£ 2005|

PRESENTATION

ity of Auckland | New Zealand

Univers

The

An Overview of Aspect-oriented
Component Engineering

Professor John Grundy

Dept. Electrical and Computer Engineering
and Dept. Computer Science

University of Auckland, New Zealand

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Outline

What are aspects and why are they useful?
What is AOCE?
Requirements-level AOCE
Design-level AOCE
Using aspects when implementing components
Run-time aspect usage:
- Component/service discovery
- Run-time integration
- Validation of deployed components
Tool support
Current work
Conclusions

Overview of AOCE (c) John Grundy 2005

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Software Components

Ideas of:
- coarser-grained components vs objects

- compose system from reusable parts

- dynamic composition ie extend @ run-time

Component

Documentation

.
R

Constraints...

]

=

]

DL
\C

>

- Components interact via

publicised interfaces

» Components generate

events/messages

- Components have

properties/methods

- Components encapsulate

object(s) & information

Overview of AOCE (c) John Grundy 2005

Example...

File Edit Yiew Changes Collaboration

)) Row:|@|
Arrival Airport:[| Seat[|

Options

Options

LO |Mark: Look atthe changed travel itinerary now - is this any good?
N O
YEAR
> Create/Modify Itinerary
2 O
=
g
i Customer
0 Search for ltem
[
/\ Chat
o)
g
'C_d . J FEile Edit View Favorites Tools Help |
ﬁ Travel Agent AnnOtatlon J Back - = - D ml QySearch [jFavorites & @History | B S mE
2 | Address [&] http://localhost:a080/examplesjispitravel/menu_html.jsp =] @co ||Links >
2 Online Travel Planner A
% < Lodging Cars/Rail Vacations Cruises
g Review ltinerary A S
= ~ FlightSecarch Book Seat :
2 Flight search criteris E'I[gf:tﬁndli Sct -
; ight selected:
fE Start Date:||j| QF43 2002/09/20: SYD
° _ § End Date:[] to AKL
2 Book Itinerary : Dept Airport:[] Select seat:
Z
D]
2
=
)
(]
=
[

Overview of AOCE (c) John Grundy 2005 4

Challenges

+ Tssues when engineering components:
- How to identify components vs objects?
- How to compose components?
- How to make “reusable”, “tailorable”, “adaptable”?

- How to reason about composed systems (statically
and dynamically)

- Reliability, trustability, performance etc issues
- Plus all the usual: impl meets design meets spec etfc

£ 2005|

PRESENTATION

*+ We think the concept of "aspects” (cross-cutting
concerns) can help...

Overview of AOCE (c) John Grundy 2005 5

The University of Auckland | New Zealand

Aspects

LQ Exmaples of “Vertical Slices”

g i.e. objects, components

N ' | User interface- !
b | related services !
z] L | [W, :'__I
o Examples of | ! I ! Security_ i
= “ . ! ! | i :
g Horizontal | ' related services |
z Slices” —-----N\----E= . : RS oo oo ETTITIIIIIIIIIIIIINT
@ i.e. aspects, ! . : . Distribution- !
& | related services

perspectives \\

Persistency-
. related services

=

Itinerary Ul Middleware | Customer |’ Flights
Manager Data

* Functional decomposition - normal approach

+ Alternatives: parts of system contributing to
“systemic” properties e.g. UL, persistency etc

- Systemic properties of system get spread..

The University of Auckland | New Zealand

Overview of AOCE (c) John Grundy 2005

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Examples of Aspects

Distribution/Remoting (networking etc)
Persistency (data storage)

Security (authentication, encryption, access control)
Transactional behaviour (ACID, distributed)
Logging

Monitoring

Failure recovery

Caching

User interfaces

Collaboration support

Reconfiguration support

Key idea: these cross-cut many of the various components/
component methods in the system - how do we best handle this
in requirements/design/implementation/run-time...

How can we change the way these are handled, even @ run-time?

