

A Suite of Domain-Specific Visual Languages For
Scientific Software Application Modelling

Mohamed Almorsy*, John Grundy*, Richard Sadus*, Willem van Straten+, David G. Barnes#, Owen Kaluza#
 * Centre for Computing and Engineering Software and Systems, Swinburne University of Technology, Hawthorn, Australia

 + Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Australia
 # Monash Monash Biomedical Imaging and Monash e-Research Centre, Monash University, Clayton Australia

malmorsy@ swin.edu.au, jgrundy@ swin.edu.au, rsadus@ swin.edu.au, wvanstraten@ swin.edu.au,
david.g.barnes@monash.edu, owen.kaluza@monash.edu

Abstract-Many advances in science now require sophisticated
scientific software applications that facilitate data and
computationally intensive experiments. However, the effective
utilization of existing computational power e.g., grid and cloud
platforms depends on the capabilities of scientists to implement
parallel, scalable code for such experiments. Currently, tools
aimed at supporting scientists are either very limited to specific
domains, or require significant development using low-level code.
We describe our work towards a more end user-friendly scientific
applications development process, notations and toolset. We
introduce a scientific application designer intended for use
primarily by scientists to enable them in describing workflow,
processes, entities, formulae, computation and ultimately
realization code for different computing platforms. This is
achieved via a set of integrated, domain-specific visual and
textual languages (DSVLs). A web-based modeling tool supports
definition of new DSVLs and modeling of these applications. We
are currently extending our tool to support generation of multi-
core and GPU implementations, and visualization of results.

Keywords-component: Domain-Specific Visual Language, Model-
Driven Engineering, Scientific Applications, Scientific Workflow,
High-Performance computing

I. INTRODUCTION

Increasing IT infrastructure capabilities including
computation, storage and communication has opened the door
for scientists to try and address much more complex problems
than previously attempted. New research areas have arisen that
try to enable scientists to use greater computational power in
their data-intensive and computationally-intensive
experiments, including scientific computing [1], scientific
workflow [2], high-performance computing [3], and model-
driven engineering for scientific applications [4].

Developing new scientific applications most often requires
deep involvement of scientists in writing low-level source
code, as it is often difficult to use specialized programmers
due to the deep scientific background required in developing
such applications. Generally this means that scientists have to
have good programming experience, most often with the
C/C++ language, and software debugging and code
optimization techniques. In addition, because many
applications require very large data manipulation and
computation, expertise with HPC and how to maximize the
utilization of the computational power of the available
computational platforms is usually required. This includes
detailed use of HPC programming models embodied by APIs

and languages such as MPI, OpenMP, OpenCL and CUDA.
Finally, some expertise in software maintenance, in order to be
able to modify existing programs, is often necessary. Working
on source code level without high-level documentation of
these scientific algorithms or bidirectional mapping to source
code causes lot of consistency problems. Furthermore, new
researchers find it very hard to understand and maintain code
written by someone else. On the other hand, 90% of scientists
did not study programming, yet spend more than 40% of their
time developing software to support their experiments [8]. The
main languages used are MATLAB, C/C++, and Python.
These software solutions usually run for several days.

In this paper we describe our prototype scientific Domain-
Specific Visual Languages (DSVLs)-based toolset. This is
intended to provide scientists with a more human-centric
approach to developing highly customizable domain-specific
visual languages capturing their target domain concepts. These
domain-specific visual languages are then used to develop
their scientific applications. We illustrate multiple, integrated
DSVL usage for exemplar scientific domain in our prototype
web-based DSVL modeling tool.

II. BACKGROUND

New solutions try to address scientific applications
development using DSVLs that capture domain concepts and
help scientists in developing their experimental software.
Existing domain-specific tools, such as LAMMPS1 for
molecular simulation and MeVisLab2 for medical image
processing and analysis, deliver a set of predefined capabilities
that can be reused as building blocks to develop new scientific
experiments in these domains. However, most such solutions
are black-box with limited domain applicability and limited
ability to reuse and extend the platform. Some more general,
customizable solutions do exist, mainly based on scientific
workflows with a focus on data flow [5], such as Kepler [6]
and Microsoft Trident workbench [7]. However, these tools
also have limited capabilities to help scientists address new
problems through more highly customized solutions.
Extending these solutions requires detailed programming
knowledge, as mentioned in Section I, and integration with

1 http://lammps.sandia.gov
2 http://www.mevislab.de

jgrundy
In Proceedings of the 2013 IEEE Symposium on Visual Languages and Human-Centric Computing © IEEE 2013

jgrundy

often complex frameworks. Palyart et al. [4] introduce a
DSVL to help in specifying and modeling HPC applications.
They focus on specification of solution parallelism. However,
they did not show how their language could be used to
generate HPC code.

