
A Domain-Specific Visual Modeling Language
for Testing Environment Emulation

Jian Liu
School of Software and Electrical Engineering

Swinburne University of Technology
Hawthorn, VIC 3122, Australia

jianliu@swin.edu.au

John Grundy, Iman Avazpour, Mohamed Abdelrazek

School of Information Technology
Deakin University, Burwood, VIC 3125, Australia

j.grundy@deakin.edu.au
iman.avazpour@deakin.edu.au

mohamed.abdelrazek@deakin.edu.au
	

Abstract—Software integration testing plays an increasingly
important role as the software industry has experienced a major
change from isolated applications to highly distributed computing
environments. Conducting integration testing is a challenging task
because it is often very difficult to replicate a real enterprise
environment. Emulating testing environment is one of the key
solutions to this problem. However, existing specification-based
emulation techniques require manual coding of their message
processing engines, therefore incurring high development cost. In
this paper, we present a suite of domain-specific visual modeling
languages to describe emulated testing environments at a high
abstraction level. Our solution allows domain experts to model a
testing environment from abstract interface layers. These layer
models are then transformed to runtime environment for
application testing. Our user study shows that our visual languages
are easy to use, yet with sufficient expressive power to model
complex testing applications.

Keywords—model-driven engineering; domain-specific visual
modeling language; software component interface description;
testing environment emulation.

I. INTRODUCTION
Enterprise software systems have become more complicated

and interconnected to provide composite services to their
consumers. The behavior of these systems are no longer
governed by their own system components, but also driven by
its increasingly complex interactions with other systems in its
operational environment. This means that testing these
interconnections in a realistic production environment is critical.

Many approaches have been proposed to provide executable,
interactive representations of deployment environments, e.g.
method stubs, mock objects and existing emulation solutions [1-
5]. These approaches, however, introduce a large
implementation overhead for developers, especially for large-
scale heterogeneous environments. Consequently, we have
developed a novel domain-specific Visual Modeling Language
for Testing environment emulation (TeeVML) and tool support
to reduce the development cost of testing environment. In this
paper, we present a suite of three visual languages used for
endpoint signature, protocol and behavior layers modelling.

The remainder of this paper is organised as follows: Section
II motivates our work with an example case study. It is followed
by an introduction of the approach and design of TeeVML in
Section III. In Section IV, we show how a testing endpoint can
be modeled and then describe the steps to convert endpoint
models into testing runtime environment in Section V. In
Section VI, we evaluate the tool and discuss the key findings
from the results of a user survey. This is followed by a review
of related work in section VII. Finally, we conclude this paper
and identify some problems for future work in Section VIII.

II. MOTIVATION
We use an example case study of a bank system. Consider a

new Internet banking system is to be integrated to a corporate
banking environment. The bank has a core system to support in-
house daily banking operations, servicing its customers. For the
purpose of expanding its customer base and reducing
operational costs, the bank plans to introduce an Internet
banking system for allowing its customers to do bank account
queries and transactions by themselves. Due to operational
issues and data security considerations, all bank accounts and
customer data will be kept in the core system. The Internet
banking system must interact with the core system intensively
for data exchange. To ensure interconnectivity and mutual
operability between the core system and the new Internet
banking system, integration testing must be conducted before
putting the new system in place.

For this study, we treat the Internet banking system as
System Under Test (SUT), and the core banking system as
testing application (or call endpoint) to be emulated. The
endpoint must provide interconnectivity and interoperability
testing functionalities, which should mimic its real application
services. Let’s assume the main endpoint characteristics, as
described below:

• An endpoint only considers the external behaviors (or call
services) of the real system, and all internal
implementations will be ignored;

• An endpoint only provides a subset of the real system
invoked by the SUT;

• An endpoint should be able to detect all SUT interface
defects, identify their types and origins.

978-1-5090-0252-8/16/$31.00 ©2016 IEEE

2016 IEEE Symposium on Visual Languages and Human-Centric Computing, Cambridge, UK, Sept 4-8 2016, (c) IEEE 2016.

Currently, Kaluta system creates testing endpoints by
manually coding the endpoint using Java and Haskell languages
[5]. A typical testing endpoint includes an endpoint type
dependent message processing engine module, and an endpoint
type independent network interface module. Thus, cost of
emulating a testing environment will be linearly increased along
with additions to endpoint types. UML Testing Profile (UTP) is
a model-driven testing approach, providing a specification-
based means to systemically define tests for static and dynamic
aspects of systems modeled in UML [6]. However, the UTP is
for server-side system testing, rather than developing a testing
environment for client-side application integration testing.

III. OUR APPROACH
Our TeeVML is based on a new layered software interface

description framework, and a suite of Domain-Specific Visual
Languages (DSVL) are developed for modeling each interface
layer of an endpoint. From a high-level point of view, our
approach consists of an endpoint modeling environment
supported by TeeVML and an Axis2 Web Service runtime
environment. Domain experts work on the modeling
environment to create endpoint models; and these models are
transformed to target source codes automatically by code
generators. Fig. 1 depicts TeeVML modeling and runtime testing
environments.

