
YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

 A Generic Approach to Supporting
Diagram Differencing and Merging for

Collaborative Design
Akhil Mehra1, John Grundy1, 2 and John Hosking1

1Dept. Computer Science and 2Dept. Electrical and

Computer Engineering
University of Auckland, New Zealand

ASE 2005!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 2

Outline

•  Motivation
•  Version control of software artifacts
•  Differentiation and merging
•  Our approach: visual artifact differentiation &

merging via plug-in components
•  Examples of usage
•  Architecture & Design
•  Future work
•  Conclusions

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 3

Motivation

•  To support collaborative, asynchronous work we need:
–  Support for multiple versions of software

artifacts & configuration management
–  Ability to compare versions (“differentiation”)
–  Ability to combine versions (“merging”)

•  Good support exists for textual & XML-based
versioning differentiation and merging

•  Limited or no support for visual design artifact
versioning, differentiation and merging

•  Wanted to add such support to a design environment
meta-tool for use across wide variety of design tools

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 4

Example - Requirements

1.  Create alternate version!
2.  Edit alternate!
3.  Compare to repository!
4.  Display changes!
5.  Merge some/all changes!
6.  Check back into repository!

Need to:!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 5

Version Control 101
Artifact!

e.g. .java !
file – “root”!

(v1.0)!

Artifact!
Revision!
(v1.1)!

Artifact!
Branch!
(v1.2a)!

Artifact!
Branch!
(v1.2b)!

Artifact!
Revision!

(v1.2a.1)! Artifact!
Merge!

(v1.2c)!

Artifact!
Revision!
(v1.3c)!

Artifact!
Revision!

(v1.2b.1)!

Artifact!
Revison!
(v1.2)!

Artifact!
Merge!
(v2.0)!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 6

Differentiation & Merging
•  Find changes (differentiation) between two documents that are

alternative versions (share the same root document)
•  Classical textual comparison – “diff” of documents d1 and d2:

–  Several algorithms developed
–  Usual approach is to identify “islands of similarity” between

d1 and d2
–  Then build set of line additions/deletions/changes that if

applied to d1 would covert it to d2
–  Set of additions/deletions is a “delta” between d1 and d2
–  Merging applies all or some of delta to d1 – if all applied, get

d2 else if some applied, get d3, a merging of some changes
from d1 and some from d2 producing a third alternate, d3

•  Similar algorithms for XML (hierarchical document) diffing:
–  Find add/delete of element/attribute nodes; changed values

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 7

Eclipse Example

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 8

Problem: doesn’t work very
well for visual artifacts

•  In CASE and other design tools:
–  Diffing of text files or XML files commonly used

to compare e.g. underlying UML models
–  Cognitive gap between diff of diagram model and

its visual representation
–  Hard to visualise what changes really are and

control merging
•  What we really want:

–  Diffing using diagram data structures (graph)
–  Presentation of deltas in-situ in diagrams
–  Selective accept/reject of changes by user

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 9

Our Approach
•  Added set of plug-ins to Pounamu visual design meta-tool to

support version management, diffing, merging:
–  Plug-in to support CVS check-in/out of diagrams
–  Plug-in to support visual diffing of diagram versions – editing

Command objects synthesized as delta representation –
works for ANY diagram type

–  Plug-in to visualise Command object deltas in one of the
diagram versions (actually reused from a collaborative editing
plug-in…)

–  Plug-in to allow user to selectively accept/reject delta items
– runs Commands on a diagram to accept changes

•  Plug-ins added to single-user meta-tool – no code change made to
this to support check-out/diff/highlight/merge/check-in!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 10

Our Approach

CVS !
Repository !

Server! !

Diagram !
versions as !

XML! !

Pounamu Meta! -!tool! !
(User #1)! !

Updated !
Diagram! !
Objects! ! CVS !

Plug!-!in! !

2. User #1 !
edits !

diagram in !
Pounamu! !

CVS Repository !
Server! !

3. User #1 !
checks !
updated !

diagram back !
into CVS! !

Pounamu Meta! -!tool! !
(User #2)! !

User 2 !
Diagram! !
Objects! ! User 1 !

Diagram! !
Objects! !

CVS !
Plug!-!in! !

Differentiation !
Plug!-!in! !

4. User #2 !
checks!-!out !

version for !
compare/ !
merge! !8. New version !

checked! into !
CVS; other !
users can !

copy, merge !
etc.! !

 !
 !
 !
 !
 !
 !
 !
 !

Pounamu Meta! -!tool! !
(User #2)! !

New !
Versio!n of !

Diagram Objects! !

CVS !
Plug!-!in! !

7.Merger plug! -!
in converts !
highlighting !

commands to !
edit commands !
and runs those !

selected by !
user, resulting !

in new diagram !
version! !

“differences”, represented by executable !
Pounamu edit Command objects.!5. Differentia! tion plug!-! in generates set of !

 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !
 !

Pounamu Meta! -!tool! !
(User #2)! !

Set of changes !
(Deltas) !–! as !

Pounamu !
Command objects! !User 2 !

Diagram! !
with !

Highlighting !
of affected !
elements! ! Group !

Awareness !
plug!-!in! !

Pounamu Meta! -!tool! !
(User #2)! !

User!-!selected of !
Pounamu Command !

objects! !
User 2 !

Diagram! !
Objects! !

Merging !
Plug!-!in! ! 6. User #2 !

selects !
changes !

wanted by !
pop!-!ups in !

diagram or !
list of !

