
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

VAM-aaS: Online Cloud Services Security Vulnerability
Analysis and Mitigation-as-a-Service

Mohamed Almorsy, John Grundy, and Amani S. Ibrahim

Computer science and software engineering center
Swinburne University of Technology

Melbourne, Australia
[malmorsy, jgrundy, aibrahim]@swin.edu.au

Abstract. Cloud computing introduces a new paradigm shift in service delivery
models. However, the potential benefits reaped from the adoption of this model
are threatened by public accessibility of the cloud-hosted services and sharing
of resources. This increases the possibility of malicious service attacks. Existing
cloud platforms do not provide a means to validate the security of offered cloud
services. Moreover, the public accessibility of cloud services increases the po-
tential for exploitation of newly discovered vulnerabilities that usually take a
long time to discover and to mitigate. We introduce VAM-aaS, Vulnerability
Analysis and Mitigation as-a-service, as a novel, integrated, and online cloud-
based security vulnerability analysis and mitigation service. VAM-aaS performs
online service analysis to pinpoint new vulnerabilities and weaknesses. It then
uses this information to generate security control configuration scripts to block
these discovered security holes at runtime. Our approach is based on a new vul-
nerability signature and mitigation-actions specification approach. We intro-
duce our approach, describe key implementation details, and describe an evalu-
ation of our prototype on a set of .NET benchmark applications.

Keywords: SaaS Security; Vulnerability Analysis; Vulnerability Mitigation

1 Introduction

The cloud computing model [1] introduces a new paradigm shift in computing plat-
forms with an emphasis on increasing business benefits. The cloud model is based on
service outsourcing of application hosting on third-party platforms outside of the en-
terprise network perimeter. It uses a new pay-as-you-go payment model where cus-
tomers can rent services occasionally and pay only for amount of resources they use.
However, the cloud model also introduces new opportunities for attackers to exploit,
such as publicly accessible valuable business services. Adopting the multi-tenancy
model increases the exploitability of service vulnerabilities because one of the service
tenants, who have privileged access to the cloud service, may be a malicious user.
This means that they can exploit complicated vulnerabilities that require higher privi-
leges rather than being a public user. Moreover, the number of newly discovered vul-
nerabilities is increasing rapidly. Web applications, the most prominent application

jgrundy
In 2012 International Conference on Web Information Systems Engineering (WISE 2012), Nov 28-30 2012, Paphos, Cyprus, LNCS, Springer.

jgrundy

delivery model used in SaaS applications, continue to make up the largest percentage
(75%) of the total reported vulnerabilities over the last three years [24].

Commercial vulnerability scanners such as IBM-AppScan, HP-Web inspect,
McAfee tools focus mainly on black-box vulnerability analysis to avoid being limited
to specific programming languages or platforms. However, none of these scanners
cover all known vulnerability types [2]. On the other hand, existing research efforts
[3-8] focus on discovering specific vulnerability types including SQLI [9, 10], XSS
[9, 11, 12], or input sanitization [13, 14] using static analysis [3, 15], dynamic analy-
sis [9], or hybrid techniques [16, 17].

The key problems with these efforts include: they provide specific techniques for
specific vulnerability types; the techniques apply only to specific platforms or lan-
guages; and they do not usually support analysis for new vulnerability types. On the
other hand, these limitations are key requirements for cloud services vulnerability
analysis tools. An online vulnerability analysis approach that supports locating well-
known as well as new vulnerabilities without waiting for new tool patches is a must to
have in the cloud computing environment.

Mitigating application vulnerabilities is usually done manually by modifying ap-
plication source code and deploying new patches; however, this takes a long time as
shown in Fig. 1. This lagging time between vulnerability detection and patch means
that the service remains vulnerable to security breaches exploiting such vulnerabili-
ties. The possibility of vulnerability exploitation increases dramatically in the cloud,
given the public accessibility of the cloud services and the sharing of services with
multiple tenants. Thus, the cloud computing model requires an online vulnerability
patching approach that can block such vulnerabilities once reported.

92

138

17

160

88

0 50 100 150 200

XSS

SQLI

CSRF

Improper7Auth.

Improper7Authz.

Avg$Time$(days)

Avg7Time7(days)

Authn. Bypass

Fig. 1. Average time to fix security vulnerabilities (in days)

In this paper, we introduce VAM-aaS, a new integrated solution to cloud-based
services vulnerability analysis and mitigation problems. Our approach is based on a
new formal approach to specifying vulnerability signatures as well as enumerated
mitigation actions to block such vulnerability. Vulnerability signatures are specified
as invariants. When one is matched in a target application it means that the specified
vulnerabilities exist in the application or service under analysis. We adopt Object
Constraint Language (OCL), as a declarative and formal language based on first order
logic and set theory, to capture vulnerability signatures. Such signatures are validated
against a comprehensive system description meta-model (represents language seman-
tics) covering most of the object oriented program concepts and entities. We devel-
oped a vulnerability analysis service that locates OCL-based vulnerabilities’ signa-

tures in a given SaaS application source code. To support the location of new types of
vulnerabilities, security experts need to update the vulnerability analysis service re-
pository with OCL-signatures for the new vulnerability. Our vulnerability analysis
component can be used to analyze both cloud services and traditional web applica-
tions.

