
Recent Experiences with Code Generation and Task Automation Agents in Software
Tools

John Grundy1,2 and John Hosking2

Department of Electrical and Electronic Engineering1 and Department Computer Science2
University of Auckland, Private Bag 92019, Auckland, New Zealand

{john-g, john}@cs.auckland.ac.nz

1. Introduction

As software grows in complexity, software processes
become more flexible yet complex, and more developers
must co-operate and co-ordinate their work, software tools
providing developers editing, reviewing and management
facilities are not in themselves sufficient to ensure optimal
project productivity. The number of tasks developers must
manually perform with their tools, no matter how effective
and efficient the tools are, continues to increase. Eventually
this either overwhelms developers or leads to them not
performing (often critical) tasks e.g. they avoid or reduce
appropriate project management metrics capture, detailed
design analysis and rigorous software testing.

The solution is provision of various forms of automation
in the software tools developers use - the tools carry out
perhaps a wide range of activities for the developer at
appropriate times and inform the developer of results of
actions in appropriate ways [2, 4, 5]. Many automation
facilities have been used in tools, and in recent years more
and more have tended to be added. Examples of automated
tool support include information analysis (i.e. checking of
software artefacts for consistency); autonomous agents (that
perform tasks for users, including notification, information
update and change propagation, and task co-ordination);
code generation (generating user interface, data
management and/or information process code from
specifications); and

We have focused in recent years on two areas of
automation in software tools: (1) generating code from
high-level software specifications; and (2) utilisation of
high-level software information by agents to support
collaborative work, change management and component
testing. From our experiences developing a number of
software tools using these automation approaches, we have
learned a number of lessons for further research in these
areas. These include:
• the need to support software tool meta-model extension
• the need for on-the-fly enhancement of tool notations,

event processing and code generation facilities

• support for software artefact change propagation and
annotation

• the need to have reflective, high-level information to
running software system components

• the continuing challenges of enhancing COTS tools
with these kinds of automation facilities, including the
need for sharable, extensible software information
models for software tools and open tool infrastructure

In the following two sections we briefly review some of

our recent automated software tools. We give three
examples of tools generating code from high level software
descriptions, including a performance test-bed generator, a
data mapping tool and an adaptive user interface generation
tool. We describe three tools utilising event-driven software
agents, including collaborative work components,
requirements management and component testing tools. We
then review the key lessons we have learned from this work
and summarise future directions for our research on
automated software tools.

2. Code Generation Examples

The three tools described in this section all generate
large amounts of complex code from high-level descriptions
of different aspects of software. Their ability to do so is
dependent on the software information model they generate
code from and the developer’s ability to construct instances
of this model via appropriate user interfaces and design
metaphors.

2.1. SoftArch/MTE

Determining if software architecture designs will meet
required performance benchmarks is very challenging [3,
14]. SoftArch/MTE is a distributed system performance
test-bed generator [6]. It takes high-level descriptions of
software architectures and generates client and server code
that is automatically deployed and run to inform developers
of likely architecture performance. As real code is generated
and is deployed and run on real machines, quite accurate

jgrundy
In Proceedings of the 1st International Workshop on the State of the Art in Automated Software Engineering, Irvine, CA, 27th June 2002.

jgrundy

performance measures can be obtained very quickly by
developers. Figure 1 outlines how Softarch/MTE works. A
tool (SoftArch) is used to model software architectures at a
high level of abstraction. This generates an XML-encoding
of the architecture design including clients, servers, client
requests, server operations, database operations and tables,
and middleware and host characteristics. XSLT
transformation scripts convert the XML into code and
deployment scripts, which are uploaded and run on
distributed client and server machines by deployment
agents. Performance results are sent back to SoftArch/MTE
and visualised with MS Excel™.

