
Visualizing Traceability Links between Source Code
and Documentation

Xiaofan Chen1, John Hosking2, John Grundy3
1Department of Computer Science, University of Auckland, Auckland, New Zealand

xche044@aucklanduni.ac.nz
2College of Engineering & Computer Science, Australian National University, Canberra, Australia

john.hosking@anu.edu.au
3Centre for Computing & Engineering Software Systems, Swinburne University of Technology, Melbourne, Australia

jgrundy@swin.edu.au

Abstract—It is well recognized that visualizing traceability links
between software artifacts helps developers to recover, browse,
and maintain these inter-relationships effectively and efficiently.
However, it is a major challenge for researchers to efficiently
visualize traceability links for big software systems because of
scalability and visual clutter issues. In this paper we present a
new approach that combines treemap and hierarchical tree
visualization techniques to provide a global structure of traces
and a detailed overview of each trace. These both reduce visual
clutter while still being highly scalable and interactive. Our
usability study shows that our approach can support
comprehension, browsing, and maintenance of traceability links.

Keywords-Software traceability; Traceability visualization;
Treemap; Hierarchical tree

I. INTRODUCTION
Traceability between software artifacts has been recognized

as a critical success factor for effective development,
management, and comprehension of a complex software
system throughout the software development life cycle [3, 7,
20]. The larger and more complex a software system is, the
larger number of traceability links between artifacts exist,
especially as software systems become more and more
complex. Many traceability recovery techniques [2, 4, 9, 16]
have been developed to automatically or semi-automatically
extract high quality traceability links between artifacts in a
system, namely to extract as many correct links and as few
incorrect links as possible. While these link extraction
techniques are very powerful, a key unsolved issue remains:
how do we support software engineers to effectively and
efficiently understand, browse, and maintain these retrieved
traceability links? It is commonly believed that software
visualization techniques can help understand the complex data,
interact between engineers at a high degree, and support impact
analysis [3, 21]. Visualizing traceability links enables users to
recover, browse, and maintain inter-relationships between
artifacts in a natural and intuitive way [17]. However, it is a big
challenge to visualize an overwhelmingly large number of
traceability links effectively and efficiently. This is because a
software system with large numbers of artifacts, and thus very
large numbers of traceability links between artifacts, quickly
gives rise to scalability and visual clutter issues [6, 12, 18].

Moreover, the efficient visualization of both the artifact
structures themselves and the enormous number of inter-
relationships between artifacts is far from trivial [6, 17].

Our particular focus in this research is on traceability
between classes in source code and sections in documents that
are written in natural language and are produced during the
software development process, e.g. requirements, design
documents, tutorials, developer or user guides, emails and so
on. The objective of our research is to provide users with an
effective visualization enabling them to create, browse, edit,
and maintain traceability links between artifacts effectively and
efficiently. With this visualization users can trace relationships
between various documents and source code, easily create and
change links as well as conveniently browse and maintain
links. In terms of size, we are interested in systems with
potentially several hundreds to even thousands of classes,
dozens if not hundreds of documents, and many tens of
thousands to hundreds of thousands of traceability links
between classes and document elements.

Traditionally, traceability links are stored or represented in
tabular formats, e.g. a matrix. Despite their simplicity, these
approaches cannot provide a global overview and fail to
support users to maintain or interpret links easily and
conveniently [23, 24]. Although using a graph to display links
improves these shortcomings, graphs adopted by most
traceability visualization systems to date [6, 17, 18, 23, 26]
have suffered from visual clutter (i.e. are overcrowded) when
dealing with large numbers of traceability links between
artifacts. Visual clutter is caused by displaying the
overwhelming number of traceability links on top of a graph
structure where artifacts are represented as nodes and
traceability links are edges between related nodes [12]. This
then impedes the ability to efficiently browse, analyze, and
maintain traceability links between artifacts. These approaches
simply cannot scale to the size of systems and number of
traceability links we are interested in supporting.