The vulnerability mitigation actions specify a set of security solutions that can be
used to provide “virtual patching” of the discovered vulnerabilities reported by the
analysis component. They also specify configurations and rules that should be applied
when activating security controls. We have developed a vulnerability mitigation com-
ponent that uses these vulnerability mitigation actions to plug-in specified mitigation
security controls within the target vulnerable service or application online. Our miti-
gation component is not limited to or hardcoded to specific security controls. It de-
pends on a simplified security interface that security controls should satisfy in order to
be integrated with our mitigation component. Thus, new security controls can be
plugged into the system vulnerable entity at runtime to mitigate the vulnerability.

We evaluated our approach and its prototype realization service in capturing the
well-known Top10 vulnerabilities reported by OWSAP [25]. We have validated our
toolset in locating and mitigating these vulnerabilities on a set of open source web
applications.

In Section 2, we describe our approach, vulnerability signatures, and mitigation ac-
tions. In Section 3, we describe our OCL-based vulnerability analysis component. In
Section 4, we describe our vulnerability mitigation component. In Section 5, we de-
scribe our prototype implementation details. In Section 6, we discuss our experi-
mental evaluation and results. In Section 7, we discuss the implications of our work
and key directions for further research. In Section 8, we review the key related work.

2 Our Approach

Our security vulnerability analysis and mitigation approach is based on (i) a for-
malized vulnerability signature and potential mitigation actions specification; (ii) a
vulnerability analysis tool that performs OCL-based vulnerability signature-based
program analysis; and (iii) a vulnerability mitigation component that blocks service or
application security vulnerabilities by generating configuration and integration scripts
that integrate security controls at the application or service reported vulnerable points.
In Fig. 2, we summarize the possible interactions between the vulnerabilities defini-
tion repository, analysis and mitigation components, applications or services, and the
hosting service (Web Server, Operating System, etc).

Vulnerability,Definition,Schema

Vulnerability,MitigationVulnerability,Analysis

Signatures Mitigation,Actions

Application

Hosting,Service

Discovered,Vulnerabilities

Fig. 2. VAM-aaS Key components, relations and possible interactions

2.1 Vulnerability Signature Specification

Existing software security weakness, or vulnerability definitions, in the Common
Weakness Enumeration (CWE) [27] database help in understanding the nature of a
given vulnerability. However, these vulnerabilities’ definitions are informal. This
requires manual analysis (by security experts) to locate such vulnerabilities in the
applications under analysis.

Fig. 3. System description meta-model used to specify OCL-based vulnerability signatures

Formalizing these descriptions – i.e. the vulnerability signatures – allows automa-
tion of the vulnerability analysis process. Ideally, a formal vulnerability signature
should be specified at an abstract level far from the source code and programming
language details, enabling locating of possible vulnerability instances in different
programs written in different programming languages. We use the Object Constraint
Language (OCL) as a well-known, extensible, and formal language to specify seman-
tic rather than syntactical signatures of security weaknesses. To support specifying
and validating OCL-based vulnerabilities’ signatures, we have developed a system-
description meta-model, shown in Fig. 3. This model is inspired from our analysis of
the nature of the existing security vulnerabilities. It captures the main entities in any
object-oriented program and relationships between them including components, clas-
ses, instances, inputs, input sources, output, output targets, methods, method bodies,
statements e.g. if-else statements, loops, new objects, etc. Each entity has a set of
attributes such as method name, accessibility, variable name, variable type, method
call name. This model helps conducting semantic analysis of the specified vulnerabil-
ity signatures.

Some vulnerabilities require checking the existence of a security control that au-
thenticates, authorizes, audits, etc. at specific locations in the program e.g. before a
critical method call, their use should be authenticated and authorized. Fig. 3 shows
security functions as part of the system model. They inherit from the Method entity
and thus can be checked in method call statement – i.e. check if the invoked method is

a security method or not. An analysis tool should have different profiles for different
languages and platforms (ASP.Net, PHP, C#, Java, etc.). Thus vulnerabilities with
signatures containing input source or output target can be interpreted differently based
on the program platform or language. Moreover, security authentication, authoriza-
tion, sanitization and other functions will be interpreted according to the target system
and the underlying platform. In case of custom security functions, system developers
have to manually mark their security functions. Table 1 shows examples of vulnera-
bility signatures specified in OCL and using our system description model (Fig. 3).

