
ASWEC Presentation (c) John
Grundy 2001

Developing Software Components with the
UML, Enterprise Java Beans and Aspects

John Grundy and Rakesh Patel
University of Auckland
New Zealand

ASWEC Presentation (c) John Grundy 2001

Outline
q What is a Software Component?
q What are aspects; component aspects?
q What is Aspect-oriented component engineering?

q Using AOCE+UML
q Implementing AOCE designs with EJBs
q Basic tool support

q Conclusions and future work

ASWEC Presentation (c) John Grundy 2001

Software Components
q Ideas of:

•  coarser-grained components vs objects
•  compose system from reusable parts
•  dynamic composition ie extend @ run-time

Documentation

Constraints...

Component

•  Components interact via
publicised interfaces

•  Components generate
events

•  Components have
properties/methods

•  Components encapsulate
object(s); information

ASWEC Presentation (c) John Grundy 2001

Example...

Tree Viewer
Messaging UI

Buttons TextFields

Search Panel

Composed UI

MW Communications

Database Access

Products [Video]

Catalogue

Search EngineCustomers

Staff
Rentals

Security

On-line Reviews

Messaging Server

Rentalal
Processing

ASWEC Presentation (c) John Grundy 2001

Challenges
q Example methods: Select Perspective™, COMO,

Catalysis™, Aspect-oriented Component Engineering…
q Example technologies: OpenDoc, EJBs, COM+
q Issues when engineering components:

•  How to identify components vs objects?
•  How to compose components?
•  How to make “reusable”, “tailorable”, “adaptable”?
•  How to reason about composed systems (statically and

dynamically)
•  Reliability, trustability, performance etc issues
•  Plus all the usual: impl meets design meets spec etc

ASWEC Presentation (c) John Grundy 2001

Aspects

q Functional decomposition - normal approach
q Alternatives: parts of system contributing to

“systemic” properties e.g. UI, persistency etc
q Systemic properties of system get spread…

User interface-
related services

Distribution-
related services

Persistency-
related services

Security-
related services

Rental UI VideoData DB AccessMiddleware

Exmaples of “Vertical Slices”
i.e. objects, components

Examples of
“Horizontal

Slices”
i.e. aspects,
perspectives

Overall software application

•

•

•

•

•

•

•

• •

•

•

ASWEC Presentation (c) John Grundy 2001

Component Aspects

Component1

OpenDialogue()

SaveData()

DataChanged()

UpdateData()

Persistency

Collaboration

User interface

Highlight Data()

Component2

SendData()

Collaboration

—provides“

—requires“

q Component = set of
methods etc

q Methods and
behaviour impacted by
>1 systemic aspect

q Aspects give various
“perspectives” on
comp. behaviour

ASWEC Presentation (c) John Grundy 2001

Example

Tree Viewer

MW Communications

Database Access

Products [Video]Customers

On-line Reviews

<<User Interface>>
<<Persistency>>

<<Distribution>>

Reviews UI

<<User Interface>>
<<Distribution>>

<<Collaboration>>

<<Distribution>>
<<Security>>

Component

<<Aspect>>

<<Aspect>>

owned aspects

Provides->requires

<<Distribution>>
<<Persistency>>

<<Persistency>>
<<Distribution>>

<<Distribution>>
<<Persistency>>

<<Configuration>>

<<Distribution>>
<<Persistency>>

<<Collaboration>>

ASWEC Presentation (c) John Grundy 2001

AOCE with UML

q Aspects + aspect details
added to diagrams/
documentation

q Indicates where comps
affected by aspects

q Multiple diagrams with
different aspects = different
perspectives (views)
 on specifications & designs

ComponentName

<attributes>

FunctionName(s)
[+/-]AspectDetailName

<<AspectName>>

+ ProvidedDetailNames
 PropertyName(s)
- RequiredDetailNames

…

ComponentName

<attributes>

<methods>

<aspect(s)>
+ ProvidedDetailNames

PropertyName(s)
- RequiredDetailNames

…

<<AspectName>>
+ ProvidedDetailName
-RequiredDetailName

…

ComponentName

…
Uses

Belongs-to

Uses

ObjectName:CompName

<<Aspect:AspectDetail>>
ObjectName:CompName

<<Aspect:AspectDetail>>

ObjectName:CompName

operation

<< AspectDetail>>

ComponentName

… ComponentName

…
-Distribution.DataTransfer.
 Speed >= 10KB ps +UserInterface.Extensible

 Affordance = [pop-up menu]

ASWEC Presentation (c) John Grundy 2001

Examples (from Rose)

VideoInterface

<<UI, dist, sec>> findVideos()

<<UI>> displayVideos()

