
Three Kinds of E-wallets for a NetPay Micro-payment
System

Xiaoling Dai1 and John Grundy2, 3

Department of Mathematics and Computing Science

The University of the South Pacific, Laucala Campus, Suva, Fiji1
dai_s@usp.ac.fj

Department of Computer Science2 and Department of Electrical and Electronic Engineer-

ing3
University of Auckland, Private Bag 92019, Auckland, New Zealand

john-g@cs.auckland.ac.nz

Abstract. We have developed NetPay, a micro-payment protocol characterized
by off-line processing, customer anonymity and relatively high performance
and security using one-way hashing functions for encryption. In our NetPay
prototypes we have identified three kinds of electronic wallets to store e-coins –
a server-side wallet, client-side wallet application, and cookie-based wallet
cache. We describe the motivation for NetPay and describe the three kinds of e-
wallets and their design. We report on prototype implementations of these wal-
lets and end-user perceptions of their use.

1 Introduction

Macro-payment systems used by most E-commerce sites are not suitable for charging
per-page for web site browsing. Such systems typically use complex encryption tech-
nologies and require communications with an authorisation server to request and
confirm payment. Micro-payment systems offer an alternative strategy of pay-as-you-
go charging, even for very low cost, very high-volume charging. There are a number
of micro-payment systems [8], [11]. Most existing micro-payment technologies pro-
posed or prototyped to date suffer from problems with communication, security, and
lack of anonymity or are vendor-specific. In addition, they usually adopt a single
strategy for managing the electronic coinage, not always the one customer requires or
desire.

 We have developed a new micro-payment protocol called NetPay to address
these problems. The NetPay protocol allows customers to buy E-coins, worth very
small amounts of money, from a broker and spend these E-coins at various vendor
sites to pay for large numbers of discrete information or services of small value each.
NetPay shifts the communication traffic bottleneck from a broker and distributes it
among the vendors by using transferable E-coin Touchstones and Indexes. We have
identified three different strategies for managing these E-coins: a server-side E-wallet

jgrundy
5th International Conference on Web Information Systems Engineering, Brisbane, Australia, November 22-24 2004, LNCS 3306. © Springer 2004

that is exchanged among vendor sites as the customer buys information or services; a
client-side E-wallet application that resides on the customer’s PC and from which
vendors debit coins; and a hybrid, cookie-based E-wallet cache.

In this paper, we give an overview of existing micro-payment models and point out
the problems with these models. We then briefly describe the NetPay micro-payment
protocol. We then describe the three kinds of e-wallets we have designed and proto-
typed for the NetPay system. We describe the designs for the two NetPay e-wallets
and illustrate their usage. We conclude with an outline of our further plans for re-
search and development in this area.

2 Motivation

With the development of Internet businesses, more and more content providers are
switching once free content or services to a paid subscription model or pay-per-click
model, eliminating the revenue relying on only an advertisement market [10]. Today
there are already many newspapers and journals in electronic form. Most of newspa-
pers and journals allow their regular subscribers to read the articles on the net for free
while they also get a normal paper copy of them. Such a procedure seems to waste
resources since the subscribers can print the articles in which they are interested on
net and thus there is no need to read the paper copy. Micro-payment systems could be
used to make things different for online contents or services. You could read and
download an article and only pay a small amount of money e.g. 5c, 10c or 20c. Other
forms of emerging on-line content provision include purchase of music and video
clips, clip art, stock market and other financial data, and so on [9]. For example, on-
line music can be downloaded as a single at a time from an on-line music site by
paying small amounts of money per single.

