
Model-driven Software Security
Engineering for the Cloud

Mohamed Almorsy,
Post-doctoral Fellow

Amani Ibrahim, PhD Student

John Grundy, Deputy Dean, FICT

Outline
n Motivation
n Cloud computing 101

¨ What the heck are IaaS, PaaS, SaaS anyway???

n CloudSec – protection @ IaaS level against root-kits
n MDSE@R – flexible security for PaaS/SaaS levels
n Future Directions

n Part 1:
¨ Motivation
¨ Overview of cloud computing concepts
¨ Our approaches

Motivation

4

Cloud Providers: GREEN CLOUD – BLUE CLOUD
Service Providers: SWINSOFT - GREEN CLOUD – BLUE CLOUD
Cloud Consumers: Swinburne University- Auckland University, SwinMarket

Get	 Currency-‐Now	

Build	 Workflow	 	

Galac7c	 ERP	

Execute	 Batch	 processing	
<<
in
cl
ud

e>
>	

<<
in
clu

de
>>
	

SWIN
SOFT

SWIN
SOFT

GREEN	 CLOUD

BLUE	 CLOUD

Injection attack
e.g. SQL, JS

Poor Isolation

Excessive
Priviledges

Data tampering attack

Root-kit attack

Cloud Computing 101

n Resource virtualisation e.g. VMWare
n Elasticity, Pay-per-use vs buy & maintain
n  Infrastructure as a Service (IaaS) e.g. Amazon
n Platform as as Service (PaaS) e.g. Google App Engine
n Software as a Service (SaaS) e.g. SalesForce.com
n Multi-tenant applications

Key Security Problems w Cloud Model
n  IaaS:

¨ Cloud providers don’t know whats running on VMs
¨ Cloud users don’t know what other apps running / platform

security policies

n PaaS:
¨ Design-time focus of security solutions BUT security needs

emerge @ run-time
¨ Lack of integration of security / cloud app architecture

n SaaS:
¨ Evolving tenant needs / limited (no?) tenants involvement in

security configuration

Our Approach(es) to address…
n  IaaS protection:

¨ CloudSec – security appliance for hypervisor layer
¨ Supported by points-to analysis tool (KDD) and kernel object

discovery algorithm (DIGGER)

n PaaS:
¨ MDSE@R – model-driven security engineering with run-time

updating of deployed cloud applications
¨ Supported by vulnerability analysis & mitigation, re-aspects

n SaaS:
¨ TOSSMA – cloud consumer security management console
¨ SMURF – multi-tenant re-engineering via re-aspects

n Part 2
¨ CloudSec security appliance for the IaaS cloud platform
¨ Points-to analysis of large OS kernel code
¨ Kernel object discovery for security engineering

CloudSec
n  Problem:

¨ OS kernel rootkits modify data structures to subvert e.g. retarget
processing, access data, hide bad processes etc

¨ Most OSes are written in C - heavily use C void pointers, null
pointers, casting etc to “mimic” objects

¨ OSs are huge – millions lines of C code
¨ No data structure integrity checking is done by kernel (as its an

overhead and not expecting such attacks)
¨ Running security software in virtualised OS e.g. for Cloud

computing is problematic (can be compromised)
¨ Virtual Machines (VMs) run on top of a hypervisor layer;

compromising hypervisor via root-kit => VMs compromised
=> Serious security holes that need to be addressed

Example 1

10

Windows OS kernel
EPROCESS data DLList rootkit

Example 2

11

Windows OS kernel
EPROCESS data DLList rootkit

!

CloudSec Architecture
-  Back-end

ü VMWare VMI (Virtual Machine
Introspection) APIs

ü Inspect/control VM’s hardware
ü Enables us to gain control

over the hosted VMs to
suspend access to VM’s
hardware, read memory bytes

-  Front-end
ü A set of APIs that allow

communication with the back-
end

ü Allows installing triggers
(access or timer) on the
physical memory pages that
need to be monitored

Kernel structures defns Kernel memory pool
inspector

“Semantic Gap” bridge

Detect, limited fix,
Alarm, shut-down

Supporting Technique #1 - KDD
n  Need: precise definition of OS kernel data structures

