate the same with full
cognizance of their design; or to forecast their behavior under specific
operating conditions; all as respects an intended function, economics of
operation and safety to life and property”

SwinburneThings characterising Engineering

- Problem needing solving

- Requirements & Specifications

- Designs – usually multiple options; function & aesthetics & safety & …

- Mathematical models

- Scientific theories/principles underlying models

- Analysis of models to predict outcomes of different options

- Computer-aided design, manufacturing, analysis, processes

- Repeatable processes, project management principles

- Sharing of best practices, professionalism, ethical behaviors, …

SwinburneSome “issues” with Software Engineering…

- No “physical” models to ground, constrain, inform

- Artefacts highly changeable through engineering lifecycle [Note: just
because CAN change, doesn’t mean SHOULD!]

- What are appropriate models/modelling languages?

- Where does “design” end and “construction” begin?

- Are our solutions/processes repeatable?

- Can we evaluate results – before and/or after construction?

- Can (and do) we capture “best practice”?

- Widespread practices of professionalism and ethics?

SwinburneWhat is “Model-driven Engineering”?

- Wikipedia J:
MDE is a software development methodology which focuses on
creating models, or abstractions, more close to some particular
domain concepts rather than computing (or algorithmic) concepts.
It is meant to increase productivity by maximizing compatibility
between systems, simplifying the process of design, and
promoting communication between individuals and teams working
on the system.

- Doug Schmidt, COMPUTER Guest Intro on MDE:
Model-driven engineering technologies offer a promising approach
to address the inability of third-generation languages to alleviate
the complexity of platforms and express domain concepts
effectively.

SwinburneJohn G’s definition/take on MDE…

- Programming languages (3GLs) too low-level to describe many
abstractions in software engineering

- SE models too disconnected from 3GLs (program code) e.g.
traditional analysis & design languages

- BUT: such models CAN be used to “construct” software directly

- Need high-level modelling languages to better express requirements,
architectures, designs, tests etc BUT that can be directly turned
into/related to code constructs

- Need to provide ways to build, reason with models, translate models
to(/from) code

- BUT: working directly with code (3GLs) still very useful!!!

SwinburneOverview of MDE concept

Use to model with

Domain meta-model(s)
(Platform independent

model)
Software platform meta-

models, patterns,
templates[Visual] representation(s) of

domain model(s)

Platform-specific
model(s)

Code, configurations

APIs, hand-written code,
manual configs

Combine with
“platform” info”

Code/config
generationReverse engineering

models

SwinburneKey MDE Requirements

- Domain meta-model(s), models

- Visualisation(s) of domain models – textual and graphical

- Mapping between models

- Editing tools for models

- Transformation support i.e. model->model, model -> code

- Visualisation support e.g. code/data -> model

- Reasoning support e.g. analysis of models – completeness,
correctness, consistency

- Model management support e.g. version control, diffing/merging, etc

SwinburneExamples from our work

- MaramaMTE (Performance Engineering)

- Form-based Mapper (Complex Data Mapping)

- MaramaVCPML (Personal Care Plan App generator)

- MaramaEML (Enterprise Modelling Language)

- MaramaAI (Requirements capture)

- VikiBuilder (Visual Wiki generation)

SwinburneMaramaMTE

- Performance test generator from high-level architectural
models

- Domain models = architecture, usage models

- Platform models = web domain, multi-tier domain, J2EE,
.NET architectures and APIs

- Code, configs = Java, C#, JMeter, MS ACT, Selenium

- Visualisation = performance data on architecture data

- With CSIRO and several small-to-medium companies

Swinburne

Meta-model abstractions:
• Clients, Servers, Databases
• Remote objects, tables
• Requests, services
• Calls, containment, uses
• Operations, parameters, ports, machines, …
• Inputs, Transitions

Example

<jmeterTestPlan version="1.2" properties="1.8">
<hashTree>

<TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="Test Plan" enabled="true">
<stringProp name="TestPlan.user_define_classpath"></stringProp>
<stringProp name="TestPlan.comments"></stringProp>
<boolProp name="TestPlan.functional_mode">false</boolProp>
<boolProp name="TestPlan.serialize_threadgroups">false</boolProp>
<elementProp name="TestPlan.user_defined_variables" elementType="Arguments"

guiclass="ArgumentsPanel" testclass="Arguments" testname="User Defined Variables" enabled="true">
<collectionProp name="Arguments.arguments">