There are a number of micro-payment systems in various stages of development
from proposals in the academic literature to systems in commercial use [8], [5], [6],
[11]. Though micro-payment protocols have received a lot of attention from research-
ers and cryptographers, only one micro-payment system, Millicent [12], exists in
general public use in Japan. All existing protocols for micro-payments have their
strengths and weaknesses in practical applications [2]. In Millicent [8], the third party
must be online whenever the user wishes to interact with a new vendor, i.e., the sys-
tem places a heavy real-time burden on the third party. In Mpay [7], customers can
pay nothing to access services for a full day and also the customer’s anonymity is not
protected. In PayWord [11], the payword chain is customer and vendor specific, i.e.,
the system locks customers to some sites that they have the payword chains. Most
micro-payment approaches provide customers with E-coin scripts or payword chains,
or require customers to log onto a vendor web site to access a stored collection of e-
coins. Most do not support inter-vendor spending of E-coins.

Most existing micro-payment approaches use a single mechanism for managing the
electronic coinage they use. The majority store these e-coins in (usually) encrypted files on
the client PCs. They need a specialized application with which this e-coin database is ac-
cessed and updated. This approach often requires installation of client-side “e-wallet” appli-
cations to manage the e-coins. Some approaches are susceptible to fraudulent alteration of

the e-coins while others require heavyweight, expensive encryption technologies to decode
the e-coins each time they are used. Some on-line micro-payment approaches use a server-
side approach where an on-line broker manages the e-coins for each customer and decre-
ments the coins available on each spend. This provides a single point of failure or bottleneck
for the micro-payment system as a whole and often removes the anonymity of the customer.

3 NetPay Protocol

We have developed a new protocol called NetPay that provides a secure, cheap,
widely available, and debit-based protocol for an off-line micro-payment system [1].
NetPay differs from previous payword-based protocols by using touchstones that are
signed by the broker and an e-coin index signed by vendors, which are passed from
vendor to vendor. The signed touchstone is used by a vendor to verify the electronic
currency – paywords, and signed Index is used to prevent double spending from cus-
tomers and to resolve disputes between vendors. In this section, we describe the key
transactions in the NetPay protocol.

Suppose an e-newspaper site wants to use the NetPay micro-payment system to
sell articles on a per-page usage basis. The system involves four parties – a NetPay
broker site; e-newspaper vendor sites; customer PCs; and a bank macro-payment
system. The customers can be classified as registered customers and unregistered
customers. Only registered customers can buy e-coins from a broker’s site and click-
buy an article with a newspaper site. Both types of customers can search and view
article titles on line. Initially a customer accesses the broker’s web site to register and
acquire a number of e-coins from the broker (bought using a single macro-payment).
The broker creates an “e-wallet” that includes the e-coin ID, touchstone, and e-coins
for the customer. This e-wallet may reside on the client PC (via a special application)
or be passed to vendor servers.

The customer browses the home page of the newspaper web site and finds a de-
sired news article to read. Each article will typically have a small cost e.g. 2-10c, and
the customer would typically read a number of these. When wishing to read the de-
tails of an article, the customer clicks on the article heading and the vendor system
debits the customer’s e-coins by e.g. 10c (by taking 1, 2 or more e-coins from their
payword chain, depending on the monetary value of each, up to 10c in value).

The newspaper system verifies that the e-coin provided by the customer’s e-
wallet is valid by use of a “touchstone” obtained once only from the broker. If the
payment is valid (coin is verified and sufficient credit remains), the article is dis-
played on the screen. The customer may browse other articles, their coins being deb-
ited (the index of spent coins incremented) each time an article is read. If coins run
out, the customer is directed to the broker’s site to buy more. The vendor keeps cop-
ies of the spent e-coins.

When the customer changes to another online newspaper (or other kind of ven-
dor using the same e-coin broker currency), the new vendor site first requests the
current e-coin touchstone information from previous vendor’s site. The new vendor
contacts the previous vendor to get the e-coin touchstone and “spent coin” index and
then debits coins for further news articles.

When the previous vendor system is “down”, a backup server in the system
sends the e-coin ID, the touchstone, and the index to the broker. The new vendor
could also contact the broker to get the e-coin touchstone and the “spent e-coin” in-
dex. At the end of each day, the vendors all send the spent e-coins to the broker, re-
deeming them for real money (done by macro-payment bank transfer from the broker
to vendor accounts).