Middleware
<<Dist, Sec>>

<<Distribution>>
+transfer
-data
-events
+subcription

RemoteVideoManager

<<dist, sec, per>> selectVideos()

<<distribution>>
+send/receive data
-transfer data
+data

Database

<<Persistency>>
-read/write
-find
+data

q Stereotypes on
classes, methods

q Aspect compartments
q Aspect “icons”
q Aspect details
q Aspect detail

properties
q Aspect documentation

(information dialogue)
q Notes

ASWEC Presentation (c) John Grundy 2001

Example #2

<<Dist, Sec>>
+performance
 <250ms
+number
 1-2 per sec
+encoding
 https
+authenticate
 UID/pword

RentalInterface
<<UI>>

Middleware
<<Dist, Sec>>

RentalManager VideoManager DatabaseUser

<<UI>> rentVideo()

validate()

rentVideo()
rentVideo()

<<Trans, Per>>updateNumCopies()

<<Trans>> begin()

<<Trans, Per>> insertRental()

<<Trans>> commit()

<<Trans>>
+performance
 < 10ms
+number
 10-25 per sec

ASWEC Presentation (c) John Grundy 2001

Implementing Components

q JViews (see paper)
q Perceval (see paper)

Middle-tier

EJB Server

Bean Containers

Web Browser
Servlets

JSPs

Applets

Applications

Home IFs
Beans

q EJBs: Java server comp model

•  Well-defined structure

•  Isolates many systemic properties

•  Still problems designing EJB components

ASWEC Presentation (c) John Grundy 2001

Example
q Clients = JSPs +

JavaBeans (UI aspects)
q Servers = EJBs + EJB

container/server
q Designing for persistency,

security, distribution
q Transactions, threads
q Aspects used to:

•  aid IF design
•  identify responsibilities
•  reason about JavaBean vs

EJB vs container provides/
requires

•  document/test Beans

Client Apps

EJB Server/Containers

Customers (EB) Products (EB)Rentals (EB)

Rent Processing (SB) Search Engine (SB)

Messages (EB)

Message Server

EJB Home IFs

Search UI

Tree Viewer Messaging UI

ASWEC Presentation (c) John Grundy 2001

Tool support

q JComposer = UML-based CASE tool + aspects
q Generate “inter-change” format (Perceval - XML)
q Use XSLT to generate skeleton code for EJBs, Jviews
q Further implement using JDK, Jbuilder etc
q Deploy and run
q Store for reuse in Component Repository (see ACSC’2000)

requ
ires

requ
ires

requ
ires

requ
ires

Extended Jcomposer
CASE Tool

Perceval XML
encoding of AOCE

design

generate
<perceval:comp>
 <perceval:aspect>
 …

</perceval:comp>

JViews tools:
generate

JViews classes

EJB classes

Deployable
Components

Deployable
Components

Further edit,
compile

EJB tools:
generate Component

Repository

Aspect info…

Aspect
info…

ASWEC Presentation (c) John Grundy 2001

Conclusions & Future Work
q Engineering software components challenging:

•  Identifying components; component responsibilities
•  What does each provide/require? Constraints?
•  Reasoning about inter-component behaviour etc

q Aspects help:
•  when specifying/designing/implementing/reusing comps

q Currently working on:
•  automated testing components using EJBs/aspects
•  aspects + conventional CASE e.g. Rose
•  aspects + software architecture abstractions (SoftArch)

References

q  Grundy, J. and Patel, R. Developing Software Components with the UML, Enterprise Java Beans
and Aspects, In Proceedings of the 2001 Australian Software Engineering Conference, Canberra,
Australia, 26-28 August 2001, IEEE CS Press.

q  Grundy, J.C. Multi-perspective specification, design and implementation of components using
aspects, International Journal of Software Engineering and Knowledge Engineering, Vol. 10, No.
6, December 2000, World Scientific.

q  Grundy, J.C., Mugridge, W.B. and Hosking, J.G. Constructing component-based software
engineering environments: issues and experiences, Information and Software Technology Vol 42,
No. 2, Special Issue on Constructing Software Engineering Tools, Elsevier Science Publishers.

q  Grundy, J.C. Aspect-oriented Requirements Engineering for Component-based Software Systems,
1999 IEEE Symposium on Requirements Engineering, Limmerick, Ireland, 7-11 June, 1999, IEEE
CS Press.

q  Grundy, J.C., Hosking, J.G., Mugridge, W.B. Inconsistency Management for Multi-view Software
Development Environments, IEEE Transactions on Software Engineering: Special Issue on
Managing Inconsistency in Software Development, Vol. 24, No. 11, 1998, IEEE CS Press.

ASWEC Presentation (c) John Grundy 2001

