
Adding Group Awareness to Design Tools using a
Plug-in, Web Service-based Approach

Akhil Mehra1, John Grundy1, 2, John Hosking1
Department of Computer Science1, Department of Electrical and Computer Engineering2

Private Bag 92019, University of Auckland, Auckland, New Zealand
ameh010@ec.auckland.ac.nz, {john-g, john}@cs.auckland.ac.nz

ABSTRACT
Group awareness provides members of a team with relevant
knowledge of other’s activities to enable them to make informed
decisions with regards to their future work. Providing group
awareness in collaborative editing tools is important to enhance a
team’s efficiency and effectiveness. We describe a new approach
to adding group awareness facilities to an existing single-user
editing application using plug-in components and Web Services.
We have added group awareness facilities as a component based
plug-in to Pounamu, a meta-CASE tool. We have used this plug-
in, web service based system to enhance Pounamu’s existing
collaborative editing facilities. We describe the architecture of
our approach, key design and implementation issues, illustrate its
feasibility and evaluate its effectiveness

Keywords
CSCW, group awareness, collaborative design, software plug-in,
Web services-based architecture, meta-CASE tool, visual design
environments.

1. INTRODUCTION
Group awareness can be defined as “an understanding of the
activities of others, which provides a context for your own
activity” [3]. Group awareness is of great importance when
collaboratively editing documents. Knowledge of one another’s
presence, actions and intentions vastly improves efficiency while
developing documents collaboratively.

Computer-Aided Software Engineering (CASE) tools are
frequently used to automate, administer and simplify the
development process for software [1]. We believe that it is
important to add collaborative editing and group awareness
facilities to CASE tools in order to provide efficient collaboration
during the administration of a project. We aim to add group
awareness facilities to the Pounamu meta-CASE tool which
enables a user to specify and generate multi-view visual design
tools[18]. Using Pounamu a user is able to create visual tool
specifications and then use these tools to model existing projects.
Pounamu was developed as a single-user application but provides
collaborative editing facilities via plug-in components [10].
However it does not provide any group-awareness facilities.

One of our major goals for the Pounamu meta-CASE tool is to
enable groups of people to work effectively when collaborating on
development of artifacts. In the work presented we wanted to add
group awareness facilities to Pounamu in order to make users
more knowledgeable of each others identity, actions, and
intentions. Group awareness is provided for both synchronous
and asynchronous collaboration in Pounamu. Visual cues are
used to indicate a user’s presence, actions and intensions. Group
awareness in synchronous mode is achieved by plugging in the

group awareness component into an existing collaborative editing
environment developed for Pounamu. Group awareness in
asynchronous mode is facilitated by integrating a version control
system, a visual differencing tool and the group awareness
component developed. Each user is expected to check in his/her
work into a version control repository. With the help of the visual
differencing tool users are able to visually differentiate their work
with existing versions of design diagrams in the repository and see
the comparison.

In pursuing this work we have developed a proof-of-concept
approach to support the development of group awareness
applications using Web services-based technology. This explores
the feasibility of using a Service Oriented Architecture and Web
services for realising a range of group awareness facilities in
CASE tools.

We first present the motivation for our work and discuss related
research. We then outline our approach of using Web Services to
provide collaborative editing in Pounamu. We describe key design
and implementation issues and provide an evaluation of our
approach. We conclude with a summary of the contributions of
our work and directions for future research.

2. MOTIVATION
Adding collaborative work support to an application includes the
ability of a user to collaboratively edit artifacts, version edited
information for asynchronous work support and provide “group
awareness” i.e. providing information to other users so that they
can make informed decisions with regards to their future work [8].
Pounamu already possess collaborative editing facilities via a set
of plug-in components [10]. In order to provide a whole set of
tools for collaborative work support for Pounamu we have
enhanced Pounamu by providing a version control mechanism and
group awareness facilities.

A number of tools have been built that support group awareness
for collaborative editing systems. Examples include Quilt[6],
GROVE[4], PREP[12], SASSE[2], Calliope[11] and Alliance[15]
collaborative writing systems. Most of these tools have been built
using either ad-hoc approaches (no specialized tool kit or
component) or using a specialized groupware tool kit. The tools
thus have fixed, hard-coded group awareness support. Most such
applications suffer from a lack of extensible groupware facilities
and lack of ability of users to configure these facilities at run-time
[8]. Ideally users should be able to determine the kinds of
groupware facilities they want to use while a tool is in use and
have these incrementally added to their design environment on-
demand.

