
Human-centric (Issues in) Software Engineering

Prof John Grundy

MONASH
INFORMATION
TECHNOLOGY

2

Outline

§ Software Engineering & humans
§ Examples from our work

– Human-centric, domain-specific visual models for non-technical experts to specify and
generate systems

– Personality impact on aspects of software development
– Proactive design critics in software tools to augment human decision making
– Reporting usability defects
– Incorporating end user emotions into software requirements engineering
– Understanding interpersonal issues in agile practices

§ Challenges, issues and future directions

3

Software Engineering & Humans

Project
Management /

team work

Methods

Tools
Evaluation/
testing/QA

Requirements &
Specifications

Design

Construction/
Manufacture
(code/configs)

Software

Processes

Write	code,
Test	code

Design	
softwareGather	from	

users

Work	together!!

Tools	&	methods	to	
support

USE!!!

4

Human-centric, domain-specific visual models

§ Idea: complex models hard to work with for developers
– And non-develpers!!

§ Represent using more ”human-centric” way – visual metaphors,
visual constructs – “like what sketch on a napkin in a café…” J

§ (very) Large body of work on this (200+ papers):
– Platforms – MViews, JViews, Pounamu, Marama, Horus, …
– Software Engineering uses – Design tool generators, software architecture,

performance engineering, user interfaces, requirements, testing, software
visualisations, traceability, …

– “End-user” Application modelling and generation – Statistical Design
Language, Report Generation Language, Mobile Health App generation,
Business processes, Music, Games, Visual Wikis, …

Design

Tools Methods

5

Example #1: Data integration

§ Scenario: complex XML or EDI message format; want to translate into a
different format; then process e.g. data wrangling, harmonization J

§ Traditionally: write QVT/ATL/XSLT/code to do
§ Alternative: model transformation visually and generate these transformation

implementations
§ Meta-model = source/target and mappings
§ Visual models might include forms, trees, concrete data visualisations
§ Model-drive Engineering = generate XSLT, ATL, Code (C++, Java),…
§ Done various with Orion Health Ltd, XSOL Ltd, NICTA/Data61

6

Form-based Mapper

(1)

(a)

(b) (c)

(d)

(e)

(f)

(g)
(h)

JVLC2004

7

CONVErT – by-example based data mapping/integration/visualisation

7

JVLC2014

8

Example #2: Mobile Health app generation

§ Scenario: want to model, generate range of eHealth apps
§ Mobile phone-based personal health care planning applications
§ Two meta-models with associated DVSLs: Visual Health Care Planning

Language, Visual Care Application Model
§ Model generic care plan with a visual DSVL tool
§ Configure generic care plan for individual
§ Model mobile app UI for individual from tailored care plan with a visual DSVL

tool
§ Generate Flash, Windows Mobile, iPhone app code

9

VHCPL

 ASE2008

10

Proactive design critics in software tools

§ Design in software engineering is a challenging task
§ Issues of

– Size of models
– Complexity of models
– Constraints
– “Best practices”

§ Augment (Marama) design tools with proactive ”design critics” to assist
designer

§ Basically a set of (rule-based) advisors/”agents”

Design

Tools

11

MaramaCritic

ALI ET AL: A TAXONOMY AND MAPPING OF COMPUTER-BASED CRITIQUING TOOLS 3

tools in the software design domain. These tools were developed for the domains of LISP programming, object-oriented
analysis and design, design patterns and Java object-oriented software respectively.

The use of the critic concept has not to date been applied within meta-modelling tools that implement domain-specific
visual language (DSVL) tools. Application has mostly been directly into application domains as evidenced above. Meta-
modelling-based DSVL specification tools often employ a constraint definition/specification approach (e.g. MetaEdit+
[37], Pounamu [68], and Marama [35]) that could be used to specify critics. The process of specifying constraints for
meta-modelling tools is, however, complex, requiring good knowledge of programming skills and formal approaches and
involving deep cognitive load. This makes it hard for non-skilled users to understand and use such a constraint-based
approach.

Inspired by existing critic tools, we have applied similar ideas to our Marama meta-modelling toolset [7, 8]. Marama is a
meta-tool implemented as set of Eclipse-plugins and includes meta-tools as well as modelling tools [35]. In general, a
meta-tool is a tool that allows specification and generation of another tool. Our meta-tools are used to generate complex
visual modelling tools, and these modelling tools could benefit from the addition of various critics. Thus, we wanted to
extend our Marama meta-tools by embedding a critic specification component. Furthermore, we wanted to assist end-
user tool developers to specify and generate critics efficiently and easily for DSVL tools. Prior to achieving this, howev-
er, we needed to understand existing critic approaches to help us in designing and developing a critic specification editor
for our Marama meta-tool set. We believed the critiquing approach could be useful and applicable for our Marama meta-
tools though this domain is outside of the initial motivation domain espoused above. This motivated us to develop novel
critic taxonomy to assist us to reason about different kinds of critics.

This paper focuses on our development of a critic taxonomy that is based on combining several approaches for critics,
their definition, and framework supporting their use. This paper also shows the mapping of the critic taxonomy to thir-
teen existing critic tools. We classified information from the critic literature to structure our critic taxonomy. The pur-
poses of our taxonomy are: to provide an overview of the research domain of critics (critiquing systems), to characterize
the features, properties and elements included in the critic domain, and to characterize concrete critic tools (critiquing
systems) and techniques within critic domain.

#
Figure#1.#Our#Proposed#critic#taxonomy.#

! Critic!Domain!

Critiquing!
Approach!

Mode!of!
Critic!
Feedback!

Critic!
Strategy!

Critic!Realisation!
Approach!

Critic!Rule!
Authoring!

Type!of!Critic!
Feedback!

Type!of!critic!

Comparative!
critiquing!

Analytical!
critiquing!

Textual!

Graphical!&!
3Dimension!
Visualisation!

MultiEmodal!

!

!

Insert!new!
critic!rule!

Modify!critic!
rule!

Delete!critic!
rule!

Authoring!
rule!facility!

Enable/!
disable!critic!
rules!

!

RuleEbased!

Predicates!!

KnowledgeE
based!

PatternE
matching!

Programming!
code!

Object!constraint!
language!(OCL)!

!

Active!

Passive!

Reactive!

Proactive!

Local!

Global!

Explanation!

Argumentation!

Suggestions!

Examples!(or!
precedents)!

Simulation!

Demonstration!

Interpretations!

Positive!

Negative!

Constructive!!
!

Completeness!
critics!

Consistency!
critics!

Optimization!
critics!

Alternative!
critics!

Evolvability!
critics!

Presentation!
critics!

Tool!critics!

Experiential!
critics!

Organizational!
critics!

Pattern!critics!