In this paper, we present a visualization approach that
combines enclosure and node-link representations to reduce
visual clutter and to allow the visualization of the global
structure of traces and a detailed overview of each trace, while
still being highly scalable and interactive. We adopt two

jgrundy
In Proceedings of the 2012 IEEE Symposium on Visual Languages and Human-Centric Computing, Innsbruk, Austria, Sep 30-Oct 3 2012. © IEEE 2012

visualization techniques to achieve these goals: treemap and
hierarchical tree. A treemap view displays a tree structure by
means of enclosure and provides an overview of inter-
relationships between artifacts. In order to reduce visual clutter,
we employ colors to represent the relationship status of each
node in the treemap, instead of directly drawing edges between
related nodes on top of the treemap. A hierarchical tree
visualization that can be expanded and contracted is treated as a
supplement of the treemap to illustrate the detailed information
about each trace. We have conducted a usability study to assess
the usefulness of our new combined visualization approach for
large traceability visualization problems. The results of this
evaluation show that our visualization approach is both easy to
use and is able to effectively and efficiently help software
developers in comprehension, browsing, and maintenance of
large numbers of traceability links.

In Section 2, we review and critique key related work.
Section 3 describes the design of our visualization approach,
followed by a description of its implementation in Section 4.
We report the results of a usability study and outline possible
future research in Section 5. We draw conclusions in Section 6.

II. RELATED WORK
Software engineers traditionally store or represent

traceability links in tabular formats using a spread-sheet,
matrix, cross-references, or database. More recently, research
has focused on displaying links in a graph or tree due to the
convenience, and ease of browsing and maintaining links.
These methods are discussed in the following three sections.

A. Traditional Approaches
Matrix and cross-reference techniques are very common

traditional methods of representing traceability links. A
traceability matrix is a two-dimensional grid that displays
artifacts in rows and columns and represents traceability links
as marks between row artifacts and column artifacts. It is easy
to understand and provides a quick overview of relations
between two artifacts if the set of artifacts is small [23]. The
Trace/Analyzer tool developed by Egyed [8] uses such a matrix
to visualize the trace links among models, code, and test
scenarios. This matrix depicts the artifacts on both axes and
uses colors or symbols to indicate whether two artifacts are
related or not. However, the matrix misses the inherent
hierarchical structure in artifacts and becomes unreadable when
the set of artifacts becomes large [24]. The cross-reference
pattern lists each artifact using natural language and gives a list
of related links for each artifact [23]. It is easy to understand
but cannot provide the overall structure of traces. It is difficult
to identify individual traceability link as they are lost in this
table structure. The approach, therefore, does not scale to large
numbers of classes and documents.

B. Graph-based Traceability Link Visualization
Graph-based visualization techniques represent artifacts as

nodes and traceability links between artifacts as edges to form a
graph. Graphs can show the overall overview of relationships
between artifacts and can be used to easily browse links.
ADAMS [15] supports specifying links between pairs of

artifacts. Traceability links are organized in a graph where
nodes represent the artifacts and edges are the traceability links.
After users select a source artifact, the graph is built starting
from a source artifact by finding all the dependencies of a
specific type that involve the source artifact either as source or
target artifact [1]. Within the graph, users can identify
traceability paths and sets of artifacts connected by traceability
links. This graph performs very well in displaying all links of a
selected source artifact. However, it fails to support the display
of multiple artifacts’ links. Cleland-Huang and Habrat [5]
propose a hierarchical graphical structure to visualize links, in
which leaf nodes are represented by requirements while titles
and other hierarchical information are represented as internal
nodes. This visualization graph provides a birds-eye-view of
the candidate links and their distribution across the set of
traceable artifacts, and allows the user to explore groups of
candidate links that naturally occur together in the document’s
hierarchy [5]. Unfortunately, this visualization becomes very
large as the data set gets bigger. Moreover, it uses the display
space inefficiently. Zhou et al [26] adopt a hyperbolic tree view
with the enhancement of a “focus+context” approach to
facilitate software traceability understanding. The results of
their empirical study show that this view allows users to
maintain a global view of links as well as being able to dive
deep into an interesting traceability path. However, this view is
also not space-efficient.

TBreq [14], a commercial application, provides end-to-end
traceability from requirements to design, code, and test. It lists
artifacts horizontally and draws linear edges between related
items of artifacts. It cannot provide the hierarchical structure
and can quickly produce severe visual clutter for a system with
medium to large numbers of artifacts. TraceVis, developed by
van Ravensteijn [23], visualizes a dynamic list of hierarchies
and adjacency relations. It uses icicle plots and hierarchical
edge bundling [12] techniques to support the hierarchical
structure and to reduce visual clutter. Icicle plots are used to
represent hierarchies vertically. Adjacency relations are
represented by drawing edges between related items. Edges are
displayed using splines, and are grouped using hierarchical
edge bundling. TraceVis supports an overview of as well as a
detailed insight into inter-related, hierarchically organized data.
However, it uses space inefficiently and can result in visual
clutter if the dataset is large or lateral relations visualized [23].

