Development of Robust Traceability Benchmarks

Xiaofan Chen John Hosking John Grundy Robert Amor

Traceability links

• Inter-relationships between artifacts

	Links	Correct	Incorrect	
	Captured	True positive (True links)	False positive (Incorrect links)	
	Fail to be captured	False negative (Missing links)	True negative	
			2.5.2 Resolving Throu	gh a Context
javax.nan	ning Binding	jndispi.pdf	2.4.1 Reading an Obje 3 The Initial Context	ct

What is a Traceability Benchmark?

- A standard test or set of tests employed to compare the performance of traceability recovery techniques [1].
- Four components
 - Dataset
 - Tasks
 - Answer sets
 - Measures

Barriers

- The lack of publicly available benchmarks
- The diversity of traceability issues
- The difficulty of manually building benchmarks

Issues

• Three key issues:

- how to find an appropriate dataset
- how to manually identify correct links
- how to verify links are correct or not.
- No guidelines to assist researchers in developing traceability benchmarks.

• Five steps to build a benchmark

- Task identification
- Artifact selection
- Project selection
- True link set development
- Evaluation metrics
 - -Precision, recall, F-measure

• Formula:

- Errors are dependent on the type of participant
- Links are independent
- Errors made on links are independent

• Assumptions:

- Errors are dependent on the type of participant
- Links are independent
- Errors made on links are independent

• Formula:

$$\Pr[E] = \frac{\sum_{i=1}^{k} (n_i \times \Pr[e_i])}{N}$$

- Errors are dependent on the type of participant
- Links are independent
- Errors made on links are independent

- Errors are dependent on the type of participant
- Links are independent
- Errors made on links are independent

- Errors are dependent on the type of participant
- Links are independent
- Errors made on links are independent

- Errors are dependent on the type of participant
- Links are independent
- Errors made on links are independent

Case study

JDK 1.5		#classes
		/
		sections
Java	java.awt, javax.naming, and javax.print packages	249
packages		
PDF files	JPS_PDF.pdf: Java TM Print Service API User	68
	Guide	
	dnd1.pdf: Drag and Drop subsystem for the Java	41
	Foundation Classes	
	<i>jndispi.pdf</i> : Java Naming and Directory Interface TM	73
	Service Provider Interface(JNDI SPI)	
	Total sections:	182

Time taken by the first six participants at the first stage

Links captured by the first six participants

Time taken by the rest of the participants in verifying links

Stage	Participant	Retrieved	Conflict	Agreed	Example Error	<i>Pr(x_i)</i> for		
		Links	Links	Links	Probability for	$x_j \ge n * 10\%$ (round		
		(<i>R</i>)	(<i>C</i>)	(n=R-C)	Participant (p)	to the nearest integer)		
1^{st}	1	10	1	9	0.2	0.8657823		
stage	2	84	12	72	0.2	0.9940038		
	3	18	2	16	0.2	0.8592625		
	4	35	5	30	0.2	0.955821		
	5	145	21	124	0.2	0.9990852		
	6	117	12	105	0.2	0.9969877		
	7	764	408	356	0.1	0.497614		
	$\sum_{j=1}^{m_1} \Pr(x_j) / m_1 = \sum_{j=1}^7 \Pr(x_j) / 7 = 0.881222357$							
			Pr(y	$_{l}) = 0.0225$	for $y_1 \ge 2$, where $n = 2$	2, <i>p</i> =(0.2+0.1)/2=0.15		
2 nd	8	272	53	219	0.2	0.9999765		
stage	9	272	123	149	0.2	0.9996381		
	10	272	87	185	0.2	0.9998751		
				n 2 j	$\sum_{j=1}^{n_2} \Pr(x_j) / m_2 = \sum_{j=1}^{3} \Pr(x_j$	$\Pr(x_j)/3 = 0.9998299$		
			1	$Pr(y_2) = 0.0$	4 for $y_2 \ge 2$, where $n = 1$	=2, p=(0.2+0.2)/2=0.2		
3 rd	11	75	4	71	0.05	0.0641971		
stage					$\sum_{j=1}^{m_3} \Pr(x_j) / m_3 = \sum_{j=1}^{1} \Pi$	$\Pr(x_j) / 1 = 0.0641971$		
		$Pr(y_3)=0.0$	266119 for	$y_3 \ge 3$, when	e n=5, p=(0.2+0.1+0	0.2+0.2+0.05)/5=0.15		