Structure!
critics!

Naming!critics!

Metric!critics! "

26 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, MMMMMMMM 2012

"

"
Figure#25.#Critics#specified#in#the#critic#definer#editor#(bottom)#based#on#the#metaImodel#of#a#simplified#MaramaEML#tool#defined#

in#the#metaImodel#editor#(top).#

The Marama critic definer editor is different from the earlier surveyed tools as it is embedded within a meta-modelling
tool that implements DSVL tools. The twelve preceding critiquing tools are not meta-tools but have a fixed-type of ap-
plication domain. For instance, ArgoUML was developed for the domains of UML (Unified Modelling Language) and
HeRA was built for the software requirements domain. Likewise, Java Critiquer and RevJava were developed for the
domain of Java programming. The Marama meta-tool is used to generate visual modelling tools, and these modelling
tools could benefit from the addition of various critics. Thus, the Marama critic definer editor can specifically assist end-
user tool developers to specify critics for DSVL tools. For instance, a simplified MaramaEML modelling tool developed
using the Marama meta-tool is shown in Figure 26 and once critics are specified by the tool developer critiques can be
generated (as shown in Figure 27). Therefore, any domain of modelling tools can be developed in the Marama-meta tool
and critics can be specified based on the modelling tool domains. The earlier surveyed tools lack this feature.

The Marama critic definer editor provides a visual way of expressing and specifying critics for DSVL tools. Notational
representation of a critic authoring capability is offered to end-user tool developers to specify critics for their DSVL
tools. In addition, a template-based approach, which was designed in a form-based interface, allows easier input of critic
templates into a DSVL tool environment. The combination of a notational representation and a critic-authoring template-
based approach is another useful approach to support end-user tool developers in the critic specification task. This is in
contrast with the twelve previous tools where critics are not specified visually and where the capability of specifying
critics is the responsibility of skilled and knowledgeable software developers. Figure 28 shows the mapping of the
Marama critic definer tool to the critic taxonomy.

ALI ET AL: A TAXONOMY AND MAPPING OF COMPUTER-BASED CRITIQUING TOOLS 27

#

Figure#26.#A#critique#message#is#displayed#when#a#uniqueness#name#critic#is#violated.#

Critic
Domain:

Software
Engineering

(DSVL
tools)

Critiquing
Approach

Modes of
Critic
Feedback

Critic
Rule
Authoring

Critic
Realisation
Approach

Critic
Dimension

Types of
Critic
Feedback

Types
of
Critic

C T IR RB Ave E Co
A G&3D MR KB Pve Ar Com
 MM DR Pr Rve Sug Con
 E/DR PM Pro Ex Opt
 AR OCL Lo Sim Alt
 PC Gl Dem Evo
 Int Pre
 PosF Tool
 NegF Exp
 ConF Org
 Pat
 Str
 Nam
 Met

 "
Figure#27.#The#mapping#of#the#Marama#critic#definer#tool#to#the#critic#taxonomy.#

5.# Comparison#and#Discussion#

We have proposed and illustrated a critic taxonomy based on aspects that characterize critics (or critiquing systems).
These aspects were gathered from the broad critic literature. Our critic taxonomy identifies eight characteristic groups:
critic domain, critiquing approach, modes of critic feedback, critic rule authoring, critic realization approach, critic strat-
egy, types of critic feedback, and types of critic.

To provide a higher-level view of coverage of the various taxonomic elements, Figure 28 shows a simple heatmap visu-
alisation where depth of colour represents numbers of tools exhibiting a particular characteristic from the 13 exemplar
tools categorised using our taxonomy above. Data with low and no value displayed in the heatmap indicate areas where
potential research/future work might be undertaken in exploring seldom-used critic approaches. Alternatively, it may be
that these seldom-used approaches have very narrow applicability compared to others.

TSE2013

12

Multi-lingual Requirements Engineering

§ Software developed by teams
§ Teams may be diverse in many ways

– Location
– Language
– Gender
– Culture
– Organization

§ Explored one aspect in Malaysian context with multi-lingual teams (also have
multi-cultural aspect)

§ Added multi-lingual support to Essential use case-based requirements tool

Tools

Requirements

Methods

Team

13

MEReq

Figure 2 outlines our MEReq approach that supports multi-lingual requirements
engineering with EUCs. As shown in Figure 2, a new extraction engine (2) uses an
essential interaction patterns library to map phrases (the essential interactions) to a list
of abstract interactions. This list is then used to generate an initial EUC model in Malay
or English. These models can be further refined by the RE and checked against the
best-practice EUC patterns (developed by reusing our previous approach in [5]) and its
proven enhancement of quality (4). Then, both generated EUC models can be
compared to check for consistency between the different language models (3).
Inconsistency or missing elements in the NL requirements are highlighted.

Table 1. Example English and Malay Essential Interactions

English Essential Interaction
Patterns Library

Malay Essential Interaction Patterns
Library

Essential
Interaction

Abstract
Interaction

Essential Interaction Abstract
Interaction

1. Save record
2. Save information
3. Save data

Save
information

1. Menyimpan data (save
data)

2.
Menyimpanmaklumatp
eribadi(save personal
information)

3.
Menyimpanrekodjualan
(save sales record)

SimpanMa
klumat(save
information)

Figure 2.Overview of our MEReq Approach.

Our MEReq1 tool also uses a more accessible platform of web and mobile-based
(iPad) interfaces than do our previous Eclipse-based toolsets. Using MEReq, the
English and Malay textual natural language requirements are automatically extracted
and visualised as EUC models. The requirements engineer can analyse the interactions
and the essential requirements of both language models of the requirements at the same
time. Then, consistency checking of both models can be done by using the compare
and translate components.

4. Usage Example

Figure 3.Translating English Language Reqirements (1) in an extracted EUC to a Malay Language EUC (2)

1http:// www.mereq.com

1

2

We use an example scenario of reserving a vehicle (PenempahanKenderaan) to
illustrate capture of multi-lingual requirements and consistency checking with MEReq.
Figure 3(1) shows some English language requirements and their extracted EUC.
Figure 3(2) shows the translation of that EUC to Malay. MEReq maps the abstract
interactions and interaction sequences from one language model to the other, taking
into account the differences in the number and sequence of the abstract interactions in
some situations due to differences in expressing the same concept in each underlying
NL. This translation eases the burden on the requirements engineer to communicate
with stakeholders who usually have better understanding of either one of the languages
in use.

Figure 4.Capturing multi lingual (English (1A) and Malay (1B)) Languages Requirements (1) in EUC;
Compare Requirements: English language EUC with Malay language EUC (2)

A

1

1

3

2

1 ASEJ2017

14

Personality impact on aspects of software development

§ What impact does personality have on software engineering?
§ Pair-programming – influence on the pairs?

