
Synthesizing Client Load Models
for Performance Engineering via
Web Crawling

Rainbow Cai, John Grundy and John Hosking
Department of Computer Science, University of
Auckland, New Zealand
November 2007, ASE, Atlanta, US

Outline

n  Introduction
n  Motivation and Related Work
n  MaramaMTE+
n  Example Usage
n  Design and Implementation
n  Conclusions and Discussions
n  Summary

Motivation

n  Web load testing needed to ensure performance

requirements met
n  Current load testing environments (e.g. JMeter, MS

ACT) support complicated testing plans
n  BUT - it’s tedious and error-prone to manually

script these

Motivation

n  Ideally web load testing tool support must allow
users to:
q  easily change client load model testing parameter values
q  generate multiple testing plans/scripts automatically

n  Tool should be well-integrated within a generic
performance engineering environment
q  allows realistic client behavior model to influence the

design of other parts of software system e.g. the software
architecture.

Running web
application e.g.
Java PetStore

1. Crawl web
site (using

WebSphinx)

2. Generate structural
information of web site

3. Web site
structure 4. Synthesize form

chart & import into
MaramaMTE+

Basic form chart
model skeleton

Stochastic form
chart (& versions)

MaramaMTE+
architecture view(s)

Other MaramaMTE+
views…

6. Generate scripts

-JMeter scripts
-Custom data
-MTE performance
test-bed

JMeter load
testing tool

7. Run tests via e.g.
JMeter

8. Visualise results in
JMeter or MTE+

5. Augment
form chart with

probabilities
etc

Performance
engineer

9. Stored
results

MaramaMTE+
(Eclipse-based

IDE)

Our Approach:MaramaMTE+

1.  Crawl target web site
to extract structure
into database

2. Synthesize a form
chart model from the
web structure
database in
MaramaMTE+

3. Engineer augments
with probabilities =
“stochastic form
chart” formal model

4. Generate JMeter etc
load test plans/scripts

5. Run & analyse the
performance tests.
Potentially change
probabilities/ restructure
form charts & compare
results

Example Usage

n  Use Java Pet Store reference application to illustrate
effectiveness of our MaramaMTE+ approach

http://java.sun.com/developer/releases/petstore/

n  Shows the main steps of load testing PetStore
legacy system in MaramaMTE+:
q  HTTP request extraction from target web site
q  Form chart augmentation by engineer
q  Load test generation (target tool JMeter)
q  Running generated JMeter tests

Example Usage - HTTP Request Extraction

n  WebSphinx used to extract Pet Store structural
information
q  User supplies target web site information to the crawler
q  Crawler explores the main screens, hyper links, and http

requests, parameters and values for target web site

n  MaramaMTE+ collects data into a purpose-built
crawler/result/http request database

n  E.g.:
q  “http_request” table holds http requests and associated pages
q  “page” table holds information about page ids and names

(a)

(b)

(c)

(d)

Example Usage - Form Chart Extraction

§  MaramaMTE+ uses crawler data to generate an initial
form chart model structure
§  Includes forms, actions, transitions, links to underlying web
site structure (URLs)

§  For large web sites engineers can view and edit partial
form charts in multiple diagrams that share a single
model

§  Diagram and model versioning mechanism allows
alternate versions of the form charts to be created, then
compared, differentiated and merged.

Example Usage ------ Form Chart Augmentation

n  MaramaMTE+ uses the generated form chart in two ways:

q  model of user interaction behaviour from which to generate
testing tool scripts e.g. for JMeter (system developed and
under stress test)

q  with other MaramaMTE+ models (e.g. the architecture
design models, business process models and service
composition models) to generate a performance evaluation
test bed for server-side (system under design)

n  For either, engineer needs to augment model with properties that
specify user interaction behaviours and code generation
information

n  Can version form chart and add different probabilities etc to
compare performance under different user behaviours (i.e.
loading conditions)

