
Capturing architecture documentation navigation trails for
content chunking and sharing

Moon Ting Su, John Hosking
Department of Computer Science

The University of Auckland
Auckland, New Zealand

e-mail: {msu010|john}@aucklanduni.ac.nz

John Grundy
Faculty of Information & Communication Technologies

Swinburne University of Technology
Victoria, Australia

e-mail: jgrundy@swin.edu.au

Abstract�—Navigating and understanding complex software
architecture documentation is often challenging. To support
finding relevant information in architecture documents (ADs),
we propose a semi-automated approach based on the actual
usage of ADs by previous users, i.e. by capturing users�’
exploration paths through ADs and making these paths
available for future retracing and analysis. To do this, we have
built a prototype tool (KaitoroCap) that captures users�’ AD
exploration paths and saves them with contextual metadata.
KaitoroCap displays the exploration paths in hierarchical tree-
views and these exploration paths can be searched. This is
helpful for recalling previous navigations and to follow others�’
useful paths in finding relevant information in AD. Our
approach also enables dynamic restructuring of ADs and
incorporates user rating, tagging and commenting of the
content of ADs. Initial user evaluation shows promising results.

Keywords �– navigation; exploration; capture; software
architecture document; documentation; architectural knowledge
management

I. INTRODUCTION
The difficulty of finding useful content in overwhelming

amounts of information is a key problem of software
documentation [1]. For software architecture (SA)
documents (ADs), this problem is further aggravated by the
various stakeholders having only partial interest in the
content of the ADs i.e. typically only limited content is
useful for each stakeholder, sometimes as little as 25% of the
AD [2]. For example, a developer looking for information in
order to modify the code base is often interested in some
similar, but much different, information to a systems
administrator looking to deploy and manage the software.

To support finding relevant AD information, we argue
that the architectural information in an AD needs to be
structured into or presented as chunks [3]: groups of related
pieces of architectural information. Chunks enable
architectural information seen as being related by a body of
users, but which otherwise might be dispersed, to be
retrieved collectively as a unit, thus simplifying search by
new users. To further this idea, we propose a new semi-
automated approach based on the actual usage of ADs by
previous users, i.e. by capturing users�’ exploration paths
through the documents and making these paths available for
future retracing and analysis. A user�’s exploration path
through the sections of an AD indirectly links related
information throughout the document together. This allows

them to be retrieved collectively as a unit, making searching
for related information easier. A path serves as a rudimentary
chunk. However, additional analysis needs to be performed
on the navigation path data to discover the real chunks.

This paper focuses on the results of a user evaluation of a
prototype tool (KaitoroCap) that we have built as a proof-of-
concept. KaitoroCap provides functionality to capture users�’
exploration paths through documents uploaded as wiki pages
in Atlassian�’s Confluence Wiki [4]. We describe related
work, our approach, features of KaitoroCap and our
preliminary user evaluation results, discussion, conclusion
and future work.

II. RELATED WORK
Views & Beyond suggests the use of documentation

roadmaps and view templates to help new stakeholders to
find the information that they need in an AD [5]. The former
introduce readers to the organization of an AD. As a standard
organization for a view, the latter help readers to find related
sections. Concept maps are also used to show main concepts
of an AD improving its readability [2]. In neither approach,
have reports of benefit based on actual use been presented.
Latent Semantic Analysis (LSA) has been used to construct
suggested documentation readings to guide software product
auditors to find required Architectural Knowledge (AK) [6].
LSA uses association of terms with documents (�“semantic
structure�”) to detect relevant documents based on searched
terms [7]. Our study differs by helping readers find relevant
information by analyzing traces of actual explorations of the
AD by previous readers to suggest how it should be read.

Access to and delivery of the right AK in a Just-in-Time
manner requires effective and lightweight search, including
finding relevant information within documents [8]. In our
study, relevant information inside documents is retrieved
collectively as a unit i.e. path, making search for relevant
information easier. AK management tools are reviewed in [9,
10]. None capture user exploration of architectural
information nor do any support finding collective
information based on the actual usage patterns of end users.