– Set of experiments with student teams @ uni Auckland
§ Testing – influence on the individual, the team, the organisation?

– Surveys, observation, job ad analysis, performance assessment, work logs

Testing

Coding

15

Personality & pair-programming (teaching)

dimension summarizes a large number of distinct, more specific personality

characteristics” (p. 105).

Figure 1 The Five-Factor Model (FFM)

Although the FFM and the Big Five have different theoretical underpinnings -

the former is associated with the emergence of personality factors based on

questionnaires, the later based on a lexical hypothesis approach – they are both

referring to the same dimension of personality factors. The Big Five represents a

global term for personality models that consists of five factors. The FFM is a

specific type of the Big Five that consists of the following traits:

• Conscientiousness is concerned with one’s achievement orientation. Those

who have a high score tend to be hardworking, organized, able to complete

tasks thoroughly and on-time, and reliable. On the other hand, low

Conscientiousness relates to negative traits such as being irresponsible,

impulsive, and disordered (Driskell et al., 2006)

• Extraversion relates to the degree of sociability, gregariousness,

assertiveness, talkativeness, and activeness (Barrick & Mount, 1991). A

person is considered an extravert if he/she feels comfortable in a social

relationship, friendly, assertive, active, and outgoing.

• Agreeableness refers to positive traits such as cooperativeness, kindness,

trust, and warmth. A person who is low on Agreeableness tends to be

skeptical, selfish, and hostile. A team that requires a high level of

collaboration or cooperation can benefit from agreeable team members.

• Neuroticism refers to the state of emotional stability. Someone low in

Neuroticism tends to appear calm, confident, and secure, whereas a high

Openness
 to Experience Conscientiousness Extraversion Aggreableness Neuroticism

Ideas, Values, Fantasy,
Aesthetics,
Feelings, Actions

Warmth,
Gregariousness,
Assertiveness,
Activity, Excitement
Seeking, Positive
Emotions

Competence, Order,
Dutifulness,
Achievement Striving,
Self-Discipline,
Deliberation

Trust, Altruism,
Compliance,
Modesty, Tender-
Mindedness,
Straightforwardness

“Big Five” traits

Anxiety, Angry
hostility, Depression,
Self-Consciousness,
Impulsiveness,
Vulnerability

Lower level
(also known
as “facets”)

Broad
level

Table 2 Formal experiments characteristics
Experiment Exp 1 Exp 2 Exp 3 Exp 4

Semester: Summer 2009 Semester 1, 2009 Semester 2, 2009 Semester 1, 2010

Sample size: 48 214 118 137

Course: CS101 CS101 CS101 CS101

Subjects:
First year

undergraduate

First year

undergraduate

First year

undergraduate

First year

undergraduate

Tutorial settings:
• Compulsory
• 2 hours
• Closed-lab

• Compulsory
• 2 hours
• Closed-lab

• Compulsory
• 2 hours
• Closed-lab

• Compulsory
• 2 hours
• Closed-lab

Personality
factor (IV):

Conscientiousness Conscientiousness Neuroticism Openness to
Experience

In all experiments, subjects came from various ethnic backgrounds; the

majority being the NZ/Pakeha, and Chinese. Other ethnic groups included South

Korean, Asian, Indian, Middle Eastern, African, and Pacific Islanders. The

samples used for our analysis were those who have consented to participate and

completed the personality test and have taken either the midterm test or final

exam. Table 2 summarizes the characteristics of each of the formal experiments.

In the first experiment (Exp 1), we hypothesized that there would be

differences in performance between groups of paired students with similar and

mixed Conscientiousness. In the second (Exp 2), we investigated whether different

levels of Conscientiousness (low/medium/high) could have had an impact on

paired students’ academic performance. In Exp 3, we investigated whether

differences in levels of Neuroticism (low/medium/high) when pairing had

significant impact on students’ academic performance. Finally, the fourth

experiment (Exp 4) investigated the effects of Openness to experience on

students’ academic performance when pairing. In the following subsections we

summarize the findings in terms of correlations between factors (both IV and

DVs), and present an overall analysis based on the hypothesis testing of each

experiment and the results from the post-experimental surveys. We included in the

analysis the results from the power analysis which were not published before.

5.1 Findings on Correlation

Table 3 presents the aggregation of the bivariate Pearson correlation results

between the three personality traits employed in this research and the

corresponding measures of paired students’ performance. There was a significant

positive correlation between Conscientiousness and paired students’ performance

in assignments for two of the four experiments, suggesting that the performance in

assignments was largely related to how conscientious the students were, and less

related to their Neuroticism or Openness to experience levels. However, students’

performance in the midterm test and final exam appeared to be mostly

significantly and positively correlated with students’ level of Openness to

experience. In Exp 3 and Exp 4, Conscientiousness showed a significant positive

correlation with most academic performance criteria. Overall, paired students’

academic performance was not associated with students’ Neuroticism levels.
Table 3 Results on correlations (FFM vs academic performance)
Personality
Factor Exp. Correlation (r)

Assign. MidTerm Final
 1* 0.29** 0.07 -0.05
Conscientiousness 2* -0.03 -0.11 -0.08
 3 0.19** 0.19** 0.15
 4 0.17** 0.19** 0.18**
 1 -0.17 -0.04 -0.03
Neuroticism 2 0.02 -0.04 -0.04
 3* 0.05 -0.01 0.01
 4 0.04 -0.02 -0.00
 1 0.15 0.35** 0.29**
Openness to 2 0.21** 0.13 0.22**
 3 0.01 0.23** 0.15
 4* 0.15 0.18** 0.17**

 N(Exp 1) = 48; N(Exp 2) = 214; N(Exp 3) = 118, N(Exp 4)=137
(*) Personality factor is controlled

 (**) Significant at α < 0.05

5.2 Hypothesis Testing

We used a single factor multivariate analysis (MANOVA) in Exp 1 to analyze

whether there was any significant difference in academic achievement between

paired students of similar and mixed Conscientiousness levels. MANOVA linearly

combines several dependent variables in a single analysis, where variables need to

be correlated at a low to moderate level (Leech et al., 2005). Herein, assignments,

test, and final exam scores were analyzed simultaneously using the General Linear

Model program in SPSS. Table 4 provides mean values and standard deviation

values for assignments, test and final exam scores, for each group. Mean

differences are almost the same for assignments’ scores but somewhat different

for the midterm test and final exam scores. The ‘N’ column indicates the sample

size. In Exp1, there were 22 pairs of similar Conscientiousness (i.e. homogeneous)

and 21 pairs of mixed Conscientiousness.
Table 4 Mean and standard deviations (Exp 1)

DV Personality Type N Mean SD

Assignments Similar Conscientiousness 22 13.07 2.08
 Mixed Conscientiousness 21 12.48 2.53
 Combined 43 12.78 2.30

ESE2014

16

Tester personality & appraisals

Figure 2: Dimension 2 of our proposed PAF

assigned varying weights. The standard scale labels [13] is associated with
this dimension. The standard is considered as the average number of bugs
which is highly dependent on the project, so no range or number is specified
and should be decided by the appraiser.