¨  BUT: as C-based OSs, one doesn’t exist (casts, null pointer refs etc)

n  KDD = a new static analysis tool to generate an accurate type graph for any C
program
¨  Is able to generate a sound data definition for large C-based OS without any prior

knowledge of kernel data layout
¨  Disambiguates pointer relations including generic pointers to infer their candidate types &

values by performing static points-to analysis on source code
¨  New points-to analysis algorithm with interprocedural, context-sensitive and field-sensitive

points-to analysis
¨  Scales to extremely large C programs that contain millions of lines of code
¨  Performs its analysis “off-line” – thus generated type graph can be used by security

solutions in on-line security mode (~50 hours for LINUX kernel typing)

KDD Process

14

Direct

Relations
Graph

Kernel Data Structure Type-Graph

Indirect
Relations

Graph

Points-to Analysis

Context-Sensitive
Analysis

Intraprocedural
Analysis

Interprocedural
Analysis

Kernel’s Source Code (C files)

Generate AST

2

1

3 4

5

Supporting Technique #2 - DIGGER
n  Problem: in order to protect kernel data structures, need to

locate kernel data structures in VM memory – “objects”
¨ BUT: this is a challenge – C-based OSs, running in Virtual Machine

(must map objects from physical memory bytes)

n  DIGGER = a new kernel OS object discovery approach
¨ Use VMI to extract memory byes
¨ Use special Windows object signatures to locate “objects”
¨ Use KDD type graph to “type” the bytes
¨ Use discovered objects to identify data structure compromises

n  Limited mitigations– raise alarm / “fix” structures / shut down
process and/or VM

DIGGER Process

(1- from KDD)

(2)

(3)

(4)

Evaluation - KDD
n Soundness and Precision

¨  The points-to analysis algorithm is sound if the points-to set for each variable
contains all its actual runtime targets, and is imprecise if the inferred set is larger
than necessary

¨ Used SPEC2000 and SPEC2006 benchmark suites and other open source
C programs

n  OS Kernel Analysis
¨  WRK (~ 3.5 million LOC) and Linux kernel v3.0.22 (~ 6 million LOC)

¨  28 hours to analyse the WRK and around 47 hours to analysis the Linux kernel.

Benchmark`	 LOC	 Pointer Inst	 Proc	 Struct	 AST T (sec)	 AST M
(MB)	

AST C
(%)	

TG T
(sec)	

TG M
(MB)	

TG C
(%)	

P
(%)	

S
(%)	

art	 1272	 286	 43	 19	 22.7	 21.5	 19.9	 73.3	 12.3	 17.6	 100	 100	
equake	 1515	 485	 40	 15	 27.5	 25.4	 20.4	 87.5	 14.1	 21.1	 98.6	 100	

mcf	 2414	 453	 42	 22	 43.2	 41	 28.5	 14	 23	 27	 97.2	 100	

gzip	 8618	 991	 90	 340	 154.2	 144.6	 70.5	 503.3	 81.4	 68.3	 95.1	 100	
parser	 11394	 3872	 356	 145	 305.2	 191.2	 76.7	 661.4	 107.8	 74.3	 94.5	 100	

vpr	 17731	 4592	 228	 398	 316.1	 298.7	 80.2	 1031.5	 163.2	 79	 NA	 100	
gcc	 222185	 98384	 1829	 2806	 3960.5	 3756.5	 93.5	 12962	 2200	 94	 NA	 100	

sendmail	 113264	 9424	 1005	 901	 2017.2	 1915.1	 91.6	 6609	 1075.0	 91.5	 NA	 100	
bzip2	 4650	 759	 90	 14	 82.3	 78.1	 45.5	 271.6	 44.2	 42.9	 95.9	 100	

Evaluation – DIGGER vs WinDebug

n Part 3
¨ Model-driven Security Engineering @ Runtime (MDSE@R)
¨ Vulnerability Analysis of PaaS, SaaS components
¨ Vulnerability mitigation

MDSE@R overview
n Problems –

¨ How best model security requirements & link to architectural parts
of cloud applications?

¨ Security requirements set @ design / implementation time – but
what if evolve during cloud application deployment?

