
Using Concrete Visual Notations as First Class
Citizens for Model Transformation Specification

Iman Avazpour, John Grundy
Centre for Computing and Engineering Software and Systems

Faculty of ICT, Swinburne University of Technology, Hawthorn 3122, VIC, Australia
Email: {iavazpour, jgrundy}@swin.edu.au

Abstract—Model transformations are an important part of

Model Driven Engineering (MDE). To generate a transformation

with current MDE approaches, users are required to specify (or

provide) complex meta-models and then engage in quite low-level

coding in textual transformation scripting languages. This paper

introduces a new approach to visualising source and target models

that allows specifiers of complex data transformations to use

the resultant visual notations for specifying transformations by

example using drag and drop. We demonstrate the applicability

of our new approach by an example case study.

I. INTRODUCTION

Model Driven Engineering (MDE) promotes the develop-
ment, maintenance and evolution of software by performing
transformations on models. Transformations are therefore an
integral part of MDE [1]. Current techniques for specifying
transformations introduce high barriers for non-expert users,
since they require users to learn and use complex meta-models
and engage in low-level coding in complex transformation
languages [2]. This problem has pushed both research and
practice towards Model Transformation By-Example (MTBE)
approaches rather than traditional programmatic solutions[3].
Users of such approaches provide multiple examples of source
and target models and specify correspondences between them.
The system then tries to infer meta-models and, in some
approaches, possible model transformation rules. However, to
use such approaches users must familiarise themselves with
the syntax of the correspondence specification language. This
is often problematic as no visual approach for specifying
correspondences on actual familiar notations exists [3]. Also,
since the rule derivation is semi-automatic in some MTBE
approaches, multiple example pairs need to exist so the system
can infer more accurate transformations [4].

This paper describes our research that takes the by-example
approach a step further by using concrete visual notations
representing source and target model examples. It addresses
the complexity of model transformation by providing familiar
visual notations to end users and allowing users to specify
mapping correspondences between visualised model elements
using a drag and drop approach. These specified-by-example
correspondences thus form transformation rules, and are hence
used as transformation specifications for low-level transforma-
tion script generation. In this approach, model visualisation
examples are not required to represent the same underlying
model data formats, i.e. they do not need to be in pairs.

II. OUR APPROACH

We use a three step procedure for specifying and generating
complex model visualisations in our approach, as in figure 1.
Step one is to design and create required notational elements
to be used in the visualisation. These notational elements
form a notation repository and can be reused. Step two
is mapping examples of model input data to the reusable
notational elements. A range of visualisation functions and
conditions are available in our tool to be used in this step
to create more complex data-to-visual notation mappings. Step
three is to compose these model element-to-notational element
mappings together to create complete visualisations for models
that conform to the examples used. Once visualisations for
both the source model and the target model have been created
through these three steps, examples of these models can be
visualised and transformation rules between the models are
then created. This is done by drag and dropping concrete visual
notational representations of the model elements between the
two model visualisations.

Fig. 1. Three steps of our visualisation approach.
This model-to-visualisation specification and model-to-

model specification using concrete, by example approach, has
been implemented in our CONcrete Visual assistEd Transfor-
mation (CONVErT) framework. CONVErT generates eXten-
sible Stylesheet Language Transformation (XSLT) implemen-
tations for both model-to-visualisation and model-to-model
transformations, and includes a transformation engine capable
of running these transformations.

In the following subsections the three steps of our approach
are described using demonstrative example of creating a sim-
plified version of the famous Minard’s map (figure 2) visual-
isation. We show how portions of the underlying map model
data, representing troop movements, can be transformed to a
pie chart visualisation with our approach. For simplicity, we
have omitted temperature information and have used locations
relative to the map Canvas instead of actual GPS coordinates.
Due to space limitations, the whole visualisation specification
procedure for the pie chart is not provided. The full worked

jgrundy
In Proceedings of the 2013 IEEE Symposium on Visual Languages and Human-Centric Computing © IEEE 2013

jgrundy



specification of this visualisation, and further demonstrations
with the latest release of CONVErT, are all available from our
website [5].

Fig. 2. Minard’s map, depiction of French army’s invasion of Russia.

1) Specify Basic Notational Elements for Reuse: To gen-
erate arbitrary visual or textual notations, we follow a Model
View Controller (MVC) approach [6]. Visual (or indeed tex-
tual) notations in our approach are represented by a collection
of shapes, text and graphics that define the View of the notation
(which can be provided separately by a designer). A data part
specifies what is to be represented by the notation (the Model).
The Model needs to be mapped to the View; therefore, a
direct mapping specification is provided (which acts as the
Controller). We have designed a simple annotation language
for defining mappings between this Model and View. It is
composed of two annotations which specify the relationship
type of Model elements with the View. It includes ”linkto”
for one-to-one mappings and ”callfor” for one to many. Using
these annotations a Controller transformation is generated to
transform the Model data to the specific View.