Dimension 4- Bug count (compared to the severity of found bugs): This
dimension considers the severity of the found bugs in regard to the frequency
of finding those. Four levels of severity are adopted from [14]. The weights
of the di↵erent levels of severity are assigned from our experience.

Dimensions related to work behaviour: We have collected and anal-
ysed the job descriptions of software testers in the popular recruitment web
site [15] over a period of five days. We found the responsibilities of testers
can be classified in two broad classes - test planning and execution of tests.

Dimension 5- Assessment of performance in test planning: This dimen-
sion uses frequency scale labels [13] with five choices. Since this dimension is
related to work behaviour and frequency scale helps to assess how often cer-
tain behaviour is displayed, frequency scale was considered most appropriate
for this dimension.

Dimension 6 - Assessment of performance in executing tests: This di-

7

Figure 3: Dimension 3 of our proposed PAF

8

Figure 4: Dimension 4 of our proposed PAF

Figure 5: Dimension 5 of our proposed PAF

9

IST2014

Figure 8: Overall score of our proposed PAF

rating line charts. The results from a whole testing team could be graphed
with bar charts of number vs rating.

5. Methodology

A personal opinion survey [18] was used to conduct our survey. Compared
to other available research methods, a survey enabled us to collect opinions
of higher number of participants in limited available time [19]. The design
of the survey was by following the steps as suggested by Kitchenham and
Pfleeger [18], and these are presented in the following subsections.

5.1. Setting the Objectives

The two main objectives of the research were to (i) collect information
about the state of practice of performance appraisal of software testers; and
(ii) collect feedback on a proposed Performance Appraisal Form (PAF) for
software testers. Accordingly, the research was divided in two sections.

5.2. Survey Design

We used a web-based survey and prepared a data collection tool con-
taining a self-administered questionnaire. The benefit of using a web-based,
self-administered questionnaire is that the participants can respond at their
own convenience. A potential disadvantage of web-based survey is the gen-
eralization of the sample.

12

17

Reporting usability defects

§ Software typically has a bunch of “defects”
§ Functional and non-functional
§ One under-researched non-functional area are usability defects

– Problems with how users interact with the software
§ How do we currently find, report, fix these?
§ How can we improve the reporting?
§ Better understand current reporting needs: survey, repository mining,

observation
§ New usability defect taxonomy to better characterise usability defects
§ New usability defect reporting tool

Testing

Users

18

Usability Defect Taxonomy & Reporting

TSE2017

!

!

Interface

Interaction

Functionality

Manipulation

Audibleness

Information
presentation

Visualness

Object (screen) appearance

Object (screen) layout

Object (screen) state

Data presentation

Object (screen) naming and
labeling

Non-message feedback

Error, notification and
feedback message

Voice and sound

Audio cues

Text and feedback in speech

Keyboard press

Mouse click

Finger touch

Voice control

Scrolling mechanism

Defect

Task execution

Action

Reversibility

Feedback

Drag and drop

On screen text and results

Zooming

Menu structure

User Difficulty

Failure Qualifier

Human emotion

Overlooked

Better way

Irrelevant

Incongruent
mental model

Missing

Wrong

Task

Adapted from Lelli et al., 2015

Adapted from Keenan, 1999

Adapted from Geng et al., 2014

Adapted from Harkke et al., 2015

Classification adaptation:

Adapted from Vilbergsdóttir et al., 2006

Our proposed categories

19

Incorporating end user emotions into software requirements engineering

§ People use software
§ Software is designed to help people perform tasks, solve problems
§ But – people react to software / tasks / situations in various ways
§ One (under-researched) way is emotional reactions to software usage
§ Incorporating emotions / emotional reactions into software requirements,

design, evaluation
§ Applying to eHealth systems

Requirements

20

Example: requirements for the Smart Home

Figure 1. SofiHub’s Emotion Model

Figure 2. Goal Model for SofiHub

The goal model was then used during discussions with the designers and developers
of SofiHub. Each emotional goal was mapped to functionality or design feature of the
system. For example, in order to ensure that the system fit in the lifestyle of people, the
system was designed to be non-intrusive with small devices (sensors) installed within the
house and requiring very limited input from the user. It is similar to a smoke alarm
detector within a house.

To verify and validate the approach taken to achieve the SofiHub smart home, two
sets of trials have been carried out to date. The initial deployment of SofiHub was in-
stalled and tested in ten homes of elderly people, for twelve weeks. A set of
questionnaires and interviews were used as data collection tool prior to the trial, mid trial
and at the end of the trial. The data collected throughout the trial was analysed using our
emotion-oriented content analysis approach.
This provided insight into SofiHub’s technical functions as well as its ability to meet
users’ emotional goals. From this trial, we learned that the participants had a positive
response to having SofiHub in their home.
In particular, users reported that they felt safer, cared about, reassured, supported, less
lonely and that the technology was well integrated in their lives. Key features that
assisted these feelings were the periodic dialogue initiated by SofiHub, contextual
reminders, re- minders and checks on wellbeing using learned behaviours, and the sense
that SofiHub “knew” about the elderly person’s key needs and activities, rather than
being a one-size- fits-all solution. The refinements made to SofiHub from this first trial

MobileSoft2018

21

Understanding interpersonal issues in agile practices

§ Team climate
– How does a “team climate” impact Agile software development?
– Can we characterise good (and bad) team climates
– Extending the TCI (Team Climate Inventory) to Agile Software TCI…

§ Recruitment, engagement, translation in ESE research
– This one is about human reactions to Empirical Software Engineering RESEARCH(ERS)!
– How do we recruit participants to our ESE studies?
– How can we keep them engaged, participating, answering surveys etc?
– How do we translate lessons learned to SE practice?

Teams Processes

22

Team Climate +Agile SE

IST2016

13

among the group members which can lead to the decrement in team stability. However any
prescribed high or low level for self-esteem and dependability was not reported in [PTC2]. Table 11
shows the personality factors addressed in the primary studies included in our SLR.

