
HorusCML: Context-aware Domain-Specific Visual
Languages Designer

Mohamed Almorsy*, John Grundy*, and Ulf Rüegg+
* Centre for Computing and Engineering Software and Systems, Swinburne University of Technology, Hawthorn, Australia

+ Department of Computer Science, Kiel University, Kiel, Germany
malmorsy@swin.edu.au, jgrundy@swin.edu.au, uru@informatik.uni-kiel.de

Abstract—The objective behind building domain-specific

visual languages (DSVLs) is to provide users with the most
appropriate concepts and notations that best fit with their
domain and experience. However, the existing DSVL designers
do not support integrating environment and user context
information when modeling, editing or viewing DSVL models at
different locations, permissions, devices, etc. In this paper, we
introduce HorusCML, a context-aware DSVL designer, which
supports DSVL experts in integrating necessary context details
within their DSVLs. The resultant DSVLs can reflect different
facets, layouts, and behaviours according to context it is used in.
We show a case study on developing a context-aware data flow
diagram DSVL tool using HorusCML.

Keywords — domain-specific visual languages; context
awareness; adaptive DSVLs

I. INTRODUCTION
Domain-Specific Visual languages (DSVLs) are widely

used in many domains, including software engineering,
hardware design, robots, construction, business and finance.
The key benefit of DSVLs is that they help end users to
visually model their problems/solutions using domain-specific
concepts, expressive notations, and suitable abstraction-level
that fit their mental models and work practices [1]. The
development of such DSVLs and tool support is not an easy
task [5]. It usually requires involvement of software engineers
to help in developing such DSVLs after building formal or
informal domain ontology [2, 3] by domain experts. In our
recent work we have developed a tool, Horus, itself providing a
set of DSVLs to specify new DSVL tools [5, 6]

The performance of interpreting a given diagram instance
by end users greatly depends on the presentation being used in
modelling it [1]. Moody [4], in his physics of notations (PON)
work, discusses the semiotic clarity principle, which states on
the one-to-one relation between DSVL visual notations and the
corresponding domain entities. From the DSVL usability point
of view, this might be true when a certain group of users with
similar background is going to use such DSVL. However, in
software engineering for example, we have business analysts,
architects, designers, developers, etc. dealing with the same
domain, but at different levels of abstraction and often with
different notations. When performing different tasks, the same
user may use quite different notations and entities. Users may
use different platforms to edit/view their DSVLs. Such user,
task, platform and domain context information needs to be
considered when developing and realizing DSVLs and their
supporting tools.

A key limitation that we found with existing DSVL
designers, including our previous tools [5, 6], is the lack of
context-awareness, such as capturing user permissions,
preferences, localization, and target device used in modeling or
viewing DSVL diagrams. This usually results in either creating
multiple DSVLs and tools for every context, or using different
notations that are often confusing for end users. It also requires
developing language transformers that can facilitate switching
between multiple visualizations, layouts and contents of these
related, context-dependent DSVLs.

Supporting context-awareness requires facilitating
modeling, monitoring, and enforcing of context information
that may impact how much information (model entities, or
entity attributes) the user can/wants to see; how information
should be represented for different end users according to their
preferences and context; and how to layout diagram elements.
In this paper, we introduce a novel context-aware DSVL
designer, HorusCML, which extends our original Horus DSVL
designer to support context-awareness. The basic idea of our
approach is to provide the DSVL experts with capabilities to
model relevant contextual information that should be
monitored and how such information could be used to effect
adaptations on DSVL model instances according to current
context status. We modified Horus to support the specification
of multiple visualization elements and linking these elements to
corresponding domain entities. We have conducted a
preliminary evaluation of HorusCML by developing a context-
aware data flow diagram DSVL tool. The evaluation shows
that Horus can easily capture, model, monitor, and enforce
DSVL context information.