System Under
Test

ProtocolSignature Behavior

Message Processing Layers

Endpoint Runtime Environment

Endpoint Modeling Environment

Code Generators

Signature
Modeling

Protocol
Modeling

Behavior
Modeling

Domain
Export

Axis2 Web Service platform

TeeVML

Fig. 1. TeeVML endpoint modeling and runtime testing environments

A. Software Interface Description Framework
To design our framework, we analyzed three popular

applications to gather as much domain knowledge as possible,
by identifying similar objects and operations. These applications
were:

• A public cloud Customer Relationship Management
(CRM) application for providing sales process
automation; the CRM needs to be integrated with an in-
house Enterprise Resource Planning (ERP) system;

• A LDAP server for enterprise resources management;
normally, a new application must be integrated with an
enterprise LDAP server first, before it can be put to use
in production environment;

• An e-commerce sample application jPetStore, originally
developed by Sun Microsystems for illustrating the usage
of J2EE technology and best practices in system design.

From this domain analysis, we proposed a new layered
software interface description framework, which is a

modification of Han’s comprehensive interface definition
framework for software components [7]. Our framework
abstracts software interface into three horizontal and two
vertical layers. Horizontal layers include signature (message
format and structure), protocol (valid service temporal
sequence) and behavior (service request process and response
generation). Vertical layers include data store (data persistence
and manipulation) and Quality-of-Service (QoS) (or call non-
functional requirement). A SUT service request is processed
horizontally by the endpoint in step by step from signature,
protocol, down to interactive behavior layer. Whenever an error
occurs at any layer, the request process will be terminated.

The signature and protocol layers act as message pre-
processors for checking service request syntax and sequence
correctness, before handing it over to the behavior layer for
generating response. Vertical layers are not directly involved in
request processing, but provide support to horizontal layers. We
use modular development approach to model an endpoint – i.e.
each module represents a particular interface layer.

TABLE I. PON PRINCIPLE AND VISUAL NOTATION DESIGN RULE

PoN Principle Description TeeVML Visual Notation
Design Rule

Semiotic clarity
There should be 1:1
correspondence between
semantic constructs and
graphical symbols.

All the visual symbols have 1:1
correspondence to their referent
concepts.

Perceptual
discriminability

Different symbols
should be clearly
distinguishable from
each other.

All symbols use different
shapes as their main visual
variable, plus redundant coding
by colours or textures.

Semantic
transparency

Visual representations
whose appearance
suggests their meaning.

We have used as many icons as
possible to represent visual
symbols, and minimised the use
of abstract geometrical shapes.

Complexity
management

There should be some
explicit mechanisms for
dealing with complexity

Hierarchical visual
presentations and information
hiding are used to manage
diagrammatic complexity.

Cognitive
integration

There should be some
mechanisms to support
integration of
information from
different diagrams.

Service nodes in behavior
model import request and
response parameters from
signature model.

Visual
expressiveness Use the full range and

capacities of visual
variables.

We have used various visual
variables, such as shape,
colour, orientation, texture, etc.
when designing visual
symbols.

Dual coding Use text to complement
graphics.

Most visual symbols have a
textual annotation.

Graphic
economy

The number of different
graphical symbols
should be cognitively
manageable

A key design consideration is to
minimise the number of visual
symbols.

Cognitive fit
Use different visual
dialects for different
tasks and audiences Not applicable.

Visual notations form an integral part of a domain-specific
visual language, and have a profound effect on the usability and
effectiveness of the visual language [8]. To evaluate the
“goodness” of visual notations, Larkin et al. defined the
cognitive effectiveness [9] as “the speed, ease, and accuracy
with which a representation can be processed by the human
mind”. To achieve the cognitive effectiveness, Moody proposed

the Physics of Notations (PoN) [8], and defined a set of
principles to evaluate, compare, and construct visual notations.
To improve our DSVL’s usability and development
productivity, we have applied these PoN principles to our visual
notation design. Table I lists the PoN principles and presents our
visual notation design rules.

In the following paragraphs, we introduce the visual notation
design for a suite of visual modeling languages to model
endpoint horizontal layers. The data store layer supports the
behavior layer, and QoS will be our future work.

B. Signature DSVL Design
To have a concise presentation view of signature model, we

have developed a three-level signature DSVL. The top level
signature DSVL uses W3C WSDL 1.1 specification [10] as its
metamodel and consists of the five entity types defined in the
WSDL specification and two relationships to link them together.
The middle level operation DSVL is used to specify request
and/or response message(s) in an operation (or call service). The
bottom level message DSVL defines all element types used in
signature modeling; its metamodel is based on W3C XML
Schema 1.1 [11].	Using multi-level modeling approach allows
the lower level models to be reused by upper level models. The
signature DSVL visual notations are presented in Table II.

TABLE II. SIGNATURE DSVL VISUAL NOTATIONS

Visual Symbol Description [10]

Service: contains a set of system functions (services)
exposed to service consumers through Web-based
protocols.

Port: provides address or connection point to service
entity; it has the composite relationship with service
entity and associate relationship with binding entity.

Binding: specifies the interface and defines
SOAP binding style and transport; it binds portyype
entity to port entity through associate relationship.

PortType: contains a set of operations a Web service
can perform; it has the composite relationship with
operation entity and associate relationship with
binding entity.

Operation: is corresponding to a service, and has
properties as name and pattern; pattern can be in-only,
in-out or out-only.

