The University of Auckland New Zealand ||SOFTWARE ENGINEERING || 2004 ||

THE UNIVERSITY OF AUCKLAND

www.auckland.ac.nz

/ An Environment for

Automated
Performance
Evaluation of J2EE
and
. ASP.NET Thin-client
Architectures

Zhong Wei, John Grundy, Radu
Nicolescu and Yuhong Cai

University of Auckland

New Zealand

2004 |

0 Qutline

SOFTWARE ENGINEERING

The University of Auckland New Zealand

Motivation

Overview of our SoftArch/Thin approach
Example usage of SoftArch/Thin for ASPs/|SPs
Performance results examples

Comments on results & experiences to date

Conclusions and Future Research

S E SOftwaI'e /373~y THE UNIVERSITY OF AUCKLAND
Engineering s
‘ The University of Auckland gLf*ﬁJE

0) Motivation

The University of Auckland New Zealand

<
-
o
AN
2 Thin-client application architecture performance —
2 critical for system success
Y
4
§ Very difficult in general to estimate/design for
2 | Application Server(s)

Web Server(s)

Business Objects:
CORBA, COM, EJBs

Web
Browsers —»

Web Components:
SPs, Servlets, ASPs

N

Software

Engineering

‘LSE

‘ The University of Auckland

 _ Y 7=
—
Database(s)

AR THE UNIVERSITY OF AUCKLAND

T NEW ZEALAND
L]
*

O©) Motivation (cont.)

The University of Auckland New Zealand

v

o

O

N

g Issues:

-4

w

z o Response time, throughput, resource utilisation, ...
Y

4 . . .

i o Where is the time spent typically?

(-9

g o c .

2 o When designing system architecture, how meet performance
o non-functional requirements?

Approaches:
o Massively over-engineer
o Simulation from architecture models
o Rapid prototyping
o Benchmarks and existing application profiling

SE SOftwaI'e /2”7 THE UNIVERSITY OF AUCKLAND
Engineering =

‘ The University of Auckland *

o

Our Approach: Performance Test-
bed Generation and Evaluation

SOFTWARE ENGINEERING

The University of Auckland New Zealand

Web Application Testing Tool Web Application Testing Tool

SN

<=

1. SoftArch architecture

modeling

T7. Present and analyze results

Test results

Web apglication

T 6. Collect test results

Datalpase

+ client descriptor(s)

‘LSE

+ dient descriptor(s)

5. Process performance test

Software

Engineering

‘ The University of Auckland

<AppServer> <Client>
<Name>"cu stomerMaintain</Name> <Name>clientA</Type>
<Type=iis</Type> <Threads>4</Threads>
<Re<nTlo teObj edi/T <DBaseServer>
>
YECaSERS AYPE <Type>sqlServer</Type>

2. Generate XML

Sy

3. XSLT transfomation

l |
PNET -
AS test-bed J2EE test-bed
| * ASPX, C# code * JSP, Java code
* client descriptors L] * client descriptors |-
* database scripts * database scripts

* batch files
* other support files

* batch files
* other support files

v l

Deployment Tool

4.

Upload /deploy test-bed

THE UNIVERSITY OF AUCKLAND

NEW ZEALAND

*x

A

*

2004 |

O) Performance Test-bed Approach

SOFTWARE ENGINEERING

The University of Auckland New Zealand

Model architecture at high level of abstraction, but
include middleware/DB configuration etc

Generate ASP, |SP, web component, DB table etc.
from model — includes request/response calls
between components

Compile, deploy, run tests
Present results to user for analysis

Essentially automated form of rapid prototyping

S E SOftwaI'e /2”7 THE UNIVERSITY OF AUCKLAND
Engineering o R 2R

‘ The University of Auckland

o

Example usage of SoftArch/MTE:

- ’ Delete H Close |

S Modelli thin-client architect
S oaelling a tnin-client arcniteciure
(Q\
g U'anéj C-Generaﬂon Collakboration .:E:. ;lglll MOdeI Clients —
E e 23 Properties for Selectvideo =10 x| requests to
Z Co ent | Properties | Views | Ref ns
G Possible properties: Set properties: S e rve rs
4 Type:String “ || Type:httpRequest
:: |: PamantaNhiarct-Gtrina RemoteServerVideoWWebServer
b SIBII[ermoteovjectvideoManagerage Model servers,
g Component | Prope ews Refinements | As Ant RemoteMethod:Selectvideo_service g
E - Comp ID: TimesTaCall: Servel" Ob]eCtS,
'8 | « ||[|RecordTimeyes . .
o | |Setctise U oreccecniec object services
E | : | Duration:60
—_— 1 WarmUp:10 .
e | e Model service
© 1 | RemoteRequest v
% E Entity Shape | Property Type Info: requests tO
N ' [process entity ||[[rimesToca .
2 " Multiple Entities " " other services,
z [single v Set Property Unset Property
L) Line Thickness] databases
E |1 vl J Clui,
E Model database
3 elements
g
=
5
2
|_