Overview of AOCE (c) John Grundy 2005

7

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Aspect-oriented Component

Engineering

—. —=

Component Specification
and Design

Validation agents
_; — >

Component repository I

4. Component aspect encodings are accessed
and used at run-time

1. Extended component models with aspect
information (provided/required aspect
details and properties)

Component

(—

Component(s):
Adaptation

Component

v

Component

Component

aspects

2. Component implementations: aspect
information provide s description and way to
implement reflective, de- coupled interaction

1

aspects aspects

<L

3. Components are deployed with their
associated encoded aspect information

I" Il describe and illustrate SOME of these (briefly) as we go... ©
Overview of AOCE (c) John Grundy 2005 8

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Requirements-level Aspects

* Our first foray in AOCE was to try and improve

representation of these cross-cutting issues in
requirements and specifications for components

Approach taken was for each candidate component
capture info about possible cross-cutting issues

* Represent these as “component aspects” that are

orthogonal to requirements and specifications
artefacts

» Reason about inter-related component aspects

(“provided and required”)

Use to refine to design-level aspects for component
implementation

Overview of AOCE (c) John Grundy 2005

An example
(web services engineering using AOCE)

Travel Planner Client

- -

£ 2005|

i T q

s ! <<Co-ordination>> !
1

1

1

-Messages “ “1--t Requires: data locking

. :
———————————————————— 1 T EEEEEE T EEEEEEEE—
Itinerary Web Service ~<User Interface>> /
1
b 1

PRESENTATION

<<Persistency>>

1 1 _:
- ! <<Co-ordination>> !

—Data u}gdate events "I~ Provides: items list : d
i ! :
1

1
1
1
— 1 Provides: data locking

K L ock item ,\~ - Requiyes: store/load

—
-

<<Persistency>>
Provides: store/load

1
1
I
1
i /Provides: transactional update

’
[A L SRy L

s -

~o .

-Trdnsactio 1 <Transaction>> 1
]:a ’L}S _______ I Provides: Pessimistic, ACID

~-o - Ll ——

Overview of AOCE (c) John Grundy 2005

The University of Auckland | New Zealand

2005|

<
m
>
F

PRESENTATION

The University of Auckland | New Zealand

ComponentName

<attributes>

FunctionName(s)

[+/-]AspectDetailName A

<<AspectName>>

+ ProvidedDetailNames &
PropertyName(s) | ™.

- RequiredDetailNames

ObjectName:CompName

<<Aspect:AspectDetail>>

\ <<Aspect:AspectDetail>>

\A& spectDetail>>

ComponentName

Speed >= 10KB ps

-\ ComponentName

-Distribution.DataTransfer.

UML Extensions to Capture
Component Aspects

ComponentName

<attributes>

<methods>

<aspect(s)>
+ ProvidedDetailNames
PropertyName(s)
- RequiredDetailNames

ComponentName

. + ProvidedDetailName i

—_— ObjectName:CompName

ObjectName:CompName

+UserlInterface.Extensible
Affordance = [pop-up menu]

Aspects + aspect details
added to diagrams/
documentation

Indicates where comps
affected by aspects

Multiple diagrams with
different aspects =
different perspectives
(views) on specifications &
designs

Overview of AOCE (c) John Grundy 2005 11

2005|

<
m
>
F

PRESENTATION

The Universit;{)f Auckland | New Zealand

ItineraryInterface

e ——

<<UlI, dist, sec>> findFlights()

<> displayFlights ()

RemoteFlightsManager

Aspects in Design

<<Dist, Sec>>
Middleware

<<Persistency>>

7

<<Distribution>>

+transfer
-data
-events
+subcription

Stereotypes on classes,
methods

Aspect compartments
Aspect “icons”

Aspect details

Aspect detail properties

Aspect documentation
(information dialogue)

Notes

_~~—-read/write
()
N -find
<<dist, sec, per>> selectFlights()
>
| +send/receive data
-transfer data
ta -
Database
Overview of AOCE (c) John Grundy 2005 12

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Sequence Diagram Example

User Itinerarylnterface

IltineraryManager

]
(<<U@okFlight()

k_'—

/M‘I‘dﬂ'l'e_w?r(E\
<<Ul|>> (<<Dist_89

N—

validate()

P

N—

bookFlight()

/ <<Dist, Sec>>
+performance
<250ms

+encoding
https

+authenticate
UID/pword

bookFlight()

FlightsManager

Database

<<Trans>> begin()

<<Trans, Per>>updatq,éeats()

<<Trans, Per>> insertBooking()

P

]

<<frans>> cymmit()

<10ms
+number

<<Trans>>
+performance

10-25 per sec

Overview of AOCE (c) John Grundy 2005

13

|| PRESENTATION || g 2005 ||

The University of Auckland | New Zealand

Describing Aspects - Example

fame= “Itinerary Management”>

<component

gfmplementing this component />
<components Na

" . ent
<property name="caching”> W S C O m p o n
<value type="boolean” /> . .
<getter operation="getCaching” />
<setter operation="setCaching” /> C h a r| a C T e r' I S GT l O n