Example Usage ------ Loading Test Generation

n  MaramaMTE+ uses stochastic form chart to generate e.g. JMeter testing plan
and associated scripts:

q  MaramaMTE+ form chart “Page” = state of the website;
q  “Action” = JMeter http requests to obtain certain web pages;
q  “Transition” = transitions between web pages via “Actions”;
q  “Probability” and “URL” properties used to generate the logic controllers
of the JMeter testing plan

n  MaramaMTE+ may also generate a Java load testing programme for client
and/or server-side (if system under design):

q  uses a state machine implementation
n  web pages = states
n  linked by form chart actions = http requests

 <jmeterTestPlan version="1.2" properties="1.8">
 <hashTree>
 <TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="Test Plan" enabled="true">
 <stringProp name="TestPlan.user_define_classpath"></stringProp>
 <stringProp name="TestPlan.comments"></stringProp>
 <boolProp name="TestPlan.functional_mode">false</boolProp>
 <boolProp name="TestPlan.serialize_threadgroups">false</boolProp>
 <elementProp name="TestPlan.user_defined_variables" elementType="Arguments"
 guiclass="ArgumentsPanel" testclass="Arguments" testname="User Defined Variables" enabled="true">
 <collectionProp name="Arguments.arguments">
 <elementProp name="server" elementType="Argument">
 <stringProp name="Argument.value">localhost</stringProp>
 <stringProp name="Argument.name">server</stringProp>
 <stringProp name="Argument.metadata">=</stringProp>
 </elementProp>
 <elementProp name="port" elementType="Argument">
 <stringProp name="Argument.value">8000</stringProp>
 <stringProp name="Argument.name">port</stringProp>
 <stringProp name="Argument.metadata">=</stringProp>
 </elementProp>
 <elementProp name="next_page" elementType="Argument">
 <stringProp name="Argument.value">page_index</stringProp>
 <stringProp name="Argument.name">next_page</stringProp>
 <stringProp name="Argument.metadata">=</stringProp>
 </elementProp>
 </collectionProp>
 </elementProp>
 </TestPlan>
 <hashTree>
 <ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="page flow" enabled="true">
 <stringProp name="ThreadGroup.ramp_time">1</stringProp>
 <boolProp name="ThreadGroup.scheduler">false</boolProp>
 <stringProp name="ThreadGroup.on_sample_error">continue</stringProp>
 <longProp name="ThreadGroup.start_time">1076438592000</longProp>
 <elementProp name="ThreadGroup.main_controller" elementType="LoopController"
 guiclass="LoopControlPanel" testclass="LoopController" testname="Loop Controller" enabled="true">
 <boolProp name="LoopController.continue_forever">false</boolProp>
 <stringProp name="LoopController.loops">1</stringProp>
 </elementProp>
 <stringProp name="ThreadGroup.num_threads">5</stringProp>
 <stringProp name="ThreadGroup.duration"></stringProp>
 <stringProp name="ThreadGroup.delay"></stringProp>
 <longProp name="ThreadGroup.end_time">1076438592000</longProp>
 </ThreadGroup>
 <hashTree>
…

(a)

(b)

(c)

Example Usage ------ Running Load Tests

n  Run the generated JMeter testing plan against the web
application server (Java PetStore).

n  Analyse important performance measurements, e.g. :
q  visited web pages
q  sample numbers,
q  average response time,
q  min and max response time,
q  throughput, etc.

n  Results presented using generated JMeter tabular result
viewer
q  Can also use other JMeter-supplied result analysis tools and

visualisations
q  Supports exploratory performance engineering for web applications

in early-phase design or reengineering.