<elementProp name="server" elementType="Argument">
<stringProp name="Argument.value">localhost</stringProp>
<stringProp name="Argument.name">server</stringProp>
<stringProp name="Argument.metadata">=</stringProp>

</elementProp>
<elementProp name="port" elementType="Argument">

<stringProp name="Argument.value">8000</stringProp>
<stringProp name="Argument.name">port</stringProp>
<stringProp name="Argument.metadata">=</stringProp>

</elementProp>
<elementProp name="next_page" elementType="Argument">

<stringProp name="Argument.value">page_index</stringProp>
<stringProp name="Argument.name">next_page</stringProp>
<stringProp name="Argument.metadata">=</stringProp>

</elementProp>
</collectionProp>

</elementProp>
</TestPlan>
<hashTree>

<ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="page flow" enabled="true">
<stringProp name="ThreadGroup.ramp_time">1</stringProp>
<boolProp name="ThreadGroup.scheduler">false</boolProp>
<stringProp name="ThreadGroup.on_sample_error">continue</stringProp>
<longProp name="ThreadGroup.start_time">1076438592000</longProp>
<elementProp name="ThreadGroup.main_controller" elementType="LoopController"

guiclass="LoopControlPanel" testclass="LoopController" testname="Loop Controller" enabled="true">
<boolProp name="LoopController.continue_forever">false</boolProp>
<stringProp name="LoopController.loops">1</stringProp>

</elementProp>
<stringProp name="ThreadGroup.num_threads">5</stringProp>
<stringProp name="ThreadGroup.duration"></stringProp>
<stringProp name="ThreadGroup.delay"></stringProp>
<longProp name="ThreadGroup.end_time">1076438592000</longProp>

</ThreadGroup>
<hashTree>

…

SwinburneMTE – The Next Generation: “StressCloud”

13

SwinburneComplex data mapping

- Scenario: complex XML or EDI message format; want to translate into
a different format; many to process

- Traditionally: write QVT/ATL/XSLT/code to do

- Alternative: model transformation visually and generate these
transformation implementations

- Meta-model = source/target and mappings

- Visual models might include forms, trees, concrete data visualisations

- MDE = generate XSLT, ATL, Code (C++, Java),…

- Done various with Orion Health Ltd, XSOL Ltd, NICTA

SwinburneExamples

(1)

(a)

(b) (c)

(d)

(e)

(f)

(g)
(h)

SwinburneThe Next Generation #2: CONVErT

16

SwinburneMaramaVCPML (Visual Care Plan Modelling
Language)

- Mobile phone-based personal health care planning
applications

- Two meta-models with associated DVSLs: Visual Health
Care Planning Language, Visual Care Application Model

- Model generic care plan with a visual DSVL tool

- Configure generic care plan for individual

- Model mobile app UI for individual from tailored care plan
with a visual DSVL tool

- Generate Flash, Windows Mobile, iPhone app code

Example

SwinburneMaramaEML

- Enterprise modelling tool

- Integrated domain meta-model synthesized from several
existing & new models (BPML, EML, ViTABaL-WS, …)

- Multiple views with different DSVLs

- Platform meta-model & “code” = BPEL – executable
process modelling language (a DSL)

- Tool support for large scale diagram management

- Tool support for model checking for integrated LTSA tool

Example

SwinburneMaramaAI

- Requirements capture and analysis tool

- Textual requirements -> essential interactions -> Essential
Use Cases -> UIDs, OOAs

- Domain meta-models include natural language (!), EUCs,
UML etc

- Textual and visual representations of domain models

- Transformation of text to/from EUC-based DSVL models

- Analysis of consistency between models,
completeness/correctness of models via EUC pattern
library

SwinburneExamples

SwinburneVisual Wikis (“Vickis”) & VickiBuilder

SwinburneExample

(a)

(b)

(c)

(d)

SwinburneStrengths and Weaknesses

- Higher level models to work with – easier to create, understand,
modify, do analysis on than 3GL code

- Can refine models, ultimately to code/configurations

- Repetitive stuff (“construction”) can be largely (sometimes
completely) automated

- Models get complex, need good tools to work with them

- Hard to agree on standards esp. in new areas

- Model and tool evolution gets very tricky

- Trade-off between flexibility (code) and productivity (MDE)…

SwinburneIs MDE “Engineering”?