Table 11: Significant Personality Factors Affecting Software Team Performance

Study ID Personality Factors
Positive Impact Negative Impact

[PTC3][PTC4][PTC12] [PTC21] Extraversion N/A
[PTC15][PTC16] Interpersonal Communication N/A
[PTC9] Self efficacy N/A
[PTC15] Comfortable and Compromise N/A
[PTC4] Mental Ability and Expertise N/A
[PTC2] N/A Self-esteem, locus of control,

introversion/extroversion, authoritarianism,
dogmatism and dependability

4.2.2 What are the key factors in team climate composition that have been addressed or
investigated in software development teams/projects? (RQ2)

Team Climate is referred to as the exchange of ideas and perceptions among team members
favourably promoting innovation in work processes [11]. Anderson & West [10] used two
approaches to define team climate known as “the cognitive schema approach” and “the shared
perception”. The cognitive schema approach refers to an individual’s constructive representation of
their work environments and the second approach represents the shared perceptions of
organizational policies, procedures and practices.

In our study it has been discovered that some studies included the terms “organizational climate”
[PTC11], “group cohesion” [PTC13][PTC14][PTC17] and “collaboration” [PTC2][PTC3] as alternative
terms for team climate. The term “organizational climate” included the factors high standards of work
tasks, effective supervision, intrinsic fulfilment and role clarity [PTC11]. In [PTC13] the cohesive
groups are characterized by high levels of member attraction to the group, mutual liking,
cooperation, and positive feelings about carrying out the group's tasks [48–50]. [PTC17] presented
the term “group cohesion” as “an individual’s sense of belonging to a particular group and his or her
feelings of morale associated with membership in the group” (pg. 58) [51]. [PTC13] reported that
highly cohesive software development groups have positive influence on their performance.

[PTC3] has reported the term “collaboration” as one of the factors of social behaviour. Collaboration
along with other factors of social behaviour including aggression, cooperation, and individuals’
affiliation with other individuals must be managed among software engineers to improve team
performance. In [PTC5] the term “team climate” includes two characteristics or elements: i)
Uncertainty: i.e. the type of team climate considered as "efficient", "excitation", "neutral", and it may
be "negative", and ii) Performance: i.e. the type of team climate that has an important impact on team
performance. It is further stated that the “team climate factors” are responsible to form the “scene”.
Every single team climate factor in the “scene” is considered as the condition to bring the type of
“team climate” or the condition to increase the impact on team performance [PTC5].

In [PTC5] the major team climate factors are called as “triggering factors”. These factors are play
advantages and abilities, job importance, clear work requirements, teamwork and support, commit to
doing high quality work, and recognize or praise [PTC5]. These six triggering factors have been
analyzed individually by conducting survey among project managers, and it is reported that the team
climate influences the team members’ enthusiasm and this consequently results into positive
inclination in software teams’ performance. [PTC7] and [PTC10] reported that team climate has
direct impact on software development team productivity and can lead to higher performance.

Another term known as “input-throughput-output” [52] [PTC19], where the intermediary term
“throughput” is composed of interaction among team members, exchanging of information, decision-

14

making participation pattern and social support. [PTC9] studied the “agile team environment”
composition factors that include whole team involvement, agile values (trust, openness and respect
during team interactions), culture of action & change (in terms of bringing progress and
improvement in team activities) and collective thinking (see Table 12). In [PTC18] project team
composition is defined in two terms: i) project team member composition and ii) project task. It was
reported that they are significantly correlated with project performance. In [PTC33] the term “IT
team climate” is explored with the influence of Confucian work ethic. The authors defined team
climate as companies norms reflected by employees’ behaviour [53] .

Table 12: Team Climate Compositions
Term Factors of Composition Study ID#
Team climate Vision, participative safety, task orientation and

support for innovation
[PTC7][PTC10]

Organizational climate High standards of work tasks, effective
supervision, intrinsic fulfilment and role clarity

[PTC11]

Group cohesion Members’ affiliation with the group, mutual
liking, cooperation, and task responsibility

[PTC13][PTC14][PTC17]

Collaboration Aggression, cooperation, and individuals’
affiliation with other individuals

[PTC2][PTC3]

Triggering factors Play advantages and abilities, job importance,
clear work requirements, teamwork and
support, commit to doing high quality work, and
recognize or praise

[PTC5]

Agile team environment Whole team involvement, agile values, culture of
action and change, and collective thinking

[PTC9]

Through-put Team members’ interaction, exchanging of
information, decision-making participation
pattern and social support

[PTC19]

Team Processes Communication, conflict and cohesion [PTC14]
IT Team climate N/A [PTC33]

4.2.3 Which software team climate factor(s) has effects on software team performance? (RQ3)

In total, 12 out of 35 studies were found relevant to answering our RQ3. Although the term software
team climate is not used directly in many studies, alternate terms have been used in some studies. As
reported in nine (9) studies, collaboration, cooperation, coordination, collective thinking and cohesion
were considered as alternate terms to each other and has potential to improve the efficiency and
performance of software teams [PTC2], [PTC3], [PTC5], [PTC7], [PTC9], [PTC10], [PTC13], [PTC17],
[PTC18] (see Table 13).

Role allocation to a team member in a software development team is the second most focused factor
of team climate that was reported as affecting software teams’ performance [PTC2][PTC5][PTC11].
Role allocation is defined as “assigning responsibilities to each team member according to their
capabilities” [PTC2]. [PTC9] focused on agile team methodologies and reported that the whole team
awareness and constant feedback on delivery of working software to the individual team member is
reported as the binding force and source of motivation in cohesive teams.

Participatory safety, which is one of the inventories of team climate [10] is also reported as a
significant factor affecting software teams’ performance [PTC7][PTC10]. West [54] defined
participative safety as “Participativeness and safety are characterized as a single psychological
construct in which the contingencies are such that involvement in decision-making is motivated and
reinforced while occurring in an environment which is perceived as interpersonally non-threatening”
(pg. 311).

[PTC5] identified 20 team climate factors out of which 6 major factors namely were play advantages
and abilities, job importance, clear work requirements, teamwork and support, commit to doing high
quality work, and recognition or praise. In [PTC5], the potential impact of these six triggering factors

16

Table 14: Measures used for Team Performance
Study ID# Measures

PTC4 Correctness, Duration, Methodology, Extensibility, Cost Effectiveness, Redesign,
Regression grade

PTC7 Hoegl and Gemuenden (2001)
PTC13 Group Characteristics(Group Cohesiveness, Group Experience and Group Capability)
PTC14 Cost, Time and Scope
PTC19 Quantity, Quality, Speed, Customer Satisfaction Degree
PTC17, PTC18, PTC20 Henderson & Lee (1992)
PTC28 Jiang et al. (1997)

PTC35 Effective leadership, Intra-team communication, Group cohesion and Personality
heterogeneity

 [PTC7] used Hoegl & Gemuenden [57] to assess team performance based on two factors:
effectiveness (the degree to which project goals were achieved) and efficiency (the degree to which
the project was on-time and on-budget). Hoegl & Gemuenden [57] presented a comprehensive
concept of collaboration in teams and named it Teamwork Quality (TWQ). The TWQ construct has six
measures: i) communication, ii) co-ordination, iii) balance of member contributions, iv) mutual support,
v) effort and vi) cohesion.