Design and Implementation of MaramaMTE+
n  Implemented as a set of Eclipse IDE plug-ins using Marama meta-tool
n  Eclipse Java Emitter Templates (JET) scripts used to generate form

chart-based test plans and scripts
q  JET template generates root JMeter test plan from client form chart

component and its properties (name, host(s), threads etc)
q  JMeter initialisation components/scripts generated e.g. to set up

timing monitors (WhileController).
q  First form chart page transformed to an initial http request on target

web application (IfController).
q  Transitions to Actions in the form chart generate decision logic in

the JMeter test script implementing a state machine model
n  Via JMeter’s RegexExtractor, UserParameters, etc

q  Probabilities in form chart model may be simple random, fixed
times, or complex stochastic probability models
n  Implemented as JMeter’s BeanShellTimer, Gaussian Random Timer,

etc

n  The use of a formal stochastic form chart model for
client load behavior modeling
q  Models user behavior in terms of probabilistic interactions
q  Model can be both reasoned about and used to generate test plans

and scripts.

n  The ability to extract basic form chart model
structure from a web application via web crawling
q  Much less costly than hand-crafting a user model

Discussion - Key advantages to MaramaMTE+

Discussion - Key advantages to MaramaMTE+

n  Can version stochastic form charts to compare and contrast

performance under different client behavior models
q  i.e. under different loadings on the server

n  Model-based generation of 3rd party stress testing tool test
plans and scripts –
q  means MaramaMTE+ can leverage 3rd party load testing tools’

advanced features e.g. JMeter’s sophisticated measurement, reporting,
distributed test execution and test scheduling support features

n  Can run and compare web application performance under
numerous different loading models accurately and efficiently

Discussion - Limitations
n  Engineer needs to manually augment generated form chart with

probabilities
n  Must live with 3rd party tool limitations:

q  Most web application stress testing tools have less rich client
behavioural models than form charts.

q  Thus we need to simplify the model when test scripts are generated
or extend the testing tool (if possible)

q  Sometimes implementing form chart-specified behaviour is quite
complex in the 3rd party testing tool
n  e.g. implementing a probabilistic state machine in JMeter is challenging

q  It is not always easy to control such tools in the way we are able to
when generating our own client load test implementation

n  Automates retrieval of website structural data from a web user’s
perspective

n  Generates a formal model of user interaction behaviour and load
testing plans

n  Effectiveness demonstrated through a case study, Java Pet Store:
q  site crawled, structural data extracted, a form chart model automatically

generated and manually augmented, JMeter testing plans generated and
executed, and load testing results collected

n  Future plans:
q  will combine the generated form chart with a generated design level model

of a legacy system
q  will make it possible for ordinary tool users to make rigorous comparisons

between different products (e.g. Java PetStore and .NET PetShop)

Summary: MaramaMTE+

Thank you!

Questions?

References

n  Cai, Y., Grundy, J.C. and Hosking, J.G. Synthesizing Client Load Models for Performance
Engineering via Web Crawling, In Proceedings of the 2007 IEEE/ACM International Conference
on Automated Software Engineering, Atlanta, Nov 5-9 2007, IEEE CS Press.

n  Grundy, J.C., Cai, Y. and Liu, A. SoftArch/MTE: Generating Distributed System Test-beds from
High-level Software Architecture Descriptions, Automated Software Engineering, Kluwer
Academic Publishers, vol. 12, no. 1, January 2005, pp. 5-39.

n  Cai, Y., Grundy, J.C. and Hosking, J.G. Experiences Integrating and Scaling a Performance Test
Bed Generator with an Open Source CASE Tool, In Proceedings of the 2004 IEEE International
Conference on Automated Software Engineering, Linz, Austria, September 20-24, IEEE CS
Press, pp. 36-45.

n  Cai, Y., Grundy, J.C., Hosking, J.G., Dai, X. Software Architecture Modelling and Performance
Analysis with Argo/MTE, In Proceedings of the 2004 Conference on Software Engineering and
Knowledge Engineering, Baniff, Canada, June 20-24 2004.

n  Grundy, J.C., Wei, Z., Nicolescu, R. and Cai, Y. An Environment for Automated Performance
Evaluation of J2EE and ASP.NET Thin-client Architectures, In Proceedings of the 2004 Australian
Software Engineering Conference, Melbourne, Australia, April 14-17 2004, IEEE CS Press.

n  Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed System Test-beds from High-level
Software Architecture Descriptions, In Proceedings of the 16th International Conference on
Automated Software Engineering, San Diego, 26-29 Nov 2001, IEEE CS Press, pp. 193-200.

