
Norhayati Mohd.Ali1, John Hosking1, Jun Huh1
and John Grundy1,2

1Department of Computer Science and
2Department of Electrical and Computer Engineering,
University of Auckland, New Zealand.

1 ASWEC'09:14-17 Apr 09

}  Introduction
}  Background & Motivation
}  Our Approach
}  Critic Authoring Template
}  Example Usage
}  Design & Implementation
}  Discussions
}  Conclusions & Future Work
}  Q&A

2 ASWEC'09:14-17 Apr 09

}  Miller described ‘critic’ as a software program
that critiques human-generated solutions[13]

}  Critic tools have demonstrated effectiveness
in providing feedbacks.

}  However, there has been little discussion of
critic authoring.

}  Our aim: is to describe a new approach using
visual critic authoring templates to support
tool & end user designers in specifying
design critics

3 ASWEC'09:14-17 Apr 09

}  Related work:
◦  ArgoUML [3]-advise designer when a software

architecture diagram violates the UML rules
◦  IDEA [4]-specify critics that focus on design

patterns to improve the UML model
◦  JavaCritiquer [16]-detects statements in a student

program code that can be improved
◦  ABCDE-Critic [20]-specify critics that comment on

UML class diagram-based designs

ASWEC'09:14-17 Apr 09 4

}  List of critiques in ArgoUML tool

ASWEC'09:14-17 Apr 09 5

}  Variety of approaches can be used in
designing and realizing critics:
◦  Rule-based
◦  OCL expressions
◦  Knowledge-based
◦  Pattern-matching
◦  Programming code
◦  etc

6 ASWEC'09:14-17 Apr 09

}  Motivating Example:

ASWEC'09:14-17 Apr 09 7

2. OCL expression

1. Metamodel
definer view

3. Simple critic (same named class)
violation

}  Those approaches:
◦  Require deep understanding of the tool platform
◦  Customization of critics would not be easy

}  Little attention has been given to provide an
authoring facility for user to add/modify
critics
◦  ArgoUML [3]
◦  IDEA [4]
◦  Java Critiquer [16]
◦  ABCDE-Critic [20]

8 ASWEC'09:14-17 Apr 09

}  The extension :
◦  To use a visual design notation to represent critics
◦  To specify and design critics in a simple way by

using an easy-to-use, high-level language
◦  To allow critic authoring based on business rule

templates
◦  To provide a new meta-tool facility for our

Marama-based tools

9 ASWEC'09:14-17 Apr 09

}  Marama visual critic development approach

10 ASWEC'09:14-17 Apr 09

1.  Designer uses the
Marama meta-tools
to develop
Marama-based
tools

2. Critics are specified
via Marama
metamodel definer
view

3. When a diagram is
created, critics for
that particular tool
will be applied.

}  Inspired by Business Rules-driven Object
Oriented Design (BROOD) approach [11,23]

}  Proposed a Business Rule (BR) template that
contains three main types [11,23]:
◦  Constraint (attribute constraint & relationship

constraint)
◦  Action assertion
◦  Derivation

}  The rule templates are formal sentence
patterns that allow the expression of
business rules [11,23]

11 ASWEC'09:14-17 Apr 09

}  Why we use the templates in software tool
domain (visual critic authoring tool):
◦  The use of language definition based on the

context-free grammar EBNF that defines sentence
patterns for rule statements
◦  The use of natural language that is easily

understood to represent the rules
◦  The templates are more general in nature and are

easily adapted for use in the critic domain

12 ASWEC'09:14-17 Apr 09

}  Initially we only covers the attribute
constraint templates and relationship
constraint templates

}  The critic rules templates that correspond to
the attribute and relationship constraints are
as follow:

13 ASWEC'09:14-17 Apr 09

}  Attribute and relationship constraint templates [23]
Attribute
Constraint

<entity> must have | may have a [unique]
<attributeTerm>

<attributeTerm1>must be |may be
<relationalOperator><value>|
<attributeTerm2>

Relationship
Constraint

[<cardinality>]<entity1> is a/an <role> of
[<cardinality>]<entity2>

[<cardinality>]<entity1> is associated with
[<cardinality>] <entity2>

<entity1> must have |may have
[<cardinality>]<entity2>

<entity1> is a/an <entity2>

14 ASWEC'09:14-17 Apr 09

}  We illustrate the use of critic authoring facilities via
MaramaMTE software architecture design tool [8]