Commands !
dialogue! !

Pounamu Meta! -!tool! !
(User #1)! !

Diagram! !
Objects! !

CVS !
Plug!-!in! ! Differentiation !

Plug!-!in! !
Merging !
Plug!-!in! !

1. User #1 !
checks!-!out !

version for !
update! !

Group !
Awareness !
plug!-!in! !

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 11

Examples of using
John’s version:!

 Akhil’s version:!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 12

CVS Check-out by Akhil

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 13

Differencing

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 14

Merging

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 15

Architecture

Pounamu
Diagram
Editing

Pounamu Diagram
Rendering

CVS Client
Pounamu
Plug-in

Remote CVS
Server

Remote
Collaborative
Editing Server

Pounamu
Collaborative
Editing Client

Pounamu
Diagram

Representation
- XML

Pounamu Diagram
Representation – Java
Hierarchical Objects

Alternate Version
Pounamu Diagram
– Java Objects

Diagram
Differentiation

Plug-in

Command
Objects

Representing
Deltas

Diagram
Highlighting
Plug-in for

Group
Awareness

Diagram
Merging
Plug-in

Core Pounamu Facilities

1

2

3

5

4

6

7

8 9

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 16

Differencing Algorithm

•  Differencing does 2 passes over diagram
datastructure – shape then connector comparison

•  Uses a “root ID” for each shape to determine which
items in two versions share same root version

•  Compares attribute values
•  Compares position, size
•  Distinguishes “contains” and “related to” connectors
•  Builds Create/DeleteShape, SetProperty, MoveShape,

ResizeShape, Create/DeleteConnector Commands
•  Highlighting temporarily annotates diagram with

Command list info

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 17

Differencing
•  Pounamu diagram data structure:

–  All element use “root ID” to assist related item
identification

–  Sub-shape vs related shape info also used
Diagram!

objectID,
rootID!

!

Shape!
objectID,

rootID!
Connector!

0..*! child !

parent!

1..
1!
1..
1!

0..
*!
0..
*!

Property!
Name : Value!

0..
*! 0..

*!

Class !
id=123!
root=456!
Name=Video!
Abstract=true!
Location=(10,20)!
Size=(45,40)!

Class !
id=555!
root=678!
Name=Rental!
Abstract=true!

Association!

Class !
id=998!
root=456!
Name=VideoImpl!
Abstract=false!
Location=(25,35)!
Size=(45,40)!

Class !
id=881!
root=432!
Name=Customer!
Abstract=true!

Association!

Class !
id=555!
root=678!
Name=Rental!
Abstract=false!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 18

Evaluation
•  Usability analysis via survey and Cognitive Dimensions
•  Gutwin’s groupware assessment framework

•  Visibility – displays differences in-situ
•  Viscosity – user can accept/reject chanages directly
•  Hidden dependencies – reduces
•  Consistency – of change representation/acceptance
•  Error-proneness and hard mental operations – reduced

•  Presence & authorship – clear
•  Awareness of change – explicit
•  Intention awareness – some support

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 19

Current/Future work

•  Incorporated into Eclipse-based meta-tool (Marama)
•  Extended Command visualisation support
•  Word-like tracking annotations
•  Use of semantic constraint checking to enhance

differencing and ordering of Commands planned
•  Extend to provide highlighting re-configuration by

users:
–  Change appearance of annotations
–  Extend comparison mechanism
–  Change way user can accept/reject

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 20

Eclipse Example

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

ASE 2005 Presentation (c) John Grundy 21

Conclusions

•  Version control for visual software artifacts requires
differentiation/merging support as with textual/XML
artifacts

•  Comparing graph-based visual designs is more complex
in some ways; easier in others

•  We have prototyped generic algorithm for
differencing as set of plug-ins to the meta-tools
Pounamu and Marama (itself a set of Eclipse plug-ins)

•  Differencing produces set of editing Commands
•  We reuse a collaborating editing plug-in to provide

Command highlighting facility
•  We support partial or full change merging via

Command execution on versions

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

References
•  Mehra, A., Grundy, J.C. and Hosking, J.G., Adding Group Awareness to Design

Tools Using a Plug-in, Web Service-based Approach, In Proceedings of the Sixth
International Workshop on Collaborative Editing Systems, CSCW 2004, Chicago,
November 6, 2004.

•  Mehra, A., Grundy, J.C. and Hosking, J.G. Supporting Collaborative Software
Design with a Plug-in, Web Services-based Architecture, In ICSE 2004
Workshop on Directions in Software Engineering Environments, Grundy, Welland
and Stoeckle (eds), IEE Press.

•  Grundy, J.C. and Hosking, J.G. Engineering plug-in software components to
support collaborative work, Software - Practice and Experience, Vol. 32, No. 10,
August 2002, Wiley, 983-1013.

•  Grundy, J.C. Engineering component-based, user-configurable collaborative
editing systems, Engineering for Human-Computer Interaction, Chatty, S. and
Dewan, P. Eds, February 1999, Kluwer Academic Publishers.

•  Grundy, J.C., Mugridge, W.B., Hosking, J.G., Amor, R.W. Support for
Collaborative, Integrated Software Development, in Proceedings of the 7th
Conference on Software Engineering Environments (SEE'95), IEEE CS Press,
Netherlands, April 5-7, 1995, pp. 84-94.

ASE 2005 Presentation (c) John Grundy 22

