Beautifying sketching-based design tool content: issues and experiences

Beryl Plimmer¹ and John Grundy^{1, 2}

¹Dept of Computer Science and ²Dept of Electrical and Computer Engineering University of Auckland, New Zealand

Outline

- Motivation
 - Why do we need to "beautify" sketched input?
- Requirements
 - What kinds of sketching tools are there?
 - Do they have different beautification needs?
- Examples
 - UML sketching and User Interface sketching
- Experiences
 - What works well? What doesn't...
- Conclusions

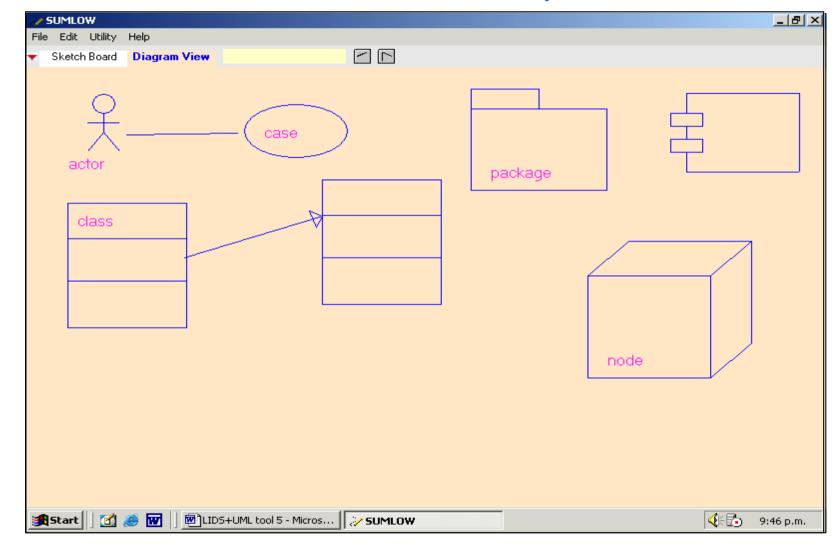
presentation $\begin{bmatrix} \frac{1}{2} & 2004 \end{bmatrix}$

Motivation

and see

TATION R 2004

•


An example:

PRESENTATION

The University of Auckland I New Zealand

Form1				_
wner				
Name		Dob		_
Address			,	
		-		
	-	Phone		-
	1			
Dog				
0				
Location				
		Colour		
		Breed		
		Age		
Sex	Male C C Female	Fee		
JIDA	Male C C Pellale	166		
Special				Tex

Another Example...

presentation $\left\| \begin{smallmatrix} \mathsf{a} & \mathsf{Z} \\ \mathsf{a} & \mathsf{Z} \\ \mathsf{D} & \mathsf{Q} \end{smallmatrix} \right\|$

Why do this?

- User adds elements, want modified e.g. sketch actor figure and want text edit area added
- User needs constraints enforced e.g. if put text box over another text box, move one of them or resize
- Want layout implemented e.g. UML sequence diagram
- When move/resize something, flow-on effects e.g. resize class icon => move enclosed text/connectors
- When formalise elements, need to apply standard formatting rules e.g. UI text label's font, size, colour, style, ...
- Layout rules on formalising diagram content e.g. align radio buttons; auto-layout UML class diagram

How do we do this??

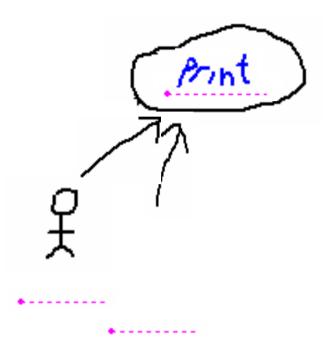
Sketch-time Beautifications:

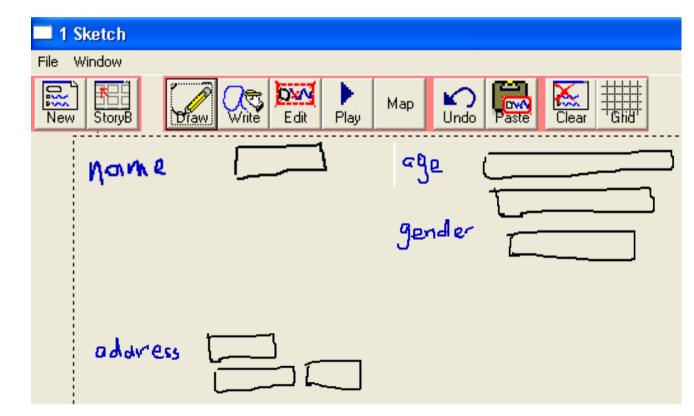
- Recognize shape & modify appearance/location/size
- Auto-clustering related elements
- Element overlap removal
- Auto resize/move of related elements
- Alignment to grid