Most existing groupware applications use TCP/IP or remote
object technologies such as CORBA to achieve data transfer [13,

jgrundy
Sixth International Workshop on Collaborative Editing Systems, CSCW 2004, Chicago, November 6, 2004.

jgrundy

16] We have found that these technologies make building
groupware infrastructure challenging and difficult to evolve [10],
as the remote object interfaces and data protocols are not
amenable to extension and evolution. They are also not easy to
use to build dynamic, run-time discoverable and deployable
distributed work facilities. Web services technologies offer more
extensible and dynamic run-time support mechanisms for
collaborative work infrastructure[9, 14]. Initial prototypes of
collaborative editing tools have been successfully developed with
web services [10, 17], and we wanted to apply the same technique
to group awareness facilities.

We have been developing Pounamu, a meta-CASE tool for
specification and generation of multiple view visual tools [18].
The tool enables a user to rapidly specify “visual notational
elements, underlying tool information model requirements, visual
editors, the relationship between notational and model elements,
and behavioral components” [18]. Tools are generated on the fly
and can be used for modeling immediately. Figure 1 illustrates a
Pounamu-developed UML tool in use.

We wanted to provide group awareness facilities for any such
Pounamu tool in a plug-in component based manner using a
Service Oriented Architecture. Additionally we wanted the group
awareness component to support both synchronous and
asynchronous awareness.

Figure 1. Example of Pounamu-built UML tool in use.

3. OUR APPROACH
The main aims for group awareness extensions to Pounamu
include:

x Adding group awareness feature using a dynamic plug-
in mechanism [8].

x Appropriate visual cues to effectively provide group
awareness information in a non intrusive way in a meta-
CASE tool environment

x Approaches to effectively provide group awareness in a
multi-view application

x The viability of using a CVS repository to provide
effective asynchronous group awareness information

In order to realize all of our group awareness facilities we have
extended an existing Web Service based architecture that utilizes
the principles of Service Oriented Architecture. The primary

reason for reusing the above mentioned approach is the success
when using this approach while developing our collaborative
editing component [10]. Web services allow run-time discovery of
multiple collaboration services, dynamic integration with the
services, and use of XML-based technologies to facilitate data
exchange between tools.

Figure 2 illustrates our approach to building a group awareness
component. Firstly we developed a group awareness component
that was plugged into our existing collaborative editing
infrastructure. The group awareness component is responsible for
providing group awareness related information for a Pounamu
command. Pounamu commands are a set of API’s that describe
all editing events that take place in Pounamu model project. All
user interaction with a specific Pounamu model project can be
formulated into a Pounamu command. A user’s interaction with a
Pounamu model project generates Pounamu events (1). These
events are captured by a collaborative editing component and
appropriate web service calls are generated to notify remote
collaborators of these events (2). The web service passes on these
events to the remote collaborative editing component with the
help of RMI calls (3, 4). The collaborative editing component is
responsible for generating appropriate Pounamu commands that
describe these events and then passing these commands to the
group awareness component (5). The group awareness
component decorates the commands with appropriate group
awareness information e.g. user, time/date, the view the edit was
performed in, etc. These commands are then executed and
displayed in the remote user’s environment with appropriate
group awareness decoration.

Figure 2 Overview of our approach.

We further extended Pounamu to access a version control system,
Concurrent Versions System (CVS) [7], using a Web Service
interface. Additionally we developed a visual differencing tool
for Pounamu to help distinguish between two different versions of
a project. Figure 3 shows how the visual differencing and access
to a version control system integrates into our existing system.

The Pounamu differencing tool component compares an existing
model project with an earlier version accessed from a CVS
repository and generates appropriate Pounamu Commands to

Figure 3 Our Approach to adding asynchronous group

awareness.
update(4). These commands are then passed on to the group
awareness component (5) to be decorated with appropriate visual
cues and displayed to the user (6).