Read wear captures the reading history of documents
[11], implemented by accumulating the read time for each
visible line. Our approach calculates read time per section
and not per line, as we believe individual lines are too low a
level for chunking of architectural information. Team Tracks
[12] shows source code navigation patterns of team members
using techniques such as Favourite Classes (visit frequency)

John Grundy
In Proceedings of the 9th Working IEEE/IFIP Conference on Software Architecture, 20-24 June 2011 Boulder, Colorado, USA (c) IEEE 2011

John Grundy

and Related Items (visit sequence). Our work differs by
focusing on navigation patterns of software AD.

On task activation, Mylar/Mylyn [13] monitors user
interaction with code to form a task context as a degree-of-
interest (DOI) model [13]. This filters the Eclipse interface to
show only essential program elements related to the task
based on the elements�’ interaction frequencies. We also
consider the order of visitation of elements and analyze
interaction data across different users to find common usage
patterns. We focus on semi structured ADs whereas Mylyn
deals with structured program elements. Recent work on
degree-of-knowledge [14] links DOI with degree-of-
authorship. It spans multiple tasks but still per developer.
Mylyn�’s commercial extension, Tasktop [15], extends task
contexts to documents and web sites. It doesn�’t inspect
sections in a document, but does extract web hyperlinks to
present as Navigator sub-nodes.

Our exploration paths bear similarity to the workflow in
VisTrails [16]. Both capture a history of exploratory task
steps. KaitoroCap doesn�’t support path editing e.g. changing
the navigation sequences, or the content of the sections in the
exploration paths. Unlike VisTrails, where changes to the
execution parameters of workflows produce visible new
results, the usefulness of edited exploration paths is not
obvious without further validation for KaitoroCap.

III. APPROACH
KaitoroCap captures and saves users�’ navigation paths

through AD and their meta-data (providing contextual
information about tasks) while undertaking goal directed
explorations of architectural information in ADs (Fig. 1). It
displays the exploration paths in hierarchical elidable tree-
views. The exploration paths can be searched and retraced.
KaitoroCap provides the option to display the content of the
visited sections inside a path�’s tree-view visualization
effectively making the path a restructuring of the AD,
dynamically grouping related information. Our approach also

allows user rating (R), tagging (T) and commenting(C) of
AD content. Fig. 2 shows KaitoroCap in use browsing AD.
This includes Creating a new AD page (A, B), and browsing
pages by clicking on hyperlinks (C). The prototype
automatically inserts RTC, expand (read more)/collapse
features into each section of the opened page (D). These
allow the user to rate, tag, comment, click on �“read more�” to
expand a section and later collapse it (E). Whenever the user
moves the mouse pointer into a section, a border surrounding
the section is drawn to highlight that the section is the
current focus of those interactions.

KaitoroCap is implemented as a plugin for Atlassian�’s
Confluence Wiki [4]. Using a Wiki for collaboration and
knowledge sharing is appealing for SA documentation [17] ,
[18]. Studies show wiki-based ADs support better document
navigation [19]. Architecture documents are structured as a
set of linked short web pages with deeper structure.
However, the structures of wiki ADs are determined by AD
producers rather than consumers. Our work aims to gain
insight on the structuring of ADs based on actual usage by
consumers. The �‘structuredness�’ of wiki ADs is good for
overview, but poses more difficulty in finding finer details
[19]. We aim to mitigate this by using navigation paths to
find chunks of collective information.

Figure 1. Exploration capture and chunking of architectural information .

Figure 2. Example of KaitoroCap in use to explore and capture navigation traces.

Figure 3. User evaluation of KaitoroCap

IV. USER EVALUATION OF KAITOROCAP
We have conducted an initial user evaluation of

KaitoroCap�’s features for exploration path capture, path
search and the tree-view�’s suitability to visually represent
paths. We recruited eight participants, who are PhD students
or post-docs. None were directly involved in the design or
implementation of KaitoroCap. All are experienced software
developers. Background information gathered from them
included level of education, English language proficiency,
Wiki and AD experience, and domain knowledge related to
an example AD domain. Participants explored this AD in
KaitoroCap answering several provided questions relating to:
overall software architecture of the system; how to change a
specific part of the system; and how a quality attribute is
realised. For each question, participants captured their own
exploration paths using KaitoroCap�’s path-capturing feature.
Participants�’ answers were captured and they were asked to
rate AD sections they visited in terms of their importance to
answering the question and the importance of the sections to
their overall understanding of the software architecture of the
system. They were also encouraged to tag/comment on
visited sections. Participants we then surveyed to explore
their perceptions of KaitoroCap�’s features.