MaramaMTE metamodel definer view

15 ASWEC'09:14-17 Apr 09

entity

associationEndName

end1Multiplicity

attribute

end2Multiplicity

}  MaramaMTE with critic function

ASWEC'09:14-17 Apr 09 16

CriticShape

CriticShape functions added to the
MaramaMTE metamodel definer view

}  Critic construction view:

17 ASWEC'09:14-17 Apr 09

}  Critics for MaramaMTE tool:

18 ASWEC'09:14-17 Apr 09

Entity Critic statement Critic rule template Type
RemoteObject RemoteObject

must have a
unique name

<entity> must a
[unique] attributeTerm>

Attribute
constraint

ApplicationServer ServerKind must
be equal one

<attributeTerm1>must
be <relationalOperator>
<value>

Attribute
constraint

Request Request must have
many Services

<entity1> must have
[<cardinality>]<entity2
>

Relationship
constraint

ApplicationServer One
ApplicationServer
is associated with
many
RemoteObject

[<cardinality>]<entity1
> is associated with
[<cardinality>]
<entity2>

Relationship
constraint

}  Example of attribute constraint:

19 ASWEC'09:14-17 Apr 09

Critic executed at diagram level

}  Example of relationship constraint:

20 ASWEC'09:14-17 Apr 09

Critic executed at diagram level

}  Create a new function (CriticShape) at the
Marama metamodel editor

}  Critic authoring template interface
}  Critics repository
}  Critic engine, event listener & critic processor
}  Each critic as a concrete class

21 ASWEC'09:14-17 Apr 09

}  The critic authoring templates made it far
easier and quicker

}  Key benefits of the approach:
◦  Provides a simple way to express critics;
◦  Novice designer may easily construct the critics;
◦  Offers a structured form in expressing the critic

phrase
◦  Marama instantiates critic rule processors when

opening a tool and uses Marama’s built-in event
handler mechanism to proactively check changing
designs

22 ASWEC'09:14-17 Apr 09

}  Main limitations:
◦  Currently supports fairly simple critics construction
◦  Critics can be defined only based upon the available

templates
◦  Very complex critics are not able to be specified via

attribute and relationship constraint templates
◦  Only limited actions are supported
◦  The critic engine implemented in Marama uses a

simple approach to determine interested critics

23 ASWEC'09:14-17 Apr 09

}  Describes an approach for specifying and
authoring critics

}  Develops critic authoring templates (attribute
and relationship constraint)

}  Develops a prototype of the visual critic
authoring template approach

}  Illustrates the use of visual critic authoring
tool

24 ASWEC'09:14-17 Apr 09

}  Provides a proof of concept that critic
authoring templates support the construction
of critics in a simple way for Marama-based
tools

}  Plans for future work include:
◦  Construction of complex critics via action assertion

and derivation templates
◦  Creating critic feedback facilities
◦  Expanding the critic authoring templates
◦  Evaluation of the prototype by target users

25 ASWEC'09:14-17 Apr 09

}  Comp. Sc. Dept., UoA & Postgraduate
Research Student Support account – funding
support

}  Prof. John Grundy
}  Prof. John Hosking
}  Jun Huh

26 ASWEC'09:14-17 Apr 09

}  [1] Ali, N.M. A Generic Visual Critic Authoring Tool, Proceeding VLHCC’07, IEEE CS Press, 2007, pp.260-261.
}  [2] Ali, N.M. Specifying Visual Design Critic Framework, Proceeding NZCSRSC’08, April 2008, Christchurch, New

Zealand, pp.184-187.
}  [3] ArgoUML, http://argouml.tigris.org/
}  [4] Bergenti, F. and Poggi. A. Improving UML Designs Using Automatic Design Pattern Detection, In Proceedings

of the 12th International Conference on Software Engineering and Knowledge Engineering (SEKE), 2000, pp.
336-343.

