
Human-centric (Issues in) Software Engineering

John Grundy
Australian Laureate Fellow and Professor of Software Engineering

MONASH
INFORMATION
TECHNOLOGY

2

Outline

§ Software Engineering & humans
§ Examples from our work

– Human-centric, domain-specific visual models for non-technical experts to specify and
generate systems

– Multi-lingual requirements engineering
– Incorporating end user emotions into requirements engineering
– Personality impact on aspects of software development
– Reporting usability defects

§ Challenges, issues and future directions

3

Software Engineering & Humans

Project
Management /

team work

Methods

Tools Evaluation/
testing/QA

Requirements &
Specifications

Design

Construction/
Manufacture
(code/configs)

Software

Processes

Write code,
Test code

Design
softwareGather from

usersWork together!!

Tools & methods to
support

USE!!!

4

Problems if we don’t include human perspective…

§ Gender bias – UIs, seat belts, health app
§ Ethnic bias – over-recommend minorities for search, don’t recognize faces
§ Culture bias – inappropriate words, phrases, colours, icons, workflow
§ Language bias – over-technical, wrong dialect, impersonal
§ Age bias – too complex, too simple, inappropriate words, symbols, workflow
§ Physical challenge bias – guesture, sound, sight, voice inappropriate
§ Cognitive challenge bias – raise anxiety, poor fit to mental model
§ Enjoyment bias – boring, unengaging, distracting
§ Emotional bias – stressful, anxiety-inducing, frightening
§ Personality bias – workflow, lack of engagement, disconnectedAll Can Apply to TEAM and USERS!!!

5

Human-centric, domain-specific visual models

§ Idea: complex models hard to work with for developers
– And non-develpers!!

§ Represent using more ”human-centric” way – visual metaphors,
visual constructs – “like what sketch on a napkin in a café…” J

§ (very) Large body of work on this (200+ papers):
– Platforms – MViews, JViews, Pounamu, Marama, Horus, …
– Software Engineering uses – Design tool generators, software architecture,

performance engineering, user interfaces, requirements, testing, software
visualisations, traceability, …

– “End-user” Application modelling and generation – Statistical Design
Language, Report Generation Language, Mobile Health App generation,
Business processes, Music, Games, Visual Wikis, …

Design

Tools Methods

6

Example #1: Data integration

§ Scenario: complex XML or EDI message format; want to translate into a
different format; then process e.g. data wrangling, harmonization J

§ Traditionally: write QVT/ATL/XSLT/code to do
§ Alternative: model transformation visually and generate these transformation

implementations
§ Meta-model = source/target and mappings
§ Visual models might include forms, trees, concrete data visualisations
§ Model-driven Engineering = generate XSLT, ATL, Code (C++, Java),…
§ Done various with Orion Health Ltd, XSOL Ltd, NICTA/Data61, …

7

CONVErT – by-example based data mapping/integration/visualisation

7

JVLC2014

Q: How do we incorporate diverse end user

needs e.g. age, background, language, …?

8

Example #2: Mobile Health app generation

§ Scenario: want to model, generate range of eHealth apps
§ Mobile phone-based personal health care planning applications
§ Two meta-models with associated DVSLs: Visual Health Care Planning

Language, Visual Care Application Model
§ Model generic care plan with a visual DSVL tool
§ Configure generic care plan for individual
§ Model mobile app UI for individual from tailored care plan with a visual DSVL

tool
§ Generate Flash, Windows Mobile, iPhone app code

9

VHCPL

ASE2008

Q: How do we incorporate diverse end user

needs e.g. age, culture, gender, language, …?

10

Multi-lingual Requirements Engineering

§ Software developed by teams
§ Teams may be diverse in many ways

– Location
– Language
– Gender
– Culture
– Organization

§ Explored one aspect in Malaysian context with multi-lingual teams (also have
multi-cultural aspect)

§ Added multi-lingual support to Essential use case-based requirements tool

Tools

Requirements

Methods

Team

11

MEReq

Figure 2 outlines our MEReq approach that supports multi-lingual requirements
engineering with EUCs. As shown in Figure 2, a new extraction engine (2) uses an
essential interaction patterns library to map phrases (the essential interactions) to a list
of abstract interactions. This list is then used to generate an initial EUC model in Malay
or English. These models can be further refined by the RE and checked against the
best-practice EUC patterns (developed by reusing our previous approach in [5]) and its
proven enhancement of quality (4). Then, both generated EUC models can be
compared to check for consistency between the different language models (3).
Inconsistency or missing elements in the NL requirements are highlighted.