(a) View (b) Data (Model)

Fig. 3. Troops movement notation

For the Minard map visualisation example, we follow a
similar recreation approach to that used by Humphrey [7].
Our version of this visualisation uses two notations. The first
notation depicts troop movements from one position to another.
Based on coordinates and the number of troops at the starting
point and the number arriving at the destination, a shape will
be drawn as specified in the notation View (figure 3(a)). The
algebras for creating this shape are provided in [7]. CONVErT
provides a way to specify and reuse this in C#. This notation
requires a data part that represents start and destination location
names and coordinates, number of troops starting, and number
arriving at destination, and the color of the shape which
represents whether troops were advancing or retreating. The
data part for this notation will be similar to Figure 3(b).
Elements of this model are all in one-to-one relation with
notation attributes. Therefore, they will all be specified in the
controller transformation using ”linkto” annotations.

The second notation shows the map with its description
on top (figure 4(a)). The map notation should host troop
movement notations, therefore, when the user is annotating

(a) Map View (b) Map Model

(c) Annotated notation View

Fig. 4. Annotating Map notation’s View.

the provided View, the ”callfor” annotation is provided in the
View according to Figure 4(c). The Minard class declared in
XAML is derived from the Canvas and allows for hosting of
other visual elements.

2) Map Source Data to Visual Notation: Step two involves
mapping example model data to the specified notational ele-
ments. This step is used to provide the system with information
in order to create transformation rules for transforming specific
parts of input models to the notation’s Model data. By default
a tree-like representation of the input model data (for XML
and Comma Separated inputs) is provided for users so that
they can drag elements of that representation to the provided
notation. For example in our Minard map visualisation, the
provided input data to be visualised is an XML data file (the
input model) which includes a map description and a list of
troop movement records which include start and destination
location names and coordinates, number of troops starting
and lost during the journey, and a status string which defines
whether they were advancing or retreating. These inputs can
be in multiple files, for simplicity of description however, we
have merged input files in a single file.

To generate the transformation rule for visualising each
movement record as a movement notation, users need to drag
and drop a record element from input to a troops movement
notation. Figure 5 shows mapping specification of records
to troop movement notation. Considering input data and the
annotation’s Model data, we can conclude that coordinates,
name of locations, and number of troops at start are in a one-
to-one relationship with their corresponding elements on the
notation’s Model data. Therefore their correspondences can be
specified by direct drag and drop of input data elements on the
notation’s Model elements as shown by green arrows in figure
5(a). However, the notation requires the number of troops at the
destination, whereas the input data record provides number of
troops lost during the journey. Also the status of the movement
is declared by Advancing or Retreating strings in the input
while this has been defined by colours in the notation.

To specify these correspondences, a set of reusable func-
tions and conditions are provided by CONVErT to allow
generation of more complex model element-to-visual notation
mappings. For example, troops movement status can simply be
defined by using a condition which provides a colour according



(a) Correspondences (b) Colour condition

Fig. 5. Specifying correspondences between troop movement records and
troop movement notation. Arrows indicate drag and drop directions.

to the status string. To generate this, the CONVErT user drops
a condition on the Canvas and links corresponding elements,
as shown in figures 5(a) and 5(b), by the navy dashed arrows.
Colour names are provided as a separate input file. Similarly,
for specifying the number of troops at the destination, the user
is provided with a subtraction function which subtracts troops
Lost from number of troops starting (HeadCount) to calculate
the required value. The user then maps its output to troops
arriving at the destination element (red arrows in figure 5(a)).

Fig. 6. Specifying correspondences between input data and map notation.

Specification of the map notation is more straight forward.
User need to drag a campaign data element from the input
model on the map and link its description to the description
element of the map notation, as shown by figure 6. The
movements element is the place holder for troop movement
notations which will be linked in the notation composition
step. Once data mapping is complete in CONVErT, the visual
notation specification for these model elements are saved. This
results in creation of a customised notation and a transforma-
tion rule that transforms input model to the notation’s Model
(and its reverse where possible).

Fig. 7. Composing troop movement and map notations to generate complete
visualisation. Arrows are provided by CONVErT.

3) Compose Basic Notational Elements: Step three allows
users to link, combine and embed visual individual model
data-to-visual notation mappings in order to create a com-
plete visualisation for a whole model. Linking a notation

to an element results in scheduling of model element-to-
visual notation transformation rules, since each visual element
also hosts a transformation rule for transforming a portion
of input data to the notation’s Model data. In our example,
the two notations can be composed by linking the movement
notation and the map notation, as shown by figure 7. Linking
a notation to a start element will define the top-most (first to
be run) transformation rule for the full model transformation
specification. The generated transformation is then applied to
all input data to produce a full map visualisation (figure 8).

Fig. 8. Resulting visualisation of Minard’s map in CONVErT.