</property>

<operation name="findltinerary” style="rpc”>

e Dl Lo * Low-level aspects
* Medium-level aspects
- High-level aspects

<aspects namespaces="www.travelplanner.com/aspects/namespaces/itinerary” >
<aspect name="ItineraryData”

detail="itinerary:ItineraryDataManagement” type="provided”

<impacts operations="all” />

<aspect name=
etail= common:DataManager” type="requir
<impacts operations="findltineraryladdltineraryl...” />
<property name="Performance”

type="common:OperationSpeed”>
<common:lessThan units="ms">100</lessThan>
</property>

</aspec

° n:
<aspect name="TransactionSupport s e l n .

detail="common:TransactionsRequired” type="required” >
<impacts operations="findltineraryladdItineraryl...” />
<property name="TransactionScope”

L]
type="common: TransactionDemarcation”> - I m p I e m e nT l ng C O m pS
<common:transactionState>IN_TRANS</transactionState>
° b .
-—
Describing comps

- At run-time to
register/locate/
integrate/adapt/test

Overview of AOCE (c) John Grundy 2005 14

€= BookingManager”
detail="booking: TravelBookingManager” type="required
<impacts operations="addItinerarylupdateltineraryl...” />
<property name="BookingCommittal Approach”
type="booking:BookingCommittal ">
<booking: BookingCommittal value="BTP” />
</property>
<property name="Timeout” type="booking:TimeOut” >
<booking:TimeOut units=days>
<max>5</max></booking:TimeOut>
roperty>

</aspect>

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Component Implementation

Need ways to use aspect information when implementing
components & at run-time

Traditional approach - inject code via AOP-style systems
(Aspect-J, Hyper-J, Subject-oriented programming etc)

However, may have COTS components (with no code); very
difficult o control feature (aspect) interactions...

Our approach - use aspects to assist in de-coupling component
dependencies (can in Jec‘r code, but we don’ t focus on that)

Idea: aspects provide “generic” interface to accessing systemic
properties of components

Realised this via:

- extensions to our JViews framework for building multi-view,
multi-user design tools

- extensions to EJB model in J2EE-based implementations
- extensions to WSDL for NET/J2EE web services systems

Overview of AOCE (c) John Grundy 2005 15

JViews Framework Example

Component #1

Call indirect via
adversitsed
“aspect objects”
- fully indirect Generic AO

coupling interface

P g . 44

“aspect information
Call a /

objects”

generalised,
aspect-
oriented
interface
directly

Specialised
interface

£ 2005|

PRESENTATION

i XML-encoded
i aspects

Component #2

Discover IF via aspect
encoding & call either
specialised or generic IF

Usual approach - call component
interface directly

The University of Auckland | New Zealand

Overview of AOCE (c) John Grundy 2005 16

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Example

.- Event object | ~<

- e’
P 5: get event aspects -
-7 ’% collab editing comp
Itinerary viewer < — <

Component/
object

<<Event>>
aspect object

<>
aspect object

<<Remoting>>
aspect object

2: add collab afforda

/V N extensible Ul aspect

w\ 3: creal’?/ / 8: get distributor comp

7: subscribe event ~
Menu comps | 6: subscribe before eveénts

event generation aspect

distributor aspect

/9:get comp

event sender <

<— 10. send event

Overview of AOCE (c) John Grundy 2005 17

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Using Aspects at Run-time

A number of ways of using aspects in AOCE-
engineered components at run-time:

- Add components to repository and locate via
aspect information (query by cross-cut)

- Discover (locate) and integrate with existing
components

- Adapt existing/discovered components at run-time
(discover & adapt to environment)

- Validate deployed components (synthesise tests at
run-time to check components really meet their
aspect-specified constraints)

Overview of AOCE (c) John Grundy 2005 18

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Run-time Adaptation Example

Eiitenary

I [=] 3

Collabhoration

File
® ERo] add
@ ECI) Insert
ol Add Subitem
o Reload
Bl Remove

otel e
Melbnumg,m Adelgidd
Adelail:le'tn Ferth

’
.

