
KaitoroCap : a document navigation capture and visualisation tool

Moon Ting Su, John Hosking
Department of Computer Science

The University of Auckland
Auckland, New Zealand

e-mail: msu010@aucklanduni.ac.nz
john@cs.auckland.ac.nz

John Grundy
Faculty of Information & Communication Technologies

Swinburne University of Technology
Victoria, Australia

e-mail: jgrundy@swin.edu.au

Abstract �— To facilitate the usage of software architecture
documents (ADs), we claim the architectural information in
the ADs needs to be structured into or presented as chunks. A
chunk allows related information to be retrieved collectively as
a unit and simplifies information location tasks. We propose a
new semi-automated approach based on the actual usage of
ADs by previous users, i.e. by capturing users�’ exploration
paths through ADs while engaging in information seeking
tasks and making these paths available for future retracing
and analysis. As part of our work, we developed KaitoroCap, a
document navigation capture and visualisation tool. Its main
features are exploration paths capture, retrieval, analysis,
hierarchical tree-view visualization of paths, path searching,
section rating, tagging, commenting, expanding/collapsing and
page model generation to enable dynamic restructuring of
ADs. This paper describes the design, implementation and
usage examples of KaitoroCap.

Keywords: navigation; exploration; capturing tool; software
architecture document

I. INTRODUCTION
To facilitate the usage of software architecture

documents (ADs), the architectural information in the ADs
needs to be structured into, or presented as, chunks [1]. A
chunk refers to a grouping of related information in the
document. By pulling together related information which
otherwise may be dispersed, a chunk allows related
information to be retrieved collectively as a unit and
simplifies information location tasks.

We propose a new semi-automated approach capturing
users�’ exploration paths through ADs while engaging in
information seeking and navigation tasks. The chunking of
architectural information based on exploration paths is based
on the notion that an exploration path indirectly links
together that information throughout the AD that the user
perceives may be related to the task at hand. Hence a path
serves as a rudimentary invalidated chunk. To discover the
real chunks, we will analyze substantial navigation path data
with machine learning approaches to find common
navigation patterns which serve as potential chunks. The
direct involvement of the users of the ADs in this approach
enables user-driven chunking of architectural information
based on actual usage of the ADs instead of perceived usage.

Our approach incorporates user rating (R), tagging (T)
and commenting (C) of the elements (content visited by the
users during the exploration session) within an exploration
path. The user ratings are to indicate the importance of the

elements to an information-seeking task and their importance
to the user�’s overall understandability of the software
architecture of the system described by the AD. These
context dependent actions enable more informative analysis
of the exploration data and interpretation of the usefulness of
the content of the AD and the potentially discovered chunks,
in addition to analysis based on the frequencies of visit, time
spent and the sequences of visitation. This paper focuses on
the design, implementation and a usage example of
KaitoroCap, our tool we have built as a proof-of-concept to
capture and visualize users�’ exploration paths in documents
uploaded as wiki pages in Atlassian�’s Confluence Wiki [2].

II. RELATED WORK
Several approaches have been proposed to help

stakeholders to find the information that they need in an AD:
documentation roadmaps [3], view templates [3], concept
maps [4] and the use of semantic structure to detect relevant
documents based on search term [5]. We analyze traces of
previous readers�’ actual exploration of the AD to suggest
how information should be chunked for faster access.
Existing Architectural Knowledge (AK) management tools
[6, 7] do not support the capture of users�’ exploration of
architectural information, nor do they support finding
collective information based on actual usage patterns. As a
document exploration capturing tool, KaitoroCap differs
from other tools that capture users�’ interaction information,
such as Team Tracks [8] and Mylar/Mylyn [9] that capture
users�’ interaction with source code, and VisTrails [10] that
captures scientific workflows.

