

TOOL SUPPORT FOR ESSENTIAL USE CASES TO BETTER
CAPTURE SOFTWARE REQUIREMENTS

1MASSILA KAMALRUDIN, 2PROF JOHN GRUNDY,
3PROF JOHN HOSKING

1Department of Electrical & Computer
Engineering, 3Department of Computer
Science,
University of Auckland, New Zealand
2Centre for Complex Software, Systems
& Services, Swinburne University of
Technology

ASE 2010

INTRODUCTION
�  Natural language is commonly used to capture software

requirements
�  Natural language is a human-centric representation for

clients and requirements engineers
�  The process of capturing requirements and the inherent

ambiguities and complexities of natural language leads
to major problems including

Ø Inconsistency
Ø redundancy,
Ø Incompleteness
Ø Omissions

MOTIVATION
�  Modelling requirements

Ø  Want to represent (semi-)formally the requirements
Ø  This allows for better checking & analysis than Natural Language alone

�  Common requirements models:
Ø  UML use cases : capture functional requirements mostly informally

 Strengths à can be shown to end-users, widely used
 Limitations à time-consuming to build and leads to imprecise analysis

Ø  KAOS : capture formally
 Strengths à formal model, can analyse deeply
 Limitations à challenging for end-users and complex

Ø  Essential Use Cases (Constantine and Lockwood,1999): integrate
the requirement engineering and interaction design process.

 Strengths à more formal than UML use cases, can do deeper analysis
Limitations :

• Lack of tool support
• lack of experience in extracting essential interaction from requirements
• Lack of integration with other modelling languages

ESSENTIAL USE CASES (EUC)

“Structured narrative, expressed in
a language of the application
domain and of users, comprising a
simplified, generalized, abstract,
technology free and independent
descript ion of one task or
interaction that is complete,
meaningful, and well-defined from
the point of view of users in some
role or roles in relation to a system
and that embodies the purpose or
i n t e n t i o n s u n d e r l y i n g t h e
interaction” (Constantine, 1995).

Specifies a sequence of
abstract steps and captures

the core part of a
requirement.

Shorter and simpler than conventional
use cases, and is in the form of a

dialogue between the user and system.

Contains User
Intentions and

System
Responsibilities

Documentation of the
interaction without the

need to describe the user
interface in detail.

*Responsibility: “what
the system must do to
support the use case”

CAPTURING REQUIREMENTS WITH
ESSENTIAL USE CASES (EUCS)
The use case begins when the
customer goes to the Customer Log-
on page. There, the customer 1types
in his/her name and customer ID on
the form and submits it. The system
then 2displays the Tech Support home
page with a l i s t o f Prob lem
Categories. The customer 3clicks on
installation help within the list, and
the system 4supplies the Incident
Repor t Form . The cu s tomer
5completes and submits the form, and
the system 6presents a suggested
resolution.

User intention System
responsibility

1. Identify self
2 .Present he lp

options
3 . S e l e c t h e l p

option

4 . R e q u e s t

description
5 . D e s c r i b e

problem

6.Offer possible

solutions

Essential
interaction

Essential
requirement

(Abstract
interaction)

PRELIMINARY USER STUDY

§  53% of individual abstract interactions were incorrect
§  Only 1 EUC was completely correct
§ The average time taken to accomplish the EUC development task was 11.2
minutes.
§ The longest time taken was ~ 25 minutes and the shortest ~ 5 minutes

§  significant variability.
àtended to determine incorrect level of abstraction for their essential interaction
àtime consuming: need to figure out appropriate keyword for abstract interaction

Study	 result	 of	
Essen/al	 Use	 Case	
prac/ce	 on	
“Ge7ng	 Cash”	
scenario:	
Correctness	 and	
/me	
	
	

OUR APPROACH

�  Lightweight tool support vs heavy weight NL processing
�  Domain specific – use knowledge of EUC domain
�  Develop a library of “proven” essential interactions à

textual phrases, phrase variants and limited regular
expressions
◦  Enables extraction of EUCs from NL textual requirements

�  Library of abstract interaction patterns
Ø collection of patterns developed by Constantine and

Lockwood, Biddle et al. and us.
Ø  applicable across various domains
Ø Enables deeper analysis of extracted requirements

HOW DOES THE ABSTRACTION
OF EUCs WORK?
�  Each essential interaction pattern is:

Ø associated with a collection of alternative sequences of textual
requirement phrases that could match to the pattern

Ø Each sequences relates to a more concrete version of the
abstract interaction pattern

Ø Textual natural language requirements were analyzed àmatch
against the concrete versions and look for the best match

�  Abstraction à instantiating an instance of the more
abstract interaction pattern associated with the
concrete one.