Add Hotel
Add Rental Car
4 Add Stop
ltenary for:
ligrundy |

Bydney to Melbourne -
e <+—

Example of an itinerary
item menu item

""""""""" Add Flight ,\\\\\ K//

User affordance
Component

Itinerary Editor
Component

Tree Viewer
Component

Itinerary Item
actory Componen

<<User interface>>
+ creation item
KIND=user affordance item
FUNCTION=component creation
+ property sheet dialogue
KIND=property sheet
---- P _ extensible affordance
KIND=item list
EXTENDS BY=add item
+ property text fields

i <<User interface>> |
1+ window frame '
i KIND=window frame '
: DEFAULT_INTERFACE=true :
: CAN_DISABLE=false :
i T extensible affordance ~=----_____ 1
! KIND=menu bar :
1 EXTENSIBLE=true '
i EXTENDS_BY=add menu OR !
' add menu item !
1

! |

Overview of AOCE (c) John Grundy 2005

User click

ew Flight Itinerary
Item

19

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Run-time Validation Example

How do we check deployed components meet their
requirements?

» Our approach:

- Characterise component behavioural/non-
functional requirements with aspects

- When deployed, inspect these characteristics

- Synthesise tests to check these constraints have
been met

* Requires more detailed information about components

at design/run-time than usually present

Built several “validation agents™ - conformance check;
persistency check; transaction performance check;
web UT conformance/response time check; ...

Overview of AOCE (c) John Grundy 2005 20

2005|

<
m
>
F

PRESENTATION

The University of Auckland | New Zealand

Example

Application Server Test Data
Flight Manager
ad / Seat Database
Itinerary Manager Manager—m AP

Aspect XML \

o
./ 1 3
v
Persistency SetXYZ(...); setABC();...
Validation seatMan.ejbStore()
setXYZ(...); setABC();...
Agent seatMan.ejbLoad()
Id=1234, v getXYZ(); getABC(); ...
date=... bct AspectName="Persiste]|
Id=1234, Detail DetailName="Store” DetanType=—sStorevata
date=... led="true’ >

<DetailProperties>
<DetailProperty DetailPropName="StoreSpeed”
DetailType="ResponseTime”>
<DetailPropType>Milliseconds</DetailPropType>
<DetailPropConstraint><Expr><LessThan>50</LessThan>...
<DetailTestMethods>
<DetailTestMethod MethodName="ejbStore”
MethodArgumentData=" java:comp/env/ejb/
staff_testdata’ >
</DetailProperties>
</Detail>

Persistency checking
agent (for EJBs/DBs)

Discovers comps and
queries persistency info
from their aspects (using
XPath) (1)

Gets test data (from an
EJB/URL) (2)

Synthesises tests on the
deployed EJB to check
persistency works (3)

Have extended to
checking TPS/
transactional behaviour/
concurrent tests...

Overview of AOCE (c) John Grundy 2005 21

|| PRESENTATION || g 2005 ||

Tools to Support AOCE

[&] User Interface Aspects |-(O]x]
File Edit View Changes Compilation Collaboration

i

The University of Auckland | New Zealand

BaseStage &iSimple Component Repository
MyvBaseComp extensihle affordance lEe !
showEnactments() ==Collahorative YWorlke== AGGREGATE
P generation TRANSITIVE r
event actioning MACROS
, afferdance hroadcast datarevent -GEMERATE INCLUDES after
User Interface receive datafevent
e lacking Add Propetty | Remove Property
+extensible affordance versioning Chat S
— — «=Parsistencys= -event generation 25 | I
ventriistory usgrinterfacy ST — encode data | GEMERATE INCLUDES after
MyComponent) decode data +hroadeast data/event o
displayEvents) . MWISWLGVEF guery data ML)l TICAST=falzr :.j
Vi tViewer) [} Collaboration/persistency aspects [-[olx] store data
ever gettiane Fe Edt View Changes Compilation Collaboration I"Etrie\"e da‘ta FIND NEW QUEW
version data Add Component | Aspect Info
Collaborative Work ==[istribution== .:_j
+event broadcasting/action functions rl
Shape: + event annotation functions Collahorative editing (RMI)

