
End-User-Oriented Tool Support for Modeling Data
Analytics Requirements

Hourieh Khalajzadeh
Faculty of Information Technology

Monash University
Melbourne, Australia

hourieh.khalajzadeh@monash.edu

Andrew J. Simmons
Applied Artificial Intelligence Institute (A²I²)

Deakin University
Melbourne, Australia

a.simmons@deakin.edu.au

Mohamed Abdelrazek
School of Information Technology

Deakin University
Melbourne, Australia

mohamed.abdelrazek@deakin.edu.au

John Grundy
Faculty of Information Technology

Monash University
Melbourne, Australia

john.grundy@monash.edu

John Hosking
Faculty of Science

University of Auckland
Auckland, New Zealand
j.hosking@auckland.ac.nz

Qiang He
School of Software and Electrical Engineering

Swinburne University
Melbourne, Australia

qhe@swin.edu.au

Abstract—Big data and analytics are increasingly used in dif-
ferent domains to gain insights and to improve decision-making.
Developing big data analytics solutions is a complex task involving
multidisciplinary teams and users - with no data science and
programming background - to professional data scientists and
software engineers. Different stakeholders work with a variety of
data types, tasks and concepts in different languages from high-
level domain concepts to low level programming languages and
technical concepts. In order to advance the level of abstraction
beyond low-level data analysis technical details, we demonstrate
our BiDaML tool. BiDaML brings all stakeholders around one
tool to specify, model and document their big data applications
using a novel set of domain-specific visual languages (DSVLs).

Index Terms—big data analytics, domain-specific visual lan-
guages, BiDaML

I. INTRODUCTION

Big data analytics, as a very active area [1], [2] in research
and industry, brings together stakeholders with a variety of
skills, knowledge, and technical knowledge and languages to
communicate and collaborate in order to improve decision-
making. Based on Gartner’s technical professional advice [3],
a data analytics project involves many steps e.g. classifying
the problem, acquiring data, processing data, modeling the
problem, validation and execution, and finally deploying. In
fact, data processing and Machine Learning (ML) tasks are
only a small component in the building blocks necessary to
build real-world deployable data analytics systems [4].

Currently, data analytics tools, such as Azure ML Studio,
Amazon AWS ML, and Google Cloud ML, as reviewed in
[5], [6] are being used to automate the machine learning part
of the project. However, these tools rarely focus on captur-
ing and modeling the end-to-end data analytics development
lifecycle, requirements and the improvement of end-to-end
analytics processes [7]. This causes a lack of traceability, poor

communication between stakeholders, and much manual effort
to implement solutions. Better integration of data science, data
technology and process science will enable end-users and data
scientists to model the problem, extract insights/patterns, and
develop predictive models.

We have identified and specified six main challenges in
multidisciplinary data analytics software development teams:
(1) Domain experts, business analysts and business managers
do not have a background in data science and programming.
(2) Data analysts, data scientists and software engineers do
not have domain knowledge. (3) Data scientists lack software
engineering expertise. (4) Team members lack a common
language to describe solutions. (5) Evolution of the solution is
poorly supported. (6) Re-using existing solutions is difficult.
A challenge reported by data scientists in [8] is that it is hard
to convey the resulting insights to leaders and stakeholders in
an effective manner and convincing teams that data science
approaches are in fact helpful. Moreover, results of a large-
scale survey [9] of data science workers show that even though
they engage in extensive collaboration across all stages of data
science work, there are gaps in the usage of collaborative tools.

To make data analytics solution design more accessible to
end users and facilitate high-level dialogue with expert data
scientists and software engineers, we present BiDaML [10],
[11], a tool consisting of a set of domain specific visual models
at different levels of abstraction. BiDaML provides modeling
and collaboration tool support between different users and
can be translated into big data solutions using Model-Driven
Engineering (MDE)-based partial code generation. All users
and stakeholders involved in the project, including domain
experts, business managers, data scientists, software engineers,
etc can work together to define, confirm and make agreements
on different tasks assigned to them through a collaborative
drag and drop interface.

