2012 |IEEE International Symposium on Visual Languages and Human-Centric Computing, Innsbruck, Austria, Sept 30-Oct 4 2012, © IEEE CS Press

CONVEIT: A Framework for Complex Model
Visualisation and Transformation

Iman Avazpour and John Grundy
Faculty of ICT, Centre for Computing and Engineering Software and Systems,
Swinburne University of Technology, Hawthorn, VIC 3101, Australia
{iavazpour, jgrundy } @swin.edu.au

Abstract—Model Driven Engineering (MDE) has become a
commonly used approach in software engineering. It promotes
using models as primary artefacts and proposes methods for
transforming them to desired software products. However, the
specification of models and their transformations in MDE with
current techniques is not user-friendly, due to excessive use of
high level abstract models and textual representation of trans-
formation languages. This paper briefly describes CONVErT,
an approach and tool developed for user-centric transformation
generation using concrete model visualisations.

I. INTRODUCTION

Model Driven Engineering (MDE) promotes using models
as primary artefacts and proposes methods for transforming
them to different domains or different abstraction levels. To
accomplish this, users are required to define high level abstrac-
tions (meta-model) of their models and specify transforma-
tions using textual representation of available transformation
languages. Transformations usually include correspondences
and relations between elements of participating Left Hand
Side (LHS - the source) and Right Hand Side (RHS - the
target) models that have to be specified on their abstract
meta-models. The way these correspondences and relations are
specified creates a pragmatic barrier for many users (average
modellers). This is because meta-models are not user-friendly
artefacts and often get very complex [1], [2]. In addition,
textual representations are often hard to maintain, especially
when dealing with large and complex models.

To improve understandability of the abstract notation for
average users, previous techniques used concrete syntax in
conjunction with abstract syntax (metamodels) [1], [5]. The
approach presented here, however, uses the actual visual
elements as parts of transformation specification (transforma-
tion rules). By-example approaches have also been used to
eliminate the need for defining metamodels and input model
abstractions [3], [4]. However, they do not integrate visual-
isation. Our approach allows the user to define visualisation
for desired LHS and RHS models regardless of the abstract
level of input models and use the defined visualisation for
transformation generation.

II. CONVERT (CONCRETE VISUAL ASSISTED
TRANSFORMATION) FRAMEWORK

CONCcrete Visual AssistEd Transformation (CONVErT) is
the framework developed for concrete model transformation.
CONVEIT contains an integrated collection of techniques to

support specification and generation of model transformations
in a more user-centric manner. The intention in CONVErT’s
design was to use same transformation routines using drag and
drop of elements, for the task of transforming input model
examples to desired visualisations and then visualisation to
visualisation.

In order to generate a transformation using CONVECT,
users provide a set of source and target model examples to
specify correspondences. They then use visual elements and
model context to transform input models to visualisations
by drag and dropping model elements on visual notations.
The visualisations are transformation aware, i.e. they include
transformation templates and abstractions for transforming
the context to visual elements (and back). They also include
the data required for rendering element’s shape. Each visual
element can therefore take the role of a transformation rule.
Figure 1 depicts few examples of these visual elements.

Users can save visual elements when defined. Saving a vi-
sual element will result in its composing parts (transformation
templates, abstractions and data) being recorded. The visual
element will then be kept in a palette for custom defined
visualisations or transformation rules (depicted by 2 in Figure
2.a). For example, a visual element which is the result of
transforming a model attribute to java property can be saved
and reused whenever such a transformation rule is required.

A number of transformation functions have been integrated
into the framework to handle more complex transformation
tasks. The user can drag them to the designer canvas and link
elements to/from their input/output ports to form the desired
transformation rule (an example is depicted in Figure 2.b
where a merging function is being used for merging two values
to create bar chart name). Each function has the template
of the task to be performed encoded inside along with its
reverse. The system uses the interaction of user with the
visual representation of the function (drag and drop of element

Chiart Namm=
2 50
2 - + AttrName : AttrType @ public string anhyAtt
(2]
£ .
@ public dass FirstClass
Start End
name i1

nameXAxis

Fig. 1. Examples of visual elements: 1. A chart, 2. A bar, 3. UML attribute,
4. UML association link, 5. Java property and 6. Java class notation.