We also differ from existing work that analyzes
exploration path data to find common navigation patterns.
Instead of accumulating read time for each visible line as in
read wear [11], we calculate read time per section (which can
include paragraph, image, table, etc) as we believe individual
lines are too low a level for chunking AD information. Apart
from the interaction frequency used to determine the
relevancy of program element in Mylar/Mylyn [9], we also
consider the visitation sequences of document sections.
Recent work on degree-of-knowledge [12] of Mylar/Mylyn
combines it with degree-of-authorship. It spans multiple
tasks but still per developer, whereas we analyze interaction
data across different users to find common usage patterns.
Tasktop [13] extends task contexts to documents and web
sites but does not inspect sections in a document, though it
does extract web hyperlinks to present them as sub-nodes in
its Navigator.

John Grundy
In Proceedings of the 9th Working IEEE/IFIP Conference on Software Architecture, 20-24 June 2011 Boulder, Colorado, USA (c) IEEE 2011

John Grundy

John Grundy

III. KAITOROCAP
KaitoroCap captures users�’ exploration paths through a

document and saves them with metadata to provide
contextual information about the exploration. During the
exploration, it allows section rating, tagging, commenting,
and expanding/collapsing. It also provides the ability to
visualize exploration paths as hierarchical tree-views that are
collapsible and expandable to provide both succinct and
detailed views of the paths. The content of visited sections is
extracted and embedded inside a tree-view visualization of
an exploration path, effectively a restructuring of the AD.

Fig.1 shows the high-level design of KaitoroCap. It
consists of two main modules: Authoring and Exploration.
The Authoring module comprises the AD Modeller,
Template Maker and AD Authoring sub-modules. The AD
Modeller is used to model the meta-model of ADs if it is
required. The meta-model is saved and can be fed into the
Template Maker to generate templates for ADs. The AD
Authoring sub-module provides functions to create and edit
the actual documents which are saved in the repository. It is
also responsible for automatically creating a page model for
each page created or edited. The page model improves
performance by minimizing the amount of detail saved
during the navigation path capture and for AD restructuring.

The Exploration module comprises DocViewer,
Exploration Recorder, Exploration Analyzer and Exploration
Visualizer sub-modules. The DocViewer displays the pages
of an AD and dynamically constructs the rating (R), tagging
(T), commenting (C), expanding and collapsing features of
the pages opened for viewing. The on-demand insertion of
these features enables a clean separation of these features
from the content of the pages. The Exploration Recorder is
responsible for capturing and saving exploration paths and
metadata. The metadata provides contextual information for
an exploration, enabling it to be searched. The Exploration
Recorder allows saved exploration data to be retrieved and
displayed. The Exploration Analyzer supports analysis
(encoding and aggregation) of the raw exploration data. The
Exploration Visualizer provides functionality to visualize
analyzed exploration paths as tree-views. It also provides
search functionality to find saved exploration paths.

Fig. 2 (A) shows the main user interface of KaitoroCap, a
plugin in the Confluence Enterprise Wiki. To start capturing

an exploration path the user chooses the �‘Start Exploration�’
menu item under the �‘Tools�’ menu (Fig. 2 (A)) and fills in
metadata (path name, keywords, role, reason of navigation,
in relation to task) of the path (Fig. 2 (B)). The values chosen
for the metadata should be relevant to the information-
searching task as they serve as contextual information for an
exploration and are used in the �‘Search�’ feature to find
suitable exploration paths.

By clicking on the �‘Save�’ button, the metadata is saved
and an exploration session started. In addition, the �‘Start
Exploration�’ menu item is changed to �‘Stop Exploration�’
which can be clicked anytime to terminate the exploration
session. Within an exploration session, the user can navigate
to any page of an AD. KaitoroCap automatically inserts
RTC, expand (read more)/collapse features into each section
of the opened pages (for examples, Fig. 2 (C, D, E)). The
sequence of navigation of the pages together with all the user
interactions with the elements (RTC, expand/collapsing
features and hyperlinks) on the pages is captured in the
background without any interruption to the user�’s
exploration of the AD. All this data is saved whenever the
user navigates away from a page.

The exploration path can be retrieved as raw exploration
data (Fig. 3 (A)), analyzed exploration data (Fig. 3 (B)) or as
a tree-view (Fig. 3 (C, D)) by selecting the �‘Retrieve
Exploration Paths�’, �‘Analyze Exploration Paths�’ and
�‘Exploration Paths Tree View�’ menu item respectively, from
the main user interface of the tool (Fig. 2 (A)). The
hierarchical tree-view can be collapsed ((Fig. 3 (C)) and
expanded (Fig. 3 (D)) to provide both succinct and detailed
views of the paths.

