
An Architecture for
Developing Aspect-
Oriented Web Services

Santokh Singh

Professor John Grundy

Professor John Hosking

Dr Jing Sun Computer Science Dept
University of Auckland
New Zealand

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Outline

•  Introduction & Motivation
•  Background knowledge and our

earlier works
–  Aspect-oriented Component Engineering

•  Aspect-Oriented Web Services
(AOWS) and AOConnector

•  Specification of AOWS using Alloy
•  AOWS Dynamic Behaviour
•  Ongoing and Future Work
•  Conclusions

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Introduction
An Aspect-Oriented Web services (AOWS) system

AOUDDI Registry

Web services repository

Flights Services AOWSDL

Payment Services AOWSDL

Hotels Services AOWSDL

Car Rentals Services AOWSDL

Booking Adaptor AOWSDL

Pay & Book

Composite

Testing Agents

Travel Planner
Client

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Introduction

•  Present component-based systems engineering focuses
on low level software component interface design and
implementation.

•  Great setbacks –

Ø  Often results in development of components whose
services are hard to understand and combine.

Ø  Makes too many assumptions about other
components related to it.

Ø  Component documentation is too low level which is
again hard to understand and use at higher levels.

Why did we choose to use CBSE?
• Improves software modularity, reuse, development efficiency.

Why do we need better CBSE methodology?

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Motivation
1.  Web services promises dynamic

application to application
communication.

2.  Current Web Services has limitations as
regards:
Ø  Description
Ø  Discovery
Ø  Integration and
Ø  Consumption.

3.  Factors that cause limitation to be
clearly identified and urgently resolved

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Motivation cont.
•  Low-level software component interface design and

implementation - cumbersome and difficult to comprehend.

–  The larger the software system, the more prevalent and
critical this problem becomes.

•  Problem even in industries producing or refactoring the

code for commercial software tools and systems.

•  Leads to tremendous wastage in terms of time, effort and

resources.

•  A solution needs to be found.

•  We propose Aspect-oriented Component Engineering
(AOCE).

We also need a better CBSE methodology

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Aspect-oriented Component
Engineering

•  AOCE - a new component based software
development methodology.

•  Aims at enabling software engineers develop

efficient, better and more reusable software
components.

•  AO-Components are better characterised and

categorised.

•  Aspect-oriented systems developed using AOCE
are easier to maintain, and are more
understandable and scalable.

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

AO-Components
•  AO-Component main features:

Ø  It constitutes an independent and replaceable part of a
aspect-oriented software system and has a clear function
to fulfil.

Ø  It works within the context of well defined aspect-oriented

software architecture.

Ø  It communicates with other ao-components through its

interface.

Ø  It is highly categorised and characterised with aspectual

information.

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

AOCE Software
AO Components will vertically slice the application

Data processing
comp. Event History Process

Views

Distribution
related services

Software application
built using

AOCE techniques

Process
Users

User Interface
related services

Persistency
related services

Performance
related services

Aspects will horizontally
slice the Components

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Aspects in AOCE

•  Aspects horizontally slice the overall
software system that was vertically
componentised.

•  Aspects characterize specific cross-cutting

functional and non-functional properties of
the components.

•  Examples of Aspects:
 security, persistency, configuration,

collaboration, transaction processing,
distribution, user interface,
performance and resource utilization.

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

AOCE
•  Overview of using AOCE to develop web

service-based software systems

1. AO-Specification
and AO-Designs

3. Deploy Web
Services

2. Implementation
Using AOCE

Fully Componentised
Aspect-oriented Web

services providers

.Car Rentals WS

Hotels Web Services

Flights Web Services

AO-
Adaptors

AO-Client(s)
Validation

Agents

AO-Servers

AO-UDDI

4. Register Web
Services

5. Discover Web
Services

6. Validate and
Integrate Web

Services

AO-WSDL

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

AOCE design for travel planner
components

SearchInterface

BookingInterface

 MakeBooking

Middleware

PaymentManager

TravelItemsManager

TransactionCo-ord

+begin(): void
+commit(): void Database

Provides

Requires

Distribution

Persistency

Security

Transaction

User interface

Aspect
Annotations

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Examples of web service aspects

Travel Planner
Client

findFlights()
bookFlights()
payBookings()
cancelBook()

Flights Search
#1

findFlights()
bookFlights()

Flights Search
#2

findFlights()

Agent #1

bookItems()
doPayment()
undoBooking()

Payment

processPayment()

BTP Service

Register()
Commit()
Rollback()

UDDI

Payment Adaptor
doPayment()
creditReversal()

Security
Authenticate
Encrypt
…

Transaction
BeginMark
CommitMark
Timeout
…

2

1

3

4

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Alloy

1.) Formal modeling language

2.) Based on first-order logic for expressing complex structural
constraints and behaviors.