Stage	Particip	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	cample Error obability for articipant (<i>p</i>)	$Pr(x_i)$ for $x_i \ge n * 10\%$ (round to the nearest
		10	1	9		integer)
1^{st}	1	84	12	72	2	0.8657823
stage	2	18	2	16	2	0.9940038
	3	35	5	30	2	0.8592625
	4	145	21	124	2	0.955821
	6	143	21	124	2	0.9990832
	7	11/	12	105	-1	0.497614
2 nd	8	764	408	356	2	0.9999765
stage	9	272	53	219	2	0.9996381
0	10	272	123	149	2	0.9998751
3 rd	11	272	87	185	05	0.0641971
stage		75	4	71		

					Example Error Probability for	
Stage	Participant	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	Participant (p)	i) for $\geq n \times 10\%$ and to the nearest
					0.2	er)
1 st	1	10	1	9	0.2	57823
stage	2	84	12	72	0.2	40038
	3	18	2	16	0.2	92625
	4	35	5	30	0.2	5821
	5	145	21	124	0.2	90852
	6	117	12	105	0.2	69877
	7	764	408	356	0.2	7614
2 nd	8	272	53	219	0.1	99765
stage	9	272	123	149	0.2	96381
	10	272	87	185	0.2	98751
3 rd	11	75	4	71	0.2	41971
stage					0.2	
					0.05	

						$\frac{Pr(x_j)}{x_i} \text{ for } x_i \ge n + 10\%$
Stage	Participant	Retrieved	Conflict	Agreed	Example	(round to the nearest
		(R)	(<i>C</i>)	(n=R-C)	Probabili Participa	integer)
						0.8657823
1^{st}	1	10	1	9	0.2	0.0040020
stage	2	84	12	72	0.2	0.9940038
	3	18	2	16	0.2	0.8592625
	4	35	5	30	0.2	0.955821
	5	145	21	124	0.2	0.955821
	6	117	12	105	0.2	0.9990852
	7	764	408	356	0.1	0.9969877
2 nd	8	272	53	219	0.2	0.407614
stage	9	272	123	149	0.2	0.497614
	10	272	87	185	0.2	0.9999765
3 rd	11	75	4	71	0.05	0.9996381
stage						0 9998751
						0.9998751
						0.0641971
					1	

Stage	Participant	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	Example Error Probability for Participant (<i>p</i>)	$Pr(x_j)$ for $x_j \ge n * 10\%$ (round to the nearest integer)		
1 st	1	10	1	9	0.2	0.8657823		
stage	2	84	12	72	0.2	0.9940038		
	3	18	2	16	0.2	0.8592625		
	4	35	5	30	0.2	0.955821		
	5	145	21	124	0.2	0.9990852		
	6	117	12	105	0.2	0.9969877		
	7	764	408	356	0.1	0.497614		
2 nd stage 3 rd	ge $\sum_{j=1}^{m_1} \Pr(x_j) / m_1 = \sum_{j=1}^7 \Pr(x_j) / 7 = 0.881222357$							
stage	e $Pr(y_1) = 0.0225$ for $y_1 \ge 2$, where $n=2$, $p=(0.2+0.1)/2=0.15$							