The AD chosen for the evaluation study is a 24-page
document defining the architecture of a real industrial system
that manages digital web content for future preservation.
Participants agreed or strongly agreed that the prototype is
useful, effective and easy to use for path capture (Fig. 3).
The tree-view visualization was rated only slightly little less
positively with some undecided on its usefulness and ease of
interaction. The search path feature had more spread in
perception, but results were still very positive. Overall
usability of KaitoroCap across all features was also assessed.
In all cases only one participant rated characteristics less than
a 4 on the 5-point Likert scale. Participants were queried on
weaknesses and improvements. Among suggestions were:
expanding the capture to include having search queries and
text copied and pasted into the path; listing only sections
visited for a faster view; providing more interesting
visualizations, such as a timeline showing where most time is
spent; keyword assistant for search; and widening the scope

of search to include tags and comments. Overall, results
show significant promise. Comments mainly suggested
enhancements rather than questioning the core rationale of
KaitoroCap. The current visualization approach is one area
that merits such enhancement. One possibility is to construct
a path visualization similar to KaitoroBase [20].

There are several threats to validity of our study. The
way the AD was structured in the Wiki might influence
participants�’ rating of KaitoroCap�’s path capture features.
Alternative structuring of AD can be used to mitigate this.
The 90-minute evaluation might affect a participant�’s focus
and perceptions of KaitoroCap as they tire, but none reported
negatively on this. Wrt external and conclusion validity
threat, our (small number of) participants are from the same
department and therefore unrepresentative. We are including
participants from other institutions and industry in ongoing
evaluations. For construct validity, a higher level of
participant experience in accessing Wiki materials has a
tendency to give more positive evaluation results. In our
evaluation 87.5% of them have average experience in
accessing materials in wiki environment but not in the
Confluence Wiki used. Other threats relate to the next stage
of this study dealing with analysis of the navigation path data
to discover chunks; this will be reported in subsequent work.

V. DISCUSSION, CONCLUSION AND FUTURE WORK
While results are promising, we need more path data and

better analysis of it to complete our vision. We will improve
our prototype based on the evaluation results and build up a
more substantial database of explored paths. Having captured
more and varied paths, the correctness of answers given by
participants will be validated to determine whether to include
paths for further analysis. Validated navigation path data will
be grouped by task and machine learning used to find
common navigation patterns. These will serve as candidate
chunks of SA information. Each chunk will be inspected to
find its degree of completeness (comprising all related
information needed for the task at hand), and whether the
sequence of organization of its elements supports the
understanding of the information in the chunk. This will
provide one method of evaluation of the chunks. The chunks
will also be included into KaitoroCap as recommended

exploration path(s) for the specific questions. Another study
will validate end user perception of the chunks�’ usefulness.

A disadvantage of deducing user�’s actions by capture and
analysis of path data is the difficulty of determining portions
generated by non-intentional actions, e.g., the user may
navigate absent-mindedly, but interactions pertaining to this
are captured as with other interactions. We use the RTC
features to help explicitly capture useful information, but this
requires end user action to indicate relevance. It is inevitable
that different users may provide contradictory ratings, tags
and comments for the same content visited during similar
information seeking task. Nevertheless, the averaged ratings
as well as tags and comments for the elements (content)
within a chunk provide an extra dimension to interpret the
usefulness of the chunk.

Tags and comments can be displayed with sections,
providing rich user-annotation of an AD. Sections with
significant contradictory perceptions may flag problems in
content. Tags and comments also afford other searching
modalities as would use of semantic techniques. Following
others�’ exploration paths doesn�’t guarantee better
effectiveness or efficiency, but retracing navigation
sequences of others�’, a newcomer can gain insight into their
exploration processes enhancing task understanding. This is
particularly so if paths are provided by more experienced co-
workers. Our approach aims to enable user-driven chunking
of SA information based on actual AD usage instead of
perceived use. This allows closer match between authors�’
intentions and reader expectations, an important factor that
determines the effectiveness of the documentation [21].

ACKNOWLEDGMENT
We thank the Ministry of Higher Education, Malaysia;

PReSS, University of Auckland; and FRST Software Process
and Product Improvement project for funding this research.