Merten et al [18] utilize sunburst and netmap techniques to
display traceability links between requirements knowledge
elements. The sunburst is to visualize the hierarchical structure
of the project under trace. Nodes are arranged in a radial layout
and are displayed on adjacent rings representing the tree
structure. The netmap aims to represent links between
requirements. The nodes in a netmap are in a circle and are
segments of exactly one ring in the sunburst. Traceability links
are drawn by using linear edges in the inner circle. Although
the two techniques can visualize the overall hierarchical
structure and can easily browse links, the graph can become
very large leading to visual clutter when dealing with a large
number of traceability links. Cornelissen et al [6] employ a
hierarchical edge bundling technique [12] that groups edges
based on the structure of a hierarchy to reduce the visual clutter.
Using a circular bundle view shows the structure of the system

under trace and represents execution traces. The hierarchies are
shown by using an icicle plot based on the mirrored layout. The
global overview of traces is provided by a massive sequence
view. However, when considering a large number of traces, it
becomes difficult to discern the various colors and to prevent
bundles overlapping.

C. Other Approaches
In addition to traditional approaches and the various graph

representations similar to those reviewed above, there are
several other approaches that have been used to visualize
traceability links. Poirot [5] displays trace results in a textual
format. It uses confidence levels, user feedback checkboxes,
and tabs separating likely and unlikely links to assist the
analyst in evaluating candidate links. However, it cannot
visualize overall structure. TraceViz [17] employs a map
consisting of colored and labeled squares to display traceability
links for a specific source or target artifact. It allows users to
clearly visualize all links of a selected source artifact or a
chosen target artifact. Unfortunately, it is unable to display
links for multiple artifacts at the same time. LeanArt [11]
utilizes an intuitive point-and-click graphical interface to
enable users to navigate to program entities linked to elements
of UCDs by selecting these elements, and to navigate to
elements of UCDs by selecting program entities to which these
elements are linked. The characteristic of LeanArt is to select a
source, and then it displays targets linked to this source. It also
fails to represent all links at the same time. A 3D approach [19]
is introduced to enhance traceability visualization between
UML diagrams. Artifacts are projected on layered planes.
Traces between different levels of abstraction are visualized by
using edges between planes. Although presenting more content
at once and grouping related information together, the 3D
approach adds more complexity to the graph, and still leads to
visual clutter when the data set becomes large.

To varying degrees, none of traceability visualization
techniques developed so far can visualize an overwhelmingly
large number of traceability links effectively and efficiently.
Users of such link visualizations not only need scalable,
effective representations, but must also be able to navigate
complex software systems and their documentation to help
them recover, browse, and maintain inter-relationships between
artifacts in a natural and intuitive way.

III. OUR APPROACH
In order to provide efficient traceability visualization, we

have explored an approach of combining enclosure and node-
link representations to display the overall structure of
traceability links and provide a detailed overview of each link
while still being highly scalable and interactive. The overview
of traces provides users with information about the distribution
of traces in the system and whether or not an artifact has links.
As a result users don’t need to check one by one to see which
artifacts have no links. We utilize two visualization techniques
to achieve these goals: treemap and hierarchical tree. The
treemap view is adopted to display the structure of the system
under trace and the overall overview of links. We utilize colors
to differentiate the relationship status of each node in the
treemap instead of drawing edges directly over the treemap.

The later approach quickly gives visual clutter. The hierarchical
tree is used to provide the detailed dependency information of a
single item when the item is selected in the treemap view. Any
change to links made in the treemap is reflected in the
hierarchical tree, and vice versa. The following sections
describe the two techniques and how we support editing of
links in detail.

A. Treemap View
The treemap technique adopts a space-filling layout

technique to represent a tree structure by means of enclosure,
which places child nodes within the boundaries of their parent
nodes and encloses each group of siblings by a margin [22].
This layout makes it an ideal technique for displaying a large
tree and using display space effectively [22, 25]. Although the
treemap technique cannot communicate the hierarchical
structure very well, it can convey the high-level, global
structure of a system under trace. It is also effective in helping
to answer questions such as what artifacts the system has, how
many items each artifact has, which artifact contains the most
numbers of items, and how artifacts are organized.