We demonstrate our approach using a real-world traffic data
analysis example detailed in [10]. This research has published978-1-7281-6901-9/20/$31.00 ©2020 IEEE

John Grundy
2020 IEEE Symposium on Visual Languages and Human-centric Computing, Dunedin, New Zealand, 10-14 August 2020.

in [10] and [11]. Showcasing this work as a novel way of
using domain specific visual languages for data analytics
applications would demonstrate its applicability to industry
sponsors, help in building community interest and will lead to
new collaborations. We will present the tool as a demo in the
conference.

II. OUR APPROACH

In order to model such data analytics applications, from
business needs, requirements analysis and design, to devel-
opment of the final solution, we present BiDaML (Big Data
Analytics Modeling Languages). Our BiDaML tool consists of
five different diagrams: two high level diagrams, brainstorming
and process diagrams, and three low level diagrams, data,
technique, and deployment diagrams. Each of the diagrams
includes a collection of visual notations for modeling dif-
ferent objects, their relationships and rules. Users, based on
their responsibilities, work with the related diagrams through
dragging and dropping notations and connecting them through
relationships. They can then collaborate and communicate
using diagrams and visual notations as a common language.
Once the modeling part is completed, users can decide to
create different reports and generate a range of boilerplate
Python code from the models. They can also add their own
code or modify generated code for reusability purposes. We
group the building blocks of an AI-powered system into four
groups: Domain and business-related activities (BusinessOps);
data-related activities (DataOps); AI and ML-related activities
(AIOps); and development and deployment activities (De-
vOps). BiDaML supports all of these groups in designing and
developing a data analytics related project. We used MetaEdit+
5.5 [12] to develop our domain specific visual languages and
tool. Here, we briefly describe different BiDaML diagrams as
well as more details of BiDaML tool and its visual notations
[13]. Notations and relationships can be dragged and dropped
to the designing environment and used to generate Python
code structures for the data analytics problem to assist in
implementing the solution. Details of the diagrams and their
notations can be found in [11]

III. EXAMPLE USAGE

We worked with transport researchers and used our method
to specify the intended VicRoads software solution workflow.
We performed in-depth interviews with the project leader and
traffic modeling expert, then used our tool to document the
entire data analytics workflow. This allowed us to assist in
the formation of an alternative software solution that made
better use of the systems and services already available.
As BiDaML forces the user to consider all phases of the
project, the modeling process helped in revealing the gaps.
A brainstorming diagram listing all the tasks, and high-level
information is shown in Appendix Fig. 2. A process diagram
generated for the example and a sample of the generated
report for diagram explanation and clarification is shown in
Appendix Fig. 3. Process diagram lists all the organizations
and users involved, e.g., VicRoads, Monash Transport Group,

eResearch, etc, with a detailed list of tasks and conditions. For
any of the tasks, the responsible user can create a sub-graph to
add more detailed information, such as techniques used, data
items generated, and expected outputs. Samples of technique
and data diagrams created in BiDaML tool are shown in
Fig. 1. Users can choose to generate Python code, reports, or
BigML API code from the brainstorming diagram that includes
details of brainstorming, data and technique diagrams. Fig. 2
in Appendix also shows snippets of the Python code generated
from the brainstorming diagram and Fig. 3 in Appendix shows
a sample of the report generated from the process diagram.
Finally, Fig. 4 shows an overview of all the diagrams and a
report exported to Word from a hierarchy of all the diagrams
and their explanations.

Fig. 1. (a) Technique and (b, c) Data Diagrams Created in BiDaML Tool for
the Traffic Analysis Example

IV. EVALUATIONS

We have evaluated the usability and suitability of BiDaML
using an extensive Physics of Notations evaluation [14], an
empirical evaluation with a group of 12 data analysts, data
scientists and software engineers, and a detailed cognitive
walkthrough of the tool with 3 data scientists and 2 software
engineers. Details of the evaluations can be found in [11], [13].