II. MOTIVATING SCENARIO
Consider SwinSoft, an imaginary multi-national software

house focusing on developing business applications. SwinSoft
adopts the global software development (GSD) model, where
development teams are geographically distributed in different
countries. SwinSoft depends heavily on data flow diagram
(DFD) as a key model in the software requirements
engineering phase. However, DFDs have two possible
notations (summarized in Figure 1). Users would prefer to
model and view software models localized to their own
cultures and education notations. Thus, the DFD notations
used by different teams often raise confusion between
SwinSoft members. Figure 1 shows a summary of symbols that
are used in developing data flow diagrams (DFD). SwinSoft is
interested in rendering DFD diagrams with symbols suitable to

jgrundy
In Proceedings of the 2014 IEEE Symposium on Visual Languages and Human-Centric Computing, Melbourne,Australia, July 27-Aug 1 2014 © IEEE

jgrundy

every team member. Furthermore, SwinSoft’s technical sales
and business analysts usually discuss software requirements
with both software customers (who mainly understand
business details) and with the SwinSoft software architecture
team (who are interested in more details and understand
systems features and architectural details). Thus, they would
like to be able to save time required to transform models
developed for the customers to models used internally.
Additionally, some analysts have iPads and want to use these
to model DFDs with touch approaches. Some developers want
to use large screens to view multiple DFDs and zoom, move
and query elements highly interactively. To achieve these
aims, SwinSoft is currently adopting traditional bidirectional
model transformation between models and representations.
However, this technique is time consuming and error-prone.

Figure 1. Differences between Sarson and Yourdon DFD notations

Figure 2. Context-aware DSVL Designer

III. RELATED WORK
The area of domain-specific visual languages is one of the

growing areas in model-driven engineering as it helps domain
experts in fulfilling their tasks using their own terminologies at
a desirable abstraction level. We categorize these efforts into
domain-oriented DSVLs [2, 3], and DSVL design tools [12].
The existing DSVL design tools are categorized into [5]: (i)
general-purpose graphical editing tools such as Unidraw, a
C++ graphical tool development platform, and Eclipse
graphical editing framework (GEF), DrawIO [7] a JavaScript
web modeling tool delivers many visual notations for UML,
BPMN, etc. While these efforts help in developing graphical

editors quickly, they do not capture domain model, entities,
attributes, etc. Moreover, they require developers’ involvement
in developing features of diagramming tools such as views of
shared model entities; (ii) diagram generating toolkits such as
DiaGen and VisualDiaGen [8], and VisPro. Such efforts use
meta-models while others use visual grammars; and (iii) meta-
modeling tools [9]. Some of these use meta-models and
associated editor characterization as their source specifications.
Some industrial tools such as Microsoft Visual Studio DSL
designer provide a suite of tools for model creation, editing,
and visualization. One of the key limitations with these tools is
that DSVLs need to be built inside the Visual Studio or Eclipse
modeling framework (EMF). Marama tool suite [5] is an
Eclipse based DSVL designer with meta-modeling and visual
designers. Marama has very limited context modeling and web-
based modeling support. All existing DSVL design efforts do
not support capturing, monitoring, nor enforcement of context
information within DSVLs.

IV. HORUSCML
Figure 2 shows the main components and basic workflow

of our HorusCML context-aware DSVL designer. We have
two phases: a design time phase, which is done by the DSVL
experts using our DSVL Designer (steps 1-4), and a runtime
phase where DSVL end users use the generated DSVL tool to
fulfill their tasks (steps 5-8, automated by the underlying
platform, HorusCML).

DSVL Designer: Our HorusCML DSVL designer is based
on an existing web-based graph-editing tool (DrawIO [7]). We
modified this tool to support definition of DSVLs via meta-
DSVLs as in Marama, resulting in Horus. The Horus DSVL
designer supports capturing domain meta-model as a graph
instance, where each model entity is linked to a visualization
symbol. Once the DSVL specification is completed, Horus
extracts relevant details from the DSVL model (mainly nodes,
and their corresponding shapes) and registers the generated
DSVL within the tool itself. This way it becomes available for
end users to use it along with other registered DSVLs. For this
paper, we have improved Horus to support: (i) modeling one-
to-many relationships between DSVL domain entities and
visualization symbols; (ii) shape designing and mapping to
domain entities’ attributes – i.e. how and where domain entity
attributes should be visualized; (iii) specifying possible layout
algorithms that should be applied with DSVL entities; and (iv)
modeling context details that need to be satisfied on every
domain entity, visualization symbol, or layout algorithm. The
DSVL registration was modified to extract and incorporate
these details within DSVL definition. Figure 3-A shows a part
of the context-aware data flow diagram DSVL. The figure
shows two DFD entities process and external entity (cloud
shapes). The process entity is linked to two possible
visualization entities. Because both visualizations are
composites (have many attributes to be displayed), we have to
put each one in a container and have the process entity point to
such containers. The content of each container represents how
a process entity should be visually represented. In the external
entity we do not have this composite, so we point the external
entity directly to the corresponding visual elements. Given that