(a) (b)

(c) (d)

Figure 1. Displaying traceability links between nodes using (a)
straight/linear edges; (b) curved link edges; (c) and (d) edges grouped by

hierarchical edge bundles. [12]

In order to display traceability links between artifacts in a
treemap, the straight-forward way is to add relationships
between related nodes as edges over the treemap as in [12] (see
Figure 1). Figure 1a shows straight/linear edges between
related nodes on top of the treemap. Figure 1b uses curved link
edges. These two approaches quickly lead to visual clutter if
large numbers of edges are displayed. Using a hierarchical edge
bundling technique can alleviate this issue. Figure 1c and d
group edges based on the structure of a hierarchy [12].
However, hierarchical edge bundling can cause bundles to
overlap along the collinearity axes (see the encircled region in
Figure 1d) if dealing with the large amount of collinear nodes
in the treemap. All these approaches have difficulty discerning

the source and target items of a link if not using other
enhancement techniques, e.g. a “focus+context” technique. For
example, it is hard to know that edges encircled (1 and 2) in
Figure 1c are from where to where. Moreover, it is hard to
discern the structure of the system conveyed in the treemap
because of the edges drawn on top of the treemap. In addition,
it is easy for it to become overcrowded when considering large
numbers of links.

In order to ameliorate these issues, we introduce colors to
show the relationship status of each node instead of drawing
edges over the treemap. The relationship status of each node
describes whether the node has links and how many links it has.
We use three color ranges to show the status of each node (see
Table 1). If a node has less than six links, yellow-based colors
are used. If the number of links is less than 16 but more than 5,
gray-based colors are used. Otherwise, we use green-based
colors. For each color range, the shading of the color indicates
intermediate values (lighter implies less links, darker more
links). Based on colors on each node without additional edges
on top of the treemap, it is easy to discern the structure of the
traced system and an overall overview of the scale of
traceability links.

TABLE I. THREE COLOR RANGES INDICATING THE NUMBER OF LINKS
EACH NODE HAS

1. 0 ≤ No. of links < 6: Yellow-based

2. 6 ≤ No. of links < 16: Gray-based

3. No. of links ≥ 16: Green-based

B. Hierarchical Tree View
The hierarchical tree is an intuitive node-link based

representation that uses lines to connect parent and child nodes
to depict the relationship between them [10, 12]. This
representation is easy to understand, even to a lay-person, and
it communicates hierarchical structure very well [10, 12]. There
are two approaches to visualize traceability links using a
hierarchical tree visualization. The first approach is to draw
edges between related children nodes (see Figure 2a). Edges
can be grouped using the hierarchical edge bundling technique.
However, the approach suffers from overlapping bundles along
the collinearity axes (see the encircled region in Figure 2a) and
hence visual clutter if dealing with rather large numbers of
traceability links [12]. The second approach is to directly add
traceability links as children of leaf nodes (see Figure 2b). In
other words, the original leaf nodes (green circle nodes in
Figure 2b) in the hierarchical tree become inner nodes and
parents of traceability links (gray rectangle nodes in Figure 2b).
For example, if a child node is related to three other nodes, we
additionally add the three nodes under the child node. The
second approach can ameliorate problems with the first
approach.

We employ a left-to-right hierarchical tree layout to show
detailed information of a single item once the item is selected
in the treemap. The second approach is adopted to display
traceability links of the item. It illustrates two levels of
dependency information. The first level is artifacts that are

related to the selected item. The second level is other artifacts
that are dependent on the artifacts shown in the first level. This
view shows not only artifacts related to the item but also
dependency information for these artifacts. Moreover, we use
red-based colors to show the similarity score levels of links.
The darker the color the higher the similarity score a link has.
In addition, providing the hierarchical tree with the ability to
expand and contract makes it space-efficient.

(a) (b)

Figure 2. Showing traceability links in the hierarchical tree layout: (a) links
as edges between nodes [12], (b) links as children of nodes

C. Editing Traceability Links
Initially we use an automated algorithm to extract a

candidate set of traceability links from a target system and its
documentation [4]. While our algorithm has both high
precision and high recall compared to other techniques, it still
suffers from displaying some incorrect trace links and misses
some correct trace links. To address this, incorrect links can be
deleted by an end user and correct links added when required.