4. ARCHITECTURE
In previous work we developed a collaborative editing plug-in to
provide collaborative editing support for any Pounamu specified
tool. The plug-in may be discovered and loaded at runtime when
the user decides they want collaborative editing support. It uses
web services technology for discovery and communication. This
collaborative editing component uses a peer-to-peer architecture
as show in Figure 3. One of the main goals while developing our
new group awareness component was to develop the component
in a similar plug-in manner to support runtime loading and

unloading of the component. The group awareness component is
responsible for decorating Pounamu commands with appropriate
group awareness information.

We have further added CVS repository access by developing a
Web Service interface to access the repository. The Web Service
interface to CVS uses Web Service attachments to achieve the
required functionality. In order for a user to be able to view
differences in various versions of a Pounamu model project
checked in we developed a visual differ component for Pounamu.
Both collaborative editing component and the visual differencing
tool use the group awareness component to display differences.
As User A edits a model project he/she is working on, appropriate
events are propagated to the collaborative editing component (1).
User A’s collaborative editing component calls appropriate
remote web services hosted by User B(2) to notify User B of
editing event. User B’s Web Services with the help of RMI call
notifies its corresponding collaborative editing component of
remote editing events (3). The collaborative editing component
generates Pounamu commands and passes these on to the group
awareness component (4). The group awareness component
decorates these with awareness information and displays them in
the Pounamu Meta tool (5).

Figure 4 Overview of our Web Service Based architecture

The main components that are used when retrieving and
differentiating project with earlier versions of the project include
the Pounamu Model Differ component, CVS Access component
and the CVS web service. Suppose UserA wishes to retrieve an
earlier version of a UML model project that he and his colleagues
have been working on. UserA will specify his wish to retrieve an
older version of a Pounamu Model project. This request will be
passed on to the CVS Access component (7). The CVS access
component will use the CVS web service to retrieve an earlier
version of the project (8). Once the model project has been
retrieved the Pounamu Model Project differ will be called to
differentiate between the retrieved version and the current version
(9). The Pounamu differ will generate appropriate Pounamu
commands that signify model project differences. These
commands will be passed on to the Pounamu Model Project differ
and then will be passed on to the Group Awareness Component
(10) that will decorate the commands appropriately. Change will
be displayed to the user (11).

5. EXAMPLE USAGE
In this section we describe an example usage of our Pounamu
plug-in group awareness component. Consider the following
scenario. Three colleagues John, Tim and Tom are working on an
UML (Unified Modeling Language) based model project created
in Pounamu from geographically disparate locations. They have

all enabled collaborative editing in synchronous mode and are
thus able to see each others changes in real time.

All users have the option of enabling an awareness panel. The
panel gives users information about other online users and a
history of collaborative editing events that have take place.
Considering Pounamu is a multi-view visual tool we considered it
important to display inter-view awareness. One way of achieving
this is by providing users with an indication of other users
intentions. This was achieved by coloring the user names of
online users with respect to the project and the view they are
working on. For example: a user name colored in red denotes that
a user is working in the same view as we are. Where as blue
denotes that a user is working on a different project.

Let us suppose that John decides to add two classes and an
inheritance connector between them. Figure 5 (a) illustrates group
awareness information presented to Tim and Tom as a result of
John’s actions. Both remote users see the added classes and
connectors highlighted. This helps users distinguish between
remotely added shapes and connectors and locally added ones.

We believe that in synchronous mode remotely added shapes and
connectors should merge into existing diagrams over a period of
time if a remote user does not explicitly reject the shape. This is
done by “fading away” group awareness information. For
example, in Figure 5 (a) the highlighting of one shape has become
lighter than the other. Over a five minute

Figure 5 Group Awareness Examples.

period remotely added shapes automatically merge into the
existing diagram and this is depicted to users by total fading away
of group awareness information. Figure 4 also give us examples
of other type of group awareness information presented to remote
users such as deletion (Figure 5 b), movement (Figure 5 d) or
changes in properties (Figure 5 c). Changes in properties are
shown by highlighting the property changed.

Now let’s consider a scenario where John, Tim, and Tom cannot
continue to edit the document synchronously due to individual
commitments or network failure/unavailability. Let us suppose
that Tim and Tom leave the joint editing session while John
continues to edit artifacts in a UML Model project. After John is
done he checks his version into a CVS repository. Tim later
wishes to update his model project by differentiating between his
version and the version checked in by John.