‘ The University of Auckland

S E SOftwaI'e THE UNIVERSITY OF AUCKLAND
Engineering

Model example: PetShop J2EE

° Reference application

= miagrann 1 (2) (3) (4) (3) () (7) (8) (2) {10) {11) =101 =|
File Edt View Changes Code-Genarstion Collaboration

S

o .wmw O) D G

\Lm Skreice_3 Sfrice_3 Egrvice 5

h
@ Tyt v @ @

@ SetectEmduEl_ueny - w ﬁrs-.mfu guery tbdlhmrﬂurymry

\% X‘”I L%“‘ Fult & Ite
i

T T

Categony table Fmduct_table) (pem_teble 3 LAvecust_fable Fwetany_table

Shape SACompShape 'I [Oebug Propagation Display Shapes I

S Oftware 7737 THE UNIVERSITY OF AUCKLAND

Engineering * ok NEW ZEALAND
L]
*

The University of Auckland New Zealand |_ 2004 ||
a1 :
i ¥

‘The University of Auckland

O0) Generating Test-bed Code

Jsp.xsl N

@

= j2ee_vi deoWeb. App.xml ﬂ <xsl:template match="RemoteObj">
<xsl:for-each select="StatesReturned/State"> — ——
<?xml version="1.0" encoding="UTF-8" ?> (1) <xsl:value-of select="."/></[CDATA[<INPUT type=text name ><xs|:va|u_e-of select=""/><!/[CDATA[" size="115"
<AppServer>) value="]|>< %=myBean_<xsl:value-of select="../../Name"/> ¥t<xsTvallie-of sglect="."/>()%>"
<Name>j2ee_videoWebApp</Name> </xsl:for-each> 1
<Type>j2ee</Type>) videoSearch.jsp
<RemoteObj> <fform> <html> (3)
<Name>videoSearch</Name> </body>
<Type>jsp</Type> </html> > _
<StatesReturned> id<INPUT type=text naQe="id’>size="1 15"

. N </xsl:template> ” '~
<State Table="V|deo"Ad</ tate> value="<%=myBean_videoSearch.getid()%>">
<State Table="videg>nam </State> </xsl:stylesheet>
<State Table="vided">descifption</State> _| _ﬂ
<State Table="videc{'>statu

<State Table="video"(stoc </State>
Il

name<INPUT type=text nal ?'ﬁaﬁy" size="115"
value="<%=myBean_videoSearch.getame()%>">

description<INPUT type=text nam&= des_cri@n" size="115"
value="<%=myBean_videoSearch.getdescripfion()%>">

SOFTWARE ENGINEERING

The University of Auckland New Zealand

</RemoteObj> Option Explicit
</AppServer> Dim strSezv? r, port " (4) status<INPUT type=text name{&%@“ size="115"
strServer = "130.216.36.173 value="<%=myBean_videoSearch.gelstdfus()%>">
port =80
< » stock<INPUT type=text nam%ﬁoE@ size="115"

= Sub Main()

call SendRequest1()

call SendRequest2()

call SendRequest1() </form>
call SendRequest2() </body>

End Sub </html> 41'
Main _ﬂ l >

Sub SendRequest1()
Dim oConnection, oRequest, oResponse, oHeaders, strStatusCode, strPath
If fEnableDelays = True then Test.Sleep (0)
Set oConnection = Test.CreateConnection(strServer, port, false)

value="<%=myBean_videoSearch.getSock()%>">

strPath = "/j2ee_videoWebApp/videoSearch.jsp"
oRequest.Path = strPath

End Sub

SE Software
Engineering
‘ The University of Auckland

THE UNIVERSITY OF AUCKLAND

NEW ZEALAND

The University of Auckland New Zealand

to client, server host machines

ACT + client descriptor SoftArch/MTE/Thin

SE

Software

Engineering

‘ The University of Auckland

3. Instruct
Application Centre

J2EE webgpplication — Tegt to perform tests

y

4. Display and
Analyse results

*x

A

*

=1 © Compile/Deploy/Run Tests

S

AN
0 S — o —— —
£ " oD o= e
i o2 : s '
B | | == .
(Y] =
& <« =
: Y A
n - . |
2 2. Deploy generated test-bed files 1. Generate .jsp/.asp, .java/.c,

.bat, .sql, .war etc files

THE UNIVERSITY OF AUCKLAND

NEW ZEALAND

2004 |

o

ACT

Examples of Test Results via

SOFTWARE ENGINEERING

The University of Auckland New Zealand

I'p" GenericACT - Microsoft Application Center Test

File Edit

Wiew Actions Help

| =l @l bla] =l

Test Run Graph
200
150 InVas caV it Vel VasdaVas
@
2
8 100
- — G731-220.07
80
0
o 50 100 150
Time [secs)
Show Errors
Properties
Test type: Dynamic
Simultaneous browser connections: 15
Warm up time {secs): i0
Test duration: 00:00:02:00
Test iterations: 1,210
Detailed test results generated: Yes
Summary
Total number of requests: 18,110
Total number of connections: 18,110
Average requests par second: 15092
Average time to first byte (msecs): 20,05
Average time to last byte (msecs): 97.36
Average time to last byte per iteration (msecs): 1,457 .22
Done ’ﬁ