3.) Essential constructs are:

•  Signature (sig)
•  Function (fun)
•  Predicate (pred)
•  Fact (fact)
•  Assertion (assert)

4.) Alloy can be used to formally model, analyse and verify validity
of models.

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Overview of AOWS architecture

The
relationships
between
subsystems are
represented by
numbers.

Alloy code deals
with
relationships
between the
different
entities.

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Alloy Specification of AOWS
sig AOComponent{

 name : String,
 aoComponentDescription : AOComponentDescription,
 functionalAspect : set FunctionalAspect,
 nonFunctionalAspect :
 set NonFunctionalAspect

}
sig FunctionalAspect {

 type : String,
 aspectName : String,
 aoWSEntryPoint : Boolean,
 standalone : Boolean,
 aspectDetail : FunctionalAspectDetail,
 userOperation : String,
 returnType : String,
 parameter : Parameter

}

sig AOConnector{
 aocomposite : lone AOComposite,
 directlyConnectedAOWS : set AOWSDL,
 newlyAdvertisedAOWSDL : lone AOWSDL,
 chosenAOWSDL : lone AOWSDL,

 oldAOWSDL : lone directlyConnectedAOWS
}
sig AOWebServiceRequester{

 aoconnector : AOConnector,
 newlyAdvertisedAOWSDL : lone AOWSDL

}
sig AOWebServiceProvider{

 aowsdl : set AOWSDL
}
sig AOWSDL{

 aoComponents : AOComponents
}
sig AOComponents{

 name : String,
 aoComponent : set AOComponent,
 aoDocumentation : AODocumentation,
 aoWSDescription : AOWSDescription

}

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Alloy Specification of AOWS cont.

fact { no aowsProvider1,
 aowsProvider2 : AOWebServiceProvider |
 aowsProvider1.aowsdl = aowsProvider2.aowsdl }

fact { all myAOWSDL : AOWSDL |
 (one aowsProvider : AOWebServiceProvider |

 myAOWSDL in aowsProvider.aowsdl) }
pred DirectConnectionToNewAOWS (myAOConnector' : AOConnector,
myAOConnector : AOConnector) {

 --precondition
 myAOConnector.newlyAdvertisedAOWSDL

 !in myAOConnector.aowsdl
 -- update the aoconnector
 myAOConnector'.aowsdl =

 myAOConnector.aowsdl +
 myAOConnector.newlyAdvertisedAOWSDL
}

Facts and predicates, relating providers,
requesters and aoconnectors:

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Alloy Specification of AOWS cont.

sig SearchForHotelDetail {
 type : SearchForHotelDataRetrieval,
 detail : SelectHotel,
 provided : Boolean}

sig SearchForHotelRoomDetail {
 type : SearchForHotelRoomDataRetrieval,
 detail : SelectHotelRoom,
 provided : Boolean}

fact { all searchHotel : SearchForHotel |
 (one searchHotelDetail :
 SearchForHotelDetail |
 searchHotelDetail in
 searchHotel.aspectDetail) }
fact { all searchHotelRoom :
 SearchForHotelRoom |
 (one searchHotelRoomDetail :
 SearchForHotelRoomDetail |
 searchHotelRoomDetail in
 searchHotelRoom.aspectDetail)}

sig SearchForHotel {
 type : Persistency,
 aspectName : String,
 aoWSEntryPoint : Boolean,
 standalone : Boolean,
 aspectDetail : SearchForHotelDetail,
 userOperation : String,
 returnType : String,
 parameter : SearchForHotelParameter}

sig SearchForHotelRoom {
 type : Persistency,
 aspectName : String,
 aoWSEntryPoint : Boolean,
 standalone : Boolean,
 aspectDetail : SearchForHotelRoomDetail,
 userOperation : String,
 returnType : String,
 parameter :

SearchForHotelRoomParameter}

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Example of AOWS model
generated using ALLOY

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Sequence diagram depicting
dynamic service discovery

Dynamic discovery processes like this
can be captured and analysed using

 the Alloy Analyser tool

AOWSRequester AOUDDIAOConnector

DirectConnectionToRequestedAOWS()

SendRequestToAOUDDI

SelectBestAOWS()
ComputeResults()

AOWSProvider

Return()

DirectConnectionToRequestedAOWS()

Return()

CreateRequest()

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Using Alloy to capture AOWS
Dynamic Behaviour

assert TestDirectConnectionToRequestedAOWS {
 all myRequest : Request,

 aowsRequester : AOWebServiceRequester,
 myAOConnector : AOConnector,

 myAOUDDI : AOUDDI,
 myResult : Result,

 myAOWSDL : AOWSDL,
 myAOUDDI' : AOUDDI,

 myAOConnector' : AOConnector |
 {
 CreateRequest (myRequest,

 aowsRequester)
 SendRequestToAOConnector

(aowsRequester,
 myAOConnector)

 SendRequestToAOUDDI (myAOUDDI',
 myAOConnector, myAOUDDI)

 ComputeResultAndTransmit (myResult,
 myAOUDDI, myAOConnector)

 SelectBestAOWS (myAOConnector,
 myAOWSDL)

 DirectConnectionToRequestedAOWS(
 myAOConnector', myAOConnector)

 }
} check
 TestDirectConnectionToRequestedAOWS for 2

Alloy
assertion for

dynamic
service

discovery via
an

AOConnector.

