
YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

An Overview of Aspect-oriented
Component Engineering

Professor John Grundy
Dept. Electrical and Computer Engineering

and Dept. Computer Science
University of Auckland, New Zealand

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 2

Outline
•  What are aspects and why are they useful?
•  What is AOCE?
•  Requirements-level AOCE
•  Design-level AOCE
•  Using aspects when implementing components
•  Run-time aspect usage:

–  Component/service discovery
–  Run-time integration
–  Validation of deployed components

•  Tool support
•  Current work
•  Conclusions

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 3

Software Components
•  Ideas of:

–  coarser-grained components vs objects
–  compose system from reusable parts
–  dynamic composition ie extend @ run-time

•  Components interact via
publicised interfaces

•  Components generate
events/messages

•  Components have
properties/methods

•  Components encapsulate
object(s) & information

Documentation

Constraints...

Component

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 4

Example…

Search for Item

Create/Modify Itinerary

Chat

Customer

Annotation

Review Itinerary

Travel Agent

Book Itinerary

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 5

Challenges
•  Issues when engineering components:

–  How to identify components vs objects?
–  How to compose components?
–  How to make “reusable”, “tailorable”, “adaptable”?
–  How to reason about composed systems (statically

and dynamically)
–  Reliability, trustability, performance etc issues
–  Plus all the usual: impl meets design meets spec etc

•  We think the concept of “aspects” (cross-cutting
concerns) can help…

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 6

Aspects

•  Functional decomposition - normal approach
•  Alternatives: parts of system contributing to

“systemic” properties e.g. UI, persistency etc
•  Systemic properties of system get spread…

User interface-!
related services!

Distribution-!
related services!

Persistency-!
related services!

Security-!
related services!

Itinerary UI! Customer!
Manager! Flights

Data!Middleware!

Exmaples of “Vertical Slices”!
i.e. objects, components!

Examples of
“Horizontal!

Slices”!
i.e. aspects,!
perspectives!

Overall software
application!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 7

Examples of Aspects
•  Distribution/Remoting (networking etc)
•  Persistency (data storage)
•  Security (authentication, encryption, access control)
•  Transactional behaviour (ACID, distributed)
•  Logging
•  Monitoring
•  Failure recovery
•  Caching
•  User interfaces
•  Collaboration support
•  Reconfiguration support

•  Key idea: these cross-cut many of the various components/
component methods in the system – how do we best handle this
in requirements/design/implementation/run-time…

•  How can we change the way these are handled, even @ run-time?

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 8

Aspect-oriented Component
Engineering

I’ll describe and illustrate SOME of these (briefly) as we go… J!

Component Specification !
and Design! ! 1. Extended component models with aspect !

information (provided/required aspect !
details and properties)! ! 2. Component implementations: aspect !

information provide!s description and way to !
implement reflective, de!-!coupled interaction! !

Component! !

Component! !
Component! !

aspects! !

aspects! !
aspects! !

 !
3. Components are deployed with their !
associated encoded aspect information! !

aspects! ! aspects! !
Component! !

4. Component aspect encodings are accessed !
and u!sed at run!-!time! !

Validation agents! !

Component(s): !
Adaptation! !Component repository! !

aspects! !

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 9

Requirements-level Aspects
•  Our first foray in AOCE was to try and improve

representation of these cross-cutting issues in
requirements and specifications for components

•  Approach taken was for each candidate component
capture info about possible cross-cutting issues

•  Represent these as “component aspects” that are
orthogonal to requirements and specifications
artefacts

•  Reason about inter-related component aspects
(“provided and required”)

•  Use to refine to design-level aspects for component
implementation

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 10

An example
(web services engineering using AOCE)

Itinerary Web Service! !
-!Insert/Update/Delete Items! !
-!Items Collection Data structure!
-!Book travel items! !
-!Data update events! !

Database Component! !
-!Select/Insert/Update/Delete! !
-!Transactions! !

Travel Planner Client! !
-!Tree display/editing! !
-!T!ree data structure! !
-!Lock & highlight! !
-!Messages! !

 !
<<User Interface>>! !
Requires: items viewer! !
Provides: items list! !

<<User Interfac!e>>! !
Provides: collection viewer! !

<<Persistency>>! !
Provides: store/load! !
Provides: transactional update! !

<<Persistency>>! !
Provides: items list! !
Requires: store/load! !- Lock item!

<<Co!-!ordination>>! !
Requires: data locking! !

<<Co!-!ordination>>! !
Provides: data locking! !