- temote datalevent synchronisation

Fermote event history

EﬁanaegenderRecelver

MyListener
afterChange(

Wiarning: event histary relationship not established: MNeed
event history linked 5o can do queningfretransmission

colfaboration

L
EventHistory sendChangs) ; 3 A
MvComponent receiveChange(
witeD ata(Stream)
01~ - -
readData(Stream) RemoteFileManager R anshi
ecordEventEvent) MyComponent Configuration settings
annotateEvent(Event.Stiing) d3ta storage uses savefload, pyefides remote data man. Human intarfacas
actionEvent(Event) Persistency Mare Info
+save and load func3y “alidate
+ remote data manager Close
Shape. ;.JL,HElnbhadeﬁbnape 7] T TLEn Propagation Cizplay Shapes I
Shape: Move ~| I” Debug Propagation Display Shapes

Overview of AOCE (c) John Grundy 2005 22

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Current work

Applying AOCE to web services engineering: AO-UDDI, AO-WSDL
Tool support - AOWS-UML (via our Pounamu meta-tool system)

Enriching specifications of component aspects (Alloy -> AO-
WSDL), plus formal reasoning about compositions

AOConnector abstraction for web services + aspects - de-coupled
discovery, integration, composition of client/web services

Integrating AOCE concepts into other tools (component discovery/
integration for software tools; BPEL4AWS generator)

Software architecture work + AOCE - better capture SA info

Applying agile techniques to AOCE - eXtremeAOCE - to mitigate
the “heavyweight” label

Adaptive, multi-device UIs with AOCE techniques - another talkl ©

Overview of AOCE (c) John Grundy 2005 23

£ 2005|

PRESENTATION

The University of Auckland | New Zealand

Summary

Aspects give us an orthogonal way of thinking about software
component capabilities & inter-relationships - an explicit way of
capturing “cross-cutting concerns”

Our work has centred on building models of “component aspects”
for requirements, design, implementation and run-time usage

Generally AOCE seems to fit well into conventional component-
based development approaches (we’ ve used with UML, Rational
Rose, J2EE and .NET, web services engineering, Wright SA
specification, Perceval AOP, various implementation
technologies)

Can implement AOCE designs with or without AOP technologies

Focus now on applying to web services/service-oriented
architectures - including real deployment with industrial
partners

Overview of AOCE (c) John Grundy 2005

2005|

<
m
>
F

PRESENTATION

The University of Auckland | New Zealand

References

Grundy, J.C. and Hosking, J.G. Developin%SofTware Components with Aspects: Some Issues and
gsgimencgssscz%%‘rer 25 in Aspect-Oriented Software Development, Prentice-Hall, October
. PP- - .

Grundy, J.C. Multi-perspective specification, desblgn and implementation of software components usin
aspects, International Journal of Software ngineer'ing and Knowledge Engineering, Vol. 10, No. 6,
December 2000, World Scientific Publishers, pp. 713-734.

Gr‘und}/, J.C. Aspect-oriented Requirements Engineering for Component-based Software Systems,
1999 IEEE Synlioosium on Requirements Engineering, Limmerick, Ireland, 7-11 June, 1999, TEEE
CS Press, pp. 84-91.

Grundy, J. and Patel, R. Developing Software Components with the UML, Enterprise Java Beans and

Aspects, 2001 Australian Software Engineering Conference, Canberra, Australia, 26-28 August
2001, TEEE CS Press, pp. 127-136.

Grundy, J.C. and Hosking, J.G. Engineering plug—in software components to support collaborative work,
Software - Practice and Experience, vol. 32, Wiley, pp. 983-1013, 2002.

Grundy, J.C. and Hosking, J.G. Developing Adaptable User Interfaces for Compponen’r-based Systems,
Interacting with Computers, vol. 14, no. 3, March 2002, Elsevier Science Publishers, pp 175-194.

Grundy, J.C., Ding, 6., and Hosking, J.G. Deployed Software Component Testing using Dynamic

Validation Agents, Journal of Systems and Software: Special Issue on Aufomated Component-
based Software E‘ngmeemng, vol. 74, no. 1, January 2005, Elsevier, pp. 5-14.

Singh, S., Grundy, J.C., Hosking, J.6. and Sun, J. An Architecture for Developing Aspect-Oriented
\Aé%tlagsper'vices, 2005 European Conference on Web Services, Vaxjo, Sweden, Nov 14-16 2005,
I ress.

Singh, S. Chen, H.C. Hunter, O, Gr‘undg), J.C. and Hosking, J.G. Impr'oving Agile Software Development
using eXtreme AOCE and Aspect-Oriented CVS, 12th Asia-Pacific Soffware Engineering
Conference, Taiwan, December 2005, TEEE CS Press.

Overview of AOCE (c) John Grundy 2005 25