It can also be toggled to reverse between the two views.
In addition, details of event data and the content of the
visited sections in the tree-view can also be shown or hidden.
Embedding the content of the visited sections in the tree-
view visualization of an exploration path (Fig. 3 (D))
effectively makes the path a restructuring of the AD.
Exploration path searching is supported by clicking on the
�‘Search Path�’ menu item from the main user interface of the
prototype (Fig. 2 (A)). The user can search by providing
search terms and choosing which metadata to search (Fig. 3
(E)). The tree-views of the resulting paths can be displayed
side-by-side for comparison.

Figure 1. High-level design of KaitoroCap

Figure 2. Main user interface of KaitoroCap (A); Metadata (B); Example of exploration (C, D, E)

Figure 3. Raw (A) and analyzed exploration data (B); Collapsed tree-view (C); Expanded tree-view with embedded content (D); Search feature (E)

IV. IMPLEMENTATION
KaitoroCap was developed using several technologies

including Atlassian plugin SDK, XWork Action for the
controller, Java beans for the model, Velocity for the view,
and JQuery for client-side scripting. The AD Authoring and
DocViewer sub-modules are built on top of Confluence�’s
functionality for creating and editing, and viewing of pages
respectively. The former extends functionality to cater for
the automatic creation of a page model for pages created or
edited. The relevant Confluence XWork actions are
overridden and chained to a custom action to generate the
page model. A page model contains information that
uniquely identifies a page, the sections and hyperlinks on the

page. It also comprises the details of these items (for
example, the page title, the sections�’ titles and contents,
hyperlinks�’ texts and urls, etc). The DocViewer sub-module
extends the existing page viewing capability via JQuery
script to dynamically insert the rating, tagging, commenting,
expanding and collapsing features into each section of a page
opened for viewing. A section starts with a level 2 html
heading and comprises this heading and all the succeeding
elements before the next level 2 html heading. Each section
is surrounded by a dynamic border, which is shown when the
mouse pointer enters the section and hidden otherwise. The
border provides visual cues regarding the section currently in
focus for rating, tagging, commenting, expanding or

collapsing. The Exploration Recorder sub-module enables
the user to capture exploration paths and save them together
with contextual metadata (path name, keywords, role, reason,
task). Other metadata such as start time, end time and path id
is generated by the system and saved together with the paths.

During an AD exploration session, event data are
generated from the interaction of the user with the elements
within and across the pages. An element in this context refers
either to a star rating, tag, comment, expand/collapsing
feature or a hyperlink. Consequently, the types of
interactions captured include clicking on the star rating
features to rate a section, entering tags and comments,
clicking to expand or collapse a section as well as clicking
on hyperlinks to navigate to other pages. The series of event
data items generated from the user interactions constitutes
the exploration path data. A single event data item contains
an event identifier (id), id and type of the affected element,
information about the interaction (such as the type of
interaction, timestamp and so on) and details of the page (the
sequence of page within the exploration session and page
model identifier). The Exploration Recorder makes use of
JQuery to dynamically bind event handlers to the respective
events (mouse click, mouse over, �‘enter�’ key press) of the
elements on the pages of AD. All the event data are later
passed via AJAX to an XWork action class to be parsed and
saved to the database. The saved exploration path data is
displayed by populating a Velocity template.

In the Exploration Analyzer sub-module, exploration data
is retrieved and analyzed in an XWork Action class. This
involves encoding and aggregation of the raw exploration
data and the determination of the semantic events. Encoding
and aggregation enables the abstraction of the low-level
interaction events in the event data into higher-level semantic
navigation events. Encoding is performed by comparing each
event data item with its succeeding event data item in the
series. This is used to determine the occurrence of changes
(in terms of element id, type of interaction, values, time
stamp, etc) from one event item to the next. The encoded
data is then analyzed for the possibility of event aggregation.
Event data in sequence, same element id and type of
interaction are candidates for aggregation.