Stage	Participant	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	Example Error Probability for Participant (<i>p</i>)	$Pr(x_j)$ for $x_j \ge n * 10\%$ (round to the nearest integer)	
1^{st}	1	10	1	9	0.2	0.8657823	
stage	2	84	12	72	0.2	0.9940038	
	3	18	2	16	0.2	0.8592625	
	4	35	5	30	0.2	0.955821	
	5	145	21	124	0.2	0.9990852	
	6	117	12	105	0.2	0.9969877	
	7	764	408	356	0.1	0.497614	
2 nd stage 3 rd	$\sum_{j=1}^{m_1} \Pr(x_j) / m_1 = \sum_{j=1}^7 \Pr(x_j) / 7 = 0.881222357$						
stage	P	$r(y_1) = 0.02$	225 for y_i	≥ 2 , wher	e $n=2, p=(0.2+0)$.1)/2=0.15	
$\Pr[e_i] = \left(\sum_{j=1}^{m_i} \Pr(x_j) / m_i\right) \times \Pr(y_i)$							

Stage	Participant	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	Example Error Probability for Participant (<i>p</i>)	$Pr(x_i)$ for $x_i \geq n * 10\%$ (round to the nearestinteger)		
1 st	1	10	1	9	0.2	0.8657823		
stage	2	84	12	72	0.2	0.9940038		
	3	18	2	16	0.2	0.8592625		
	4	35	5	30	0.2	0.955821		
	5	145	21	124	0.2	0.9990852		
	6	117	12	105	0.2	0.9969877		
	7	764	408	356	0.1	0.497614		
2 nd	8	272	53	219	0.2	0.9999765		
stage	9	272	123	149	0.2	0.9996381		
	10	272	87	185	0.2	0.9998751		
3 rd stage		1	$\sum_{k=1}^{m_2} \mathbf{P}_k$	$r(x_i)/m$	$h_{2} = \sum_{i=1}^{3} \Pr(x_{i}) / \frac{1}{2}$	3 = 0.9998299		
	$\sum_{j=1}^{j-1} \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) \right) = \left(\left(\left(i \right) \right) \left(\left(\left(i \right) \right) \right) \right) \left(\left(\left(i \right) \right) \right) \right) = \left(\left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) \right) = \left(\left(\left(\left(i \right) \right) \right) \right) \left(\left(\left(i \right) \right) \right) \right) = \left(\left(\left(i \right) \right) \left(\left(\left(i \right) \right) \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(\left(i \right) \right) \right) = \left(\left(\left(i \right) \right) \left(\left(i \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(i \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(i \right) \right) = \left(\left(\left(i \right) \right) \right) \left(\left(i \right) \right) = \left(\left(\left(i \right) \right) \right) = \left(\left(i \right) \right) \left(\left(i \right) \right) = \left(\left(i \right) \right) = \left(\left(i \right) \right) \left(\left(i \right) \right) = \left(\left(i \right) = \left(\left(i \right) \right) = \left(\left(i \right) \right) = \left(\left(i \right) = \left(\left(i \right) \right) = \left(\left(i \right) \right) = \left(\left(i \right) = \left(\left(i \right) \right) = \left(\left(i \right) \right) = \left(\left(i \right) = \left(\left(i \right) \right) = \left(\left(i \right) \right) = \left(\left(i \right) = \left(i \right) = \left(\left(i \right) \right) = \left(\left(i \right) = \left(i \right) = \left(\left(i \right) \right) = \left(\left(i \right) = \left(i \right) = \left(i \right) = \left(\left(i \right) = \left(i \right$							
		$Pr(y_2)$	= 0.04 fc	or $y_2 \ge 2$, w	where $n=2, p=(0)$	0.2+0.2)/2=0.2		