When a node is selected in the treemap, its related nodes are
highlighted and a hierarchical tree is built starting from the
selected node and connecting to nodes related to it and all
dependencies of these nodes. After this, users are able to edit
links in both the treemap and hierarchical tree views. Our
visualization tool provides a popup menu allowing users to
delete or change existing traceability links, add a new
traceability link, and change the similarity scores (0 ≤
similarity score ≤ 1) of existing links.

A changed link or a newly added link is assigned the
highest similarity score (=1). Both views are interactive; any
change made in one view is reflected in the other view. In order
to assist users in editing traceability links, we provide the full
name or the similarity value when users hover the mouse over a
node and the detailed content of a node when users click
“Show Content” in the popup menu.

IV. IMPLEMENTATION
Figure 3 illustrates the traceability visualization process

used by our approach. First, if documents in the project under
trace contain sections, they need to be divided into small
documents based on headings or sections. For example, if a
PDF document contains 10 headings, it is split into 10 sub-
documents; the contents of each are the text between its
heading and the following one. Next, source code and these
small documents are passed to our automated traceability
recovery engine (discussed in detail in [4]) (1). This engine
retrieves traceability links between classes in source code and

sections in documents using a composite set of traceability
recovery techniques (discussed in detail in [4]) (2). Then these
retrieved traceability links are filtered based on a threshold
level - only links with a similarity score that is bigger than the
threshold are shown to users (3). After filtering, the candidate
traceability links and the structure information of the project
are visualized using the treemap and hierarchical tree
techniques (4).

Figure 3. Traceability visualization process of our approach

A prototype of our combination traceability visualization
approach has been developed. This prototype is seamlessly
embedded within the Eclipse integrated development
environment (IDE). It automatically extracts relationships
between sections in documents and classes in source code and
visualizes these retrieved links. Figure 4a is the user interface
of our visualization prototype. It shows an example of
visualizing traceability links between classes and sections in
the JDK1.5, which is discussed in [4]. This case contains 249
classes and 182 sections. Traceability links between them are
captured using Information Retrieval (IR) recovery techniques
discussed in [4]. Our traceability perspective includes three
parts: navigation view, edit area, and traceability view. The left
part is the navigation view, which displays details of a project
under trace, e.g. headings inside PDF documents in the
JDK1.5. The top right area is the edit area that shows java files
or documents and allows users to edit them using functions
provided by Eclipse. The bottom right area is the traceability
view that visualizes extracted links. The traceability view
includes two parts: the top area is the treemap view, and the
bottom area is the hierarchical tree view that displays the
detailed information of the selected node. Our visualization
prototype can provide software engineers with both IDE and
traceability support. Users can use the functionality provided
not only within the Eclipse IDE but can also use our
visualization prototype as a stand-alone tool.

The treemap in Figure 4a is divided into two parts: one for
packages and the other for documents. Each node is colored
using the three color ranges (discussed in Section 3) according
to the number of traceability links they have. When a user
hovers the mouse over a node, the name of the node is
described in the “description area” at the bottom of the treemap,
and all related nodes are highlighted using a magenta color. If
the node is clicked, it is highlighted with cyan and a

hierarchical tree showing its detailed dependency information
is built. For example, in Figure 4a, the node “Binding” with
cyan color in “javax.naming” package is selected, all related
nodes are colored with magenta. Detailed link information is
displayed in a hierarchical tree (Figure 4b). The hierarchical
tree can be expanded to show link information of nodes that are
related to the selected node. Figure 4c shows that the first level
is sections related to the “Binding” class, and the second level
is other classes dependent on these sections. These related
sections and classes are colored to differentiate their similarity
value levels. The lighter the color the lower the similarity score
a node has. When the node is hovered with the mouse, its
similarity score is shown. In Figure 4b, the similarity value of
“2.5.2 Resolving Through a Context” is 0.4. In Figure 4c, the
similarity score of “InitialContext” at the second level is 0.8.

