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Motivation  
 
 
n  Web load testing needed to ensure performance 

requirements met 
n  Current load testing environments (e.g. JMeter, MS 

ACT) support complicated testing plans  
n  BUT - it’s tedious and error-prone to manually 

script these 



Motivation 

n  Ideally web load testing tool support must allow 
users to:  
q  easily change client load model testing parameter values 
q   generate multiple testing plans/scripts automatically 

n  Tool should be well-integrated within a generic 
performance engineering environment  
q  allows realistic client behavior model to influence the 

design of other parts of software system e.g. the software 
architecture. 
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Our Approach:MaramaMTE+  
 

1.  Crawl target web site 
to extract structure 
into database 

2. Synthesize a form 
chart model from the 
web structure 
database in 
MaramaMTE+ 

3. Engineer augments 
with probabilities = 
“stochastic form 
chart” formal model 

4. Generate JMeter etc 
load test plans/scripts 

5. Run & analyse the 
performance tests. 
Potentially change 
probabilities/ restructure 
form charts & compare 
results 



Example Usage 

n  Use Java Pet Store reference application to illustrate 
effectiveness of our MaramaMTE+ approach 

http://java.sun.com/developer/releases/petstore/ 

n  Shows the main steps of load testing PetStore 
legacy system in MaramaMTE+: 
q  HTTP request extraction from target web site 
q  Form chart augmentation by engineer 
q  Load test generation (target tool JMeter) 
q  Running generated JMeter tests 

 



Example Usage - HTTP Request Extraction 

n  WebSphinx used to extract  Pet Store structural 
information 
q  User supplies target web site information to the crawler  
q  Crawler explores the main screens, hyper links, and http 

requests, parameters and values for target web site  

n  MaramaMTE+ collects data into a purpose-built 
crawler/result/http request database 

n  E.g.:  
q  “http_request” table holds http requests and associated pages  
q  “page” table holds information about page ids and names 
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Example Usage - Form Chart Extraction 
 

§  MaramaMTE+ uses crawler data to generate an initial 
form chart model structure 
§  Includes forms, actions, transitions, links to underlying web 
site structure (URLs)  

§  For large web sites engineers can view and edit partial 
form charts in multiple diagrams that share a single 
model 

§  Diagram and model versioning mechanism allows 
alternate versions of the form charts to be created, then 
compared, differentiated and merged. 





Example Usage ------ Form Chart Augmentation 
 
n  MaramaMTE+ uses the generated form chart in two ways:  

q  model of user interaction behaviour from which to generate 
testing tool scripts e.g. for JMeter (system developed and 
under stress test) 

q  with other MaramaMTE+ models (e.g. the architecture 
design models, business process models and service 
composition models) to generate a performance evaluation 
test bed for server-side (system under design) 

n  For either, engineer needs to augment model with properties that 
specify user interaction behaviours and code generation 
information 

n  Can version form chart and add different probabilities etc to 
compare performance under different user behaviours (i.e. 
loading conditions) 





Example Usage ------ Loading Test Generation 

n  MaramaMTE+ uses stochastic form chart to generate e.g. JMeter testing plan 
and associated scripts: 

q  MaramaMTE+ form chart “Page” = state of the website; 
q  “Action” =  JMeter http requests to obtain certain web pages; 
q  “Transition” = transitions between web pages via “Actions”; 
q  “Probability” and “URL” properties used to generate the logic controllers 
of the JMeter testing plan 

n  MaramaMTE+ may also generate a Java load testing programme for client 
and/or server-side (if system under design): 

q  uses a state machine implementation  
n  web pages = states 
n  linked by form chart actions = http requests 



