

Outline

- Motivation
- Overview of our SoftArch/Thin approach
- Example usage of SoftArch/Thin for ASPs/JSPs
- Performance results examples
- Comments on results & experiences to date
- Conclusions and Future Research

Motivation

- Thin-client application architecture performance critical for system success
- Very difficult in general to estimate/design for

Motivation (cont.)

Issues:

- o Response time, throughput, resource utilisation, ...
- o Where is the time spent typically?
- o When designing system architecture, how meet performance non-functional requirements?

Approaches:

- o Massively over-engineer
- o Simulation from architecture models
- o Rapid prototyping
- o Benchmarks and existing application profiling

Our Approach: Performance Test-bed Generation and Evaluation

THE UNIVERSITY OF AUCKLAND **NEW ZEALAND**

Performance Test-bed Approach

- Model architecture at high level of abstraction, but include middleware/DB configuration etc
- Generate ASP, JSP, web component, DB table etc. from model – includes request/response calls between components
- Compile, deploy, run tests
- Present results to user for analysis
- Essentially automated form of rapid prototyping

0

Example usage of SoftArch/MTE: Modelling a thin-client architecture

- Model clients requests to servers
- Model servers, server objects, object services
- Model service requests to other services, databases
- Model database elements

0

Model example: PetShop J2EE Reference application

Generating Test-bed Code

THE UNIVERSITY OF AUCKLAND
NEW ZEALAND

Compile/Deploy/Run Tests

- 2. Deploy generated test-bed files to client, server host machines
- 1. Generate .jsp/.asp, .java/.c, .bat, .sql, .war etc files

THE UNIVERSITY OF AUCKLAND
NEW ZEALAND

Examples of Test Results via ACT

Summarised Results (caveats next... ©)

Results validity – comparison to "real" PetShop application profiling

Performance parameters	Real ASP.NET PetShop	SoftArch/Thin- generated PetShop
Overall average RPS (requests/second)	419.56	460.22
Overall average (ms)	28.67	24.75
accountManagePage	27.34	26.36
categoryManagePage	23.42	23.56
itemManagePage	23.74	24.34
orderManagePage	39.15	27.34
productManagePage	23.63	24.01

Some Comments/Observations/ Limitations

- ❖ J2EE example uses Sun "free" servers etc; ASP ones use MS IIS commercial server etc
- Generated code only as good as the model used if model wildly inaccurate; so are results
- Can evolve model and re-run tests as evolve design/application code
- Can model existing application and proposed new architecture and do performance tests
- Some code e.g. application logic, caching, complex middleware
 v. hard to generate

Conclusions

- Performance test-bed generation and analysis a promising approach to performance engineering
- To date comparison of test-bed generated code to real code performance is generally good

- Challenging to develop code generators need IDE; need to import parts of model from CASE
- Integrating with Argo/UML CASE tool...

References

- Cai, Y., Grundy, J.C., Hosking, J.G., Dai, X. Software Architecture Modelling and Performance Analysis with Argo/MTE, In Proceedings of the 2004 Conference on Software Engineering and Knowledge Engineering, Baniff, Canada, June 20-24 2004.
- Grundy, J.C., Cai, Y. and Liu, A. SoftArch/MTE: Generating Distributed System Test-beds from High-level Software Architecture Descriptions, Automated Software Engineering, Kluwer Academic Publishers, vol. 12, no. 1, January 2005, pp. 5-39.
- Cai, Y., Grundy, J.C. and Hosking, J.G. Experiences Integrating and Scaling a Performance Test Bed Generator with an Open Source CASE Tool, In Proceedings of the 2004 IEEE International Conference on Automated Software Engineering, Linz, Austria, September 20-24, IEEE CS Press, pp. 36-45.
- Cai, Y., Grundy, J.C., Hosking, J.G., Dai, X. Software Architecture Modelling and Performance Analysis with Argo/MTE, In Proceedings of the 2004 Conference on Software Engineering and Knowledge Engineering, Baniff, Canada, June 20-24 2004.
- Grundy, J.C., Wei, Z., Nicolescu, R. and Cai, Y. An Environment for Automated Performance Evaluation of J2EE and ASP.NET Thin-client Architectures, In Proceedings of the 2004 Australian Software Engineering Conference, Melbourne, Australia, April 14-17 2004, IEEE CS Press.
- Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed System Test-beds from High-level Software Architecture Descriptions, In Proceedings of the 16th International Conference on Automated Software Engineering, San Diego, 26-29 Nov 2001, IEEE CS Press, pp. 193-200.