Table 1. Examples of OCL-specified vulnerability signatures
Vul.% Vulnerability%Signature%

SQLI Context Method Inv SQLICheck:
self.Statements->exists(S | S.StatementType = ‘MethodInvocation’ and S.MethodName =
‘ExecuteSQL’ and S.Parameters.exists(P | self.IsTainted(P.ParameterName) = true)

XSS Context Method Inv SQLICheck:
self.Exists(S | S.StatementType = ‘Assignment’ and S.RightPart.Contains(InputSource)
and S.LeftPart.Contains(OutputTarget))

Authn.
Bypass

Context Method Inv SQLICheck:
self.IsPublic == true and self->Exists(S | S.StatementType = ‘MethodInvocation’ and
S.IsAuthenitcationFn == true and S.Parent == IFElseStmt and
S.Parent.Condition.Contains(InputSource))

Improper
Authz.

Context Method Inv SQLICheck:
self.IsPublic == true and self.Contains(S| S.Exists(X| X.StatementType = ‘InputSource’
and X.IsSanitized = false or X.IsAuthorized == False)

SQLI: any method statement “S’ of type “MethodInvocation” where the callee
function is “ExecuteQuery” and one of the parameters passed to it, is assigned to
“identifier” coming from one of the input sources. Taint analysis “IsTainted” can be
defined as an OCL function that adds every variable assigned to a user input parame-
ter to a suspected list.

XSS Signature: any method statement “S” of type assignment statement where
left part is of type “output target” e.g. text, label, grid, etc. and right part uses input
from the input sources or tainted identifier as just discussed.

Authn. Bypass: any public method that has statement “S” of type “MethodInvoca-
tion” where the callee method is marked as Authentication function while this method
call can be skipped using user input as part of the bypassing condition.

Improper Authz.: any public method that has statement “S” that uses input data X
without being sanitized, authorized.

These exemplar signatures focus on static vulnerabilities signatures and do not
consider security solutions applied beyond the system source code either using prox-
ies to filter SQL queries or using security controls deployed on the web server as an
http handler. These can be handled by appending a dynamic signature forming a se-
quence of OCL constraints to be checked – i.e. to check if requests and/or responses
contain certain vulnerability pattern. Weak signatures result in more false positives,
which may annoy developers, or more false negatives, which may harm customers.

2.2 Mitigation Actions

Discovered application or service security vulnerabilities can be mitigated by dif-
ferent approaches including modifying application source code to block the identified

problems (patches). However, this solution is hard to use in the cloud model as it may
take a long time to deliver patched versions, as shown in Fig. 1. One solution is to use
Web application firewall (WAF) to filter requests and responses that exploit such
vulnerabilities. However, WAF has many limitations. These include does not helping
with output validation, cryptographic storage, and mitigating improper authorization.

Table 2. Examples of vulnerability mitigation actions

Vul.% Security%Control% Entity%Level%
SQLI Input sanitization Method level
XSS Input encoding Component level
Authn. Bypass WAF Component level
Improper Authz. Authorization Method Level

We introduce a new approach that supports integration of different security con-
trols including identity management, authentication controls, authorization controls,
input validation, output encoding, WAF, cryptography controls, etc. In our approach,
each vulnerability mitigation action specifies a security control type or family to be
used in mitigating the related vulnerability, its required configurations, and applica-
tion or service entity where the security control will be integrated (e.g. hosting service
– webserver or operating system, components, classes, and methods). Thus, a reported
SQLI vulnerability in a method (M) that belongs to component (C) can be mitigated
by adding input sanitization control (Z) on component (C) that removes SQL keyword
from every single request to the method (M). In Table 2, we show examples of miti-
gation actions for some of the known security vulnerabilities. These actions should be
specified in XML and included as a part of the formalized vulnerability definition.

3 Our OCL-based Vulnerability Analyzer

Given that vulnerability signatures are now formally specified using OCL, the stat-
ic vulnerability analysis component simply traverses the given program looking for
code snippets with matches to the given vulnerabilities’ signatures. The architecture
of our formal and scalable static vulnerability analysis component, as shown in Fig. 4,
is based on our formalized vulnerability signature concept.

Pr
og
ra
m
'S
ou

rc
e'
co
de

System'Models

Abstract'Syntax'Tree

Program'Representation..'n

…

…

Signature'Locator

OCL'
Functions

Platform'
Profile

Vulnerability'List

Weaknesses
Signatures

(OCL)

Fig. 4. OCL-based vulnerability analysis component
Program Source Code: our analysis approach work on source code level. In case

system binaries only available (dlls, or exes), we use de-compilation techniques to
reverse engineer source code from the application to be analyzed.

Abstract Program Representation: Source code is transformed into an abstract
syntax tree (AST) representation. This abstracts language-specific source code details

away from specific language constructs. Extracting source code AST requires using
different language parsers (currently support C++, VB.Net and C#). Then, we per-
form more abstract transforming from AST to system description model that con-
forms to the model introduced in Fig. 3.

OCL Functions: represent a library of predefined functions that can be used in
specifying vulnerability signatures and in identifying matches to these signatures.
This includes control flow, data flow, string patterns, program taint analysis, etc.