Once a node is clicked in the treemap, users can edit its
links in both views. In the treemap, existing related nodes can
be deleted and new nodes can be added (see the popup menu in
Figure 4a). For example, a section called “Uses of JPS
Attributes” (see the Description area in Figure 4a) in “JPS-
PDF.pdf” can be added as a new link of the “Binding” class. To
prevent unwanted structural changes, names of nodes related to
the selected node cannot be edited in the treemap. However,
they are editable in the hierarchical tree; the name of an
existing related node can be changed to become a new node,
and their similarity scores can be changed (see the popup menu
in Figure 4b). In both views, we provide the contents of nodes
to assist comprehension. When “Show Content” in the popup
menus is selected, the file related to the node is opened in the
edit area. If the node is a section, a content window is also
opened to display the contents of the section. Moreover, both
views are interactive; changes made in one view are reflected
in the other view. For example, if an existing related node is
deleted in the treemap, it is deleted in the hierarchical tree too.

V. EVALUATION
We undertook a usability study to answer the question: does

our approach of combining treemap and hierarchical tree views
help to support and improve the comprehension, browsing, and
maintenance of traceability links in a system. The case used in
this study is the JDK1.5 mentioned in Section 4. We recruited a
group of 15 participants for the evaluation of our approach.
Among the participants were 10 students, 1 academic, and 4
from industry (see Figure 5a). At the beginning, a brief
introduction and a demonstration were provided to help
participants to gain familiarity with our approach. The
participants then performed three tasks. The first task was to
understand the JDK1.5 system; the structure of the system and
the overview of links between artifacts in the system. The
second task was to understand how an artifact works; how a
class works in order to fix a bug related to it, where the
documentation of this class can be found, and what other
classes are related to this class. The third task was to modify
traceability links of an artifact; links of a class retrieved by IR
recovery techniques may contain incorrect links or may miss
correct links or may have low similarity score of correct links,
these retrieved traceability links of the class need to be edited
to contain only correct links: delete incorrect links or add
missing links.

Filter

Project

Source
Code

Sections

Traceability Recovery Engine

Traceability
recovery
technique

Retrieved
traceability

links

Visualization

Treemap view Hierarchical
tree view

1

2

3

4

(a) The user interface of our visualization prototype

(b) Hierarchical tree view contracted

(c) Hierarchical tree view expanded

Figure 4. An example of treemap and hierarchical tree visualization of traceability links between classes and sections: (a) the user interface of our visualization
prototype, (b) contracted hierarchical tree, (c) expanded hierarchical tree

Popup menu

First level Second level

Packages Documents

Selected node: “B
inding”

N
odes related to the selected one

Description area Popup menu

After the completion of tasks, the participants answered a
set of questions on our approach, as well as some general
questions regarding their background. The former were aimed
at finding out whether browsing, maintaining and
understanding are improved as perceived by the participants.
The latter were to gather information of participants’ position,
software development experience, and frequency of using other
traceability tools. Finally, the participants were requested to
provide open ended comments on our approach. During the
evaluation, we observed and recorded how participants
managed to complete tasks and their verbal responses and
facial expression.

All of the participants had at least 1 year experience in
software development. Among them, 2 had more than 10 years
of development experience, 5 had less than 10 years but more
than 5 years, 6 had less than 5 years, and 2 had more than 1
year but less than 5 years. Only one participant usually applied
traceability tools to assist in comprehending or maintaining or
programming software systems. 3 participants sometimes used
traceability tools, 6 rarely used, and 5 never used such tools
(See Figure 5b).

(a) Type of participants (b) Frequency of using other

traceability tools

Figure 5. Background of participants

All 15 participants completed the three tasks with times
varying from 10 minutes to 15 minutes. The first interesting
result was revealed when performing the first task. The
majority of participants completed this in less than 1 minute
and strongly agreed that the treemap view clearly illustrates the
structure of the system and the overall overview of links in the
system. All participants agreed that the detailed information
provided in the hierarchical tree view is a good supplement to
the treemap view while performing the second task. The
majority of participants undertook the modification of
traceability links of a class using the hierarchical tree view as
they thought that this view was more intuitive and straight-
forward for this task.