This can be achieved in Pounamu with the help of the visual
differencing tool we have provided, again using a plug-in
component architecture. Tim logs on to the CVS server and gets a
list of prior versions checked in. This is done with the help of the
CVS configuration dialogue box a shown in Figure 6.

Using this dialog box a user is able to view various versions of
model project checked in and differentiate there versions with
these. Tim can select a version checked in by John and press the
differentiate button. This will show Tim differences in a visual
manner as show in Figure 7. Tim may wish to keep some changes
while rejecting others. Once done Tim can check in his new
version and others are able to view his changes. Development
may continent in an iterative manner.

The collaborative editing facilities added with group awareness
features in Pounamu enable user to collaborate easily and
effectively. By providing a user both synchronous and
asynchronous group awareness facilities we have provide users

with a rich set of cues to understand user intention while modeling
using the Pounamu meta-tool.

Figure 6 CVS configuration Dialogue Box.

Figure 7 CVS Visual Differentiation Example.

Figure 8 Sequence Diagram for a typical interaction with a Group Awareness Component.

6. DESIGN AND IMPLMENTATION
One of the major design goals was to make no changes to the
existing single-user Pounamu code when adding collaborative
editing and group awareness capabilities. The group awareness
component was added in as a plug-in [8]. Additionally we
expanded our existing Service Oriented Architecture to include a
version control system and provided a Web Service interface for
CVS. Doing this made the access to version control integration
and evolution consistent with the approach used for synchronous
exchange of editing events.

Providing a Web Service interface for a CVS sever turned out to
be quite straight forward. The web service developed is an
adaptor to an existing java CVS client. In order to send and
receive files from the CVS repository via web services we are
using Web Service attachments. The web services developed take
CVS related parameters, CVS commands and appropriate files if
required. The web service returns the status of execution that has
taken place.

The sequence diagram in Figure 8 describes the typical flow of
events between various objects in a collaborative editing situation.
Typically we will have two users, User A, User B. Let assume
that User A initiates collaborative editing. This will result in the
instantiation of the collaborative editing component. Now lets
assume that User A adds a shape to his model project. This will
result an AddShapeEvent being generated and passed to the
collaborative editing component via the eventReceived() method.
The Pounamu Command will call UserB’s web service and pass
on the details of the event via the addShapeCommand(). UserB’s
web service will make an RMI call to UserB’s collaborative
editing component using the addShapeRMICall() method. UserB
will generate an AddShapeCommand and pass it on to the group
awareness component via the addEventToGAComp() method.
The group awareness component will decorate the component
with appropriate group awareness information and execute the

command. The shape will be added to UserB’s Pounamu model
project.

The Pounamu meta-CASE tool was developed using the Java
platform, thus we chose Java and related technologies to
implement our group awareness and collaborative editing features.
JAX-RPC (Java API for XML-based Remote Procedure calls),
JAVA Web Service attachments and Java RMI are some of the
technologies used to implement our group awareness features.
Additionally we used Javacvs [5]a CVS client built in Java to help
with the development of a Web Service interface for CVS.
Currently we are using CVSNT as our CVS server.

7. DISCUSSION & CONCLUSION
We have provided groupware support for Pounamu a meta-CASE
tool in the form of collaborative editing and group awareness
plug-in capabilities. The group awareness plug-in developed
provides both online and offline awareness for any Pounamu-
specified visual modeling tools. This has been used to date on ER
diagramming tools, UML tools and semantic modeling tools. The
group awareness component designed is extremely flexible in that
it provides group awareness for any tool that can be defined with
the Pounamu meta-CASE tool. The flexibility of the group
awareness component is further highlighted by the fact that it
provides awareness for both synchronous collaborative editing as
well as asynchronous collaboration based on version control
changes.

The construction of a Web Service for CVS access has enabled us
to evolve our group service enhancement in a Service Oriented
manner. The main advantage of providing a Web Service based
interface for CVS is the ability for a heterogeneous set of
application to interact with a version control system in a
consistent manner. We envision a number of varied applications
accessing Pounamu files vie a CVS repository.

Key future research includes improving the configurability of the
group awareness components by end users. In addition, we want
to make the different group awareness capabilities currently

supported discrete separate plug-ins themselves. This will allow
users to choose between a range of different awareness
capabilities and have each individually integrated within a
Pounamu tool as required. We are investigating using AI
techniques to provide more informative group awareness
information in a non-intrusive manner by examining event
histories and presenting other users with summaries of another’s
intensions. We would also like to apply our group awareness
capabilities to the web based diagramming plug-in component that
we have also developed for Pounamu.