1. High-level
architecture designs

<architecture>
 <client>
 <name>Customer</name>
 ….
 </client>
 <server>
 …

2. Generate XML-encoded
architecture design

3. Run XSLT
transformation

scripts

Public class client1 {

 Public void static main() {
 Server.Request1();
….
 }

}

4. Generate code, IDLs,
deployment info, etc

5. Compile & upload to
multiple host machines

6. Run tests &
send results to
SoftArch/MTE
for visualisation

Client1.Request1: 157 22
Client1.Request2: 99 187
…

Figure 1. SoftArch/MTE performance test-bed.

2.2. Form-based Data Mapping Specification

Implementing mappings between complex data

structures is needed for various domains, including
business-to-business e-commerce, but is time-consuming
and hard to maintain with convention languages and tools
[7]. We have developed a form-based data mapping tool
that provides an environment in which non-programmer
end-users (business analysts) specify correspondences
between complex data models [12]. These data models are
rendered as “business forms”, and analysts specify form
element correspondences using a drag-and-drop, form-
copying metaphor. A transformation implementation is then
generated from this high-level correspondence specification
that when run transforms data in the source form format into

target form data. Figure 2 illustrates this form-based
mapping specification approach. Meta-data is imported
from schema files or design tools. Business form
representations are generated, and then analysts specify
correspondences between form elements, effectively
programming-by-demonstration of mappings. XSLT
transformation scripts are generated by the mapping tool
that implement the data transformations specified.

Meta-data e.g.
XML DTDs

1. Analyst imports meta-
data from source and target

enterprise systems

2. Default business
form layouts

generated. Analyst can
rearrange layout to
better-reflect actual

business forms.

3. Analyst specifies 1:1, 1:n, m:1
group and field correspondences
i.e. specifies how to “copy” data

from one form to the other

<xsl…>
 <xsl:apply-templates…>
…
</xsl:…>

4. Data transformation
implementation
generated from
specification

Figure 2. Form-based data mapper.

2.3. Adaptive User Interface Technology

Many systems require thin-client interfaces that will run
on multiple display devices and will suit different kinds of
users and user tasks [13]. For example a customer accessing
an on-line store via a wireless PDA will have quite a
different interface for the same functions as a staff member
accessing the system from a desktop PC web browser.
Building such interfaces with conventional techniques
results in large numbers of very similar server-side web
page implementations. We have developed a GUI design
tool and adaptive interface mark-up generator to make
design and implementation of such adaptive interfaces
easier [8]. Figure 3 illustrates this Adaptive User Interface
Technology (AUIT) system. A designer uses an abstract
representation of an interface to specify generic screen
components, layout and interaction. This tool generates Java
Server Pages with a set of custom tags describing the
adaptable interface. When deployed in a web server and
accessed by a user, the tags generate a user interface tailord
to the accessing user’s display device, user characteristics
and current task.

1. Designer specifies
abstract screen

2. Generate AUIT
JSPs

auit:form>
 <auit:label>Hello</auit:label>
 <auit:paragraph/>
 <auit:label>Name:</auit:label>
 <auit:editfield id=customer
field=name />
 <auit:table>
 ….
</auit:form>

3. Deploy JSPs in web
server

4. Display devices access
and adapted UIs generated

Figure 3. Adaptive User Interface Technology.

3. Task Automation Examples

The following examples are of software tools we have
developed that incorporate software agents to assist
developers by automating various tasks. The agents are
driven by event subscription or user request. The agents
access and manipulate software artefact information for the
user in various ways.

3.1. Collaborative Work Agents

Most software engineering tools require some degree of
collaborative work support, though most hard-code this and
are thus inflexible and require extensive engineering to
build [1, 5]. We have developed a set of plug-in software
agents that interact with tool client and server components
to add collaborative work support to tools [9]. Figure 4
illustrates the basic structure of our approach. Collaboration
agents support collaborative editing, group awareness and
version control. Communication agents support messaging,
annotation and dialogue between developers. Co-ordination
agents provide change notification actioning, locking, to-do
list task scheduling and even workflow co-ordination. The
agents can be plugged into or removed from tools at run-
time. In order to add these agents to tools, they need to
determine various user interface, distribution and
persistency support of the tool components. This is done by
having the tool components publicise “aspects” which
describe this information and can be introspected by our
collaboration agents.