Henderson & Lee [58] instrument is based on subjective measures and reported in three (3) primary
studies [PTC17], [PTC18] and [PTC20]. They have measured the performance by taking non-team
stake-holders as a subject. Stakeholders are defined as “individuals who were not formal members of
the project but were directly affected by the output of the team or could directly affect the team's
performance” [PTC17][PTC18][PTC20].

The [PTC20] used the Henderson & Lee [58] instrument and perceptual measures for team
performance. The [PTC20] measures included: i) the quality of the software, ii) the ability of the team
to work together effectively, iii) the efficiency of the team and iv) satisfaction with the resulting product.
In [PTC17], the authors report the dimensions of team performance as efficiency, effectiveness and
timeliness. These three variables were also measured by items based on scales developed by
Henderson & Lee [58].

Cost incurred is also considered as an important factor to measure performance in [PTC4], [PTC7],
[PTC14] and [PTC18]. In [PTC4] Cost effectiveness is defined as simplicity and reusability of the
software code and in [PTC20], cost variance is one of the objective measures of software team
performance. Efficiency in [PTC7] has been defined in two terms: i) the degree to which the project
was on-time, and ii) on-budget.

Another study [PTC13] presented three variables group cohesiveness, group experience and group
capability that can help in measuring software team’s performance. These three variables were
defined as three main characteristics of software development groups. It is reported [PTC13] that
cohesiveness had largest influence on team performance after which the capability variable has
shown influence and the third variable experience had weakest influence on group performance.

[PTC14] specifically stated three factors that can be used to measure performance: i) cost, ii) time,
and iii) scope. [PTC19] recommended implementing the team compensation to evaluate team
performance. They referred many definitions for individual and team performance but did not
mention any particular measurement tool or instrument. [PTC22] carried out research on student
teams practically involved in large-scale software development projects from industry. In [PTC22]
past and current academic grades given by clients and managers were used to measure the
individual performance. [PTC35] carried out case research on two IS teams’ performance. In [PTC35]
four factors namely effective leadership, intra-team communication, group cohesion and personality

15

has been analysed individually by conducting survey among project managers, and it is reported that
there is a significant relationship between team climate factors and team performance. The team
climate influences the team members’ enthusiasm and this consequently results into positive
inclination in software teams’ performance.

In one study [PTC17] reported that cohesion is not related with software teams’ performance,
however user representativeness and team members’ involvement in system design can affect software
teams’ performance.

The study [PTC18] included project team characteristics namely team member composition and
project task. Project team member composition includes member familiarity, background diversity, or
gender diversity, flexibility in job assignment and age. The project task characteristics have three
dimensions: task variety, task importance, and task identity. It is reported in [PTC18] that project
team characteristics have a very high impact on software teams’ performance.

The primary studies [PTC32] and [PTC34] focused on communication. It is reported that facilitating
good communication can produce a good atmosphere. The term atmosphere has been used to
represent the soft environmental factors which have direct association with the performance [55,56].
Sudhakar et al. [34] listed soft factors in their research which are team climate, team diversity, team
innovation, team member competencies and characteristics, top management support and team leader
behaviour.

Table 13: Significant Team climate factors affecting Team Performance
Studies Significant Not Significant

[PTC3][PTC9][PTC13] Collaboration, cooperation, coordination N/A
[PTC5] Play advantages and abilities, job importance, clear work

requirements, teamwork and support, commit to doing high
quality work, and recognize or praise

N/A

[PTC7] Commitment, trust, and coordination N/A
[PTC9] Agile values(trust, openness and respect) and collective

thinking
N/A

[PTC2][PTC11] Role allocation N/A
[PTC7] [PTC10] Participatory safety N/A
[PTC18] Composition and project task N/A
[PTC17] User representativeness and team members’ involvement in

system design
Cohesion

[PTC32][PTC34] Communication N/A

4.2.4 How software teams’ performance is measured? (RQ4)

A total of twelve (13) studies, out of 35 studies, provided evidence to answer RQ4. These studies
document various factors that have been used to measure team performance. Table 14 shows the
instruments used to measure performance of a software team.

In [PTC4] the measures for team performance are mentioned as Correctness, Duration, Methodology,
Extensibility, Cost effectiveness, Redesign and Regression grade. The time or time duration, on-time,
timeliness or schedule have been commonly used in four (4) studies [PTC4], [PTC7], [PTC14], [PTC18]
to measure team performance.

23

To appear in Information and Software Technology Salleh et al., 2018

8

Fig. 1. Challenges of research carried out in industrial contexts across three key phases: recruitment, engagement,
and feedback

A couple of examples of how challenges were derived from the analysis is shown here. A challenge
encountered in study underpinning [21] was: “As a new researcher, I knew only a few industry people
with Software Architecture background making recruitment even harder.”

This challenge naturally fell under the recruitment theme. Since the challenge was related to finding
participants, it was further categorized under finding participants.

Other entries described challenges with appropriate ways of inviting participants, for example this
challenge faced in study underpinning [15]: “We sent a long email to potential participants explaining
details of the purpose of the survey, the expected outcome, benefits of the survey and the ethics approval
details. This appeared not really helpful, using shorter, concise email text was rather effective.”

It was evident that long and detailed invitations were not effective. Thus, part of the recruitment problem
was the type of invitations being sent out, i.e. a challenge with inviting participants. Given the
intertwined nature of these two issues, the challenge of inviting participants was later combined with that
of finding them (as described earlier) to produce the revised and final sub-theme ‘finding and inviting
industry participants’.

3.4 Forming Challenge Themes and Questions and Identifying Examples

We also phrased the challenges using short, direct questions to better represent the crux of the challenge
and improve relevance for readers. For example, How and where can I find the right industry
practitioners? and How do I invite them to become participants? were associated with the theme finding
and inviting industry practitioners as one of the first challenges most researchers face during the first
phase of research carried out in industrial contexts, recruitment.

Similarly, a set of questions such as How can I make the most effective use of industrial participants’
time? How should I design my industrial data collection instruments and techniques? were associated
with the challenges faced in the second phase of research carried out in industrial contexts, engagement.