We had multiple brainstorming sessions with different
scientists from three different domains including molecular
simulation, magnetic resonance imaging, and Astrophysics
about their scientific applications’ development approaches.
All of them stated that they start with pen and paper
specifications of their problems and then develop a simple
single-processor version of their solutions. Once they have a
working prototype, they start porting their solution to multi-
core GPUs and CPUs platforms. This requires rewriting most
of the program to use MPI, OpenCL, or CUDA. We also did
informal survey with some of the new researchers who are
expected to extend such applications to serve their new
research problems. The feedback was they had to spend lot of
time to understand and modify the existing code.

As a next step, we asked several scientists to try and
develop descriptions of their target scientific problems. Figure
1 shows snapshots of problem descriptions that we received
from our scientists. Figure 1-A shows a molecular simulation
experiment modeled as formulae and pseudo-code. Figure 1-B
shows radio telescope analysis modeled as scientific
workflow. This motivated us to consider an approach of
supporting definition of a variety of DSVLs for scientists and
use these DSVLs to model and generate complex scientific
applications. This helps in minimizing the amount of time
spent by scientists in developing and updating applications as
well as the amount of HPC and other IT experience required.

Figure 1. Example problem definitions modelled by scientists

III. APPROACH

Motivated by this examination of the current scientific
application engineering approach, we are developing a novel
model-driven scientific applications engineering approach, as
outlined in Figure 2. (1) Users define various DSVLs for
modelling aspects of the problem domain at varying levels of
abstraction. Meta-models and DSVLs should be developed by
experienced engineers with the help of domain experts and

scientists. (2) Scientists model a particular application of
interest with existing and/or new DSVLs (e.g. workflow,
science model, formulae). (3) They then refine and annotate
their specifications with intended parallelism and structured
pseudo-code. (4) Either they or computing platforms’ experts
model available HPC platform components and
characteristics. (5) They assign computation and data to the
platform. (6) At this stage they generate, reuse and/or
implement GPU code suitable to realize their desired
implementation. (7) Experiments are then run by deploying
the application to a suitable target HPC platform and results
are gathered. (8) Finally, results are then visualized for the
user by visualization-specific DSVLs. The intended users of
this approach are both experienced scientists who spend most
of their time in development although it is a side task of their
job; and scientists who develop algorithms with a simple
prototype and wait for a development team to parallelize this
work on GPUs and CPUs.

DSVL Designer,
template editor

Workflow DSVL

Formulae DSVL

GPU Architecture DSVL
C/C++ OpenCL code

templates

Atomic Model DSVL
Psuedo-code DSL

Parallelism DSVL

C/C++ OpenCL
Implementation

Run Applications on HPC
Platform

(1)

(2)

(3)

(4)

(5)

(7)

Graph/3D
Visualisation DSVL

(8)

(6)

Figure 2. High-level components and steps of our approach

IV. SCIENTIFIC APPLICATIONS DSVL DESIGNER

We have developed a detailed meta-model for scientific
software applications based on analysis of a range of
application domains. We have developed a prototype web-
based DSVL designer (meta-tool) and integrated DSVL
editors (modeling tools) based on this meta-model. This
allows scientists to model their applications at varying levels
of abstraction from abstract mathematical model down to code
level. Our visual language designer meta-model, outlined in
Figure 3, is built on a common entity Concept. Each Concept
entity has a reference to a visualization element which may be
a shape such as cloud, rectangle, triangle, square, etc. It may
also be an image, or an XMLShape which may be a stencil or
HTML tags. A Concept may be one of two domain entities
(Data and Task); one of two control flow constructs (IF and
Loop operations); or a constraint specification note.

A Data entity in any scientific application DSVL
represents the definition and structure of data used in the
application. For example, if the domain has a matrix as an
input, then we need to define how data looks like in terms of
attributes (#rows, #cols, and values as a 2D array). Complex
data entities may have attributes of other data entities – e.g., an
image data entity is made up of pixels.

A Task entity represents data processing or other tasks in a
scientific application. Each Task has a number of inputs
(InputPorts), outputs (OutputPorts), and a set of ordered
commands to apply on the inputs. Each input and output has
type, name, and multiplicity. Each command has a
commandType, which may be a source file, a function, code,
or a mathematical formula. In the case of function code, the
user has a text editor (e.g. in Figure 4-C, D) where they can
write and debug (Pseudo)-code. In the case of mathematical
formula, users are provided a formula editor (e.g. Figure 4-B),
where they can define their own formulas. We are developing
a formula-to-code transformer that generates realization code.

Control flow is covered by two key entities: IF and Loop.
The IF entity has a condition to be checked, and based on the
value of this condition we decide which block to execute. The
IF entity covers if- and switch-type control flow statements,
with a list of conditionally guarded blocks and Tasks to be
executed for satisfied conditions. The Loop entity has initial
value (initialization of loop variable(s)), loop condition
(termination), loop step (increment in each iteration), and loop
body, a list of Tasks to be repeated.