Groupware Clients

UI Components (Buttons, Menus, Windows…)

Collaboration Clients
(Cursors, Editing,
Versioning, …)

Co-ordination
(Locking, to-do

list, …)

Communication
(Chat, Email, text

messages, notes, …)

Groupware Infrastructure (senders/receivers)

Client
Comps

Groupware Servers

Other GW
Clients:

Persistency Components

Groupware Infrastructure (senders/receivers)

Event
Server

Message
Server

History
Server

Figure 4. Collaborative work components.

3.2. Requirements Management Agents

Based on an empirical study of software engineering
practitioners use of abstract information models [17], we
have built a prototype tool for managing relationships
between functional and non-functional requirements, use
case models, and black-box test plans.

Extraction
agents

Part-module-system

Action-processing-
constraint

Data-user

User Data-ConstraintAction

Use case Requirements

Test
specification

Action

User

Data

1

2

3

4

5

6

7

9

8

10

11 12

Summarised & linked
information models

Source documents
(word, powerpoint,

test plans etc)

Change propagation Multi-representational views

Elements
changed

Figure 5. Requirements management.

This environment contains software agents that extract
information about these three different abstract software
representations, summarising the key parts of each
information model. Other agents create implicit links
between elements in different representational models or
allow developers to create explicit links and modify artefact
information. When elements in one representation change,
descriptions of these changes are captured and sent to other
models. Developers can view the impacts of these changes,

trace sources of changes, and view information from
different representations in multi-representational views.
We hope to provide other agents that can update source, 3rd
party software artefact documents in the future. Figure 5
outlines the main facilities of this prototype tool.

3.3. Aspect-oriented Component Validation Agents

Validating that deployed software components meet
their required functional and non-functional constraints is
very difficult [11, 15]. We have developed software agents
that inspect the constraints on deployed software
components and perform validation tests on these
components. The components are designed with the aspect-
oriented component engineering method [10]. Their
implementations have information characterising system
aspects, such as persistency, distribution, security and
transaction processing characteristics, associated with them
as XML documents. Our validation agents inspect these
component aspects and formulate tests to ensure the
component’s aspect-encoded constraints (functional and
non-functional) are met in their current deployment
situation. Some agents deploy 3rd party testing tools, like
SoftArch/MTE, to carry out complex tests and analyse the
results produced.

Web Servers/J2EE Servers
J2EE

Components

Deployment
Tools

Deployment
Descriptors

Deployed
Components

Proxies;
Example
Test Data
suppliers

Validation Agents

Aspect
Information

3rd Party
Testing Tools

Configuration
Scripts etc

EJB Testers JSP Testers

JB Testers

(1)

(2)

(4) (3, 5) (6)

(7)

(8)

(9)

Developer

Figure 6. Agent-based component testing.

4. Key Issues and Future Research

We have identified several key issues when building the
tools described in the previous two sections. These are
summarised below, along with some of the research
directions we are investigating to make the development of
such automated software tools easier and more feasible.

4.1. Software Information Model Extension

Many of our tools require extensible meta-models in
order that their capabilities can be enhanced by developers
as required. For example, we have added new kinds of
architectural characteristic support to SoftArch/MTE as we
have extended the tool to support a wider range of target
test bed generation (e.g. message-based systems and web-
based interfaces). Similarly, the information models the
requirements management agents use needs to be extensible
as different users have different degrees of detail in each
model they are interested in capturing.

Our experience with these tools has indicated that
ideally many automated software tools will have software
information models that can be extended as required.
Versioning these information models and ensuring
compatibility between old and new models often may need
to be supported. We are developing a new software meta-
tool with a fully extensible meta-model.