jgrundy
2012 IEEE International Symposium on Visual Languages and Human-Centric Computing, Innsbruck, Austria, Sept 30-Oct 4 2012, © IEEE CS Press

jgrundy

] CONVERT
Viualser | Mapper

Fle Templates Scheduling Render Help

= e Visuslsation | _scheduing | Rendering

= name Recommendatiors :

(a) 1. Chaining of visual elements, 2. Palette of customised visual
elements/rules

=] CONVERT |M=X]
Vialier | Mapper

Fle Templates Scheduling Render Help

egion -> BarChart
o soks Amounty -> BarChart/Bars

ion ements

(b) Using a merging function to prepare a value for bar chart name
BEX]

— CONVERT

Visualiser | Mapper

Fle Transformation Suggester

[MyClassDiagram
wClass1 | —

+ st : swing + a1 : Double

] | () Mapping Functions

<) Rules

a2 Integer

Visuslisations
Recommendations

Rule designer

(c) Correspondence specification between two visualisation (Class Di-
agram and Java code)

Fig. 2. Screenshots of CONVERT.

on/from function) to complete the template code required for
the task. Reverse generation of a function is however limited
to the tasks that are reversible. If not, a default value will be
provided.

For a complete visualisation (and hence transformation
specification), a visual element (transformation rule) chaining
and scheduling mechanism has been applied that allows the
user to compose multiple elements to generate more complex
ones, yet only use drag and drop approach (indicated by 1 in
Figure 2.a where a bar chart is being developed by chaining its
composing elements). Each rule in the chain is represented by
a visual element which is representation of the rule’s resulting

model. Visual elements in the chain contribute to composing
a metamodel for the chain with their abstraction data. This
metamodel acts as a dynamic example of the resulting model
(which will be updated as the chain is altered) and will
be used for transformation validation and to alert the user
if the resulted model does not conform to the metamodel
learnt from input examples. It is also possible to visualise the
resulting (partial/complete) model so that the user can see a
snapshot of the result as the chain completes. The defined rule
chain together with the generic metamodel learned from the
examples are used to generate reverse transformations, so the
transformation cycle (source to source visualisation to target
visualisation to target and back) is automatically defined once
the user defines one direction. Users can generate and save
multiple redundant rules, but only the rules in the chain will
be used for code generation and since they are checked and
validated (both visually and against metamodel) the system
will not allow redundant results.

Once the visualisation for input source and target models
are defined (e.g. in form of Charts, Source code, Boxes
and lines, etc.), correspondence specification between visu-
alisations will be performed with simple drag and drop of
visual elements. Figure 2 part (c) shows an example where a
visualisation of a class diagram and java source code have
been rendered. For example, the user can drag and drop
a parameter in the function declaration of a class diagram,
to a parameter on a function in java code (showed by red
solid line) to start generating UMLClass.Function.Parameter
to JavaClass.Function.Parameter transformation rule. The con-
tained elements of the parameters (showed in popups) can be
dragged accordingly (depicted by dashed red lines) to form a
complete transformation rule. If the rule requires more com-
plex processing, user can transfer elements to designer canvas
and use the defined functions to complete rule generation.

III. CONCLUSION

This paper introduced our approach to improve user-
friendliness of model transformation specifications. It briefly
described CONCcrete Visual AssistEd Transformation (CON-
VErT) which is our framework for providing user-centric
transformations and is capable of generating transformation
code in XSLT. The users of CONVErT will use drag and
drop of visual notations to develop complex transformation
specifications.

REFERENCES

[1] R. Gronmo, “Using concrete syntax in graph-based model transforma-
tions,” Ph.D. dissertation, University of Oslo, Norway, 2010.

[2] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Rets-
chitzegger, W. Schwinger, and M. Wimmer, “Lifting metamodels to
ontologies: A step to the semantic integration of modeling languages,” in
MoDELS’06. Springer, 2006, pp. 528-542.

[3] M. Strommer, M. Murzek, and M. Wimmer, “Applying model transfor-
mation by-example on business process modeling languages,” in ER’07,
2007, pp. 116-125.

[4] D. Varrd, “Model transformation by example,” in MoDELS’06. Springer,
2006, pp. 410-424.

[5] E. Visser, “Meta-programming with concrete object syntax,” in GPCE’02.
Springer, 2002, pp. 299-315.