Formalisation-time Beautifications:

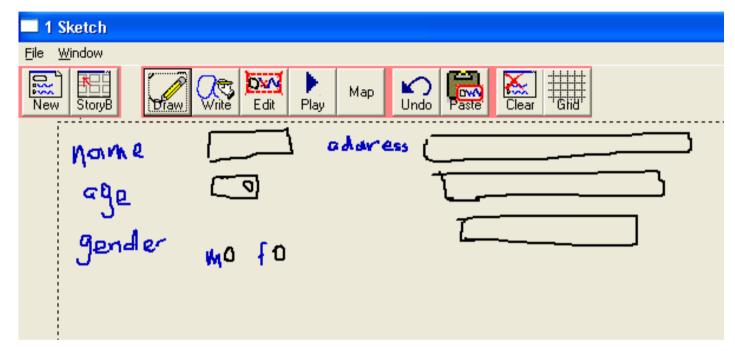
- Apply heuristics to sketched elements to convert to computer-rendered forms
- Apply grids, auto-layout algorithms
- Apply consistent formatting styles to elements

Different tools require different mix...


Examples: Draw and change


Remove and replace

Move and resize



Move and resize group

presentation $\begin{bmatrix} 1 \\ 2 \end{bmatrix} 2004$

Apply styles during formalise

presentation $\left\| {{}_{{\scriptscriptstyle{\mathsf{B}}}}^{{\scriptscriptstyle{\mathsf{A}}}}2004} \right\|$

Experiences

- In FreeForm:
 - Concrete layout & layout constraints v. important
 - Removing overlaps v. important; determining element groups important
 - Auto-placement, resize during sketch not always desired by user
 - Applying standard styles during formalisation v. important user needs control over how these are done
- In SUMLOW:
 - Abstract design so user-defined layout/overlaps OK
 - Auto-adding text areas, auto-moving connectors v. important
 - Determining relevant groups during sketching necessary
 - Layout of sequence diagrams necessary during sketching; others auto-layout not needed during sketching
 - Can apply standard styles and layout algorithms during formalisation, but less necessary than in FreeForm

Conclusions & Future Research

- Beautification during sketching and formalisation important for usability of sketching-based UIs
- Different kind of design important concrete vs abstract models; importance of layout/element interaction
- Users need adequate control over these however
- User configuration of beautification algorithms
- Implementation of beautification in different tools
- Taxonomy of diagramming-based tools to aid in development, including beautification strategies

References

- Plimmer, B. and Grundy, J.C. Beautifying sketching-based design tool content: issues and experiences, In Proceedings of the 2005 Australasian User Interfaces Conference, Jan 31-Feb 3, 2005, Newcastle, Australia, Conferences in Research and Practice in Information Technology, Vol. 40.
- Grundy, J.C. and Hosking, J.G. Supporting generic sketching-based input of diagrams in a domain-specific visual language meta-tool, In Proceedings of the 2007 IEEE/ACM International Conference on Software Engineering (ICSE'07), Minneapolis, USA, May 2007, IEEE CS Press.
- Chen, Q., Grundy, J.C., and Hosking, J.G. SUMLOW: Early Design-Stage Sketching of UML Diagrams on an E-whiteboard, Software Practice and Experience, vol. 38, no. 9, Wiley, July 2008, pp. 961-994.
- Blagojevic, R., Plimmer, B., Grundy, J.C. and Wang, Y. A Data Collection Tool for Sketched Diagrams, In Proceedings of the 5th EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling, Annecy, France, June 11-13, 2008.
- Blagojevic, R., Plimmer, B., Grundy, J.C. and Wang, Y, Development of techniques for sketched diagram recognition, In Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-Centric Computing, 2008, pp 258-259.
- Patel, R., Plimmer, B., Grundy, J.C. and Ihaka, R. Ink Features for Diagram Recognition, 4th Eurographics Workshop on Sketch-Based Interfaces and Modeling, Riverside, California, August 2-3, 2007.

presentation $\left\| {{}_{{\scriptscriptstyle{\rm B}}}^{{\scriptscriptstyle{\rm A}}}2004} \right\|$