4.2. Tool Notation and Behavioural Extension

Many of our tools need to allow developers to add
additional notational representations (in order to make use
of meta-model extensions or support new kinds of artefact
views), and similar require behaviour extensions (such as
new code generation extensions or constraints on models
built). Examples include extending the modelling notations
of SoftArch/MTE, AUIT and our requirements modeller,
and adding new target code generation for SoftArch/MTE,
our form-based mapper, AUIT and component validation
agents.

Most of our tools have very limited notational support,
and limited run-time behavioural modification. This results
in frustrating turn-around time when enhancing tools and
requires developers to have in-depth knowledge of tool
internal structures to make any enhancements. Our new
meta-tool architecture supports flexible view notation
definition as well as a wide range of run-time behaviour
enhancement by allowing developers to incorporate new
code into the tools at run-time. This code includes constraint
checking, event/action rules and XSLT transformation
scripts which we have found very useful for implementing
code generation.

4.3. Change Propagation and Artefact Annotation

Many of our tools need to track changes made to
software artefacts. These include our requirements
modeller, collaborative work supporting agents and
component validation agents. SoftArch/MTE and our
requirements modeller require support for specifying links
between model elements and for annotating elements with

additional, semi-structured information such as design
rationale and change explanation.

While many software tools have moved to adopting
publish-subscribe event-based architectures the use of these
architectural facilities is still relatively limited. We have
found using this architecture important in driving many task
automation agents, particularly those supporting
collaborative work. The ability to link, refine and annotate
software artefacts in many of our tools is important and
hence should be supported within a tool infrastructure.

4.4. Reflection Information

Some software tool automation facilities need access to
detailed information about running tool components.
Examples include the plug-in collaborative work agents, the
data mapping tool and the aspect-based component
validation agents. The collaborative work agents need to
adapt tool component interfaces to integrate new facilities
and make use of publicised component event mechanisms.
The data mapper needs to obtain meta-data information
from source and target structures. The validation agents
need to determine what the requirements on deployed
components are in order to perform appropriate tests to
validate these are met.

In our recent work we have developed a mechanism to
annotate software components with information about the
“aspects” of a system they provide or require services [10,
9]. This is used by our collaborative work and validation
agents. Interestingly, tool automation is required in order to
generate this information from annotated component design
models. We are investigating adding these aspects as
annotations to SoftArch/MTE architecture designs to better-
organise the many properties of some of its architecture
abstractions.

4.5. Tool Integration

Software tool integration has been a long-standing
problem for tool developers and those developing
automated support for tools [16, 18]. Some of our tools
utilise 3rd party systems in limited ways e.g. SoftArch/MTE
uses MS Excel™ to visualise performance data and our
requirements modeller extracts summarised data from save
files. Many of the automation support described in our tools
above could however be very useful if integrated into 3rd
party, commercial software development tools. For
example, SoftArch/MTE test beds could be generated from
(greatly) annotated Rational Rose™ deployment diagrams;
mapper transformations from cross-linked MS Access™
screen designs; collaborative work agents potentially added
to a very large range of tools; and inter-representation
requirements change management added to integrate several
different tools.

Three key problems preventing such enhancements of
existing tools we have identified are lack of agreed, high-
level tool information models that can be shared between
tools, lack of adequate tool event and operation APIs, and
sufficiently open technologies implementing these APIs and
run-time inspection facilities allowing other tools to
discover them. We are investigating “componentising”
some of the tool automation facilities outlined in the
previous section in order to add them to COTS software
tools and to allow easier use of these tools by our own.

5. Summary

We have been developed a range of software tools with
automation features, in particular ones that generate code
from various high-level software information models and
ones that leverage “agents” to perform various task
automation facilities for developers. Some of the key issues
in building such tools we have encountered include the need
to support extensible information models, notations and
event handling behaviour, change propagation and
information element annotation capabilities, detailed
reflective information encoded with software components,
and tool integration. We are developing a meta-tool with
these capabilities to enable us to better support the
construction of various automated software tools, and
developing various integration components to support the
integration of our new tools and enhancement of existing
COTS software tools with automation.