Composition relationship: is used to link a main entity
to its sub-component entities.

Association relationship: is used to link two associated
entities.

	

Message: specifies messages in operation entity;
message has properties as element and label, and label
can be in or out.

	

Complex Element: specifies a complex element in a
message; it has properties as element name, type and
mandatory.

C. Protocol DSVL Design
We used an Extended Finite State Machine (EFSM) to

describe endpoint protocol behaviors. The EFSM metamodel is
depicted in Fig. 2. We added one entity type and two entity
properties (marked yellow in Fig. 2) to a standard operation-
driven finite state machine for enriching our protocol modeling

with dynamic aspects. The entity type is the InternalEvent,
which allows users to define state transitions triggered by time
event. One of the entity properties is the
StateTransitionConstraint of transaction entity, and it is used for
specifying either static or dynamic constraints on state transition
function. Another one is the StateTimeProperty of state entity,
which is used to simulate endpoint synchronous process and
unsafe operation (not an idempotent operation, which will
produce the same results if executed once or multiple times).
Table III lists all the visual notations used in our protocol DSVL. 	

The protocol modeling is only applied to statefull
applications. This is because endpoint uses its current state to
validate the next coming service. If an endpoint is a stateless
application, its protocol modeling will be skipped.

+fire() : string
-

Transition

+name : string
+parameters

Operation

+CurrentState : string
State

{StateTimeProperty}

+time() : long
+counter() : long

InternalEvent

{StateTransitionConstraint}

NextState

source

targetdetermine

trigger

trigger
verify

	
Fig. 2. Protocol DSVL metamodel (EFSM)

TABLE III. PROTOCOL DSVL VISUAL NOTATIONS

Visual Symbol Description

State: presents endpoint state, which normally uses
service as its default name; for emulating time related
scenarios, the state type has a dialog box for allowing
users to define state properties.

Home state: is a special endpoint state, representing
endpoint in active status.

Idle state: is a special endpoint state, representing
endpoint in inactive status.

Constraint transition relationship: links a from state to a
to state for representing a state transition; it has a dialog
box for allowing users to define constraint properties.

Transition relationship: links a from state to a to state for
representing a state transition.

Loop: is used to define a repeat state transition from a
from state to a to state.

Timeout relationship: links two states to represent
endpoint state change if no valid service request is
received within a defined timeout period.

D. Behavior DSVL Design
Endpoint behavior DSVL was designed based on dataflow

programming paradigm [12]. Dataflow programming execution
model is represented by a directed graph; the nodes of the graph
are data processing units, and the directed arcs between the
nodes represent data dependencies. Data flow in each node from
its input connector; and the node starts to process and convert
the data whenever it has the minimum required parameters
available. The node then places its execution results onto output
connector for the next nodes in the chain.

To handle complicated business logics, we designed our
behavior DSVL as hierarchical tree structure. Each node may
contain several sub nodes (or call methods), and each of the sub
nodes implements a specific task. The benefits from using the
hierarchical structure are two-fold: First, we can reuse some of
the nodes, if they perform exactly the same task but are located
at different components. Second, it can help us manage
diagrammatic complexity problem. At the bottom level, a node
consists of some primitive programming constructs for
performing operations on data and flow controls for directing
execution sequence. We reused the message DSVL of signature
DSVL to define data store tables, and a slave table can be
defined by specifying the foreign key field data type as
undefined.

TABLE IV. BEHAVIOR DSVL VISUAL NOTATIONS

Visual Symbol Description

Service node: represents a service provided by an
endpoint; it receives request from a SUT, processes
it and generates response to the SUT.

Input and output bars: are used to specify input and
output parameters of a service node; all
programming constructs will be placed between
them to convert input into output; a normal output
port (white circle) and an exceptional output port
(yellow circle) are on the output bar.

Data store definition: is used to define data store
tables by specifying each table field and field
properties.

Node: is similar to service node, but is used for
performing a specific task; a node implementation
can either end in successful or failure, this status will
decide the next node to be executed in the chain.

Data store operator: is a primitive construct to
retrieve and manipulate data records in data store.

Evaluator: is a primitive construct to perform an
arithmetic operation; the first line is the variable
name of the evaluator, the second line lists all
variables to be used, and the third line gives the
arithmetic formula.

Loop: is a primitive construct to specify repeated
execution of a block of codes for pre-defined times.

Conditional operator: is a primitive construct to test
two input parameters for deciding execution flow; if
the testing result is true, the flow will follow the
black out port at the bottom; otherwise, the yellow
out port at the right will be followed.

Variable: is a primitive construct to represent a
variable with various data types; the variable name
is shown at the middle, data type at the upper-right
corner and value at the bottom.

Variable array: is a primitive construct to represent
variable array; the array name is shown at the
middle, data type at the upper-right corner and array
size at the lower-left corner.

At the top level of the node tree structure, discrete service

nodes are used to represent the services provided by an endpoint
to its SUT. To prevent the data inconsistence between behavior
model and signature model, each of the service nodes imports

																																																													
1	The example application source codes and a recorded demo video are
available online: https://sites.google.com/site/teevmlvlhcc/. 	

the request and response parameters from the same endpoint
signature model. The service nodes can be collapsed to reduce
complexity of the diagram. Table IV lists the main visual
notations of our behavior DSVL. 	