Signature Locator: This is the main component in our vulnerability analysis tool.
It receives the abstract service or application model and outputs the list of discovered
vulnerabilities in the given system along with their locations in code. At analysis time,
it loads the platform (C#, VB, PHP) profile based on the details of the program under
analysis. Then, it loads the existing weaknesses defined in the weaknesses’ signatures
database, based on the target implementation program platform or language. The sig-
nature locator transforms these signatures into C# methods that check different pro-
gram entities based on the specified vulnerability signature.

Ap
pli

ca
tio

n Application Interceptors
Document

Security Kernel

Security Specification
Document

Ap
pli

ca
tio

n W
rap

pe
r Vulnerability Mitigation Manager

OCL-based Vulnerability
Analysis Component

Vulnerability Definition
Schema

Mitigation ActionsDiscovered Vulnerabilities

Se
cu

rit
y S

erv
ice

s

1 2

4 5

3

6
7

8

Fig. 5. Vulnerability Mitigation Component

4 Vulnerability Mitigation Component

The analysis component outputs a list of the newly discovered vulnerabilities in
each of the cloud hosted SaaS applications (Fig. 5-1). Each entry in this list has a
service or application “vulnerable entity” (e.g. a method, class, or component), along
with a list of discovered vulnerabilities for this entity. Given this list of vulnerabili-
ties, the security vulnerability mitigation manager queries the vulnerability definition
schema database (Fig. 5-2) to retrieve the appropriate actions to be taken in order to
mitigate each of such reported vulnerabilities. Examples of such retrieved actions are
shown in Table 2. Using these two lists (vulnerable entities and mitigation actions),
the vulnerability mitigation manager (Fig. 5-3) decides the patching level (component
level, class level, or method level) using e.g. HttpModules, object interceptor using
dependency injection, or method level interception using dynamic weaving AOP re-
spectively. These details are maintained in a security point-cut specification document
for each application (Fig. 5-4). Moreover, the mitigation manager uses the registered
security services’ properties to decide which security service realizes what security
control type specified in the mitigation action – e.g. the identity and access manage-
ment control is currently (on this platform) realized by CA identity manager. Finally,
the vulnerability mitigation manager updates the security specification document (Fig.
5-5) with the list of actual security services to be triggered whenever the application

receives request to every vulnerable resource. The application wrapper (Fig. 5-6) is
responsible for intercepting requests to entities specified in the application intercep-
tors’ document – i.e. vulnerable entities. These requests will be redirected to the secu-
rity kernel (Fig. 5-7). The security kernel queries the security specification document
to get the security controls or services to be enforced to secure the requested resource.
Then, it generates a set of calls to these security services (Fig. 5-8). When these ser-
vices return, the security kernel returns the control back to the called resource.

To automate the integration of security services with our mitigation component,
which means being implicitly integrated with the managed service or application, we
have developed a simple common security interface. Security controls’ connectors
implement this interface in order to support integration with our mitigation service.
For example, an authentication security control should implement AuthenticateUser
and IsAuthenticated functions; an input validation control should implement the Vali-
dateInput function; and an output encoder should implement the EncodeOutput func-
tion. Security controls used in the vulnerability mitigation process can be part of a
standard security controls library provided by the service provider or the cloud pro-
vider. Moreover, they may be external security controls hosted on other cloud plat-
forms. In our prototype, we use the OWASP security controls library.

5 Implementation

We developed a GUI to assist security experts in capturing vulnerability signa-
tures’ in OCL. This provides vulnerability signature editing, validity checking, and
testing these signatures’ specifications on simple target applications. We use an exist-
ing OCL parser to parse and validate signatures against our system description meta-
model. Once validated, the vulnerability signature is stored in our weakness signa-
tures database. To parse the given program source code and generate a system ab-
stract model, we use NReFactory .NET parser Library [27], which parses source code
and generates its corresponding AST (it supports VB.Net and C#. We are currently
working on parsers for PhP and Java). Applications without source code - i.e. only
binaries are available – are decompiled using ILSPY. This is currently supported for
C# and VB.NET. We developed a class library to transform the generated AST into a
more abstract (summarized) representation that conforms to our system description
model. Our signature locator has an OCL translator that translates a given OCL signa-
ture into a corresponding C# class with a signature matching method that checks the
passed in system entity looking for matches to specified signatures.

The OCL functions library maintains a set of functions that extend the system de-
scription meta-model entities capabilities and can be used during the vulnerability
analysis phase. This includes control-flow analysis (CFA), data-flow analysis (DFA),
and tainted-data analysis. These functions can be extended with further analysis func-
tions based on future vulnerability analysis needs. The OCL to C# transformer per-
forms a transformation for these functions as well as new OCL signatures once de-
fined. Program slicing and taint analysis techniques (core techniques in program and
security analysis area) can be easily captured in OCL. Platforms’ profiles are speci-
fied in XML documents that contain information about specific platforms’ details. It
is used to set the context of the signature locator according to the system platform.