we have two groups of notations (Yourdon and Sarson), we
link each visualization element to the corresponding
constraints – in our example, this is a user preference to use
either Yourdon or Sarson. Figure 3-A shows that each visual
element is connected to its preferred layout (here we
exemplarily use three layout algorithms – layered, used with
Sarson notations, force-based, used with Yourdon, and vertical
layout, used with mobile devices). Figures 3-E,F show
example DFD instances with different context information as
we discuss in the next section.

Visual Notation DSVLs: The DSVL expert can visually
design the shape (symbols) to be used in modeling the
instances of a DSVL model. The expert creates a shape
container and then drag and drop shapes from the toolbox onto
a shape container. The shapes in the container are named with
the corresponding domain entity attributes and are arranged in
this container as needed. Thus, different visualizations of the
same entity can reflect different abstract levels. Figure 3-A
shows an example of a process visual element showing the
fields (process Id, process name). This composite is visually
designed from elementary visual elements available in
Draw.IO (a part of Draw.IO toolbox is shown Figure 3-B).

Layout DSVL: The DSVL expert specifies how the DSVL
model entities should be laid out when put together. In our
DSVL Designer we make use of the KIELER Web Service for
Layout (KWebS)1. It provides a variety of layout algorithms
such as force-based layout, Sugiyama-style layout, circular,
tree, etc. We abstract the service into our DSVL designer in a
“Layout DSVL” where every element represents an abstract
reflection of a layout algorithm. Designers can visually
configure layout service attributes to be used when arranging
model instances. Figure 3-C shows available layout entities.

Context DSVL: Once the DSVL expert has captured and
modeled all DSVL details (entities, visualization and layout),
they can define context information for certain scenarios – e.g.
given an entity E, with two visual elements V1, V2, specify to
use layout algorithm L1 when using V1, and layout algorithm
L2 when using V2; the context DSVL helps in specifying
constraints to be considered when adapting DSVL according
to a given situation. We have developed our Context DSVL to
take into consideration a set of context elements including:
time of the day, location (important in GSD – global software
development, and in communicating models with clients),
device used to view the model (desktop, mobile, etc.),
abstraction level the user is interested to work on or view, user
permissions (What entities and attributes they can view or
edit). Context-information could be marked as “mandatory”
which means that it cannot be overridden by user preferences.
Figure 3-D shows the Context DSVL toolbox. Figure 3-A
shows that the DFD DSVL tool will use user preference
(Sarson and Yourdon) to render the suitable notations. It also
use user device to decide on the suitable layout – i.e. use
force-based (with Yourdon), layered (with Sarson) on a
desktop, and vertical layered (with Sarson) on mobile devices.

1 http://rtsys.informatik.uni-kiel.de/confluence/x/nQEF

Both the Layout and Context DSVLs are extensible to
incorporate new algorithms and context items. This requires
updating the tool with the necessary information of the layout
service – e.g. URL of the service and expected parameters. It
also requires specifying how new elements’ can be monitored.

Context Monitor: The Context Monitor component is
responsible for monitoring and providing both the current
environment and user context information. Such information
is always available for the Context Enforcer component. The
context monitor triggers the Context Enforcer whenever there
is an update in the tool environment or the user context. The
current implementation status of this component is that it has
predefined modules that collect context information. Figure 3-
E,F show the same model instance rendered in two different
environments. We plan to enable DSVL experts to extend this
component, so that it can monitor customized context
information based on newly defined context entities.

Context Enforcer: The Context Enforcer component is
responsible for the DSVL context adaptation at runtime. With
any interaction of the user with the DSVL tool or any change-
of-status event raised by the Context Monitor, the Context
Enforcer checks the DSVL specified constraints looking for
satisfied constraints, and then fires their corresponding
adaptation actions that should be enforced. Examples for
adaptation actions include hiding certain domain instance
entities because of security permissions, rendering entities
using certain visualization symbols due to time/location/etc.,
and arranging entities using certain layout algorithms.

