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Outline 
q What is a Software Component? 
q What are aspects; component aspects? 
q What is Aspect-oriented component engineering? 

q Using AOCE+UML 
q Implementing AOCE designs with EJBs 
q Basic tool support 

q Conclusions and future work 
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Software Components 
q Ideas of: 

•  coarser-grained components vs objects 
•  compose system from reusable parts 
•  dynamic composition ie extend @ run-time 

Documentation 

Constraints... 

Component 

•  Components interact via 
publicised interfaces 

•  Components generate 
events 

•  Components have 
properties/methods 

•  Components encapsulate 
object(s); information  
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Example... 

Tree Viewer
Messaging UI

Buttons TextFields

Search Panel

Composed UI

MW Communications

Database Access

Products [Video]

Catalogue

Search EngineCustomers

Staff
Rentals

Security

On-line Reviews

Messaging Server

Rentalal
Processing
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Challenges 
q Example methods: Select Perspective™, COMO, 

Catalysis™, Aspect-oriented Component Engineering…  
q Example technologies: OpenDoc, EJBs, COM+ 
q Issues when engineering components: 

•  How to identify components vs objects? 
•  How to compose components? 
•  How to make “reusable”, “tailorable”, “adaptable”? 
•  How to reason about composed systems (statically and 

dynamically) 
•  Reliability, trustability, performance etc issues 
•  Plus all the usual: impl meets design meets spec etc 
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Aspects 

q Functional decomposition - normal approach 
q Alternatives: parts of system contributing to 

“systemic” properties e.g. UI, persistency etc 
q Systemic properties of system get spread… 

User interface-
related services

Distribution-
related services

Persistency-
related services

Security-
related services

Rental UI VideoData DB AccessMiddleware

Exmaples of “Vertical Slices”
i.e. objects, components

Examples of
“Horizontal

Slices”
i.e. aspects,
perspectives

Overall software application

• 

• 

• 

• 

• 

• 

• 

• • 

• 

• 
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Component Aspects 

Component1

OpenDialogue()

SaveData()

DataChanged()

UpdateData()

Persistency

Collaboration

User interface

Highlight Data()

Component2

SendData()

Collaboration

—provides“

—requires“

q Component = set of 
methods etc 

q Methods and 
behaviour impacted by 
>1 systemic aspect 

q Aspects give various 
“perspectives” on 
comp. behaviour 
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Example 

Tree Viewer

MW Communications

Database Access

Products [Video]Customers

On-line Reviews

<<User Interface>>
<<Persistency>>

<<Distribution>>

Reviews UI

<<User Interface>>
<<Distribution>>

<<Collaboration>>

<<Distribution>>
<<Security>>

Component

<<Aspect>>

<<Aspect>>

owned aspects

Provides->requires

<<Distribution>>
<<Persistency>>

<<Persistency>>
<<Distribution>>

<<Distribution>>
<<Persistency>>

<<Configuration>>

<<Distribution>>
<<Persistency>>

<<Collaboration>>
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AOCE with UML 

q Aspects + aspect details 
added to diagrams/ 
documentation 

q Indicates where comps 
affected by aspects 

q Multiple diagrams with 
different aspects = different 
perspectives (views) 
 on specifications & designs 

 

ComponentName 
 

<attributes> 
 

FunctionName(s) 
[+/-]AspectDetailName 

 
<<AspectName>> 

+ ProvidedDetailNames 
 PropertyName(s) 
- RequiredDetailNames 

 
… 

ComponentName 
 

<attributes> 
 

<methods> 
 

<aspect(s)> 
+ ProvidedDetailNames 

PropertyName(s) 
- RequiredDetailNames 

 
… 

<<AspectName>> 
+ ProvidedDetailName 
-RequiredDetailName 

… 

ComponentName 
 

… 
Uses 

Belongs-to 

Uses 

ObjectName:CompName 
 

<<Aspect:AspectDetail>> 
ObjectName:CompName 

 
<<Aspect:AspectDetail>> 

ObjectName:CompName 

operation 

<< AspectDetail>> 

ComponentName 
 

… ComponentName 
 

… 
-Distribution.DataTransfer. 
  Speed >= 10KB ps +UserInterface.Extensible 

  Affordance = [pop-up menu] 
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Examples (from Rose) 

 

VideoInterface

<<UI, dist, sec>> findVideos()

<<UI>> displayVideos( )

Middleware
<<Dist, Sec>>

<<Distribution>>
+transfer
-data
-events
+subcription

RemoteVideoManager

<<dist, sec, per>> selectVideos( )

<<distribution>>
+send/receive data
-transfer data
+data

Database

<<Persistency>>
-read/write
-find
+data

q Stereotypes on 
classes, methods 

q Aspect compartments 
q Aspect “icons” 
q Aspect details 
q Aspect detail 

properties 
q Aspect documentation 

(information dialogue) 
q Notes 
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Example #2 

<<Dist, Sec>>
+performance
  <250ms
+number
  1-2 per sec
+encoding
  https
+authenticate
  UID/pword

RentalInterface
<<UI>>

Middleware
<<Dist, Sec>>

RentalManager VideoManager DatabaseUser

<<UI>> rentVideo()

validate()

rentVideo()
rentVideo()

<<Trans, Per>>updateNumCopies()

<<Trans>> begin()

<<Trans, Per>> insertRental()

<<Trans>> commit()

<<Trans>>
+performance
  < 10ms
+number
  10-25 per sec
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Implementing Components 

q JViews (see paper) 
q Perceval (see paper) 

Middle-tier

EJB Server

Bean Containers

Web Browser
Servlets

JSPs

Applets

Applications

Home IFs
Beans

q EJBs: Java server comp model 

•  Well-defined structure 

•  Isolates many systemic properties 

•  Still problems designing EJB components 
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Example 
q Clients = JSPs + 

JavaBeans (UI aspects) 
q Servers = EJBs + EJB 

container/server 
q Designing for persistency, 

security, distribution 
q Transactions, threads 
q Aspects used to: 

•  aid IF design 
•  identify responsibilities 
•  reason about JavaBean vs 

EJB vs container provides/
requires 

•  document/test Beans 

Client Apps

EJB Server/Containers

Customers (EB) Products (EB)Rentals (EB)

Rent Processing (SB) Search Engine (SB)

Messages (EB)

Message Server

EJB Home IFs

Search UI

Tree Viewer Messaging UI
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Tool support 

q JComposer = UML-based CASE tool + aspects 
q Generate “inter-change” format (Perceval - XML) 
q Use XSLT to generate skeleton code for EJBs, Jviews 
q Further implement using JDK, Jbuilder etc 
q Deploy and run 
q Store for reuse in Component Repository (see ACSC’2000) 

requ
ires

requ
ires

requ
ires

requ
ires

Extended Jcomposer
CASE Tool

Perceval XML
encoding of AOCE

design

generate
<perceval:comp>
  <perceval:aspect>
    …

</perceval:comp>

JViews tools:
generate

JViews classes

EJB classes

Deployable
Components

Deployable
Components

Further edit,
compile

EJB tools:
generate Component

Repository

Aspect info…

Aspect
info…
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Conclusions & Future Work 
q Engineering software components challenging: 

•  Identifying components; component responsibilities 
•  What does each provide/require? Constraints? 
•  Reasoning about inter-component behaviour etc 

q Aspects help: 
•  when specifying/designing/implementing/reusing comps 

q Currently working on: 
•  automated testing components using EJBs/aspects 
•  aspects + conventional CASE e.g. Rose 
•  aspects + software architecture abstractions (SoftArch) 
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