Stage	Participant	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	Example Error Probability for Participant (<i>p</i>)	$Pr(x_i)$ for $x_i \ge n * 10\%$ (round to the nearest integer)
1 st	1	10	1	9	0.2	0.8657823
stage	2	84	12	72	0.2	0.9940038
	3	18	2	16	0.2	0.8592625
	4	35 Dr	$\begin{bmatrix} a \end{bmatrix} = (\sum_{i=1}^{m_i} \end{bmatrix}$	$D_{n}(x)$	$\rightarrow Dr(.)$	0.955821
	5	145 PT	$[e_i] = (\sum_{i=1}^{n}]$	$PI(x_j) \mid m_i$)× $\Pr(Y_i)$	0.9990852
	6	117	J=1	105	0.2	0.9969877
	7	764	408	356	0.1	0.497614
2^{nd}	8	272	53	219	0.2	0.9999765
stage	9	272	123	149	0.2	0.9996381
	10	272	87	185	0.2	0.9998751
3 rd stage			$\sum_{m_2}^{m_2} P_2$	$r(x_i)/m$	$r_{2} = \sum_{i=1}^{3} \Pr(x_{i}) / \frac{1}{2}$	3 = 0.9998299
			<i>j</i> =1		$\sum_{j=1}^{2} \left(\int f^{j} \right)$	
		$Pr(y_2)$	= 0.04 fo	or $y_2 \ge 2$, v	where <i>n</i> =2, <i>p</i> =(0	0.2+0.2)/2=0.2

Stage	Participant	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	Example Error Probability for Participant (<i>p</i>)	$Pr(x_i)$ for $x_i \ge n * 10\%$ (round to the nearest integer)
1^{st}	1	10	1	9	0.2	0.8657823
stage	2	84	12	72	0.2	0.9940038
2 nd stage	11	75	$\sum_{j=1}^{j=1} \Pr(p_j)$	$\frac{r(x_j)}{y_3} = 0.0$ $p = (0.2)$	$\sum_{j=1}^{3} \Pr(x_j) / 1$ $266119 \text{ for } y_3 \ge 2+0.1+0.2+0.2-1$	= 0.0641971 3, where $n=5$, +0.05)/5=0.15
stage	11	/5	4	/1	0.05	0.0641971
			,			

Stage	Participant	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	Example Error Probability for Participant (<i>p</i>)	$Pr(x_i)$ for $x_j \ge n * 10\%$ (round to the nearest
1 st	1	10	1	0	0.2	integer)
stage	2	84	12	72	0.2	0.9940038
			$\sum_{j=1}^{m_3} \mathbf{P}_1$	$r(x_j)/m_j$	$a_{3} = \sum_{j=1}^{1} \Pr(x_{j}) / 1$	= 0.0641971
and			Pr($(y_3) = 0.0$	266119 for $y_3 \ge$	3, where $n=5$,
z				p=(0.2	2+0.1+0.2+0.2-	+0.05)/5=0.15
3 rd stage	11	75	4	71	0.05	0.0641971
]	$\Pr[e_i] = \left(\sum_{j=1}^{m}\right)^{m}$	$\sum_{j=1}^{n_i} \Pr(x_j) / k$	$(m_i) \times \Pr(y_i)$	

Stage	Participant	Retrieved Links (<i>R</i>)	Conflict Links (<i>C</i>)	Agreed Links (<i>n=R-C</i>)	Example Error Probability for Participant (<i>p</i>)	$Pr(x_i)$ for $x_j \ge n * 10\%$ (round to the nearest integer)	
1^{st}	1	10	1	9	0.2	0.8657823	
stage	2	84	12	72	0.2	0.9940038	
	3	18	2	16	0.2	0.8592625	
	4	.955821					
	5 $\Pr[E] = \frac{11111}{11212}$.9990852	
	6	6 N				.9969877	
	7	764	408	356	0.1	0.497614	
	$\sum_{j=1}^{m_1} \Pr(x_j) / m_1 = \sum_{j=1}^{7} \Pr(x_j) / 7 = 0.88122233$ $Pr(y_1) = 0.0225 \text{ for } y_1 \ge 2, \text{ where } n=2, p=(0.2+0.1)/2=0.$						
2 nd	8	272	53	219	0.2	0.9999765	
stage	9	272	123	149	0.2	0.9996381	
	10	272	87	185	0.2	0.9998751	
	$\sum_{j=1}^{m_2} \Pr(x_j) / m_2 = \sum_{j=1}^{3} \Pr(x_j) / 3 = 0.9998299$						
	$Pr(y_2) = 0.04$ for $y_2 \ge 2$, where $n=2$, $p=(0.2+0.2)/2=0.2$						
3 rd	11	75	4	71	0.05	0.0641971	
stage	$\sum_{j=1}^{m_3} \Pr(x_j) / m_3 = \sum_{j=1}^{1} \Pr(x_j) / 1 = 0.0641971$						
	$Pr(y_3) = 0.0266119$ for $y_3 \ge 3$, where $n=5$, $p=(0.2+0.1+0.2+0.2+0.05)/5=0.15$						