Ø Similar to the process of keyword searching

ESSENTIAL INTERACTION
EXTRACTION

Natural language
requirement

Essential Use
Case

requirement
Extraction

Library-
essential use

cases

Highlight
change

1
2

4

3

Natural language requirement s
are fed to the extraction

process

Uses essential
interaction phrases
and expressions &

produces a sequence
of EUC essential

interaction Items in natural
language

requirement of
EUC essential
interaction can
be selected and

see
corresponding

items

TOOL SUPPORT
�  Developed a prototype EUC essential interaction

extraction tool
Ø Requirements engineers can do initial essential interaction

extraction from textual natural language requirements : this
gives us an initial EUC model

�  Tool provides traceability support mechanisms between
textual natural language requirements and derived EUC
models

Ø Trace-forward & Trace –back

�  Guidelines of using the patterns are codified
Ø Requirements engineers need to have an understanding of the

EUC concept and methodology before using the tool

TOOL SUPPORT

OUR AUTOMATED TRACING
TOOL

1

Input the textual natural
language requirement

Trace the abstract
interaction for EUC

Trace -back the
identified abstract

interaction to
essential interaction

• Might be more than 1
essential interactions.
• Highlighting and tracing:
H e l p s t o c h e c k f o r
consistency, correctness
and completeness of
requirements.

MARAMA ESSENTIAL

• Integrate the automated tracing
tool in Eclipse, MaramaAI.
• The EUC in Marama called
Marama Essential.
• Develop using Marama meta-tools
platform.

ESSENTIAL INTERACTION
EXTRACTION

�  Collected and categorized
phrases from a wide variety of
textual natural language
requirements documents.

�  ≈ 300 phrases from various
requirements domains:
Ø  Online booking, online banking,

mobile systems related to making
and receiving calls, online election
systems, online business, online
registration and e-commerce.

�  88 patterns of abstract
interaction à on average
 3-4 patterns /essent ia l
interactions per abstract
interaction

Example of an Abstract interaction and associated
Essential interactions

Abstract
interaction

Essential
interaction

Display error Display time out

Show error

Display error
message

Show problem list

• Not categorized by 1 scenario.
• Associates with 5 concrete scenarios :

Ø Online business, e-commerce, online
booking, online banking and online
voting system

Key Textual Structures

Figure 4. Tree structure for Key textual Phrase

Different sentence structures:
�  Verb (V) + Noun (N) (only)

Ø request (V) amount (N)

�  Verb (V) + Articles (ART)+
Noun (N)
Ø issue (V) a (ART) receipt (N)

�  Verb (V) + Adjective (ADJ)+
Noun (N)
Ø  ask (V) which (ADJ) operation

(N)

Sentence

Verb Phrase
(VP)

Noun Phrase
(NP)

(none)/Articles/
Adjective

Noun

Provides flexibility in the library:
Accommodate various types of
sentences containing essential

requirements

EVALUATION
�  Compare accuracy and

performance of our
automated tracing tool
with manual extraction

�  Use same scenario &
group of participants as
we used earlier

�  Survey their perception
of the tool ease of use
and utility for extraction
and tracing

Table 2. Comparison result of correctness
between

Manual Extraction and Automated Tracing
Tool

EVALUATION

Figure 5: Result of the tool Usefulness and Ease of Use
Recommendation:
• Better User interface with a more user friendly prototype
• Useful to be embedded within a tool that visually displays the EUCs to improve usability
• Time taken for trace & trace back:

Ø fast and very fast,
Ø noted some variation of speed for different scenarios

EVALUATION
�  15 scenarios from different

d o m a i n s d e r i v e d f ro m
d i f f e r e n t r e s e a r c h e r s ,
developers and ourselves.