IV. EXAMPLE USAGE1

A. Business Case
Here, we reuse the banking system of the motivation section

and show how a testing endpoint can be modeled by TeeVML.
For simplicity, we assume that the core banking system provides
only six services to the Internet banking system: session
management services logon and logout, a query service
searchaccount, and three transaction services deposit, withdraw
and moneytransfer. We describe the endpoint three interface
abstraction layers as below:

Signature – All the services use in-out operation pattern,
except for logout service that uses in-only pattern. The logon
request has a message ID as mandatory field, and two fields for
username and password as optional fields. A SUT can logon to
the endpoint either in a secured or an insured session, depending
on whether the username and password fields are provided or
not. All the transaction service requests have a mandatory
amount field, which must be equal or greater than zero. All
responses contain an optional error code and error message
fields for reporting defect types and defect details. For query and
transaction services, the response message also includes an
optional account balance field to return the account status.

Protocol -- Whenever the endpoint receives a logon request
from its SUT, it transitions from idle state to home state and an
interactive session starts. If the endpoint is in secured session, it
changes to the service name state whenever receiving a service
request. Otherwise, only the query service request is allowed,
and its state will change to searchaccount state. The endpoint
state transition can also be driven by internal time event. If the
endpoint current state is timeout, its state will be changed from
a service state to the home state or from the home state to the
idle state. In addition, the endpoint processes all the services in
synchronous mode, and all the transaction services are
considered as unsafe services.

Behavior – To start an interactive session, the logon request
must be authenticated against stored user account records, and
the request will be rejected if the user ID or the pair of username
and password does not match any of those records. For all the
transaction and query services, account name and account
number are used to search for a bank account in data store, and
the account balance will be retrieved. For the withdraw and
moneytransfer services, the retrieved balance must be verified
to be equal or greater than the transaction amount. For all the
transaction services, we must calculate the new balance amount
first, and then write the new balance back to the same bank
account record.

B. Signature Modelling
As operation (or call service) definition is the main activity

of an endpoint signature modeling, we use the operation logon

as an example to show how such an operation can be modeled
by TeeVML. We start to model the operation by assigning the
operation name property as logon and selecting in-out from the
pattern field drop-down list. Then, operation DSVL is used to
specify the both logon_request and logon_response messages in
the operation. The message label is “in” for the request message
and “out” for the response message.

Message elements are defined by using message DSVL. The
request message contains three elements (or call parameters):
userid, username, and password, and they are placed in the
message by the ID field in alphabetic order. The userid data type
is defined as integer and the other two are string, by selecting
the corresponding values from the type field drop-down list. An
element can either be mandatory or optional by selecting the
mandatory field checkbox. Userid is a mandatory element and
username and password are optional elements. Similarly, we can
define the response message of the logon operation with three
elements: secure, errorcode and errormessage. Fig. 3 illustrates
the hierarchical signature model of the core banking system
endpoint, including top-level signature model, logon operation,
and request and response messages.

Fig. 3. Example endpoint signature model

C. Protocol Modelling
Endpoint protocol modeling starts from defining its

interactive session. A session begins, when the endpoint at idle
state receives a logon request and changes to home state. This
state transition can be represented by using the logon transition
relationship to link the idle state to the home state. In opposite
direction, a session will end, when the endpoint receives a logout
request at the home state. A session can also be terminated by
timeout relationship, linking the home state to the idle state.

Once the endpoint is in a session, it is ready to receive
service requests from its SUT. Since a searchaccount request
will trigger state transition without any constraint, a standard
transition relationship can be used to link the home state to
searchaccount state. However, a constraint transition
relationship must be used to link the home state to all transaction
states, as transaction services are only allowed in secured
sessions. A constraint transition relationship is defined by
setting the constraint transition property to a nonnullable value

for the username field in logon operation. Fig. 4 illustrates the
protocol modeling diagram of the banking system endpoint.

To simulate synchronous services, we open the state
property dialog box, select synchronous operation checkbox,
and provide a number in seconds to the process time field.
Similarly, unsafe services are simulated by selecting the unsafe
operation checkbox and filling the transmission time field with
a number in seconds.

Fig. 4. Example endpoint protocol model

D. Behavior Modeling
We use the moneytransfer service node of the banking

system endpoint and its sub node accountinformationretrieve to
explain how the behavior DSVL is used. The moneytransfer
service node contains three nodes: (1)
accountinformationretrieve to retrieve the account balance from
both “from” and “to” bank accounts, (2) calculateamount to
calculate the new balances for these two accounts, and (3)
updateaccount to update the new balance back to persistent data
store. Fig. 5a depicts the moneytransfer service node structure,
execution sequence and dataflow between the input/output bars
and nodes.