Table 1. Example English and Malay Essential Interactions

English Essential Interaction
Patterns Library

Malay Essential Interaction Patterns
Library

Essential
Interaction

Abstract
Interaction

Essential Interaction Abstract
Interaction

1. Save record
2. Save information
3. Save data

Save
information

1. Menyimpan data (save
data)

2.
Menyimpanmaklumatp
eribadi(save personal
information)

3.
Menyimpanrekodjualan
(save sales record)

SimpanMa
klumat(save
information)

Figure 2.Overview of our MEReq Approach.

Our MEReq1 tool also uses a more accessible platform of web and mobile-based
(iPad) interfaces than do our previous Eclipse-based toolsets. Using MEReq, the
English and Malay textual natural language requirements are automatically extracted
and visualised as EUC models. The requirements engineer can analyse the interactions
and the essential requirements of both language models of the requirements at the same
time. Then, consistency checking of both models can be done by using the compare
and translate components.

4. Usage Example

Figure 3.Translating English Language Reqirements (1) in an extracted EUC to a Malay Language EUC (2)

1http:// www.mereq.com

1

2

We use an example scenario of reserving a vehicle (PenempahanKenderaan) to
illustrate capture of multi-lingual requirements and consistency checking with MEReq.
Figure 3(1) shows some English language requirements and their extracted EUC.
Figure 3(2) shows the translation of that EUC to Malay. MEReq maps the abstract
interactions and interaction sequences from one language model to the other, taking
into account the differences in the number and sequence of the abstract interactions in
some situations due to differences in expressing the same concept in each underlying
NL. This translation eases the burden on the requirements engineer to communicate
with stakeholders who usually have better understanding of either one of the languages
in use.

Figure 4.Capturing multi lingual (English (1A) and Malay (1B)) Languages Requirements (1) in EUC;
Compare Requirements: English language EUC with Malay language EUC (2)

A

1

1

3

2

1 ASEJ2017

Q: How do we incorporate other SE / end user

issues e.g. culture, gender, age, …?

12

Incorporating end user emotions into software requirements engineering

§ People use software
§ Software is designed to help people perform tasks, solve problems
§ But – people react to software / tasks / situations in various ways
§ One (under-researched) way is emotional reactions to software usage
§ Incorporating emotions / emotional reactions into software requirements,

design, evaluation
§ Applying to eHealth systems

Requirements

13

Example: requirements for the Smart Home

Figure 1. SofiHub’s Emotion Model

Figure 2. Goal Model for SofiHub

The goal model was then used during discussions with the designers and developers
of SofiHub. Each emotional goal was mapped to functionality or design feature of the
system. For example, in order to ensure that the system fit in the lifestyle of people, the
system was designed to be non-intrusive with small devices (sensors) installed within the
house and requiring very limited input from the user. It is similar to a smoke alarm
detector within a house.

To verify and validate the approach taken to achieve the SofiHub smart home, two
sets of trials have been carried out to date. The initial deployment of SofiHub was in-
stalled and tested in ten homes of elderly people, for twelve weeks. A set of
questionnaires and interviews were used as data collection tool prior to the trial, mid trial
and at the end of the trial. The data collected throughout the trial was analysed using our
emotion-oriented content analysis approach.
This provided insight into SofiHub’s technical functions as well as its ability to meet
users’ emotional goals. From this trial, we learned that the participants had a positive
response to having SofiHub in their home.
In particular, users reported that they felt safer, cared about, reassured, supported, less
lonely and that the technology was well integrated in their lives. Key features that
assisted these feelings were the periodic dialogue initiated by SofiHub, contextual
reminders, re- minders and checks on wellbeing using learned behaviours, and the sense
that SofiHub “knew” about the elderly person’s key needs and activities, rather than
being a one-size- fits-all solution. The refinements made to SofiHub from this first trial

JSS 2019

How model, use other factors e.g.

Age, gender, culture, physical challenges, …

14

Reporting usability defects

§ Software typically has a bunch of “defects”
§ Functional and non-functional
§ One under-researched non-functional area are usability defects

– Problems with how users interact with the software
§ How do we currently find, report, fix these?
§ How can we improve the reporting?
§ Better understand current reporting needs: survey, repository mining,

observation
§ New usability defect taxonomy to better characterise usability defects
§ New usability defect reporting tool

Testing

Users

15

Usability Defect Taxonomy & Reporting

!

!

Interface

Interaction

Functionality

Manipulation

Audibleness

Information
presentation

Visualness

Object (screen) appearance

Object (screen) layout

Object (screen) state

Data presentation

Object (screen) naming and
labeling

Non-message feedback

Error, notification and
feedback message

Voice and sound

Audio cues

Text and feedback in speech

Keyboard press

Mouse click

Finger touch

Voice control

Scrolling mechanism

Defect

Task execution

Action

Reversibility

Feedback

Drag and drop

On screen text and results

Zooming

Menu structure

User Difficulty

Failure Qualifier

Human emotion

Overlooked

Better way

Irrelevant

Incongruent
mental model

Missing

Wrong

Task

Adapted from Lelli et al., 2015

Adapted from Keenan, 1999

Adapted from Geng et al., 2014

Adapted from Harkke et al., 2015

Classification adaptation:

Adapted from Vilbergsdóttir et al., 2006

Our proposed categories

TSE2017

How better report human-centric defects e.g.