4 NetPay E-wallets

We have designed three kinds of e-wallets to manage e-coins in the NetPay system.
One is hosted by vendor servers and is passed from vendor to vendor as the customer
moves from one site to another. The second is a client-side application resident on the
client’s PC. The third is a hybrid that caches E-coins in a web browser cookie for
debiting as the customer spends at a site.

4.1 Server-side e-wallet

Some people prefer to access the Internet from multiple computers (e.g. a business
person who often travels around). A Server-side hosted e-wallet is suitable for these
people. The server-side e-wallet is stored on the vendor server and is transferred from
the broker to each vendor when required.

Fig. 1 shows how a vendor application server debits e-coins from the server-side
e-wallet. When a customer clicks title of an article on his/her browser (1), the web
server sends the request to the vendor application server (2), which then debits e-
coins from the customer’s e-wallet (3) paying for the content. Customers can buy
articles using the server-side e-wallet anywhere in the world and the e-coin debiting
time is very fast on the server-side e-wallet system. However customers are required
to remember e-coin IDs and password in order to log into a newspaper site when
changing vendor. When a customer moves from one vendor to another, their e-wallet
contents must be passed from the previous vendor site to the new one. If the first
vendor site becomes unavailable, the customer temporarily does not have access to
their e-wallet.

Vendor System

Customer
Browser

Web
Server Vendor

Application
Server

(E-wallet)
Database

1. Click
2. Request

3. Debit

Customer’s PC Broker System

Broker App
Server

0. Get E-coins

Fig. 1. Server-side e-wallet conceptual model.

4.2 Client-side e-wallet

Some people prefer to access the Internet using one machine (e.g. those who stay
home most of the time or access sites from their work PC only). A Client-side e-
wallet is more suitable for these kinds of people. The client-side e-wallet is an appli-
cation running on the client PC that holds e-coin information.

Fig. 2 shows how a vendor application server debits e-coins from the client-side e-
wallet. When buying an article content a customer clicks the title of the article on the
web browser (1) and then the web server sends the request to the vendor application
server (2). The vendor application server sends the price of the article to the e-wallet
application (3) and then the e-wallet application returns the e-coins, paying for the
content to the vendor application server (4-5).

Customer
Browser Web

Server
Vendor

Application
Server

E-wallet
Database

1. Click
2. Request

3. Debit

Database

E-wallet
Application

Vendor System

4. Update

 5. Update

Customer’s PC Broker System

Broker App
Server

0. Get E-coins

Fig. 2. Client-side e-wallet conceptual model.

Customers can buy article content using the client-side e-wallet at different news-
paper sites without the need to log in after the e-wallet application is downloaded to
their PC. Their e-coins are resident on their own PC and so access to them is never
lost due to network outages to one vendor. The e-coin debiting time is slower for a

client-side e-wallet than the server-side e-wallet due to the extra communication be-
tween vendor application server and customer PC’s e-wallet application.

4.3 Client-side cookie-based e-wallet

To reduce the e-coin debiting time with the client-side e-wallet application we can
create a temporary cookie-based e-wallet that caches the e-wallet data for debiting
instead of the e-wallet database. Fig. 3 shows how a vendor application server debits
e-coins from such a client-side cookie-based e-wallet. When a customer finds a de-
sired article, he/she clicks the article heading on the web browser (1). The web server
sends the request to the vendor application server (2). Only for the first time when the
customer buys content from the vendor web site does the vendor application server
need to get the e-coins from the e-wallet application (3). It then creates a “cookie” to
cache the remaining customer e-coins, stored in a cookie file on the customer PC (4).
Once the cookie is created, the vendor application server debits e-coins from the
cookie directly after each HTTP request to buy content (5). The e-wallet application
can read the cookie file information to know how many e-coins are left when the
customer wants to check the balance of the e-wallet or after the customer has moved
to access another vendor site (6). This reduces the need for the vendor application
server to communicate with client PC-based e-wallet, caches the e-coins in HTTP
request that holds cookies.