The vulnerability mitigation component was developed using C#. It uses the Mi-
crosoft Unity application block to support configurable runtime dependency injection.
This enables injecting interceptors on class and method level. To support legacy ser-
vices, we use the Yiihaw static AOP tool [28]. This enables injecting aspects into
legacy code. Such aspects and interceptors redirect requests and responses to a default
security handler class library (we call a Security Enforcement Point, or SEP). The
SEP is responsible for injecting calls to security controls at runtime based on the spec-
ified mitigation actions.

6 Experimental Evaluation
The key objectives of these experiments was to assess the soundness of our VAM-

aaS in capturing different vulnerabilities’ signatures, detecting these vulnerabilities in
given applications, and in mitigating them. We apply the OCL-based vulnerability
signatures examples and mitigation actions discussed in Section 2.We selected seven
web-based, open source applications developed using ASP.NET and MVC as a
benchmark to evaluate our approach. These applications cover a wide business spec-
trum including: Galactic, an ERP system; SplendidCRM, an open source CRM;
KOOBOO, an open source Enterprise CMS; BlogEngine, an open source ASP.NET
4.0 blogging engine; BugTracer, an open-source, web-based bug tracking application;
NopCommerce, an open-source eCommerce solution; and Webgoat, developed by
OWSAP for security testing purposes. In Table 3, we summarize these benchmark
applications’ characteristics: number of downloads, LOCs, files, classes, methods,
and time (ms) to extract system model from source code (using source code AST).

To assess the effectiveness of our approach we use precision, recall and f-measure
to measure our approach’s soundness and completeness. These metrics depend on
basic measures shown in Table 4. The analysis component results are compared with
the actual vulnerabilities discovered by manual analysis using existing open source
vulnerability analysis tools. As shown in Table 4-A, True Positive (TP) counts num-
ber of vulnerabilities correctly discovered by the analysis component, False Positive
(FP) counts number of vulnerabilities incorrectly reported as vulnerability, False Neg-
ative (FN) counts number of vulnerabilities missed by the analysis component. As for
the mitigation component (Table 5-B), the TP counts number of vulnerabilities that
have been correctly blocked, FN counts number of vulnerabilities failed to block, and
FP counts entities that have been secured without being a vulnerability.

Table 3. Benchmark applications properties
Benchmark Downloads KLOC Files Classes Method Model time

 Galactic - 16.2 99 101 473 187
SplendidCRM >400 245 816 6177 6107 765

 KOOBOO >2,000 112 1178 7851 5083 78
BlogEngine >46,000 25.7 151 258 616 163

 BugTracer >500 10 19 298 223 93
NopCommerce >10 Rel. 442 3781 5127 9110 484

Table 4. Analysis and mitigation results classification. A: analysis, B: mitigation

A

Actuals
B

Actuals
 Vulnerability N-Vulnerability Blocked N-Blocked

Vulnerability TP FP Blocked TP FP
N-Vulnerability FN TN N- Blocked FN TN

!"#$%&%'(= ! !"
!"!!" (Eq. 1) !!!!"#$%% = ! !"

!"!!" (Eq.2)!!!!!!!!!! −!"#$%&"! = 2! !"#$%&%'(∗!"#$%%!"#$%&%'(!!"#$%% (Eq. 3)

Table 5. Experimental results of VAM-aaS using benchmark apps. TP: No. of true positives,
FP: No. of false positives, and FN: No. of false negatives.

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

XSS Improper
Authz.

Authn SQLI

Precision

Recall

FAMeas.

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Precision

Recall

F5Meas.

Fig. 6. Precision, Recall, and F-measure metrics of the analysis and mitigation components

0
10
20
30
40
50
60
70
80

SQLI

XSS

Authn.

Authz.

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 5 1 0 5 0 1 0 0 3 5 0 5 0 0 1 0 00 5 0 00 1 0 00 0

1 0)U se r s

5 0)U se r s

1 0 0)U se rs

No. CPs

Ti
m

e
in

 m
se

c

Fig. 7. Performance of vulnerability analyzer (per vulnerability type), and mitigation components

A high precision means that the approach gives more valid results (TP) than inva-
lid results (FP). Thus, the maximum precision is achieved when no false positives
given (see Equation 1). The recall metric is used to assess the completeness. A high
recall means more valid results (TP) than missed valid results (FN), see Equation 2.
The F-measure metric combines both precision and recall. It is used to measure the
overall effectiveness of the approach (weighted harmonic mean). It depends on the
importance of the recall rate and the precision rate e.g. if we are interested in high
precision (more valid results) then we give precision factor high weight, and vice-
versa. In our evaluation, we assume both are equally important, see Equation 3. In
Table 5, we summarize our experiments’ results applied on benchmark suite to identi-
fy four of the Top10 web applications vulnerabilities (OWSAP2010 report). For each
component, we count number of TP, FP, and FN.