Fig. 5. Example endpoint behavior model

As the accountinformationretrieve is the first node to be
executed, it will directly take the service node input parameters:
fromaccountname, fromaccountnumber, toaccountname,
toaccoutnnumber and transferamount. The output parameters to
the next node are: fromaccountbalance, toaccountbalance and
ErrorCode. These input and output parameters are defined when
we create the input and output bars. We search “from” account
by the fromaccountname and fromaccountnumber parameters.
If the account is found, the account balance will be retrieved and
assigned to the variable fromaccountbalance. Similarly, “to”
account balance will be retrieved by using the toaccountname
and toaccoutnnumber parameters, and the balance will be
assigned to the toaccountbalance variable. If the “from” and/or
“to” accounts cannot be found, an error occurs and integer

number 100 is assigned to the ErrorCode variable. If the node is
executed successfully, both the fromaccountbalance and
toaccountbalance variables will be placed on the normal output
port. Otherwise, we will put the ErrorCode variable to the
exceptional output port. Fig. 5b shows how the
accountinformationretrieve node is constructed.

V. IMPLEMENTATION
Our Domain-Specific Modeling (DSM) approach in

TeeVML is based on the four abstraction-level architecture
defined by the OMG Meta Object Facility (MOF) [13]. DSVL
development includes language visual notation design and code
generator implementation using MetaEdit+ [14]. 	

As part of our TeeVML tool, we have developed two types
of code generators for each DSVL by using MetaEdit Report
Language (MERL). The first one is to transform models to
target source codes: signature model to WSDL 1.1 XML file,
and protocol and behavior models to Java classes. The second
one is for converting models to SQL scripts for table creation.
The signature WSDL file will be further transformed to Web
Service engine by using Axis2 code generator utility wsdl2java,
acting as our runtime environment.

A complete testing environment consists of a Tomcat
application server for hosting the SOAP service provide by
endpoint, Axis2 web service engine for SOAP message
processing, a protocol class for protocol logic processing,
several behavior model classes for generating services to SUT,
and MySQL database for storing static and dynamic persistent
data. Once all models have been transformed to source codes,
we use Apache ant builder to build the endpoint SOAP service,
then load the service to the Tomcat application server.

VI. USER EVALUATION
The developed TeeVML was evaluated by a two-phase user

survey. In the first phase, we conducted a study with testing
experts to examine what features of TeeVML they valued in
testing endpoint emulation, and what functionalities such a tool
should provide. In the second phase, we evaluated TeeVML’s
usability by collecting software developers’ opinions on their
experience with the tool. Specially, we wanted them to compare
TeeVML with a third generation language they were familiar
with.

A. Experiment Setup
Phase One survey was conducted by interviewing

participants. We used a PowerPoint presentation to introduce
TeeVML to them, and explained what testing functionalities
were required for a testing endpoint and how such an endpoint
could be created by use of earlier versions of TeeVML tool.
The interview lasted approximately 40 minutes. After the
interview, all participants were asked to do an online survey.
Since our target audiences for this phase were required to have
extensive experience in software testing, we were only able to
get 16 participants to take part in this phase. Fig. 6a summarizes
Phase One participants IT and software testing experience. As
indicated in the charts, most participants were testing experts
with solid experience on software development and testing.

																																																													
2	Refer to the web site: https://sites.google.com/site/teevmlvlhcc/.

Phase Two survey was a three-step process. First,
participants watched a recorded video, to introduce TeeVML
and show the steps to model a testing endpoint. Second, the
participants were assigned a task to model a simple endpoint
example. The task was performed by using TeeVML running on
a laptop PC. Finally, all participants were asked to do an online
survey. The duration for Phase Two was 60 minutes on average.
Overall 21 software developers and IT research students took
part in the survey. Two participants could not finish the task,
due to their personal reasons. Fig. 6b provides Phase Two
participants IT background information.

B. Result Analysis and Discussion
We designed total 58 questions for both Phase One and

Phase Two to cover various aspects of our TeeVML, and
questions types were 5-point Likert Scale (5 to 1 representing
strongly agree to strongly disagree) and multi-choice. Due to
space limitation, we only selected some of them for this paper
evaluation results presentation, and the full result reports are
available online2. We have counted frequency of participant
responses to measure degree of acceptance to a particular
question statement. For the 5-point Likert Scale questions, in
favour responses encompass the answers of either 5 or 4 for a
positive question, or 1 or 2 for a negative question.

Fig. 6. User survey participants’ demographics

1) Phase One Evaluation Results
Table V lists the selected questions and participants’

responses. Here we analyse the survey results as follows.

Usefulness – Q8 reflects the overall usefulness of testing
endpoint for conducting integration testing. The responses to
this question are quite positive with 14 out of 16 participants in
favour of usefulness of the tool. We can see that the protocol
modeling (Q21) has the highest positive response rate and the
non-functional requirement (Q30) the lowest. We believe one of
the main reasons why most participants want to have protocol
testing is that most applications do not have well-documented
protocol specification. Therefore, protocol related defects can
only be found by conducting integration testing.

Testing functionalities – Q9 is a multi-choice question for
evaluating the usefulness and completeness of functionalities
that an endpoint should provide to its SUT. Except for the four
features already implemented, we assigned an “Other” item for
allowing participants to specify any other useful features, our
TeeVML does not support now. Only one participant selected
the item “Other”, and suggested to provide performance test
under different scenarios. From these responses, we can
conclude that most participants are satisfied with the
functionalities that TeeVML provides.

TABLE V. PHASE ONE SURVEY RESULTS

No Statement Frequency
5 4 3 2 1

Q8
In your opinion, an emulated testing
environment is useful for an application inter-
connectivity and inter-operability test.