REFERENCES
[1] T.C. Lethbridge, J. Singer, and A. Forward, �“How software

engineers use documentation: the state of the practice�”, IEEE
SOFTWARE, vol. 20, no. 6, 2003, pp. 35-39.

[2] H. Koning, and H. van Vliet, �“Real-life IT architecture design
reports and their relation to IEEE Std 1471 stakeholders and
concerns�”, ASE, vol. 13, no. 2, 2006, pp. 201-223.

[3] M.T. Su, �“Capturing exploration to improve software
architecture documentation�”, Proc. 4th European Conference
on Software Architecture: Companion Volume, ACM, 2010,
pp. 17-21.

[4] �“Confluence Wiki�”;
 http://www.atlassian.com/software/confluence/.

[5] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.
Little, P. Merson, R. Nord, and J. Stafford, Documenting
software architectures: views and beyond, Addison-Wesley
Professional, 2010.

[6] R.C. de Boer, and H. van Vliet, �“Architectural knowledge
discovery with latent semantic analysis: Constructing a
reading guide for software product audits�”, J. Syst. Softw.,
vol. 81, no. 9, 2008, pp. 1456-1469.

[7] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer,
and R. Harshman, �“Indexing by latent semantic analysis�”,
Journal of the American society for information science, vol.
41, no. 6, 1990, pp. 391-407.

[8] R. Farenhorst, and H. Van Vliet, �“Understanding how to
support architects in sharing knowledge�”, Proc. 2009 ICSE
Workshop on Sharing and Reusing Architectural Knowledge,
IEEE Computer Society, 2009, pp. 17-24.

[9] R. Farenhorst, P. Lago, and H. van Vliet, �“Effective Tool
Support for Architectural Knowledge Sharing�”, Software
Architecture, LNCS, vol. 4758, 2007, pp. 123-138.

[10] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M.A. Babar,
�“A comparative study of architecture knowledge management
tools�”, J. Syst. Softw., vol. 83, no. 3, 2009, pp. 352-370.

[11] C.H. William, D.H. James, W. Dave, and M. Tim, �“Edit wear
and read wear�”, Proc. SIGCHI conference on Human factors
in computing systems, ACM, 1992, pp. 3-9.

[12] R. DeLine, M. Czerwinski, and G. Robertson, �“Easing
program comprehension by sharing navigation data�”, Proc.
2005 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC'05), 2005, pp. 241-248.

[13] K. Mik, and C.M. Gail, �“Using task context to improve
programmer productivity�”, Proc. 14th ACM SIGSOFT
international symposium on Foundations of software
engineering, ACM, 2006, pp. 1-11.

[14] F. Thomas, O. Jingwen, C.M. Gail, and M.-H. Emerson, �“A
degree-of-knowledge model to capture source code
familiarity�”, Proc. 32nd ACM/IEEE ICSE, ACM, 2010, pp.
385-394.

[15] R. Elves, �“Tasktop for Eclipse - Get More out of Mylyn�”,
2010;
http://tasktop.com/resources/tutorials/MoreOutOfMylyn.php.

[16] L. Moreau, I. Foster, J. Freire, C. Silva, S. Callahan, E.
Santos, C. Scheidegger, and H. Vo, �“Managing Rapidly-
Evolving Scientific Workflows�”, Provenance and Annotation
of Data, LNCS, vol. 4145, 2006, pp. 10-18.

[17] P. Louridas, �“Using Wikis in Software Development�”, IEEE
SOFTWARE, vol. 23, no. 2, 2006, pp. 88-91.

[18] R. Farenhorst, and H. van Vliet, �“Experiences with a Wiki to
Support Architectural Knowledge Sharing�”, Proc. Wikis4SE
@ WikiSym 2008, 2008.

[19] F. Bachmann, and P. Merson, �“Experience Using the Web-
Based Tool Wiki for Architecture Documentation. �”,
Technical Note CMU, 2005.

[20] M.T. Su, C. Hirsch, and J. Hosking, �“KaitoroBase: Visual
Exploration of Software Architecture Documents�”, Proc. 24th
IEEE/ACM International Conference on ASE 2009, pp. 653-
655.

[21] R.C. de Boer, and H. van Vliet, �“Writing and Reading
Software Documentation: How the development process may
affect understanding�”, Proc. 2009 ICSE Workshop on
Cooperative and Human Aspects on Software Engineering,
IEEE, 2009, pp. 40 - 47.