- Using meta-models, model representations

- Can check (some aspects of) models in tools

- Repeatable processes

- Productivity, quality improvements

- “Construction” becomes push-a-button

- Best practices in MDE?

- Dynamic MDE (change while running)?

- Proactive MDE (change while running in anticipation of
problems…)??

SwinburneFuture work

- Improve design of meta-models including specify complex constraints

- Improve design and evaluation of DSVLs
- Physics of Notations Tool – new PhD project

- Improve specification of transforms e.g. by using CONVErT J

- Improve tool support for DSVLs, transforms, “design critics”
- Horus – our next-generation Web-based DSVL tool

- Support other things via MDE e.g. security, HPC, cloud platforms
- Horus HPC, MDSE @ Runtime, TOSSMA, SMURF

- Proactive adaptation of complex systems via MDE
- My 2016 DP application... J

- Assess MDE on range of real-world problems

- Identify when “best practice” to use, when not to use…

SwinburneThank yous

- John Hosking – most of these projects

- Jun Huh, Karen Li – Marama meta-tools

- Rainbow Cai, Feifei Chen – MaramaMTE, StressCloud

- Abizer Khambati – VCPML etc

- Michael Li – Form-based Mapper

- Massila Kalmalrudin – MaramaAI

- Christian Hirsch – VisualWikis, VickiBuilder

- Iman Avazpour – CONVErT

- Mohamed Almorsy – Horus, Horus HPC, MDSE @ R, …

- Many other contributors over many years…

SwinburneIn case your are interested…

[Marama] Grundy, J.C., Hosking, J.G., Li, N., Huh, J., Ali, M., Li, L. Generating Domain-Specific Visual Language Tools from Abstract
Visual Specifications, IEEE Transactions on Software Engineering, 2013

[CONVErT] Avazpour, I., Grundy, J.C., Vu, H. Generating Reusable Visual Notations using Model Transformation, to appear in
International Journal of Software Engineering and Knowledge Engineering, 2015.

[VickiBuilder] Hirsch, C., Hosking, J.G. and Grundy, J.C. VikiBuilder: end-user specification and generation of Visual Wikis, In
Proceedings of the 25th IEEE/ACM International Conference on Automated Software Engineering (ASE 2010), Antwerp, Belgium, 20-
24 Sept 2010, IEEE CS Press.

[MaramaAI] Kalmalrudin, M., Grundy, J.C. and Hosking, J.G. Improving Requirements Quality using Essential Use Case Interaction
Patterns, In Proceedings of the 2011 International Conference on Software Engineering (ICSE2011), Honolulu, Hawaii, USA, May
21-28 2011, ACM Press.

[Orion Mapper] Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendal, P. Generating EDI Message Translations from Visual
Specifications, In Proceedings of the 16th International Conference on Automated Software Engineering, San Diego, 26-29 Nov
2001, IEEE CS Press, pp. 35-42

[Form-based Mapper] Li, Y., Grundy, J.C., Amor, R. and Hosking, J.G. A data mapping specification environment using a concrete
business form-based metaphor, In Proceedings of the 2002 International Conference on Human-Centric Computing, IEEE CS Press

[Visual Care Plan Modeller] Khambati, A., Warren, J., Grundy, J., and Hosking, J. Care Planning Systems for Consumer
Engagement in Chronic Disease Management, Electronic Journal of Health Informatics, vol 4, no. 1, 2009

[MaramaEML] Li, L., Hosking, J.G. and Grundy, J.C. MaramaEML: An Integrated Multi-View Business Process Modelling
Environment with Tree-Overlays, Zoomable Interfaces and Code Generation, Demo session, In Proceedings of the 2008 IEEE/ACM
International Conference on Automated Software Engineering, L'Aquilla, Italy, 15-19 September 2008, IEEE CS Press.

[MaramaMTE] Cai, Y., Grundy, J.C. and Hosking, J.G. Synthesizing Client Load Models for Performance Engineering via Web
Crawling, In Proceedings of the 2007 IEEE/ACM International Conference on Automated Software Engineering (ASE 2007), Atlanta,
Nov 5-9 2007, IEEE CS Press

Thanks!

30

DP110101340
DP120102653
DP140102185

FRST SER SPPI
FRST NERF DS Tools

Malaysian Ministry of Education