8 6 0 1 1

Q17
It is useful for an emulated testing
environment to provide signature testing
functionality to its system under test.

7 7 1 1 0

Q21
It is useful for an emulated testing
environment to provide interactive protocol
testing functionality to its system under test.

12 4 0 0 0

Q25
It is useful for an emulated testing
environment to provide interactive behavior
testing functionality to its system under test.

6 8 1 1 0

Q30

It is useful for an emulated testing
environment to provide non-functional
requirement testing features to its system
under test.

2 11 3 0 0

No Question Statement Frequ
ency

Q9

What kinds of testing
features do you want
to see an emulated
testing environment
provides to system
under test for
interconnectivity and
inter-operability test?

Correctness of message signature 13

Correctness of interactive protocol 16

Correctness of interactive behavior 14
Correctness of non-functional

requirement 11

Other 1

Q13 What are the main
motivations for you to
use emulated testing
environment?

Cost saving on application
hardware and software investment 14

Effort saving on application
installation and maintenance

10

Lack of application knowledge 5
Early detection of interface defects 15

Q14
What are your main
concerns, which could
prevent you from using
emulated testing
environment?

Extra development effort on testing
endpoints 6

Learning a new technology 6
Inadequate testing functionality 7

Emulation accuracy 7
Result reliability 12

Why or Why not use endpoint – Q13 and Q14 are multi-
choice questions, and list four reasons and five concerns why or
why not users want to use testing endpoints. Surprisingly, the
top reason for users to use endpoints is the early detection of
interface errors, rather than savings on investment and
development effort. Early interface defects detection is
particularly important, when an application is developed by a
third party and environment systems are completely
inaccessible. Q14 reflects most participants’ concern on result
reliability. We believe the main reason is that in new endpoint
development process endpoints are modeled rather than coded.
Therefore, it is important to reliably model emulated testing
environments.

2) Phase Two Evaluation Result
For Phase Two, we evaluate the overall usability of

TeeVML using Software Usability Scale (SUS) [15]. Table VI
presents the SUS survey results by frequencies. We have
received quite positive responses from the survey participants,
with average 16.2 in favour. Particularly, the Q17 has received
in favour response from all participants, followed by Q12, Q14
and Q16. The lowest score is Q15 that has less than half (8
participants) in favour. The assigned task was actually modeling
related and a certain level of modeling skill was required.
However, the survey participants were not mostly experts in
domain specific modeling (refer to Fig. 6b). So, some of them
might have needed support for modeling related techniques.

TABLE VI. FREQUENCY TABLE OF SOFTWARE USABILITY SCALE

No Statement Frequency
5 4 3 2 1

Q12 You would like to use the tool in your future
project. 7 11 1 0 0

Q13 You found the tool unnecessarily complex. 0 1 2 12 4
Q14 You found the tool was easy to use. 8 10 1 0 0

Q15 You would need support to be able to use the
tool. 0 2 9 8 0

Q16 You found the various features of the tool
were well integrated. 8 10 0 1 0

Q17 You found there was too much inconsistency
in the tool. 0 0 0 11 8

Q18 You would image that most people would
learn to use the tool very quickly. 5 11 1 1 0

Q19 You found the tool very cumbersome to use. 0 0 2 10 7
Q20 You felt very confident using the tool. 4 13 2 0 0

Q21 You needed to learn a lot of things before you
could get going with the tool. 0 1 3 8 7

TABLE VII. INTERFACE LAYER USABILITY QUESTIONS AND RESPONSES

No Question Frequency
5 4 3 2 1

Q27 Endpoint signature is easily modeled by the
tool. 9 9 0 0 1

Q29 It is easy to make changes to message
signature model. 13 6 0 0 0

Q30 It is easy to make errors or mistakes during
message signature definition. 0 3 7 5 4

Q31 It is capable of defining all types of message
signatures you have seen. 2 11 6 0 0

Q33 Endpoint protocol is easily modeled by the
tool. 12 7 0 0 0

Q35 It is easy to make changes to interactive
protocol model. 13 6 0 0 0

Q36 It is easy to make errors or mistakes during
interactive protocol definition. 1 1 5 6 6

Q37 It is capable of defining all interactive
protocol scenarios you have seen. 4 8 6 1 0

Q39 Endpoint interactive behavior is easily
modeled by the tool.

3 14 1 1 0

Q41 It is easy to make changes to interactive
behavior model.

10 9 0 0 0

Q42 It is easy to make errors or mistakes during
interactive behavior definition.

1 1 11 6 0

Q43 The tool has sufficient expressive power for
creating behavior model with accurate
outputs.

1 9 8 1 0

Table VII presents Phase Two survey questions and
responses from three interface layers: signature, protocol and
behavior, and four usability dimensions of each layer: ease of
use, maintainability, error prevention and completeness. Fig. 7

summarizes the in favour responses for each layer and usability
dimension from Table VII.

From the layers’ viewpoint (refer to Fig. 7a), protocol DSVL
has the highest usability and behavior the lowest. This result is
in coincidence with what we have expected. Endpoint protocol
modeling is simple and easy, and only four relationship types
are used to specify various state transitions. In contrast, behavior
modeling must deal with complicated logic processing,
involving data manipulation, flow control, data store access, etc.