8. REFERENCES

[1] CASE Webopedia, Jupitermedia Corporation, Darien, CT,
2003, Webopedia is a free online dictionary for words,
phrases and abbreviations.

[2] Baecker, R.M., Nastos, D., Posner, I.R. and Mawby, K.L. The
user-centered iterative design of collaborative writing
software. Human Factors in Computing Systems. INTERCHI
'93. IOS Press. 1993. 399-405.

[3] Dourish, P. and Bly, S. Portholes: supporting awareness in a
distributed work group. CHI '92 Conference Proceedings.
ACM Conference on Human Factors in Computing Systems.
Striking a Balance. ACM Press. 1992. 541-547.

[4] Ellis, C.A., Gibbs, S.J. and Rein, G.L. Groupware: some
issues and experiences. Communications of the ACM, 34 (1).
39-58.

[5] Entlicher, M. Javacvs, 2001, Javacvs module for Netbeans.
[6] Fish, R.S., Kraut, R.E., Leland, M.D.P. and Cohen, M. Quilt:

a collaborative tool for cooperative writing. Sigois Bulletin, 9
(2-3). 30-37.

[7] Fogel, K., Bar, M. and ebrary Inc. Open source development
with CVS. Coriolis Group Books, Scottsdale, AZ, 2001.

[8] Grundy, J. and Hosking, J. Engineering plug-in software
components to support collaborative work. Software-Practice
& Experience, 32 (10). 983-1013.

[9] Kafeza, E., Chiu, D. and Cheung, S.C. Alert-Driven Process
Integration in a Web Services Environment. In Proceedings of
the 1st International Conference on Web Services, Las Vegas,
USA, June 23-26 2003.

[10] Mehra, A.G., J.C. and Hosking, J.G. Supporting Collaborative
Software Design with a Plug-in, Web Services-based
Architecture. In Proceedings of the ICSE 2004 Workshop on
Directions in Software Engineering Environments,
Edinburgh, Scotland, IEE Press.

[11] Mitchell, A. Communication and Shared Understanding in
Collaborative Writing, University of Toronto, Toronto,
Canada, 1996.

[12] Neuwirth, C.M., Kaufer, D.S., Chandhok, R. and Morris, J.H.
Issues in the design of computer support for co-authoring and
commenting. CSCW 90 Los Angeles. Proceedings of the
Conference on Computer-Supported Cooperative Work.
ACM. 1990. 183-195.

[13] Pendergast, M.O. and Vogel, D. Design and implementation
of a PC/LAN-based multi-user text editor, In Proceedings of
IFIP WG 8.4 Conf. on Multi-User Interfaces and
Applications, North-Holland, September 1990, 195–206.

[14] Pokraev, S., Koolwaaij, J. and Wibbels, M. Extending UDDI
with Context-Aware Features Based on Semantic Service
Descriptions. Proceedings of the 1st International Conference
on Web Services, Las Vegas, USA, June 23-26 2003.

[15] Salcedo, M.R. and Decouchant, D. Structured cooperative
authoring for the World Wide Web. Computer Supported
Cooperative Work, 6 (2-3). 157-174.

[16] ter Hofte, G.H.a.H.J.v.d.L. CoCoDoc : A framework for
collaborative compound document editing based on OpenDoc
and CORBA. Open distributed processing and distributed
platforms: Proceedings of the IFIP/IEEE international
conference on open distributed processing and distributed
platforms, Toronto, Canada, May 26-30, 1997. Chapman &
Hall, 1997, pp. 15-33.

[17] Younas, M.a.I., R. Developing Collaborative Editing
Applications using Web Services. Proc. 5th Int. Workshop on
Collaborative Editing, Helsinki, Finland, Sept 15, 2003.

[18] Zhu, N., Grundy, J.C. and Hosking, J.G., Pounamu: a meta-
tool for multi-view visual language environment construction,
In Proceedings of the 2004 International Conference on
Visual Languages and Human-Centric Computing, Rome,
Italy, 25-29 September 2004, IEEE CS Press.