Customer
Browser

Web
Server

Vendor
Application

Server

E-wallet
Database

 1. Click
2. Request

3. Get E-wallet (first time)
Database

E-wallet
Application

E-wallet
Cookie

5. Debit e-coins

4. Create cookie (first time)

Customer’s PC Vendor System

6. Read Cookie

Broker System

Broker App
Server

0. Get E-coins

Fig. 3. Client-side cookie-based e-wallet

When the customer changes to another vendor, the new vendor contacts the previ-

ous vendor to request the touchstone and the index of the e-wallet, and the previous
vendor application server gets the remaining e-coins from the cookie file, storing
them back into the e-wallet database. It then deletes the cookie. This approach is
suitable for a customer performing many purchases from a single vendor, and then
changing to another vendor.

5 NetPay E-wallet Design

In our current NetPay prototype we have implemented two kinds of e-wallet, a
server-side e-wallet and a client-side e-wallet. The broker application sets the e-wallet
that stores the e-coins in the server-side or client-side.

5.1 Server-side E-wallet NetPay Design

The server-side e-wallet should be transferred from the broker to each vendor in turn
that the customer is buying content from. Vendor systems need to know the location
of the customer’s e-wallet and to get the e-wallet contents. To do this we designed the
broker application server so that it provides a set of CORBA interfaces with which
the vendor application servers communicate to request an e-wallet location or to get
an e-wallet. The vendor application servers also provide a CORBA interface in order
for another vendor application server to get the e-wallet if it has been passed to one of
them. The e-wallet is thus passed from vendor to vendor as needed. The major prob-
lem with this approach is that the new vendor cannot get the e-wallet when the previ-
ous vendor crashes or becomes unavailable.

When a customer first clicks the Login&Buy button to purchase e-coins on the
browser, the HTTP server runs JSPs handling the request. The Broker application
server communicates with a macro-payment system to debit money from the cus-
tomer bank account and stores the e-coins information in the database.

When the customer goes to a vendor site, he/she needs to login by entering the e-
coin ID and the password. A JSP page handles the login request. If the e-wallet does
not exist, the vendor’s application server communicates with broker application
server via CORBA to get the e-wallet location, including host and port of the broker
or previous vendor. Then it communicates with the broker/previous vendor via
CORBA to get the customer’s refreshed e-wallet. This includes ecoinID, touchstone,
index, paywords, and amount. After the customer clicks the article handing, a JSP
page deals with a display content request. The vendor application server debits e-
coins from the server-side e-wallet paying for the content. The key components of the
NetPay server-side e-wallet design as illustrated in Fig. 4.

Fig. 4. An overview of the NetPay server-side e-wallet design.

5.2 Client-side E-wallet NetPay

The client-side e-wallet is implemented as a Java application runs on the client PC.
According to our protocol, a touchstone and an index (T&I) of a customer’s e-coin
should be passed from the broker to each vendor. To do this we have the broker
application server provide a CORBA interface for vendor application servers to
communicate with to get the T&I to verify e-coins. The vendor application servers
also provide a CORBA interface in order for another vendor application server to
communication with it to pass the T&I, avoiding use of the broker where possible.

When a customer first clicks the Login&Buy button to purchase e-coins on the
browser, JSPs running on the web server handle the request. The Broker application
server communicates with macro-payment system to debit money from the customer
bank account and then sends the e-coins to the customer’s e-wallet on the customer
machine.

A JSP page deals with displaying content when the customer clicks on the title of
an article. The vendor application server connects with the e-wallet application and
sends the price of the article. The customer’s e-wallet returns with the e-coins and the
location of the T&I to the vendor application server. The vendor application server
communicates with the broker or previous vendor via CORBA to obtain the T&I,

which are used to verify the e-coins. The main client-side NetPay e-wallet design
features are illustrated in Fig. 5.