}  [5] Eclipse, http://www.eclipse.org/
}  [6] ExtendedBNF, http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
}  [7] Grundy, J.C., Hosking, J.G., Huh, J. and Li, N. Marama: an Eclipse meta-toolset for generating multi-view

environments, Formal demonstration paper, 2008 IEEE/ACM International Conference on Software Engineering,
Liepzig, Germany, May 2008, ACM Press. See also: https://wiki.auckland.ac.nz/display/csidst

}  [8] Grundy, J.C., Hosking, J.G., Li, L. and Liu, N. Performance engineering of service compositions, ICSE 2006
Workshop on Service-oriented Software Engineering, Shanghai, May 2006.

}  [9] Irandoust, H. 2006. Critiquing systems for decision support. DRDC Valcartier TR 2003-321.
http://pubs.drdc.gc.ca/PDFS/unc44/p524782.pdf.

}  [10] Liu, N., Hosking, J.G. and Grundy, J.C. MaramaTatau: Extending a domain specific visual language meta-tool
with a declarative constraint mechanism, Proceeding VLHCC’07, IEEE CS Press, 2007, pp. 95-103.

}  [11] Loucopoulus, P., and Wan Kadir, W.M.N. “BROOD:Business Rules-driven Object Oriented Design”, Journal of
Database Management, Vol.19, Issue 1, 2008, pp. 41-73.

}  [12] Markowitz, V. Extended Entity Relationship Diagram, http://sdm.lbl.gov/OPM/DM_TOOLS/OPM/ER/ER.html
}  [13] Miller, P. Expert Critiquing Systems: Practice-based Medical Consultation by Computer. Springer Verlag,

New York, 1986.

27 ASWEC'09:14-17 Apr 09

}  [14] Oh,Y., Do, E.Y.-L, and Gross, M.D., “Intellligent Critiquing of Design Sketches”, in JL
Randall Davis, T Stahovich, R Miller and E Saund (eds), Making Pen-based Interaction Intelligent
and Natural, The AAAI Press, Arlington, Virginia, 2004, pp 127-133.

}  [15] Oh,Y., Gross, M.D and Do, E.Y.-L, Computer-Aided Critiquing Systems, Lessons Learned
and New Research Directions. http://code.arc.cmu.edu/lab/upload/caadria-oh.0.pdf

}  [16] Qiu, L., and Riesbeck, C.K., “An Incremental Model for Developing Educational Critiquing
Systems: Experiences with the Java Critiquer”, Journal of Interactive Learning Research,
2008(19), pp.119-145.

}  [17] Robbins, J.E. 1998. Design Critiquing Systems, Technical Report UCI-98-41.
http://www.ics.uci.edu/~jrobbins/papers/CritiquingSurvey.pdf.

}  [18] Robbins, J.E., Hilbert, D.M. Redmiles, D.F. Software Architecture Critics in Argo. Intelligent
User Interfaces 1998, pp. 141-144

}  [19] Robbins, J.E., Redmiles, D.F. Software architecture critics in the Argo design environment.
Knowledge-Based Systems 11(1), 1998, pp. 47-60.

}  [20] Souza, C.R.B., et al. A Group Critic System for Object-Oriented Analysis and Design, In
Proceedings of the 15th IEEE Conference on Automated Software Engineering, IEEE Press, 2000,
pp. 313-316.

}  [21] Sourrouille, J.L. and Caplat, G. Constraint Checking in UML Modeling, In Proceedings of the
14th International Conference on Software Engineering and Knowledge Engineering (SEKE’02),
2002, pp. 217-224.

}  [22] Sprinkle, J., and Karsai, G.” A Domain-Specific Visual Language for Domain Model
Evolution”, Journal of Visual Languages and Computing, Vol.15, Issues 3-4, June-August 2004,
pp 291-307.

}  [23] Wan Kadir, W.M.N., and Loucopoulus, P. “Relating evolving business rules to software
design”, Journal of Systems Architecture, 50(7), Elsevier, 2004, pp.367-382.

ASWEC'09:14-17 Apr 09 28

