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Abstract-Many advances in science now require sophisticated 
scientific software applications that facilitate data and 
computationally intensive experiments. However, the effective 
utilization of existing computational power e.g., grid and cloud 
platforms depends on the capabilities of scientists to implement 
parallel, scalable code for such experiments. Currently, tools 
aimed at supporting scientists are either very limited to specific 
domains, or require significant development using low-level code. 
We describe our work towards a more end user-friendly scientific 
applications development process, notations and toolset. We 
introduce a scientific application designer intended for use 
primarily by scientists to enable them in describing workflow, 
processes, entities, formulae, computation and ultimately 
realization code for different computing platforms. This is 
achieved via a set of integrated, domain-specific visual and 
textual languages (DSVLs). A web-based modeling tool supports 
definition of new DSVLs and modeling of these applications. We 
are currently extending our tool to support generation of multi-
core and GPU implementations, and visualization of results. 

Keywords-component: Domain-Specific Visual Language, Model-
Driven Engineering, Scientific Applications, Scientific Workflow, 
High-Performance computing 

I. INTRODUCTION 

Increasing IT infrastructure capabilities including 
computation, storage and communication has opened the door 
for scientists to try and address much more complex problems 
than previously attempted. New research areas have arisen that 
try to enable scientists to use greater computational power in 
their data-intensive and computationally-intensive 
experiments, including scientific computing [1], scientific 
workflow [2], high-performance computing [3], and model-
driven engineering for scientific applications [4].  

Developing new scientific applications most often requires 
deep involvement of scientists in writing low-level source 
code, as it is often difficult to use specialized programmers 
due to the deep scientific background required in developing 
such applications. Generally this means that scientists have to 
have good programming experience, most often with the 
C/C++ language, and software debugging and code 
optimization techniques. In addition, because many 
applications require very large data manipulation and 
computation, expertise with HPC and how to maximize the 
utilization of the computational power of the available 
computational platforms is usually required. This includes 
detailed use of HPC programming models embodied by APIs 

and languages such as MPI, OpenMP, OpenCL and CUDA. 
Finally, some expertise in software maintenance, in order to be 
able to modify existing programs, is often necessary. Working 
on source code level without high-level documentation of 
these scientific algorithms or bidirectional mapping to source 
code causes lot of consistency problems. Furthermore, new 
researchers find it very hard to understand and maintain code 
written by someone else. On the other hand, 90% of scientists 
did not study programming, yet spend more than 40% of their 
time developing software to support their experiments [8]. The 
main languages used are MATLAB, C/C++, and Python. 
These software solutions usually run for several days. 

In this paper we describe our prototype scientific Domain-
Specific Visual Languages (DSVLs)-based toolset. This is 
intended to provide scientists with a more human-centric 
approach to developing highly customizable domain-specific 
visual languages capturing their target domain concepts. These 
domain-specific visual languages are then used to develop 
their scientific applications. We illustrate multiple, integrated 
DSVL usage for exemplar scientific domain in our prototype 
web-based DSVL modeling tool. 

II. BACKGROUND 

New solutions try to address scientific applications 
development using DSVLs that capture domain concepts and 
help scientists in developing their experimental software. 
Existing domain-specific tools, such as LAMMPS1 for 
molecular simulation and MeVisLab2 for medical image 
processing and analysis, deliver a set of predefined capabilities 
that can be reused as building blocks to develop new scientific 
experiments in these domains. However, most such solutions 
are black-box with limited domain applicability and limited 
ability to reuse and extend the platform. Some more general, 
customizable solutions do exist, mainly based on scientific 
workflows with a focus on data flow [5], such as Kepler [6] 
and Microsoft Trident workbench [7]. However, these tools 
also have limited capabilities to help scientists address new 
problems through more highly customized solutions. 
Extending these solutions requires detailed programming 
knowledge, as mentioned in Section I, and integration with 
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often complex frameworks. Palyart et al. [4] introduce a 
DSVL to help in specifying and modeling HPC applications. 
They focus on specification of solution parallelism. However, 
they did not show how their language could be used to 
generate HPC code. 

We had multiple brainstorming sessions with different 
scientists from three different domains including molecular 
simulation, magnetic resonance imaging, and Astrophysics 
about their scientific applications’ development approaches. 
All of them stated that they start with pen and paper 
specifications of their problems and then develop a simple 
single-processor version of their solutions. Once they have a 
working prototype, they start porting their solution to multi-
core GPUs and CPUs platforms. This requires rewriting most 
of the program to use MPI, OpenCL, or CUDA. We also did 
informal survey with some of the new researchers who are 
expected to extend such applications to serve their new 
research problems. The feedback was they had to spend lot of 
time to understand and modify the existing code. 

As a next step, we asked several scientists to try and 
develop descriptions of their target scientific problems. Figure 
1 shows snapshots of problem descriptions that we received 
from our scientists. Figure 1-A shows a molecular simulation 
experiment modeled as formulae and pseudo-code. Figure 1-B 
shows radio telescope analysis modeled as scientific 
workflow. This motivated us to consider an approach of 
supporting definition of a variety of DSVLs for scientists and 
use these DSVLs to model and generate complex scientific 
applications. This helps in minimizing the amount of time 
spent by scientists in developing and updating applications as 
well as the amount of HPC and other IT experience required.  