Actual error rates for participants

Stage	Participant	Retrieved Links (<i>R</i>)	Incorrect Links (W)	Actual Error Probability (<i>p=W/R</i>)
1 st stage	1	10	1	0.1
	2	84	5	0.05952
	3	18	1	0.05556
	4	35	3	0.08571
	5	145	6	0.04138
	6	117	6	0.05128
	7	764	31	0.04058
2 nd stage	8	272	3	0.01103
	9	272	8	0.02941
	10	272	6	0.02206
3 rd stage	11	75	2	0.02667

 $Pr[E] = 0.0012 \text{ for } E \ge N*5\%$

Cost-quality tradeoffs

- Workload allocated to each participant
- •Number of participants verifying a link
- •Knowledge of the traced project of each participant

Problems

- The difficulty of determining whether two elements are related.
- How much workload is suitable for a participant to undertake?
- The difficulty of recruitment.
- The scalability of benchmarks.

Threats to validity

- False positive links may be included.
- Some links may be harder to identify.
- True links may fail to be included.
- The case we used is a small fraction of the JDK1.5 system.
- May show different probability error results for different systems and participants.

Future work

Extend the JDK1.5 benchmarkExplore other probability distributions

• Five steps to build a benchmark

- Rigorous identification and verification strategies
- A formula to compute the probability error
- JDK1.5 benchmark is available from:
 - <u>http://tinyurl.com/713ohe4</u>.

References

- 1) S. E. Sim, S. Easterbrook, and R.C. Holt, "Using benchmarking to advance research: a challenge to software engineering," ICSE 2003, pp. 74-83
- J. Cleland-Huang, A. Czauderna, A., Dekhtyar, O. Gotel, J. H. Hayes, E. Keenan, G. Leach, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman, G. Antoniol, B. Berenbach, A. Egyed, and P. Maeder, "Grand challenges, benchmarks, and TraceLab: developing infrastructure for the software traceability research community," TEFSE 2011, May, Waikiki, USA
- 3) Chen, X., Hosking, J.G., Grundy, J.C. and Amor, R. Development of robust traceability benchmarks, 2013 Australasian Conference on Software Engineering (ASWEC 2013), Melbourne, Australia, July 2013, IEEE CS Press.
- 4) Chen, X., Hosking, J.G. and Grundy, J.C. Visualizing Traceability Links between Source Code and Documentation, 2012 IEEE International Symposium on Visual Languages and Human-Centric Computing, Innsbruck, Austria, Sept 30-Oct 4 2012, IEEE CS Press.
- 5) Chen, X. and Grundy, J.C. Improving Automated Documentation to Code Traceability by Combining Retrieval Techniques, In proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering, Nov 6-10 2011, IEEE Press.
- 6) Chen, X., Hosking, J.G. and Grundy, J.C. A Combination Approach for Enhancing Automated Traceability, New Ideas and Emerging Results Track, In Proceedings of the 2011 International Conference on Software Engineering (ICSE2011), Honolulu, Hawaii, USA, May 21-28 2011.