V. CONCLUSION AND FUTURE WORK

We designed our BiDaML tool to support big data ana-
lytics requirements specification and modeling. BiDaML uses
five high and low level diagrammatic domain specific visual
languages to ensure diverse stakeholders can effectively com-
municate and capture information and requirements during the
process of designing data analytics solutions. Furthermore,
our testing environment supports code and report generation
to help users getting descriptive reports and Python code
templates based on the created diagrams. In the future, we
will provide a web-based version of BiDaML to enable easier
integration with other tools and better access for different
stakeholders.

Fig. 2. Brainstorming Diagram Created in BiDaML Tool for the Traffic Analysis Example and Snippets of the Generated Python Code.

ACKNOWLEDGMENT

Support for this research from ARC Discovery grant
DP170101932 and ARC Laureate Program FL190100035 is
gratefully acknowledged.

REFERENCES

[1] I. Portugal, P. Alencar, and D. Cowan, “A preliminary survey on
domain-specific languages for machine learning in big data,” in 2016
IEEE International Conference on Software Science, Technology and
Engineering (SWSTE), pp. 108–110, IEEE, 2016.

[2] S. Landset, T. M. Khoshgoftaar, A. N. Richter, and T. Hasanin, “A survey
of open source tools for machine learning with big data in the hadoop
ecosystem,” Journal of Big Data, vol. 2, no. 1, p. 24, 2015.

[3] C. E. Sapp, “Preparing and architecting for machine learning,” Gartner
Technical Professional Advice, pp. 1–37, 2017.

[4] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in Advances in neural
information processing systems, pp. 2503–2511, 2015.

[5] H. Khalajzadeh, M. Abdelrazek, J. Grundy, J. Hosking, and Q. He, “A
survey of current end-user data analytics tool support,” in 2018 IEEE
International Congress on Big Data (BigData Congress), pp. 41–48,
IEEE, 2018.

[6] H. Khalajzadeh, M. Abdelrazek, J. Grundy, J. G. Hosking, and Q. He,
“Survey and analysis of current end-user data analytics tool support,”
IEEE Transactions on Big Data, 2019.

[7] W. Van der Aalst and E. Damiani, “Processes meet big data: Connecting
data science with process science,” IEEE Transactions on Services
Computing, vol. 8, no. 6, pp. 810–819, 2015.

[8] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists in
software teams: State of the art and challenges,” IEEE Transactions on
Software Engineering, vol. 44, no. 11, pp. 1024–1038, 2017.

[9] A. X. Zhang, M. Muller, and D. Wang, “How do data science
workers collaborate? roles, workflows, and tools,” arXiv preprint
arXiv:2001.06684, 2020.

[10] H. Khalajzadeh, A. Simmons, M. Abdelrazek, J. Grundy, J. Hosking,
and Q. He, “Visual Languages for Supporting Big Data Analytics
Development,” in 15th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), 2020.

[11] H. Khalajzadeh, A. Simmons, M. Abdelrazek, J. Grundy, J. Hosking,
and Q. He, “An end-to-end model-based approach to support big data
analytics development,” Journal of Computer Languages, p. 100964,
2020.

[12] J.-P. Tolvanen and M. Rossi, “Metaedit+ defining and using domain-
specific modeling languages and code generators,” in Companion of the
18th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pp. 92–93, 2003.

[13] H. Khalajzadeh, M. Abdelrazek, J. Grundy, J. Hosking, and Q. He,
“BiDaML: A Suite of Visual Languages for Supporting End-User
Data Analytics,” in 2019 IEEE International Congress on Big Data
(BigDataCongress), pp. 93–97, IEEE, 2019.

[14] D. Moody, “The “physics” of notations: toward a scientific basis for con-
structing visual notations in software engineering,” IEEE Transactions
on software engineering, vol. 35, no. 6, pp. 756–779, 2009.

APPENDIX

Brainstorming, process and overview diagrams created
for the traffic analysis project as well as the code
snippet and reports generated from the diagrams. The
generated traffic documentation report is available at
http://bidaml.visualmodel.org/cases/traffic.pdf

Fig. 3. Process Diagram Created in BiDaML Tool for the Traffic Analysis Example and a Report Generated from the Process Diagram.

Fig. 4. Overview of all the Diagrams Created in BiDaML Tool for the Traffic Analysis Example and the Final Report in Word Generated from the Overview
Diagram.