 <jmeterTestPlan version="1.2" properties="1.8"> 
  <hashTree> 
    <TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="Test Plan" enabled="true"> 
      <stringProp name="TestPlan.user_define_classpath"></stringProp> 
      <stringProp name="TestPlan.comments"></stringProp> 
      <boolProp name="TestPlan.functional_mode">false</boolProp> 
      <boolProp name="TestPlan.serialize_threadgroups">false</boolProp> 
      <elementProp name="TestPlan.user_defined_variables" elementType="Arguments"  
 guiclass="ArgumentsPanel" testclass="Arguments" testname="User Defined Variables" enabled="true"> 
        <collectionProp name="Arguments.arguments"> 
          <elementProp name="server" elementType="Argument"> 
            <stringProp name="Argument.value">localhost</stringProp> 
            <stringProp name="Argument.name">server</stringProp> 
            <stringProp name="Argument.metadata">=</stringProp> 
          </elementProp> 
          <elementProp name="port" elementType="Argument"> 
            <stringProp name="Argument.value">8000</stringProp> 
            <stringProp name="Argument.name">port</stringProp> 
            <stringProp name="Argument.metadata">=</stringProp> 
          </elementProp> 
          <elementProp name="next_page" elementType="Argument"> 
            <stringProp name="Argument.value">page_index</stringProp> 
            <stringProp name="Argument.name">next_page</stringProp> 
            <stringProp name="Argument.metadata">=</stringProp> 
          </elementProp> 
        </collectionProp> 
      </elementProp> 
    </TestPlan> 
    <hashTree> 
      <ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="page flow" enabled="true"> 
        <stringProp name="ThreadGroup.ramp_time">1</stringProp> 
        <boolProp name="ThreadGroup.scheduler">false</boolProp> 
        <stringProp name="ThreadGroup.on_sample_error">continue</stringProp> 
        <longProp name="ThreadGroup.start_time">1076438592000</longProp> 
        <elementProp name="ThreadGroup.main_controller" elementType="LoopController"  
 guiclass="LoopControlPanel" testclass="LoopController" testname="Loop Controller" enabled="true"> 
          <boolProp name="LoopController.continue_forever">false</boolProp> 
          <stringProp name="LoopController.loops">1</stringProp> 
        </elementProp> 
        <stringProp name="ThreadGroup.num_threads">5</stringProp> 
        <stringProp name="ThreadGroup.duration"></stringProp> 
        <stringProp name="ThreadGroup.delay"></stringProp> 
        <longProp name="ThreadGroup.end_time">1076438592000</longProp> 
      </ThreadGroup> 
      <hashTree> 
… 
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Example Usage ------ Running Load Tests 

n  Run the generated JMeter testing plan against the web 
application server (Java PetStore ).  

n  Analyse important performance measurements, e.g. : 
q  visited web pages 
q  sample numbers, 
q  average response time, 
q  min and max response time,  
q  throughput, etc.  

n  Results presented using generated JMeter tabular result 
viewer 
q  Can also use other JMeter-supplied result analysis tools and 

visualisations 
q  Supports exploratory performance engineering for web applications 

in early-phase design or reengineering. 



 



Design and Implementation of MaramaMTE+  
n  Implemented as a set of Eclipse IDE plug-ins using Marama meta-tool 
n  Eclipse Java Emitter Templates (JET) scripts used to generate form 

chart-based test plans and scripts  
q  JET template generates root JMeter test plan from client form chart 

component and its properties (name, host(s), threads etc) 
q  JMeter initialisation components/scripts generated e.g. to set up 

timing monitors (WhileController). 
q  First form chart page transformed to an initial http request on target 

web application (IfController). 
q  Transitions to Actions in the form chart generate decision logic in 

the JMeter test script implementing a state machine model 
n  Via JMeter’s RegexExtractor, UserParameters, etc 

q  Probabilities in form chart model may be simple random, fixed 
times, or complex stochastic probability models  
n  Implemented as JMeter’s BeanShellTimer, Gaussian Random Timer, 

etc 



 
 
 
 

n  The use of a formal stochastic form chart model for 
client load behavior modeling  
q  Models user behavior in terms of probabilistic interactions 
q  Model can be both reasoned about and used to generate test plans 

and scripts. 

n  The ability to extract basic form chart model 
structure from a web application via web crawling  
q  Much less costly than hand-crafting a user model 

Discussion - Key advantages to MaramaMTE+ 



Discussion - Key advantages to MaramaMTE+ 
 
n  Can version stochastic form charts to compare and contrast 

performance under different client behavior models  
q  i.e. under different loadings on the server 

n  Model-based generation of 3rd party stress testing tool test 
plans and scripts – 
q  means MaramaMTE+ can leverage 3rd party load testing tools’ 

advanced features e.g. JMeter’s sophisticated measurement, reporting, 
distributed test execution and test scheduling support features  

n  Can run and compare web application performance under 
numerous different loading models accurately and efficiently 



Discussion - Limitations 
n  Engineer needs to manually augment generated form chart with 

probabilities 
n  Must live with 3rd party tool limitations: 

q  Most web application stress testing tools have less rich client 
behavioural models than form charts.  

q  Thus we need to simplify the model when test scripts are generated 
or extend the testing tool (if possible) 

q  Sometimes implementing form chart-specified behaviour is quite 
complex in the 3rd party testing tool  
n  e.g. implementing a probabilistic state machine in JMeter is challenging 

q  It is not always easy to control such tools in the way we are able to 
when generating our own client load test implementation 



 

 
 

n  Automates retrieval of website structural data from a web user’s 
perspective  

n  Generates a formal model of user interaction behaviour and load 
testing plans 

n  Effectiveness demonstrated through a case study, Java Pet Store: 
q  site crawled, structural data extracted, a form chart model automatically 

generated and manually augmented, JMeter testing plans generated and 
executed, and load testing results collected 

n  Future plans: 
q  will combine the generated form chart with a generated design level model 

of a legacy system  
q  will make it possible for ordinary tool users to make rigorous comparisons 

between different products (e.g. Java PetStore and .NET PetShop) 

Summary: MaramaMTE+ 



Thank you! 
 
Questions? 
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