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

AOWS Architecture for
Development

SO
AP

int
er

ac
t

SOAP
interact

<<Security>>
+ authentication
- encode data
- decode data
<<WebService>>
-services
-locate service

<<Distribution>>
+ locate object
- object transfer
<<Persistency>>
+ store/retrieve
data
<<WebService>>
+locate service
AO-WSDL

SOAP/HTTP
Publish

SOAP
bind

<<Transaction
Processing>>
+ commitdata
+ rollback data
- lock data data
<<Distribution>>
+ locate object
- object transfer
<<Persistency>>
+ store/retrieve data
<<WebService>>
+services

Staff Travel Planner Client

Discovery Agencies
(AO-UDDI)

Travel Planner Database

Set of AO-Web
Service Providers e.g.

ItenaryManager,
HotelsWebService etc.

Provider Database

SQL

SQL

SQL

Customer Travel Planner Client

AO-Service Requester Application

HTTP

<<UI>>
+process views

-form/frame

<<UI>>
+process views

-form/frame

<<Persistency>>
+ store data
+retrieve data
- storage media

<<Persistency>>
+ store data
+retrieve data
- storage media

AOConnector

SOAP
find

AOAdaptors

AORuntime
Testing
Agent

<<Persistency>>
+locate and combine multiple
services
<<WebService>>
-services

<<TransactionProcessing>>
+transform aowsdl

AOComposite

AOConnector

SOAPbind

<<Transaction
Processing>>
+ commitdata
+ rollback data
- lock data data
<<Distribution>>
+ locate object
- object transfer
<<Persistency>>
+ store/retrieve data
<<WebService>>
+services

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Travel planner implementation

(a) Travel planner GUI

(b) Example C# code implementing aspects

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Current/Future work

• Investigating
automated AOWS
component discovery
and components
composite
construction.

• Incorporating Multi-
Agents into AOWS.

• Semantic AOWS-
based systems

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Conclusions
AOWS can address issues regarding Web Service’s

description, dynamic discovery and integration
mechanisms.

We successfully carried out the formal specification,

analysis and verification of AOWS using Alloy.

AOWS architecture using the AOConnector object

made web service based systems more
•  modular,
•  understandable
•  maintainable,
•  reusable
•  scalable and
•  clients more lightweight

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

Thank you
very muchJ

This work is supported by the
New Zealand Foundation for Research,

Science and Technology
and

the University of Auckland Research
Committee.

References
•  Singh, S., Grundy, J.C., Hosking, J.G. and Sun, J. An Architecture for Developing

Aspect-Oriented Web Services, In Proceedings of the 2005 European Conference
on Web Services, Vaxjo, Sweden, Nov 14-16 2005, IEEE Press.

•  Wang, Y., Singh, S., Hosking, J.G. and Grundy, J.C. An Aspect-Oriented UML Tool
for Software Development with Early Aspects, Proceedings of ICSE 2006 Workshop
on Early Aspects at ICSE: Aspect-Oriented Requirements Engineering and
Architecture Design, Shanghai, May 2006.

•  Singh, S. Chen, H.C. Hunter, O., Grundy, J.C. and Hosking, J.G. Improving Agile
Software Development using eXtreme AOCE and Aspect-Oriented CVS, in
Proceedings of the 12th Asia-Pacific Software Engineering Conference, Taiwan,
December 2005, IEEE CS Press.

•  Singh, S., Hosking, J.G. and Grundy, J.C. Deploying Multi-Agents for Intelligent
Aspect-Oriented Web Services, In Proceedings of the 2005 Pacific Rim Workshop
on Intelligent Multi-agents, Kuala Lumpur, 14-16 September 2005, Lecture Notes in
Artificial Intelligence, Springer.

•  Singh, S., Grundy, J.C., Hosking, J.G. Developing .NET Web Service-based
Applications with Aspect-Oriented Component Engineering , In Proceedings of the
Fifth Autralasian Workshop on Software and Systems Architecures, Melbourne,
Australia, 13-14 April 2004.

•  Grundy, J.C., Panas, T., Singh, S., Stoeckle, H. An Approach to Developing Web
Services with Aspect-oriented Component Engineering, In Proceedings of the 2nd
Nordic Conference on Web Services, 2003.

•  Grundy, J.C. Multi-perspective specification, design and implementation of
components using aspects, International Journal of Software Engineering and
Knowledge Engineering, Vol. 10, No. 6, December 2000, World Scientific.

Santokh, Grundy,
Hosking, Jing Sun

ECOWS 2005(C)