Component App SQLI XSS Authn. Bypass Improper Authz.

TP FP FN TP FP FN TP FP FN TP FP FN

Analysis

Galactic 2 0 0 3 1 1 4 0 0 2 1 0
Splendid 13 2 1 7 1 0 3 0 0 3 0 0
KOOBOO 14 2 0 10 2 0 4 1 0 11 2 1
BlogEngine 3 0 1 3 0 1 0 0 0 4 0 0
BugTracer 9 0 1 0 0 1 3 0 1 1 1 0
NopCommerce 19 2 0 4 0 1 0 0 0 0 0 1
Webgoat 8 0 1 5 1 0 3 0 1 3 0 0

Total 68 6 4 32 5 4 17 1 2 24 4 2

Mitigation

Galactic 2 1 0 4 1 0 4 0 0 2 1 0
Splendid 14 0 0 7 1 0 3 2 0 3 0 0
KOOBOO 14 2 0 10 3 0 4 1 0 12 0 0
BlogEngine 4 0 0 4 2 0 0 0 0 4 2 0
BugTracer 10 0 0 1 0 0 4 1 0 1 1 0
NopCommerce 19 0 0 5 0 0 0 0 0 1 0 0
Webgoat 9 0 0 5 1 0 4 2 0 3 1 0

Total 72 3 0 36 8 0 19 8 0 30 5 0

A B

A B

Fig. 6-A shows precision, recall, and F-measure for vulnerability analysis compo-
nent on different vulnerability types using the benchmark applications. The average
precision of the analysis component is around (90%). This means that in every identi-
fied (100) vulnerability instances, we have (10) false positives. Its recall is around
(92%). This means that in every 100 vulnerabilities, we correctly identify 92 and miss
8. This can be improved by specifying more sound vulnerability signatures. Fig. 6-B,
shows the precision, recall and F-measure for the mitigation component, we have
incorporated the results returned from the analysis component with the FN missed
vulnerabilities. It shows that the recall is (100%) which means that we did not miss
any of the specified mitigations; however, we have an average of (85%) precision –
i.e. high FP - as we may secure entities that have no security problem. This depends
on the accuracy of the specified mitigation actions.

Fig. 7-A shows time (in sec) took in analyzing benchmark applications to pinpoint
existing vulnerabilities. The SQLI vulnerability takes much more time to identify than
XSS and authorization bypassing. The authentication bypass takes the lowest time.
The time required to identify vulnerability instance depends on the complexity of the
specified OCL signature. Fig. 7-B shows performance overhead of the mitigation
component with different numbers of concurrent users and numbers of critical or
vulnerable points - CPs (on a Core2Duo desktop PC with 4GB Memory). Overhead is
equal to time spent by the security kernel to query security specification document to
get security controls to be employed in securing intercepted point, and time spent in
calling these security controls. Time spent by the security controls themselves we do
not factor in, as this needs to be spent whether using our approach or traditional hard-
coded security. Performance can be further improved using replicas of the mitigation
component with different services and platforms.

7 Discussion

We developed a formal vulnerability definition schema including vulnerability sig-
nature and mitigation actions, extensible vulnerability analyzer based on the proposed
signature specification schema and applied on abstract program representation, and a
vulnerability mitigation approach based on dynamic and runtime injection of security
controls into vulnerable entities. Use of OCL allowed us to make use of existing vali-
dation and query parsing tools. Use of this abstract representation helped us to gener-
alize our analysis away from programming language and platform details. It also
helps make our approach scalable for larger applications. Use of a common security
interface allows integration of different security controls without a need to develop
new system-security control connectors.

From our experience in developing signatures of the Top10 vulnerabilities and our
experiments we determined that: (i) it is better to use dynamic analysis tools with
certain vulnerabilities, such as Cross site reference forgery (CSRF), because these
vulnerabilities can be handled by the web server. This means static analysis may re-
sult in high FP, if used; (ii) some vulnerabilities can be easily identified and located
by static analysis such as SQLI and XSS vulnerabilities; (iii) some vulnerabilities
such as DOM-based SQL and XSS vulnerabilities need a collaborating static and

dynamic analysis to locate them. We believe that combining static and dynamic anal-
ysis is needed to increase the precision and recall rates.

Our vulnerability analyzer achieves a precision rate of 90% and recall rate of 92%.
These figures are actually impacted by the accuracy of the specified vulnerability
signatures. Static analysis approaches usually result in high false positives as they
work on source code level – i.e. the vulnerability may be addressed on the component
or the application level. This problem can be solved by employing dynamic vulnera-
bility analysis. However, dynamic vulnerability analysis approaches cannot help lo-
cating specific code snippets where vulnerabilities exist. Moreover, they do not help
testing code coverage by generating all possible test cases.

