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0) Motivation
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2 Thin-client application architecture performance —
2 critical for system success
Y
4
§ Very difficult in general to estimate/design for
2 | Application Server(s)

Web Server(s)

Business Objects:
CORBA, COM, EJBs

Web
Browsers —»

Web Components:
SPs, Servlets, ASPs
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O©) Motivation (cont.)
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g Issues:

-4

w

z o Response time, throughput, resource utilisation, ...
Y

4 . . .

i o Where is the time spent typically?

(-9

g o c .

2 o When designing system architecture, how meet performance
o non-functional requirements?

Approaches:
o Massively over-engineer
o Simulation from architecture models
o Rapid prototyping
o Benchmarks and existing application profiling
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Our Approach: Performance Test-
bed Generation and Evaluation
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Web Application Testing Tool Web Application Testing Tool

SN

<=

1. SoftArch architecture

modeling

T7. Present and analyze results

Test results

Web apglication

T 6. Collect test results

Datalpase

+ client descriptor(s)

‘LSE

+ dient descriptor(s)

5. Process performance test
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<AppServer> <Client>
<Name>"cu stomerMaintain</Name> <Name>clientA</Type>
<Type=iis</Type> <Threads>4</Threads>
<Re<nTlo teObj edi/T <DBaseServer>
>
YECaSERS AYPE <Type>sqlServer</Type>

2. Generate XML

Sy

3. XSLT transfomation

l |
PNET -
AS test-bed J2EE test-bed
| * ASPX, C# code * JSP, Java code
* client descriptors L] * client descriptors |-
* database scripts * database scripts

* batch files
* other support files

* batch files
* other support files

v l

Deployment Tool

4.

Upload /deploy test-bed
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O) Performance Test-bed Approach
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Model architecture at high level of abstraction, but
include middleware/DB configuration etc

Generate ASP, |SP, web component, DB table etc.
from model — includes request/response calls
between components

Compile, deploy, run tests
Present results to user for analysis

Essentially automated form of rapid prototyping
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Example usage of SoftArch/MTE:

- ’ Delete H Close |

S Modelli thin-client architect
S oaelling a tnin-client arcniteciure
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Model example: PetShop J2EE

° Reference application
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O0) Generating Test-bed Code

Jsp.xsl N

@

= j2ee_vi deoWeb. App.xml ﬂ <xsl:template match="RemoteObj">
<xsl:for-each select="StatesReturned/State"> — ——
<?xml version="1.0" encoding="UTF-8" ?> (1) <xsl:value-of select="."/></[CDATA[<INPUT type=text name ><xs|:va|u_e-of select=""/><!/[CDATA[" size="115"
<AppServer> ) value="]|>&lt; %=myBean_<xsl:value-of select="../../Name"/> ¥t<xsTvallie-of sglect="."/>()%&gt;"
<Name>j2ee_videoWebApp</Name> </xsl:for-each> 1
<Type>j2ee</Type> ) videoSearch.jsp
<RemoteObj> <fform> <html> (3)
<Name>videoSearch</Name> </body>
<Type>jsp</Type> </html> > _
<StatesReturned> id<INPUT type=text naQe="id’>size="1 15"

. N </xsl:template> ” '~
<State Table="V|deo"Ad</ tate> value="<%=myBean_videoSearch.getid()%>">
<State Table="videg>nam </State> </xsl:stylesheet>
<State Table="vided">descifption</State> _| _ﬂ
<State Table="videc{'>statu

<State Table="video"(stoc </State>
Il

name<INPUT type=text nal ?'ﬁaﬁy" size="115"
value="<%=myBean_videoSearch.getame()%>">

description<INPUT type=text nam&= des_cri@n" size="115"
value="<%=myBean_videoSearch.getdescripfion()%>">
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</RemoteObj> Option Explicit
</AppServer> Dim strSezv? r, port " (4) status<INPUT type=text name{&%@“ size="115"
strServer = "130.216.36.173 value="<%=myBean_videoSearch.gelstdfus()%>">
port =80
< » stock<INPUT type=text nam%ﬁoE@ size="115"