References

1. Bandinelli, S., DiNitto, E., and Fuggetta, A. Supporting
cooperation in the SPADE-1 environment. IEEE Transactions
on Software Engineering, vol. 22, no. 3, December 1996,
841-865

2. Fischer, G, Domain-oriented design environments, In
Proceedings of the Seventh Knowledge-Based Software
Engineering Conference, McLean, Virginia, 1992, pp. 204-
213.

3. Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proceedings of Software - Methods and
Tools, Wollongong, Australia, Nov 6-9 2000, IEEE CS Press.

4. Green, C., Luckham, D., Balzer, R., Cheatham, T., Rich, C.
Report on a Knowledge-Based Software Assistant, Technical
Report RADC-TR-83-195, Rome Air Development Center,
August 1983, Reprinted in: C.H. Rich, R. Waters (eds.):
Readings in Artificial Intelligence and Software Engineering,
Morgan Kaufmann Publishers, Los Altos, CA, 1986, pp. 377-
428,.

5. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and Apperley,
M.D. An architecture for decentralised process modelling and
enactment, IEEE Internet Computing, vol. 2, no. 5,
September/October 1998, IEEE CS Press.

6. Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed
System Test-beds from High-level Software Architecture
Descriptions, In Proceedings of the 2001 IEEE Automated

Software Engineering Conference, San Diego, 26-29 Nov
2001, IEEE CS Press, pp. 193-2000.

7. Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendall, P.
Generating EDI Message Translations from Visual
Specifications, In Proceedings of the 2001 IEEE Automated
Software Engineering Conference, San Diego, CA, 26-28
Nov 2001, IEEE CS Press.

8. Grundy, J.C. and Zou, W. An architecture for building multi-
device thin-client web user interfaces, In Proceedings of the
14th Conference on Advanced Information Systems
Engineering, Toronto, Canada, May 29-31 2002, Lecture
Notes in Computer Science.

9. Grundy, J.C. and Hosking, J.G. Engineering plug-in software
components to support collaborative work, to appear in
Software – Practice and Experience.

10. Grundy, J.C. Multi-perspective specification, design and
implementation of software components using aspects,
International Journal of Software Engineering and
Knowledge Engineering, Vol. 10, No. 6, December 2000, pp.
713-734.

11. Haddox, J.M., Kapfhammer, G.M. An approach for
understanding and testing third party software components, In
Proceedings of 2002 Annual Reliability and Maintainability
Symposium, Seattle, WA, 28-31 Jan. 2002, IEEE CS Press.

12. Li, Y., Grundy, J.C., Amor, R. and Hosking, J.G. A data

mapping specification environment using a concrete business
form-based metaphor, In Proceedings of the 2002
International Conference on Human-Centric Computing,
IEEE CS Press.

13. Marsic, I. Adaptive Collaboration for Wired and Wireless
Platforms, IEEE Internet Computing (July/August 2001), 26-
35

14. McCann, J.A., Manning, K.J. Tool to evaluate performance in
distributed heterogeneous processing. In Proceedings of the
Sixth Euromicro Workshop on Parallel and Distributed
Processing, IEEE, 1998, pp.180-185.

15. McGregor, J.D. Parallel Architecture for Component Testing.
Journal of Object-Oriented Programming, vol. 10, no. 2 (May
1997), SIGS Publications, pp.10-14..

16. Meyers, S. Difficulties in Integrating Multiview Editing
Environments, IEEE Software, 8 (1), 1991, pp. 49-57.

17. Olsson, T., Runeson, P., Software document use: A
qualitative survey, Technical report, Dept. of Communication
systems, Lund University.

18. Reiss SP. The Desert environment. ACM Transactions on
Software Engineering & Methodology, 8 (4), Oct. 1999,
pp.297-342.