<Transaction>>!
Provides: Pessimistic, ACID!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 11

UML Extensions to Capture
Component Aspects

•  Aspects + aspect details
added to diagrams/
documentation

•  Indicates where comps
affected by aspects

•  Multiple diagrams with
different aspects =
different perspectives
(views) on specifications &
designs

ComponentName

<attributes>

FunctionName(s)
[+/-]AspectDetailName

<<AspectName>>

+ ProvidedDetailNames
 PropertyName(s)
- RequiredDetailNames

…

ComponentName

<attributes>

<methods>

<aspect(s)>
+ ProvidedDetailNames

PropertyName(s)
- RequiredDetailNames

…

<<AspectName>>
+ ProvidedDetailName
-RequiredDetailName

…

ComponentName

…
Uses

Belongs-to

Uses

ObjectName:CompName

<<Aspect:AspectDetail>>
ObjectName:CompName

<<Aspect:AspectDetail>>

ObjectName:CompName

operation

<< AspectDetail>>

ComponentName

… ComponentName

…
-Distribution.DataTransfer.
 Speed >= 10KB ps +UserInterface.Extensible

 Affordance = [pop-up menu]

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 12

Aspects in Design
 ItineraryInterface

<<UI, dist, sec>> findFlights ()

<<UI>> displayFlights ()

Middleware
<<Dist, Sec>>

<<Distribution>>
+ transfer
- data
- events
+ subcription

RemoteFlightsManager

<<dist, sec, per>> selectFlights ()
<<distribution>>

+ send/receive data
- transfer data
+data

Database

<<Persistency>>
- read/write
- find
+data

•  Stereotypes on classes,
methods

•  Aspect compartments
•  Aspect “icons”
•  Aspect details
•  Aspect detail properties
•  Aspect documentation

(information dialogue)
•  Notes

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 13

Sequence Diagram Example

<<Dist, Sec>>!
+performance!
 <250ms!
+number!
 1-2 per sec!
+encoding!
 https!
+authenticate!
 UID/pword!

ItineraryInterface!
<<UI>>! Middleware!

<<Dist, Sec>>! ItineraryManager! FlightsManager! Database!User!
<<UI>> bookFlight()!

validate()!
bookFlight()!

bookFlight()!
<<Trans, Per>>updateSeats()!

<<Trans>> begin()!

<<Trans, Per>> insertBooking()!
<<Trans>> commit()!

<<Trans>>!
+performance!
 < 10ms!
+number!
 10-25 per sec!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 14

Describing Aspects - Example
•  WS component

characterisation
•  Low-level aspects
•  Medium-level aspects
•  High-level aspects

<component name= “Itinerary Management”>	

	

<services name=”” /> <!-- no web services implementing this component />	

	

<components name=”” />	

	

<property name=”caching”>	

	

 	

<value type=”boolean” />	

	

 	

<getter operation=”getCaching” />	

	

 	

<setter operation=”setCaching” />	

	

</property>	

	

…	

	

<operation name=”findItinerary” style=”rpc”>	

	

 	

<arg name=”ID” style=”in” type=”LongInt” />	

	

 	

<arg name=”itinerary” style=”out” type=”itinerary:ItineraryData” />	

	

</operation>	

	

…	

	

<aspects namespaces=”www.travelplanner.com/aspects/namespaces/itinerary” >	

	

 	

<aspect name=”ItineraryData” 	

	

 	

 	

 detail=”itinerary:ItineraryDataManagement” type=”provided” >	

	

 	

 	

<impacts operations=”all” />	

	

 	

</aspect>	

	

 	

<aspect name=”Persistency” 	

	

 	

 	

 detail=”common:DataManager” type=”required” >	

	

 	

 	

<impacts operations=”findItinerary|addItinerary|…” />	

	

 	

 	

<property name=”Performance” 	

	

 	

 	

 	

 	

type=”common:OperationSpeed”>	

	

 	

 	

 	

<common:lessThan units=”ms”>100</lessThan>	

	

 	

 	

</property>	

	

 	

</aspect>	

	

 	

<aspect name=”TransactionSupport” 	

	

 	

 	

 detail=”common:TransactionsRequired” type=”required” >	

	

 	

 	

<impacts operations=”findItinerary|addItinerary|…” />	

	

 	

 	

<property name=”TransactionScope” 	

	

 	

 	

 	

 	

type=”common: TransactionDemarcation”>	

	

 	

 	

 	

<common:transactionState>IN_TRANS</transactionState>	

	

 	

 	

</property>	

	

 	

</aspect>	

	

 	

<aspect name=”BookingManager” 	

	

 	

 	

 detail=”booking:TravelBookingManager” type=”required” >	

	

 	

 	

<impacts operations=”addItinerary|updateItinerary|…” />	

	

