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}  Miller described ‘critic’ as a software program 
that critiques human-generated solutions[13] 

}  Critic tools have demonstrated effectiveness 
in providing feedbacks. 

}  However, there has been little discussion of 
critic authoring. 

}  Our aim: is to describe a new approach using 
visual critic authoring templates to support 
tool & end user designers in specifying 
design critics  
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}  Related work: 
◦  ArgoUML [3]-advise designer when a software 

architecture diagram violates the UML rules 
◦  IDEA [4]-specify critics that focus on design 

patterns to improve the UML model 
◦  JavaCritiquer [16]-detects statements in a student 

program code that can be improved 
◦  ABCDE-Critic [20]-specify critics that comment on 

UML class diagram-based designs 
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}  List of critiques in ArgoUML tool 
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}  Variety of approaches can be used in 
designing and realizing critics: 
◦  Rule-based 
◦  OCL expressions 
◦  Knowledge-based 
◦  Pattern-matching 
◦  Programming code 
◦  etc 
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}  Motivating Example: 
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2. OCL expression 

1. Metamodel 
definer view 

3. Simple critic (same named class) 
violation 



}  Those approaches:  
◦  Require deep understanding of the tool platform 
◦  Customization of critics would not be easy 

}  Little attention has been given to provide an 
authoring facility for user to add/modify 
critics 
◦  ArgoUML [3] 
◦  IDEA [4] 
◦  Java Critiquer [16] 
◦  ABCDE-Critic [20] 
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}  The extension : 
◦  To use a visual design notation to represent critics 
◦  To specify and design critics in a simple way by 

using an easy-to-use, high-level language 
◦  To allow critic authoring based on business rule 

templates  
◦  To provide a new meta-tool facility for our 

Marama-based tools 
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}  Marama visual critic development approach 
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1.  Designer uses the 
Marama meta-tools 
to develop 
Marama-based 
tools 

2.  Critics are specified 
via Marama 
metamodel definer 
view 

3.  When a diagram is 
created, critics for 
that particular tool 
will be applied. 



}  Inspired by Business Rules-driven Object 
Oriented Design (BROOD) approach [11,23] 

}  Proposed a Business Rule (BR) template that 
contains three main types [11,23]: 
◦  Constraint (attribute constraint & relationship 

constraint) 
◦  Action assertion 
◦  Derivation  

}  The rule templates are formal sentence 
patterns that allow the expression of 
business rules [11,23] 
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}  Why we use the templates in software tool 
domain (visual critic authoring tool): 
◦  The use of language definition based on the 

context-free grammar EBNF that defines sentence 
patterns for rule statements 
◦  The use of natural language that is easily 

understood to represent the rules 
◦  The templates are more general in nature and are 

easily adapted for use in the critic domain 
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}  Initially we only covers the attribute 
constraint templates and relationship 
constraint templates 

}  The critic rules templates that correspond to 
the attribute and relationship constraints are 
as follow: 
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}  Attribute and relationship constraint templates [23] 
Attribute 
Constraint 

<entity> must have | may have a [unique] 
<attributeTerm> 
 
<attributeTerm1>must be |may be 
<relationalOperator><value>| 
<attributeTerm2> 

Relationship 
Constraint 

[<cardinality>]<entity1> is a/an <role> of 
[<cardinality>]<entity2> 
 
[<cardinality>]<entity1> is associated with 
[<cardinality>] <entity2> 
 
<entity1> must have |may have 
[<cardinality>]<entity2> 
 
<entity1> is a/an <entity2> 
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}  We illustrate the use of critic authoring facilities via 
MaramaMTE software architecture design tool [8] 

MaramaMTE metamodel definer view 
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entity 

associationEndName 

end1Multiplicity 

attribute 

end2Multiplicity 



}  MaramaMTE with critic function 

ASWEC'09:14-17 Apr 09 16 

CriticShape 

CriticShape functions added to the  
MaramaMTE metamodel definer view 



}  Critic construction view: 
 

17 ASWEC'09:14-17 Apr 09 



}  Critics for MaramaMTE tool: 
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Entity Critic statement Critic rule template Type 
RemoteObject RemoteObject 

must have a 
unique name 

<entity> must a 
[unique] attributeTerm> 
 

Attribute 
constraint 

ApplicationServer ServerKind must 
be equal one 

<attributeTerm1>must 
be <relationalOperator> 
<value> 

Attribute 
constraint 

Request Request must have 
many Services 

<entity1> must have 
[<cardinality>]<entity2
> 

Relationship 
constraint 

ApplicationServer One 
ApplicationServer 
is associated with 
many 
RemoteObject 

[<cardinality>]<entity1
> is associated with 
[<cardinality>] 
<entity2> 
 

Relationship 
constraint 



}  Example of attribute constraint: 
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Critic executed at diagram level 



}  Example of relationship constraint: 
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Critic executed at diagram level 



}  Create a new function (CriticShape ) at the 
Marama metamodel editor 

}  Critic authoring template interface 
}  Critics repository 
}  Critic engine, event listener & critic processor 
}  Each critic as a concrete class 
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}  The critic authoring templates made it far 
easier and quicker  

}  Key benefits of the approach: 
◦  Provides a simple way to express critics; 
◦  Novice designer may easily construct the critics; 
◦  Offers a structured form in expressing the critic 

phrase 
◦  Marama instantiates critic rule processors when 

opening a tool and uses Marama’s built-in event 
handler mechanism to proactively check changing 
designs 
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}  Main limitations: 
◦  Currently supports fairly simple critics construction 
◦  Critics can be defined only based upon the available 

templates 
◦  Very complex critics are not able to be specified via 

attribute and relationship constraint templates 
◦  Only limited actions are supported 
◦  The critic engine implemented in Marama uses a 

simple approach to determine interested critics 
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}  Describes an approach for specifying and 
authoring critics 

}  Develops critic authoring templates (attribute 
and relationship constraint) 

}  Develops a prototype of the visual critic 
authoring template approach 

}  Illustrates  the use of visual critic authoring 
tool 
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}  Provides a proof of concept that critic 
authoring templates support the construction 
of critics in a simple way for Marama-based 
tools 

}  Plans for future work include: 
◦  Construction of complex critics via action assertion 

and derivation templates 
◦  Creating critic feedback facilities 
◦  Expanding the critic authoring templates 
◦  Evaluation of the prototype by target users 
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