For the usability dimension (refer to Fig. 7b), maintainability
has received in favour response from all participants, and is
followed by ease of use. High maintainability is one of the key
motivations for us to select a DSVL approach, since any
changes to endpoint can be done by modifying models only and
engaging in coding is not required. More than half of
participants were not satisfied with the error prevention
mechanism provided by TeeVML. Although TeeVML supports
most DSVL specific error prevention mechanisms, it does not
currently provide comprehensive error and type checking.

Fig. 7. Summary of in favour responses for different layers and dimensions

VII. RELATED WORK
There are a wide variety of domain-specific languages. They

can be widely used languages for a specific technical domain,
such as HTML for web pages, SQL for relational databases, and
WebDSL for web applications [16]. Or, they can narrowly focus
on a specific business domain, such as MaramaEML for
business process modeling [17], SDL for supporting statistical
survey process [18], and LabVIEW for electronic circuit testing
design [19]. In contrast, we use a set of domain-specific visual
modeling languages tailored to modeling signature, protocol and
behavior layers of endpoints.

A testing endpoint is developed from its external behavior,
communicating with other software components. Han first
proposed a rich interface definition framework [7] with layers:
signature, configurations, semantics, constraints, and a quality
aspect across all these layers. Han’s framework defines how to
select and reuse a software component, not just based on static
component signature, but also on other runtime aspects as well.
From a service viewpoint, Beugnard et al. defined a four-level
software component contract template with increasingly
negotiable properties along with the levels [20]. Our approach
on the other hand, focuses on how a request is to be processed
by an endpoint in a layered manner.

For the protocol modeling, some researchers used a finite
state machine [21, 22] or a formal protocol specification [23, 24]
to validate message sequence for different endpoint states.
However, Wehrheim et al. argued that the use of service name

alone might not be sufficient to trigger a state transition for a
realistic endpoint [25]. To deal with the so-called incomplete
protocol specification, [25] developed an EFSM-based protocol
modelling calculus for specifying service parameters and return
values as runtime constraints. Although, various notions for
protocol specification have been suggested, there are still some
issues to be solved. One is lack of concrete implementation
solutions to capture endpoint runtime aspects. Another one is
textual form they used for writing state transition rules, and this
will make protocol modeling difficult.

Software components interface behaviors can be modeled
either externally or internally. Software behavioral interface
specification [26] and programming from specification [27] are
the external approaches, they model interactive behaviors by
defining pre/post conditions to bind both service consumer and
service provider. As internal approaches, Business Process
Model and Notation (BPMN) [28] and DataFlow Programming
(DFP) [12] provide graphical notations for specifying internal
data processes and flow controls. In general, external
approaches and BPMN require extensive modeling and
programming work. While, DFP languages are ease of use with
user-friendly interface. But, they are less expressive and only
suitable for a specific domain. In contrast to these approaches,
our behavior DSVL is ease of use by dragging-and-dropping
visual symbols. For handling complicated business logics,
hierarchical nodes tree structure is adopted.

UML is a widely used general purpose modeling language,
focusing on the definition of system static and dynamic
behaviors. Specifically related to our work, UML provides: (1)
a testing profile to provide a generic extension mechanism	for
the automation of test generation processes [6], (2) state charts
to simulate finite-state automaton [29], and (3) activity diagrams
to graphically represent workflows of stepwise activities and
actions [30]. Two main problems with using UML to define new
modelling languages [31] are that it is usually hard to remove
parts of UML that are not relevant or need to be restricted in a
specialized language; and all the diagram types have restrictions
based on the UML semantics.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we have presented a suite of domain-specific

visual languages for testing environment emulation. The
language consists of three DSVLs for each interface layer. An
endpoint is modeled using these three abstraction levels. By this
layered approach, our TeeVML supports partial endpoint
development, where a testing endpoint may have only one or
two of these layers to meet SUT testing requirement. We have
conducted a survey to evaluate the tool’s functionality and
usability. The survey results demonstrated acceptance of the
tool among software testing experts and developers and further
improvement areas, such as error prevention.

A fully functional testing endpoint must include testing
Quality of Service (QoS) provided to SUT. The QoS DSVL
should be able to model performance, reliability, security and
other non-functional attributes. We are investigating the benefits
of building another DSVL specifically for model syntax
checking before transforming models to target sources as our
current future work focus.

ACKNOLEDGEMENTS
The authors gratefully acknowledge support for this research
by an Australian Post-graduate Award and an Australian
Research Council Discovery Projects grant.

REFERENCES
[1] P. B. Gibbons, "A Stub Generator for Multilanguage RPC in

Heterogeneous Environments," IEEE Transactions on Software
Engineering, vol. 13, pp. 77-87, 1987.

[2] S. Freeman, T. Mackinnon, N. Pryce, and J. Walnes, "Mock roles,
objects," presented at the In Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming systems,
languages, and applications, Canada, 2004.

[3] J. Yu, J. Han, J.-G. Schneider, C. Hine, and S. Versteeg, "A virtual
deployment testing environment for enterprise software systems,"
presented at the Proceedings of the 8th international ACM SIGSOFT
conference on Quality of Software Architectures, Italy, 2012.

[4] M. Du, J.-G. Schneider, C. Hine, J. Grundy, and S. Versteeg, "Generating
service models by trace subsequence substitution," presented at the
Proceedings of the 9th international ACM Sigsoft conference on Quality
of software architectures, Canada, 2013.