 Recruitment

Designing studies of
interest to industry

Finding and inviting
industry practitioners

Gaining ethics approval
for industrial research

Engagement

Approach to designing
industrial data
collection instruments
and techniques

Making effective use of
industrial participants’
time

Approach to conducting
industrial data
collection

Feedback

Sharing findings with
industry

Empirical Software Engineering Research + practitioners

To appear in Information and Software Technology Salleh et al., 2018

11

FEEDBACK	TO	
INDUSTRY	

Sharing	findings	with	Industry	
	
“What	 mechanisms	 can	 I	 use	 to	 share	
research	 findings	 with	 my	 participants	 and	
other	industry	practitioners?”	

● Various	 industry-friendly	 formats	 and	 mediums	
should	 be	 employed	 to	 share	 findings	 with	 the	
industry,	 including	 short	 videos,	 posters,	 brief	
reports	 of	 main	 takeaways,	 and	 talks	 or	
presentations	to	industry	at	industry-focused	events	
to	meet	industry	standards	and	expectations	

● Results	should	be	shared	after	all	data	collection	at	
a	given	company	is	complete	so	as	not	to	bias	other	
participants	from	the	same	company.

4 RECRUITMENT
Empirical software engineering researchers need to design studies of interest to practitioners, locate
suitable industry practitioners for their studies; recruit them to participate in their studies; and ensure their
studies are carried out adhering to required ethical processes and policies, including data security.

4.1. Designing studies of interest to industry

Challenge “Why aren’t they interested in my really important software engineering research?”

Arguably the most frustrating problem for empirical SE researchers in recruitment is a lack of industry
practitioner interest in what the researchers perceive to be very important studies for the discipline
[1][25]. In our experience, practitioners predominantly want to take part in studies of close interest to
their job area, that may make a difference in their current workplace, that they feel are of practical value
to the industry, and where there is cost-benefit for them personally i.e. the benefit they gain versus the
demand on their time is positive. In contrast, researchers may perceive a much larger challenge or
problem in software engineering practice that, while an empirical study would provide a useful research
contribution, its short-term practical benefit is unclear.

Solutions

We found this to be a key issue in our own early surveys around tester personality. It is a very interesting
research problem as to what impact tester personality has on tester performance, but the benefit to
practitioners participating in very detailed personality analysis data collection was unclear to them,
resulting in low take-up. In subsequent studies, we used much more lightweight data collection as well as
much more clearly articulated immediate benefit to participants from our study. For example, in [14] we
modified the survey design where participants no longer required to use our proposed performance
appraisal form. Instead, the form was presented to the participants for review and then the feedback
questionnaire was presented. The lightweight survey took around 15-20 minutes to complete. This
produced much higher responses to the survey.

Establishing a strong and wide network with the practitioner community helps researchers to better
understand their interests and needs. We drew on our considerable relationships with the Agile
community [4] and tester community [15] as motivation for our studies in these areas. Furthermore,
detailed interviews, observations or discussions with industry participants in our testing tools [18], agile
teams [4], and software AD usage studies [21] all helped informing us of current and potential future

To appear in Information and Software Technology Salleh et al., 2018

9

Finally, questions such as What are the best mechanisms to share research findings with industry?
constituted the challenges faced in the last phase of research carried out in industrial contexts, feedback.
Collectively, these make up the most pertinent questions we as industrial researchers faced during our
various studies. Not all studies encountered every challenge. However, we included the challenges that
were most common across multiple studies.

3.5 Forming Challenge Solutions and Identifying Examples

We then extracted identified solutions to each of the challenges as reported in our publications, using each
reported study as an exemplar of applying the solution. Along with this we also collaboratively listed
solutions to each of the challenge based on experience and recommendations from our own practice and
those previously reported e.g. in [1][25][26][27]. Another interesting observation is that sometimes a
researcher had faced a challenge but did not necessarily have a solution, while another researcher had not
faced the same challenge on account of having a useful strategy to avoid the challenge. This helped
formulate solutions to all challenges, representing our collective experiences. It also added to our
collective knowledge and repertoire of research strategies.

Table 4 summarises the key recommendations based on the challenges that we extracted from our studies
analysis. In the following three sections, we present and discuss the key challenges that we have
encountered in conducting our empirical SE research studies involving industrial stakeholders; the
solutions we have found useful in avoiding or overcoming these challenges; exemplars of these
challenges, solutions, and lessons learned, and our overall recommendations for other researchers for their
studies.

Table 4
Themes (challenges) extracted from our studies analysis along with recommendations for each phase of research carried out in
industrial contexts (recruitment, engagement, and feedback) from our analysis

Industrial	
Research	Phase	

Challenges/Questions	 Recommendations	

RECRUITMENT	
	
	
	
	
	

Designing	studies	of	interest	to	industry	
	
“Why	 aren’t	 they	 interested	 in	 my	 really	
important	software	engineering	research?”	

● Network	 with	 local	 practitioner	 community	 to	
identify	 their	 interest	 and	 refine	 research	 focus	
accordingly

● Pilot	study	early	to	acquire	practitioners’	interest	
● Use	practitioner	feedback	to	guide	future	studies

Finding	and	Inviting	Industry	Practitioners	
	
“I	don’t	know	them	and	they	don’t	know	me”
	

● Get	 genuinely	 involved	with	 and	 contribute	 to	 the	
local	 practitioner	 community	 to	 build	 a	 strong	
reputation	as	a	genuine	researcher	and	contributor.

● Approach	managers	 and	 team	 coaches	 as	 they	 are	
critical	 source	of	 access	 to	 recruit	more	 individuals	
in	their	teams,	and	sometimes	the	full	teams.

● Approach	 online	 groups	 through	 moderators	 to	
improve	authenticity.

● Craft	 the	 call	 for	 participations	 (CfPs)	 carefully	 to	
avoid	a	‘spam	effect’

● Prepare	a	 small	 invitation	email	with	 catchy	 slogan	
to	attract	participation

● Hire	 enumerators	 where	 necessary	 to	 help	 recruit	
participants

● Perform	 snowball	 sampling	 (or	 word	 of	 mouth	

To appear in Information and Software Technology Salleh et al., 2018

10

references)	to	reach	wider	participation
● Begin	recruiting	‘at	home’	(locally)	before	venturing	

out	 internationally,	 through	 opportunities	 at	
conferences	and	events,	to	build	local	relationships

Gaining	Ethics	Approval	for	research	carried	
out	in	industrial	contexts	
	
“How	do	 I	 increase	 industry’s	 confidence	 that	
my	 research	 is	 being	 conducted	 correctly	 so	
that	they	are	more	likely	to	participate?”	

● State	 clearly	 the	 method	 used	 to	 ensure	
confidentiality,	 consent,	 anonymity,	 and	 data	
security	 in	 the	 participant	 information	 sheet	 to	
improve	industry	confidence

● Ensure	 an	 appropriate	 safety	 protocol	 is	 defined	
and	 agreed	 and	 ensure	 practitioner	 manager	
informed	consent	is	obtained	to	comply	with	ethics	
regulations

ENGAGEMENT	 Approach	to	designing	industrial	data	
collection	instruments	and	techniques	
		
“How	do	 I	 design	 data	 collection	 instruments	
and	 techniques	 that	 promote	 industrial	
engagement?”	