From our experiments in the mitigation actions and security controls integrations,
we found that although the use of web application firewalls is a straight forward solu-
tion, it is not always feasible to use WAF to block all discovered vulnerabilities. The
selection of the entity level to apply security controls on (application, component,
method, etc.) impacts the application performance – i.e. instead of securing only vul-
nerable methods, we intercept and secure (add more calls) the whole component re-
quests. A key point that worth mentioning is that the administration of security con-
trols should be managed by the service or cloud provider admins. We focus on inte-
grating controls within vulnerable entities.

Our vulnerability mitigation component works online without a need for manual
integration with applications and services under management. The overhead added
by the mitigation action can be reduced if service developers add a new service patch.
In this case, the vulnerability analysis component will not report a vulnerability. Thus,
the mitigation component will not inject security controls.

8 Related Work

We are aware of no existing efforts that introduce an integrated solution to the vulnera-
bility analysis and mitigation problem. Most focus on either vulnerability analysis or vul-
nerability mitigation, although vulnerability mitigation seems of less interest to date. Ex-
isting vulnerability analysis efforts can be categorized in static analysis-based, dynamic
analysis, and hybrid approaches. Broadly, static analysis techniques work on source code
level while dynamic analysis works on application as black-box.

NIST [18] has been running a security analysis tools assessment project (SAMATE). A
part of this project is to specify a set of functional requirements that any source code secu-
rity analysis approach should support. These include a set of weaknesses that an analyzer
should be capable of identifying, including SQL injection, XSS, OS command injection,
etc. They have also developed a set of test cases that help in assessing the capabilities of a
security analysis tool in discovering such vulnerabilities. Halfond et al. [10] introduce a
new SQL injection vulnerability identification technique base on positive tainting. They
identify “trusted” strings in an application and only these trusted strings to be used to cre-
ate certain parts of an SQL query, such as keywords or operators. Martin et al [7, 8] intro-
duce a program query language PQL that can be used to capture definition of program
queries that are capable to identify security errors or vulnerabilities. A PQL query is a
pattern to be matched on execution traces. They focus on Java-based applications and
define signatures in terms of code snippets. This limits their capabilities in locating vul-
nerabilities’ instances that matches semantically but not syntactically. Wassermann et al.

[12] introduce an approach to finding XSS based on formalizing security policies using
W3C recommendation. They conduct a string-taint analysis using CFG to represent sets of
possible string values these are enforced on web pages to assure no untrusted scripts.
Ganesh et al [15] introduce string constraint solver to check if a given string have a sub-
string with a given set of constraints. They used it in white box SQLI testing.

Kals et al [3] introduce a vulnerability scanner that uses a black-box approach to scan
web sites for the presence of exploitable SQLI and XSS vulnerabilities. They do not de-
pend on a vulnerability signature database, but they require attacks to be implemented as
classes that satisfy certain interfaces. Felmetsger et al [4] use an approach for automated
logic vulnerabilities detection in web applications. They depend on inferring system speci-
fications of a web application’s logic by analysing system execution traces. They then use
model checking to identify specification violations; however, they assume that collected
traces represent real correct system behaviour.

Existing efforts for vulnerability mitigation can be categorized as code modification
guidelines, server-side mitigation, and client side (Browser) approaches. Wurzinger et al
[19] introduce SWAP as a server-side solution for detecting and preventing XSS. SWAP
works as a reverse proxy intercepting HTML responses and forward them to a java-script
detection component. Bisht et al [20] introduce a new XSS prevention solution that works
by dynamically learning the set of scripts that a web application intends to create for any
HTML request. Ravi et al [21] introduce an analysis of two mitigation approaches for
XSS. The first one is a server-side approach intercept requests and perform string analysis
looking for XSS signatures. The second approach is browser-based that replaces java re-
lated keywords in the response body with other words that have same pronunciation. Vogt
et al [22] introduce a new approach to block XSS attacks on the client side by tracking the
flow of sensitive information inside the web browser. Brunil et al [23] investigates security
vulnerabilities and mitigation strategies to help developers build secure applications.

9 Summary

We described a new integrated, automated online vulnerability analysis and mitiga-
tion solution as a service (VAM-aaS). We use a formalized vulnerability definition
schema including vulnerability signature and mitigation actions. An OCL-based vul-
nerability signature specifies a set of invariants that verifies the existence or absence
of a given vulnerability in a target program. We developed a static vulnerability anal-
ysis tool that uses these signatures to locate possible matches in a target system. Vul-
nerability mitigation actions specify what to do whenever a vulnerability instance is
reported, including security controls to be plugged-in to block discovered vulnerabili-
ties. We validated our approach on a set of seven open source web applications. Our
experimental results show that the OCL-based analysis tool achieves (90%) precision
rate and (92%) recall rate while our mitigation component achieves (100%) recall and
(85%) precision rate.