The Exploration Visualizer sub-module displays the
exploration paths in the form of hierarchical tree-views that
are collapsible and expandable. The minutiae of an
exploration path such as the details of the visited pages (for
e.g. page title), the details of the visited sections (section title
and content) and hyperlinks (text and url) are extracted from
the respective page models and embedded in the tree-view.
The Exploration Visualizer parses exploration data to build
internal tree structures which are fed to the graphical display
of the tree-views created using JQuery. It also provides the
function to search for the exploration paths based on the
metadata captured at the start of each exploration.

V. CONCLUSION AND FUTURE WORK
KaitoroCap provides automated support to capture and

use the AD exploration paths of others. This allows for reuse
of knowledge across a team by reusing navigation paths
through documentation found useful by others. By extracting

the content of the visited sections from the page models and
embedding the content inside the tree-view visualization of
an exploration path, the path resembles a restructuring of the
AD. A preliminary user evaluation of KaitoroCap has shown
promising results in terms of capturing user�’s exploration
paths, the tree-view visualization and searching of
exploration paths. We will refine the prototype and build up
a more substantial database of navigation paths for analysis
using machine learning approaches. Different ADs will be
used for exploration and another user study conducted to
validate the usefulness of discovered chunks.

ACKNOWLEDGMENT
We thank Ministry of Higher Education, Malaysia;

PReSS, University of Auckland; and FRST Software Process
and Product Improvement project for funding this research.

REFERENCES
[1] M.T. Su, �“Capturing exploration to improve software

architecture documentation�”, Proc. 4th European Conference
on Software Architecture: Companion Volume, ACM, 2010,
pp. 17-21.

[2] �“Confluence Wiki�”;
 http://www.atlassian.com/software/confluence/.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, P. Merson, R. Nord, and J. Stafford, Documenting
software architectures: views and beyond, Addison-Wesley
Professional, 2010.

[4] H. Koning, and H. van Vliet, �“Real-life IT architecture design
reports and their relation to IEEE Std 1471 stakeholders and
concerns�”, ASE, vol. 13, no. 2, 2006, pp. 201-223.

[5] R.C. de Boer, and H. van Vliet, �“Architectural knowledge
discovery with latent semantic analysis: Constructing a
reading guide for software product audits�”, J. Syst. Softw.,
vol. 81, no. 9, 2008, pp. 1456-1469.

[6] R. Farenhorst, P. Lago, and H. van Vliet, �“Effective Tool
Support for Architectural Knowledge Sharing�”, Software
Architecture, LNCS, vol. 4758, 2007, pp. 123-138.

[7] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M.A. Babar,
�“A comparative study of architecture knowledge management
tools�”, J. Syst. Softw., vol. 83, no. 3, 2009, pp. 352-370.

[8] R. DeLine, M. Czerwinski, and G. Robertson, �“Easing
program comprehension by sharing navigation data�”, Proc.
2005 IEEE Symposium VL/HCC'05, 2005, pp. 241-248.

[9] K. Mik, and C.M. Gail, �“Using task context to improve
programmer productivity�”, Proc. 14th ACM SIGSOFT
international symposium on Foundations of software
engineering, ACM, 2006, pp. 1-11.

[10] L. Moreau, I. Foster, J. Freire, C. Silva, S. Callahan, E.
Santos, C. Scheidegger, and H. Vo, �“Managing Rapidly-
Evolving Scientific Workflows�”, Provenance and Annotation
of Data, LNCS, vol. 4145, 2006, pp. 10-18.

[11] C.H. William, D.H. James, W. Dave, and M. Tim, �“Edit wear
and read wear�”, Proc. SIGCHI conference on Human factors
in computing systems, ACM, 1992, pp. 3-9.

[12] F. Thomas, O. Jingwen, C.M. Gail, and M.-H. Emerson, �“A
degree-of-knowledge model to capture source code
familiarity�”, Proc. 32nd ACM/IEEE ICSE, ACM, 2010, pp.
385-394.

[13] R. Elves, �“Tasktop for Eclipse-Get More out of Mylyn�”, 2010
 http://tasktop.com/resources/tutorials/MoreOutOfMylyn.php.