Fig. 5. An overview of the NetPay client-side e-wallet design.

The cookie-based E-wallet design is an extension to the client-side e-wallet design that uses
browser-based cookies as a temporary cache. When the Vendor application server first commu-
nicates with the client PC-hosted e-wallet application, it reads the e-coins from the e-wallet and
stores them in a browser cookie. The e-wallet updates its database to indicate the e-coins are
now cached by the local browser in a cookie file for the vendor. Each subsequent pay-per-click
from the same vendor has one or more e-coins from the cookie removed and stored in the ven-
dor’s redemption database. If the customer moves to another vendor, the first new vendor ac-
cess to the e-wallet application causes an update of the e-wallet e-coins from the cached cookie
file from the previous vendor. This cookie file is then deleted by the client PC-hosted e-wallet.

6 Example Usage

We briefly illustrate the usage of our E-wallet prototypes for a simple E-newspaper
system enhanced with NetPay. Fig. 6 shows an example of NetPay in use for this
prototype E-newspaper application. The customer first buys e-coins from a broker (1-
2), and these are stored in a client-side E-wallet (3) or requested by a vendor on cus-
tomer login.

(1)
(2)

(4)

(5)

(3)

Fig. 6. Example of NetPay and e-wallets in use

The customer visits a NetPay-enhanced vendor site (4), and if using a server-side
E-wallet logs in providing an E-wallet ID and password generated by the broker. The
customer accesses articles on the E-newspaper site, each time their E-wallet being
debited (5). The server-side E-wallet held by the vendor site server is debited and the
remaining credit displayed to the user after each article is presented, as shown in (5).
The client-side E-wallet is held by an application resident on the customer PC, and its
balance can be accessed when desired or displayed periodically, as shown in (3). The
cookie-based E-wallet provides the same look-and-feel as the client-side E-wallet,
with caching of the remaining E-coins in a browser cookie done by the vendor’s Net-
Pay-enhanced web server.

7 Discussion

We focused on designing three kinds of “E-wallets” for NetPay broker and vendor
prototypes using a CORBA-based approach. Each approach has advantages and dis-
advantages. The first requires uses of e-coin ID and password to login to a vendor

system. The later two require that the customers download an e-wallet application and
install it on their PC. The e-coin debiting time is slower for a client-side e-wallet than
for a server-side e-wallet system due to extra overhead communicating to the client
PC. A firewall installed on the customer PC may also interfere with this communica-
tion from the vendor server. We implemented two kinds of the NetPay e-wallet and
“hard-coded” this support into a prototype vendor application to enhance it with Net-
Pay mcro-payment support. We used these prototype client-side and server-side e-
wallets to carry out an evaluation of NetPay usability and performance.

We used three prototypes, one providing macro-payment style subscription-based
payment, a second server-side NetPay micro-payment and the third client-side NetPay
micro-payment. We carried out some basic usability testing via a survey-based ap-
proach with representative target users of NetPay [4]. This survey found that the
article content at different newspaper sites was found by users to be easy to access
and read without logging into client-side NetPay system. However, users found that
this approach could incur a distracting extra delay in page display over the other sys-
tems. The server-side NetPay system allowed users to read articles anywhere in the
world, but customers needed to remember e-coin Ids in order to use the system. The
conventional macro-payment based system was found to be less appealing to our
users than the NetPay-enhanced micro-payment implementing e-newspaper vendors.

Our three e-newspaper prototypes have also been tested for application server per-
formance and client response time under heavy loading [4]. The key aim was to test
how long a newspaper site takes to serve client requests when extended to use each of
the three payment systems, from the time the customer clicks the title of an article to
the time the article is fully displayed on screen.