 	

 	

<property name=”BookingCommittalApproach” 	

	

 	

 	

 	

 	

type=”booking:BookingCommittal”> 	

	

 	

 	

 	

<booking: BookingCommittal value=”BTP” />	

	

 	

 	

</property>	

	

 	

 	

<property name=”Timeout” type=”booking:TimeOut” >	

	

 	

 	

 	

<booking:TimeOut units=days>	

	

 	

 	

 	

 	

<max>5</max></booking:TimeOut>	

	

 	

 	

</property>	

	

 	

</aspect> 	

 	

	

	

 	

…	

	

•  Use in:
–  Implementing comps
–  Describing comps
–  At run-time to

register/locate/
integrate/adapt/test

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 15

Component Implementation
•  Need ways to use aspect information when implementing

components & at run-time
•  Traditional approach – inject code via AOP-style systems

(Aspect-J, Hyper-J, Subject-oriented programming etc)
•  However, may have COTS components (with no code); very

difficult to control feature (aspect) interactions…
•  Our approach – use aspects to assist in de-coupling component

dependencies (can inject code, but we don’t focus on that)
•  Idea: aspects provide “generic” interface to accessing systemic

properties of components
•  Realised this via:

–  extensions to our JViews framework for building multi-view,
multi-user design tools

–  extensions to EJB model in J2EE-based implementations
–  extensions to WSDL for .NET/J2EE web services systems

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 16

JViews Framework Example
Component #1!

Component #2!
XML-encoded

aspects!

“aspect information
objects”!

Usual approach – call component
interface directly!

Discover IF via aspect
encoding & call either

specialised or generic IF!

Call a
generalised,

aspect-
oriented
interface!
directly!

Call indirect via
adversitsed

“aspect objects”
– fully indirect

coupling!
Specialised
interface!Generic AO

interface!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 17

Example

collab editing comp!
Itinerary viewer!

extensible UI aspect!

Menu comps!
event generation aspect!

event sender!
distributor aspect!

4: add menu comps!
3: create!

7: subscribe event!

1: get UI aspects! 5: get event aspects!

2: add collab affordances!

6: subscribe before events!
8: get distributor comp!

9: get comp!

Component/!
object!

<<Event>>!
aspect object!

<<UI>>!
aspect object!

<<Remoting>>!
aspect object!

Event object!

10. send event!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 18

Using Aspects at Run-time
•  A number of ways of using aspects in AOCE-

engineered components at run-time:
–  Add components to repository and locate via

aspect information (query by cross-cut)
–  Discover (locate) and integrate with existing

components
–  Adapt existing/discovered components at run-time

(discover & adapt to environment)
–  Validate deployed components (synthesise tests at

run-time to check components really meet their
aspect-specified constraints)

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 19

Run-time Adaptation Example

Itinerary Editor
Component

Itinerary Item
Factory Component

<<User interface>>
+ window frame
 KIND=window frame
 DEFAULT_INTERFACE=true
 CAN_DISABLE=false
+ extensible affordance
 KIND=menu bar
 EXTENSIBLE=true
 EXTENDS_BY=add menu OR
 add menu item
…

<<User interface>>
+ creation item
 KIND=user affordance item
 FUNCTION=component creation
+ property sheet dialogue
 KIND=property sheet
- extensible affordance
 KIND=item list
 EXTENDS_BY=add item
+ property text fields
…

Add Flight

Example of an itinerary
item menu item

Tree Viewer
Component

User affordance
Component

* 1
New Flight Itinerary

Item

User click!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 20

Run-time Validation Example
•  How do we check deployed components meet their

requirements?
•  Our approach:

–  Characterise component behavioural/non-
functional requirements with aspects

–  When deployed, inspect these characteristics
–  Synthesise tests to check these constraints have

been met
•  Requires more detailed information about components

at design/run-time than usually present
•  Built several “validation agents” – conformance check;

persistency check; transaction performance check;
web UI conformance/response time check; …

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 21

Example
•  Persistency checking

agent (for EJBs/DBs)
•  Discovers comps and

queries persistency info
from their aspects (using
XPath) (1)

•  Gets test data (from an
EJB/URL) (2)

•  Synthesises tests on the
deployed EJB to check
persistency works (3)

•  Have extended to
checking TPS/
transactional behaviour/
concurrent tests…

Application Server!

Itinerary Manager!
!

Flight Manager!
Seat!

Manager!
Aspect XML!

Database
API!

Persistency
Validation

Agent!

Test Data!

…!
<Aspect AspectName="Persistency">!
 <Detail DetailName=”Store” DetailType=”StoreData”
Provided=’true’>!
 <DetailProperties>!
 <DetailProperty DetailPropName=”StoreSpeed” !