 
Figure 1. Example problem definitions modelled by scientists 

III. APPROACH 

Motivated by this examination of the current scientific 
application engineering approach, we are developing a novel 
model-driven scientific applications engineering approach, as 
outlined in Figure 2. (1) Users define various DSVLs for 
modelling aspects of the problem domain at varying levels of 
abstraction. Meta-models and DSVLs should be developed by 
experienced engineers with the help of domain experts and 

scientists. (2) Scientists model a particular application of 
interest with existing and/or new DSVLs (e.g. workflow, 
science model, formulae). (3) They then refine and annotate 
their specifications with intended parallelism and structured 
pseudo-code. (4) Either they or computing platforms’ experts 
model available HPC platform components and 
characteristics. (5) They assign computation and data to the 
platform. (6) At this stage they generate, reuse and/or 
implement GPU code suitable to realize their desired 
implementation. (7) Experiments are then run by deploying 
the application to a suitable target HPC platform and results 
are gathered. (8) Finally, results are then visualized for the 
user by visualization-specific DSVLs. The intended users of 
this approach are both experienced scientists who spend most 
of their time in development although it is a side task of their 
job; and scientists who develop algorithms with a simple 
prototype and wait for a development team to parallelize this 
work on GPUs and CPUs.  
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Figure 2. High-level components and steps of our approach 

IV. SCIENTIFIC APPLICATIONS DSVL DESIGNER 

We have developed a detailed meta-model for scientific 
software applications based on analysis of a range of 
application domains. We have developed a prototype web-
based DSVL designer (meta-tool) and integrated DSVL 
editors (modeling tools) based on this meta-model. This 
allows scientists to model their applications at varying levels 
of abstraction from abstract mathematical model down to code 
level. Our visual language designer meta-model, outlined in 
Figure 3, is built on a common entity Concept. Each Concept 
entity has a reference to a visualization element which may be 
a shape such as cloud, rectangle, triangle, square, etc. It may 
also be an image, or an XMLShape which may be a stencil or 
HTML tags. A Concept may be one of two domain entities 
(Data and Task); one of two control flow constructs (IF and 
Loop operations); or a constraint specification note. 

A Data entity in any scientific application DSVL 
represents the definition and structure of data used in the 
application. For example, if the domain has a matrix as an 
input, then we need to define how data looks like in terms of 
attributes (#rows, #cols, and values as a 2D array). Complex 
data entities may have attributes of other data entities – e.g., an 
image data entity is made up of pixels. 



 

  

A  Task entity represents data processing or other tasks in a 
scientific application. Each Task has a number of inputs 
(InputPorts), outputs (OutputPorts), and a set of ordered 
commands to apply on the inputs. Each input and output has 
type, name, and multiplicity. Each command has a 
commandType, which may be a source file, a function, code, 
or a mathematical formula. In the case of function code, the 
user has a text editor (e.g. in Figure 4-C, D) where they can 
write and debug (Pseudo)-code. In the case of mathematical 
formula, users are provided a formula editor (e.g. Figure 4-B), 
where they can define their own formulas. We are developing 
a formula-to-code transformer that generates realization code.  

Control flow is covered by two key entities: IF and Loop. 
The IF entity has a condition to be checked, and based on the 
value of this condition we decide which block to execute. The 
IF entity covers if- and switch-type control flow statements, 
with a list of conditionally guarded blocks and Tasks to be 
executed for satisfied conditions. The Loop entity has initial 
value (initialization of loop variable(s)), loop condition 
(termination), loop step (increment in each iteration), and loop 
body, a list of Tasks to be repeated. 

The Constraint entity represents condition(s) to be applied 
on DSVL entities individually or over grouped elements of the 
DSVL as a whole. These constraints are expressed using the 
Object-Constraint Language (OCL) by the DSVL designer. 

An example of our DSVL designer meta-tool being used to 
specify a workflow DSVL is shown in Figure 4-A. Each time 
a scientist defines a new scientific DSVL using our DSVL 
designer, they develop a language meta-model (tasks, data, 
relationships) relevant to the domain. This language definition 
is retained in a repository and loaded at runtime to instantiate 
the DSVL’s modeling tool. Our DSVL designer specifications 
are designed in the same way we design other scientific 
applications DSVLs. Language details are captured as XML 
that is loaded, parsed, and rendered at runtime. This makes the 
whole language highly extensible to incorporate new concepts 
or attributes that we did not cover at this phase, or even 
scientists can add their concepts that need to be available in 
designing other DSVLs.  

We have implemented a prototype web-based DSVL 
designer and DSVL modeling tool based on an existing open 

source web modeling tool
3
. We have also reused a scientific 

formula editor, text editor for (pseudo)code, and visualization 
component. Our tool can be downloaded from here. 

V. USAGE EXAMPLE 

We briefly describe a usage example of our prototype 
scientific DSVL specification and modeling tool on the N-
Body Simulation problem (a simulation of a dynamical system 
of particles under the influence of physical forces [8]). To 
address problem, we have conducted a preliminary analysis of 
the domain to come up with an initial DSVL for molecular 
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simulation. The DSVL toolbox reflects key entities for 
molecular simulation. This includes Atom (attributes: 
coordinates, velocity, forces), Atoms Lattice (2D array of 
Atoms), Atom Forces’ Calculator, Atom Velocity and 
Distance Calculator, Update Simulation. Figure 4-E shows an 
example of molecular simulation workflow. Given a lattice of 
Atoms, we start by initializing the atoms attributes. Then, we 
loop on all atoms to calculate atom forces, velocity, and 
coordinates. After iterating on all atoms, we reflect new 
atoms’ coordinates on current atoms’ visualization. These 
steps are repeated for X-number of simulation rounds. 

VI. SUMMARY 

We introduce a new, integrated scientific applications 
DSVL designer that assists scientists in developing their own 
application DSVLs. We described a usage example from the 
molecular simulation domain. We are extending our tool into a 
scientific applications development platform. This platform 
uses the DSVL models as above and provides semi-automated 
support for transforming them into fine-tuned applications 
using suitable programming models and computational 
platforms. 
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Figure 3. Our DSVL meta-model 

Figure 4. Snapshots from our DSVL designer 