(3

Software

Engineering

The University of Auckland

= ﬂ|
i GenericACT - Microsoft Application Center Test — o] x|
File Edit ¥iew Actions Help
| =@ Bl bla] =)
Test Run Graph -]
(=]
500 J\’Jf\\‘\
LA A
400
“
I
g am
& —— G731-220-07
200
100
o
1] a0 100 150
Time [secs)
Show Errors
Properties
Test type: Dynamic
Simultaneous browser connections: 15
Warm up time (secs): 10
Test duration: 00:00:02:00
Test iterations: 3,681
Detailed test results generated: Yes
Summary
Total number of requests: 55,226
Total number of connections: 55,226
Average requests per second: 460,22
Avarage time to first byte (msecs); 2462
Average time to last byte (msecs): 2475
Average time to last byte per iteration (msecs); 271.25 _|
Done MWLM -

THE UNIVERSITY OF AUCKLAND

NEW ZEALAND

o

Summarised Results (caveats

next.

. ©)

SOFTWARE ENGINEERING

The University of Auckland New Zealand

120

100

Millisecond
3

Average time to last byte (TTLB)

o J2EE

B .NET

accountManage
Page

categoryManage itemManage ordertManage
Page Page Page
Page

productManage
Page

Software

Engineering

« ‘ The University of Auckland

L

*

THE UNIVERSITY OF AUCKLAND
NEW ZEALAND

o

Results validity — comparison to
“real” PetShop application profiling

SOFTWARE ENGINEERING

The University of Auckland New Zealand

‘LSE

Performance Real SoftArch/Thin-
parameters ASP.NET generated PetShop
PetShop
Overall average RPS 419.56 460.22
(requests/second)
Overall average (ms) 28.67 24.75
accountManagePage 27.34 26.36
categoryManagePage 23.42 23.56
itemManagePage 23.74 24.34
orderManagePage 39.15 27.34
productManagePage 23.63 24.01
Software RARIRD THE UNIVERSITY OF AUCKLAND

Engineering

‘ The University of Auckland

TR NEW ZEALAND
L]

*

2004 |

o

Some Comments/Observations/
Limitations

SOFTWARE ENGINEERING

The University of Auckland New Zealand

J2EE example uses Sun “free” servers etc; ASP ones use MS IIS
commercial server etc

Generated code only as good as the model used — if model
wildly inaccurate; so are results

Can evolve model and re-run tests as evolve design/application
code

Can model existing application and proposed new architecture
and do performance tests

Some code e.g. application logic, caching, complex middleware
v. hard to generate

S E SOftwaI'e /373~y THE UNIVERSITY OF AUCKLAND
Engineering s
‘ The University of Auckland gLf*ﬁJE

2004 |

O) Conclusions

SOFTWARE ENGINEERING

The University of Auckland New Zealand

Performance test-bed generation and analysis a
promising approach to performance engineering

To date comparison of test-bed generated code to
real code performance is generally good

Challenging to develop code generators — need IDE;
need to import parts of model from CASE

Integrating with Argo/UML CASE tool...

S E SOftwaI'e /2”7 THE UNIVERSITY OF AUCKLAND
Engineering o R 2R

‘ The University of Auckland

2004 |

O) References

SOFTWARE ENGINEERING

The University of Auckland New Zealand

SE Software
Engineering
‘ The University of Auckland

Cai, Y., Grundy, J.C., Hosking, J.G., Dai, X. Software Architecture Modelling and Performance Analysis with Argo/
MTE, In Proceedings of the 2004 Conference on Software Engineering and Knowledge Engineering, Baniff, Canada,
June 20-24 2004.

Grundy, J.C,, Cai, Y. and Liu, A. SoftArch/MTE: Generating Distributed System Test-beds from High-level Software
Architecture Descriptions, Automated Software Engineering, Kluwer Academic Publishers, vol. 12, no. |, January

2005, pp. 5-39.

Cai, Y., Grundy, J.C. and Hosking, |.G. Experiences Integrating and Scaling a Performance Test Bed Generator with an
Open Source CASE Tool, In Proceedings of the 2004 IEEE International Conference on Automated Software
Engineering, Linz, Austria, September 20-24, [EEE CS Press, pp. 36-45.

Cai, Y., Grundy,).C., Hosking, J.G., Dai, X. Software Architecture Modelling and Performance Analysis with Argo/
MTE, In Proceedings of the 2004 Conference on Software Engineering and Knowledge Engineering, Baniff, Canada,
June 20-24 2004.

Grundy, J.C., Wei, Z., Nicolescu, R. and Cai, Y. An Environment for Automated Performance Evaluation of |2EE and
ASP.NET Thin-client Architectures, In Proceedings of the 2004 Australian Software Engineering Conference,

Melbourne, Australia, April 14-17 2004, IEEE CS Press.

Grundy, J.C,, Cai, Y. and Liu, A. Generation of Distributed System Test-beds from High-level Software Architecture
Descriptions, In Proceedings of the |6th International Conference on Automated Software Engineering, San Diego,
26-29 Nov 2001, IEEE CS Press, pp. 193-200.

THE UNIVERSITY OF AUCKLAND

T NEW ZEALAND
L]
*