The main analysis of this evaluation was on the set of
questions answered by participants based on their experiences
of using our approach in comparison to other software tools
they have used. The results can be seen in Figure 6. The
diagram shows the four questions (easy to use, help
comprehension, easy to browse, easy to maintain) on the x-axis.
The y-axis shows the number of participants; how much they
agreed (strongly agree, agree, or neutral, disagree, or strongly
disagree) that our approach is easy to use, helps comprehension

of traceability in the system, is easy to browse traceability links,
and is easy to maintain links. No participants made a negative
response to any of the four questions. All participants strongly
agreed or agreed that it is easy to browse links. 14 of 15
participants (strongly) agreed that it is easy to maintain links.
13 of them agreed that our approach helps comprehension. 12
thought that it was easy to use. Several participants gave a
neutral answer to questions for use, comprehension and
maintenance. They responded this way because they could not
undertake the comparison as they had never used other
traceability tools. Overall, the results in Figure 6 clearly show
that participants agreed that our approach can help them
understand, browse, and maintain traceability in the system.

Figure 6. Results of the evaluation

Participants also reported many valuable comments on our
approach. These include: (1) One participant pointed out that it
is not feasible for color-blind users to discern nodes if we adopt
inappropriate colors to represent the number of links that each
node has in the treemap view and differentiate the similarity
value level of each link in the hierarchical tree view. (2) Three
participants suggested that it would be helpful to use different
sizes of nodes in the treemap to represent the number of links
that each node has or to reflect the sizes of classes/sections in
the system. (3) Two commented that it is not easy to quickly
notice the selected node and its related nodes. (4) Two
suggested that words related to a selected node should be
highlighted when showing the contents of the related node.

Based on our observations, we noticed that participants had
difficulties in directly finding a specific node in the treemap. A
key extension of our approach includes a navigator and search
functions to help users quickly find an item that they are
interested in. This extension also contains a filter to allow users
to select different IR recovery techniques to retrieve
traceability links and to filter out unwanted traceability links
according to the similarity score level and the number of links.
Our approach can be enhanced if the following methods are
applied. (1) It would be more intuitive to employ different font
sizes and/or colors of nodes in the hierarchical tree to display
their similarity value levels. (2) It would be more noticeable to
make the selected node and its related nodes stand out from
other nodes in the treemap by enlarging these nodes. (3) In the
contents window, words that are related to the selected node
should be highlighted. (4) To apply or combine other methods
to represent the relationship status of each node in the treemap
would make the view more intuitive. These all represent
potential future work in refining our approach.

There are three limitations of our approach. (1) The
hierarchical structure of the system is not well communicated
in the treemap. This may be ameliorated by including an
additional hierarchical tree, which can be expanded and
contracted, to represent the whole system and links in it. (2)
The size of each node in the treemap becomes small in order to
display a system with large numbers of artifacts in one screen.
(3) The three color ranges used in the treemap may need to be
extended to clearly distinguish nodes if the range of numbers of
links that nodes have becomes large.

VI. CONCLUSIONS
It is well recognized that visualizing traceability links in a

system assists in comprehension, browsing, and maintenance of
traceability. However, it is a big challenge to visualize
traceability links effectively and efficiently because of
scalability and visual clutter issues. We present an approach
that integrates enclosure and node-link visualization
representations to support the overall overview of traceability
in the system and the detailed overview of each link while still
being highly scalable and interactive. The treemap and
hierarchical tree visualization techniques are applied to display
traceability links in a system. The treemap view provides the
overall structure of the system and the overall overview of
traceability links. Our approach reduces visual clutter through
adopting colors to represent the relationship status of each node
instead of directly drawing edges between related nodes on top
of the treemap. The hierarchical tree view can be treated as the
supplement of the treemap. When a node is selected in the
treemap, the hierarchical tree view displays all nodes that are
related to the selected node and other dependency information
of these nodes. These traceability links can be modified (add,
delete, edit). Their similarity scores also can be changed. Both
views are interactive; changes made in one view can be
reflected in the other view. Our usability study shows that our
approach supports and improves comprehension, browsing, and
maintenance of traceability links in a system.

ACKNOWLEDGMENT
The authors gratefully acknowledge the support of the

Foundation for Research, Science and Technology and the
University of Auckland for their financial support of this
research.