● Perform	 pilot	 data	 collection	 and	 refine	 before	
approaching	 industrial	 participants	 to	 improve	
industrial	relevance

● Design	demographic	surveys	to	capture	basic	details	
prior	 to	 the	 main	 data	 collection	 session	 to	
customize	 and	make	 the	most	 of	 face-to-face	 time	
(primarily	 applicable	 for	 interview-based	 and	
observational	studies)

● Questions	should	be	designed	to	achieve	high	clarity	
to	 help	 elicit	 useful	 responses	 (simple	 language,	
clear	instructions	and	avoiding	jargon)

● Surveys	 should	 aim	 for	 an	 appealing	 presentation,	
and	adequate	layout	to	improve	completion	rates

● Specialised	 data	 collection	 tools	 must	 be	 secure,	
reliable	 and	 accessible	 as	 well	 as	 professional-
looking	to	attract	and	sustain	industry	interest

Making	effective	use	of	industrial	participants’	
time	
	
“How	do	I	make	the	most	out	of	my	industrial	
participant’s	time?”	

● Be	flexible	with	meeting	schedules	to	accommodate	
busy	professionals

● Schedule	one	or	two	additional	backup	slots	in	case	
of	schedule	changes

● Schedule	 observations	 between/around	 interviews	
on	site	to	utilize	participant’s	time	effectively

● Ask	 for	 the	 minimum	 data	 as	 needed	 to	 answer	
research	 questions	 to	 prevent	 participants	 feeling	
overwhelmed

Approach	to	conducting	industrial	data	
collection	
	
“How	 do	 I	 encourage	 a	 curious	 mindset	 and	
conducive	 environment	 for	 industrial	 data	
collection?”	
		

● Adopt	a	curious	mindset,	not	an	auditing	approach	
to	enable	participants	to	be	forthcoming

● Be	 flexible	 around	 participants’	 preference	 for	
recordings	and	be	prepared	to	take	extensive	notes	
instead

● Avoid	 including	 team	 leaders	 or	 managers	 in	
interviews	with	subordinates	so	that	they	don’t	feel	
intimidated	and	can	be	confident	of	anonymity

IST2018

24

Challenges ; Outstanding issues

§ Often software engineers don’t understand / appreciate human aspects of SE
§ Neither it seems do MBIE (NZ) or ARC Assessors…. L
§ Designing and conducting experiments is hard, time-consuming
§ Often need access to practitioners ; convincing them/their bosses can also be

a challenge
§ Many issues not yet well explored, but increasing interest in SE community
§ I find them more challenging – but also in many ways more interesting –

projects than the purely technical ones I do
§ Recruiting (very good) students / post-docs to work on can be hard, but I’ve

been pretty lucky to date…
§ IMO – good research in these areas can make a major difference to pracitce

25

Future work

§ Adding Emotions, accessibility, personalilty etc -> UML etc models
§ Capturing, using further human-centric issues: values, emotions, usability,

accessibility, culture, language, gender, age, … & evaluating software for
these

§ Incorporating multi-lingual, multi-cultural aspects into requirements, design
§ Deep learning + design critics + PM
§ Agile SE Team Climate Inventory & applying in practice
§ Personality of requirements engineers, software architects, project managers
§ DSVLs for Big Data applications, end user config incl security
§ Better principles, tools for human-centric DSVL design & evaluation

26

Summary

§ Human aspects of Software Engineering are fascinating!!
§ There is lots of scope for work here
§ Can apply other discipline approaches, knowledge – Information Systems,

Social Sciences, etc
§ Ultimately humans PRODUCE software and humans USE software
§ Incorporating human perspectives critical to improve software and its

production

27

Questions…

28

References

§ Grundy, J.C, Hosking, J.G., Amor, R., Mugridge, W.B., Li, M. Domain-specific visual languages for specifying and generating data mapping system, Journal
of Visual Languages and Computing, vol. 15, no. 3-4, June-August 2004, Elsevier, pp 243-263

§ Avazpour, I., Grundy, J.C., Grunske, L. Specifying Model Transformations by Direct Manipulation using Concrete Visual Notations and Interactive
Recommendations, Journal of Visual Languages and Computing, Volume 28, June 2015, Elsevier,pp 195–211.

§ Abizer Khambati, John Grundy, John Hosking, and Jim Warren, Model-driven Development of Mobile Personal Health Care Applications, In Proceedings of
the 2008 IEEE/ACM International Conference on Automated Software Engineering, L'Aquilla, Italy, 15-19 September 2008, IEEE CS Press

§ Kamalrudin, M., Grundy, J.C., Hosking, J.G., MaramaAIC: Tool Support for Consistency Management and Validation of Requirements, Automated Software
Engineering, Springer, 2017, vol 24, no 1, pp. 1-45

§ Sallah, N., Mendes, E., Grundy, J.C. Investigating the effects of personality traits on pair programming in a higher education setting through a family of
experiments, Empirical Software Engineering, vol. 19, no. 3, Springer, 2014, pp. 714-752.

§ Kanij, T., Merkel, R., Grundy, J.C. Performance Appraisal of Software Testers, Information and Software Technology, Elsevier, vol. 56, no. 5, May 2014,
Pages 495–505

§ Yusop, N.S.M., Grundy, J.C., Vasa, R. Reporting Usability Defects: A Systematic Literature Review, IEEE Transactions on Software Engineering, vol. 43, no.
9, 2017, pp. 848-867.

§ Ali, N.M., Hosking, J.G., Grundy, J.C., A Taxonomy and Mapping of Computer-based Critiquing Tools, IEEE Transactions on Software Engineering, vol. 39,
no. 11, November 2013.

§ Grundy, J.C. Abdelrazek, M., Kissoon, M., Vision: Improved development of mobile eHealth applications, IEEE/ACM International Conference on Mobile
Software Engineering and Systems (MobileSoft 2018), 27-28 May 2018, Gothenberg, Sweden, ACM Press.

§ Salleh, N., Hoda, R., Su, M.T., Kanij, T. and Grundy, J.C. Recruitment, Engagement and Feedback in Industrial Empirical Software Engineering Studies, to
appear in Information and Software Technology, Elsevier. –

§ Soomro, A.B., Salleh, N., Mendes, E., Grundy, J.C., Burch, G., Nordin, A., The Effect of Software Engineers’ Personality traits on Team Climate and
Performance: a Systematic Literature Review, Information and Software Technology, vol 73, Elsevier, pp 52-65.