�  Tool correctness evaluated by
comparing the answers with
the actual interaction pattern
developed by Constantine and
Lockwood, Biddle et al. and
also pattern develop by us
following Constantine and
Lockwood methodology Figure 6. Accuracy across different

scenarios

shows some variability across the range of scenarios,
average correctness across all scenarios and interactions ≈80%, so the “getting cash” scenario
used in the earlier evaluation was not unusual.
Not 100% : incorrectness and incompleteness issue of textual requirements à
linguistic issues, parentheses existence and grammar.

SUMMARY
�  Identified problem faced by requirements engineers and end user while using

EUC approach à our preliminary study

�  Developed a prototype EUC essential interaction extraction and tracing tool
Ø Key aim: to support EUC by extracting the essential requirement (abstract

interactions) automatically and facilitate tracing between EUC and textual
natural language requirements.

�  Collection and categorization of terminology for the library of abstract
interactions

Ø assists in structuring EUC expressed requirements using common
terminology and also helps prevent the textual requirements from being
vague and error-prone

�  Automated extraction and tracing tool
Ø  to increase the ratio of correctness in extracting EUC requirements from

textual natural language requirements and eases the effort of users or
requirements engineers in handling the EUC, significantly reducing the time
taken.

FUTURE WORK
�  Embed our extraction approach into an integrated EUC Diagram tool (Marama

Essential) developed using the Marama meta tool
Ø will enable users to generate and maintain the consistency of visual EUC

models automatically from lists of abstract interaction.

�  Embed a glossary and template authoring support to the tool
Ø  to assist improved natural language-based requirements authoring and

update.

�  Add additional support for inconsistency, incompleteness and redundancy
detection using our extraction approach and round-trip engineering of natural
language and EUC model requirements

Ø explore a complementary approach using a composite EUC pattern
template library

�  Plan to explore relating EUCs to further artefact views including generating UI
and OO design models in our Eclipse prototype, with round-trip engineering
support to consistency with textual natural language requirements.

ACKOWLEDGEMENT
 This research is funded by the Ministry of
Higher Education Malaysia (MOHE),
Universiti Teknikal Malaysia Melaka
(UTeM) the PReSS Account of the
University of Auckland and the FRST
S o f t w a re P ro c e s s a n d P ro d u c t
Improvement project.

� TQ.
� Q&A?

References
�  Kamalrudin, M., Hosking, J.G, and Grundy, J.C. Improving requirements quality using essential use case interaction

patterns, In Proceedings of the 2011 International Conference on Software engineering (ICSE
2011), Hawaii, USA, May 21-28 2011.

�  Kamalrudin, M. and Grundy, J.C. Generating Essential User Interface Prototypes to Validate Requirements, In
proceedings of the 26th IEEE/ACM International Conference on Automated Software Engineering, Nov 6-10
2011, IEEE Press. Kalmalrudin, M., Grundy, J.C. and Hosking, J.G., Managing consistency between textual
requirements, abstract interactions and Essential Use Cases, In Proceedings of the 2010 IEEE International
Conference on Computer Software and Applications (COMPSAC 2010), Seoul, South Korea, July 2010, IEEE CS
Press.

�  Kalmalrudin, M., Grundy, J.C. and Hosking, J.G. Tool Support for Essential Use Cases to Better Capture Software
Requirements, In Proceedings of the 25th IEEE/ACM International Conference on Automated Software
Engineering, Antwerp, Belgium, 20-24 Sept 2010, ACM Press.

�  Kalmalrudin, M., Grundy, J.C. and Hosking, J.G. MaramaAI: Automated and Visual Approach for Inconsistency
Checking of Requirements, Demo/Poster track at IEEE International Conference on Requirements Engineering,
Sydney, Australia, September 27 - October 1, 2010.
 -- Final version available from DOI Author pre-published version PDF

�  Grundy, J.C., Hosking, J.G., Li, N. and Huh, J. Marama: an Eclipse meta-toolset for generating multi-view
environments, Formal demonstration at the 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 2008, ACM Press.

�  Olsen, T. and Grundy, J.C. Supporting traceability and inconsistency management between software artefacts, In
Proceedings of the 2002 International Conference on Software Engineering and Applications, Boston, MA, 2-5
Nov 2002.

�  Grundy, J.C., Hosking, J.G., Mugridge, W.B. Inconsistency Management for Multi-view Software Development
Environments, IEEE Transactions on Software Engineering: Special Issue on Managing Inconsistency in Software
Development, Vol. 24, No. 11, 1998, IEEE CS Press.