!DetailType=” ResponseTime”>!
 <DetailPropType>Milliseconds</DetailPropType>!
 <DetailPropConstraint><Expr><LessThan>50</LessThan>…!
 <DetailTestMethods>!
 <DetailTestMethod MethodName=”ejbStore”!
 MethodArgumentData=’ java:comp/env/ejb/
staff_testdata’>!
 </DetailProperties>!
 </Detail>!
…!

Id=1234,
date=…!
Id=1234,
date=…!
…!

1

3
2

setXYZ(…); setABC();…!
seatMan.ejbStore()!
setXYZ(…); setABC();…!
seatMan.ejbLoad()!
getXYZ(); getABC(); …!
…!

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 22

Tools to Support AOCE

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 23

Current work
•  Applying AOCE to web services engineering: AO-UDDI, AO-WSDL
•  Tool support – AOWS-UML (via our Pounamu meta-tool system)
•  Enriching specifications of component aspects (Alloy -> AO-

WSDL), plus formal reasoning about compositions
•  AOConnector abstraction for web services + aspects – de-coupled

discovery, integration, composition of client/web services
•  Integrating AOCE concepts into other tools (component discovery/

integration for software tools; BPEL4WS generator)
•  Software architecture work + AOCE – better capture SA info
•  Applying agile techniques to AOCE – eXtremeAOCE – to mitigate

the “heavyweight” label
•  Adaptive, multi-device UIs with AOCE techniques – another talk! J

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 24

Summary
•  Aspects give us an orthogonal way of thinking about software

component capabilities & inter-relationships – an explicit way of
capturing “cross-cutting concerns”

•  Our work has centred on building models of “component aspects”
for requirements, design, implementation and run-time usage

•  Generally AOCE seems to fit well into conventional component-
based development approaches (we’ve used with UML, Rational
Rose, J2EE and .NET, web services engineering, Wright SA
specification, Perceval AOP, various implementation
technologies)

•  Can implement AOCE designs with or without AOP technologies
•  Focus now on applying to web services/service-oriented

architectures – including real deployment with industrial
partners

YEAR

20
05

Th

e
U

ni
ve

rs
ity

 o
f A

uc
kl

an
d

| N
ew

 Z
ea

la
nd
	

P
R

E
S

E
N

TA
T

IO
N

Overview of AOCE (c) John Grundy 2005 25

References
Grundy, J.C. and Hosking, J.G. Developing Software Components with Aspects: Some Issues and

Experiences, Chapter 25 in Aspect-Oriented Software Development, Prentice-Hall, October
2004, pp. 585-604.

Grundy, J.C. Multi-perspective specification, design and implementation of software components using
aspects, International Journal of Software Engineering and Knowledge Engineering, Vol. 10, No. 6,
December 2000, World Scientific Publishers, pp. 713-734.

Grundy, J.C. Aspect-oriented Requirements Engineering for Component-based Software Systems,

1999 IEEE Symposium on Requirements Engineering, Limmerick, Ireland, 7-11 June, 1999, IEEE
CS Press, pp. 84-91.

Grundy, J. and Patel, R. Developing Software Components with the UML, Enterprise Java Beans and
Aspects, 2001 Australian Software Engineering Conference, Canberra, Australia, 26-28 August
2001, IEEE CS Press, pp. 127-136.

Grundy, J.C. and Hosking, J.G. Engineering plug-in software components to support collaborative work,

Software – Practice and Experience, vol. 32, Wiley, pp. 983-1013, 2002.
Grundy, J.C. and Hosking, J.G. Developing Adaptable User Interfaces for Component-based Systems,

Interacting with Computers, vol. 14, no. 3, March 2002, Elsevier Science Publishers, pp 175-194.
Grundy, J.C., Ding, G., and Hosking, J.G. Deployed Software Component Testing using Dynamic

Validation Agents, Journal of Systems and Software: Special Issue on Automated Component-
based Software Engineering, vol. 74, no. 1, January 2005, Elsevier, pp. 5-14.

Singh, S., Grundy, J.C., Hosking, J.G. and Sun, J. An Architecture for Developing Aspect-Oriented

Web Services, 2005 European Conference on Web Services, Vaxjo, Sweden, Nov 14-16 2005,
IEEE Press.

Singh, S. Chen, H.C. Hunter, O., Grundy, J.C. and Hosking, J.G. Improving Agile Software Development
using eXtreme AOCE and Aspect-Oriented CVS, 12th Asia-Pacific Software Engineering
Conference, Taiwan, December 2005, IEEE CS Press.