¨ Multi-tenant cloud applications complicate further – what if tennants
have different security needs?

n Solution –
¨ Model architecture & security; link parts
¨ Run-time architecture to update security enforcement of deployed

cloud applications

MDSE@R Architecture

System	 Description	 Models Security	 Specification	 Models

Security	 Enforcement	 Point

System	 Engineer Security	 Engineer
Sy
st
em

	 C
on
ta
in
er

Sy
st
em

Se
cu
rit
y	
Se
rv
ic
es

Develop Develop

1 3

Live	 System	
Interceptors
Document

Live	 Security	
Specification
Document

Se
cu
rit
y	
Te
st
in
g

852

4

67

9

10

MDSE@R - Models

22

MDSE@R Run-time securing

Support technique #1:Vulnerability Analysis

Vul.	 Vulnerability	 Signature	
SQLI 	 Method.Contains(S : MethodCall | S.FnName = “ExecuteQuery” AND

S.Arguments.Contains(X : IdentifierExpression | X.Contains(InputSource)))	
XSS 	 Method.Contains(S : AssignmentStatement | S.RightPart.Contains(InputSource) AND 	

 S.LeftPart.Contains(OutputTarget))	
Improper Authn. 	 Method.IsPublic == true AND Method.Contains(S : MethodCall | S.IsAuthenitcationFn

== true AND S.Parent == IFElseStmt AND S.Parent.Condition.Contains(InputSource))	
Improper Authz.	 Method.IsPublic == true AND Method.Contains(S : Expression | S.Contains(X:

InputSource | X.IsSanitized == False OR X.IsAuthorized == False)	

Analyser
Pr
og
ra
m
	 S
ou

rc
e	
co
de

Program	
Representation	 1

Abstract	 Syntax	
Tree

Program	
Representation	 n

…

…
Signature	 Locator

OCL	
Functions

Platform	
Profile

Vulnerability	 List

Weaknesses	
Signatures	

(OCL)

Support tech. #2: Vulnerability Mitigation

Evaluation – Vulnerability Analysis

Benchmark Downloads KLOC Files Comps Classes Method
BlogEngine >46,000 25.7 151 2 258 616
BugTracer >500 10 19 2 298 223
Galactic - 16.2 99 6 101 473
KOOBOO >2,000 112 1178 13 7851 5083

NopCommerce >10 Rel. 442 3781 8 5127 9110
SplendidCRM >400 245 816 7 6177 6107

0

10

20

30

40

50

60
URL
Redirect

Info.
Exposure

CSRF

XSS

Authz.
Bypass

Evaluation – MDSE@R

n Part 4
¨ Future directions
¨ Summary

Current & Future Work
n Monitoring of security of cloud apps @ run-time – what

metrics? How? What do if problems detected??
n Applying vulnerability analysis to detect e.g.

performance anti-patterns, energy anti-patterns
n CloudSec++ mitigations when attacks detected
n Points-to analysis enhancements – accuracy, cloud-

deployment J

Summary
n  Interested in addressing several challenging problems

with cloud application and platform security
n CloudSec – security appliance for virtualised platforms
n MDSE@R – model-driven approach to security

modelling and enforcement
n Various supporting techniques interesting research in

their own right: vulnerability analysis via OCL
signatures; customer-managed security preferences;
points-to analysis; OS kernel object discovery for
virtualized servers; re-aspects updating of existing
systems in sophisticated ways

References
n  Almorsy, M., Ibrahim, A., Grundy, J.C., Adaptive Security Management in SaaS Applications,

Chapter 8 in Security, Privacy and Trust in Cloud Systems, Springer, 2013.
n  Almorsy, M., Grundy, J.C. and Ibrahim, A., Automated Software Architecture Security Risk

Analysis Using Formalized Signatures, 2013 IEEE/ACM International Conference on Software
Engineering (ICSE 2013), San Franciso, May 2013, IEEE CS Press

n  Almorsy, M., Grundy, J.C. and Ibrahim, A. Supporting Automated Vulnerability Analysis using
Formalized Vulnerability Signatures, 27th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2012), Sept 3-7 2012, Essen, Germany, ACM Press.

n  Ibrahim, A., Hamlyn-Harris, J., Grundy, J.C. and Almorsy, M., Supporting Operating System
Kernel Data Disambiguation using Points-to Analysis, 27th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2012), Sept 3-7 2012, Essen, Germany, ACM Press.

n  Almorsy, M., Grundy, J.C. and Ibrahim, I., VAM-aaS: Online Cloud Services Security Vulnerability
Analysis and Mitigation-as-a-Service, 2012 International Conference on Web Information Systems
Engineering (WISE 2012), Nov 28-30 2012, Paphos, Cyprus, LNCS, Springer.

n  Ibrahim, A., Hamlyn-Harris, J., Grundy, J.C., Almorsy, M., Identifying OS Kernel Runtime Objects
for Run-time Security Analysis, 2012 International Conference on Network and System Security
(NSS 2012), Fujian, China, Nov 21-23 2012, LNCS, Springer.