The results of the set of performance impact tests are shown in Table 1. The re-
sponse time measures how long it takes for a page to be returned from the vendor site.

Table 1. Initial prototype performance

From Table 1, the server-side NetPay takes 64ms for e-coin debiting per article

and Client-side takes 934ms total time, though the time to debit coins is taken by the
client’s e-wallet application, not the vendor’s application server. The large response
time overhead in the server for the server-side NetPay prototype is due to the data-
base transactions it carries out to record coin updates and debits to redeem to the
broker. Note that multi-threading in the server allows the vendor to serve other clients
during NetPay debits but the server-side e-wallet incurs heavy update overhead. We
enhanced the NetPay vendor server components to use a redemption transaction log
file with over night update of the vendor redemption database from the log file. This
markedly improved server-side performance and reduced server CPU and database
overhead by nearly 40%. Further enhancements, such as the use of a server-side

System Response Delay Time
(average)

Subscription-based 16ms
Server-side NetPay 80ms
Client-side NetPay 950ms

memory database for managing e-coins for redemption and server-side e-wallets
could further reduce the impact of NetPay components on vendor server performance.

8 Summary

We have described the development of a new micro-payment system, NetPay, featur-
ing different ways of managing electronic money, or e-coins. NetPay provides an off-
line, anonymous protocol that supports high-volume, low-cost electronic transactions
over the Internet. We developed three kinds of e-wallets to manage coins in a NetPay-
based system: a sever-side e-wallet allowing multiple computer access to e-coins; a
client-side e-wallet allowing customer PC management of the e-coins, and a cookie-
based e-wallet cache to improve performance of the client-side e-wallet communica-
tion overhead. Experiences to date with NetPay prototypes have demonstrated it pro-
vides an effective micro-payment strategy and customers welcome the ability to man-
age their electronic coins in different ways.

References

1. Dai, X. and Lo, B.: NetPay – An Efficient Protocol for Micropayments on the WWW.
Fifth Australian World Wide Web Conference, Australia (1999)

2. Dai, X., Grundy, J. and Lo, B.: Comparing and contrasting micro-payment models for E-
commerce systems, International Conferences of Info-tech and Info-net (ICII), China
(2001)

3. Dai, X., Grundy, J.: Architecture of a Micro-Payment System for Thin-Client Web Appli-
cations. In Proceedings of the 2002 International Conference on Internet Computing, Las
Vegas, CSREA Press, June 24-27, 444--450

4. Dai, X. and Grundy J.: “Customer Perception of a Thin-client Micro-payment System
Issues and Experiences”, Journal of End User Computing, 15(4), pp 62-77, (2003).

5. Gabber, E. and Silberschatz, A.: "Agora: A Minimal Distributed Protocol for Electronic
Commerce", Proceedings of the Second USENIX Workshop on Electronic Commerce,
Oakland, California, November 18-21, 1996, pp. 223-232

6. Gabber, E. and Silberschatz, A.: "Micro Payment Transfer Protocol (MPTP) Version 0.1".
W3C Working Draft, 1995. http://www.w3.org/pub/WWW/TR/WD-mptp

7. Herzberg, A. and Yochai, H. : Mini-pay: Charging per Click on the Web, 1996
http://www.ibm.net.il/ibm_il/int-lab/mpay

8. Manasse, M.: The Millicent Protocols for Electronic Commerce. First USENIX Workshop
on Electronic Commerce. New York (1995)

9. MP3 Web Site: http://www.mp3.com
10. Posman, “Would You Pay for Google?”, 2002.

http://www.clickz.com/media/agency_start/article.php/1013901
11. Rivest, R. and Shamir, A.: PayWord and MicroMint: Two Simple Micropayment

Schemes. Proceedings of 1996 International Workshop on Security Protocols, Lecture
Notes in Computer Science, Vol. 1189. Springer (1997) 69—87

12. Welcome to MilliCent WORLD Homepage, 2001. http://www.mllicent.gr.jp