[5] C. Hine, J.-G. Schneider, J. Han, and S. Versteeg, "Scalable emulation of
enterprise systems," in Software Engineering Conference, Australian,
2009, pp. 142-151.

[6] I. Schieferdecker, Z. R. Dai, J. Grabowski, and A. Rennoch, "The UML
2.0 testing profile and its relation to TTCN-3," in Testing of
Communicating Systems, ed: Springer, 2003, pp. 79-94.

[7] J. Han, "Rich Interface Specification for Software Components,"
Peninsula School of Computing and Information Technology Monash
University, McMahons Road Frankston, Australia, 2000.

[8] D. L. Moody, "The “Physics” of Notations: Towards a Scientific Basis for
Constructing Visual Notations in Software Engineering," Software
Engineering, IEEE Transactions on, vol. 35, pp. 756-779, 2009.

[9] J. H. Larkin and H. A. Simon, "Why a Diagram is (Sometimes) Worth Ten
Thousand Words," Cognitive Science, vol. 11, pp. 65-100, 1987.

[10] E. Christensen, F. Curbera, and G. Meredith, "Web Services Description
Language (WSDL) 1.1. W3C," Note 15, 2001, www. w3. org/TR/wsdl,
2001.

[11] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn, "XML
schema part 1: structures second edition," ed: W3C Recommendation,
2004.

[12] T. B. Sousa, "Dataflow Programming Concept, Languages and
Applications," in Doctoral Symposium on Informatics Engineering, 2012.

[13] OMG, "Meta Object Facility (MOF) Specification," ed: The Object
Management Group, 2000.

[14] S. Kelly, "Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM," in
19th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Workshop on Best Practices for
Model Driven Software Development, 2004.

[15] J. Brooke, "SUS-A quick and dirty usability scale," Usability evaluation
in industry, vol. 189, pp. 4-7, 1996.

[16] E. Visser, "WebDSL: A Case Study in Domain-Specific Language
Engineering," in Generative and Transformational Techniques in Software
Engineering II. vol. 5235, R. Lämmel, J. Visser, and J. Saraiva, Eds., ed:
Springer Berlin Heidelberg, 2008, pp. 291-373.

[17] L. Li, J. Grundy, and J. Hosking, "A visual language and environment for
enterprise system modelling and automation," Journal of Visual
Languages & Computing, vol. 25, pp. 253-277, 8// 2014.

[18] C. H. Kim, J. Grundy, and J. Hosking, "A suite of visual languages for
model-driven development of statistical surveys and services," Journal of
Visual Languages & Computing, vol. 26, pp. 99-125, 2015.

[19] J. Travis and J. Kring, LabVIEW for Everyone: Graphical Programming
Made Easy and Fun (3rd Edition). Upper Saddle River, NJ, USA Prentice
Hall PTR, 2006.

[20] A. Beugnard, J.-M. J, l. Plouzeau, and D. Watkins, "Making Components
Contract Aware," Computer, vol. 32, pp. 38-45, 1999.

[21] L. De Alfaro and T. A. Henzinger, "Interface automata," ACM SIGSOFT
Software Engineering Notes, vol. 26, pp. 109-120, 2001.

[22] U. Endriss, N. Maudet, F. Sadri, and F. Toni, "Protocol conformance for
logic-based agents," in IJCAI, 2003, pp. 679-684.

[23] F. Plasil, S. Visnovsky, and M. Besta, "Bounding component behavior via
protocols," in Technology of Object-Oriented Languages and Systems,
TOOLS 30 Proceedings, 1999, pp. 387-398.

[24] Y. Jin and J. Han, "Specifying Interaction Constraints of Software
Components for Better Understandability and Interoperability," in COTS-
Based Software Systems. vol. 3412, X. Franch and D. Port, Eds., ed:
Springer Berlin Heidelberg, 2005, pp. 54-64.

[25] H. Wehrheim and R. H. Reussner, "Towards more realistic component
protocol modelling with finite state machines," UNU-IIST, p. 27, 2006.

[26] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. MULLER, and M. Parkinson,
"Behavioral interface specification languages," ACM Comput. Surv., vol.
44, pp. 1-58, 2012.

[27] C. Morgan, Programming from specifications: Prentice-Hall, Inc., 1990.
[28] M. von Rosing, S. White, F. Cummins, and H. de Man, "Business Process

Model and Notation—BPMN," 2015.
[29] S. J. Zhang and Y. Liu, "An Automatic Approach to Model Checking

UML State Machines," in Secure Software Integration and Reliability
Improvement Companion (SSIRI-C), 2010 Fourth International
Conference on, 2010, pp. 1-6.

[30] M. Dumas and A. H. Ter Hofstede, "UML activity diagrams as a workflow
specification language," in � UML� 2001�The Unified Modeling
Language. Modeling Languages, Concepts, and Tools, ed: Springer, 2001,
pp. 76-90.

[31] A. Abouzahra, J. Bézivin, M. D. Del Fabro, and F. Jouault, "A practical
approach to bridging domain specific languages with UML profiles," in
Proceedings of the Best Practices for Model Driven Software
Development at OOPSLA, 2005.