Once visualisations for both source and target models are
available, users can then drag and drop elements between these
model visualisations to form model-to-model transformation
rules. These mappings are then used to generate a complete
model transformation script that can transform examples of
models of the source model format to models of the target
model format (for examples see [8] and CONVErT website
[5]). In the map visualisation example, let’s assume that there is
a requirement for visualising the number of troops lost during
the campaign at each key location as a pie chart, transformed
by-example from this map visualisation. Note that the pie
chart does not have to posses similar information and here it
represents a sales records of a company. To perform this data
mapping, CONVErT allows us to view both source (map) and
target (pie chart) concrete visualisations side-by-side. Here we
need to generate a rule for transforming the map to a chart
and a rule for creating a pie piece from each troop movement
notation. To generate the first rule, the user is required to drag
and drop map notation on the chart area. Right clicking on
notations in these visualisations reveals their internal elements.
The internal elements of the map correspond to elements of
the chart, therefore, they should be linked as well. Figure 9
shows these correspondences by green arrows. Saving these
will generate a map to chart transformation rule.

To generate the pie piece notation from a troop movement
notation, user drags a movement notation onto a pie piece.
Each pie piece includes a value, a name and a color. The
Minard’s map visualisation does not include a specific data
element for number of troops lost at each movement. Therefore
this value needs to be calculated from available data in the
visualisation using CONVErT’s mapping functions. Similar to
visualisation step, mapping functions are available for mapping
generation between visualisations. Once the user drags a visual
notation onto another, CONVErT provides a default View for
those notations in a separate window (see figure 10). Here
the we have used a subtraction function for calculating the
value of troops lost during the journey and a merging function
which merges two city names and includes a ” to ” between
them to generate the name of each pie piece. One-to-one



Fig. 9. Specifying correspondences between map and chart in concrete visualisations. Arrows depict drag and drop direction.

correspondences (like Color) can be defined here or on actual
visualisations.

Fig. 10. Specifying number of troops lost and location names, using
CONVErT mapping functions.

Once the two mappings are defined, a meta-model is
automatically reverse engineered from both source and target
visualisations. Using this meta-model, CONVErT knows how
to compose/schedule transformation rules automatically. Once
done, CONVErT generates the transformation specification
and the resulted visualisation. The resulting visualisation of
this example is depicted in figure 11.

Fig. 11. The resulting Pichart.

III. CONCLUSIONS AND FUTURE WORK

We have described a new concrete visual approach to
model transformation specification. Users of our approach
specify transformation rules by drag and drop of elements
in concrete visualisations generated from example underlying
data. A proof of concept tool implementing this approach,
CONVErT, has been prototyped and evaluated by a demonstra-
tive case study and user evaluation. Our user study revealed

that by allowing users to define correspondences on source
and target visualisations, they were capable of easily spotting
correspondences and creating transformation rules. The full
results of this evaluation are available in CONVErT’s website
[5].

CONVErT uses the default layout mechanisms of WPF and
XAML for visualisations. We are working on integrating better
layout algorithms to provide more powerful and flexible layout
support. For large scale models, visualisations may become
crowded and complex. New mechanisms are being tested to
filter visualisations and allow partial visualisations according
to users’ queries. For bijective transformations our approach
generates a reverse translation automatically. Fully round-trip
transformations are not possible in non-bijective cases e.g.
where conditions are used. Similarly, lossy transformations are
not as yet supported.

ACKNOWLEDGMENTS

Avazpour was supported by Swinburne University Vice
Chancellor’s Research Scholarship (VCRS). We thank Dr
Vivienne Farrell for help with questionnaire and user studies.

REFERENCES

[1] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in 2007 Future of Software Engineering,
ser. FOSE ’07. IEEE, 2007, pp. 37–54.

[2] J. C. Grundy, J. G. Hosking, R. Amor, W. B. Mugridge, and Y. Li,
“Domain-specific visual languages for specifying and generating data
mapping systems,” J. Vis. Lang. Comput., vol. 15, no. 3-4, 2004.

[3] G. Kappel, P. Langer, W. Retschitzegger, W. Schwinger, and M. Wimmer,
“Conceptual modelling and its theoretical foundations,” A. Düsterhöft,
M. Klettke, and K.-D. Schewe, Eds. Springer-Verlag, 2012, ch. Model
transformation by-example: a survey of the first wave, pp. 197–215.

[4] M. Kessentini, H. Sahraoui, M. Boukadoum, and O. Omar, “Search-
based model transformation by example,” Software & Systems Modeling,
vol. 11, pp. 209–226, 2012.

[5] I. Avazpour and J. Grundy. Convert website. [Online]. Available:
https://sites.google.com/site/iavazpour/tools-manuals

[6] T. Reenskaug, “Models-views-controllers,” Technical note, Xerox PARC,
vol. 32, p. 55, 1979.

[7] M. C. Humphrey, “Creating reusable visualizations with the relational
visualization notation,” in Proceedings of the 11th IEEE Visualization
2000 Conference (VIS 2000). IEEE, 2000, pp. 53–60.

[8] I. Avazpour and J. Grundy, “Convert: A framework for complex model
visualisation and transformation,” in 2012 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2012, pp. 237–
238.