V. CASE STUDY
For the evaluation we implemented an exemplarily data

flow DSVL tool. The main requirements to satisfy are: (i) to
support reflecting the same DFD using either Sarson or
Yourdon notations according to the user preferences; (ii) to
change the layout of a given DFD when using tablet or smart
phone to the vertical layout to allow better readability on a
small screen. To address the first requirement, we represented
each entity with two visual elements and linked each visual
element to a user preference. Thus, whenever the user updates
his preferences, the tool will switch to the visualization that
satisfies these constraints. To address the second requirement,
we have specified two different layouts: one for the desktop
version and the other one when viewing the model on a smart
phone. Figure 3-A shows the DFD design with the specified
requirements satisfied. Figure 3-E shows an example DFD for
a banking system using Yourdon notations. Figure 3-F shows
the same example rendered on a tablet (using Sarson for visual
notations and vertical layout). The evaluation results reflect
that HorusCML is capable to model, monitor and enforce
context-aware DSVLs.

VI. CONCLUSION
We have introduced a novel context-aware DSVL designer

with tool support to design and realize DSVLs taking into
consideration context information. This enables developing,
editing, and viewing models refined to fit within user context,
experience, level of abstraction, device used, time, location,

etc. HorusCML supports modeling and integrating context-
information within different DSVL aspects including domain,
visualization, and layout models. We have evaluated our tool
in developing a context-aware DFD DSVL tool that takes into
consideration context information when rendering (visual
representation and layout) data flow diagrams. We plan to
apply our approach in more case studies including security
engineering and scientific applications development.

VII. ACKNOWLEDGMENT
This research is supported by the Australian Research Council

under Discovery Project DP120102653. Ulf Rüegg is funded by a
doctoral scholarship (FITweltweit) of the German Academic
Exchange Service.

REFERENCES
[1] M. S. Teixeira, R. A. Falbo, and G. Guizzardi, "Can Ontologies

Systematically Help in the Design of Domain-Specific Visual
Languages?," in OTM 2013 Conferences. vol. 8185, Eds., ed:
Springer Berlin Heidelberg, 2013, pp. 737-754.

[2] J. P. Diprose, B. A. MacDonald, and J. G. Hosking, "Ruru: A
spatial and interactive visual programming language for novice

robot programming," in IEEE Symposium on Visual Languages
and Human-Centric Computing, 2011, pp. 25-32.

[3] M. Almorsy and J. Grundy, "SecDSVL: A Domain-Specific
Visual Language To Support Enterprise Security Modelling," in
Australian Conference on Software Engineering Sydney, 2014.

[4] D. Moody, "The "Physics" of Notations: Toward a Scientific Basis
for Constructing Visual Notations in Software Engineering," IEEE
Transactions on Software Engineering, vol. 35, pp. 756-779, 2009.

[5] J. C. Grundy, J. Hosking, et al, "Generating Domain-Specific
Visual Language Tools from Abstract Visual Specifications," IEEE
Transactions on s/w Eng., vol. 39, pp. 487-515, 2013.

[6] M. Almorsy, J. Grundy, R. Sadus, et al, "A Suite of Domain-
Specific Visual Languages For Scientific Software Application
Modelling," in 2013 IEEE Symposium on Visual Languages and
Human-Centric Computing, San Jose, CA, USA, 2013.

[7] JGraph. (2013). Draw.IO. Available: https://www.draw.io/
[8] M. Minas, "Visual Specification of Visual Editors with

VisualDiaGen," in Applications of Graph Transformations with
Industrial Relevance. vol. 3062, Eds., ed: Springer Berlin
Heidelberg, 2004, pp. 473-478.

 [9] J.-P. Tolvanen and M. Rossi, "MetaEdit+: defining and using
domain-specific modeling languages and code generators," in Proc.
of 18th Conf. on Object-oriented programming, systems,
languages, and applications, CA, USA, 2003.

A
E

F

F

Figure 3. Snapshots of the context-aware DFD DSVL design and runtime