Age, gender, culture, physical challenges, …

16

Challenges ; Outstanding issues

§ Often software engineers don’t understand / appreciate / not trained in human
aspects of SE

§ Neither it seems do MBIE or ARC (NZ and Oz grant bodies) Assessors …! L
§ Designing and conducting experiments is hard, time-consuming
§ Often need access to practitioners ; convincing them/their bosses a challenge
§ Many issues not yet well explored, but increasing interest in SE community
§ I find them more challenging – but also in many ways more interesting –

projects than the purely technical ones I do
§ Recruiting (very good) students / post-docs to work on can be hard, but I’ve

been pretty lucky to date…
§ IMO – good research in these areas can make a major difference to practice

17

Future work

§ Adding Emotions, accessibility, personalilty etc -> UML etc models
§ Capturing, using further human-centric issues: values, emotions, usability,

accessibility, culture, language, gender, age, … & evaluating software for
these

§ Incorporating multi-lingual, multi-cultural aspects into requirements, design
§ Deep learning + design critics + PM
§ Agile SE Team Climate Inventory & applying in practice
§ Personality of requirements engineers, software architects, project managers
§ DSVLs for Big Data applications, end user config incl security
§ Better principles, tools for human-centric DSVL design & evaluation

18

Summary

§ Human aspects of Software Engineering are fascinating!!
§ There is lots of scope for work here
§ Can apply other discipline approaches, knowledge – Information Systems,

Social Sciences, etc
§ Ultimately humans PRODUCE software and humans USE software
§ Incorporating human perspectives critical to improve software and its

production

19

Questions…

20

References

§ Grundy, J.C, Hosking, J.G., Amor, R., Mugridge, W.B., Li, M. Domain-specific visual languages for specifying and generating data mapping system, Journal
of Visual Languages and Computing, vol. 15, no. 3-4, June-August 2004, Elsevier, pp 243-263

§ Avazpour, I., Grundy, J.C., Grunske, L. Specifying Model Transformations by Direct Manipulation using Concrete Visual Notations and Interactive
Recommendations, Journal of Visual Languages and Computing, Volume 28, June 2015, Elsevier,pp 195–211.

§ Abizer Khambati, John Grundy, John Hosking, and Jim Warren, Model-driven Development of Mobile Personal Health Care Applications, In Proceedings of
the 2008 IEEE/ACM International Conference on Automated Software Engineering, L'Aquilla, Italy, 15-19 September 2008, IEEE CS Press

§ Kamalrudin, M., Grundy, J.C., Hosking, J.G., MaramaAIC: Tool Support for Consistency Management and Validation of Requirements, Automated Software
Engineering, Springer, 2017, vol 24, no 1, pp. 1-45

§ Sallah, N., Mendes, E., Grundy, J.C. Investigating the effects of personality traits on pair programming in a higher education setting through a family of
experiments, Empirical Software Engineering, vol. 19, no. 3, Springer, 2014, pp. 714-752.

§ Kanij, T., Merkel, R., Grundy, J.C. Performance Appraisal of Software Testers, Information and Software Technology, Elsevier, vol. 56, no. 5, May 2014,
Pages 495–505

§ Yusop, N.S.M., Grundy, J.C., Vasa, R. Reporting Usability Defects: A Systematic Literature Review, IEEE Transactions on Software Engineering, vol. 43, no.
9, 2017, pp. 848-867.

§ Ali, N.M., Hosking, J.G., Grundy, J.C., A Taxonomy and Mapping of Computer-based Critiquing Tools, IEEE Transactions on Software Engineering, vol. 39,
no. 11, November 2013.

§ Grundy, J.C. Abdelrazek, M., Kissoon, M., Vision: Improved development of mobile eHealth applications, IEEE/ACM International Conference on Mobile
Software Engineering and Systems (MobileSoft 2018), 27-28 May 2018, Gothenberg, Sweden, ACM Press.

§ Salleh, N., Hoda, R., Su, M.T., Kanij, T. and Grundy, J.C. Recruitment, Engagement and Feedback in Industrial Empirical Software Engineering Studies, to
appear in Information and Software Technology, Elsevier. –

§ Soomro, A.B., Salleh, N., Mendes, E., Grundy, J.C., Burch, G., Nordin, A., The Effect of Software Engineers’ Personality traits on Team Climate and
Performance: a Systematic Literature Review, Information and Software Technology, vol 73, Elsevier, pp 52-65.