= Sub Main()

call SendRequest1()

call SendRequest2()

call SendRequest1() </form>
call SendRequest2() </body>

End Sub </html> 41'
Main _ﬂ l >

Sub SendRequest1()
Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode, strPath
If fEnableDelays = True then Test.Sleep (0)
Set oConnection = Test.CreateConnection(strServer, port, false)

value="<%=myBean_videoSearch.getSock()%>">

strPath = "/j2ee_videoWebApp/videoSearch.jsp"
oRequest.Path = strPath

End Sub
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to client, server host machines

ACT + client descriptor SoftArch/MTE/Thin
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3. Instruct
Application Centre

J2EE webgpplication — Tegt to perform tests

y

4. Display and
Analyse results

*x

A

*

=1 © Compile/Deploy/Run Tests

S

AN
0 S — o —— —
£ " oD o= e
i o2 : s '
B | | == .
(Y] =
& <« =
: Y A
n - . |
2 2. Deploy generated test-bed files 1. Generate .jsp/.asp, .java/.c,

.bat, .sql, .war etc files

THE UNIVERSITY OF AUCKLAND

NEW ZEALAND



2004 |

o

ACT

Examples of Test Results via
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I'p" GenericACT - Microsoft Application Center Test

File  Edit

Wiew  Actions  Help

| =l @l bla] =l

Test Run Graph
200
150 InVas caV it Vel VasdaVas
@
2
8 100
- — G731-220.07
80
0
o 50 100 150
Time [secs)
Show Errors
Properties
Test type: Dynamic
Simultaneous browser connections: 15
Warm up time {secs): i0
Test duration: 00:00:02:00
Test iterations: 1,210
Detailed test results generated: Yes
Summary
Total number of requests: 18,110
Total number of connections: 18,110
Average requests par second: 15092
Average time to first byte (msecs): 20,05
Average time to last byte (msecs): 97.36
Average time to last byte per iteration (msecs): 1,457 .22
Done ’ﬁ

(3
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= ﬂ|
i GenericACT - Microsoft Application Center Test — o] x|
File Edit ¥iew Actions Help
| =@ Bl bla] =)
Test Run Graph -]
(=]
500 J\’Jf\\‘\
LA A
400
“
I
g am
& —— G731-220-07
200
100
o
1] a0 100 150
Time [secs)
Show Errors
Properties
Test type: Dynamic
Simultaneous browser connections: 15
Warm up time (secs): 10
Test duration: 00:00:02:00
Test iterations: 3,681
Detailed test results generated: Yes
Summary
Total number of requests: 55,226
Total number of connections: 55,226
Average requests per second: 460,22
Avarage time to first byte (msecs); 2462
Average time to last byte (msecs): 2475
Average time to last byte per iteration (msecs); 271.25 _|
Done MWLM -
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Summarised Results (caveats

next.
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100

Millisecond
3

Average time to last byte (TTLB)

o J2EE

B .NET

accountManage
Page

categoryManage itemManage ordertManage
Page Page Page
Page

productManage
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Results validity — comparison to
“real” PetShop application profiling
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Performance Real SoftArch/Thin-
parameters ASP.NET generated PetShop
PetShop
Overall average RPS 419.56 460.22
(requests/second)
Overall average (ms) 28.67 24.75
accountManagePage 27.34 26.36
categoryManagePage 23.42 23.56
itemManagePage 23.74 24.34
orderManagePage 39.15 27.34
productManagePage 23.63 24.01
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Some Comments/Observations/
Limitations
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J2EE example uses Sun “free” servers etc; ASP ones use MS IIS
commercial server etc

Generated code only as good as the model used — if model
wildly inaccurate; so are results

Can evolve model and re-run tests as evolve design/application
code

Can model existing application and proposed new architecture
and do performance tests

Some code e.g. application logic, caching, complex middleware
v. hard to generate
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O) Conclusions
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Performance test-bed generation and analysis a
promising approach to performance engineering

To date comparison of test-bed generated code to
real code performance is generally good

Challenging to develop code generators — need IDE;
need to import parts of model from CASE

Integrating with Argo/UML CASE tool...
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