References
1. Almorsy, M., J. Grundy, and I. Mueller. An analysis of the cloud computing security

problem. in Proc. Asia Pacific Cloud Workshop, APSEC. 2010. Sydney, Australia.
2. Bau, J., et al. State of the Art: Automated Black-Box Web Application Vulnerability Testing.

in Proc. of 2010 IEEE Symposium on Security and Privacy. 2010.
3. Kals, S., et al., SecuBat: a web vulnerability scanner, in Proc. of 15th Int. Conf. on World

Wide Web2006, ACM: Edinburgh, Scotland. p. 247-256.

4. Felmetsger, V., et al. Toward automated detection of logic vulnerabilities in web
applications. in Proc. 19th USENIX Conf. on Security. 2010. Washington, DC.

5. Jovanovic, N., Kruegel C., and Kirda E.. Pixy: a static analysis tool for detecting Web
application vulnerabilities. in Proc. IEEE Symposium on Security and Privacy. 2006.

6. Dasgupta, A., V. Narasayya, and M. Syamala. A Static Analysis Framework for Database
Applications. in Proc. of 2009 IEEE Int. Conf. on Data Engineering. 2009.

7. Martin, M., B. Livshits, and M.S. Lam. Finding application errors and security flaws using
PQL: a program query language. in Proc. 20th Conf. on Object-oriented programming,
systems, languages, and applications 2005. CA, USA.

8. Lam, M.S., et al. Securing web applications with static and dynamic information flow
tracking. in Proc. of 2008 symposium on Partial evaluation and semantics-based program
manipulation. 2008. California, USA.

9. Kieyzun, A., et al. Automatic creation of SQL Injection and cross-site scripting attacks. in
Proc. of 31st Int. Conf. on Software Engineering. 2009.

10. Halfond, W.G.J., A. Orso, and P. Manolios. Using positive tainting and syntax-aware
evaluation to counter SQL injection attacks. in Proc. of 14th Int. symposium on
Foundations of software engineering. 2006. Oregon, USA.

11. Weinberger, J., et al. A systematic analysis of XSS sanitization in web application
frameworks. Proc. 16th European Conf. Research in computer security, 2011. Belgium.

12. Wassermann, G. and Z. Su. Static detection of cross-site scripting vulnerabilities. in Proc.
of 30th Int. Conf. on Software engineering. 2008. Leipzig, Germany: ACM.

13. Hooimeijer, P., et al., Fast and precise sanitizer analysis with BEK, in Proc. of 20th
USENIX Conf. on Security2011, USENIX Association: San Francisco, CA. p. 1-1.

14. Balzarotti, D., et al. Saner: Composing Static and Dynamic Analysis to Validate
Sanitization in Web Applications. in Proc. IEEE S&P, 2008.

15. Ganesh, V., et al. HAMPI: a string solver for testing, analysis and vulnerability detection.
in Proc. 23rd Int. Conf. on Computer aided verification, 2011, Snowbird.

16. Monga, M., R. Paleari, and E. Passerini, A hybrid analysis framework for detecting web
application vulnerabilities, in Proc. of 2009 ICSE Workshop on Software Engineering for
Secure Systems2009, p. 25-32.

17. Zhang, R., et al., Static program analysis assisted dynamic taint tracking for software
vulnerability discovery. Computers & Mathematics with Application, 2012. p. 469-480.

18. NIST, Source Code Security Analysis Tool Functional Specification Version 1.1, in NIST
Special Publication 500-268May 2007, Accessed 2011.

19. Wurzinger, P., et al., SWAP: mitigating XSS attacks using a reverse proxy, in Prof. ICSE
Workshop on Software Engineering for Secure Systems, 2009: Vancouver, p. pp. 33–39.

20. Bisht, P. and Venkatakrishnan V., XSS-GUARD: Precise Dynamic Prevention of Cross-Site
Scripting Attacks, in Detection of Intrusions and Malware, and Vulnerability
Assessment2008, Springer Berlin / Heidelberg. p. 23-43.

21. Kotha, R.K., G. Prasad, and D. Naik, Analysis of XSS attack Mitigation techniques based
on Platforms and Browsers. SEA, CLOUD, DKMP, CS & IT, 2012. 5: p. 395–405.

22. Vogt, P., et al., Cross-Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis in Network and Distributed System Security Symposium2007: San Diego, CA.

23. Dalila, B., et al, Security Vulnerabilities and Mitigation Strategies for Application
Development, in Proc. 6th Int. Conf. on ITNG, 2009. p. 235-240.

 24. CENZIC. Web Applications Security Trends Reports Q1-Q2 2010, URL:
www2.cenzic.com/downloads/Cenzic_AppSecTrends_Q1-Q2-2010.pdf

 25. OWASP. Open Web Application Security Project, URL: https://www.owasp.org.!
26. CWE. Common Weaknesses Enumeration, URL: http://cwe.mitre.org
27. SharpDevelop. http://wiki.sharpdevelop.net/
28. Yiihaw. YIIHAW Is an Intelligent and High-performing Aspect Weave, URL:

http://yiihaw.tigris.org/