REFERENCES
[1] ADAMS 2009. Overview. Data accessed: February 2009,

http://adams.dmi.unisa.it/adams-2009/Overview.html
[2] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo,

“Recovering traceability links between code and documentations”, TSE
28(10), Oct. 2002, pp. 970-983

[3] H. U. Asuncion, F. Francois, and R. N. Taylor, “An end-to-end
industrial software traceability tool”, ESEC-FSE’07, Sep. 3-7, 2007,
Cavtat near Dubrovnik, Croatia, pp. 115-124

[4] X. Chen and J. Grundy, “Improving automated documentation to code
traceability by combining retrieval techniques”, 26th ASE, 2011,
Lawrence, KS, pp. 223-232

[5] J. Cleland-Huang and R. Habrat, “Visual support in automated tracing”,
REV 2007, IEEE Computer Society, pp. 4-8

[6] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J.J. Van Wijk, and
A. Van Deursen, “Understanding execution traces using massive
sequence and circular bundle views”, 15th ICPC ’07, Alberta, BC, pp.
49-58

[7] R. Domges and K. Pohl, “Adapting traceability environments to project
specific needs”, CACM, 1998, 41(12), pp. 54-62

[8] Egyed, “Trace Analyzer tool: a mini tutorial”, 2006,
http://www.alexander-egyed.com/tools/trace_analyzer_tool.html

[9] Egyed, S. Biffl, M. Heindl, land P. Grunbacher, “A value-based
approach for understanding cost-benefit trade-offs during automated
software traceability”, TEFSE 05, 2005, California, USA, pp. 2-7

[10] M. Graham and J. Kennedy, “A survey of multiple tree visualization”,
Information Visualization, 2010, Vol. 9(4), pp. 235-252

[11] M. Grechanik, K.S. McKinley, and D. E. Perry, “Recovery and using
use-case-diagram-to-source-code traceability links”, ESEC/FSE’07, Sep.
3-7, 2007, Croatia, pp. 95-104

[12] D. Holten, “Hierarchical edge bundles: visualization of adjacency
relations in hierarchical data”, IEEE Transactions on Visualization and
Computer Graphics, Vol. 12, No. 5, 2006, pp. 741-748

[13] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey”, Journal of Software
Maintenance and Evolution: Research and Practice, 2003, 15, pp. 87-
109.

[14] LDRA, Requirements traceability with TBreq, 2012, extracted from
http://www.ldra.com/tbreq.asp

[15] A.D. Lucia, F. Fasano, R. Francese, and G. Tortora, “ADAMS: an
artifact-based process support system”, 16th Int. Conf. on Software
Engineering and Knowledge Engineering, 2004, Alberta, Canada, pp.
31-36

[16] Marcus and J. Maletic, “Recovering documentation-to-source-code
traceability links using latent semantic indexing”, 25th ICSE, 2003, pp.
125-135

[17] Marcus, X. Xie, and D. Poshyvanyk, “When and how to visualize
traceability links?”, TEFSE 2005, Nov. 8, California, USA, pp. 56-61

[18] T. Merten, D. Juppner, and A. Delater, “Improved representation of
traceability links in requirements engineering knowledge using Sunburst
and Netmap visualization”, 4th MARK, 2011, Trento, pp. 17-21

[19] J. Pilgrim, B. Vanhooff, I. Schulz-Gerlach, and Y. Bervers,
“Constructing and visualizing transformation chains”, 4th ECMDA-
FA ’08, 2008, Heidelberg, pp. 17-32

[20] Ramesh, C. Stubbs, T. Powers, and M. Edwards, “Requirements
traceability: theory and practice”, Annals of Software Engineering 3
(1997), 1997, pp. 397-415

[21] G.C. Roman and K.C. Cox, “Program visualization: the art of mapping
programs to picture”, Proc. Of Int. Con. on Software Engineering, 1992,
pp. 412-420.

[22] Shneiderman, “Tree visualization with tree-maps: 2d space-filling
approach”, ACM Transactions on Graphics (TOG), 11(1), 1992, pp. 92-
99

[23] W.J.P. Van Ravensteijn, “Visual traceability across dynamic ordered
hierarchies”, Master's thesis, Eindhoven University of Technology,
August 2011

[24] J. B. Voytek and J. L. Nunez, “Visualizing non-functional traces in
student projects in information systems and service design”, CHI 2011,
May, 2011, Vancouver, Canada

[25] J. J. van Wijk and H. van de Wetering, “Cushion treemaps: visualization
of hierarchical information”, INFOVIS 99, San Francisco, Oct. 25-26,
1999, pp. 1-6

[26] X. Zhou, Z. Huo, Y. Huang, and J. Xu, “Facilitating software
traceability understanding with ENVISION”, COMPSAC 2008, pp. 295-
302