The Constraint entity represents condition(s) to be applied
on DSVL entities individually or over grouped elements of the
DSVL as a whole. These constraints are expressed using the
Object-Constraint Language (OCL) by the DSVL designer.

An example of our DSVL designer meta-tool being used to
specify a workflow DSVL is shown in Figure 4-A. Each time
a scientist defines a new scientific DSVL using our DSVL
designer, they develop a language meta-model (tasks, data,
relationships) relevant to the domain. This language definition
is retained in a repository and loaded at runtime to instantiate
the DSVL’s modeling tool. Our DSVL designer specifications
are designed in the same way we design other scientific
applications DSVLs. Language details are captured as XML
that is loaded, parsed, and rendered at runtime. This makes the
whole language highly extensible to incorporate new concepts
or attributes that we did not cover at this phase, or even
scientists can add their concepts that need to be available in
designing other DSVLs.

We have implemented a prototype web-based DSVL
designer and DSVL modeling tool based on an existing open

source web modeling tool
3
. We have also reused a scientific

formula editor, text editor for (pseudo)code, and visualization
component. Our tool can be downloaded from here.

V. USAGE EXAMPLE

We briefly describe a usage example of our prototype
scientific DSVL specification and modeling tool on the N-
Body Simulation problem (a simulation of a dynamical system
of particles under the influence of physical forces [8]). To
address problem, we have conducted a preliminary analysis of
the domain to come up with an initial DSVL for molecular

3 https://www.draw.io

simulation. The DSVL toolbox reflects key entities for
molecular simulation. This includes Atom (attributes:
coordinates, velocity, forces), Atoms Lattice (2D array of
Atoms), Atom Forces’ Calculator, Atom Velocity and
Distance Calculator, Update Simulation. Figure 4-E shows an
example of molecular simulation workflow. Given a lattice of
Atoms, we start by initializing the atoms attributes. Then, we
loop on all atoms to calculate atom forces, velocity, and
coordinates. After iterating on all atoms, we reflect new
atoms’ coordinates on current atoms’ visualization. These
steps are repeated for X-number of simulation rounds.

VI. SUMMARY

We introduce a new, integrated scientific applications
DSVL designer that assists scientists in developing their own
application DSVLs. We described a usage example from the
molecular simulation domain. We are extending our tool into a
scientific applications development platform. This platform
uses the DSVL models as above and provides semi-automated
support for transforming them into fine-tuned applications
using suitable programming models and computational
platforms.

ACKNOWLEDGEMENTS
This research is supported by the Australian Research

Council under Discovery Project DP120102653.

REFERENCES

[1] D. F. Kelly, "A Software Chasm: SW Engineering & Scientific
Computing," Software, IEEE, vol. 24, pp. 120-119, 2007.

[2] A. Barker and J. Hemert, "Scientific Workflow: A Survey and
Research Directions," in Parallel Processing and Applied
Mathematics. vol. 4967, R. Wyrzykowski, J. Dongarra, K.
Karczewski, and J. Wasniewski, Eds., ed: Springer Berlin
Heidelberg, 2008, pp. 746-753.

[3] G. Hager and G. Wellein, Introduction to High Performance
Computing for Scientists and Engineers vol.7:CRC Press, 2010.

[4] M. Palyart, D. Lugato, e, "HPCML: A Modeling Language
Dedicated to High-Performance Scientific Computing," In
Proc. 1st Int Workshop on Model-Driven Engineering for High
Performance and CLoud computing, Innsbruck, Austria 2012.

[5] M. Sonntag, D. Karastoyanova, and E. Deelman, "Bridging the
Gap between Business and Scientific Workflows: Humans in
the Loop of Scientific Workflows," in e-Science (e-Science),
2010 IEEE Sixth Int. Conference on, 2010, pp. 206-213.

[6] I. Altintas, C. Berkley, E. Jaeger, et al., "Kepler: an extensible
system for design and execution of scientific workflows," in
16th Int. Conf. on Scientific and Statistical Database
Management, 2004, pp. 423-424.

[7] R. Barga, J. Jackson, N. Araujo, D. Guo, N. Gautam, and Y.
Simmhan, "The Trident Scientific Workflow Workbench," in
IEEE 4th Int. Conf, on eScience, 2008, pp. 317-318.

[8] G. Marcelli and R. J. Sadus, "Molecular simulation of the phase
behavior of noble gases using accurate two-body and three-
body intermolecular potentials," ed.

[9] J. F. Schenck, "The role of magnetic susceptibility in magnetic
resonance imaging: MRI magnetic compatibility of the first and
second kinds," MEDICAL PHYSICS-LANCASTER PA-, vol. 23,
pp. 815-850, 1996.

Figure 3. Our DSVL meta-model

Figure 4. Snapshots from our DSVL designer

